Science.gov

Sample records for magnetic relaxation method

  1. Advanced new relaxation filter-selective signal excitation methods for (13)C solid-state nuclear magnetic resonance.

    PubMed

    Asada, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2014-10-21

    We have developed new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state NMR, which enable extraction of the spectrum of a target component from a mixture of several components. These methods are based on the equalization of proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton relaxation time of individual components in the mixture. We recently reported two types of RFS methods using proton spin-lattice relaxation time in the rotating frame ((1)H T1rho) in (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, to increase the availability of RFS methods, we focus on proton spin-lattice relaxation time ((1)H T1). Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility, and led to the development of two new types of RFS methods using (1)H T1. We then demonstrated these methods by selectively exciting the (13)C signals of target components in a commercially available drug and a number of physical mixtures, and we showed them to be applicable to the quantitative analysis of individual components in these solid mixtures with an experimental duration of 1.5 to about 10 h. The practicality and versatility of these four RFS methods were increased by combining two or more of them, or by using a flip-back pulse, which is an effective means of shortening experimental duration. These RFS methods are suitable for use in a broad range of fields.

  2. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  3. Conservation of magnetic helicity during plasma relaxation

    SciTech Connect

    Ji, H.; Prager, S.C.; Sarff, J.S.

    1994-07-01

    Decay of the total magnetic helicity during the sawtooth relaxation in the MST Reversed-Field Pinch is much larger than the MHD prediction. However, the helicity decay (3--4%) is smaller than the magnetic energy decay (7--9%), modestly supportive of the helicity conservation hypothesis in Taylor`s relaxation theory. Enhanced fluctuation-induced helicity transport during the relaxation is observed.

  4. Magnetic Relaxation Detector for Microbead Labels

    PubMed Central

    Liu, Paul Peng; Skucha, Karl; Duan, Yida; Megens, Mischa; Kim, Jungkyu; Izyumin, Igor I.; Gambini, Simone; Boser, Bernhard

    2014-01-01

    A compact and robust magnetic label detector for biomedical assays is implemented in 0.18-μm CMOS. Detection relies on the magnetic relaxation signature of a microbead label for improved tolerance to environmental variations and relaxed dynamic range requirement, eliminating the need for baseline calibration and reference sensors. The device includes embedded electromagnets to eliminate external magnets and reduce power dissipation. Correlated double sampling combined with offset servo loops and magnetic field modulation, suppresses the detector offset to sub-μT. Single 4.5-μm magnetic beads are detected in 16 ms with a probability of error <0.1%. PMID:25308988

  5. Relaxation in x-space magnetic particle imaging.

    PubMed

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  6. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  7. Tunable finite-sized chains to control magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Ekstrand, Paul D.; Javier, Daniel J.; Gredig, Thomas

    2017-01-01

    The magnetic dynamics of low-dimensional iron ion chains have been studied with regards to the tunable finite-sized chain length using iron phthalocyanine thin films. The deposition temperature varies the diffusion length during thin-film growth by limiting the average crystal size in the range from 40 to 110 nm . Using a method common for single chain magnets, the magnetic relaxation time for each chain length is determined from temporal remanence data and fit to a stretched exponential form in the temperature range below 5 K , the onset for magnetic hysteresis. A temperature-independent master curve is generated by scaling the remanence by its relaxation time to fit the energy barrier for spin reversal, and the single spin-relaxation time. The energy barrier of 95 K is found to be independent of the chain length. In contrast, the single spin-relaxation time increases with longer chains from under 1 ps to 800 ps. We show that thin films provide the nanoarchitecture to control magnetic relaxation and a testbed to study finite-size effects in low-dimensional magnetic systems.

  8. Electromagnetic energy transport in RFP magnetic relaxation

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; Thuecks, D. J.; Stone, D. R.; Anderson, J. K.; den Hartog, D. J.; Duff, J.; Ko, J.; Kumar, S.; Parke, E.; Lin, L.; Brower, D. L.; Ding, W. X.

    2014-10-01

    In an RFP driven by steady toroidal induction, tearing modes responsible for magnetic relaxation redistribute electromagnetic energy throughout the plasma, generating the net EMF that regulates the equilibrium profile. In MST experiments, insertable edge probes measure local fluctuations in electric and magnetic fields, from which flux-surface-average Poynting flux is derived. This outwardly directed flux is maximum during discrete ``sawtooth'' magnetic relaxation events and is a significant fraction (a few 10s of percent) of the total input inductive power when averaged over time. Spatially, the flux is maximum at the reversal surface and decreases outside, indicating that transported energy is deposited at the plasma edge. These results are similar to expectations from a simple model of an incompressible fluid plasma with a resistive boundary and consistent with estimates of global power balance from time-resolved equilibrium reconstructions. This work was supported by the US DOE and NSF.

  9. Temperature of the Magnetic Nanoparticle Microenvironment: Estimation from Relaxation Times

    PubMed Central

    Perreard, IM; Reeves, DB; Zhang, X; Kuehlert, E; Forauer, ER; Weaver, JB

    2014-01-01

    Accurate temperature measurements are essential to safe and effective thermal therapies for cancer and other diseases. However, conventional thermometry is challenging so using the heating agents themselves as probes allows for ideal local measurements. Here, we present a new noninvasive method for measuring the temperature of the microenvironment surrounding magnetic nanoparticles from the Brownian relaxation time of nanoparticles. Experimentally, the relaxation time can be determined from the nanoparticle magnetization induced by an alternating magnetic field at various applied frequencies. A previously described method for nanoparticle temperature estimation used a low frequency Langevin function description of magnetic dipoles and varied the excitation field amplitude to estimate the energy state distribution and the corresponding temperature. We show that the new method is more accurate than the previous method at higher applied field frequencies that push the system farther from equilibrium. PMID:24556943

  10. Dependence of Brownian and Néel relaxation times on magnetic field strength

    SciTech Connect

    Deissler, Robert J. Wu, Yong; Martens, Michael A.

    2014-01-15

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  11. Magnetic relaxation in dysprosium-dysprosium collisions

    SciTech Connect

    Newman, Bonna K.; Johnson, Cort; Kleppner, Daniel; Greytak, Thomas J.; Brahms, Nathan; Au, Yat Shan; Connolly, Colin B.; Doyle, John M.

    2011-01-15

    The collisional magnetic reorientation rate constant g{sub R} is measured for magnetically trapped atomic dysprosium (Dy), an atom with large magnetic dipole moments. Using buffer gas cooling with cold helium, large numbers (>10{sup 11}) of Dy are loaded into a magnetic trap and the buffer gas is subsequently removed. The decay of the trapped sample is governed by collisional reorientation of the atomic magnetic moments. We find g{sub R}=1.9{+-}0.5x10{sup -11} cm{sup 3} s{sup -1} at 390 mK. We also measure the magnetic reorientation rate constant of holmium (Ho), another highly magnetic atom, and find g{sub R}=5{+-}2x10{sup -12} cm{sup 3} s{sup -1} at 690 mK. The Zeeman relaxation rates of these atoms are greater than expected for the magnetic dipole-dipole interaction, suggesting that another mechanism, such as an anisotropic electrostatic interaction, is responsible. Comparison with estimated elastic collision rates suggests that Dy is a poor candidate for evaporative cooling in a magnetic trap.

  12. Braided magnetic fields: equilibria, relaxation and heating

    NASA Astrophysics Data System (ADS)

    Pontin, D. I.; Candelaresi, S.; Russell, A. J. B.; Hornig, G.

    2016-05-01

    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity—as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor’s hypothesis.

  13. NUCLEAR MAGNETIC RELAXATION IN LIQUID METALS, ALLOYS, AND SALTS.

    DTIC Science & Technology

    NUCLEAR MAGNETIC RESONANCE, *ALKALI METAL ALLOYS, *LIQUID METALS, * SALTS , NUCLEAR MAGNETIC RESONANCE, NUCLEAR MAGNETIC RESONANCE, RELAXATION TIME... SODIUM , GALLIUM, SODIUM ALLOYS, THALLIUM, THALLIUM COMPOUNDS, MELTING, NUCLEAR SPINS, QUANTUM THEORY, OPERATORS(MATHEMATICS), BIBLIOGRAPHIES, INTEGRAL EQUATIONS, TEST EQUIPMENT, MATHEMATICAL ANALYSIS.

  14. Estimating the contribution of Brownian and Néel relaxation in a magnetic fluid through dynamic magnetic susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Maldonado-Camargo, L.; Torres-Díaz, I.; Chiu-Lam, A.; Hernández, M.; Rinaldi, C.

    2016-08-01

    We demonstrate how dynamic magnetic susceptibility measurements (DMS) can be used to estimate the relative contributions of Brownian and Néel relaxation to the dynamic magnetic response of a magnetic fluid, a suspension of magnetic nanoparticles. The method applies to suspensions with particles that respond through Brownian or Néel relaxation and for which the characteristic Brownian and Néel relaxation times are widely separated. First, we illustrate this using magnetic fluids consisting of mixtures of particles that relax solely by the Brownian or Néel mechanisms. Then, it is shown how the same approach can be applied to estimate the relative contributions of Brownian and Néel relaxation in a suspension consisting of particles obtained from a single synthesis and whose size distribution straddles the transition from Néel to Brownian relaxation.

  15. Magnetic relaxations in a Tb-based single molecule magnet studied by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Kofu, Maiko; Kajiwara, Takashi; Gardner, Jason S.; Simeoni, Giovanna G.; Tyagi, Madhusudan; Faraone, Antonio; Nakajima, Kenji; Ohira-Kawamura, Seiko; Nakano, Motohiro; Yamamuro, Osamu

    2013-12-01

    By using ac magnetic susceptibility and quasielatic neutron scattering (QENS) techniques, we have investigated a magnetization relaxation phenomenon of a rare-earth based single molecule magnet, TbCuC19H20N3O16. We clearly identified and characterized two magnetic relaxations. The slower relaxation observed in the ac susceptibility is at the ms timescale around T=2 K and its activation energy is 16 K. On the other hand, the faster relaxation in the QENS measurements occurs on the timescale between ns and ps with activation energy of 174 K. The slower relaxation may occur through thermally activated tunneling among magnetic substates. We discuss two possible origins for the faster relaxation; one is a thermally activated tunneling between the higher excited states, the other is the magnetic relaxation coupled with the motion of ligands around the magnetic ions. This is the first clear observation of magnetic relaxation on the single molecule magnet revealed by QENS.

  16. Determining the relaxivity values of protein cage-templated nanoparticles using magnetic resonance imaging.

    PubMed

    Sana, Barindra; Lim, Sierin

    2015-01-01

    The application of magnetic resonance imaging (MRI) is often limited by low magnetic relaxivity of currently used contrast agents. This problem can be addressed by developing more sensitive contrast agents by synthesizing new types of metal complex or metallic nanoparticles. Protein cage has been used as a template in biological synthesis of magnetic nanoparticles. The magnetic nanoparticle-protein cage composites have been reported to have high magnetic relaxivity, which implies their potential application as an MRI contrast agent. The magnetic relaxivity is determined by measuring longitudinal and transverse magnetic relaxivities of the potential agent. The commonly performed techniques are field-cycling NMR relaxometry (also known as variable field relaxometry or nuclear magnetic relaxation dispersion (NMRD) profiling) and in vitro or in vivo MRI relaxometry. Here, we describe techniques for the synthesis of nanoparticle-protein cage composite and determination of their magnetic relaxivities by in vitro MR image acquisition and data processing. In this method, longitudinal and transverse relaxivities are calculated by measuring relaxation rates of water hydrogen nuclei at different nanoparticle-protein cage composite concentrations.

  17. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer

    SciTech Connect

    Lu, Jixi Qian, Zheng; Fang, Jiancheng

    2015-04-15

    We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negative resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.

  18. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer.

    PubMed

    Lu, Jixi; Qian, Zheng; Fang, Jiancheng

    2015-04-01

    We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negative resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.

  19. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    PubMed Central

    Saberi Nik, Hassan; Rebelo, Paulo

    2014-01-01

    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results. PMID:25386624

  20. Multistage spectral relaxation method for solving the hyperchaotic complex systems.

    PubMed

    Saberi Nik, Hassan; Rebelo, Paulo

    2014-01-01

    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  1. Power-law resistivity, magnetic relaxation and ac susceptibility

    SciTech Connect

    Gilchrist, J.; van der Beek, C.J.

    1994-07-01

    The nonlinear diffusion of magnetic flux into a superconducting sample can be studied by measuring the relaxation of the magnetisation after application of a step field or by measuring the ac susceptibility, {chi}{sub 1} and its third harmonic, {chi}{sub 3}, or preferably both methods covering different time scales. Each has been analysed recently for a field-cooled sample of a material whose creep activation energy depends logarithmically on current density, J corresponding to a power-law relation between electric field, E and J. Here, results are compared, using a universal scaling depth. Maximum {chi}{sub 1}{double_prime} {vert_bar}{chi}{sub 3}{vert_bar} and values occur, and also the magnetisation has relaxed to half its initial value when the scaling depth is comparable to the sample half-thickness.

  2. Relaxation time based classification of magnetic resonance brain images

    NASA Astrophysics Data System (ADS)

    Baselice, Fabio; Ferraioli, Giampaolo; Pascazio, Vito

    2015-03-01

    Brain tissue classification in Magnetic Resonance Imaging is useful for a wide range of applications. Within this manuscript a novel approach for brain tissue joint segmentation and classification is presented. Starting from the relaxation time estimation, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to improve the correct classification rate. The effectiveness of the approach is evaluated on a simulated case study.

  3. Extended MHD Modeling of Tearing-Driven Magnetic Relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua

    2016-10-01

    Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from < J × B > / ne can counter the MHD effect from - < V × B > in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at

  4. RESEARCH ON RELAXATION PROCESSES IN MAGNETIC MATERIALS.

    DTIC Science & Technology

    MAGNETIC PROPERTIES, DIELECTRIC PROPERTIES, FERROMAGNETIC MATERIALS, FERRITES , EUROPIUM COMPOUNDS, GALLIUM COMPOUNDS, OXIDES, DYSPROSIUM, HOLMIUM...GARNET), (* MAGNETIC PROPERTIES, YTTRIUM, CRYSTALS, IRON COMPOUNDS, POROSITY, THEORY, MATHEMATICAL ANALYSIS, SINGLE CRYSTALS, MAGNETIC MATERIALS

  5. A Bayesian method for analysing relaxation spectra

    NASA Astrophysics Data System (ADS)

    Ciocci Brazzano, L.; Pellizza, L. J.; Matteo, C. L.; Sorichetti, P. A.

    2016-01-01

    The knowledge of electrical and mechanical properties of material, relies on a precise analysis of the relaxation spectra. We explore the ability of a Bayesian method to achieve an accurate estimation of spectral parameters. We implemented a parallel-tempering Markov-chain Monte Carlo algorithm and used it to fit simulated and measured spectra. An exhaustive testing of the code shows that it presents an extremely good performance, accurately fitting complex spectra under strong noise and overlapping components. We conclude that this technique is quite suitable for relaxation spectra analysis, complementing classical methods.

  6. Magnetic relaxation behaviour in Pr2NiSi3

    NASA Astrophysics Data System (ADS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2016-05-01

    Time dependent isothemal remanent magnetizatin (IRM) behaviour for polycrystalline compound Pr2NiSi3 have been studied below its characteristic temperature. The compound undergoes slow magnetic relaxation with time. Along with competing interaction, non-magnetic atom disorder plays an important role in formation of non-equilibrium glassy like ground state for this compound.

  7. Magnetic equivalence of terminal nuclei in the azide anion broken by nuclear spin relaxation

    NASA Astrophysics Data System (ADS)

    Bernatowicz, P.; Szymański, S.

    NMR spectra of water solution of sodium azide selectively 15N labelled in the central position were studied using an iterative least-squares method. In agreement with predictions based on Bloch-Wangsness-Redfield nuclear spin relaxation theory, it is demonstrated that quadrupolar relaxation of the magnetically equivalent terminal 14N (spin-1) nuclei in the azide anion renders the J coupling between these nuclei an observable quantity. In isotropic fluids, this seems to be the first experimental evidence of relaxation-broken magnetic equivalence symmetry.

  8. Magnetic relaxation in a suspension of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Raikher, Yu. L.; Stepanov, V. I.

    2008-09-01

    A kinetic model is proposed to describe the low-frequency magnetodynamics of antiferromagnetic nanoparticles suspended in a fluid. Because of their small size, apart from an anisotropic magnetic susceptibility typical of antiferromagnets, these particles also have a constant magnetic moment caused by sublattice decompensation. An orientational crossover takes place in such a nanosuspension (colloid) when magnetized by a constant field: the axes of easy particle magnetization that were initially aligned along the field become oriented perpendicularly. This effect changes significantly the characteristics of the system’s magnetic response: the dynamic susceptibility spectrum and the relaxation time in a pulsed field.

  9. Proton magnetic relaxation dispersion in aqueous biopolymer systems

    NASA Astrophysics Data System (ADS)

    Conti, S.

    Investigation of the magnetic field dependence of proton spin-lattice relaxation in solutions of bovine fibrinogen has been performed for Larmor frequencies between 50 Hz and 60 MHz, and complemented with measurements of spin-spin relaxation rates at 2 kHz and 25 MHz. A thorough analysis of experimental data, including the effects of protein concentration, temperature, pH and isotopic dilution, leads to an overall relaxation scheme consistent with T1 and T2 values at both low and high magnetic fields. The scheme involves water molecules slightly anisotropically bound on proteins as well as slow exchanging protein protons magnetically coupled to solute nuclei. A coherent picture, reminiscent of the traditional hydration layer, can be obtained for bound water. A major conclusion is that transfer of single protons may contribute substantially to the chemical exchange between free and bound water.

  10. Effects of interactions on the relaxation processes in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Atkinson, Lewis J.; Ostler, Thomas A.; Hovorka, O.; Wang, K. K.; Lu, B.; Ju, G. P.; Hohlfeld, J.; Bergman, B.; Koopmans, B.; Chantrell, Roy W.

    2016-10-01

    Controlling the relaxation of magnetization in magnetic nanostructures is key to optimizing magnetic storage device performance. This relaxation is governed by both intrinsic and extrinsic relaxation mechanisms and with the latter strongly dependent on the interactions between the nanostructures. In the present work we investigate laser induced magnetization dynamics in a broadband optical resonance type experiment revealing the role of interactions between nanostructures on the relaxation processes of granular magnetic structures. The results are corroborated by constructing a temperature dependent numerical micromagnetic model of magnetization dynamics based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping on the key material properties of coupled granular nanostructures in good agreement with the experimental data. We show that the intergranular, magnetostatic and exchange interactions provide a large extrinsic contribution to the damping. Finally we show that the mechanism can be attributed to an increase in spin-wave degeneracy with the ferromagnetic resonance mode as revealed by semianalytical spin-wave calculations.

  11. Thermally induced magnetic relaxation in square artificial spin ice

    SciTech Connect

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  12. Thermally induced magnetic relaxation in square artificial spin ice

    DOE PAGES

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; ...

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  13. Thermally induced magnetic relaxation in square artificial spin ice

    PubMed Central

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-01-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice – we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations. PMID:27883013

  14. Thermally induced magnetic relaxation in square artificial spin ice

    NASA Astrophysics Data System (ADS)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice – we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  15. Relaxation-relaxation exchange experiments in porous media with portable Halbach-Magnets.

    NASA Astrophysics Data System (ADS)

    Haber, A.; Haber-Pohlmeier, S.; Casanova, F.; Blümich, B.

    2009-04-01

    Mobile NMR became a powerful tool following the development of portable NMR sensors for well logging. By now there are numerous applications of mobile NMR in materials analysis and chemical engineering where, for example, unique information about the structure, morphology and dynamics of polymers is obtained, and new opportunities are provided for geo-physical investigations [1]. In particular, dynamic information can be retrieved by two-dimensional Laplace exchange NMR, where the initial NMR relaxation environment is correlated with the final relaxation environment of molecules migrating from one environment to the other within a so-called NMR mixing time tm [2]. Relaxation-relaxation exchange experiments of water in inorganic porous media were performed at low and moderately inhomogeneous magnetic field with a simple, portable Halbach-Magnet. By conducting NMR transverse relaxation exchange experiments for several mixing times and converting the results to 2D T2 distributions (joint probability densities of transverse relaxation times T2) with the help of the inverse 2D Laplace Transformation (ILT), we obtained characteristic exchange times for different pore sizes. The results of first experiments on soil samples are reported, which reveal information about the complex pore structure of soil and the moisture content. References: 1. B. Blümich, J. Mauler, A. Haber, J. Perlo, E. Danieli, F. Casanova, Mobile NMR for Geo-Physical Analysis and Material Testing, Petroleum Science, xx (2009) xxx - xxx. 2. K. E. Washburn, P.T. Callaghan, Tracking pore to pore exchange using relaxation exchange spectroscopy, Phys. Rev. Lett. 97 (2006) 175502.

  16. Diffusion MRI/NMR magnetization equations with relaxation times

    NASA Astrophysics Data System (ADS)

    de, Dilip; Daniel, Simon

    2012-10-01

    Bloch-Torrey diffusion magnetization equation ignores relaxation effects of magnetization. Relaxation times are important in any diffusion magnetization studies of perfusion in tissues(Brain and heart specially). Bloch-Torrey equation cannot therefore describe diffusion magnetization in a real-life situation where relaxation effects play a key role, characteristics of tissues under examination. This paper describes derivations of two equations for each of the y and z component diffusion NMR/MRI magnetization (separately) in a rotating frame of reference, where rf B1 field is applied along x direction and bias magnetic field(Bo) is along z direction. The two equations are expected to further advance the science & technology of Diffusion MRI(DMRI) and diffusion functional MRI(DFMRI). These two techniques are becoming increasingly important in the study and treatment of neurological disorders, especially for the management of patients with acute stroke. It is rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fibre structure and provide models of brain connectivity.

  17. Magnetic flux distribution and magnetic relaxation in polycrystalline Bi,PbSrCaCuO superconductors

    NASA Astrophysics Data System (ADS)

    Paasi, J.; Polák, M.; Lahtinen, M.; Plecháček, V.; Söderlund, L.

    We have studied magnetic flux distribution and magnetic relaxation in polycrystalline (Bi,Pb) 2Sr 2Ca 2Cu 3O 10+ x superconductors at 77 K using a movable miniature Hall sensor. Flux distribution was studied by measuring magnetic field profiles as a function of external field and time. The effects of inter- and intragrain shielding currents on magnetic flux distribution were distinguished using these measurements. The intergrain critical current density can be calculated from the field profile also in the case where intragrain currents are present. The relaxation of inter- and intragrain currents was distinguished and studied. The relaxation was logarithmic in both current systems. The relaxation rates of intergrain currents were remarkably higher than the rates of intragrain currents. When neither internor intragrain currents dominated, the total relaxation was non-logarithmic.

  18. Nonlinear Behavior of Magnetic Fluid in Brownian Relaxation

    SciTech Connect

    Yoshida, Takashi; Ogawa, Koutaro; Bhuiya, Anwarul K.; Enpuku, Keiji

    2010-12-02

    This study investigated the nonlinear behavior of magnetic fluids under high excitation fields due to nonlinear Brownian relaxation. As a direct indication of nonlinear behavior, we characterized the higher harmonics of the magnetization signal generated by the magnetic fluid. The amplitudes of the fundamental to the ninth harmonic of the magnetization signal were measured as a function of the external field. The experimental results were compared with numerical simulations based on the Fokker-Planck equation, which describes nonlinear Brownian relaxation. To allow a quantitative comparison, we estimated the size distribution and size dependence of the magnetic moment in the sample. In the present magnetic fluid, composed of agglomerates of Fe{sub 3}O{sub 4} particles, the magnetic moment was estimated to be roughly proportional to the diameter of the particles, in contrast to the case of single-domain particles. When the size distribution and the size dependence of the magnetic moment were taken into account, there was good quantitative agreement between the experiment and simulation.

  19. Robust determination of surface relaxivity from nuclear magnetic resonance DT(2) measurements.

    PubMed

    Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao

    2015-10-01

    Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.

  20. Size-dependent MR relaxivities of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Joos, Alexander; Löwa, Norbert; Wiekhorst, Frank; Gleich, Bernhard; Haase, Axel

    2017-04-01

    Magnetic nanoparticles (MNPs) can be used as carriers for magnetic drug targeting and for stem cell tracking by magnetic resonance imaging (MRI). For these applications, it is crucial to quantitatively determine the spatial distribution of the MNP concentration, which can be approached by MRI relaxometry. Theoretical considerations and experiments have shown that R2 relaxation rates are sensitive to the aggregation state of the particles, whereas R2* is independent of aggregation state and therefore suited for MNP quantification if the condition of static dephasing is met. We present a new experimental approach to characterize an MNP system with respect to quantitative MRI based on hydrodynamic fractionation. The first results qualitatively confirm the outer sphere relaxation theory for small MNPs and show that the two commercial MRI contrast agents Resovist® and Endorem® should not be used for quantitative MRI because they do not fulfill the condition for static dephasing. Our approach could facilitate the choice of MNPs for quantitative MRI and help clarifying the relationship between size, magnetism and relaxivity of MNPs in the future.

  1. Current Sheets Formation and Relaxation of Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.

    2013-12-01

    We investigate the relaxation of magnetic fields in closed regions of solar and stellar coronae, extending to further topologies our previous work (Rappazzo, A.F. & Parker, E.N., ApJL, 773, L2 (2013)). The dynamical evolution is integrated with the equations of reduced magnetohydrodynamics (RMHD) apt to model a plasma embedded in a strong guide field B0 extended along the axial direction, where the dynamical field is the orthogonal component b. Dissipative and ideal simulations are carried out in Cartesian geometry: magnetic field lines thread the system along the axial direction that spans the length L and are line-tied at the top and bottom plates in a motionless photosphere. The magnetic field b initially has only large scales, and is not in equilibrium. We show that the magnetic relaxation leads to the formation of current sheets when the intensity of the magnetic field b is beyond a critical value b_c. For values of b below this threshold (b < b_c), line-tying and field-line tension inhibit the formation of current sheets, while above the threshold (b > b_c) they form quickly on fast ideal timescales. In the ideal case, above the magnetic threshold, we show that current sheets thickness decreases in time until it becomes smaller than the grid resolution, with the analyticity strip width δ decreasing at least exponentially, after which the simulations become under-resolved.

  2. [Study of the algorithm for inversion of low field nuclear magnetic resonance relaxation distribution].

    PubMed

    Chen, Shanshan; Wang, Hongzhi; Yang, Peiqiang; Zhang, Xuelong

    2014-06-01

    It is difficult to reflect the properties of samples from the signal directly collected by the low field nuclear magnetic resonance (NMR) analyzer. People must obtain the relationship between the relaxation time and the original signal amplitude of every relaxation component by inversion algorithm. Consequently, the technology of T2 spectrum inversion is crucial to the application of NMR data. This study optimized the regularization factor selection method and presented the regularization algorithm for inversion of low field NMR relaxation distribution, which is based on the regularization theory of ill-posed inverse problem. The results of numerical simulation experiments by Matlab7.0 showed that this method could effectively analyze and process the NMR relaxation data.

  3. Study of stomach motility using the relaxation of magnetic tracers

    NASA Astrophysics Data System (ADS)

    Carneiro, A. A.; Baffa, O.; Oliveira, R. B.

    1999-07-01

    Magnetic tracers can be observed in the interior of the human body to give information about their quantity, position and state of order. With the aim of detecting and studying the degree of disorder of these tracers after they have been previously magnetized inside the stomach, a system composed of magnetization coils and magnetic detectors was developed. Helmholtz coils of diameter 84 cm were used to magnetize the sample and the remanent magnetization (RM) was detected with two first-order gradiometric fluxgate arrays each with a 15 cm base line, sensitivity of 0.5 nT and common mode rejection (CMR) of at least 10. The system allows simultaneous measurement in the anterior and posterior projections of the stomach. Measurements of the time evolution of the RM were performed in vitro and in normal subjects after the ingestion of a test meal labelled with magnetic particles. The data were fitted with an exponential curve and the relaxation time tau was obtained. Initial studies were performed to ascertain the action of a drug that is known to affect the gastric motility, showing that the decay of the remanent magnetization was indeed due to stomach contractions.

  4. Slow magnetic relaxation in a cobalt magnetic chain.

    PubMed

    Yang, Chen-I; Chuang, Po-Hsiang; Lu, Kuang-Lieh

    2011-04-21

    A homospin ladder-like chain, [Co(Hdhq)(OAc)](n) (1; H(2)dhq = 2,3-dihydroxyquinoxaline), shows a single-chain-magnet-like (SCM-like) behavior with the characteristics of frequency dependence of the out-of-phase component in alternating current (ac) magnetic susceptibilities and hysteresis loops.

  5. Sublattice Magnetic Relaxation in Rare Earth Iron Garnets

    SciTech Connect

    McCloy, John S.; Walsh, Brian

    2013-07-08

    The magnetic properties of rare earth garnets make them attractive materials for applications ranging from optical communications to magnetic refrigeration. The purpose of this research was to determine the AC magnetic properties of several rare earth garnets, in order to ascertain the contributions of various sublattices. Gd3Fe5O¬12, Gd3Ga5O12, Tb3Fe5O12, Tb3Ga5O12, and Y3Fe5O12 were synthesized by a solid state reaction of their oxides and verified by x-ray diffraction. Frequency-dependent AC susceptibility and DC magnetization were measured versus temperature (10 – 340 K). Field cooling had little effect on AC susceptibility, but large effect on DC magnetization, increasing magnetization at the lowest temperature and shifting the compensation point to lower temperatures. Data suggest that interaction of the two iron lattices results in the two frequency dependent magnetic relaxations in the iron garnets, which were fit using the Vogel-Fulcher and Arrhenius laws.

  6. Nuclear magnetic resonance relaxation and diffusion measurements as a proxy for soil properties

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Pohlmeier, Andreas; Galvosas, Petrik; Vereecken, Harry

    2013-04-01

    Nuclear Magnetic Resonance (NMR) relaxation and NMR diffusion measurements are two of a series of fast and non-invasive NMR applications widely used e.g. as well logging tools in petroleum exploration [1]. For experiments with water, NMR relaxation measures the relaxation behaviour of former excited water molecules, and NMR diffusion evaluates the self-diffusion of water. Applied in porous media, both relaxation and diffusion measurements depend on intrinsic properties of the media like pore size distribution, connectivity and tortuosity of the pores, and water saturation [2, 3]. Thus, NMR can be used to characterise the pore space of porous media not only in consolidated sediments but also in soil. The physical principle behind is the relaxation of water molecules in an external magnetic field after excitation. In porous media water molecules in a surface layer of the pores relax faster than the molecules in bulk water because of interactions with the pore wall. Thus, the relaxation in smaller pores is generally faster than in bigger pores resulting in a relaxation time distribution for porous media with a range of pore sizes like soil [4]. In NMR diffusion experiments, there is an additional encoding of water molecules by application of a magnetic field gradient. Subsequent storage of the magnetization and decoding enables the determination of the mean square displacement and therefore of the self-diffusion of the water molecules [5]. Employing various relaxation and diffusion experiments, we get a measure of the surface to volume ratio of the pores and the tortuosity of the media. In this work, we show the characterisation of a set of sand and soil samples covering a wide range of textural classes by NMR methods. Relaxation times were monitored by the Carr-Purcell-Meiboom-Gill sequence and analysed using inverse Laplace transformation. Apparent self-diffusion constants were detected by a 13-intervall pulse sequence and variation of the storage time. We

  7. The Effect of Relaxation on Magnetic Particle Imaging

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Yao, Zhen; Kafka, Gareth; Farrell, David; Griswold, Mark; Brown, Robert

    2010-03-01

    Magnetic particle imaging[1] is a new tomographic technique that allows fast, inexpensive imaging through the use of ferro-fluid agents leading to submillimeter resolution. Selection fields combined with oscillating driving fields can move unsaturated field-free-points so as to cover the field of view. In previous studies, the average magnetization is assumed to respond instantaneously to changes in the applied field.[1-4] Realistically, however, a finite relaxation time slows the magnetic response. The present simulation demonstrates that, for contrast agents of interest, the choice of an optimal particle size is strongly dependent on this effect. A trade-off thus exists between sensitivity and resolution. [1] B. Gleich and J. Weizenecker, Nature v.435:1214, 2005 [2] J. Weizenecker et al., Phys. Med. Biol., v.54: L1, 2009 [3] J. Rahmer et al., BMC Medical Imaging, 2009 [4] P. W. Goodwill et al., IEEE Trans. on Medical Imaging, v.28:1231, 2009

  8. Proton magnetic relaxation and internal rotations in tetramethylammonium cadmium chloride

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Utton, D. B.

    1976-01-01

    Nuclear magnetic resonance (NMR) and relaxation studies of the proton spin-lattice relaxation time (PSLRT) and proton second moment (PSM) are reported. Tetramethylammonium cadmium chloride (TMCC) was selected as a diamagnetic member of the isomorphic series, and hence proton data relate directly to the motion of the tetramethylammonium ion in the absence of paramagnetic ions. In the model adopted, the correlation time for hindered motion of one of the methyl groups differs from that of the other three groups in the low-temperature phase below 104 K. PSLRT and PSM values agree closely with experimental data with this model. Crystallographic phase transitions in TMCC occur at 104 K and 119 K according to the PSLRT measurements. Dipolar interactions between adjacent protons account for the PSLR rates below 104 K.

  9. Evaluation of brain edema using magnetic resonance proton relaxation times

    SciTech Connect

    Fu, Y.; Tanaka, K.; Nishimura, S. )

    1990-01-01

    Experimental and clinical studies on the evaluation of water content in cases of brain edema were performed in vivo, using MR proton relaxation times (longitudinal relaxation time, T1; transverse relaxation time, T2). Brain edema was produced in the white matter of cats by the direct infusion method. The correlations between proton relaxation times obtained from MR images and the water content of white matter were studied both in autoserum-infused cats and in saline-infused cats. The correlations between T1 as well as T2 and the water content in human vasogenic brain edema were also examined and compared with the data obtained from the serum group. T1 and T2 showed good correlations with the water content of white matter not only in the experimental animals but also in the clinical cases. The quality of the edema fluid did not influence relaxation time and T1 seemed to represent almost solely the water content of the tissue. T2, however, was affected by the nature of existence of water and was more sensitive than T1 in detecting extravasated edema fluid. It seems feasible therefore to evaluate the water content of brain edema on the basis of T1 values.

  10. Scheduled Relaxation Jacobi method: Improvements and applications

    NASA Astrophysics Data System (ADS)

    Adsuara, J. E.; Cordero-Carrión, I.; Cerdá-Durán, P.; Aloy, M. A.

    2016-09-01

    Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficiency in the reduction of the residual increases with the number of levels employed in the algorithm. Applying the original methodology to compute the algorithm parameters with more than 5 levels notably hinders obtaining optimal SRJ schemes, as the mixed (non-linear) algebraic-differential system of equations from which they result becomes notably stiff. Here we present a new methodology for obtaining the parameters of SRJ schemes that overcomes the limitations of the original algorithm and provide parameters for SRJ schemes with up to 15 levels and resolutions of up to 215 points per dimension, allowing for acceleration factors larger than several hundreds with respect to the Jacobi method for typical resolutions and, in some high resolution cases, close to 1000. Most of the success in finding SRJ optimal schemes with more than 10 levels is based on an analytic reduction of the complexity of the previously mentioned system of equations. Furthermore, we extend the original algorithm to apply it to certain systems of non-linear ePDEs.

  11. Transverse quasilinear relaxation in an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    1998-08-01

    Transverse quasilinear relaxation of the cyclotron Cherenkov instability of an ultrarelativistic beam propagating along a strong, inhomogeneous magnetic field in a pair plasma is considered. We find a quasilinear state in which the kinetic-type instability is saturated by the force arising in the inhomogeneous field due to the conservation of the adiabatic invariant. The resulting wave intensities generally have a non-power-law frequency dependence, but in a broad frequency range can be well approximated by a power law with a spectral index -2. The emergent spectra and fluxes are consistent with the one observed from radio pulsars.

  12. Universal and scaled relaxation of interacting magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Sahoo, S.; Kleemann, W.; Cardoso, S.; Freitas, P. P.

    2004-11-01

    The logarithmic relaxation rate of the thermoremanent magnetic moment m(t) of interacting magnetic nanoparticles in discontinuous Co80Fe20/Al2O3 multilayers follows a universal power law, whose exponent n increases with increasing particle concentration as predicted by recent simulations [Ulrich , Phys. Rev. B 67, 024416 (2003)]. While n<1 characterizes the stretched exponential decay of the dilute superspin glass (SSG) regime, n>1 refers to algebraic decay with finite remanence for t→∞ as observed in more concentrated superferromagnets (SFM). In the crossover regime from SSG to SFM, an increase from n<1 at low temperature to n>1 at T⪅Tc violates Tln(t/τ0) scaling and seems to indicate a crossover from random-field domain state to SFM behavior.

  13. Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers.

    PubMed

    Ling, Yibo; Pong, Terrence; Vassiliou, Christophoros C; Huang, Paul L; Cima, Michael J

    2011-03-01

    Molecular biomarkers can be used as objective indicators of pathologic processes. Although their levels often change over time, their measurement is often constrained to a single time point. Cumulative biomarker exposure would provide a fundamentally different kind of measurement to what is available in the clinic. Magnetic resonance relaxometry can be used to noninvasively monitor changes in the relaxation properties of antibody-coated magnetic particles when they aggregate upon exposure to a biomarker of interest. We used implantable devices containing such sensors to continuously profile changes in three clinically relevant cardiac biomarkers at physiological levels for up to 72 h. Sensor response differed between experimental and control groups in a mouse model of myocardial infarction and correlated with infarct size. Our prototype for a biomarker monitoring device also detected doxorubicin-induced cardiotoxicity and can be adapted to detect other molecular biomarkers with a sensitivity as low as the pg/ml range.

  14. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    SciTech Connect

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-08-28

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field.

  15. Engineered magnetic hybrid nanoparticles with enhanced relaxivity for tumor imaging.

    PubMed

    Aryal, Santosh; Key, Jaehong; Stigliano, Cinzia; Ananta, Jeyarama S; Zhong, Meng; Decuzzi, Paolo

    2013-10-01

    Clinically used contrast agents for magnetic resonance imaging (MRI) suffer by the lack of specificity; short circulation time; and insufficient relaxivity. Here, a one-step combinatorial approach is described for the synthesis of magnetic lipid-polymer (hybrid) nanoparticles (MHNPs) encapsulating 5 nm ultra-small super-paramagnetic iron oxide particles (USPIOs) and decorated with Gd(3+) ions. The MHNPs comprise a hydrophobic poly(lactic acid-co-glycolic acid) (PLGA) core, containing up to ~5% USPIOs (w/w), stabilized by lipid and polyethylene glycol (PEG). Gd(3+) ions are directly chelated to the external lipid monolayer. Three different nanoparticle configurations are presented including Gd(3+) chelates only (Gd-MHNPs); USPIOs only (Fe-MHNPs); and the combination thereof (MHNPs). All three MHNPs exhibit a hydrodynamic diameter of about 150 nm. The Gd-MHNPs present a longitudinal relaxivity (r1 = 12.95 ± 0.53 (mM s)(-1)) about four times larger than conventional Gd-based contrast agents (r1 = 3.4 (mM s)(-1)); MHNPs have a transversal relaxivity of r2 = 164.07 ± 7.0 (mM s)(-1), which is three to four times larger than most conventional systems (r2 ~ 50 (mM s)(-1)). In melanoma bearing mice, elemental analysis for Gd shows about 3% of the injected MHNPs accumulating in the tumor and 2% still circulating in the blood, at 24 h post-injection. In a clinical 3T MRI scanner, MHNPs provide significant contrast confirming the observed tumor deposition. This approach can also accommodate the co-loading of hydrophobic therapeutic compounds in the MHNP core, paving the way for theranostic systems.

  16. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    NASA Astrophysics Data System (ADS)

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  17. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    SciTech Connect

    Sachleben, Joseph Robert

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10-8 s-1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring 14N-1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T1 and T2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  18. Methods of Measuring Stress Relaxation in Composite Tape Springs

    DTIC Science & Technology

    2015-03-26

    NANO 43 Flat Stress Relaxation Test Setup . . . . . . . . . . . . . . . . . . . . . . . 32 11. LGP 312 Flat Stress Relaxation Test Setup...100g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 15. NANO 43 and LGP 312 Variable Load Test...change in mass. Mechanical changes can be measured by the many different non-destructive testing methods used in the field of fracture mechanics

  19. Distinguishing magnetic vs. quadrupolar relaxation in b-NMR using 8Li and 9Li

    NASA Astrophysics Data System (ADS)

    Chatzichristos, A.; McFadden, R. M. L.; Karner, V. L.; Cortie, D. L.; Fang, A.; Levy, C. D. P.; Macfarlane, W. A.; Morris, G. D.; Pearson, M. R.; Salman, Z.; Kiefl, R. F.

    2016-09-01

    Beta-detected NMR is a powerful technique in condensed matter physics. It uses the parity violation of beta decay to detect the NMR signal from a beam of highly polarized radionuclides implanted in a sample material. Spin-lattice relaxation (SLR) is studied by monitoring the rate with which the asymmetry between the beta counts in two opposing detectors is lost. Unlike classical NMR, b-NMR can study thin films and near-surface effects. The most common b-NMR isotope at TRIUMF is 8Li, which has a quadrupole moment, thus it is sensitive to both magnetic fields and electric field gradients. A challenge with 8Li b-NMR is identifying the predominant mechanism of SLR in a given sample. It is possible to distinguish between SLR mechanisms by varying the probe isotope. For two isotopes with different nuclear moments, the ratio of SLR rates should be different in the limits of either pure magnetic or quadrupolar relaxation. This method has been used in classical NMR and we report its first application to b-NMR. We measured the SLR rates for 8Li and 8Li in Pt foil and SrTiO3. Pt is a test case for pure magnetic relaxation. SrTiO3 is a non-magnetic insulator, but the source of its relaxation is not well understood. Here we show that its relaxation is mainly quadrupolar. We thank TRIUMF's CMMS for their technical support. This work was supported by: NSERC Discovery Grants to R.F.K. and W.A.M.; and IsoSiM fellowships to A.C. and R.M.L.M.

  20. Measuring Cytokine Concentrations Using Magnetic Spectroscopy of Nanoparticle Brownian Relaxation

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Shi, Yipeng; Weaver, John

    The magnetic particle spectroscopy is a newly developed non-invasive technique for obtaining information about the nanoparticles' micro environment. In this technique the nanoparticles' magnetization, induced by an alternating magnetic field at various applied frequencies, is processed to analyze rotational freedom of nanoparticles. By analyzing average rotational freedom, it is possible to measure the nanoparticle's relaxation time, and hence get an estimate of the temperature and viscosity of the medium. In molecular concentration sensing, the rotational freedom indicates the number of nanoparticles that are bound by a selected analyte. We have developed microscopic nanoparticles probes to measure the concentration of selected molecules. The nanoparticles are targeted to bind the selected molecule and the resulting reduction in rotational freedom can be quantified remotely. Previously, sensitivity measurements has been reported to be of the factor of 200. However, with our newer perpendicular field setup (US Patent Application Serial No 61/721,378), it possible to sense cytokine concentrations as low as 5 Pico-Molar in-vitro. The excellent sensitivity of this apparatus is due to isolation of the drive field from the signal so the output can be amplified to a higher level. Dartmouth College.

  1. Probing Brownian relaxation in water-glycerol mixtures using magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Nemala, Humeshkar; Milgie, Michael; Wadehra, Anshu; Thakur, Jagdish; Naik, Vaman; Naik, Ratna

    2013-03-01

    Generation of heat by magnetic nanoparticles in the presence of an external oscillating magnetic field is known as magnetic hyperthermia (MHT). This heat is generated by two mechanisms: the Neel relaxation and Brownian relaxation. While the internal spin relaxation of the nanoparticles known as Neel relaxation is largely dependent on the magnetic properties of the nanoparticles, the physical motion of the particle or the Brownian relaxation is largely dependent on the viscous properties of the carrier liquid. The MHT properties of dextran coated iron oxide nanoparticles have been investigated at a frequency of 400KHz. To understand the influence of Brownian relaxation on heating, we probe the MHT properties of these ferrofluids in water-glycerol mixtures of varying viscosities. The heat generation is quantified using the specific absorption rate (SAR) and its maximum at a particular temperature is discussed with reference to the viscosity.

  2. New approach for understanding experimental NMR relaxivity properties of magnetic nanoparticles: focus on cobalt ferrite.

    PubMed

    Rollet, Anne-Laure; Neveu, Sophie; Porion, Patrice; Dupuis, Vincent; Cherrak, Nadine; Levitz, Pierre

    2016-12-07

    Relaxivities r1 and r2 of cobalt ferrite magnetic nanoparticles (MNPs) have been investigated in the aim of improving the models of NMR relaxation induced by magnetic nanoparticles. On one hand a large set of relaxivity data has been collected for cobalt ferrite MNP dispersions. On the other hand the relaxivity has been calculated for dispersions of cobalt ferrite MNPs with size ranging from 5 to 13 nm, without using any fitting procedure. The model is based on the magnetic dipolar interaction between the magnetic moments of the MNPs and the (1)H nuclei. It takes into account both the longitudinal and transversal contributions of the magnetic moments of MNPs leading to three contributions in the relaxation equations. The comparison of the experimental and theoretical data shows a good agreement of the NMR profiles as well as the temperature dependence.

  3. Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models.

    PubMed

    Dhavalikar, R; Hensley, D; Maldonado-Camargo, L; Croft, L R; Ceron, S; Goodwill, P W; Conolly, S M; Rinaldi, C

    2016-08-03

    Magnetic Particle Imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI.

  4. Magnetic Field Effects on Relaxation Parameters of The Hexamethylenetetramine (HMT)

    NASA Astrophysics Data System (ADS)

    Dogan, Nurcan

    2013-03-01

    The use of low magnetic field is one of the method for improvement of the signal to noise ratio (SNR) of detection of the chemical compounds by nuclear quadrupole resonance (NQR). We investigated the FID phenomenon of nuclear quadrupole resonance (NQR) from hexamethylenetetramine (HMT), C6H12N4, under magnetic field. The influence of the low magnetic field (up to 30 mT) was investigated for the detection of the pulse NQR signal for HMT We detected the pure NQR FID signal of HMT with a short pulse interval. The intensity of the FID signal changed with applied magnetic field. The application of the low magnetic field produces the splitting and brodening of the NQR line. We observed T1, T2 and T2*. HMT has a long T2*(near 1.5ms). This one represents the suitable sample for investigation of the influence of low magnetic field for NQR detection. The application of the low magnetic field produces the splitting and brodening of the NQR line.

  5. An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state

    PubMed Central

    Guo, Yun-Nan; Ungur, Liviu; Granroth, Garrett E.; Powell, Annie K.; Wu, Chunji; Nagler, Stephen E.; Tang, Jinkui; Chibotaru, Liviu F.; Cui, Dongmei

    2014-01-01

    Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion. The essentially C2v symmetry of the DyIII ion results in a new relaxation mechanism, hitherto unknown for mononuclear DyIII complexes, opening new perspectives for means of enhancing the anisotropy contribution to the spin-relaxation barrier. PMID:24969218

  6. Spin relaxation signature of colossal magnetic anisotropy in platinum atomic chains

    NASA Astrophysics Data System (ADS)

    Bergman, Anders; Hellsvik, Johan; Bessarab, Pavel F.; Delin, Anna

    2016-11-01

    Recent experimental data demonstrate emerging magnetic order in platinum atomically thin nanowires. Furthermore, an unusual form of magnetic anisotropy - colossal magnetic anisotropy (CMA) - was earlier predicted to exist in atomically thin platinum nanowires. Using spin dynamics simulations based on first-principles calculations, we here explore the spin dynamics of atomically thin platinum wires to reveal the spin relaxation signature of colossal magnetic anisotropy, comparing it with other types of anisotropy such as uniaxial magnetic anisotropy (UMA). We find that the CMA alters the spin relaxation process distinctly and, most importantly, causes a large speed-up of the magnetic relaxation compared to uniaxial magnetic anisotropy. The magnetic behavior of the nanowire exhibiting CMA should be possible to identify experimentally at the nanosecond time scale for temperatures below 5 K. This time-scale is accessible in e.g., soft x-ray free electron laser experiments.

  7. Spin relaxation signature of colossal magnetic anisotropy in platinum atomic chains

    PubMed Central

    Bergman, Anders; Hellsvik, Johan; Bessarab, Pavel F.; Delin, Anna

    2016-01-01

    Recent experimental data demonstrate emerging magnetic order in platinum atomically thin nanowires. Furthermore, an unusual form of magnetic anisotropy – colossal magnetic anisotropy (CMA) – was earlier predicted to exist in atomically thin platinum nanowires. Using spin dynamics simulations based on first-principles calculations, we here explore the spin dynamics of atomically thin platinum wires to reveal the spin relaxation signature of colossal magnetic anisotropy, comparing it with other types of anisotropy such as uniaxial magnetic anisotropy (UMA). We find that the CMA alters the spin relaxation process distinctly and, most importantly, causes a large speed-up of the magnetic relaxation compared to uniaxial magnetic anisotropy. The magnetic behavior of the nanowire exhibiting CMA should be possible to identify experimentally at the nanosecond time scale for temperatures below 5 K. This time-scale is accessible in e.g., soft x-ray free electron laser experiments. PMID:27841287

  8. Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics

    PubMed Central

    Garraud, Nicolas; Dhavalikar, Rohan; Maldonado-Camargo, Lorena; Rinaldi, Carlos

    2017-01-01

    The design and validation of a magnetic particle spectrometer (MPS) system used to study the linear and nonlinear behavior of magnetic nanoparticle suspensions is presented. The MPS characterizes the suspension dynamic response, both due to relaxation and saturation effects, which depends on the magnetic particles and their environment. The system applies sinusoidal excitation magnetic fields varying in amplitude and frequency and can be configured for linear measurements (1 mT at up to 120 kHz) and nonlinear measurements (50 mT at up to 24 kHz). Time-resolved data acquisition at up to 4 MS/s combined with hardware and software-based signal processing allows for wide-band measurements up to 50 harmonics in nonlinear mode. By cross-calibrating the instrument with a known sample, the instantaneous sample magnetization can be quantitatively reconstructed. Validation of the two MPS modes are performed for iron oxide and cobalt ferrite suspensions, exhibiting Néel and Brownian relaxation, respectively. PMID:28344854

  9. Magnetic Relaxation and Coercivity of Finite-size Single Chain Magnets

    NASA Astrophysics Data System (ADS)

    Gredig, Thomas; Byrne, Matthew; Vindigni, Alessandro

    2015-03-01

    The magnetic coercivity of hysteresis loops for iron phthalocyanine thin films depends on the iron chain length and the measurement sweep speed below 5 K. The average one-dimensional (1D) iron chain length in samples is controlled during deposition. These 1D iron chains can be tuned over one order of magnitude with the shortest chain having 100 elements. We show that the coercivity strongly increases with the average length of the iron chains, which self-assemble parallel to the substrate surface. Magnetic relaxation and sweep speed data suggest spin dynamics play an important role. Implementing Glauber dynamics with a finite-sized 1D Ising model provides qualitative agreement with experimental data. This suggests that iron phthalocyanine thin films act as single chain magnets and provide a solid test system for tunable finite-sized magnetic chains. This research has been supported with the NSF-DMR 0847552 grant.

  10. Thermal relaxation of a two dimensional plasma in a dc magnetic field. Part 2: Numerical simulation

    NASA Technical Reports Server (NTRS)

    Hsu, J. Y.; Joyce, G.; Montgomery, D.

    1974-01-01

    The thermal relaxation process for a spatially uniform two dimensional plasma in a uniform dc magnetic field is simulated numerically. Thermal relaxation times are defined in terms of the time necessary for the numerically computer Boltzman H-function to decrease through a given part of the distance to its minimum value. Dependence of relaxation time on two parameters is studied: number of particles per Debye square and ratio of gyrofrequency to plasma frequency.

  11. [Fluorescent and Magnetic Relaxation Switch Immunosensor for the Detecting Foodborne Pathogen Salmonella enterica in Water Samples].

    PubMed

    Wang, Song-bai; Zhang, Yan; An, Wen-ting; Wei, Yan-li; Wang, Yu; Shuang, Shao-min

    2015-11-01

    Fluoroimmunoassay based on quantum dots (QDs) and magnetic relaxation switch (MRS) immunoassay based on superparamagnetic nanoparticles (SMN) were constructed to detect Salmonella enterica (S. enterica) in water samples. In fluoroimmunoassay, magnetic beads was conjugated with S. enterica capture antibody (MB-Ab2) to enrich S. enterica from sample solution, then the QDs was conjugated with the S. enterica detection antibody (QDs-Ab1) to detect S. enterica based on sandwich immunoassay format. And the fluorescence intensity is positive related to the bacteria concentration of the sample. Results showed that the limit of detection (LOD) of this method was 102 cfu · mL⁻¹ and analysis time was 2 h. In MRS assay, magnetic nanoparticle-antibody conjugate (MN-Ab1) can switch their dispersed and aggregated state in the presence of the target. This state of change can modulate the spin-spin relaxation time (T₂) of the neighboring water molecule. The change in T₂(ΔT₂) positively correlates with the amount of the target in the sample. Thus, AT can be used as a detection signal in MRS immunosensors. Results showed that LOD of MRS sensor for S. enterica was 10³ cfu · mL⁻¹ and analysis time was 0.5 h. Two methods were compared in terms of advantages and disadvantages in detecting S. enterica.

  12. Ultrafast Relaxation Dynamics of a High Density Electron-Hole Plasma in High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lee, Jinho; Reitze, Dave H.; Kono, Junichiro; Belyanin, Alexey; Solomon, Glenn; McGill, Steve

    2009-03-01

    We study the inter-Landau level relaxation dynamics of a dense electron-hole plasma in high magnetic fields (up to 31 T). Intense 150 fs pump pulses create carrier densities approaching 10^13/cm^2 in In0.2Ga0.8As/GaAs multiple quantum wells. Relaxation dynamics are probed as a function of Landau level (LL) and magnetic field using time-resolved transient absorption (TRTA) and time-resolved photoluminescence (TRPL), which provide complementary information about the relaxation processes. Manifestly non-exponential decays of the TRTA signals are observed at high fields (above 15 T). TRPL emissions measured in the plane of the wells reveal the presence of multiple emission bursts from the LLs at high magnetic fields, suggesting a complicated relaxation process mediated by the field whereby carriers get trapped in a specific LL, emit PL though recombination, and then `reload' as the carriers relax down to the previously occupied LLs.

  13. Proton-nuclear magnetic resonance relaxation times in brain edema

    SciTech Connect

    Kamman, R.L.; Go, K.G.; Berendsen, H.J. )

    1990-01-01

    Proton relaxation times of protein solutions, bovine brain, and edematous feline brain tissue were studied as a function of water concentration, protein concentration, and temperature. In accordance with the fast proton exchange model for relaxation, a linear relation could be established between R1 and the inverse of the weight fraction of tissue water. This relation also applied to R2 of gray matter and of protein solutions. No straightforward relation with water content was found for R2 of white matter. Temperature-dependent studies indicated that in this case, the slow exchange model for relaxation had to be applied. The effect of macromolecules in physiological relevant concentrations on the total relaxation behavior of edematous tissue was weak. Total water content changes predominantly affected the relaxation rates. The linear relation may have high clinical potential for assessment of the status of cerebral edema on the basis of T1 and T2 readings from MR images.

  14. Spin-lattice relaxation within a dimerized Ising chain in a magnetic field

    SciTech Connect

    Erdem, Rıza E-mail: rerdem29@hotmail.com; Gülpınar, Gül; Yalçın, Orhan; Pawlak, Andrzej

    2014-07-21

    A qualitative study of the spin-lattice relaxation within a dimerized Ising chain in a magnetic field is presented. We have first determined the time dependence of the deviation of the lattice distortion parameter δΔ from the equilibrium state within framework of a technique combining the statistical equilibrium theory based on the transfer matrix method and the linear theory of irreversible thermodynamics. We have shown that the time dependence of the lattice distortion parameter is characterized by a single time constant (τ) which diverges around the critical point in both dimerized (Δ≠0) and uniform (Δ=0) phase regions. When the temperature and magnetic field are fixed to certain values, the time τ depends only on exchange coupling between the spins. It is a characteristic time associated with the long wavelength fluctuations of distortion. We have also taken into account the effects of spatial fluctuations on the relaxation time using the full Landau-Ginzburg free energy functional. We have found an explicit expression for the relaxation time as a function of temperature, coupling constant and wave vector (q) and shown that the critical mode corresponds to the case q=0. Finally, our results are found to be in good qualitative agreement with the results obtained in recent experimental study on synchrotron x-ray scattering and muon spin relaxation in diluted material Cu{sub 1−y}Mg{sub y}GeO{sub 3} where the composition y is very close to 0.0209. These results can be considered as natural extensions of some previous works on static aspects of the problem.

  15. Relaxation Method for Navier-Stokes Equation

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.

    2012-04-01

    The motivation for this work was a simple experiment [P. M. C. de Oliveira, S. Moss de Oliveira, F. A. Pereira and J. C. Sartorelli, preprint (2010), arXiv:1005.4086], where a little polystyrene ball is released falling in air. The interesting observation is a speed breaking. After an initial nearly linear time-dependence, the ball speed reaches a maximum value. After this, the speed finally decreases until its final, limit value. The provided explanation is related to the so-called von Kármán street of vortices successively formed behind the falling ball. After completely formed, the whole street extends for some hundred diameters. However, before a certain transient time needed to reach this steady-state, the street is shorter and the drag force is relatively reduced. Thus, at the beginning of the fall, a small and light ball may reach a speed superior to the sustainable steady-state value. Besides the real experiment, the numerical simulation of a related theoretical problem is also performed. A cylinder (instead of a 3D ball, thus reducing the effective dimension to 2) is positioned at rest inside a wind tunnel initially switched off. Suddenly, at t = 0 it is switched on with a constant and uniform wind velocity ěc{V} far from the cylinder and perpendicular to it. This is the first boundary condition. The second is the cylinder surface, where the wind velocity is null. In between these two boundaries, the velocity field is determined by solving the Navier-Stokes equation, as a function of time. For that, the initial condition is taken as the known Stokes laminar limit V → 0, since initially the tunnel is switched off. The numerical method adopted in this task is the object of the current text.

  16. In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer.

    PubMed

    Fang, Jiancheng; Qin, Jie

    2012-10-01

    The spin-exchange-relaxation-free (SERF) atomic magnetometer is an ultra-high sensitivity magnetometer, but it must be operated in a magnetic field with strength less than about 10 nT. Magnetic field compensation is an effective way to shield the magnetic field, and this paper demonstrates an in situ triaxial magnetic field compensation system for operating the SERF atomic magnetometer. The proposed hardware is based on optical pumping, which uses some part of the SERF atomic magnetometer itself, and the compensation method is implemented by analyzing the dynamics of the atomic spin. The experimental setup for this compensation system is described, and with this configuration, a residual magnetic field of strength less than 2 nT (±0.38 nT in the x axis, ±0.43 nT in the y axis, and ±1.62 nT in the z axis) has been achieved after compensation. The SERF atomic magnetometer was then used to verify that the residual triaxial magnetic fields were coincident with what were achieved by the compensation system.

  17. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  18. Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing.

    PubMed

    Jehng, J Y; Sprague, D T; Halperin, W P

    1996-01-01

    Nuclear magnetic resonance relaxation analysis has been applied to interpret the evolution of microstructure in a cement paste during hydration. A basic understanding of the wet-dry and freeze-thaw processes of cement pastes has been developed. The pore structure evolution has been studied by the suppression of the freezing temperature of water and compared with spin-spin relaxation analysis performed at room temperature. Both methods consistently show that hydrating cement pastes have two principal components in their size distribution. The NMR relaxation times provide a measure of the characteristic pore sizes. Their interpretation is made in the context of a fast exchange model. Supercooling and thawing point depression of confined water has been studied systematically. The depression of the freezing point of liquid water confined within a pore was found to be dependent on the pore size, with capillary pore water freezing at 240 K and the remaining gel pore water freezing over a temperature range extending to as low as 160 K.A modified Gibbs-Thompson analysis was used to determine pore volume distributions from the distribution of thawing temperatures.

  19. Nuclear relaxation in an electric field enables the determination of isotropic magnetic shielding

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2016-08-01

    It is shown that in contrast to the case of nuclear relaxation in a magnetic field B, simultaneous application of the magnetic field B and an additional electric field E causes transverse relaxation of a spin-1/2 nucleus with the rate proportional to the square of the isotropic part of the magnetic shielding tensor. This effect can contribute noticeably to the transverse relaxation rate of heavy nuclei in molecules that possess permanent electric dipole moments. Relativistic quantum mechanical computations indicate that for 205Tl nucleus in a Pt-Tl bonded complex, Pt(CN)5Tl, the transverse relaxation rate induced by the electric field is of the order of 1 s-1 at E = 5 kV/mm and B = 10 T.

  20. Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions

    PubMed Central

    Costabel, Stephan; Yaramanci, Ugur

    2013-01-01

    [1] For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation. Citation: Costabel, S., and U. Yaramanci (2013), Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions, Water

  1. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  2. A Block-Asynchronous Relaxation Method for Graphics Processing Units

    SciTech Connect

    Antz, Hartwig; Tomov, Stanimire; Dongarra, Jack; Heuveline, Vincent

    2011-11-30

    In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (GPUs). For this purpose, we developed a set of asynchronous iteration algorithms in CUDA and compared them with a parallel implementation of synchronous relaxation methods on CPU-based systems. For a set of test matrices taken from the University of Florida Matrix Collection we monitor the convergence behavior, the average iteration time and the total time-to-solution time. Analyzing the results, we observe that even for our most basic asynchronous relaxation scheme, despite its lower convergence rate compared to the Gauss-Seidel relaxation (that we expected), the asynchronous iteration running on GPUs is still able to provide solution approximations of certain accuracy in considerably shorter time then Gauss- Seidel running on CPUs. Hence, it overcompensates for the slower convergence by exploiting the scalability and the good fit of the asynchronous schemes for the highly parallel GPU architectures. Further, enhancing the most basic asynchronous approach with hybrid schemes – using multiple iterations within the ”subdomain” handled by a GPU thread block and Jacobi-like asynchronous updates across the ”boundaries”, subject to tuning various parameters – we manage to not only recover the loss of global convergence but often accelerate convergence of up to two times (compared to the effective but difficult to parallelize Gauss-Seidel type of schemes), while keeping the execution time of a global iteration practically the same. This shows the high potential of the asynchronous methods not only as a stand alone numerical solver for linear systems of equations fulfilling certain convergence conditions but more importantly as a smoother in multigrid methods. Due to the explosion of parallelism in todays architecture designs, the significance and the need for asynchronous methods, as the ones described in this work, is expected to grow.

  3. Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields.

    PubMed

    Wang, Wei; Dong, Hui; Pacheco, Victor; Willbold, Dieter; Zhang, Yi; Offenhaeusser, Andreas; Hartmann, Rudolf; Weirich, Thomas E; Ma, Peixiang; Krause, Hans-Joachim; Gu, Zhongwei

    2011-12-15

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) have attracted attention because of their current and potential usefulness as contrast agents for magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR). USPIOs are usually used for their significant capacity to produce predominant proton relaxation effects, which result in signal reduction. However, most previous studies that utilized USPIOs have been focused on the relaxation behavior at commonly used magnetic fields of clinical MRI systems (typically 1-3 T). In this paper, magnetic relaxation processes of protons in water surrounding the USPIOs are studied at ultralow (≤10 mT) and ultrahigh magnetic fields (14.1 T). USPIOs used in our experiments were synthesized with a core size of 6 nm, and transferred from organic to water by ligand exchange. The proton spin-lattice relaxation time (T(1)) and spin-spin relaxation time (T(2)) were investigated at ultralow (212 μT for T(2) and 10 mT for T(1)) and at 14.1 T with different iron concentrations. At all of the fields, there is a linear relationship between the inverse of relaxation times and the iron concentration. The spin-spin relaxivity (r(2)) at 14.1 T is much larger than that value of the ultralow field. At ultralow field, however, the spin-lattice relaxivity (r(1)) is larger than the r(1) at ultrahigh field. The results provide a perspective on potential in vivo and in vitro applications of USPIOs in ultralow and ultrahigh field NMR and MRI.

  4. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets

    NASA Astrophysics Data System (ADS)

    Lunghi, Alessandro; Totti, Federico; Sessoli, Roberta; Sanvito, Stefano

    2017-03-01

    The use of single molecule magnets in mainstream electronics requires their magnetic moment to be stable over long times. One can achieve such a goal by designing compounds with spin-reversal barriers exceeding room temperature, namely with large uniaxial anisotropies. Such strategy, however, has been defeated by several recent experiments demonstrating under-barrier relaxation at high temperature, a behaviour today unexplained. Here we propose spin-phonon coupling to be responsible for such anomaly. With a combination of electronic structure theory and master equations we show that, in the presence of phonon dissipation, the relevant energy scale for the spin relaxation is given by the lower-lying phonon modes interacting with the local spins. These open a channel for spin reversal at energies lower than that set by the magnetic anisotropy, producing fast under-barrier spin relaxation. Our findings rationalize a significant body of experimental work and suggest a possible strategy for engineering room temperature single molecule magnets.

  5. Probing the magnetic relaxation and magnetic moment arrangement in a series of Dy4 squares.

    PubMed

    Wu, Jianfeng; Lin, Shuang-Yan; Shen, Si; Li, Xiao-Lei; Zhao, Lang; Zhang, Li; Tang, Jinkui

    2017-01-31

    Three μ4-O bridged Dy4 squares, {[Dy4(μ4-O)(HL(1))4(H2O)4]2(NO3)3(OH)}·2H2O·2CH3OH (1), [Dy4(μ4-O)(HL(2))4(SCN)2]·2H2O·4CH3OH (2) and [Dy4(μ4-O)(H2L(3))2(SCN)2]·6H2O (3) were assembled by using a Schiff base ligand and its dimerized and reduced congener, respectively. These complexes share a similar μ4-O bridged Dy4 core, while, both the coordination geometry and metal-ligand interactions are slightly changed upon the modulation of the ligands, resulting in distinct single-molecular magnetic (SMM) and single-molecular toroic (SMT) properties. In complex 1, the Schiff base ligands are in an antiparallel fashion and all Dy(III) ions are in a similar coordination geometry, realizing the toroidal arrangement of magnetic moments. For complex 2, the reduced ligand H3L(2) in a parallel fashion results in double relaxation processes and a 9-fold increase of the Ueff. Interestingly, with the use of the dimerized ligand H6L(3), we obtained complex 3, which is similar to complex 2, while due to the slight changes of the coordination environment both the single molecular magnetic property and toroidal magnetic moments almost disappeared.

  6. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Emori, Satoru; Peng, Bin; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Jiao, Jie; Luo, Haosu; Budil, David; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Liu, Ming; Sun, Nian

    2016-01-01

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  7. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    SciTech Connect

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian; Peng, Bin; Liu, Ming; Jiao, Jie; Luo, Haosu; Budil, David; Jones, John G.; Howe, Brandon M.; Brown, Gail J.

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  8. Transmitted light relaxation and microstructure evolution of ferrofluids under gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Li, Decai; Li, Feng; Zhu, Quanshui; Xie, Yu

    2015-03-01

    Using light transmission experiments and optical microscope observations with a longitudinal gradient magnetic field configuration, the relationship between the behavior of the transmitted light relaxation and the microstructure evolution of ionic ferrofluids in the central region of an axisymmetric field is investigated. Under a low-gradient magnetic field, there are two types of relaxation process. When a field is applied, the transmitted light intensity decreases to a minimum within a time on the order of 101-102 s. It is then gradually restored, approaching its initial value within a time on the order of 102 s. This is type I relaxation, which corresponds to the formation of magnetic columns. After the transmission reaches this value, it either increases or decreases slowly, stabilizing within a time on the order of 103 s, according to the direction of the field gradient. This is a type II relaxation, which results from the shadowing effect, corresponding to the motion of the magnetic columns under the application of a gradient force. Under a magnetic field with a centripetal high-gradient (magnetic materials subjected to a force pointing toward the center of the axisymmetric field), the transmitted light intensity decreases monotonously and more slowly than that under a low-gradient field. Magnetic transport and separation resulted from magnetophoresis under high-gradient fields, changing the formation dynamics of the local columns and influencing the final state of the column system.

  9. Magnetic relaxation and lower critical field in MgB2 wires

    NASA Astrophysics Data System (ADS)

    Y, Feng; G, Yan; Y, Zhao; Pradhan, A. K.; F, Liu C.; X, Zhang P.; L, Zhou

    2003-09-01

    Magnetic relaxation behaviour, critical current density Jc and lower critical field Hc1 have been investigated in MgB2/Ta/Cu wires. It is found that Jc and Hc1 decrease linearly with temperature in the whole temperature region below Tc. The relaxation rate is very small and has a weak temperature dependence compared to high-Tc superconductors. Also, the pinning potential is much larger and the temperature and field dependences of the pinning potential are briefly discussed.

  10. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.

    PubMed

    Ota, Satoshi; Kitaguchi, Ryoichi; Takeda, Ryoji; Yamada, Tsutomu; Takemura, Yasushi

    2016-09-10

    The dependence of magnetic relaxation on particle parameters, such as the size and anisotropy, has been conventionally discussed. In addition, the influences of external conditions, such as the intensity and frequency of the applied field, the surrounding viscosity, and the temperature on the magnetic relaxation have been researched. According to one of the basic theories regarding magnetic relaxation, the faster type of relaxation dominates the process. However, in this study, we reveal that Brownian and Néel relaxations coexist and that Brownian relaxation can occur after Néel relaxation despite having a longer relaxation time. To understand the mechanisms of Brownian rotation, alternating current (AC) hysteresis loops were measured in magnetic fluids of different viscosities. These loops conveyed the amplitude and phase delay of the magnetization. In addition, the intrinsic loss power (ILP) was calculated using the area of the AC hysteresis loops. The ILP also showed the magnetization response regarding the magnetic relaxation over a wide frequency range. To develop biomedical applications of magnetic nanoparticles, such as hyperthermia and magnetic particle imaging, it is necessary to understand the mechanisms of magnetic relaxation.

  11. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range

    PubMed Central

    Ota, Satoshi; Kitaguchi, Ryoichi; Takeda, Ryoji; Yamada, Tsutomu; Takemura, Yasushi

    2016-01-01

    The dependence of magnetic relaxation on particle parameters, such as the size and anisotropy, has been conventionally discussed. In addition, the influences of external conditions, such as the intensity and frequency of the applied field, the surrounding viscosity, and the temperature on the magnetic relaxation have been researched. According to one of the basic theories regarding magnetic relaxation, the faster type of relaxation dominates the process. However, in this study, we reveal that Brownian and Néel relaxations coexist and that Brownian relaxation can occur after Néel relaxation despite having a longer relaxation time. To understand the mechanisms of Brownian rotation, alternating current (AC) hysteresis loops were measured in magnetic fluids of different viscosities. These loops conveyed the amplitude and phase delay of the magnetization. In addition, the intrinsic loss power (ILP) was calculated using the area of the AC hysteresis loops. The ILP also showed the magnetization response regarding the magnetic relaxation over a wide frequency range. To develop biomedical applications of magnetic nanoparticles, such as hyperthermia and magnetic particle imaging, it is necessary to understand the mechanisms of magnetic relaxation. PMID:28335297

  12. Nuclear magnetic relaxation studies of water in frozen biological tissues. Cross-relaxation effects between protein and bound water protons

    NASA Astrophysics Data System (ADS)

    Escanyé, J. M.; Canet, D.; Robert, J.

    Water proton longitudinal relaxation has been investigated in frozen mouse tissues including tumors. The nonfreezable water which gives rise to a relatively sharp NMR signal at this temperature (263 K) is identified as water bound to macromolecules. Measurements have been carried out by the nonselective inversion-recovery method at 90 and 6 MHz. Partially selective inversion has been achieved at 90 MHz by the DANTE sequence. The experimental data are analyzed by means of Solomon-type equations. This analysis provides the cross-relaxation term from which the dipolar contribution to water relaxation rate, arising from interactions with macromolecular protons, is calculated. This contribution seems to be dominant. The number of water protons interacting with a given macromolecular proton is found to be of the order of 10. The data at both frequencies can be consistently interpreted in terms of water diffusion, with a characteristic time of about 10 -9 sec. These conclusions are valid for all the tissues investigated here, their relaxation parameters exhibiting only slight differences.

  13. Tm(iii) complexes undergoing slow relaxation of magnetization: exchange coupling and aging effects.

    PubMed

    Amjad, A; Figuerola, A; Sorace, L

    2017-03-21

    The present study focuses on the dynamic magnetic behaviour of exchange coupled 3d-4f complexes containing the scarcely investigated non-Kramers Tm(3+) center, the 3d metal ions being either the low-spin Fe(3+) (1) or the diamagnetic Co(3+) (2) ion. Both complexes display field-induced slow relaxation of magnetization. The field and temperature dependences of the relaxation rate provided indication of relevant contributions from quantum tunnelling, direct, Orbach and Raman processes, with only minor effects from exchange coupling interactions. Furthermore, the aged sample of 2 exhibited an additional relaxation process, possibly due to structural modifications accompanied by solvent loss, highlighting the importance of a careful consideration of this factor when analysing the magnetization dynamics in solvated systems.

  14. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  15. Stretched exponential relaxation of viscous remanence and magnetic dating of erratic boulders

    NASA Astrophysics Data System (ADS)

    Sato, T.; Nakamura, N.; Nagahama, H.; Minoura, K.

    2016-11-01

    Viscous remanence continuously increases with the duration of reorientation of rocks, and the remanence gets partially overprinted in rocks parallel to the Earth's magnetic field. This overprinted viscous remanence is unblocked at a certain temperature that enables the estimation of the time required for the rock to acquire the magnetism, by assuming the exponential law of Néel's single-domain theory. However, previous results of dating the rocks by the exponential law have shown older ages than radiometric or cosmogenic exposure ages. Néel's exponential decay law is applicable to a system whose magnetic grains have an identical relaxation time. However, in real systems, the expected behavior is not usually observed because relaxation times vary for individual grains. Moreover, the variation of viscous remanence with the logarithmic law for a distribution of relaxation times is predicted to be concave downward. Here we found that the stretched exponential law, exp{-(t/τ)1 - n} with 0 ≤ n < 1, explains previously published data on viscous decay. The observed stretched exponential relaxation can be interpreted in terms of the global relaxation of a system containing many relaxing species, each of which decays exponentially in time with a specific fixed relaxation rate. Using this law, we derived an extended time-temperature relationship of magnetite involving the Néel's exponential decay law with n = 0 and a system containing many relaxing times with variable n. The extended time-temperature relationship shows that the age of a coral tsunami boulder with high anomalous unblocking temperatures can be fitted with an assigned radiometric age.

  16. Suppression of sodium nuclear magnetic resonance double-quantum coherence by chemical shift and relaxation reagents

    NASA Astrophysics Data System (ADS)

    Hutchison, Robert B.; Huntley, James J. A.; Jin, Haoran; Shapiro, Joseph I.

    1992-12-01

    An investigation into the signal suppression behavior of the paramagnetic shift and relaxation reagents, Dy(P3O10)27- and Gd(P3O10)27-, with regard to their use in the nuclear magnetic resonance spectroscopic study of sodium has been performed. Measurements of T1 and T2 relaxation time constants of sodium in normal saline, Krebs-Henseleit buffer, and human blood serum, as a function of concentration of these reagents showed that, although closely coupled in the saline and K-H buffer environments, in plasma T1 and T2 become decoupled, transverse relaxation dominating in comparison to longitudinal relaxation. Linewidth measurements further suggest that relaxation in the plasma milieu is controlled primarily by inherent T2 relaxation, rather than by field inhomogeneity or diffusion effects. Quantitative single-quantum (1Q) and double-quantum (2Q) intensity measurements, biexponential T2 relaxation measurements, and parametric studies of the preparation time of the 2Q pulse sequence, were obtained in suspensions of bovine serum albumin and human erythrocytes. The observed suppression of sodium 2Q coherence by paramagnetic shift and relaxation reagents was found to exhibit a complex behavior in albumin solutions, involving the biexponential T2 decay to be expected during the preparation time of the 2Q filter pulse sequence, as well as the optimum preparation time for production of the double-quantum coherence itself. The controlling factor for both of these effects is the biexponential amplitude function in the expression for the transverse magnetization observed following application of the 2Q pulse sequence. This in turn is determined entirely by the values for the slow and fast components of biexponential relaxation in sodium, which themselves depend upon the concentration of the macromolecular binding sites for quadrupolar interaction. A similar behavior has been observed in suspensions of human erythrocytes.

  17. Phase diagram and magnetic relaxation phenomena in Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Qian, F.; Wilhelm, H.; Aqeel, A.; Palstra, T. T. M.; Lefering, A. J. E.; Brück, E. H.; Pappas, C.

    2016-08-01

    We present an investigation of the magnetic-field-temperature phase diagram of Cu2OSeO3 based on dc magnetization and ac susceptibility measurements covering a broad frequency range of four orders of magnitude, from very low frequencies reaching 0.1 Hz up to 1 kHz. The experiments were performed in the vicinity of Tc=58.2 K and around the skyrmion lattice A phase. At the borders between the different phases the characteristic relaxation times reach several milliseconds and the relaxation is nonexponential. Consequently the borders between the different phases depend on the specific criteria and frequency used and an unambiguous determination is not possible.

  18. Hemoglobin magnetism in aqueous solution probed by muon spin relaxation and future applications to brain research.

    PubMed

    Nagamine, Kanetada; Shimomura, Koichiro; Miyadera, Haruo; Kim, Yong-Jae; Scheicher, Ralph Hendrik; Das, Tara Prasad; Schultz, Jerome Samson

    2007-05-01

    A marked difference in spin relaxation behavior due to hemoglobin magnetism was found for positive muons (μ(+)) in deoxyhemoglobin in comparison with that observed in oxyhemoglobin in aqueous solution at room temperature under zero and external longitudinal magnetic fields upto 0.4 Tesla. At the same time, small but significant unique relaxation pattern was observed in nonmagnetic oxyhemoglobin. Combined with our previous measurements on hemoglobin in human blood, application of this type of measurement to the studies of the level of oxygenation in various regions of the human brain is suggested.

  19. Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cho, Minjung; Sethi, Richa; Ananta Narayanan, Jeyarama Subramanian; Lee, Seung Soo; Benoit, Denise N.; Taheri, Nasim; Decuzzi, Paolo; Colvin, Vicki L.

    2014-10-01

    Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA-OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA-OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA-OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values

  20. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for spin I = 1

    NASA Astrophysics Data System (ADS)

    Nilsson, Tomas; Halle, Bertil

    2012-08-01

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water 1H and 2H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water 2H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like 2H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally important

  1. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for spin I = 1.

    PubMed

    Nilsson, Tomas; Halle, Bertil

    2012-08-07

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally

  2. Anomalous hyperfine coupling and nuclear magnetic relaxation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Okvátovity, Zoltán; Simon, Ferenc; Dóra, Balázs

    2016-12-01

    The electron-nuclear hyperfine interaction shows up in a variety of phenomena including, e.g., NMR studies of correlated states and spin decoherence effects in quantum dots. Here we focus on the hyperfine coupling and the NMR spin relaxation time T1 in Weyl semimetals. Since the density of states in Weyl semimetals varies with the square of the energy around the Weyl point, a naive power counting predicts a 1 /T1T ˜E4 scaling, with E the maximum of temperature (T ) and chemical potential. By carefully investigating the hyperfine interaction between nuclear spins and Weyl fermions, we find that while its spin part behaves conventionally, its orbital part diverges unusually, with the inverse of the energy around the Weyl point. Consequently, the nuclear spin relaxation rate scales in a graphenelike manner as 1 /T1T ˜E2ln(E /ω0) , with ω0 the nuclear Larmor frequency. This allows us to identify an effective hyperfine coupling constant, which is tunable by gating or doping. This is relevant for the decoherence effect in spintronics devices and double quantum dots, where hyperfine coupling is the dominant source of spin-blockade lifting.

  3. Magnetic imager and method

    DOEpatents

    Powell, James; Reich, Morris; Danby, Gordon

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  4. Magnetic imager and method

    DOEpatents

    Powell, J.; Reich, M.; Danby, G.

    1997-07-22

    A magnetic imager includes a generator for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager also includes a sensor for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object. 25 figs.

  5. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles.

    PubMed

    Saville, Steven L; Woodward, Robert C; House, Michael J; Tokarev, Alexander; Hammers, Jacob; Qi, Bin; Shaw, Jeremy; Saunders, Martin; Varsani, Rahi R; St Pierre, Tim G; Mefford, O Thompson

    2013-03-07

    It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R(2), is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R(2) measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications.

  6. Quantum-mechanical relaxation model for characterization of fine particles magnetic dynamics in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Mischenko, I.; Chuev, M.

    2016-12-01

    Principal difference of magnetic nanoparticles from the bulk matter which cannot be ignored when constructing upon them combined metamaterials and modern devices is the essential influence on their behavior thermal fluctuations of the environment. These disturbances lead to specific distributions of the particles characteristics and to stochastic reorientations of their magnetic moments. On the basis of quantum-mechanical representation of the particle possessing intrinsic magnetic anisotropy and being placed onto the external magnetic field we developed general approach to describe equilibrium magnetization curves and relaxation Mössbauer spectra of magnetic nanoparticles for diagnostics of magnetic nanomaterials in the whole temperature or external field ranges. This approach has universal character and may be applied not only to the systems under thermal equilibrium, but may in principle describe macroscopic dynamical phenomena such as magnetization reversal.

  7. Fast neutron irradiation effects on magnetization relaxation in YBCO single crystals

    SciTech Connect

    Lensink, J.G.; Griessen, R. . Faculty of Physics and Astronomy); Wiesinger, H.P.; Sauerzopf, F.M.; Weber, H.W. ); Crabtree, G.W. )

    1991-07-01

    A high-quality YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystal has been investigated by torque magnetometry prior to and following fast neutron irradiation to a fluence of 2{times}10{sup 21} m{sup {minus}2} (E > 0.1 MeV). In addition to large enhancements of the critical current densities, which have been observed in similar form previously by Sauerzopf et al, we find a dramatic change in the relaxation behavior following irradiation. At low temperatures ({le} 50 k) the relaxation rates are lowered by factors up to 4 in the irradiated state in a magnetic field of 1.5 T. At higher temperatures, on the other hand, they are enhanced compared to the unirradiated state. Both before and after irradiation, the magnetization relaxation follows a logarithmic time dependence, which we ascribe to thermally activated flux motion.

  8. A single-molecule magnet featuring a parallelogram [Dy4(OCH2-)4] core and two magnetic relaxation processes.

    PubMed

    Liu, Cai-Ming; Zhang, De-Qing; Zhu, Dao-Ben

    2013-10-01

    An alkoxido-bridged tetranuclear Dy(iii) complex, [Dy4(H3L)2(OAc)6]·2EtOH {, H6L = 1,3-bis[tris(hydroxymethyl)methylamino]propane}, has been solvothermally synthesized and characterized. An X-ray crystallographic study revealed that complex possesses a novel "parallelogram" [Dy4(OCH2-)4] core, and a new binding mode η(3):η(3):η(1):η(1):η(1):η(2):μ(4) of the Bis-tris propane ligand was observed. Magnetic investigations indicated that it is a single-molecule magnet (SMM), showing two distinct magnetic relaxation processes with the energy barriers of 44 K and 107 K, respectively. Such a two-step magnetic relaxation process could be well described by the sum of two modified Debye functions.

  9. Relaxation method of compensation in an optical correlator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Daiuto, Brian J.

    1987-01-01

    An iterative method is proposed for the sharpening of programmable filters in a 4-f optical correlator. Continuously variable spatial light modulators (SLMs) permit the fine adjustment of optical processing filters so as to compensate for the departures from ideal behavior of a real optical system. Although motivated by the development of continuously variable phase-only SLMs, the proposed sharpening method is also applicable to amplitude modulators and, with appropriate adjustments, to binary modulators as well. A computer simulation is presented that illustrates the potential effectiveness of the method: an image is placed on the input to the correlator, and its corresponding phase-only filter is adjusted (allowed to relax) so as to produce a progressively brighter and more centralized peak in the correlation plane. The technique is highly robust against the form of the system's departure from ideal behavior.

  10. Effects of Off-Resonance Irradiation, Cross-Relaxation, and Chemical Exchange on Steady-State Magnetization and Effective Spin-Lattice Relaxation Times

    NASA Astrophysics Data System (ADS)

    Kingsley, Peter B.; Monahan, W. Gordon

    2000-04-01

    In the presence of an off-resonance radiofrequency field, recovery of longitudinal magnetization to a steady state is not purely monoexponential. Under reasonable conditions with zero initial magnetization, recovery is nearly exponential and an effective relaxation rate constant R1eff = 1/T1eff can be obtained. Exact and approximate formulas for R1eff and steady-state magnetization are derived from the Bloch equations for spins undergoing cross-relaxation and chemical exchange between two sites in the presence of an off-resonance radiofrequency field. The relaxation formulas require that the magnetization of one spin is constant, but not necessarily zero, while the other spin relaxes. Extension to three sites with one radiofrequency field is explained. The special cases of off-resonance effects alone and with cross-relaxation or chemical exchange, cross-relaxation alone, and chemical exchange alone are compared. The inaccuracy in saturation transfer measurements of exchange rate constants by published formulas is discussed for the creatine kinase reaction.

  11. Multiplexed sensing based on Brownian relaxation of magnetic nanoparticles using a compact AC susceptometer

    NASA Astrophysics Data System (ADS)

    Park, Kyoungchul; Harrah, Tim; Goldberg, Edward B.; Guertin, Robert P.; Sonkusale, Sameer

    2011-02-01

    A novel multiplexed sensing scheme based on the measurement of the magnetic susceptibility of the affinity captured target molecules on magnetic nanoparticles in liquid suspension is proposed. The AC magnetic susceptibility provides a measurement of Brownian relaxation behavior of biomolecules bound to magnetic nanoparticles (MNPs) that is related to its hydrodynamic size. A room temperature, compact AC susceptometer is designed and developed to measure complex AC magnetic susceptibility of such magnetic nanoparticles. The AC susceptometer exhibits high sensitivity in magnetic fields as low as 10 µT for 1 mg ml-1 concentration and 5 µl volume, and is fully software programmable. The capability of biological sensing using the proposed scheme has been demonstrated in proof of principle using the binding of biotinylated horseradish peroxidase (HRP) to streptavidin-coated MNPs. The proposed technique and instrument are readily compatible with lab-on-chip applications for point-of-care medical applications.

  12. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.

    PubMed

    Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J

    2010-02-01

    It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements.

  13. Nuclear magnetic resonance transverse relaxation in muscle water.

    PubMed Central

    Fung, B M; Puon, P S

    1981-01-01

    The origin of the nonexponentiality of proton spin echoes of skeletal muscle has been carefully examined. It is shown that the slowly decaying part of the proton spin echoes is not due to extracellular water. First, for muscle from mice with in vivo deuteration, the deuteron spin echoes were also nonexponential, but the slowly decaying part had a larger weighing factor. Second, for glycerinated muscle in which cell membranes were disrupted, the proton spin echoes were similar to those in intact muscle. Third, the nonexponentiality of the proton spin echoes in intact muscle increased when postmortem rigor set in. Finally, when the lifetimes of extracellular water and intracellular water were taken into account in the exchange, it was found that the two types of water would not give two resolvable exponentials with the observed decay constants. It is suggested that the unusually short T2's and the nonexponential character of the spin echoes of proton and deuteron in muscle water are mainly due to hydrogen exchange between water and functional groups in the protein filaments. These groups have large dipolar or quadrupolar splittings, and undergo hydrogen exchange with water at intermediate rates. The exchange processes and their effects on the spin echoes are pH-dependent. The dependence of transverse relaxation of pH was observed in glycerinated rabbit psoas muscle fibers. PMID:7272437

  14. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Kaman, Ondřej; Kuličková, Jarmila; Herynek, Vít; Koktan, Jakub; Maryško, Miroslav; Dědourková, Tereza; Knížek, Karel; Jirák, Zdeněk

    2017-04-01

    Hydrothermal synthesis of Mn1-xZnxFe2O4 nanoparticles followed by direct encapsulation of the as-grown material into silica is demonstrated as a fast and facile method for preparation of efficient negative contrast agents based on clusters of ferrite crystallites. At first, the hydrothermal procedure is optimized to achieve strictly single-phase magnetic nanoparticles of Mn-Zn ferrites in the compositional range of x≈0.2-0.6 and with the mean size of crystallites ≈10 nm. The products are characterized by powder X-ray diffraction, X-ray fluorescence spectroscopy, and SQUID magnetometry, and the composition close to x=0.4 is selected for the preparation of silica-coated clusters with the mean diameter of magnetic cores ≈25 nm. Their composite structure is studied by means of transmission electron microscopy combined with detailed image analysis and magnetic measurements in DC fields. The relaxometric studies, performed in the magnetic field of B0=0.5 T, reveal high transverse relaxivity (r2(20 °C)=450 s-1 mmol(Me3O4)-1 L) with a pronounced temperature dependence, which correlates with the observed temperature dependence of magnetization and is ascribed to a mechanism of transverse relaxation similar to the motional averaging regime.

  15. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  16. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2016-07-01

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with a single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued ("imaginary") part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue.

  17. T 1 Relaxation Measurement of Ex-Vivo Breast Cancer Tissues at Ultralow Magnetic Fields

    PubMed Central

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Hwang, Seong-min; Yu, Kwon Kyu; Lim, Sanghyun; Han, Jae Ho; Yim, Hyunee; Kim, Jang-Hee; Jung, Yong Sik; Kim, Ku Sang

    2015-01-01

    We investigated T1 relaxations of ex-vivo cancer tissues at low magnetic fields in order to check the possibility of achieving a T1 contrast higher than those obtained at high fields. The T1 relaxations of fifteen pairs (normal and cancerous) of breast tissue samples were measured at three magnetic fields, 37, 62, and 122 μT, using our superconducting quantum interference device-based ultralow field nuclear magnetic resonance setup, optimally developed for ex-vivo tissue studies. A signal reconstruction based on Bayesian statistics for noise reduction was exploited to overcome the low signal-to-noise ratio. The ductal and lobular-type tissues did not exhibit meaningful T1 contrast values between normal and cancerous tissues at the three different fields. On the other hand, an enhanced T1 contrast was obtained for the mucinous cancer tissue. PMID:25705658

  18. The effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles.

    PubMed

    Carroll, Matthew R J; Huffstetler, Phillip P; Miles, William C; Goff, Jonathon D; Davis, Richey M; Riffle, Judy S; House, Michael J; Woodward, Robert C; St Pierre, Timothy G

    2011-08-12

    Iron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles. A different polyether was used for each series. Each series comprised systems with systematically varied polyether loadings per particle. A highly significant (p < 0.0001) linear correlation (r = 0.956) was found between the proton relaxivity and the intensity-weighted average diameter measured by dynamic light scattering in the 19 particle systems studied. The intensity-weighted average diameter measured by dynamic light scattering is sensitive to small number fractions of larger particles/aggregates. We conclude that the primary effect leading to differences in proton relaxivity between systems arises from the small degree of aggregation within the samples, which appears to be determined by the nature of the polymer and, for one system, the degree of polymer loading of the particles. For the polyether coatings used in this study, any changes in relaxivity from differences in water exclusion or diffusion rates caused by the polymer are minor in comparison with the changes in relaxivity resulting from variations in the degree of aggregation.

  19. Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range

    NASA Astrophysics Data System (ADS)

    Scholtes, Theo; Pustelny, Szymon; Fritzsche, Stephan; Schultze, Volkmar; Stolz, Ronny; Meyer, Hans-Georg

    2016-07-01

    We present a detailed experimental and theoretical study on the relaxation of spin coherence due to the spin-exchange mechanism arising in the electronic ground states of alkali-metal vapor atoms. As opposed to the well-explored formation of a stretched state in a longitudinal geometry (magnetic field parallel to the laser propagation direction) we employ adapted hyperfine-selective optical pumping in order to suppress spin-exchange relaxation. By comparing measurements of the intrinsic relaxation rate of the spin coherence in the ground state of cesium atoms with detailed density-matrix simulations we show that the relaxation due to spin-exchange collisions can be reduced substantially even in a tilted magnetic field of geomagnetic strength, the major application case of scalar magnetic surveying. This explains the observed striking improvement in sensitivity and further deepens the understanding of the light-narrowed Mx magnetometer, which was presented recently. Additionally, new avenues for investigating the dynamics in alkali-metal atoms governed by the spin-exchange interaction and interacting with arbitrary external fields open up.

  20. High resolution NMR study of T{sub 1} magnetic relaxation dispersion. IV. Proton relaxation in amino acids and Met-enkephalin pentapeptide

    SciTech Connect

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Vieth, Hans-Martin

    2014-10-21

    Nuclear Magnetic Relaxation Dispersion (NMRD) of protons was studied in the pentapeptide Met-enkephalin and the amino acids, which constitute it. Experiments were run by using high-resolution Nuclear Magnetic Resonance (NMR) in combination with fast field-cycling, thus enabling measuring NMRD curves for all individual protons. As in earlier works, Papers I–III, pronounced effects of intramolecular scalar spin-spin interactions, J-couplings, on spin relaxation were found. Notably, at low fields J-couplings tend to equalize the apparent relaxation rates within networks of coupled protons. In Met-enkephalin, in contrast to the free amino acids, there is a sharp increase in the proton T{sub 1}-relaxation times at high fields due to the changes in the regime of molecular motion. The experimental data are in good agreement with theory. From modelling the relaxation experiments we were able to determine motional correlation times of different residues in Met-enkephalin with atomic resolution. This allows us to draw conclusions about preferential conformation of the pentapeptide in solution, which is also in agreement with data from two-dimensional NMR experiments (rotating frame Overhauser effect spectroscopy). Altogether, our study demonstrates that high-resolution NMR studies of magnetic field-dependent relaxation allow one to probe molecular mobility in biomolecules with atomic resolution.

  1. Ultrafast photo-induced turning of magnetization and its relaxation dynamics in GaMnAs

    NASA Astrophysics Data System (ADS)

    Luo, Jing; Zheng, Houzhi; Shen, Chao; Zhang, Hao; Zhu, Ke; Zhu, Hui; Liu, Jian; Li, Guirong; Ji, Yang; Zhao, Jianhua

    2010-05-01

    We report that, by linearly polarized pumping of different wavelengths, Kerr transients appear at zero magnetic field only in the case when GaMnAs samples are initialized at 3 K by first applying a 0.8 Tesla field and then returning to zero field. We find that, instead of magnetization precession, the near-band gap excitation induces a coherent out-of-plane turning of magnetization, which shows very long relaxation dynamics with no precession. When photon energy increases, the peak value of the Kerr transient increases, but it decays rapidly to the original slow transient seen under the near-band-gap excitation.

  2. Influence of microstructure on thermal relaxation in nanocrystalline soft magnetic materials

    SciTech Connect

    LoBue, M.; Basso, V.; Beatrice, C.; Tiberto, P.; Bertotti, G.

    2001-06-01

    The interplay between activation volumes and microstructure is investigated in nanocrystalline Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} (Finemet) alloys. Experiments are performed beyond the Curie point of the amorphous matrix, where relaxation effects are relevant. Measurements are analyzed within a theoretical framework where hysteresis and relaxation phenomena are jointly described. In highly crystallized samples magnetization processes are characterized by a unique length scale. In poorly crystallized samples the system behavior is controlled by a distribution of characteristic volumes related to structural disorder. {copyright} 2001 American Institute of Physics.

  3. Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes.

    PubMed

    Meihaus, Katie R; Rinehart, Jeffrey D; Long, Jeffrey R

    2011-09-05

    Magnetically dilute samples of complexes Dy(H(2)BPz(Me2)(2))(3) (1) and U(H(2)BPz(2))(3) (3) were prepared through cocrystallization with diamagnetic Y(H(2)BPz(Me2)(2))(3) (2) and Y(H(2)BPz(2))(3). Alternating current (ac) susceptibility measurements performed on these samples reveal magnetic relaxation behavior drastically different from their concentrated counterparts. For concentrated 1, slow magnetic relaxation is not observed under zero or applied dc fields of several hundred Oersteds. However, a 1:65 (Dy:Y) molar dilution results in a nonzero out-of-phase component to the magnetic susceptibility under zero applied dc field, characteristic of a single-molecule magnet. The highest dilution of 3 (1:90, U:Y) yields a relaxation barrier U(eff) = 16 cm(-1), double that of the concentrated sample. These combined results highlight the impact of intermolecular interactions in mononuclear single-molecule magnets possessing a highly anisotropic metal center. Finally, dilution elucidates the previously observed secondary relaxation process for concentrated 3. This process is slowed down drastically upon a 1:1 molar dilution, leading to butterfly magnetic hysteresis at temperatures as high as 3 K. The disappearance of this process for higher dilutions reveals it to be relaxation dictated by short-range intermolecular interactions, and it stands as the first direct example of an intermolecular relaxation process competing with single-molecule-based slow magnetic relaxation.

  4. Tuning Slow Magnetic Relaxation in a Two-Dimensional Dysprosium Layer Compound through Guest Molecules.

    PubMed

    Chen, Qi; Li, Jian; Meng, Yin-Shan; Sun, Hao-Ling; Zhang, Yi-Quan; Sun, Jun-Liang; Gao, Song

    2016-08-15

    A novel two-dimensional dysprosium(III) complex, [Dy(L)(CH3COO)]·0.5DMF·H2O·2CH3OH (1), has been successfully synthesized from a new pyridine-N-oxide (PNO)-containing ligand, namely, N'-(2-hydroxy-3-methoxybenzylidene)pyridine-N-oxidecarbohydrazide (H2L). Single-crystal X-ray diffraction studies reveal that complex 1 is composed of a dinuclear dysprosium subunit, which is further extended by the PNO part of the ligand to form a two-dimensional layer. Magnetic studies indicate that complex 1 shows well-defined temperature- and frequency-dependent signals under a zero direct-current (dc) field, typical of slow magnetic relaxation with an effective energy barrier Ueff of 33.6 K under a zero dc field. Interestingly, powder X-ray diffraction and thermogravimetric analysis reveal that compound 1 undergoes a reversible phase transition that is induced by the desorption and absorption of methanol and water molecules. Moreover, the desolvated sample [Dy(L)(CH3COO)]·0.5DMF (1a) also exhibits slow magnetic relaxation but with a higher anisotropic barrier of 42.0 K, indicating the tuning effect of solvent molecules on slow magnetic relaxation.

  5. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets

    PubMed Central

    Lunghi, Alessandro; Totti, Federico; Sessoli, Roberta; Sanvito, Stefano

    2017-01-01

    The use of single molecule magnets in mainstream electronics requires their magnetic moment to be stable over long times. One can achieve such a goal by designing compounds with spin-reversal barriers exceeding room temperature, namely with large uniaxial anisotropies. Such strategy, however, has been defeated by several recent experiments demonstrating under-barrier relaxation at high temperature, a behaviour today unexplained. Here we propose spin–phonon coupling to be responsible for such anomaly. With a combination of electronic structure theory and master equations we show that, in the presence of phonon dissipation, the relevant energy scale for the spin relaxation is given by the lower-lying phonon modes interacting with the local spins. These open a channel for spin reversal at energies lower than that set by the magnetic anisotropy, producing fast under-barrier spin relaxation. Our findings rationalize a significant body of experimental work and suggest a possible strategy for engineering room temperature single molecule magnets. PMID:28262663

  6. Quadratic Zeeman effect and spin-lattice relaxation of Tm3 +:YAG at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Veissier, Lucile; Thiel, Charles W.; Lutz, Thomas; Barclay, Paul E.; Tittel, Wolfgang; Cone, Rufus L.

    2016-11-01

    Anisotropy of the quadratic Zeeman effect for the H36→H34 transition at 793 nm wavelength in 3+169Tm-doped Y3Al5O12 is studied, revealing shifts ranging from near zero up to +4.69 GHz/T 2 for ions in magnetically inequivalent sites. This large range of shifts is used to spectrally resolve different subsets of ions and study nuclear spin relaxation as a function of temperature, magnetic field strength, and orientation in a site-selective manner. A rapid decrease in spin lifetime is found at large magnetic fields, revealing the weak contribution of direct phonon absorption and emission to the nuclear spin-lattice relaxation rate. We furthermore confirm theoretical predictions for the phonon coupling strength, finding much smaller values than those estimated in the limited number of past studies of thulium in similar crystals. Finally, we observe a significant—and unexpected—magnetic field dependence of the two-phonon Orbach spin relaxation process at higher field strengths, which we explain through changes in the electronic energy-level splitting arising from the quadratic Zeeman effect.

  7. Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media.

    PubMed

    Kaittanis, Charalambos; Santra, Santimukul; Perez, J Manuel

    2009-09-09

    Nanoparticle-based diagnostics typically involve the conjugation of targeting ligands to the nanoparticle to create a sensitive and specific nanosensor that can bind and detect the presence of a target, such as a bacterium, cancer cell, protein, or DNA sequence. Studies that address the effect of multivalency on the binding and detection pattern of these nanosensors, particularly on magnetic relaxation nanosensors that sense the presence of a target in a dose-dependent manner by changes in the water relaxation times (DeltaT2), are scarce. Herein, we study the effect of multivalency on the detection profile of cancer cells and bacteria in complex media, such as blood and milk. In these studies, we conjugated folic acid at two different densities (low-folate and high-folate) on polyacrylic-acid-coated iron oxide nanoparticles and studied the interaction of these magnetic nanosensors with cancer cells expressing the folate receptor. Results showed that the multivalent high-folate magnetic relaxation nanosensor performed better than its low folate counterpart, achieving single cancer cell detection in blood samples within 15 min. Similar results were also observed when a high molecular weight anti-folate antibody (MW 150 kDa) was used instead of the low molecular weight folic acid ligand (MW 441.4 kDa), although better results in terms of sensitivity, dynamic range, and speed of detection were obtained when the folate ligand was used. Studies using bacteria in milk suspensions corroborated the results observed with cancer cells. Taken together, these studies demonstrate that nanoparticle multivalency plays a key role in the interaction of the nanoparticle with the cellular target and modulate the behavior and sensitivity of the assay. Furthermore, as detection with magnetic relaxation nanosensors is a nondestructive technique, magnetic isolation and further characterization of the cancer cells is possible.

  8. Nuclear Magnetic Spin-Noise and Unusual Relaxation of Oxygen-17 in Water

    NASA Astrophysics Data System (ADS)

    Bendet-Taicher, Eli

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have evolved into widely used techniques, providing diagnostic power in medicine and material sciences due to their high precision and non-invasive nature. Due to the small population differences between spin energy states, a significant sensitivity problem for NMR arises. The low sensitivity of NMR is probably its greatest limitation for applications to biological systems. An alternative probe tuning strategy based on the spin-noise response for application in standard one-dimensional and common high-resolution multidimensional standard biomolecular NMR experiments has shown an increase of up to 50% signal-to-noise (SNR) in one-dimensional NMR experiments and an increase of up to 22% in multi-dimensional ones. The method requires the adjustment of the optimal tuning condition, which may be offset by several hundreds kHz from the conventional tuning settings using the noise response of the water protons as an indicator. This work is described in the first part of the thesis (chapters 2--3). The second part (Chapter 4) of the thesis deals with anomalous oxygen-17 NMR relaxation behavior in water. Oxygen-17 (17O), which has spin of 5/2 and a natural abundance of 0.0373% possesses an electric quadrupole moment. Spin-lattice and spin-spin relaxation occur by the quadrupole interaction, while the J-coupling to 1H spins and exchange are deciding factors. T1 and T2 of 17O in water have been previously measured over a large range of temperatures. The spin-spin relaxation times of 17O as a function of temperature show an anomalous behaviour, expressed by a local maximum at the temperature of maximum density (TMD) of water. It is shown that the same anomalous behaviour shifts to the respective temperatures of maximum density for H2O/D2O solutions with different compositions and salt concentrations. This phenomenon can be correlated to the pH dependency of T2 of 17O in water, and water proton exchange rates

  9. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation

    NASA Astrophysics Data System (ADS)

    Stupic, K. F.; Elkins, N. D.; Pavlovskaya, G. E.; Repine, J. E.; Meersmann, T.

    2011-07-01

    The 83Kr magnetic resonance (MR) relaxation time T1 of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary 83Kr T1 relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) 83Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp 83Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured 83Kr T1 relaxation times. The longitudinal 83Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T1 = 1.3 s and T1 = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the 83Kr T1 relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of 83Kr as a biomarker for evaluating lung function.

  10. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation.

    PubMed

    Stupic, K F; Elkins, N D; Pavlovskaya, G E; Repine, J E; Meersmann, T

    2011-07-07

    The (83)Kr magnetic resonance (MR) relaxation time T(1) of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary (83)Kr T(1) relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) (83)Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp (83)Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured (83)Kr T(1) relaxation times. The longitudinal (83)Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T(1) = 1.3 s and T(1) = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the (83)Kr T(1) relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of (83)Kr as a biomarker for evaluating lung function.

  11. Anisotropic magnetization relaxation in ferromagnetic multilayers with variable interlayer exchange coupling

    NASA Astrophysics Data System (ADS)

    Kravets, A. F.; Polishchuk, D. M.; Dzhezherya, Yu. I.; Tovstolytkin, A. I.; Golub, V. O.; Korenivski, V.

    2016-08-01

    The ferromagnetic resonance (FMR) linewidth and its anisotropy in F1/f /F2 /AF multilayers, where spacer f has a low Curie point compared to the strongly ferromagnetic F1 and F2, is investigated. The role of the interlayer exchange coupling in magnetization relaxation is determined experimentally by varying the thickness of the spacer. It is shown that stronger interlayer coupling via thinner spacers enhances the microwave energy exchange between the outer ferromagnetic layers, with the magnetization of F2 exchange dragged by the resonance precession in F1. A weaker mirror effect is also observed: the magnetization of F1 can be exchange dragged by the precession in F2, which leads to antidamping and narrower FMR linewidths. A theory is developed to model the measured data, which allows separating various contributions to the magnetic relaxation in the system. Key physical parameters, such as the interlayer coupling constant, in-plane anisotropy of the FMR linewidth, and dispersion of the magnetic anisotropy fields, are quantified. These results should be useful for designing high-speed magnetic nanodevices based on thermally assisted switching.

  12. Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications

    NASA Astrophysics Data System (ADS)

    Praveena, K.; Chen, Hsiao-Wen; Liu, Hsiang-Lin; Sadhana, K.; Murthy, S. R.

    2016-12-01

    Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese-Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn2+ substituted MnFe2O4 were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn2+, Zn2+ and Fe2+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (fr) was increased with the increase in grain size. The real and imaginary part of permeability (μ‧ and μ″) increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (Ms), remnant magnetization (Mr) and magneton number (μB) decreased gradually with increasing Zn2+ concentration. The decrease in the saturation magnetization was discussed with Yafet-Kittel (Y-K) model. The Zn2+ concentration increases the relative number of ferric ions on the A sites, reduces the A-B interactions. The frequency dependent total power losses decreased as the zinc concentration increased. At 1 MHz, the total power loss (Pt) changed from 358 mW/cm3 for x=0-165 mW/cm3

  13. Magnetic flux relaxation in YBa2Cu3)(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, J. D.; Alterovitz, S. A.

    1991-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H is parallel to c was studied in the range 4.2 - 40 K and 0.2 - 1.0 T. Both the normalized flux relaxation rate S and the net flux pinning energy U increase continuously from 1.3 x 10(exp -2) to 3.0 x 10(exp -2) and from 70 to 240 meV respectively, as the temperature T increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  14. A unique dysprosium selenoarsenate(iii) exhibiting a photocurrent response and slow magnetic relaxation behavior.

    PubMed

    Zhou, Jian; Zou, Hua-Hong; Zhao, Rongqing; Xiao, Hong; Ding, Qingran

    2017-01-03

    A redox, substitution and self-assembly reaction offers a novel dysprosium selenoarsenate(iii) with As(3+) [Dy2(tepa)2(μ2-OH)2Cl2]3[As3Se6]2 (1, tepa = tetraethylenepentamine), which provides the first example of chair conformation ring [As3Se6](3-) combined with lanthanide complexes as counterions. 1 exhibits a photocurrent response and slow magnetic relaxation behavior.

  15. An extended magnetic viscous relaxation dating for calibrating an older age: an example of tsunamigenic coral boulders in Ishigaki Island, Japan

    NASA Astrophysics Data System (ADS)

    Sato, T.; Nakamura, N.; Goto, K.; Kumagai, Y.; Minoura, K.; Nagahama, H.

    2015-12-01

    A key to the understanding of past tsunami events is the ability to accurately date them. Analysis of past tsunami sediments is one of the most important tools for past tsunami reconstruction. A typical example of such tsunami sediment is tsunamigenic boulders. In Ishigaki Island, Japan, coral boulders that had been transported by tsunamis were distributed on the beach and land areas. Although the historical occurrences of several huge tsunamis were estimated based on large numbers of radiocarbon dating for coral boulders, radiocarbon dating can not determine a multiple rotational history by multiple tsunamis. A viscous remanet magnetization (VRM) dating method can be used to date any geological event that results in significant movements of a rock. Sato et al. (2014) applied VRM dating for comparing the radiocarbon age of these boulders. If a magnetic-mineral bearing rock is moved or re-oriented, the magnetism of the smaller magnetic grains re-aligns to the direction of the ambient magnetic field with time. This phenomenon is well known as Néel's (1949, 1955) single-domain (SD) relaxation theory. Pullaiah et al. (1975) derived a time-temperature (t-T relation) relation by assuming Néel's (1949, 1955) theory of magnetite. In principle, an experimental combination of short relaxation time and high temperature for removing VRM can determine the unknown relaxation time (tsunami age) at room temperature. We have been applied t-T relation to the coral boulders on Ishigaki Island, but their estimated ages showed older than radiocarbon dating. The longer relaxation time means that the observed magnetic relaxation is slower than the original Néel's theory. Such slow relaxation has been described by a stretched exponential function. The stretched exponential law provided a reasonable fit to the published experimental data. Thus, in this study, we revisit Néel's theory to provide a new t-T relation based on stretched exponential function.

  16. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  17. Electron spin resonance and muon spin relaxation studies of single molecule magnets

    NASA Astrophysics Data System (ADS)

    Blundell, Stephen

    2005-03-01

    We use a combination of electron spin resonance, muon-spin relaxation and SQUID magnetometry to study polycrystalline and single crystal samples of various novel single molecule magnets (SMMs). We also describe a theoretical framework which can be used to analyse the results from each technique. Electron spin resonance measurements are performed using a millimetre vector network analyser and data are presented on several SMM systems using microwave frequencies from 40-300 GHz. Muon-spin relaxation measurements have been performed on several SMM systems in applied longitudinal magnetic field and in temperatures down to 20 mK. The results suggest that dynamic local magnetic field fluctuations are responsible for the relaxation of the muon spin ensemble. We discuss what can be learned from these experiments concerning SMMs and suggest experiments which can probe the quantum nature of SMMs. (Work in collaboration with S Sharmin, T Lancaster, A Ardavan, F L Pratt, E J L McInnes and R E P Winpenny) References: S. J. Blundell and F. L. Pratt, J. Phys.: Condens. Matter 16, R771 (2004); T. Lancaster et al., J. Phys.: Condens. Matter 16, S4563 (2004); S. Sharmin et al., Appl. Phys. Lett. in press.

  18. Slow magnetic relaxations in a ladder-type Dy(iii) complex and its dinuclear analogue.

    PubMed

    Boča, R; Stolárová, M; Falvello, L R; Tomás, M; Titiš, J; Černák, J

    2017-04-06

    The complex {[Dy2(PDOA)3(H2O)6]·2H2O}n (1) (H2PDOA = 1,2-phenylenedioxydiacetic acid) was prepared from aqueous solution. Its crystal structure, built up of {-Dy-O-C-O-}n chains interlinked by PDOA ligands yielding a ladder-like arrangement, was determined at 173 K. 1 exhibits slow magnetic relaxation under a small magnetic field BDC = 0.2 T with two (LF and HF) relaxation channels. The LF relaxation time at BDC = 0.2 T and T = 1.85 K is as slow as τ(LF) = 46 ms whereas the HF channel is τ(HF) = 1.4 ms. The mole fraction of the LF species is xLF = 0.76 at 1.85 K and it escapes progressively on heating. In the dinuclear analogue [Dy2(PDOA)3(H2O)6]·3.5H2O (2) one PDOA ligand forms a bis(chelate) bridge between the two Dy(iii) atoms yielding a local structure analogous to that in 1; however its AC susceptibility data show slightly different quantitative characteristics of the single-molecule magnetic behaviour.

  19. Six-coordinate lanthanide complexes: slow relaxation of magnetization in the dysprosium(III) complex.

    PubMed

    Na, Bo; Zhang, Xue-Jing; Shi, Wei; Zhang, Yi-Quan; Wang, Bing-Wu; Gao, Chen; Gao, Song; Cheng, Peng

    2014-11-24

    A series of six-coordinate lanthanide complexes {(H3O)[Ln(NA)2]⋅H2O}n (H2NA=5-hydroxynicotinic acid; Ln=Gd(III) (1⋅Gd); Tb(III) (2⋅Tb); Dy(III) (3⋅Dy); Ho(III) (4⋅Ho)) have been synthesized from aqueous solution and fully characterized. Slow relaxation of the magnetization was observed in 3⋅Dy. To suppress the quantum tunneling of the magnetization, 3⋅Dy diluted by diamagnetic Y(III) ions was also synthesized and magnetically studied. Interesting butterfly-like hysteresis loops and an enhanced energy barrier for the slow relaxation of magnetization were observed in diluted 3⋅Dy. The energy barrier (Δ(τ)) and pre-exponential factor (τ0) of the diluted 3⋅Dy are 75 K and 4.21×10(-5) s, respectively. This work illustrates a successful way to obtain low-coordination-number lanthanide complexes by a framework approach to show single-ion-magnet-like behavior.

  20. [Experiment and analyse on the effect of magnetic nanoparticles upon relaxation time of proton in molecular recognition by MRI].

    PubMed

    Hu, Lili; Song, Tao; Yang, Wenhui; Wang, Ming; Zhang, Fang; Tao, Chunjing

    2007-06-01

    To research on the effect of three different magnetic nanoparticles upon relaxation time of proton. The detection by magnetic resonance imaging (MRI) indicates that there is the effect of marked difference to right control experiment and to analyze the difference from theory. The result discloses that will be able to perform the experiment of molecular recognition using magnetic nanoparticles later.

  1. A comparison of the effects of symmetry and magnetoanisotropy on paramagnetic relaxation in related dysprosium single ion magnets.

    PubMed

    Williams, Ursula J; Mahoney, Brian D; DeGregorio, Patrick T; Carroll, Patrick J; Nakamaru-Ogiso, Eiko; Kikkawa, James M; Schelter, Eric J

    2012-06-07

    Dysprosium complexes of the tmtaa(2-) ligand were synthesized and characterized by X-band EPR and magnetism studies. Both complexes demonstrate magnetoanisotropy and slow paramagnetic relaxation. Comparison of these compounds with the seminal phthalocyanine complex [Dy(Pc)(2)](-) shows the azaannulide complexes are more susceptible to relaxation through non-thermal pathways.

  2. Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors.

    PubMed

    Østerberg, F W; Rizzi, G; Zardán Gómez de la Torre, T; Strömberg, M; Strømme, M; Svedlindh, P; Hansen, M F

    2013-02-15

    We compare measurements of the Brownian relaxation response of magnetic nanobeads in suspension using planar Hall effect sensors of cross geometry and a newly proposed bridge geometry. We find that the bridge sensor yields six times as large signals as the cross sensor, which results in a more accurate determination of the hydrodynamic size of the magnetic nanobeads. Finally, the bridge sensor has successfully been used to measure the change in dynamic magnetic response when rolling circle amplified DNA molecules are bound to the magnetic nanobeads. The change is validated by measurements performed in a commercial AC susceptometer. The presented bridge sensor is, thus, a promising component in future lab-on-a-chip biosensors for detection of clinically relevant analytes, including bacterial genomic DNA and proteins.

  3. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect

    SciTech Connect

    Fang, Jiancheng; Wang, Tao Quan, Wei; Yuan, Heng; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-06-15

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.

  4. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect.

    PubMed

    Fang, Jiancheng; Wang, Tao; Quan, Wei; Yuan, Heng; Zhang, Hong; Li, Yang; Zou, Sheng

    2014-06-01

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz(1/2), which was mainly dominated by the noise of the magnetic shield.

  5. Fluctuation-Induced Particle Transport and Density Relaxation in a Stochastic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Brower, David L.

    2009-11-01

    Particle transport and density relaxation associated with electromagnetic fluctuations is an unresolved problem of long standing in plasma physics and magnetic fusion research. In toroidal fusion plasmas, magnetic field fluctuations can arise spontaneously from global MHD instabilities, e.g., tearing fluctuations associated with sawtooth oscillations. Resonant magnetic perturbations (RMP) have also been externally imposed to mitigate the effect of edge localized modes (ELMs) by locally enhancing edge transport in Tokamaks. Understanding stochastic-field-driven transport processes is thus not only of basic science interest but possibly critical to ELM control in ITER. We report on the first direct measurement of magnetic fluctuation-induced particle transport in the core of a high-temperature plasma, the MST reversed field pinch. Measurements focus on the sawtooth crash, when the stochastic field resulting from tearing reconnection is strongest, and are accomplished using newly developed, laser-based, differential interferometry and Faraday rotation techniques. The measured electron particle flux, resulting from the correlated product of electron density (δn) and radial magnetic fluctuations (δbr), accounts for density profile relaxation during these magnetic reconnection events. Surprisingly, the electron diffusion is 30 times larger than estimates of ambipolarity-constrained transport in a stochastic magnetic field. A significant ion flux associated with parallel ion flow velocity fluctuations (δvi,//) correlated with δbr appears responsible for transport larger than predictions from the quasi-linear test particle model. These results indicate the need for improved understanding of particle transport in a stochastic magnetic field. Work performed in collaboration with W.X. Ding, W.F. Bergerson, T.F. Yates, UCLA; D.J. Den Hartog, G. Fiksel, S.C. Prager, J.S. Sarff and the MST Group, University of Wisconsin-Madison.

  6. Heterometallic 3d-4f single-molecule magnets: ligand and metal ion influences on the magnetic relaxation.

    PubMed

    Langley, Stuart K; Le, Crystal; Ungur, Liviu; Moubaraki, Boujemaa; Abrahams, Brendan F; Chibotaru, Liviu F; Murray, Keith S

    2015-04-06

    Six tetranuclear 3d–4f single-molecule magnet (SMM) complexes formed using N-n-butyldiethanolamine and N-methyldiethanolamine in conjunction with ortho- and para-substituted benzoic acid and hexafluoroacetoacetone ligands yield two families, both having a butterfly metallic core. The first consists of four complexes of type {Co2(III)Dy2(III)} and {Co2(III)Co(II)Dy(III)} using N-n-butyldiethanolamine with variation of the carboxylate ligand. The anisotropy barriers are 80 cm–1, (77 and 96 cm–1—two relaxation processes occur), 117 and 88 cm–1, respectively, each following a relaxation mechanism from a single DyIII ion. The second family consists of a {Co2(III)Dy2(III)} and a {Cr2(III)Dy2(III)} complex, from the ligand combination of N-methyldiethanolamine and hexafluoroacetylacetone. Both show SMM behavior, the Co(III) example displaying an anisotropy barrier of 23 cm–1. The Cr(III) complex displays a barrier of 28 cm–1, with longer relaxation times and open hysteresis loops, the latter of which is not seen in the Co(III) case. This is a consequence of strong Dy(III)–Cr(III) magnetic interactions, with the relaxation arising from the electronic structure of the whole complex and not from a single DyIII ion. The results suggest that the presence of strong exchange interactions lead to significantly longer relaxation times than in isostructural complexes where the exchange is weak. The study also suggests that electron-withdrawing groups on both bridging (carboxylate) and terminal (β-diketonate) ligands enhance the anisotropy barrier.

  7. Probing protein hydration and aging of food materials by the magnetic field dependence of proton spin-lattice relaxation times.

    PubMed

    Godefroy, Sophie; Korb, Jean-Pierre; Creamer, Lawrence K; Watkinson, Philip J; Callaghan, Paul T

    2003-11-15

    Most cheeses can be considered as solid emulsions of milk fat in a matrix of water and proteins. Regions of each of the phases can be liquid during processing and maturation. Identifying these regions and monitoring changes in them is important as a prelude to controlling the structure of the final cheese. We concentrate on the behavior of water in the vicinity of proteins as a function of cheese aging. Our method utilizes nuclear magnetic relaxation dispersion (NMRD) associated with the frequency dependence of water spin-lattice relaxation rates using the field cycling NMR technique. This method provides insight into the dynamical behavior of water molecules on a very large time scale. Moreover, we can distinguish between molecular motion in bulk and motion in the vicinity of a source of relaxation, such as proteins. A fit of our dispersion data using a theory developed by J.-P. Korb and R.G. Bryant (J. Chem. Phys. 115 (2001) 23) allowed us to determine the degree of hydration of proteins as a function of aging. In particular, we find that protein hydration increases with ripening.

  8. Magnetic relaxations arising from spin-phonon interactions in the nonthermally activated temperature range for a double-decker terbium phthalocyanine single molecule magnet.

    PubMed

    Fukuda, Takamitsu; Shigeyoshi, Natsuko; Yamamura, Tomoo; Ishikawa, Naoto

    2014-09-02

    Magnetic relaxations arising from spin-phonon interactions for a magnetically diluted double-decker terbium phthalocyanine single molecule magnet, dil1, in the nonthermally activated temperature range have been investigated. While the relaxation time, τ, is independent of the external static magnetic field, H(dc), in the high temperature range, where linear relationships between -ln τ and T(-1) are observed in the Arrhenius plot, magnetic field dependences for τ are observed in the lower temperature range. The τ(-1) vs H(dc) plot at 12 K fits the quadric curve when H(dc) < 12 kOe, while linear relationships are observed in the τ(-1) vs T plots in the temperature range of 12-20 K. These results indicate that the direct process is the dominant magnetic relaxation pathway in the nonthermally activated temperature range, while the contribution from the Raman process, if any, is not observable. We emphasize in this paper that the contribution from the thermal relaxation processes and the quantum tunneling of magnetizations (QTMs) to the experimentally observed magnetic relaxations must be evaluated carefully in order to avoid confusion between the thermal and quantum-mechanical relaxation pathways.

  9. Resonant Scattering off Magnetic Impurities in Graphene: Mechanism for Ultrafast Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Kochan, D.; Gmitra, M.; Fabian, J.

    We give a tutorial account of our recently proposed mechanism for spin relaxation based on spin-flip resonant scattering off local magnetic moments. The mechanism is rather general, working in any material with a resonant local moment, but we believe that its particular niche is graphene, whose measured spin relaxation time is 100-1000 ps. Conventional spin-orbit coupling based mechanisms (Elliott-Yafet or Dyakonov-Perel) would require large concentrations (1000 ppm) of impurities to explain this. Our mechanism needs only 1 ppm of resonant local moments, as these act as local spin hot spots: the resonant scatterers do not appear to substantially affect graphene's measured resistivity, but are dominating spin relaxation. In principle, the local moments can come from a variety of sources. Most likely would be organic molecule adsorbants or metallic adatoms. As the representative model, particularly suited for a tutorial, we consider hydrogen adatoms which are theoretically and experimentally demonstrated to yield local magnetic moments when chemisorbed on graphene. We introduce the scattering formalism and apply it to graphene, to obtain the T-matrix and spin-flip scattering rates using the generalized Fermi golden rule.

  10. The Effect of the Presence and Density of Shewanella oneidensis on Nuclear Magnetic Relaxation Measurements

    NASA Astrophysics Data System (ADS)

    Keating, K.; Halsey, J.

    2011-12-01

    A recent interest in the use of non-invasive geophysical methods to detect the presence of and measure the growth of microbes in the subsurface has arisen due to the potential use of such methods to monitor the progress of bioremediation. Previous research to this end has focused on electrical measurements, such as complex resistivity, which are sensitive to the presence of microbes but can be difficult to interpret. Nuclear magnetic resonance (NMR), an emerging near-surface geophysical method, is sensitive to the presence and physiochemical environment of hydrogen. Typically, NMR measurements in geophysics are used to detect hydrogen in water or hydrocarbons and to determine its pore environment; however, NMR imaging measurements have shown that NMR can also detect hydrogen in microbes. Geophysical NMR measurements thus have the potential to directly detect microbes in geologic material or indirectly detect the way in which the presence of microbes alters the physical and chemical properties of a water-saturated geologic material. This laboratory-scale study was designed to explore the effect of the presence and density of microbes on NMR relaxation measurements. Measurements were collected on microbial slurries and microbes in porous media both during microbial growth and on samples with known microbial density. Shewanella oneidensis was used as a representative environmental microbe in this study. The research shows that low field NMR measurements are sensitive to the presence and density of microbes and provides fundamental information required to determine if low-field NMR measurements can be used to monitor microbial growth during bioremediation.

  11. Rotating colloids in rotating magnetic fields: Dipolar relaxation and hydrodynamic coupling

    NASA Astrophysics Data System (ADS)

    Coughlan, Anna C. H.; Bevan, Michael A.

    2016-10-01

    Video microscopy (VM) experiments and Brownian dynamics (BD) simulations were used to measure and model superparamagnetic colloidal particles in rotating magnetic fields for interaction energies on the order of the thermal energy, kT . Results from experiments and simulations were compared for isolated particle rotation, particle rotation within doublets, doublet rotation, and separation within doublets vs field rotation frequency. Agreement between VM and BD results was obtained at all frequencies and amplitudes only by including exact two-body hydrodynamic interactions and relevant relaxation times of magnetic dipoles. Frequency-dependent particle forces and torques cause doublets to rotate at low frequencies via dipolar interactions and at high frequencies via hydrodynamic translation-rotation coupling. By matching measurements and simulations for a range of conditions, our findings unambiguously demonstrate the quantitative forms of dipolar and hydrodynamic interactions necessary to capture nonequilibrium, steady-state dynamics of Brownian colloids in magnetic fields.

  12. Relaxation Phenomena of a Magnetic Nanoparticle Assembly with Randomly Oriented Anisotropy

    NASA Astrophysics Data System (ADS)

    Fang; WenXiao; He; ZhenHui; Chen; DiHu; En; YunFei; Kong; XueDong

    2011-03-01

    The effects of a randomly oriented anisotropy on relaxation phenomena including the memory effect of a noninteracting magnetic nanoparticle assembly, are numerically studied with a localized partition function and a master equation, leading to the following results. During the zero-field-cooled (ZFC) process, the energy barrier histogram changes with temperature, while during the field-cooled (FC) process it remains stable. In the relaxation process after ZFC initialization, the effective energy barrier distribution, which is derived from the Tln (t/τ0) (T temperature, t time, and τ0 characteristic time constant) scaling curve, only reflects the low-energy region of the energy barrier histogram. The memory effect with temporary cooling during time evolution occurs in the studied assembly even without volume distribution and particle interaction involved.

  13. Method of making permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles. Wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties. 13 figures.

  14. Method of making permanent magnets

    DOEpatents

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.

  15. Proton magnetic relaxation study of the thermodynamic characteristics of water adsorbed by cellulose fibers

    NASA Astrophysics Data System (ADS)

    Grunin, Yu. B.; Grunin, L. Yu.; Masas, D. S.; Talantsev, V. I.; Sheveleva, N. N.

    2016-11-01

    The possibility of determining the thermodynamic parameters that characterize the sorption properties of cellulose and the state of water associated with its fibers is demonstrated using modern concepts of the structure of this vegetable polymer and methods based on theories of adsorption and NMR relaxation in heterogeneous systems.

  16. Magnetic Relaxation of Superconducting Quantum Dot and Tunneling of Electron in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Kusmartsev, F. V.

    Quantum tunneling of vortices had been found to be an important novel phenomena for description of low temperature creep in high temperature superconductors (HTSCs). We speculate that quantum tunneling may be also exhibited in mesoscopic superconductors due to vortices trapped by the Bean-Livingston barrier. The London approximation and method of images is used to estimate the shape of the potential well in superconducting HTSC quantum dot. To calculate the escape rate we use the instanton technique. We model the vortex by a quantum particle tunneling from a two-dimensional ground state under magnetic field applied in the transverse direction. The resulting decay rates obtained by the instanton approach and conventional WKB are compared revealing complete coincidence with each other.

  17. Magnetic Relaxation of Superconducting Quantum Dot and Tunneling of Electron in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Kusmartsev, F. V.

    2010-12-01

    Quantum tunneling of vortices had been found to be an important novel phenomena for description of low temperature creep in high temperature superconductors (HTSCs). We speculate that quantum tunneling may be also exhibited in mesoscopic superconductors due to vortices trapped by the Bean-Livingston barrier. The London approximation and method of images is used to estimate the shape of the potential well in superconducting HTSC quantum dot. To calculate the escape rate we use the instanton technique. We model the vortex by a quantum particle tunneling from a two-dimensional ground state under magnetic field applied in the transverse direction. The resulting decay rates obtained by the instanton approach and conventional WKB are compared revealing complete coincidence with each other.

  18. The effect of diffusion in internal gradients on nuclear magnetic resonance transverse relaxation measurements

    SciTech Connect

    Muncaci, S.; Ardelean, I.; Boboia, S.

    2013-11-13

    In the present work we study the internal gradient effects on diffusion attenuation of the echo train appearing in the well-known Carr-Purcell-Meiboom-Gill (CPMG) technique, extensively used for transverse relaxation measurements. Our investigations are carried out on two porous ceramics, prepared with the same amount of magnetic impurities (Fe{sub 2}O{sub 3}) but different pore sizes. It is shown that diffusion effects on the CPMG echo train attenuation are strongly influenced by the pore size for the same magnetic susceptibility of the two samples. The experimental results were compared with a theoretical model taking into account the limit of free or restricted diffusion on echo train attenuation. The NMR experiments were performed on water filled samples using a low-field NMR instrument. The porous ceramics were prepared using both the replica technique and the powder compression technique. Magnetic susceptibility measurements indicated close values of the susceptibility constant for the two samples whereas the SEM images indicated different pore sizes. The results reported here may have impact in the interpretation of NMR relaxation measurements of water in soils or concrete samples.

  19. Multilevel relaxation model for describing the Moessbauer spectra of nanoparticles in a magnetic field

    SciTech Connect

    Chuev, M. A.

    2012-04-15

    A theory is developed for the Moessbauer absorption spectra of an ensemble of single-domain particles in a magnetic field. This theory is based on the generalization of a relaxation model with a quantummechanical description of the stationary states of a particle and on the formalism of Liouville operators for describing the hyperfine interaction for a hyperfine field changing in both the magnitude and direction for various stationary states. The general scheme of calculating relaxation Moessbauer spectra in terms of a standard stochastic approach is substantially optimized using operations with block matrices and a unique tridiagonalization of high-rank non-Hermitian matrices with a simple nonorthogonal transformation in the calculation procedure. The resulting model can easily be implemented on a personal computer. It considers the physical mechanisms of formation of a hyperfine structure in a spectrum of nanoparticles in a real situation and self-consistently describes the qualitative features of the nontrivial evolution of spectra with the temperature and the magnetic-field direction and strength, which has been detected in {sup 57}Fe nucleus experiments performed on magnetic nanoparticles for half a century.

  20. Temperature dependence of proton NMR relaxation times at earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd

    The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  1. The effect of magnetisation relaxation of superconducting grains on time relaxation of the resistance of granular HTSC in constant applied magnetic field

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Dubrovskiy, A. A.; Shaykhutdinov, K. A.; Popkov, S. I.; Petrov, M. I.

    2009-03-01

    In order to clarify the mechanism of hysteretic behavior of magnetoresistance of granular HTSC the magnetoresistance curves R(H) and time evolution of the resistance in constant applied magnetic fields have been studied in granular YBCO at T=77 K. It was found that on ascending branch of R(H) dependence the resistance at H=const decreased with time while on the descending branch the resistance increased with time in applied constant magnetic field. For the range of low magnetic fields (below the minimum point of the descending branch of R(H) dependence) the resistance at H=const decreased again. The behavior observed is well described by the model of granular HTSC, where the intergrain space is in effective magnetic field which is the superposition of the applied field and the field induced by superconducting grains. The time evolution of resistance reflects processes of time relaxation of magnetization of HTSC grains due to the intragrain flux creep.

  2. Ion hydration effects in aqueous solutions of strong electrolytes, according to proton magnetic relaxation measurements

    NASA Astrophysics Data System (ADS)

    Melnichenko, N. A.

    2014-12-01

    The concentration dependences of proton magnetic relaxation (PMR) rates measured at different temperatures in aqueous electrolyte solutions and concentrated seawater (SW) in a wide range of salt concentrations and for different seawater salinities are presented, along with the concentration dependences of PMR rates determined in salts dissolved directly in seawater. The coordination numbers of the basic ions in seawater were determined from the complete solvation limits and compared with those measured in single-component water-salt solutions. The attaining of complete solvation limits was determined using the PMR data for ions of different hydration signs.

  3. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    SciTech Connect

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-21

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T{sub 1}-T{sub 2} and diffusion–T{sub 2}), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  4. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    PubMed

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  5. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging.

    PubMed

    Cowger, Taku A; Tang, Wei; Zhen, Zipeng; Hu, Kai; Rink, David E; Todd, Trever J; Wang, Geoffrey D; Zhang, Weizhong; Chen, Hongmin; Xie, Jin

    2015-01-01

    Iron oxide nanoparticles have been extensively used as T2 contrast agents for liver-specific magnetic resonance imaging (MRI). The applications, however, have been limited by their mediocre magnetism and r2 relaxivity. Recent studies show that Fe5C2 nanoparticles can be prepared by high temperature thermal decomposition. The resulting nanoparticles possess strong and air stable magnetism, suggesting their potential as a novel type of T2 contrast agent. To this end, we improve the synthetic and surface modification methods of Fe5C2 nanoparticles, and investigated the impact of size and coating on their performances for liver MRI. Specifically, we prepared 5, 14, and 22 nm Fe5C2 nanoparticles and engineered their surface by: 1) ligand addition with phospholipids, 2) ligand exchange with zwitterion-dopamine-sulfonate (ZDS), and 3) protein adsorption with casein. It was found that the size and surface coating have varied levels of impact on the particles' hydrodynamic size, viability, uptake by macrophages, and r2 relaxivity. Interestingly, while phospholipid- and ZDS-coated Fe5C2 nanoparticles showed comparable r2, the casein coating led to an r2 enhancement by more than 2 fold. In particular, casein coated 22 nm Fe5C2 nanoparticle show a striking r2 of 973 mM(-1)s(-1), which is one of the highest among all of the T2 contrast agents reported to date. Small animal studies confirmed the advantage of Fe5C2 nanoparticles over iron oxide nanoparticles in inducing hypointensities on T2-weighted MR images, and the particles caused little toxicity to the host. The improvements are important for transforming Fe5C2 nanoparticles into a new class of MRI contrast agents. The observations also shed light on protein-based surface modification as a means to modulate contrast ability of magnetic nanoparticles.

  6. Epitaxial growth and stress relaxation of vapor-deposited Fe-Pd magnetic shape memory films

    NASA Astrophysics Data System (ADS)

    Kühnemund, L.; Edler, T.; Kock, I.; Seibt, M.; Mayr, S. G.

    2009-11-01

    To achieve maximum performance in microscale magnetic shape memory actuation devices epitaxial films several hundred nanometers thick are needed. Epitaxial films were grown on hot MgO substrates (500 °C and above) by e-beam evaporation. Structural properties and stress relaxation mechanisms were investigated by high-resolution transmission electron microscopy, in situ substrate curvature measurements and classical molecular dynamics (MD) simulations. The high misfit stress incorporated during Vollmer-Weber growth at the beginning was relaxed by partial or perfect dislocations depending on the substrate temperature. This relaxation allowed the avoidance of a stress-induced breakdown of epitaxy and no thickness limit for epitaxy was found. For substrate temperatures of 690 °C or above, the films grew in the fcc austenite phase. Below this temperature, iron precipitates were formed. MD simulations showed how these precipitates influence the movements of partial dislocations, and can thereby explain the higher stress level observed in the experiments in the initial stage of growth for these films.

  7. Development of methods for analysis of knee articular cartilage degeneration by magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Suponenkovs, Artjoms; Glazs, Aleksandrs; Platkajis, Ardis

    2017-03-01

    The aim of this paper is to describe the new methods for analyzing knee articular cartilage degeneration. The most important aspects regarding research about magnetic resonance imaging, knee joint anatomy, stages of knee osteoarthritis, medical image segmentation and relaxation times calculation. This paper proposes new methods for relaxation times calculation and medical image segmentation. The experimental part describes the most important aspect regarding analysing of articular cartilage relaxation times changing. This part contains experimental results, which show the codependence between relaxation times and organic structure. These experimental results and proposed methods can be helpful for early osteoarthritis diagnostics.

  8. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles.

    PubMed

    Amiri, Houshang; Bordonali, Lorenzo; Lascialfari, Alessandro; Wan, Sha; Monopoli, Marco P; Lynch, Iseult; Laurent, Sophie; Mahmoudi, Morteza

    2013-09-21

    Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. (1)H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI

  9. A novel three-dimensional mesh deformation method based on sphere relaxation

    SciTech Connect

    Zhou, Xuan; Li, Shuixiang

    2015-10-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.

  10. Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine.

    PubMed

    Alcantara, David; Lopez, Soledad; García-Martin, María Luisa; Pozo, David

    2016-07-01

    Since pioneering work in the early 60s on the development of enzyme electrodes the field of sensors has evolved to different sophisticated technological platforms. Still, for biomedical applications, there are key requirements to meet in order to get fast, low-cost, real-time data acquisition, multiplexed and automatic biosensors. Nano-based sensors are one of the most promising healthcare applications of nanotechnology, and prone to be one of the first to become a reality. From all nanosensors strategies developed, Magnetic Relaxation Switches (MRSw) assays combine several features which are attractive for nanomedical applications such as safe biocompatibility of magnetic nanoparticles, increased sensitivity/specificity measurements, possibility to detect analytes in opaque samples (unresponsive to light-based interferences) and the use of homogeneous setting assay. This review aims at presenting the ongoing progress of MRSw technology and its most important applications in clinical medicine.

  11. Collisional relaxation of bi-Maxwellian plasma temperatures in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.

    2016-07-01

    In the literature, collisional processes are customarily discussed within the context of the Boltzmann-Balescu-Lenard-Landau type of collision integral, but such an equation is strictly valid for unmagnetized plasmas. For plasmas immersed in the ambient magnetic field, the foundational equation that describes binary collisions must be generalized to include the effects of magnetic field. The present paper makes use of such an equation in order to describe the collisional relaxation of temperatures under the assumption of bi-Maxwellian velocity distribution function. The formalism derived in the present paper may be useful for studying the effects of binary collisions on the isotropization of temperatures in the solar wind plasma, among possible applications.

  12. Spin-orbit coupling and paramagnetic relaxation in micellized triplet radical pairs. Determination of relaxation parameters from magnetic field dependences of the decay kinetics

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Kuzmin, V. A.

    1990-01-01

    The geminate recombination kinetics of the radical pairs produced by quenching of triplet benzophenone or 4-bromobenzophenone by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium dodecyl sulfate has been examined using the laser flash technique. Application of an external magnetic field results in the retardation of geminate recombination up to 20 times. The magnetic field dependences are considered in terms of a simple kinetic scheme, which includes the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms as well as intersystem recombination process due to the spin-orbit coupling in the contact states of a pair.

  13. The effect of the magnetic nanoparticle's size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-03-01

    Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.

  14. Protein Self-Association Induced by Macromolecular Crowding: A Quantitative Analysis by Magnetic Relaxation Dispersion

    PubMed Central

    Snoussi, Karim; Halle, Bertil

    2005-01-01

    In the presence of high concentrations of inert macromolecules, the self-association of proteins is strongly enhanced through an entropic, excluded-volume effect variously called macromolecular crowding or depletion attraction. Despite the predicted large magnitude of this universal effect and its far-reaching biological implications, few experimental studies of macromolecular crowding have been reported. Here, we introduce a powerful new technique, fast field-cycling magnetic relaxation dispersion, for investigating crowding effects on protein self-association equilibria. By recording the solvent proton spin relaxation rate over a wide range of magnetic field strengths, we determine the populations of coexisting monomers and decamers of bovine pancreatic trypsin inhibitor in the presence of dextran up to a macromolecular volume fraction of 27%. Already at a dextran volume fraction of 14%, we find a 30-fold increase of the decamer population and 5105-fold increase of the association constant. The analysis of these results, in terms of a statistical-mechanical model that incorporates polymer flexibility as well as the excluded volume of the protein, shows that the dramatic enhancement of bovine pancreatic trypsin inhibitor self-association can be quantitatively rationalized in terms of hard repulsive interactions. PMID:15665132

  15. Irreversible thermodynamics of transport and relaxation of magnetic moments with applications for spin caloritronics

    NASA Astrophysics Data System (ADS)

    Brechet, Sylvain

    2013-03-01

    Spin caloritronics is mainly focused on studying the effects of a temperature gradient on the time evolution of the local spin average of a classical system. In many experimental situations, the system can be treated as a classical continuum with magnetisation on the scale of interest where the quantum fluctuations average out and the underlying microscopic structure is smoothed out. Here, we establish a clear classical formalism describing the thermodynamics of a matter continuum with magnetic moments interacting with external electromagnetic fields. Taking into account the chemical nature of the current densities - such as the current density of magnetic moments - and stress tensors leads to three types of dissipation terms: scalars, vectors and pseudo-vectors. The scalar terms account for the chemical reactivities, the vectorial terms account for the transport and pseudo-vectorial terms account for the relaxation. The vectorial phenomenological relations establish notably the Spin Seebeck effect first observed by Uchida and Saitoh. The pseudo-vectorial phenomenological relations establish in particular the Landau-Lifschitz relaxation of the magnetisation.

  16. Diffusion, relaxation, and chemical exchange in casein gels: a nuclear magnetic resonance study.

    PubMed

    Gottwald, Antje; Creamer, Lawrence K; Hubbard, Penny L; Callaghan, Paul T

    2005-01-15

    Water in protein/water mixtures can be described in terms of bound water and free water, by exchange between these two states, and by its exchange with appropriate sites on the protein. 1H-NMR diffusion and relaxation measurements provide insights into the mobility of these states. T2 relaxation-time dispersions (i.e., T2 relaxation times at different echo pulse spacings) reveal additional information about exchange. We present a comprehensive set of diffusion and T2 dispersion measurements on casein gels for which the protein/water ratio ranges from 0.25 to 0.5. The combination of these methods, taken in conjunction with concentration dependence, allows a good estimate of the parameters required to fit the data with Luz/Meiboom and Carver/Richards models for relaxation and chemical exchange. We compare the exchange (a) between water and protein and (b) between free water and bound water. Further, we attempt to distinguish chemical site exchange and diffusion/susceptibility exchange.

  17. Superconducting magnet and fabrication method

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1994-01-01

    A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.

  18. NOTE: Detection limits for ferrimagnetic particle concentrations using magnetic resonance imaging based proton transverse relaxation rate measurements

    NASA Astrophysics Data System (ADS)

    Pardoe, H.; Chua-anusorn, W.; St. Pierre, T. G.; Dobson, J.

    2003-03-01

    A clinical magnetic resonance imaging (MRI) system was used to measure proton transverse relaxation rates (R2) in agar gels with varying concentrations of ferrimagnetic iron oxide nanoparticles in a field strength of 1.5 T. The nanoparticles were prepared by coprecipitation of ferric and ferrous ions in the presence of either dextran or polyvinyl alcohol. The method of preparation resulted in loosely packed clusters (dextran) or branched chains (polyvinyl alcohol) of particles containing of the order of 600 and 400 particles, respectively. For both methods of particle preparation, concentrations of ferrimagnetic iron in agar gel less than 0.01 mg ml-1 had no measurable effect on the value of R2 for the gel. The results indicate that MRI-based R2 measurements using 1.5 T clinical scanners are not quite sensitive enough to detect the very low concentrations of nanoparticulate biogenic magnetite reported in human brain tissue.

  19. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2016-02-01

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  20. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    NASA Astrophysics Data System (ADS)

    Kurtze, H.; Bayer, M.

    2016-07-01

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock-Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  1. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Amiri, Houshang; Bordonali, Lorenzo; Lascialfari, Alessandro; Wan, Sha; Monopoli, Marco P.; Lynch, Iseult; Laurent, Sophie; Mahmoudi, Morteza

    2013-08-01

    Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI

  2. Ferromagnetic resonance study of structure and relaxation of magnetization in NiFe/Ru superlattices

    NASA Astrophysics Data System (ADS)

    Alayo, W.; Landi, S., Jr.; Pelegrini, F.; Baggio-Saitovitch, E.

    2014-01-01

    The structural properties and relaxation processes of magnetization in [Ni81Fe19(t1)/Ru(t2)]N superlattices (N=number of bilayers) were analyzed by ferromagnetic resonance (FMR) with a fixed microwave frequency. One series of samples was deposited with constant NiFe layer thickness (t1) and variable Ru layer thickness (t2); the other series, with constant t2 and variable t1. A single FMR mode was observed for t2<15 Å and t1>75 Å and it has been attributed to the resonance of the exchange-coupled NiFe layers across the Ru interlayers. For the other values of t1 and t2, several FMR modes appeared and they were associated to non-coupled magnetic phases with different effective magnetization formed during the multilayer growth. The FMR linewidths were analyzed as a function of the magnetic layer thickness and a strong dependence on t1-2 was observed. It was attributed to the contribution of the two-magnon scattering mechanism for the linewidth.

  3. Measurement of the Thermal Properties of a Metal Using a Relaxation Method

    ERIC Educational Resources Information Center

    Fox, John N.; McMaster, Richard H.

    1975-01-01

    An undergraduate experiment is described which employs a relaxation method for the measurement of the thermal conductivity and specific heat of a metallic sample in a temperature range of 0-100 degrees centigrade. (Author/CP)

  4. Relaxation dynamics of vortex lines in disordered type-II superconductors following magnetic field and temperature quenches.

    PubMed

    Assi, Hiba; Chaturvedi, Harshwardhan; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe C

    2015-11-01

    We study the effects of rapid temperature and magnetic field changes on the nonequilibrium relaxation dynamics of magnetic vortex lines in disordered type-II superconductors by employing an elastic line model and performing Langevin molecular dynamics simulations. In a previously equilibrated system, either the temperature is suddenly changed or the magnetic field is instantaneously altered which is reflected in adding or removing flux lines to or from the system. The subsequent aging properties are investigated in samples with either randomly distributed pointlike or extended columnar defects, which allows us to distinguish the complex relaxation features that result from either type of pinning centers. One-time observables such as the radius of gyration and the fraction of pinned line elements are employed to characterize steady-state properties, and two-time correlation functions such as the vortex line height autocorrelations and their mean-square displacement are analyzed to study the nonlinear stochastic relaxation dynamics in the aging regime.

  5. Orientational dynamics of ferrofluids with finite magnetic anisotropy of the particles: relaxation of magneto-birefringence in crossed fields.

    PubMed

    Raikher, Yu L; Stepanov, V I; Bacri, J-C; Perzynski, R

    2002-08-01

    Dynamic birefringence in a ferrofluid subjected to crossed bias (constant) and probing (pulse or ac) fields is considered, assuming that the nanoparticles have finite magnetic anisotropy. This is done on the basis of the general Fokker-Planck equation that takes into account both internal magnetic and external mechanical degrees of freedom of the particle. We describe the orientation dynamics in terms of the integral relaxation time of the macroscopic orientation order parameter. To account for an arbitrary relation between the bias (external) and anisotropy (internal) fields, an interpolation expression for the integral relaxation time is proposed and justified. A developed description is used to interpret the measurements of birefringence relaxation in magnetic fluids with nanoparticles of high (cobalt ferrite) and low (maghemite) anisotropy. The proposed theory appears to be in full qualitative agreement with all the experimental data available.

  6. Collisional relaxation of a strongly magnetized two-species pure ion plasma

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.; Dubin, Daniel H.

    2014-04-01

    The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses is discussed. We have in mind two isotopes of the same singly ionized atom. Parameters are assumed to be ordered as Ω1,Ω2≫|Ω1-Ω2|≫v¯ij/b ¯ and v¯⊥j/Ωj≪b ¯, where Ω1 and Ω2 are two cyclotron frequencies, v¯ij=√T∥/μij is the relative parallel thermal velocity characterizing collisions between particles of species i and j, and b ¯=2 e2/T∥ is the classical distance of closest approach for such collisions, and v ¯⊥j/Ωj=√2T⊥j/mj /Ωj is the characteristic cyclotron radius for particles of species j. Here, μij is the reduced mass for the two particles, and T∥ and T⊥j are temperatures that characterize velocity components parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species, I1=∑i ∈1m1v⊥i2/(2Ω1) and I2=∑i∈2m2v⊥i2/(2Ω2) are adiabatic invariants that constrain the collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the constancy of the total Hamiltonian H and the two actions I1 and I2, yielding a modified Gibbs distribution of the form exp[-H /T∥-α1I1-α2I2]. Here, the αj's are related to T∥ and T⊥j through T⊥j=(1/T∥+αj/Ωj)-1. Collisional relaxation to the usual Gibbs distribution, exp[-H /T∥], takes place on two timescales. On a timescale longer than the collisional timescale by a factor of (b ¯2Ω12/v¯112)exp{5[3π(b¯|Ω1-Ω2|/v ¯12)]2/5/6}, the two species share action so that α1 and α2 relax to a common value α. On an even longer timescale, longer than the collisional timescale by a factor of the order exp {5[3π(v¯11)]2/5/6}, the total action ceases to be a good constant of the motion and α relaxes to zero.

  7. Slow magnetic relaxation in a dimeric Mn2Ca2 complex enabled by the large Mn(iii) rhombicity.

    PubMed

    Arauzo, Ana; Bartolomé, Elena; Benniston, Andrew C; Melnic, Silvia; Shova, Sergiu; Luzón, Javier; Alonso, Pablo J; Barra, Anne-Laure; Bartolomé, Juan

    2017-01-17

    In this paper we present the characterization of a complex with the formula [Mn2Ca2(hmp)6(H2O)4(CH3CN)2](ClO4)4 (1), where hmp-H = 2-(hydroxymethyl)pyridine. Compound 1 crystallizes in the monoclinic space group C2/c with the cation lying on an inversion centre. Static magnetic susceptibility, magnetization and heat capacity measurements reflect a unique Mn(iii) valence state, and single-ion ligand field parameters with remarkable large rhombic distortion (D/kB = -6.4 K, E/kB = -2.1 K), in good agreement with the high-field electron paramagnetic resonance experiments. At low temperature Mn2Ca2 cluster behaves as a system of ferromagnetically coupled (J/kB = 1.1 K) Mn dimers with a ST = 4 and mT = ±4 ground state doublet. Frequency dependent ac susceptibility measurements reveal the slow magnetic relaxation characteristic of a single molecule magnet (SMM) below T = 4 K. At zero magnetic field, an Orbach-type spin relaxation process (τ ∼ 10(-5) s) with an activation energy Ea = 5.6 K is observed, enabled by the large E/D rhombicity of the Mn(iii) ions. Upon the application of a magnetic field, a second, very slow process (τ ∼ 0.2 s) is observed, attributed to a direct relaxation mechanism with enhanced relaxation time owing to the phonon bottleneck effect.

  8. A series of dinuclear lanthanide complexes with slow magnetic relaxation for Dy2 and Ho2.

    PubMed

    Zhang, Jin; Zhang, Haifeng; Chen, Yanmei; Zhang, Xiangfei; Li, Yahong; Liu, Wei; Dong, Yaping

    2016-10-18

    The employment of a new Schiff base ligand, 2-{[(2-hydroxy-3-methoxybenzyl)imino]methyl}naphthalen-1-ol (H2L), in 4f-metal chemistry has led to the formation of seven new isostructural lanthanide(iii) complexes. More specifically the 1 : 1 reaction of Ln(NO3)3·6H2O and H2L in ethanol in the presence of 3 equivalents of pyridine yielded seven dinuclear complexes of compositions [Ln2L2(NO3)2(C2H5OH)2]·0.5py (Ln = Eu (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6), Yb (7); py = pyridine). The structures of the isomorphous complexes 1-7 were determined by single-crystal X-ray crystallography. X-ray crystallography data reveal that each compound is neutral, and contains two doubly-deprotonated ligands, two chelated nitrates and two coordinated ethanol molecules. The two Ln(III) atoms in 1-7 are doubly bridged by the two phenolato oxygen atoms of two L(2-) ligands. Each of the two lanthanide ions is eight-coordinated and possesses distorted dodecahedron geometry. Dc magnetic susceptibility studies in the 2-300 K range reveal probably a weak antiferromagnetic interaction for 2, 3 and 6, and a ferromagnetic interaction at low temperature for 4 and 5. Complexes 4 and 5 show slow magnetic relaxation behavior. The Ueff for 4 of 66.7 K is a relatively high value among the reported Dy2 SMMs. Complex 5 is a very rare example of a Ho2 compound which exhibits slow magnetic relaxation.

  9. Method of Relaxation Moments for Studying Nonlinear Locally Nonequilibrium Processes of Transfer of Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Popov, V. I.

    2015-01-01

    A method for simulating the processes of transfer of thermodynamic systems with polymeric microstructure is considered. The method is based on the classical locally equilibrium medium-state entropy concept expanded by the introduction of a structural tensor parameter whose evolution characterizes the nonlinear anisotropic relaxation properties of a thermodynamic system and the associated transfer phenomena. The dynamic, thermal, and mass transfer characteristics of macrotransfer are determined by corresponding integrals of relaxation moments.

  10. Magnetic resonance for in vitro medical diagnostics: superparamagnetic nanoparticle-based magnetic relaxation switches

    NASA Astrophysics Data System (ADS)

    Demas, Vasiliki; Lowery, Thomas J.

    2011-02-01

    Advances in magnetic resonance (MR) miniaturization, along with nanoparticles and biotechnology, are extending MR applications in diagnostics to beyond the medical imaging regime. The principles behind magnetic resonance switch (MRSw) biosensors, as well as a summary of rapidly developing fields including MR miniaturization and MRSw demonstrations, are presented here. Due to the range of applications of MRSw biosensor tests and the breakthroughs in downsized instruments, continued development will enable the deployment of MRSw biosensors in a wide variety of settings and with potentially unlimited targets.

  11. Spin wave resonance and relaxation in microwave magnetic multilayer structures and devices

    NASA Astrophysics Data System (ADS)

    Wu, Cheng

    The continuous and increasing demand for higher frequency magnetic microwave structures triggered a tremendous development in the field of magnetization dynamics over the past decade. In order to develop smaller and faster devices, more efforts are required to achieve a better understanding of the complex magnetization precessional dynamics, the magnetization anisotropy, and the sources of spin scattering at the nanoscale. This thesis presents measurements of magnetic precession and relaxation dynamics in multilayer ferromagnetic films of CoFe/PtMn/CoFe in both frequency and time domain. First, we conducted the ferromagnetic resonance (FMR) measurements for samples with the ferromagnetic CoFe layer thicknesses varying from 10 A to 500 A. The magnetic anisotropic parameters were determined by rotating the field aligned axis with respect to the spectral field in the configurations of both in-plane and out-of-plane. Moreover, we identified a high-order standing spin wave in our spectra and found a "critical angle" in the multilayer samples. We included an effective surface anisotropy field to describe our results. This allows us to determine the exchange interaction stiffness in the CoFe layers. Next, we performed pump-probe Magneto-Optical Kerr Effect experiments in the multilayer films. Three precession modes were observed in the Voigt geometry. The modes are assigned to the exchange-dominated spin wave excitations and the non-homogeneous dipole mode. We developed a comprehensive model of the magnetic eigenmodes and their coupling to light to gain accurate values of the exchange, bulk and surface anisotropy constants. The results are consistent with those from the FMR measurements. Finally, the measured resonance linewidths of CoFe/PtMn/CoFe films were analyzed by the thickness dependence of the CoFe layers. We discussed the contribution of the Gilbert damping, two magnon scattering, as well as surface and interface to the FMR linewidth and concluded the two magnon

  12. Facile Preparation of a New Gadofullerene-Based Magnetic Resonance Imaging Contrast Agent with High 1H Relaxivity

    PubMed Central

    Shu, Chunying; Corwin, Frank D.; Zhang, Jianfei; Chen, Zhijian; Reid, Jonathan E.; Sun, Minghao; Xu, Wei; Sim, Jae Hyun; Wang, Chunru; Fatouros, Panos P.; Esker, Alan R.; Gibson, Harry W.; Dorn, Harry C.

    2009-01-01

    A new magnetic resonance imaging (MRI) contrast agent based on the trimetallic nitride templated (TNT) metallofullerene, Gd3N@C80, was synthesized by a facile method in high yield. The observed longitudinal and transverse relaxivities, r1 and r2, for water hydrogens in the presence of the water-soluble gadofullerene 2, Gd3N@C80(OH)~26(CH2CH2COOM)~16 (M = Na or H), are 207 and 282 mM-1s-1 (per C80 cage) at 2.4 T, respectively; these values are 50 times larger than those of Gd3+ poly(aminocarboxylate) complexes, such as commercial Omniscan® and Magnevist®. This high 1H relaxivity for this new hydroxylated and carboxylated gadofullerene derivative provides high signal enhancement at significantly lower Gd concentration as demonstrated by in vitro and in vivo MRI studies. Dynamic light scattering data reveal a unimodal size distribution with an average hydrodynamic radius of ca. 78 nm in pure water (pH = 7), which is significantly different from other hydroxylated or carboxylated fullerene and metallofullerene derivatives reported to date. Agarose gel infusion results indicate that the gadofullerene 2 displayed diffusion properties different from that of commercial Omniscan® and those of PEG5000 modified Gd3N@C80. The reactive carboxyl functionality present on this highly efficient contrast agent may also serve as a precursor for biomarker tissue-targeting purposes. PMID:19445504

  13. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging

    PubMed Central

    Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno

    2017-01-01

    Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 −/−) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 −/− mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis. PMID:28194423

  14. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging.

    PubMed

    Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno; Fries, Peter

    2017-01-01

    Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2(⁎) may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2(⁎) in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2(⁎). Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 (-/-)) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2(⁎) correlate differently to disease severity and etiology of liver fibrosis. T2(⁎) shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 (-/-) mice. Measurements of T1 and T2(⁎) may therefore facilitate discrimination between different stages and causes of liver fibrosis.

  15. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, Ivo

    2004-11-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (B_pol < 100 Gauss, L=90 cm, r < 3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / B_pol > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t < 20τ_Alfven), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  16. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, I.; Intrator, T.; Hemsing, E.; Hsu, S.; Lapenta, G.; Abbate, S.

    2004-12-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (Bθ ≤ 100 Gauss, L=90 cm, r≤3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / Bθ > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t≤ 20 τ Alfv´ {e}n), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  17. Magnetocaloric effect in Mn2-pyrazole-[Nb(CN)8] molecular magnet by relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Pełka, R.; Gajewski, M.; Miyazaki, Y.; Yamashita, S.; Nakazawa, Y.; Fitta, M.; Pinkowicz, D.; Sieklucka, B.

    2016-12-01

    Magnetocaloric effect in {[Mn(pyrazole)4]2[Nb(CN)8]·4 H2O}n molecular magnet is reported. It crystallizes in tetragonal I41/a space group. The compound exhibits a phase transition to a long range magnetically ordered state at TN ≈ 22.8 K. Temperature dependences of the magnetic entropy change ΔSM as well as the adiabatic temperature change ΔTad due to applied field change μ0 ΔH in the range of 0.1-9 T have been inferred from the relaxation calorimetry measurements. A systematic approximate approach has been used to determine the lattice contribution to the heat capacity. The maximum value of ΔSM for μ0 ΔH = 5 T is 6.83 J mol-1 K-1 (6.65 J kg-1 K-1) at 24.3 K. The corresponding maximum value of ΔTad is 1.4 K at 23.8 K. The temperature dependence of the exponent n characterizing the field dependence of ΔSM has been estimated. It attains the value of 0.64 at the transition temperature, which is consistent with the 3D Heisenberg universality class. A hitherto unobserved two-peak structure has been revealed in the temperature dependence of ΔTad.

  18. Magnetic ordering and dielectric relaxation in the double perovskite YBaCuFeO5

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Chung; Du, Chao-Hung; Lai, Chun-Hao; Liang, Yu-Hui; Wang, Chin-Wei; Rule, Kirrily C.; Wu, Hung-Cheng; Yang, Hung-Duen; Chen, Wei-Tin; Shu, G. J.; Chou, F.-C.

    2017-04-01

    Using magnetization, dielectric constant, and neutron diffraction measurements on a high quality single crystal of YBaCuFeO5 (YBCFO), we demonstrate that the crystal shows two antiferromagnetic transitions at {{T}N1}∼ 475 K and {{T}N2}∼ 175 K, and displays a giant dielectric constant with a characteristic of the dielectric relaxation at T N2. It does not show the evidence of the electric polarization for the crystal used for this study. The transition at T N1 corresponds with a paramagnetic to antiferromagnetic transition with a magnetic propagation vector doubling the unit cell along three crystallographic axes. Upon cooling, at T N2, the commensurate spin ordering transforms to a spiral magnetic structure with a propagation vector of (\\frac{h}{2} \\frac{k}{2} \\frac{l}{2}+/- δ ), where h , k , and l are odd, and the incommensurability δ is temperature dependent. Around the transition boundary at T N2, both commensurate and incommensurate spin ordering coexist.

  19. Magnetic ordering and dielectric relaxation in the double perovskite YBaCuFeO5.

    PubMed

    Lai, Yen-Chung; Du, Chao-Hung; Lai, Chun-Hao; Liang, Yu-Hui; Wang, Chin-Wei; Rule, Kirrily C; Wu, Hung-Cheng; Yang, Hung-Duen; Chen, Wei-Tin; Shu, G J; Chou, F-C

    2017-04-12

    Using magnetization, dielectric constant, and neutron diffraction measurements on a high quality single crystal of YBaCuFeO5 (YBCFO), we demonstrate that the crystal shows two antiferromagnetic transitions at [Formula: see text] K and [Formula: see text] K, and displays a giant dielectric constant with a characteristic of the dielectric relaxation at T N2. It does not show the evidence of the electric polarization for the crystal used for this study. The transition at T N1 corresponds with a paramagnetic to antiferromagnetic transition with a magnetic propagation vector doubling the unit cell along three crystallographic axes. Upon cooling, at T N2, the commensurate spin ordering transforms to a spiral magnetic structure with a propagation vector of ([Formula: see text] [Formula: see text] [Formula: see text]), where [Formula: see text], [Formula: see text], and [Formula: see text] are odd, and the incommensurability δ is temperature dependent. Around the transition boundary at T N2, both commensurate and incommensurate spin ordering coexist.

  20. Pentanuclear lanthanide pyramids based on thiacalix[4]arene ligand exhibiting slow magnetic relaxation.

    PubMed

    Ge, Jing-Yuan; Ru, Jing; Gao, Feng; Song, You; Zhou, Xin-Hui; Zuo, Jing-Lin

    2015-09-21

    A series of pentanuclear Ln(III) clusters, [Ln5(μ4-OH)(μ3-OH)4(L1)(acac)6] (H4L1 = p-tert-butylthiacalix[4]arene; acac = acetylacetonate; Ln = Dy, Ho, Er) and [Ln5(μ5-OH)(μ3-OH)4(L1)(L2)2(acac)2(CH3OH)2] (H3L2 = 5,11,17,23-tetrakis(1,1-dimethylethyl)-25,26,27-trihydroxy-28-methoxy thiacalix[4]arene; Ln = Dy, Ho, Er), have been synthesized based on the thiacalix[4]arene ligand. All of these complexes feature a square-based pyramid with four triangular Ln3 structural motifs. One μ4-OH group bridges four Ln(III) ions in the basal plane of , while the OH group in complexes adopts the μ5-coordination mode. Our results illuminate the coordination modes of the versatile thiacalix[4]arene ligands and their application to new cluster compounds. The structural and magnetic studies confirm that the molecular symmetries and coordination geometries for lanthanide metal cores have a significant effect on some parameters as single-molecule magnets. Among them, two Dy5 pyramids exhibit distinct slow magnetic relaxation.

  1. Nuclear magnetic resonance and proton relaxation times in experimental heterotopic heart transplantation

    SciTech Connect

    Eugene, M.; Lechat, P.; Hadjiisky, P.; Teillac, A.; Grosgogeat, Y.; Cabrol, C.

    1986-01-01

    It should be possible to detect heart transplant rejection by nuclear magnetic resonance (NMR) imaging if it induces myocardial T1 and T2 proton relaxation time alterations or both. We studied 20 Lewis rats after a heterotopic heart transplantation. In vitro measurement of T1 and T2 was performed on a Minispec PC20 (Bruker) 3 to 9 days after transplantation. Histologic analysis allowed the quantification of rejection process based on cellular infiltration and myocardiolysis. Water content, a major determinant of relaxation time, was also studied. T1 and T2 were significantly prolonged in heterotopic vs orthotopic hearts (638 +/- 41 msec vs 606 +/- 22 msec for T1, p less than 0.01 and 58.2 +/- 8.4 msec vs 47.4 +/- 1.9 msec for T2, p less than 0.001). Water content was also increased in heterotopic hearts (76.4 +/- 2.3 vs 73.8 +/- 1.0, p less than 0.01). Most importantly, we found close correlations between T1 and especially T2 vs water content, cellular infiltration, and myocardiolysis. We conclude that rejection reaction should be noninvasively detected by NMR imaging, particularly with pulse sequences emphasizing T2.

  2. Decoherence window and electron-nuclear cross relaxation in the molecular magnet V15.

    PubMed

    Shim, J H; Bertaina, S; Gambarelli, S; Mitra, T; Müller, A; Baibekov, E I; Malkin, B Z; Tsukerblat, B; Barbara, B

    2012-08-03

    Rabi oscillations in the V(15) single molecule magnet embedded in the surfactant (CH(3))(2)[CH(3)(CH(2))(16)CH(2)](2)N(+) have been studied at different microwave powers. An intense damping peak is observed when the Rabi frequency Ω(R) falls in the vicinity of the Larmor frequency of protons ω(N). The experiments are interpreted by a model showing that the damping (or Rabi) time τ(R) is directly associated with decoherence caused by electron-nuclear cross relaxation in the rotating reference frame. This decoherence induces energy dissipation in the range ω(N) - σ(e) < Ω(R) < ω(N), where σ(e) is the mean superhyperfine field induced by protons at V(15). Weaker decoherence without dissipation takes place outside this window. Specific estimations suggest that this rapid cross relaxation in a resonant microwave field, observed for the first time in V(15), should also take place, e.g., in Fe(8) and Mn(12).

  3. Magnetic-field sensing with quantum error detection under the effect of energy relaxation

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Benjamin, Simon

    2017-03-01

    A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.

  4. Relaxation nuclear magnetic resonance imaging (R-NMRI) of desiccation in M9787 silicone pads.

    SciTech Connect

    Alam, Todd M; Cherry, Brian Ray; Alam, Mary Kathleen

    2004-06-01

    The production and aging of silicone materials remains an important issue in the weapons stockpile due to their utilization in a wide variety of components and systems within the stockpile. Changes in the physical characteristics of silicone materials due to long term desiccation has been identified as one of the major aging effects observed in silicone pad components. Here we report relaxation nuclear magnetic resonance imaging (R-NMRI) spectroscopy characterization of the silica-filled and unfilled polydimethylsiloxane (PDMS) and polydiphenylsiloxane (PDPS) copolymer (M9787) silicone pads within desiccating environments. These studies were directed at providing additional details about the heterogeneity of the desiccation process. Uniform NMR spin-spin relaxation time (T2) images were observed across the pad thickness indicating that the drying process is approximately uniform, and that the desiccation of the M9787 silicone pad is not a H2O diffusion limited process. In a P2O5 desiccation environment, significant reduction of T2 was observed for the silica-filled and unfilled M9787 silicone pad for desiccation up to 225 days. A very small reduction in T2 was observed for the unfilled copolymer between 225 and 487 days. The increase in relative stiffness with desiccation was found to be higher for the unfilled copolymer. These R-NMRI results are correlated to local changes in the modulus of the material

  5. Transverse Relaxation and Magnetization Transfer in Skeletal Muscle: Effect of pH

    PubMed Central

    Louie, Elizabeth A.; Gochberg, Daniel F.; Does, Mark D.; Damon, Bruce M.

    2008-01-01

    Exercise increases the intracellular T2 (T2,i) of contracting muscles. The mechanism(s) for the T2,i increase have not been fully described, and may include increased intracellular free water and acidification. These changes may alter chemical exchange processes between intracellular free water and proteins. In this study, the hypotheses were tested that 1) pH changes T2,i by affecting the rate of magnetization transfer (MT) between free intracellular water and intracellular proteins and 2) the magnitude of the T2,i effect depends on acquisition mode (localized or non-localized) and echo spacing. Frog gastrocnemius muscles were excised and their intracellular pH was either kept at physiological pH (7.0) or modified to model exercising muscle (pH 6.5). The intracellular transverse relaxation rate (R2,i =1/T2,i) always decreased in the acidic muscles, but the changes were greater when measured using more rapid refocusing rates. The MT rate from the macromolecular proton pool to the free water proton pool, its reverse rate, and the spin-lattice relaxation rate of water decreased in acidic muscles. It is concluded that intracellular acidification alters the R2,i of muscle water in a refocusing rate-dependent manner and that the R2,i changes are correlated with changes in the MT rate between macromolecules and free intracellular water. PMID:19097244

  6. 7Li relaxation time measurements at very low magnetic field by 1H dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zeghib, Nadir; Grucker, Daniel

    2001-09-01

    Dynamic nuclear polarization (DNP) of water protons was used to measure the relaxation time of lithium at very low magnetic field as a demonstration of the use of DNP for nuclei less abundant than water protons. Lithium (Li+) was chosen because it is an efficient treatment for manic-depressive illness, with an unknown action mechanism. After having recalled the theoretical basis of a three-spin system comprising two nuclei - the water proton of the solvent, the dissolved Li+ ion and the free electron of a free radical - we have developed a transient solution in order to optimize potential biological applications of Li DNP. The three-spin model has allowed computation of all the parameters of the system - the longitudinal relaxation rate per unit of free radical concentration, the dipolar and scalar part of the coupling between the nuclei and the electron, and the maximum signal enhancement achievable for both proton and lithium spins. All these measurements have been obtained solely through the detection of the proton resonance.

  7. Ion heating during magnetic relaxation in the helicity injected torus-II experiment

    SciTech Connect

    O'Neill, R.G.; Redd, A.J.; Hamp, W.T.; Smith, R.J.; Jarboe, T.R.

    2005-12-15

    Ion doppler spectroscopy (IDS) is applied to the helicity injected torus (HIT-II) spherical torus to measure impurity ion temperature and flows. [A. J. Redd et al., Phys. Plasmas 9, 2006 (2002)] The IDS instrument employs a 16-channel photomultiplier and can track temperature and velocity continuously through a discharge. Data for the coaxial helicity injection (CHI), transformer, and combined current drive configurations are presented. Ion temperatures for transformer-driven discharges are typically equal to or somewhat lower than electron temperatures measured by Thomson scattering. Internal reconnection events in transformer-driven discharges cause rapid ion heating. The CHI discharges exhibit anomalously high ion temperatures >250 eV, which are an order of magnitude higher than Thomson measurements, indicating ion heating through magnetic relaxation. The CHI discharges that exhibit current and poloidal flux buildup after bubble burst show sustained ion heating during current drive.

  8. Anisotropic anomalous diffusion filtering applied to relaxation time estimation in magnetic resonance imaging.

    PubMed

    Senra Filho, Antonio Carlos da S; Barbosa, Jeam Haroldo O; Salmon, Carlos E G; Murta, Luiz O

    2014-01-01

    Relaxometry mapping is a quantitative modality in magnetic resonance imaging (MRI) widely used in neuroscience studies. Despite its relevance and utility, voxel measurement of relaxation time in relaxometry MRI is compromised by noise that is inherent to MRI modality and acquisition hardware. In order to enhance signal to noise ratio (SNR) and quality of relaxometry mapping we propose application of anisotropic anomalous diffusion (AAD) filter that is consistent with inhomogeneous complex media. Here we evaluated AAD filter in comparison to two usual spatial filters: Gaussian and non local means (NLM) filters applied to real and simulated T2 relaxometry image sequences. The results demonstrate that AAD filter is comparatively more efficient in noise reducing and maintaining the image structural edges. AAD shows to be a robust and reliable spatial filter for brain image relaxometry.

  9. Nuclear magnetic relaxation dispersion investigations of water retention mechanism by cellulose ethers in mortars

    SciTech Connect

    Patural, Laetitia; Korb, Jean-Pierre; Govin, Alexandre; Grosseau, Philippe; Ruot, Bertrand; Deves, Olivier

    2012-10-15

    We show how nuclear magnetic spin-lattice relaxation dispersion of proton-water (NMRD) can be used to elucidate the effect of cellulose ethers on water retention and hydration delay of freshly-mixed white cement pastes. NMRD is useful to determine the surface diffusion coefficient of water, the specific area and the hydration kinetics of the cement-based material. In spite of modifications of the solution's viscosity, we show that the cellulosic derivatives do not modify the surface diffusion coefficient of water. Thus, the mobility of water present inside the medium is not affected by the presence of polymer. However, these admixtures modify significantly the surface fraction of mobile water molecules transiently present at solid surfaces. This quantity measured, for the first time, for all admixed cement pastes is thus relevant to explain the water retention mechanism.

  10. An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations

    NASA Astrophysics Data System (ADS)

    Chertock, Alina; Degond, Pierre; Neusser, Jochen

    2017-04-01

    The Navier-Stokes-Korteweg (NSK) equations are a classical diffuse-interface model for compressible two-phase flows. As direct numerical simulations based on the NSK system are quite expensive and in some cases even impossible, we consider a relaxation of the NSK system, for which robust numerical methods can be designed. However, time steps for explicit numerical schemes depend on the relaxation parameter and therefore numerical simulations in the relaxation limit are very inefficient. To overcome this restriction, we propose an implicit-explicit asymptotic-preserving finite volume method. We prove that the new scheme provides a consistent discretization of the NSK system in the relaxation limit and demonstrate that it is capable of accurately and efficiently computing numerical solutions of problems with realistic density ratios and small interfacial widths.

  11. Highly reduced double-decker single-molecule magnets exhibiting slow magnetic relaxation.

    PubMed

    Gonidec, Mathieu; Krivokapic, Itana; Vidal-Gancedo, Jose; Davies, E Stephen; McMaster, Jonathan; Gorun, Sergiu M; Veciana, Jaume

    2013-04-15

    F64Pc2Ln (1Ln, Ln = Tb or Lu) represent the first halogenated phthalocyanine double-decker lanthanide complexes, and 1Tb exhibits single-molecule magnet properties as revealed by solid-state magnetometry. The fluorine substituents of the phthalocyanine rings have a dramatic effect on the redox properties of the F64Pc2Ln complexes, namely, a stabilization of their reduced states. Electrochemical and spectroelectrochemical measurements demonstrate that the 1Tb(-/2-) and 1Tb(2-/3-) couples exhibit redox reversibility and that the 1Tb(-), 1Tb(2-) and 1Tb(3-) species may be prepared by bulk electrolysis in acetone. Low-temperature MCD studies reveal for the first time magnetization hystereses for the super-reduced dianionic and trianionic states of Pc2Ln.

  12. Jin–Xin relaxation method for solving a traffic flow problem in one dimension

    NASA Astrophysics Data System (ADS)

    Ambar Sulistiyawati, Bernadetta; Mungkasi, Sudi

    2017-01-01

    We test the performance of the Jin–Xin relaxation and Lax–Friedrichs finite volume numerical methods in solving a traffic flow problem. In particular, we focus on traffic flow at a traffic light turning from red to green. Numerical solutions are compared with the analytical solution to the mathematical model. We find that the Jin–Xin relaxation solution is more accurate than the Lax–Friedrichs finite volume solution.

  13. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  14. Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19.

    PubMed

    Beardsley, R P; Parkes, D E; Zemen, J; Bowe, S; Edmonds, K W; Reardon, C; Maccherozzi, F; Isakov, I; Warburton, P A; Campion, R P; Gallagher, B L; Cavill, S A; Rushforth, A W

    2017-02-10

    We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

  15. Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

    NASA Astrophysics Data System (ADS)

    Beardsley, R. P.; Parkes, D. E.; Zemen, J.; Bowe, S.; Edmonds, K. W.; Reardon, C.; Maccherozzi, F.; Isakov, I.; Warburton, P. A.; Campion, R. P.; Gallagher, B. L.; Cavill, S. A.; Rushforth, A. W.

    2017-02-01

    We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

  16. The Effect of Magnetic Field Inhomogeneity on the Transverse Relaxation of Quadrupolar Nuclei Measured by Multiple Quantum Filtered NMR

    NASA Astrophysics Data System (ADS)

    Eliav, U.; Kushnir, T.; Knubovets, T.; Itzchak, Y.; Navon, G.

    1997-09-01

    The effects of magnetic fieldsB0andB1inhomogeneities on techniques which are commonly used for the measurements of triple-quantum-filtered (TQF) NMR spectroscopy of23Na in biological tissues are analyzed. The results of measurements by pulse sequences with and without refocusing ofB0inhomogeneities are compared. It is shown that without refocusing the errors in the measurement of the transverse relaxation times by TQF NMR spectroscopy may be as large as 100%, and thus, refocusing of magnetic field inhomogeneity is mandatory. Theoretical calculations demonstrate that without refocusingB0inhomogeneities the spectral width and phase depend on the interpulse time intervals, thus, leading to errors in the measured relaxation times. It is shown that pulse sequences that were used for the refocusing of the magnetic field (B0) inhomogeneity also reduce the sensitivity of the experimental results to radiofrequency (B1) magnetic field inhomogeneity.

  17. Statistical Modeling Applied to Deformation-Relaxation Processes in a Composite Biopolymer Network Induced by Magnetic Field.

    PubMed

    Tarrío-Saavedra, Javier; González, Cécilia Galindo; Naya, Salvador; López-Beceiro, Jorge; Ponton, Alain

    2017-01-01

    This study investigated a methodology based on image processing and statistics to characterize and model the deformation upon controlled and uniform magnetic field and the relaxation under zero field of droplets observed in aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles stabilized by adsorption of citrate ions. The changes of droplet geometry were statistically analyzed using a new approach based on the data obtained from optical microscopy, image processing, nonlinear regression, evolutionary optimization, analysis of variance and resampling. Image enhancement and then image segmentation (Gaussian mixture modeling) processes were applied to extract features with reliable information of droplets dimensions from optical micrographs. The droplets deformation and relaxation trends were accurately adjusted by the Kohlrausch-Williams-Watts (KWW) function and a mean relaxation time was obtained by fitting the time evolution of geometry parameters. It was found to be proportional to the initial radius of the spherical droplets and was associated to interfacial tension.

  18. Statistical Modeling Applied to Deformation-Relaxation Processes in a Composite Biopolymer Network Induced by Magnetic Field

    PubMed Central

    Tarrío-Saavedra, Javier; González, Cécilia Galindo; Naya, Salvador; López-Beceiro, Jorge

    2017-01-01

    This study investigated a methodology based on image processing and statistics to characterize and model the deformation upon controlled and uniform magnetic field and the relaxation under zero field of droplets observed in aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles stabilized by adsorption of citrate ions. The changes of droplet geometry were statistically analyzed using a new approach based on the data obtained from optical microscopy, image processing, nonlinear regression, evolutionary optimization, analysis of variance and resampling. Image enhancement and then image segmentation (Gaussian mixture modeling) processes were applied to extract features with reliable information of droplets dimensions from optical micrographs. The droplets deformation and relaxation trends were accurately adjusted by the Kohlrausch-Williams-Watts (KWW) function and a mean relaxation time was obtained by fitting the time evolution of geometry parameters. It was found to be proportional to the initial radius of the spherical droplets and was associated to interfacial tension. PMID:28081239

  19. On the equivalence between the Scheduled Relaxation Jacobi method and Richardson's non-stationary method

    NASA Astrophysics Data System (ADS)

    Adsuara, J. E.; Cordero-Carrión, I.; Cerdá-Durán, P.; Mewes, V.; Aloy, M. A.

    2017-03-01

    The Scheduled Relaxation Jacobi (SRJ) method is an extension of the classical Jacobi iterative method to solve linear systems of equations (Au = b) associated with elliptic problems. It inherits its robustness and accelerates its convergence rate computing a set of P relaxation factors that result from a minimization problem. In a typical SRJ scheme, the former set of factors is employed in cycles of M consecutive iterations until a prescribed tolerance is reached. We present the analytic form for the optimal set of relaxation factors for the case in which all of them are strictly different, and find that the resulting algorithm is equivalent to a non-stationary generalized Richardson's method where the matrix of the system of equations is preconditioned multiplying it by D = diag (A). Our method to estimate the weights has the advantage that the explicit computation of the maximum and minimum eigenvalues of the matrix A (or the corresponding iteration matrix of the underlying weighted Jacobi scheme) is replaced by the (much easier) calculation of the maximum and minimum frequencies derived from a von Neumann analysis of the continuous elliptic operator. This set of weights is also the optimal one for the general problem, resulting in the fastest convergence of all possible SRJ schemes for a given grid structure. The amplification factor of the method can be found analytically and allows for the exact estimation of the number of iterations needed to achieve a desired tolerance. We also show that with the set of weights computed for the optimal SRJ scheme for a fixed cycle size it is possible to estimate numerically the optimal value of the parameter ω in the Successive Overrelaxation (SOR) method in some cases. Finally, we demonstrate with practical examples that our method also works very well for Poisson-like problems in which a high-order discretization of the Laplacian operator is employed (e.g., a 9- or 17-points discretization). This is of interest since the

  20. Slow magnetic relaxation in a hydrogen-bonded 2D array of mononuclear dysprosium(III) oxamates.

    PubMed

    Fortea-Pérez, Francisco R; Vallejo, Julia; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio

    2013-05-06

    The reaction of N-(2,6-dimethylphenyl)oxamic acid with dysprosium(III) ions in a controlled basic media afforded the first example of a mononuclear lanthanide oxamate complex exhibiting a field-induced slow magnetic relaxation behavior typical of single-ion magnets (SIMs). The hydrogen-bond-mediated self-assembly of this new bifunctional dysprosium(III) SIM in the solid state provides a unique example of 2D hydrogen-bonded polymer with a herringbone net topology.

  1. Ising-like chain magnetism, Arrhenius magnetic relaxation, and case against 3D magnetic ordering in β-manganese phthalocyanine (C32H16MnN8)

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Seehra, Mohindar S.

    2016-04-01

    Previous magnetic studies in the organic semiconductor β-manganese phthalocyanine (β-MnPc) have reported it to be a canted ferromagnet below T C  ≈  8.6 K. However, the recent result of the lack of a λ-type anomaly in the specific heat versus temperature data near the quoted T C has questioned the presence of long-range 3-dimensional (3D) magnetic ordering in this system. In this paper, detailed measurements and analysis of the temperature (2 K-300 K) and magnetic field (up to 90 kOe) dependence of the dc and ac magnetic susceptibilities in a powder sample of β-MnPc leads us to conclude that 3D long-range magnetic ordering is absent in this material. This is supported by the Arrott plots and the lack of a peak in the ac susceptibilities, χ‧ and χ″, near the quoted T C. Instead, the system can be best described as an Ising-like chain magnet with Arrhenius relaxation of the magnetization governed by an intra-layer ferromagnetic exchange constant J/k B  =  2.6 K and the single ion anisotropy energy parameter |D|/k B  =  8.3 K. The absence of 3D long range order is consistent with the measured \\mid D\\mid   >  J.

  2. Three-dimensional gyrokinetic simulation of the relaxation of a magnetized temperature filament

    SciTech Connect

    Sydora, R. D.; Morales, G. J.; Maggs, J. E.; Van Compernolle, B.

    2015-10-15

    An electromagnetic, 3D gyrokinetic particle code is used to study the relaxation of a magnetized electron temperature filament embedded in a large, uniform plasma of lower temperature. The study provides insight into the role played by unstable drift-Alfvén waves observed in a basic electron heat transport experiment [D. C. Pace et al., Phys. Plasmas 15, 122304 (2008)] in which anomalous cross-field transport has been documented. The simulation exhibits the early growth of temperature-gradient-driven, drift-Alfvén fluctuations that closely match the eigenmodes predicted by linear theory. At the onset of saturation, the unstable fluctuations display a spiral spatial pattern, similar to that observed in the laboratory, which causes the rearrangement of the temperature profile. After saturation of the linear instability, the system exhibits a markedly different behavior depending on the inclusion in the computation of modes without variation along the magnetic field, i.e., k{sub z} = 0. In their absence, the initial filament evolves into a broadened temperature profile, self-consistent with undamped, finite amplitude drift-Alfvén waves. But the inclusion of k{sub z} = 0 modes causes the destruction of the filament and damping of the drift-Alfvén modes leading to a final state consisting of undamped convective cells and multiple, smaller-scale filaments.

  3. A biharmonic relaxation method for calculating thermal stress in cooled irregular cylinders

    NASA Technical Reports Server (NTRS)

    Holms, Arthur G

    1952-01-01

    A numerical method was developed for calculating thermal stresses in irregular cylinders cooled by one or more internal passages. The use of relaxation methods and elementary methods of finite differences was found to give approximations to the correct values when compared with previously known solutions for concentric circular cylinders possessing symmetrical and asymmetrical temperature distributions.

  4. Nonlogarithmic magnetization relaxation at the initial time intervals and magnetic field dependence of the flux creep rate in Bi2Sr2Ca(sub I)Cu2Ox single crystals

    NASA Technical Reports Server (NTRS)

    Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.

    1990-01-01

    At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.

  5. Photoluminescent and Slow Magnetic Relaxation Studies on Lanthanide(III)-2,5-pyrazinedicarboxylate Frameworks.

    PubMed

    Marinho, Maria Vanda; Reis, Daniella O; Oliveira, Willian X C; Marques, Lippy F; Stumpf, Humberto O; Déniz, Mariadel; Pasán, Jorge; Ruiz-Pérez, Catalina; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2017-02-20

    In the series described in this work, the hydrothermal synthesis led to oxidation of the 5-methyl-pyrazinecarboxylate anion to the 2,5-pyrazinedicarboxylate dianion (2,5-pzdc) allowing the preparation of three-dimensional (3D) lanthanide(III) organic frameworks of formula {[Ln2(2,5-pzdc)3(H2O)4]·6H2O}n [Ln = Ce (1), Pr (2), Nd (3), and Eu (4)] and {[Er2(2,5-pzdc)3(H2O)4]·5H2O}n (5). Single-crystal X-ray diffraction on 1-5 reveals that they crystallize in the triclinic system, P1̅ space group with the series 1-4 being isostructural. The crystal structure of the five compounds are 3D with the lanthanide(III) ions linked through 2,5-pzdc(2-) dianions acting as two- and fourfold connectors, building a binodal 4,4-connected (4·6(4)8)(4(2)6(2)8(2))-mog network. The photophysical properties of the Nd(III) (3) and Eu(III) (4) complexes exhibit sensitized photoluminescence in the near-infrared and visible regions, respectively. The photoluminescence intensity and lifetime of 4 were very sensitive due to the luminescence quenching of the (5)D0 level by O-H oscillators of four water molecules in the first coordination sphere leading to a quantum efficiency of 11%. Variable-temperature magnetic susceptibility measurements for 1-5 reveal behaviors as expected for the ground terms of the magnetically isolated rare-earth ions [(2)F5/2, (2)H4, (4)I9/2, (7)F0, and (4)I15/2 for Ce(III), Pr(III), Nd(III), Eu(III), and Er(III), respectively] with MJ = 0 (2 and 4) and ±1/2 (1, 3, and 5). Q-band electron paramagnetic resonance measurements at low temperature corroborate these facts. Frequency-dependent alternating-current magnetic susceptibility signals under external direct-current fields in the range of 100-2500 G were observed for the Kramers ions of 1, 3, and 5, indicating slow magnetic relaxation (single-ion magnet) behavior. In these compounds, τ(-1) decreases with decreasing temperature at any magnetic field, but no Arrhenius law can simulate such a dependence in all the

  6. Collisional relaxation of a strongly magnetized two-species pure ion plasma

    SciTech Connect

    Chim, Chi Yung; O’Neil, Thomas M.; Dubin, Daniel H.

    2014-04-15

    The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses is discussed. We have in mind two isotopes of the same singly ionized atom. Parameters are assumed to be ordered as Ω{sub 1},Ω{sub 2}≫|Ω{sub 1}−Ω{sub 2}|≫v{sup ¯}{sub ij}/b{sup ¯} and v{sup ¯}{sub ⊥j}/Ω{sub j}≪b{sup ¯}, where Ω{sub 1} and Ω{sub 2} are two cyclotron frequencies, v{sup ¯}{sub ij}=√(T{sub ∥}/μ{sub ij}) is the relative parallel thermal velocity characterizing collisions between particles of species i and j, and b{sup ¯}=2e{sup 2}/T{sub ∥} is the classical distance of closest approach for such collisions, and v{sup ¯}{sub ⊥j}/Ω{sub j}=√(2T{sub ⊥j}/m{sub j})/Ω{sub j} is the characteristic cyclotron radius for particles of species j. Here, μ{sub ij} is the reduced mass for the two particles, and T{sub ∥} and T{sub ⊥j} are temperatures that characterize velocity components parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species, I{sub 1}=∑{sub i∈1}m{sub 1}v{sub ⊥i}{sup 2}/(2Ω{sub 1}) and I{sub 2}=∑{sub i∈2}m{sub 2}v{sub ⊥i}{sup 2}/(2Ω{sub 2}) are adiabatic invariants that constrain the collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the constancy of the total Hamiltonian H and the two actions I{sub 1} and I{sub 2}, yielding a modified Gibbs distribution of the form exp[−H/T{sub ∥}−α{sub 1}I{sub 1}−α{sub 2}I{sub 2}]. Here, the α{sub j}’s are related to T{sub ∥} and T{sub ⊥j} through T{sub ⊥j}=(1/T{sub ∥}+α{sub j}/Ω{sub j}){sup −1}. Collisional relaxation to the usual Gibbs distribution, exp[−H/T{sub ∥}], takes place on two timescales. On a timescale longer than the collisional timescale by a factor of (b{sup ¯2}Ω{sub 1}{sup 2}/v{sup ¯}{sub 11}{sup 2})exp(5[3π(b{sup ¯}|Ω{sub 1}−Ω{sub 2}|/v{sup ¯}{sub 12})]{sup 2/5}/6), the two

  7. On relaxed viscosity iterative methods for variational inequalities in Banach spaces

    NASA Astrophysics Data System (ADS)

    Ceng, L.-C.; Ansari, Q. H.; Yao, J. C.

    2009-08-01

    In this paper, we suggest and analyze a relaxed viscosity iterative method for a commutative family of nonexpansive self-mappings defined on a nonempty closed convex subset of a reflexive Banach space. We prove that the sequence of approximate solutions generated by the proposed iterative algorithm converges strongly to a solution of a variational inequality. Our relaxed viscosity iterative method is an extension and variant form of the original viscosity iterative method. The results of this paper can be viewed as an improvement and generalization of the previously known results that have appeared in the literature.

  8. Energy Distribution among Reaction Products. III: The Method of Measured Relaxation Applied to H + Cl2

    NASA Technical Reports Server (NTRS)

    Pacey, P. D.; Polyani, J. C.

    1971-01-01

    The method of measured relaxation is described for the determination of initial vibrational energy distribution in the products of exothermic reaction. Hydrogen atoms coming from an orifice were diffused into flowing chlorine gas. Measurements were made of the resultant ir chemiluminescence at successive points along the line of flow. The concurrent processes of reaction, diffusion, flow, radiation, and deactivation were analyzed in some detail on a computer. A variety of relaxation models were used in an attempt to place limits on k(nu prime), the rate constant for reaction to form HCl in specified vibrational energy levels: H+Cl2 yields (sup K(nu prime) HCl(sub nu prime) + Cl. The set of k(?) obtained from this work is in satisfactory agreement with those obtained by another experimental method (the method of arrested relaxation described in Parts IV and V of the present series.

  9. Energy Distribution Among Reaction Products. III: The Method of Measured Relaxation Applied to H + Cl(2).

    PubMed

    Pacey, P D; Polanyi, J C

    1971-08-01

    The method of measured relaxation is described for the determination of initial vibrational energy distribution in the products of exothermic reaction. Hydrogen atoms coming from an orifice were diffused into flowing chlorine gas. Measurements were made of the resultant ir chemiluminescence at successive points along the line of flow. The concurrent processes of reaction, diffusion, flow, radiation, and deactivation were analyzed in some detail on a computer. A variety of relaxation models were used in an attempt to place limits on k(upsilon), the rate constant for reaction to form HCl in specified vibrational energy levels: [equation]. The set of k(upsilon) obtained from this work is in satisfactory agreement with those obtained by another experimental method (the method of arrested relaxation described in Parts IV and V of the present series).

  10. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source.

    PubMed

    Lord, J S; McKenzie, I; Baker, P J; Blundell, S J; Cottrell, S P; Giblin, S R; Good, J; Hillier, A D; Holsman, B H; King, P J C; Lancaster, T; Mitchell, R; Nightingale, J B; Owczarkowski, M; Poli, S; Pratt, F L; Rhodes, N J; Scheuermann, R; Salman, Z

    2011-07-01

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  11. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  12. Measurement of electron spin-lattice relaxation times in radical doped butanol samples at 1 K using the NEDOR method

    NASA Astrophysics Data System (ADS)

    Hess, C.; Herick, J.; Berlin, A.; Meyer, W.; Reicherz, G.

    2012-12-01

    The electron spin-lattice relaxation time (T1e) of TEMPO- and trityl-doped butanol samples at 2.5 T and temperatures between 0.95 K and 2.17 K was studied by pulsed nuclear magnetic resonance (NMR) using the nuclear-electron double resonance (NEDOR) method. This method is based on the idea to measure the NMR lineshift produced by the local field of paramagnetic impurities, whose polarization can be manipulated. This is of technical advantage as measurements can be performed under conditions typically used for the dynamic nuclear polarization (DNP) process - in our case 2.5 T and temperatures around 1 K - where a direct measurement on the electronic spins would be far more complicated to perform. As T1e is a crucial parameter determining the overall efficiency of DNP, the effect of the radical type, its spin concentration, the temperature and the oxygen content on T1e has been investigated. For radical concentrations as used in DNP (several 1019 spins/cm3) the relaxation rate (T1e-1) has shown a linear dependence on the paramagnetic electron concentration for both radicals investigated. Experiments with perdeuterated and ordinary butanol have given no indication for any influence of the host materials isotopes. The measured temperature dependence has shown an exponential characteristic. It is further observed that the oxygen content in the butanol samples has a considerable effect on the electron relaxation time and thus influences the nuclear relaxation time and polarization rate during the DNP. The experiments also show a variation in the NMR linewidth, leading to comparable time constants as determined by the lineshift. NEDOR measurements were also performed on irradiated, crystal grains of 6LiD. These samples exhibited a linewidth behavior similar to that of the cylindrically shaped butanol samples.

  13. [Mathematical modeling of measuring the hydraulic conductivity of roots by the relaxation method].

    PubMed

    Logvenkov, S A

    2011-01-01

    The continuum model of radial mass transfer in plant roots developed previously has been used for processing the nonstationary experiments aimed at the determination of the root hydraulic conductivity. It is shown that, in contrast to compartmental models, our model allows one to describe the shape of the relaxation curve, in particular to separate segments with different relaxation times. It has been found that, for correctly determining the hydraulic conductivity, the method of data processing should be modified. A method for estimating the extracellular to intracellular conductivity ratio has been proposed.

  14. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  15. Use of a high-Tc SQUID-based nuclear magnetic resonance spectrometer in magnetically unshielded environments to discriminate tumors in rats, by characterizing the longitudinal relaxation rate

    NASA Astrophysics Data System (ADS)

    Huang, K.-W.; Chen, H.-H.; Yang, H.-C.; Horng, H.-E.; Liao, S.-H.; Chieh, J.-J.; Yang, S. Y.

    2012-06-01

    This study uses a sensitive, high-Tc SQUID-detected nuclear magnetic resonance spectrometer in magnetically unshielded environments to discriminate liver tumors in rats, by characterizing the longitudinal relaxation rate, T1-1. The high-Tc SQUID-based spectrometer has a spectral line width of 0.9Hz in low magnetic fields. It was found that relaxation rate for tumor tissues is (3.6 ± 0.02) s-1 and the relaxation rate for normal tissues is (7.7 ± 0.02) s-1. The difference in the longitudinal relaxation rates suggests that water structures around the DNA of cancer cells are different from those of normal tissues. The optimized detection sensitivity for the established system is 0.21 g at the present stage. It is concluded that T1-1 can be used to distinguish cancerous tissues from normal tissues. The high-Tc, SQUID-detected NMR and MRI in magnetically unshielded environments may also be useful for discriminating other tumors.

  16. Ferromagnetic interactions and slow magnetic relaxation behaviors of two lanthanide coordination polymers bridged by 2,6-naphthalenedicarboxylate ligand

    SciTech Connect

    Fang, Ming; Li, Xiuhua; Cui, Ping; Zhao, Bin

    2015-03-15

    Two lanthanide-based frameworks: (Ln(phen)(NDA){sub 1.5}(H{sub 2}O)){sub n} (Ln=Gd(1), NDA=2,6-naphthalenedicarboxylate anion, phen=1,10-phenanthroline), and ([Dy(phen)(NDA){sub 1.5}]·0.5H{sub 2}NDA){sub n} (2) were structurally and magnetically characterized. Compound 1 exhibits 2D layer structure, belonging to the triclinic system with space group P−1, while compound 2 features a 3D framework with space group P−1. The magnetic studies revealed that ferromagnetic coupling existed between adjacent lanthanide ions in 1 and 2, and frequency-dependence out-of-phase signals in the measurement of alternate-current susceptibilities were observed for 2, albeit without reaching the characteristic maxima above 2 K, implying slow magnetic relaxation behavior in 2. After the application of a dc field, good peak shapes of ac signal were obtained and got the energy barrier ΔE/k{sub B}=29 K and the pre-exponential factor τ{sub 0}=4.47×10{sup −7} s at 2000 Oe field; and when the dc field was in 5000 Oe, giving ΔE/k{sub B}=40 K and τ{sub 0}=2.82×10{sup −6}. - Graphical abstract: Two novel lanthanide-based frameworks 1 and 2 were structurally and magnetically characterized. The results revealed that ferromagnetic coupling exists between adjacent lanthanide ions in 1 and 2, and 2 displayed slow magnetic relaxation behavior with the energy barrier of 29 K. - Highlights: • Two lanthanide frameworks were synthesized and magnetically characterized. • The magnetism studies indicate slow magnetic relaxation behavior in 2. • Weak ferromagnetic coupling existing between adjacent lanthanide centers.

  17. Approximate method for solving relaxation problems in terms of material`s damagability under creep

    SciTech Connect

    Nikitenko, A.F.; Sukhorukov, I.V.

    1995-03-01

    The technology of thermoforming under creep and superplasticity conditions is finding increasing application in machine building for producing articles of a preset shape. After a part is made there are residual stresses in it, which lead to its warping. To remove residual stresses, moulded articles are usually exposed to thermal fixation, i.e., the part is held in compressed state at a certain temperature. Thermal fixation is simply the process of residual stress relaxation, following by accumulation of total creep in the material. Therefore the necessity to develop engineering methods for calculating the time of thermal fixation and relaxation of residual stresses to a safe level, not resulting in warping, becomes evident. The authors present an approximate method of calculation of stress-strain rate of a body during relaxation. They use a system of equations which describes a material`s creep, simultaneously taking into account accumulation of damages in it.

  18. Effects of diffusion in magnetically inhomogeneous media on rotating frame spin-lattice relaxation

    NASA Astrophysics Data System (ADS)

    Spear, John T.; Gore, John C.

    2014-12-01

    In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues.

  19. Nuclear magnetic relaxation rates of unconventional superconductivity in doped topological insulators

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki; Ota, Yukihiro

    2016-10-01

    We study the temperature dependence of nuclear magnetic relaxation (NMR) rates to detect unconventional superconductivity in doped topological insulators, such as M (=Cu ,Nb,Sr) xBi2Se3 and Sn1 -xInxTe . The Hebel-Slichter coherence effect below a critical temperature Tc depends on the superconducting states predicted by a minimal model of doped topological insulators. In a nodal anisotropic topological state similar to the ABM phase in 3He, the NMR rate has a conventional s -wave-like coherence peak below Tc. In contrast, in a fully-gapped isotropic topological superconducting state, this rate below Tc exhibits an antipeak profile. Moreover, in a twofold in-plane anisotropic topological superconducting state, there is no coherence effect, which is similar to that in a chiral p -wave state. We also claim in a model of CuxBi2Se3 that a signal of the fully-gapped odd-parity state is attainable from the change of the antipeak behavior depending on doping level. Thus, we reveal that the NMR rates shed light on unconventional superconductivity in doped topological insulators.

  20. Relaxation in ordered systems of ultrafine magnetic particles: effect of the exchange interaction.

    PubMed

    Russ, Stefanie; Bunde, Armin

    2011-03-30

    We perform Monte Carlo simulations to study the relaxation of single-domain nanoparticles that are located on a simple cubic lattice with anisotropy axes pointing in the z-direction, under the combined influence of anisotropy energy, dipolar interaction and ferromagnetic interaction of strength J. We compare the results of classical Heisenberg systems with three-dimensional magnetic moments [Formula: see text] to those of Ising systems and find that Heisenberg systems show a much richer and more complex dynamical behavior. In contrast to Heisenberg systems, Ising systems need large activation energies to turn a spin and also possess a smaller configuration space for the orientation of the [Formula: see text]. Accordingly, Heisenberg systems possess a whole landscape of different states with very close-lying energies, while Ising systems tend to get frozen in one random state far away from the ground state. For Heisenberg systems, we identify two phase transitions: (i) at intermediate J between domain and layered states and (ii) at larger J between layered and ferromagnetic states. Between these two transitions, the layered states change their appearance and develop a sub-structure, where the orientation of the [Formula: see text] in each layer depends on J, so that for each value of J, a new ground state appears.

  1. Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation.

    PubMed

    Echinaka, Yuki; Ozeki, Yukiyasu

    2016-10-01

    The dynamical scaling analysis for the Kosterlitz-Thouless transition in the nonequilibrium relaxation method is improved by the use of Bayesian statistics and the kernel method. This allows data to be fitted to a scaling function without using any parametric model function, which makes the results more reliable and reproducible and enables automatic and faster parameter estimation. Applying this method, the bootstrap method is introduced and a numerical discrimination for the transition type is proposed.

  2. Successive over relaxation method in solving two-point fuzzy boundary value problems

    NASA Astrophysics Data System (ADS)

    Dahalan, A. A.; Muthuvalu, M. S.; Sulaiman, J.

    2013-04-01

    In this study, numerical methods are considered in solving the fuzzy boundary value problem (FBVP). This boundary value problem will then be discretized to derive second order finite difference equation and hence generated fuzzy linear system. The approximation solver towards system of linear equations is described through the implementation of the Gauss-Seidel (GS) and Successive Over Relaxation (SOR) iterative methods. Then several numerical experiments were shown to illustrate the effectiveness of SOR iterative method compared with the GS method.

  3. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    NASA Astrophysics Data System (ADS)

    Zhang, Longcai; Wang, Suyu; Wang, Jiasu; Zheng, Jun

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  4. Spectral Methods for Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Parker, R. L.; Gee, J. S.

    2013-12-01

    Spectral methods, that is, those based in the Fourier transform, have long been employed in the analysis of magnetic anomalies. For example, Schouten and MaCamy's Earth filter is used extensively to map patterns to the pole, and Parker's Fourier transform series facilitates forward modeling and provides an efficient algorithm for inversion of profiles and surveys. From a different, and perhaps less familiar perspective, magnetic anomalies can be represented as the realization of a stationary stochastic process and then statistical theory can be brought to bear. It is vital to incorporate the full 2-D power spectrum, even when discussing profile data. For example, early analysis of long profiles failed to discover the small-wavenumber peak in the power spectrum predicted by one-dimensional theory. The long-wavelength excess is the result of spatial aliasing, when energy leaks into the along-track spectrum from the cross-track components of the 2-D spectrum. Spectral techniques may be used to improve interpolation and downward continuation of survey data. They can also evaluate the reliability of sub-track magnetization models both across and and along strike. Along-strike profiles turn out to be surprisingly good indicators of the magnetization directly under them; there is high coherence between the magnetic anomaly and the magnetization over a wide band. In contrast, coherence is weak at long wavelengths on across-strike lines, which is naturally the favored orientation for most studies. When vector (or multiple level) measurements are available, cross-spectral analysis can reveal the wavenumber interval where the geophysical signal resides, and where noise dominates. One powerful diagnostic is that the phase spectrum between the vertical and along-path components of the field must be constant 90 degrees. To illustrate, it was found that on some very long Project Magnetic lines, only the lowest 10% of the wavenumber band contain useful geophysical signal. In this

  5. Investigation of the structure of an amorphous As-Se semiconductor system by relaxation methods

    SciTech Connect

    Castro, R. A. Bordovsky, V. A.; Grabko, G. I.; Taturevich, T. V.

    2011-12-15

    The results of a complex investigation into dark-current relaxation in the long-time region of an MIM structure based on an As-Se thin-film chalcogenide system are presented. The values of parameters describing the electronic processes ocurring in the contact layers of the investigated compounds are estimated. The coincidence of the nature of conductivity and charge-accumulation mechanisms is revealed. The relaxation-time distribution function is calculated, and its structural sensitivity to such technological factors as the change in the composition stoichiometry and the method for manufacturing experimental samples is established.

  6. Slow relaxation of the magnetization in a 4,2-wavelike Fe(III)2Co(II) heterobimetallic chain.

    PubMed

    Toma, Luminita Marilena; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel

    2012-02-06

    The reaction of the low-spin iron(III) complex [Fe(dmbpy)(CN)(4)](-) (1) with fully solvated cobalt(II) ions affords the cyanide-bridged heterobimetallic chain {[Fe(III)(dmbpy)(CN)(4)](2)Co(II)(H(2)O)(2)}(n) · 4nH(2)O (2), which exhibits intrachain ferromagnetic coupling and double slow relaxation of the magnetization.

  7. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    PubMed

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  8. A New Method for Coronal Magnetic Field Reconstruction

    NASA Astrophysics Data System (ADS)

    Yi, Sibaek; Choe, Gwangson; Lim, Daye

    2015-08-01

    We present a new, simple, variational method for reconstruction of coronal force-free magnetic fields based on vector magnetogram data. Our method employs vector potentials for magnetic field description in order to ensure the divergence-free condition. As boundary conditions, it only requires the normal components of magnetic field and current density so that the boundary conditions are not over-specified as in many other methods. The boundary normal current distribution is initially fixed once and for all and does not need continual adjustment as in stress-and-relax type methods. We have tested the computational code based on our new method in problems with known solutions and those with actual photospheric data. When solutions are fully given at all boundaries, the accuracy of our method is almost comparable to best performing methods in the market. When magnetic field data are given only at the photospheric boundary, our method excels other methods in most “figures of merit” devised by Schrijver et al. (2006). Furthermore the residual force in the solution is at least an order of magnitude smaller than that of any other method. It can also accommodate the source-surface boundary condition at the top boundary. Our method is expected to contribute to the real time monitoring of the sun required for future space weather forecasts.

  9. Calculation of the electron spin relaxation times in InSb and InAs by the projection-reduction method

    SciTech Connect

    Kang, Nam Lyong

    2014-12-07

    The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were P{sub pe}=4.0×10{sup 22} eV/m for InSb and P{sub pe}=1.2×10{sup 23} eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.

  10. Experimental investigation in plasma relaxation by using a compact coaxial magnetized plasma gun in a background plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott

    2012-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation process being conducted in the HELCAT device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5 - 10kV. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities 1.2Cs and densities 10e20 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter lambda determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  11. Computer Simulations of Contributions of Néel and Brown Relaxation to Specific Loss Power of Magnetic Fluids in Hyperthermia

    NASA Astrophysics Data System (ADS)

    Phong, Pham Thanh; Nguyen, Luu Huu; Manh, Do Hung; Lee, In-Ja; Phuc, Nguyen Xuan

    2017-04-01

    In this study, the degree of the contribution of particular relaxation losses to the specific loss power are calculated for a number of magnetic fluids, including Fe3O4, CoFe2O4, MnFe2O4, FeCo, FePt and La0.7Sr0.3MnO3 nanoparticles in various viscosities. We found that the specific loss of every fluid studied increases linearly with particle saturation magnetization. The competition between Néel and Brownian relaxation contributions gives rise to a peak at a critical diameter in the plot of specific loss power versus diameter. The critical diameter does not change with saturation magnetization but monotonically decreases with increasing magnetic anisotropy. If particle diameter is smaller than 6-11 nm, the maximum loss power tends to diminish and the heating effect to switch off. According to how the materials respond to viscosity change, the hyperthermia materials can be classified into two groups. One is hard nanoparticles with high anisotropy of which the critical diameter decreases with viscosity and the specific loss power versus saturation magnetization rate decreases strongly. The other is soft nanoparticles with low anisotropy of which the properties are insensitive to the viscosity of the fluid. We discuss our simulated results in relation to recent experimental findings.

  12. General relaxation schemes in multigrid algorithms for higher order singularity methods

    NASA Technical Reports Server (NTRS)

    Oskam, B.; Fray, J. M. J.

    1981-01-01

    Relaxation schemes based on approximate and incomplete factorization technique (AF) are described. The AF schemes allow construction of a fast multigrid method for solving integral equations of the second and first kind. The smoothing factors for integral equations of the first kind, and comparison with similar results from the second kind of equations are a novel item. Application of the MD algorithm shows convergence to the level of truncation error of a second order accurate panel method.

  13. The generalized Phillips-Twomey method for NMR relaxation time inversion

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming

    2016-10-01

    The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.

  14. Feasibility Study of Real-Time Scheduling Using the Lagrangean Relaxation Method Under an APS Environment

    NASA Astrophysics Data System (ADS)

    Shin, Kaikou; Kuroda, Mitsuru; Natsuyama, Kouichi

    Advanced Planning and Scheduling (APS) has been widely recognized as a promising method for solving real production planning and scheduling problems. Based on the proposal of a real-time job shop scheduling mechanism under an APS environment, which adopts the Lagrangean relaxation method as the optimization logic, the present paper describes a feasibility study of this mechanism by evaluating its calculation speed and re-scheduling quality. Numerical experiments have been carried out for various models having different scales, as well as different densities and strengths of random events, such as the arrival of new jobs or changes to the due dates for existing jobs. The results of experiments show that the proposed scheduling mechanism has the potential to satisfy the real-time scheduling requirements, not only in terms of calculation speed and solution quality, but also with respect to predictability of the calculation load. Finally, an improvement to the Lagrangean relaxation method is proposed to improve re-scheduling quality.

  15. The generalized Phillips-Twomey method for NMR relaxation time inversion.

    PubMed

    Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming

    2016-10-01

    The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.

  16. Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain

    NASA Astrophysics Data System (ADS)

    Nougarou, François; Massicotte, Daniel; Descarreaux, Martin

    2012-12-01

    The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.

  17. Analysis of Preconditioning and Relaxation Operators for the Discontinuous Galerkin Method Applied to Diffusion

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Shu, Chi-Wang

    2001-01-01

    The explicit stability constraint of the discontinuous Galerkin method applied to the diffusion operator decreases dramatically as the order of the method is increased. Block Jacobi and block Gauss-Seidel preconditioner operators are examined for their effectiveness at accelerating convergence. A Fourier analysis for methods of order 2 through 6 reveals that both preconditioner operators bound the eigenvalues of the discrete spatial operator. Additionally, in one dimension, the eigenvalues are grouped into two or three regions that are invariant with order of the method. Local relaxation methods are constructed that rapidly damp high frequencies for arbitrarily large time step.

  18. Primary and secondary relaxation process in plastically crystalline cyanocyclohexane studied by 2H nuclear magnetic resonance. II. Quantitative analysis

    NASA Astrophysics Data System (ADS)

    Micko, B.; Kruk, D.; Rössler, E. A.

    2013-02-01

    We analyze the results of our previously reported 2H nuclear magnetic resonance (NMR) experiments in the plastically crystalline (PC) phase of cyanocyclohexane (Part I of this work) to study the fast secondary relaxation (or β-process) in detail. Both, the occurrence of an additional minimum in the spin-lattice relaxation T1 and the pronounced effects arising in the solid-echo spectrum above the glass transition temperature Tg = 134 K, allow for a direct determination of the restricting geometry of the β-process in terms of the "wobbling-in-a-cone" model. Whereas at temperatures below Tg the reorientation is confined to rather small solid angles (below 10°), the spatial restriction decreases strongly with temperature above Tg, i.e., the distribution of cone angles shifts continuously towards higher values. The β-process in the PC phase of cyanocyclohexane proceeds via the same mechanism as found in structural glass formers. This is substantiated by demonstrating the very similar behavior (for T < Tg) of spin-lattice relaxation, stimulated echo decays, and spectral parameters when plotted as a function of ⟨log τβ⟩ (taken from dielectric spectroscopy). We do, however, not observe a clear-cut relation between the relaxation strength of the β-process observed by NMR (calculated within the wobbling-in-a-cone model) and dielectric spectroscopy.

  19. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents

    PubMed Central

    Smolensky, Eric D.; Park, Hee-Yun E.; Zhou, Yue; Rolla, Gabriele A.; Marjańska, Małgorzata; Botta, Mauro; Pierre, Valérie C.

    2013-01-01

    The magnetic properties of iron oxide nanoparticles govern their relaxivities and efficacy as contrast agents for MRI. These properties are in turn determined by their composition, size and morphology. Herein we present a systematic study of the effect of particle size and shape of magnetite nanocrystals synthesized by thermal decompositions of iron salts on both their magnetism and their longitudinal and transverse relaxivities, r1 and r2, respectively. Faceted nanoparticles demonstrate superior magnetism and relaxivities than spherical nanoparticles of similar size. For faceted nanoparticles, but not for spherical ones, r1 and r2 further increase with increasing particle size up to a size of 18 nm. This observation is in accordance with increasing saturation magnetization for nanoparticles increasing in size up to 12 nm, above which a plateau is observed. The NMRD (Nuclear Magnetic Resonance Dispersion) profiles of MIONs (Magnetic Iron Oxide Nanoparticles) display an increase in longitudinal relaxivity with decreasing magnetic field strength with a plateau below 1 MHz. The transverse relaxivity shows no dependence on the magnetic field strength between 20 MHz and 500 MHz. These observations translate to phantom MR images: in T1-weighted SWIFT (SWeep imaging with Fourier Transform) images MIONs have a positive contrast with little dependence on particle size, whereas in T2-weighted gradient-echo images MIONs create a negative contrast which increases in magnitude with increasing particle size. Altogether, these results will enable the development of particulate MRI contrast agents with enhanced efficacy for biomedical and clinical applications. PMID:23819021

  20. Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

    PubMed Central

    Beardsley, R. P.; Parkes, D. E.; Zemen, J.; Bowe, S.; Edmonds, K. W.; Reardon, C.; Maccherozzi, F.; Isakov, I.; Warburton, P. A.; Campion, R. P.; Gallagher, B. L.; Cavill, S. A.; Rushforth, A. W.

    2017-01-01

    We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials. PMID:28186114

  1. Magnetic refrigeration apparatus and method

    DOEpatents

    Barclay, J.A.; Overton, W.C. Jr.; Stewart, W.F.

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  2. Magnetic refrigeration apparatus and method

    DOEpatents

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  3. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  4. Analysis of Molecular Interaction of Drugs Within β-Cyclodextrin Cavity by Solution State Nuclear Magnetic Resonance (NMR) Relaxation.

    PubMed

    Kumar, Deepak; Krishnan, Yogeshwaran; Paranjothy, Manikandan; Pal, Samanwita

    2017-03-09

    The prime focus of the present study is to employ NMR relaxation measurement to address the intermolecular interactions as well as motional dynamics of drugs viz., paracetamol and aspirin encapsulated within β-cyclodextrin (β-CD) cavity. In this report we have attempted to demonstrate the applicability of nonselective (R1(ns) ), selective (R1(se)) and bi-selective (R1(bs)) spin-lattice relaxation rates to infer dynamical parameters e.g., molecular rotational correlation times (τc) and cross-relaxation rates (σij) of the encapsulated drugs. Molecular rotational correlation times of the free drugs were calculated using selective relaxation rate in the fast molecular motion time regime ( ωH(2)τc(2)<1 and R1(ns)/R1(se)≈ 1.500), whereas that of the 1:1 complexed drugs were found from the ratio of R1(ns)/R1(se) in the intermediate motion time regime ( ωH(2)τc(2)≈ 1 and R1(ns)/R1(se) ≈ 1.054) and compared with each other to confirm the formation of inclusion complexes. Furthermore the cross-relaxation rates have been used to evaluate the intermolecular proton distances. Also, density functional theory (DFT) calculations were performed to determine the minimum energy geometry of the inclusion complexes and the results compared with experiments. The report thus presents the possibility of utilizing NMR relaxation data, a more cost effective experiments to calculate internuclear distances in case of drug-supramolecule complexes that are generally addressed by extremely time consuming 2D Nuclear Overhauser Enhancement (NOE) based methods. Plausible mode of insertion of drug molecules into the β-CD cavity has also been described based on experimental NMR relaxation data analysis.

  5. Enhancement and degradation of the R2* relaxation rate resulting from the encapsulation of magnetic particles with hydrophilic coatings.

    PubMed

    de Haan, Hendrick W; Paquet, Chantal

    2011-12-01

    The effects of including a hydrophilic coating around the particles are studied across a wide range of particle sizes by performing Monte Carlo simulations of protons diffusing through a system of magnetic particles. A physically realistic methodology of implementing the coating by cross boundary jump scaling and transition probabilities at the coating surface is developed. Using this formulation, the coating has three distinct impacts on the relaxation rate: an enhancement at small particle sizes, a degradation at intermediate particle sizes, and no effect at large particles sizes. These varied effects are reconciled with the underlying dephasing mechanisms by using the concept of a full dephasing zone to present a physical picture of the dephasing process with and without the coating for all sizes. The enhancement at small particle sizes is studied systemically to demonstrate the existence of an optimal ratio of diffusion coefficients inside/outside the coating to achieve maximal increase in the relaxation rate.

  6. Relaxation Nuclear Magnetic Resonance Imaging Investigation of Heterogeneous Aging in a Hydroxy-Terminated Polybutadiene-Based Elastomer

    SciTech Connect

    Alam, Todd M.; Cherry, Brian R.; Minard, Kevin R.; Celina, Mat C.

    2005-12-27

    Relaxation nuclear magnetic resonance imaging (R-NMRI) was employed to investigate the effects of thermo-oxidative aging in a hydroxy-terminated polybutadiene (HTPB) based elastomer. A series of three-dimensional (3D) Hahn-echo weighted single point images (SPI) of the elastomer were utilized to generate a 3D parameter map of the aged material. NMR spin-spin relaxation times (T2) were measured for each voxel producing a 3D NMR parameter (T2) map of the aged polymer. These T2 maps reveal a dramatic reduction of local polymer mobility near the aging surface with the degree of T2 heterogeneity varying as a function of aging. Using correlations between NMR T2 and material modulus, the impact of this heterogeneous thermo-oxidative aging on the material properties is discussed.

  7. Magnetic polaron formation and exciton spin relaxation in single Cd1-xMnxTe quantum dots

    NASA Astrophysics Data System (ADS)

    Kłopotowski, Ł.; Cywiński, Ł.; Wojnar, P.; Voliotis, V.; Fronc, K.; Kazimierczuk, T.; Golnik, A.; Ravaro, M.; Grousson, R.; Karczewski, G.; Wojtowicz, T.

    2011-02-01

    We study the formation dynamics of a spontaneous ferromagnetic order in single self-assembled Cd1-xMnxTe quantum dots (QDs). By measuring time-resolved photoluminescence, we determine the formation times for QDs with Mn ion contents x varying from 0.01 to 0.2. At low x these times are orders of magnitude longer than exciton spin relaxation times evaluated from the decay of photoluminescence circular polarization. This allows us to conclude that the direction of the spontaneous magnetization is determined by a momentary Mn spin fluctuation rather than resulting from an optical orientation. At higher x, the formation times are of the same order of magnitude as found in previous studies on higher-dimensional systems. We also find that the exciton spin relaxation accelerates with increasing Mn concentration.

  8. Temperature and concentration-dependent relaxation of ferrofluids characterized with a high-Tc SQUID-based nuclear magnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Chang; Liu, Chieh-Wen; Liao, S. H.; Chen, Hsin-Hsien; Chen, M. J.; Chen, K. L.; Horng, Herng-Er; Yang, S. Y.; Wang, L. M.

    2012-05-01

    We investigated the relaxation of protons in magnetic fluids using a high-Tc SQUID magnetometer. It was found that the longitudinal relaxation rate, 1/T1, is slower than the transverse relaxation rate, 1/T2, for ferrofluids in the same field. This is due to the fact that the 1/T1 process involves returning the magnetization to the z-direction, which automatically involves the loss of magnetization in the x-y plane governed by the 1/T2 process. Additionally, 1/T1 and 1/T2 at high temperatures are slower than the corresponding relaxation rates at low temperatures, which is due to the enhanced Brownian motion of nanoparticles at high temperatures.

  9. Applicability of elliptic-relaxation method to free-surface turbulence

    NASA Astrophysics Data System (ADS)

    Yokojima, Satoshi; Shima, Nobuyuki

    2010-06-01

    The elliptic-relaxation method of Durbin (1993 J. Fluid Mech. 249 465-98), which has had remarkable success in predicting benchmark flows of many different types, is applied to prediction of free-surface turbulence for the first time. An appropriate free-surface boundary condition for the elliptic-relaxation equation is derived by taking account of the balance of dominant terms in the Reynolds-stress transport equation in the vicinity of a free surface. Test calculations for a fully developed turbulent open-channel flow are conducted. The flow consists of two kinds of impermeable boundaries, a solid wall and a free surface, and hence is quite suitable as a new benchmark flow. It is demonstrated that the proposed boundary condition does enable the elliptic-relaxation method to reproduce the correct surface-induced stress anisotropy and that the model properly describes the differences in features between wall-bounded flows and free-surface flows by its main quality in reproducing the non-local blocking effect, a kind of an elementary process of boundary-turbulence interaction. It is also found that the turbulent-transport term plays a central role in characterizing free-surface turbulence, which is therefore quite suitable for critical evaluation of the model performance.

  10. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    SciTech Connect

    Kekalo, I. B.; Mogil’nikov, P. S.

    2015-06-15

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.

  11. In-plane uniaxial magnetic anisotropy induced by anisotropic strain relaxation in high lattice-mismatched Dy/Sc superlattices

    NASA Astrophysics Data System (ADS)

    Benito, L.; Ballesteros, C.; Ward, R. C. C.

    2014-04-01

    We report on the magnetic and structural characterization of high lattice-mismatched [Dy2nm/SctSc] superlattices, with variable Sc thickness tSc= 2-6 nm. We find that the characteristic in-plane effective hexagonal magnetic anisotropy K66,ef reverses sign and undergoes a dramatic reduction, attaining values of ≈13-24 kJm-3, when compared to K66=-0.76 MJm-3 in bulk Dy. As a result, the basal plane magnetic anisotropy is dominated by a uniaxial magnetic anisotropy (UMA) unfound in bulk Dy, which amounts to ≈175-142 kJm-3. We attribute the large downsizing in K66,ef to the compression epitaxial strain, which generates a competing sixfold magnetoelastic (MEL) contribution to the magnetocrystalline (strain-free) magnetic anisotropy. Our study proves that the in-plane UMA is caused by the coupling between a giant symmetry-breaking MEL constant Mγ ,22≈1 GPa and a morphic orthorhombiclike strain ɛγ ,1≈10-4, whose origin resides on the arising of an in-plane anisotropic strain relaxation process of the pseudoepitaxial registry between the nonmagnetic bottom layers in the superstructure. This investigation shows a broader perspective on the crucial role played by epitaxial strains at engineering the magnetic anisotropy in multilayers.

  12. On a bivariate spectral relaxation method for unsteady magneto-hydrodynamic flow in porous media.

    PubMed

    Magagula, Vusi M; Motsa, Sandile S; Sibanda, Precious; Dlamini, Phumlani G

    2016-01-01

    The paper presents a significant improvement to the implementation of the spectral relaxation method (SRM) for solving nonlinear partial differential equations that arise in the modelling of fluid flow problems. Previously the SRM utilized the spectral method to discretize derivatives in space and finite differences to discretize in time. In this work we seek to improve the performance of the SRM by applying the spectral method to discretize derivatives in both space and time variables. The new approach combines the relaxation scheme of the SRM, bivariate Lagrange interpolation as well as the Chebyshev spectral collocation method. The technique is tested on a system of four nonlinear partial differential equations that model unsteady three-dimensional magneto-hydrodynamic flow and mass transfer in a porous medium. Computed solutions are compared with previously published results obtained using the SRM, the spectral quasilinearization method and the Keller-box method. There is clear evidence that the new approach produces results that as good as, if not better than published results determined using the other methods. The main advantage of the new approach is that it offers better accuracy on coarser grids which significantly improves the computational speed of the method. The technique also leads to faster convergence to the required solution.

  13. Relaxation in the glass former acetylsalicylic acid studied by deuteron magnetic resonance and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Nath, R.; El Goresy, T.; Geil, B.; Zimmermann, H.; Böhmer, R.

    2006-08-01

    Supercooled liquid and glassy acetylsalicylic acid was studied using dielectric spectroscopy and deuteron relaxometry in a wide temperature range. The supercooled liquid is characterized by major deviations from thermally activated behavior. In the glass the secondary relaxation exhibits the typical features of a Johari-Goldstein process. Via measurements of spin-lattice relaxation times the selectively deuterated methyl group was used as a sensitive probe of its local environments. There is a large difference in the mean activation energy in the glass with respect to that in crystalline acetylsalicylic acid. This can be understood by taking into account the broad energy barrier distribution in the glass.

  14. Coexisting static magnetic ordering and superconductivity in CeCu2.1Si2 found by muon spin relaxation

    NASA Technical Reports Server (NTRS)

    Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Schone, H. E.; Kempton, J. R.; Stronach, C. E.; Barth, S.; Gygax, F. N.; Hitti, B.; Schenck, A.

    1988-01-01

    Zero- and longitudinal-field muon spin relaxation measurements on a heavy fermion system CeCu2.1 Si2 have revealed an onset of static magnetic ordering below T(M) approximately 0.8 K, which coexists with superconductivity below T(c) = 0.7 K. The line shapes of the observed muon spin depolarization functions suggest an ordering in either spin glass or incommensurate spin-density-wave state, with a small averaged static moment of the order of 0.1 micro-B per formula unit at T approaches 0.

  15. Study of electronic structure and magnetism at the relaxed SrTiO3/LaAlO3 interface

    NASA Astrophysics Data System (ADS)

    Ghosh, Soham; Manousakis, Efstratios

    2013-03-01

    The SrTiO3/LaAlO3 interface has been found experimentally to be metallic and magnetic, with bandstructure calculations linking both phenomena to polar catastrophe and surface oxygen vacancies. In this work, we use LDA+U to study the properties of this interface, allowing the ionic structure to be fully relaxed, and investigate the 2-dimensional nature of the electron gas formed at the junction. We present an effort to understand the role of electron-electron correlation on the interfacial collective phenomena, by constructing extended Hubbard-like models based on bandstructure calculation.

  16. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    DOE PAGES

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...

    2015-06-16

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less

  17. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    SciTech Connect

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; Brommer, Peter; Mousseau, Normand

    2015-06-16

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion paths and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.

  18. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    NASA Astrophysics Data System (ADS)

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand

    2015-06-01

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion paths and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. This study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.

  19. A New Lagrangian Relaxation Method Considering Previous Hour Scheduling for Unit Commitment Problem

    NASA Astrophysics Data System (ADS)

    Khorasani, H.; Rashidinejad, M.; Purakbari-Kasmaie, M.; Abdollahi, A.

    2009-08-01

    Generation scheduling is a crucial challenge in power systems especially under new environment of liberalization of electricity industry. A new Lagrangian relaxation method for unit commitment (UC) has been presented for solving generation scheduling problem. This paper focuses on the economical aspect of UC problem, while the previous hour scheduling as a very important issue is studied. In this paper generation scheduling of present hour has been conducted by considering the previous hour scheduling. The impacts of hot/cold start-up cost have been taken in to account in this paper. Case studies and numerical analysis presents significant outcomes while it demonstrates the effectiveness of the proposed method.

  20. Determination of diffusion coefficients in polypyrrole thin films using a current pulse relaxation method

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.

    1987-01-01

    The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.

  1. Solution to the Eddy-Current Problem for Type-II Superconductors by Relaxation Method

    NASA Astrophysics Data System (ADS)

    Janíková, Edita; Slodička, Marián

    2008-09-01

    The fast developing industrial applications of superconductors require rigorous mathematical models of their physical behaviour and efficient numerical methods to solve them. We propose and study theoretically a new approximation scheme to solve the 3D eddy-current problem of diffusion of the electric field in type-II superconductors. The method is based on the relaxation principle, where the nonlinear time- and space-dependent partial differential equation (PDE) is split into a linear time-independent PDE coupled with a nonlinear equation involving no partial derivatives.

  2. Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating

    NASA Astrophysics Data System (ADS)

    Tretiak, O. Yu.; Blanchard, J. W.; Budker, D.; Olshin, P. K.; Smirnov, S. N.; Balabas, M. V.

    2016-03-01

    The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements compared to a bare glass surface by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonance investigations of the influence of alkali metal vapor (Cs or K) on an alpha-olefin, 1-nonadecene coating the inner surface of a glass cell. It was found that during the curing process, the alkali metal catalyzes migration of the carbon-carbon double bond, yielding a mixture of cis- and trans-2-nonadecene.

  3. Magnetic and diffusive nature of LiFePO4 investigated by muon spin rotation and relaxation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Harada, Masashi; Kamazawa, Kazuya; Ofer, Oren; Månsson, Martin; Brewer, Jess H.; Ansaldo, Eduardo J.; Chow, Kim H.; Ikedo, Yutaka; Miyake, Yasuhiro; Ohishi, Kazuki; Watanabe, Isao; Kobayashi, Genki; Kanno, Ryoji

    2011-08-01

    In order to elucidate the magnetism and Li diffusion in LiFePO4, we have measured muon-spin rotation and relaxation (μ+SR) spectra for the polycrystalline LiFePO4 sample in the temperature range between 1.8 and 500 K. Below TN˜52 K, two oscillatory signals together with one fast relaxation signal were clearly found in the zero-field (ZF) μ+SR spectrum. The three signals are reasonably explained using an antiferromagnetic (AF) spin structure proposed by neutron measurements, because electrostatic potential calculations suggests multiple different muon sites in the LiFePO4 lattice. However, the AF ordered moment estimated from μ+SR was about 3/4 of that reported by neutron, probably due to a different time window between the two techniques. In the paramagnetic state, ZF and longitudinal-field (LF) μ+SR spectra exhibited a dynamic nuclear field relaxation. From the temperature dependence of the field fluctuation rate, a diffusion coefficient of Li+ ions (DLi) at 300 K was estimated about 3.6×10-10 cm2/s, assuming that diffusing Li+ ions jump between the regular site and interstitial sites.

  4. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.; Clem, J.R.

    1983-10-11

    Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.

  5. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, J.R.

    1982-07-09

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  6. Superconducting magnetic shielding apparatus and method

    DOEpatents

    Clem, John R.; Clem, John R.

    1983-01-01

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  7. Data-parallel lower-upper relaxation method for reacting flows

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.; Wright, Michael J.; Mcdonald, Jeffrey D.

    1994-01-01

    The implicit lower-upper symmetric Gauss-Seidel (LU-SGS) method of Yoon and Jameson is modified for use on massively parallel computers. The method has been implemented on the Thinking Machines CM-5 and the MasPar MP-1 and MP-2, where large percentages of the theoretical peak floating point performance are obtained. It is shown that the new data-parallel LU relaxation method has better convergence properties than the original method for two different inviscid compressible flow simulations. The convergence is also improved for five-species reacting air computations. The performance of the method on various partitions of the CM-5 and on the MasPar computers is discussed. The new method shows promise for the efficient simulation of very large perfect gas and reacting flows.

  8. Time-parallel iterative methods for parabolic PDES: Multigrid waveform relaxation and time-parallel multigrid

    SciTech Connect

    Vandewalle, S.

    1994-12-31

    Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.

  9. Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling.

    PubMed

    Metaxas, P J; Stamps, R L; Jamet, J-P; Ferré, J; Baltz, V; Rodmacq, B

    2012-01-18

    We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.

  10. Study of Electron Distribution and Magnetism at the Relaxed SrTiO3/LaAlO3 Interface

    NASA Astrophysics Data System (ADS)

    Ghosh, Soham; Manousakis, Efstratios

    2014-03-01

    The presence of a two-dimensional electron gas (2DEG) at the interface between two insulators SrTiO3 and LaAlO3 makes it an interesting topic of condensed matter research. It exhibits a variety of properties such as high mobility, magnetism and superconductivity. Bandstructure calculations have linked the presence of the electon gas to polar catastrophe and oxygen vacancy, but the value of the carrier density and its distribution is a matter of debate. In the present work, we use Density Functional Theory to study the electron density distribution and the effect of ionic relaxations on the properties of the 2DEG. In order to understand the nature of magnetism, we construct localized Wannier functions from Bloch states given by DFT and use them to calculate hopping matrix elements and exchange integrals, which act as parameters in a model to understand electron-electron correlation at the interface.

  11. Systematic variation of magnetic-field penetration depth in high-T(c) superconductors studied by muon spin relaxation

    NASA Technical Reports Server (NTRS)

    Uemura, Y. J.; Emery, V. J.; Moodenbaugh, A. R.; Suenaga, M.; Johnston, D. C.; Jacobson, A. J.; Lewandowski, J. T.; Brewer, J. H.; Kiefl, R. F.; Kreitzman, S. R.

    1988-01-01

    The muon relaxation rate (sigma) was measured in the high critical temperature superconductors YBa2Cu3O(x) for x = 6.66, 6.95, 7.0, and La1.85 Sr0.15 CuO4 in transverse external magnetic fields 1 is approximately 4kG. A simple relation is found which connects the transition temperature T(c), the magnetic field penetration depth lambda(L), the carrier concentration n(s) and the effective mass m* as T(c) varies as sigma which varies as 1/lambda(L) squared which varies as n(s)/m*. The linear dependence T(c) varies as n(s)/m* suggests a high energy scale for the coupling between superconducting carriers.

  12. Systematic variation of magnetic-field penetration depth in high-Tc superconductors studied by muon-spin relaxation

    NASA Technical Reports Server (NTRS)

    Uemura, Y. J.; Emery, V. J.; Moodenbaugh, A. R.; Suenaga, M.; Johnston, D. C.

    1988-01-01

    The muon relaxation rate (sigma) was measured in the high critical temperature superconductors YBa2Cu3O(x) for x = 6.66, 6.95, 7.0, and La1.85 SrO.15 CuO4 in transverse external magnetic fields 1 is approximately 4 kG. A simple relation is found which connects the transition temperature T(c), the magnetic field penetration depth lambda(L), the carrier concentration n(s) and the effective mass m* as T(c) varies as sigma which varies as 1/lambda(L) squared which varies as n(s)/m*. The linear dependence T(c) varies as n(s)/m* suggests a high energy scale for the coupling between superconducting carriers.

  13. Incommensurate magnetic order in Ag2NiO2 studied with muon-spin-rotation and relaxation spectroscopy

    NASA Astrophysics Data System (ADS)

    Sugiyama, J.; Ikedo, Y.; Mukai, K.; Brewer, J. H.; Ansaldo, E. J.; Morris, G. D.; Chow, K. H.; Yoshida, H.; Hiroi, Z.

    2006-06-01

    The nature of the magnetic transition of the half-filled triangular antiferromagnet Ag2NiO2 with TN=56K was studied with positive muon-spin-rotation and relaxation (μ+SR) spectroscopy. Zero field μ+SR measurements indicate the existence of a static internal magnetic field at temperatures below TN . Two components with slightly different precession frequencies and wide internal-field distributions suggest the formation of an incommensurate antiferromagnetic order below 56K . This implies that the antiferromagnetic interaction is predominant in the NiO2 plane in contrast to the case of the related compound NaNiO2 . An additional transition was found at ˜22K by both μ+SR and susceptibility measurements. It was also clarified that the transition at ˜260K observed in the susceptibility of Ag2NiO2 is induced by a purely structural transition.

  14. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses

    PubMed Central

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-01-01

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. PMID:28223697

  15. New strategy to construct single-ion magnets: a unique Dy@Zn₆ cluster exhibiting slow magnetic relaxation.

    PubMed

    Xiong, Gang; Qin, Xiang-Yang; Shi, Peng-Fei; Hou, Yin-Ling; Cui, Jian-Zhong; Zhao, Bin

    2014-04-25

    Two unique heptanuclear clusters Ln@Zn6 (Ln = Dy (1), Er (2)) were structurally and magnetically characterized. Each Dy(3+)/Er(3+) is located in a nona-coordinate D(3h) coordination environment, and is encapsulated in a diamagnetic Zn6 cage. Compound 1 exhibits single-ion magnetic behavior, and is the first example of a single-ion magnet (SIM) constructed through embedding one magnetic anisotropic metal ion into a diamagnetic cage.

  16. Performance analysis of successive over relaxation method for solving glioma growth model

    NASA Astrophysics Data System (ADS)

    Hussain, Abida; Faye, Ibrahima; Muthuvalu, Mohana Sundaram

    2016-11-01

    Brain tumor is one of the prevalent cancers in the world that lead to death. In light of the present information of the properties of gliomas, mathematical models have been developed by scientists to quantify the proliferation and invasion dynamics of glioma. In this study, one-dimensional glioma growth model is considered, and finite difference method is used to discretize the problem. Then, two stationary methods, namely Gauss-Seidel (GS) and Successive Over Relaxation (SOR) are used to solve the governing algebraic system. The performance of the methods are evaluated in terms of number of iteration and computational time. On the basis of performance analysis, SOR method is shown to be more superior compared to GS method.

  17. An iterative linear method for calculation of spin-lattice relaxation times

    NASA Astrophysics Data System (ADS)

    Crouch, Ronald; Hurlbert, Stuart; Ragouzeos, Aris

    A simple algorithm for the calculation of spin-lattice relaxation times which can be run in a programmable calculator is presented. As was suggested by H. Hanssum et al., an experimentally determined inhomogeneity parameter ( I) can be used with this procedure to compensate for imperfections in the RF field. The effects of variation of pulse width and repetition rate on both I and T1 are investigated with simulated and experimental data sets. The superiority of this approach over three-parameter nonlinear fitting methods is demonstrated by comparisons between data sets generated with different pulse flip angles and sample volumes.

  18. Structural Dependence of the Ising-type Magnetic Anisotropy and of the Relaxation Time in Mononuclear Trigonal Bipyramidal Co(II) Single Molecule Magnets.

    PubMed

    Shao, Feng; Cahier, Benjamin; Rivière, Eric; Guillot, Régis; Guihéry, Nathalie; Campbell, Victoria E; Mallah, Talal

    2017-02-06

    This paper describes the correlation between Ising-type magnetic anisotropy and structure in trigonal bipyramidal Co(II) complexes. Three sulfur-containing trigonal bipyramidal Co(II) complexes were synthesized and characterized. It was shown that we can engineer the magnitude of the Ising anisotropy using ligand field theory arguments in conjunction with structural parameters. To prepare this series of compounds, we used, on the one hand, a tetradentate ligand containing three sulfur atoms and one amine (NS3(tBu)) and on the other hand three different axial ligands, namely, Cl(-), Br(-), and NCS(-). The organic ligand imposes a trigonal bipyramidal arrangement with the three sulfur atoms lying in the trigonal plane with long Co-S bond distances. The magnetic properties of the compounds were measured, and ab initio calculations were used to analyze the anisotropy parameters and perform magneto-structural correlations. We demonstrate that a smaller axial zero-field splitting parameter leads to slower relaxation time when the symmetry is strictly axial, while the presence of very weak rhombicity decreases the energy barrier and speeds the relaxation of the magnetization.

  19. Using bio-functionalized magnetic nanoparticles and dynamic nuclear magnetic resonance to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection.

    PubMed

    Liao, Shu-Hsien; Chen, Kuen-Lin; Wang, Chun-Min; Chieh, Jen-Jie; Horng, Herng-Er; Wang, Li-Min; Wu, C H; Yang, Hong-Chang

    2014-11-12

    In this work, we report the use of bio-functionalized magnetic nanoparticles (BMNs) and dynamic magnetic resonance (DMR) to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection. The biomarkers are the human C-reactive protein (CRP) while the BMNs are the anti-CRP bound onto dextran-coated Fe3O4 particles labeled as Fe3O4-antiCRP. It was found the time-dependent spin-spin relaxation time, T2, of protons decreases as time evolves. Additionally, the ΔT2 of of protons in BMNs increases as the concentration of CRP increases. We attribute these to the formation of the magnetic clusters that deteriorate the field homogeneity of nearby protons. A sensitivity better than 0.1 μg/mL for assaying CRP is achieved, which is much higher than that required by the clinical criteria (0.5 mg/dL). The present MR-detection platform shows promise for further use in detecting tumors, viruses, and proteins.

  20. Study of anisotropy in nuclear magnetic resonance relaxation times of water protons in skeletal muscle.

    PubMed Central

    Kasturi, S R; Chang, D C; Hazlewood, C F

    1980-01-01

    The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530

  1. Nuclear magnetic relaxation of3He gas. I. Pure3He

    NASA Astrophysics Data System (ADS)

    Lusher, C. P.; Secca, M. F.; Richards, M. G.

    1988-07-01

    Longitudinal relaxation times T 1 have been measured in3He gas, using pulsed NMR, for number densities between 3 × 1023 and 6 × 1025 spins m-3 and temperatures between 0.6 and 15 K. Relaxation takes place on or near the walls of the Pyrex sample cells and measurements of T 1 give information about the surface phases. A cryogenic wall coating of solid molecular hydrogen was found to delay the formation of a3He monolayer on cooling, and T 1 measurements were consistent with a binding energy of ˜13 K for a3He atom to a hydrogen surface. At temperatures below ˜2 K a completed3He monolayer forms on the H2 coating. No variation of the areal density of monolayer completion with bulk number density at fixed temperature could be observed and the completed3He monolayer is thought to be a dense fluid. Baking the Pyrex sample cells under vacuum and using an rf discharge in3He gas to clean the walls before sealing in the sample gas were found to increase the observed T1's by up to three orders of magnitude. Once a3He monolayer has formed on the H2 surface in these cleaned, sealed cells, the dipolar interaction between adsorbed spins is thought to be the dominant source of longitudinal relaxation. The data are consistent with a dipolar relaxation model with a correlation time of ˜2 × 10-9 sec. This time is long compared to the value of 10-11 or 10-12 sec in the 3D fluid. This suggests that if the surface phase is a 2D fluid and the dipolar mechanism is indeed the dominant one, then the atoms in the 2D fluid are less mobile than in three dimensions. This is consistent with recent susceptibility measurements.

  2. Two-fluid Magnetic Relaxation in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Triana, Joseph; Almagri, Af; McCollam, Kj; Sarff, Js; Sovinec, Cr

    2016-10-01

    Recent measurements and extended MHD simulations expose the importance of two-fluid physics in the relaxation and self-organization of the current and momentum profiles in RFP plasmas. A hallmark of relaxation is that the inductive electric field is not balanced by resistive dissipation, prompting the study of fluctuation-induced emfs in the generalized Ohm's law, E- ηJ =- +/ne, the two terms on the right known as the MHD and Hall dynamo terms, respectively. The Hall emf is measured in the outer half of the MST plasma minor radius using an armored deep-insertion probe. The emf matches previous measurements in the edge (r/a>0.8) but in the new region examined (0.8>r/a>0.6) it is much larger than E- ηJ, implying the MHD dynamo must also be large and oppositely directed. Recent nonlinear simulations that include two-fluid effects using the extended-MHD NIMROD code show complex radial structure for the emf terms, but the size of the measured Hall emf is much larger than predicted by the simulations. In the two-fluid model, the Hall dynamo couples to the parallel momentum as the mean-field Maxwell stress. The simulations predict relaxation of the parallel flow profiles that is also qualitatively consistent with measurements in MST plasmas. Work supported by US DoE and NSF.

  3. Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization.

    PubMed

    Niu, Xiao-Dong; Hyodo, Shi-Aki; Munekata, Toshihisa; Suga, Kazuhiko

    2007-09-01

    It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.

  4. Superconducting quantum interference device-based magnetic nanoparticle relaxation measurement as a novel tool for the binding specific detection of biological binding reactions (abstract)

    NASA Astrophysics Data System (ADS)

    Kötitz, R.; Bunte, T.; Weitschies, W.; Trahms, L.

    1997-04-01

    Biological binding reactions play a key role in biology and medicine. Their detection is usually achieved by labeling one of the reaction components with radioisotopes, enzymes, or fluorescence dyes. In particular assays, using the specificity of the reaction between antibodies and antigens are of outstanding importance. Most of these assays are hampered by the drawback that the label generates a signal that is not influenced by the binding reaction. Therefore, separation procedures between bound and unbound reaction components are mostly inevitable. Here, we present the use of superconducting quantum interference device (SQUID)-based magnetic nanoparticle relaxation measurement as a novel tool for the quantitative determination of biological binding reactions, where magnetic nanoparticles are used as labels to antibodies. The rotational diffusion of the label is hindered by the binding of the antibody to the antigen, which is adsorbed to the sample tube wall. As a result, the observed relaxation of its magnetization is driven by the internal reorientation of the magnetic moment of the nanoparticle (Néel relaxation). By this, the measured signal is specific for the magnetically labeled antibody bound to the antigen. We could show that already at a very early stage of technical development SQUID-based magnetic nanoparticle relaxation shows a higher sensitivity as a comparable standard assay technique (enzyme linked immunosorbent assay), without the need of any separation step between bound and unbound reaction components. Magnetic nanoparticle relaxation amplitudes as small as 500 fT were detectable. This corresponds to a magnetic moment of m=1.6×10-10 A m2 or, e.g., some 5×106 spherical magnetic iron oxide nanoparticles of 50 nm diameter.

  5. Glycans in magnetic resonance imaging: determinants of relaxivity to smart agents, and potential applications in biomedicine.

    PubMed

    Cipolla, Laura; Gregori, Maria; So, Po-Wah

    2011-01-01

    Carbohydrate chemistry and glycobiology have become a "hot" subject. These extensive, complex structures serve essential roles in cell surface phenomena, but we are only beginning to understand what some of these functions are; any advances in the development of synthetic and/or analytical tools for glycobiology are extremely useful for our understanding of the roles of carbohydrates in biology, and as biomarkers of physiological/pathological states. This review provides an outlook of the potential of carbohydrate chemistry/biology in magnetic resonance imaging (MRI), a major important and prominent technique in diagnostic clinical medicine and biomedical research. During the last 30 years, MRI has developed from an intriguing research project to an essential diagnostic method in the clinic. Although MRI contrast in endogenous tissues provides excellent sensitivity for detecting subtle changes in anatomy and function, MRI still has poor specificity for attributing image contrast to specific biological processes. To overcome this limitation, MRI methods are being developed that induce changes in MR image contrast in response to molecular compositions and functions that serve as early biomarkers of pathologies. Carbohydrates with their intriguing chemistry, not only can provide structures for novel MRI probes for imaging specific biological processes, but can themselves provide novel targets/biomarkers. For example, the glycan structure can simply provide a molecular scaffold for modulating the physicochemical properties of the imaging contrast agent, or can be used for the design of novel MR agents with the ability to disclose relevant physiological or pathological cellular events.

  6. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1990-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

  7. FORCED FIELD EXTRAPOLATION: TESTING A MAGNETOHYDRODYNAMIC (MHD) RELAXATION METHOD WITH A FLUX-ROPE EMERGENCE MODEL

    SciTech Connect

    Zhu, X. S.; Wang, H. N.; Du, Z. L.; Fan, Y. L.

    2013-05-10

    We undertake an attempt to reconstruct the Sun's non-force-free magnetic field. The solar corona is often considered to be magnetohydrostatic. We solve the full MHD equations with a semi-realistic atmosphere model to attain this stationary state. Our method is tested with a Sun-like model which simulates the emergence of a magnetic flux rope passing from below the photosphere into the corona. Detailed diagnostics shows that our method can model the forced field more successfully than the optimization and potential method, but it still needs to be applied to real data.

  8. Magnetic field penetration depth of La(1.85)Sr(0.15)CuO4 measured by muon spin relaxation

    NASA Technical Reports Server (NTRS)

    Kossler, W. J.; Kempton, J. R.; Yu, X. H.; Schone, H. E.; Uemura, Y. J.

    1987-01-01

    Muon-spin-relaxation measurements have been performed on a high-Tc superconductor La(1.85)Sr(0.15)CuO4. In an external transverse magnetic field of 500 G, a magnetic field penetration depth of 2000 A at T = 10 K has been determined from the muon-spin-relaxation rate which increased with decreasing temperature below Tc. From this depth and the Pauli susceptibility, the superconducting carrier density is estimated at 3 x 10 to the 21st per cu cm. The zero-field relaxation rates above and below Tc were equal, which suggests that the superconducting state in this sample is not associated with detectable static magnetic ordering.

  9. Bulk permittivity, low frequency relaxation and the magnetic properties of Pb(Fe½Nb½)O3 ceramics.

    PubMed

    Mishra, R K; Choudhary, R N P; Banerjee, A

    2010-01-20

    A Pb(Fe(½)Nb(½))O(3) ceramic sample was prepared through a high temperature solid-state reaction technique. The formation of a single-phase perovskite compound was confirmed by an x-ray diffraction technique. Dielectric and impedance parameters were measured as a function of frequency (10(2)-10(6) Hz) at different temperatures (28-200 °C). The results were described using an equivalent circuit model and by extending the universal capacitor concept introduced by Jonscher. Bulk permittivity of the material and the power law exponent (extracted from impedance data) exhibits an anomaly at a particular temperature related to the ferroelectric-paraelectric transition. A slow relaxation process has been observed in the vicinity of the transition temperature. Temperature dependent magnetization (2-300 K) was measured at different magnetic fields in both zero-field-cooled (ZFC) and field-cooled (FC) modes. An antiferromagnetic transition was observed at 158 K but an unusual increase in magnetization below this transition indicates the onset of weak ferromagnetism at low temperature in this system. Nonlinear M-H and a finite opening in the hysteresis loop at 2 K substantiate the presence of ferromagnetic interactions. Significantly, a thermomagnetic history-dependent feature is observed below 9 K. The ZFC magnetization shows a sharp fall and it bifurcates from the monotonically increasing FC counterpart on decreasing temperature. This temperature, where ZFC magnetization shows a sharp peak, decreases with the increase in measurement field and it indicates the presence of a metastable magnetic state at low temperature.

  10. A Study of Successive Over-relaxation Method Parallelization over Modern HPC Languages

    SciTech Connect

    Mittal, Sparsh

    2014-01-01

    Successive over-relaxation (SOR) is a computationally intensive, yet extremely important iterative solver for solving linear systems. Due to recent trends of exponential growth in amount of data generated and increasing problem sizes, serial platforms have proved to be insucient in providing the required computational power. In this paper, we present parallel implementations of red-black SOR method using three modern programming languages namely Chapel, D and Go. We employ SOR method for solving 2D steady-state heat conduction problem. We discuss the optimizations incorporated and the features of these languages which are crucial for improving the program performance. Experiments have been performed using 2, 4, and 8 threads and performance results are compared with serial execution. The analysis of results provides important insights into working of SOR method.

  11. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy

    DOE PAGES

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; ...

    2016-12-07

    We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A)2[Co(NO3)4] with different countercations, Ph4P+ (1), MePh3P+ (2), and Ph4As+ (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to the zero-field splitting (2(D2 + 3E2)1/2) from 22.5(2) cm–1 inmore » 1 to 26.6(3) cm–1 in 2 and 11.1(5) cm–1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm–1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.« less

  12. The effect of progressive muscle relaxation method on test anxiety in nursing students

    PubMed Central

    Zargarzadeh, Maryam; Shirazi, Maryam

    2014-01-01

    Background: Concerning the prevalence of test anxiety among nursing students and presence of stress in nursing education years, this study was conducted to determine the effect of progressive muscle relaxation method on test anxiety among nursing students of Isfahan University of Medical Sciences in 2013. Materials and Methods: This was a quasi-experimental study conducted in three stages on 49 male and female nursing students divided into two groups (study and control). In the pre-test stage, demographic data and Sarason anxiety questionnaires were filled by 94 students (of terms 3 and 4). Then, in the intervention stage, the students having test anxiety were assigned to two groups (study and control), and the progressive muscle relaxation method was performed in the experiment group in four sessions. Then, the students did this method two times a day until final exams, immediately following which they filled the self-reported checklists. On the first day of the final exams, test anxiety questionnaire was filled by the two groups again. The collected data were analyzed by the statistical tests, i.e. χ2, paired t-test, independent sample t-test, Mann–Whitney and Wilcoxon tests, using SPSS 18. Results: Independent t-test showed a significant difference in the mean scores of test anxiety after intervention between the two groups of study and control (P = 0.00), but this difference was not significant before intervention (P = 0.76). Also, in the study group, there was a significant difference in the mean scores of test anxiety before and after intervention (P = 0.00), but this difference was not significant in the control group (P = 0.09). Mann–Whitney test showed no significant difference in categorization of test anxiety scores before intervention in the study and control groups (P = 0.60), but the difference was significant after intervention (P = 0.00). Wilcoxon test showed a significant difference in categorization of test anxiety scores in the study group

  13. Suppressing of slow magnetic relaxation in tetracoordinate Co(II) field-induced single-molecule magnet in hybrid material with ferromagnetic barium ferrite

    PubMed Central

    Nemec, Ivan; Herchel, Radovan; Trávníček, Zdeněk

    2015-01-01

    The novel field-induced single-molecule magnet based on a tetracoordinate mononuclear heteroleptic Co(II) complex involving two heterocyclic benzimidazole (bzi) and two thiocyanido ligands, [Co(bzi)2(NSC)2], (CoL4), was prepared and thoroughly characterized. The analysis of AC susceptibility data resulted in the spin reversal energy barrier U = 14.7 cm−1, which is in good agreement with theoretical prediction, Utheor. = 20.2 cm−1, based on axial zero-field splitting parameter D = −10.1 cm−1 fitted from DC magnetic data. Furthermore, mutual interactions between CoL4 and ferromagnetic barium ferrite BaFe12O19 (BaFeO) in hybrid materials resulted in suppressing of slow relaxation of magnetization in CoL4 for 1:2, 1:1 and 2:1 mass ratios of CoL4 and BaFeO despite the lack of strong magnetic interactions between two magnetic phases. PMID:26039085

  14. Magnetic method for stimulating transport in fluids

    DOEpatents

    Martin, James E.; Solis, Kyle J.

    2016-10-18

    A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.

  15. Simulation of protons energy relaxation in electron gas by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Bobrov, Andrey; Bronin, Sergey; Maiorov, Sergey; Manykin, Eduard; Zelener, Boris B.; Zelener, Boris V.

    2016-09-01

    Our work is concerned with simulation of heavy charged particles energy relaxation in electron gas. The research was stimulated by antihydrogen experiments that are held in conditions far from conditions of well studied nuclear fusion or gas discharge experiments. We used numerical simulation as a tool to test existing theoretical approaches to classical Coulomb system kinetics. By means of molecular dynamics method we calculated dynamics of energy relaxation of protons in ultracold electron gas. We considered non neutral plasma when number of electrons is much greater than the number of protons. We have shown that boundary conditions have significant influence on simulation results. Two types of boundary conditions were considered -- periodic boundary conditions and reflecting walls. The influence of number of particles in the simulation cell was studied. The problem of Coulomb potential modification on small distances was also considered. Simulations were performed for electron densities 108 cm-3, initial temperatures for electrons is equal 10 K and for protons 100 K. The work was supported by Russian Science Foundation grant RNF 14-19-01492.

  16. Effects of fiber type and diet on nuclear magnetic resonance (NMR) relaxation times of skeletal muscle

    SciTech Connect

    Mardini, I.A.; McCarter, R.J.; Fullerton, G.D.

    1986-03-01

    NMR studies of muscle have typically used muscles of mixed fiber composition and have not taken into account the metabolic state of the host. Samples of psoas (type IIB fibers) and soleus (type I fibers) muscles were obtained from 3 groups of rabbits: group C, fed regular chow; group DK fed a potassium deficient diet; and group HC fed a high cholesterol diet. The T/sub 1/ and T/sub 2/ relaxation times of psoas and soleus muscles were not significantly different for group C. Following dietary manipulation, (groups KD and HC), however, the relaxation times of the psoas and soleus muscles were significantly different. There was also a significant difference in water content of psoas muscles in groups KD and HC vs. group C but the observed differences in NMR results could be only partially accounted for by the shift in water content. The authors results suggest that (1) changes in ion or cholesterol concentration are capable of inducing changes in water bonding and structuring in muscle tissues; (2) diet must be added to the growing list of environmental factors that can cause NMR contrast changes; (3) selective use of muscles rich in one fiber type or another for NMR measurements could provide either control or diagnostic information, related to changes in body composition.

  17. Design and synthesis of calcium responsive magnetic resonance imaging agent: Its relaxation and luminescence studies.

    PubMed

    Tanwar, Jyoti; Datta, Anupama; Chauhan, Kanchan; Kumaran, S Senthil; Tiwari, Anjani K; Kadiyala, K Ganesh; Pal, Sunil; Thirumal, M; Mishra, Anil K

    2014-07-23

    Calcium concentration modulation both inside and outside cell is of considerable interest for nervous system function in normal and pathological conditions. MRI has potential for very high spatial resolution at molecular/cellular level. Design, synthesis and evaluation of Gd-DO3A-AME-NPHE, a calcium responsive MRI contrast agent is presented. The probe is comprised of a Gd(3+)-DO3A core coupled to iminoacetate coordinating groups for calcium induced relaxivity switching. In the absence of Ca(2+) ions, inner sphere water binding to the Gd-DO3A-AME-NPHE is restricted with longitudinal relaxivity, r1 = 4.37 mM(-1) s(-1) at 4.7 T. However, addition of Ca(2+) triggers a marked enhancement in r1 = 6.99 mM(-1) s(-1) at 4.7 T (60% increase). The construct is highly selective for Ca(2+) over competitive metal ions at extracellular concentration. The r1 is modulated by changes in the hydration number (0.2 to 1.05), which was confirmed by luminescence emission lifetimes of the analogous Eu(3+) complex. T1 phantom images establish the capability of complex of visualizing changes in [Ca(2+)] by MRI.

  18. Conformational flexibility of a human immunoglobulin light chain variable domain by relaxation dispersion nuclear magnetic resonance spectroscopy: implications for protein misfolding and amyloid assembly.

    PubMed

    Mukherjee, Sujoy; Pondaven, Simon P; Jaroniec, Christopher P

    2011-07-05

    The conformational flexibility of a human immunoglobulin κIV light-chain variable domain, LEN, which can undergo conversion to amyloid under destabilizing conditions, was investigated at physiological and acidic pH on a residue-specific basis by multidimensional solution-state nuclear magnetic resonance (NMR) methods. Measurements of backbone chemical shifts and amide (15)N longitudinal and transverse spin relaxation rates and steady-state nuclear Overhauser enhancements indicate that, on the whole, LEN retains its native three-dimensional fold and dimeric state at pH 2 and that the protein backbone exhibits limited fast motions on the picosecond to nanosecond time scale. On the other hand, (15)N Carr--Purcell--Meiboom--Gill (CPMG) relaxation dispersion NMR data show that LEN experiences considerable slower, millisecond time scale dynamics, confined primarily to three contiguous segments of about 5-20 residues and encompassing the N-terminal β-strand and complementarity determining loop regions 2 and 3 in the vicinity of the dimer interface. Quantitative analysis of the CPMG relaxation dispersion data reveals that at physiological pH these slow backbone motions are associated with relatively low excited-state protein conformer populations, in the ~2-4% range. Upon acidification, the minor conformer populations increase significantly, to ~10-15%, with most residues involved in stabilizing interactions across the dimer interface displaying increased flexibility. These findings provide molecular-level insights about partial protein unfolding at low pH and point to the LEN dimer dissociation, initiated by increased conformational flexibility in several well-defined regions, as being one of the important early events leading to amyloid assembly.

  19. Magnetic flux reconstruction methods for shaped tokamaks

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Wa

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the two dimensional nonlinear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p' and FF' functions). The current profile parameters are treated as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green's function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multilayer perception neural network as an interface, and the volume integration of plasma current density using Green's functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data.

  20. Magnetic flux reconstruction methods for shaped tokamaks

    SciTech Connect

    Tsui, Chi-Wa

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p` and FF` functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green`s function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green`s functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising.

  1. Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method

    NASA Astrophysics Data System (ADS)

    Kurz, Ph.; Förster, F.; Nordström, L.; Bihlmayer, G.; Blügel, S.

    2004-01-01

    The massively parallelized full-potential linearized augmented plane-wave bulk and film program FLEUR for first-principles calculations in the context of density functional theory was adapted to allow calculations of materials with complex magnetic structures—i.e., with noncollinear spin arrangements and incommensurate spin spirals. The method developed makes no shape approximation to the charge density and works with the continuous vector magnetization density in the interstitial and vacuum region and a collinear magnetization density in the spheres. We give an account of the implementation. Important technical aspects, such as the formulation of a constrained local moment method in a full-potential method that works with a vector magnetization density to deal with specific preselected nonstationary-state spin configurations, the inclusion of the generalized gradient approximation in a noncollinear framework, and the spin-relaxation method are discussed. The significance and validity of different approximations are investigated. We present examples to the various strategies to explore the magnetic ground state, metastable states, and magnetic phase diagrams by relaxation of spin arrangements or by performing calculations for constraint spin configurations to invest the functional dependence of the total energy and magnetic moment with respect to external parameters.

  2. Magnetic Moments and Ordered States in Pyrochlore Iridates Nd2Ir2O7 and Sm2Ir2O7 Studied by Muon-Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Asih, Retno; Adam, Noraina; Sakinah Mohd-Tajudin, Saidah; Puspita Sari, Dita; Matsuhira, Kazuyuki; Guo, Hanjie; Wakeshima, Makoto; Hinatsu, Yukio; Nakano, Takehito; Nozue, Yasuo; Sulaiman, Shukri; Ismail Mohamed-Ibrahim, Mohamad; Biswas, Pabitra Kumar; Watanabe, Isao

    2017-02-01

    Magnetic-ordered states of the pyrochlore iridates Nd2Ir2O7 (Nd227) and Sm2Ir2O7 (Sm227), showing metal-insulator transitions at 33 and 117 K, respectively, were studied by both the muon-spin-relaxation (μSR) method and density functional theory (DFT) calculations. A long-range magnetic ordering of Ir moments appeared in conjunction with the metal insulator transition, and additional long-range-ordered states of Nd/Sm moments were confirmed at temperatures below about 10 K. We found that the all-in all-out spin structure most convincingly explained the present μSR results of both Nd227 and Sm227. Observed internal fields were compared with values derived from DFT calculations. The lower limits of the sizes of magnetic moments were estimated to be 0.12 μB and 0.2 μB for Ir and Nd moments in Nd227, and 0.3 μB and 0.1 μB for Ir and Sm moments in Sm227, respectively. Further analysis indicated that the spin coupling between Ir and Nd/Sm moments was ferromagnetic for Nd227 and antiferromagnetic for Sm227.

  3. Geometric Magnetic Frustration in Li3Mg2OsO6 Studied with Muon Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Carlo, J. P.; Derakhshan, S.; Greedan, J. E.

    Geometric frustration manifests when the spatial arrangement of ions inhibits magnetic order. Typically associated with antiferromagnetically (AF)-correlated moments on triangular or tetrahedral lattices, frustration occurs in a variety of structures and systems, resulting in rich phase diagrams and exotic ground states. As a window to exotic physics revealed by the cancellation of normally dominant interactions, the research community has taken great interest in frustrated systems. One family of recent interest are the rock-salt ordered oxides A5BO6, in which the B sites are occupied by magnetic ions comprising a network of interlocked tetrahedra, and nonmagnetic ions on the A sites control the B oxidation state through charge neutrality. Here we will discuss studies of Li3Mg2OsO6 using muon spin relaxation (μSR), a highly sensitive local probe of magnetism. Previous studies of this family included Li5OsO6, which exhibits AF order below 50K with minimal evidence for frustration, and Li4MgReO6, which exhibits glassy magnetism. Li3Mg2RuO6, meanwhile, exhibits long-range AF, with the ordering temperature suppressed by frustration. But its isoelectronic twin, Li3Mg2OsO6 (5d3 vs. 4d3) exhibits very different behavior, revealed by μSR to be a glassy ground state below 12K. Understanding why such similar systems exhibit diverse ground-state behavior is key to understanding the nature of geometric magnetic frustration. Financial support from the Research Corporation for Science Advancement.

  4. Ferromagnetic interactions and slow magnetic relaxation behaviors of two lanthanide coordination polymers bridged by 2,6-naphthalenedicarboxylate ligand

    NASA Astrophysics Data System (ADS)

    Fang, Ming; Li, Xiuhua; Cui, Ping; Zhao, Bin

    2015-03-01

    Two lanthanide-based frameworks: {Ln(phen)(NDA)1.5(H2O)}n (Ln=Gd(1), NDA=2,6-naphthalenedicarboxylate anion, phen=1,10-phenanthroline), and {[Dy(phen)(NDA)1.5]·0.5H2NDA}n (2) were structurally and magnetically characterized. Compound 1 exhibits 2D layer structure, belonging to the triclinic system with space group P-1, while compound 2 features a 3D framework with space group P-1. The magnetic studies revealed that ferromagnetic coupling existed between adjacent lanthanide ions in 1 and 2, and frequency-dependence out-of-phase signals in the measurement of alternate-current susceptibilities were observed for 2, albeit without reaching the characteristic maxima above 2 K, implying slow magnetic relaxation behavior in 2. After the application of a dc field, good peak shapes of ac signal were obtained and got the energy barrier ΔE/kB=29 K and the pre-exponential factor τ0=4.47×10-7 s at 2000 Oe field; and when the dc field was in 5000 Oe, giving ΔE/kB=40 K and τ0=2.82×10-6.

  5. The Effect of Crystal Packing and ReIV Ions on the Magnetisation Relaxation of [Mn6]-Based Molecular Magnets

    PubMed Central

    Martínez-Lillo, José; Cano, Joan; Wernsdorfer, Wolfgang; Brechin, Euan K

    2015-01-01

    The energy barrier to magnetisation relaxation in single-molecule magnets (SMMs) proffers potential technological applications in high-density information storage and quantum computation. Leading candidates amongst complexes of 3d metals ions are the hexametallic family of complexes of formula [Mn6O2(R-sao)6(X)2(solvent)y] (saoH2=salicylaldoxime; X=mono-anion; y=4–6; R=H, Me, Et, and Ph). The recent synthesis of cationic [Mn6][ClO4]2 family members, in which the coordinating X ions were replaced with non-coordinating anions, opened the gateway to constructing families of novel [Mn6] salts in which the identity and nature of the charge balancing anions could be employed to alter the physical properties of the complex. Herein we demonstrate initial experiments to show that this is indeed possible. By replacing the diamagnetic ClO4− anions with the highly anisotropic ReIV ion in the form of [ReIVCl6]2−, the energy barrier to magnetisation relaxation is increased by up to 30 %. PMID:25951415

  6. Immunosensor based on magnetic relaxation switch and biotin-streptavidin system for the detection of Kanamycin in milk.

    PubMed

    Chen, Yi Ping; Zou, Ming qiang; Qi, Cai; Xie, Meng-Xia; Wang, Da-Ning; Wang, Yan-Fei; Xue, Qiang; Li, Jin-Feng; Chen, Yan

    2013-01-15

    A rapid, sensitive, and simple immunosensor was developed for the detection of Kanamycin (KM) in milk. This immunosensor is based on magnetic relaxation switch (MRS) assay and biotin-streptavidin system (B-SA system). The target analyte (KM) competed with those on the surface of the superparamagnetic iron oxide (SPIO) nanoparticles and hence affected the formation of SPIO aggregates. The dispersed and aggregated states of SPIO can modulate the spin-spin relaxation time (T(2)) of the neighboring water molecule. T(2) was then changed as an effect of the target analyte. The B-SA system was used to amplify the SPIO binding, thus enhance the sensitivity. The detection working was 1.5 to 25.2ng mL(-1) and limit of detection (LOD) was determined to be 0.1ng mL(-1). The LOD of the immunosensor decreased tenfold, and its analysis time (45min) was much shorter than that of enzyme-linked immunosorbent assay (6h to 8h). The average recoveries of the KM at various spiking levels ranged from 80.2% to 85.6% with a relative standard deviation (RSD) below 4.0%. The results showed that the MRS immunosensor was a promising platform for the determination of small molecular residues because of its high sensitivity, specificity, homogeneity, and speed.

  7. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa2Cu3O7-δ samples showing the paramagnetic Meissner effect

    NASA Astrophysics Data System (ADS)

    Dias, F. T.; Vieira, V. N.; Garcia, E. L.; Wolff-Fabris, F.; Kampert, E.; Gouvêa, C. P.; Schaf, J.; Obradors, X.; Puig, T.; Roa, J. J.

    2016-10-01

    We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa2Cu3O7-δ (Y123) samples with 30 wt% of Y2Ba1Cu1O5 (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  8. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1991-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for x ranging from 0 up to 0.3, with particular emphasis on the effect of doping on the Cu(2+) magnetic correlations and dynamics, are reviewed. In the low doping limit, x less than or equal to 0.05, the results can be interpreted consistently in terms of a simple phenomenological 'two-fluids' model whereby the effect of thermally-activated mobile O(2p) holes is the one of disrupting locally the Cu(2+) spin correlations. For x greater than or equal to 0.1, the results indicate the onset, as T approaches T(sub c)(+), of a strong coupling between Cu(2+) spins and the Fermi liquid of O(2p) holes leading to the apparent disappearance of localized Cu(2+) moment in connection with the opening of a superconducting gap.

  9. Static magnetic ordering of CeCu2.1Si2 found by muon spin relaxation

    NASA Technical Reports Server (NTRS)

    Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Schone, H. E.; Kempton, J. R.; Stronach, C. E.; Barth, S.; Gygax, F. N.; Hitti, B.; Schenck, A.

    1988-01-01

    Zero- and longitudinal-field muon spin relaxation measurements on a polycrystal sample of a heavy fermion superconductor CeCu2.1 Si2 (T(c) = 0.7 K) have revealed an onset of static magnetic ordering below T approximately 0.8 K. The line shapes of the observed spectra in zero field indicate a wide distribution of static random local fields at muon sites, suggesting that the ordering is either spin glass or incommensurate spin-density-wave state. The observed width of the random local field at T = 0.05 K corresponds to a small averaged static moment of the order of 0.1 micro-B per formula unit.

  10. Dispersion of Relaxation Rates in the Rotating Frame Under the Action of Spin-Locking Pulses and Diffusion in Inhomogeneous Magnetic Fields

    PubMed Central

    Spear, John T.; Zu, Zhongliang; Gore, John C.

    2013-01-01

    Purpose A method is described for characterizing magnetically inhomogeneous media and the spatial scales of intrinsic susceptibility variations within samples. The rate of spin-lattice relaxation in the rotating frame, R1ρ, is affected by diffusion effects to a degree that depends on the magnitude of an applied spin-locking field. Appropriate analysis of the dispersion of R1ρ with locking field may be used to characterize susceptibility variations in inhomogeneous tissues. Theory and Methods The contribution of diffusion to R1ρ is quantified by an analytic expression derived by analyzing of the effects of diffusion through periodic variations of magnetic susceptibility and is used to predict the effects of inhomogeneities in simple phantoms. The theory is further applied to imaging to derive parametric images that portray the dimensions of susceptibility inhomogeneities independent of their magnitude. Results Significant dispersion of R1ρ with locking field was predicted and measured experimentally for suspensions of microspheres ranging from 1 to 90 µm in diameter. For scales of practical interest, these dispersion effects occur at much lower locking fields than the range in which chemical exchange effects cause similar dispersion. Conclusion There is good agreement between theory and experiment, and the method has potential for quantitative tissue characterization and functional imaging. PMID:23804212

  11. Measurements of Heme Relaxation and Ligand Recombination in Strong Magnetic Fields

    PubMed Central

    Zhang, Zhenyu; Benabbas, Abdelkrim; Ye, Xiong; Yu, Anchi; Champion, Paul M.

    2009-01-01

    Heme cooling signals and diatomic ligand recombination kinetics are measured in strong magnetic fields (up to 10 Tesla). We examined diatomic ligand recombination to heme model compounds (NO and CO), myoglobin (NO and O2), and horseradish peroxidase (NO). No magnetic field induced rate changes in any of the samples were observed within the experimental detection limit. However, in the case of CO binding to heme in glycerol and O2 binding to myoglobin, we observe a small magnetic field dependent change in the early time amplitude of the optical response that is assigned to heme cooling. One possibility, consistent with this observation, is that there is a weak magnetic field dependence of the non-radiative branching ratio into the vibrationally hot electronic ground state during CO photolysis. Ancillary studies of the “spin-forbidden” CO binding reaction in a variety of heme compounds in the absence of magnetic field demonstrate a surprisingly wide range for the Arrhenius prefactor. We conclude that CO binding to heme is not always retarded by unfavorable spin selection rules involving a double spin-flip superexchange mechanism. In fact, it appears that the small prefactor (~109s−1) found for CO rebinding to Mb may be anomalous, rather than the general rule for heme-CO rebinding. These results point to unresolved fundamental issues that underlie the theory of heme-ligand photolysis and rebinding. PMID:19588986

  12. Exchange interactions at the origin of slow relaxation of the magnetization in {TbCu₃} and {DyCu₃} single-molecule magnets.

    PubMed

    Kettles, Fraser J; Milway, Victoria A; Tuna, Floriana; Valiente, Rafael; Thomas, Lynne H; Wernsdorfer, Wolfgang; Ochsenbein, Stefan T; Murrie, Mark

    2014-09-02

    New {TbCu3} and {DyCu3} single-molecule magnets (SMMs) containing a low-symmetry Ln(III) center (shape measurements relative to a trigonal dodecahedron and biaugmented trigonal prism are 2.2-2.3) surrounded by three Cu(II) metalloligands are reported. SMM behavior is confirmed by frequency-dependent out-of-phase ac susceptibility signals and single-crystal temperature and sweep rate dependent hysteresis loops. The ferromagnetic exchange interactions between the central Ln(III) ion and the three Cu(II) ions could be accurately measured by inelastic neutron scattering (INS) spectroscopy and modeled effectively. The excitations observed by INS correspond to flipping of Cu(II) spins and appear at energies similar to the thermodynamic barrier for relaxation of the magnetization, ~15-20 K, and are thus at the origin of the SMM behavior. The magnetic quantum number M(tot) of the cluster ground state of {DyCu3} is an integer, whereas it is a half-integer for {TbCu3}, which explains their vastly different quantum tunneling of the magnetization behavior despite similar energy barriers.

  13. Structure-redox-relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes.

    PubMed

    Gale, Eric M; Mukherjee, Shreya; Liu, Cynthia; Loving, Galen S; Caravan, Peter

    2014-10-06

    A library of 10 Mn-containing complexes capable of switching reversibly between the Mn(II) and Mn(III) oxidation states was prepared and evaluated for potential usage as MRI reporters of tissue redox activity. We synthesized N-(2-hydroxybenzyl)-N,N',N'-ethylenediaminetriacetic acid (HBET) and N-(2-hydroxybenzyl-N,N',N'-trans-1,2-cyclohexylenediaminetriacetic acid (CyHBET) ligands functionalized (-H, -OMe, -NO2) at the 5-position of the aromatic ring. The Mn(II) complexes of all ligands and the Mn(III) complexes of the 5-H and 5-NO2 functionalized ligands were synthesized and isolated, but the Mn(III) complexes with the 5-OMe functionalized ligands were unstable. (1)H relaxivity of the 10 isolable complexes was measured at pH 7.4 and 37 °C, 1.4 T. Thermodynamic stability, pH-dependent complex speciation, hydration state, water exchange kinetics of the Mn(II) complexes, and pseudo-first order reduction kinetics of the Mn(III) complexes were studied using a combination of pH-potentiometry, UV-vis spectroscopy, and (1)H and (17)O NMR measurements. The effects of ligand structural and electronic modifications on the Mn(II/III) redox couple were studied by cyclic voltammetry. The Mn(II) complexes are potent relaxation agents as compared to the corresponding Mn(III) species with [Mn(II)(CyHBET)(H2O)](2-) exhibiting a 7.5-fold higher relaxivity (3.3 mM(-1) s(-1)) than the oxidized form (0.4 mM(-1) s(-1)). At pH 7.4, Mn(II) exists as a mixture of fully deprotonated (ML) and monoprotonated (HML) complexes and Mn(II) complex stability decreases as the ligands become more electron-releasing (pMn for 10 μM [Mn(II)(CyHBET-R')(H2O)](2-) decreases from 7.6 to 6.2 as R' goes from -NO2 to -OMe, respectively). HML speciation increases as the electron-releasing nature of the phenolato-O donor increases. The presence of a water coligand is maintained upon conversion from HML to ML, but the water exchange rate of ML is faster by up to 2 orders of magnitude (k(ex)(310) for H

  14. Historic Methods for Capturing Magnetic Field Images

    ERIC Educational Resources Information Center

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  15. Historic Methods for Capturing Magnetic Field Images

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  16. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review.

    PubMed

    Suriyanto; Ng, E Y K; Kumar, S D

    2017-03-23

    Current clinically accepted technologies for cancer treatment still have limitations which lead to the exploration of new therapeutic methods. Since the past few decades, the hyperthermia treatment has attracted the attention of investigators owing to its strong biological rationales in applying hyperthermia as a cancer treatment modality. Advancement of nanotechnology offers a potential new heating method for hyperthermia by using nanoparticles which is termed as magnetic fluid hyperthermia (MFH). In MFH, superparamagnetic nanoparticles dissipate heat through Néelian and Brownian relaxation in the presence of an alternating magnetic field. The heating power of these particles is dependent on particle properties and treatment settings. A number of pre-clinical and clinical trials were performed to test the feasibility of this novel treatment modality. There are still issues yet to be solved for the successful transition of this technology from bench to bedside. These issues include the planning, execution, monitoring and optimization of treatment. The modeling and simulation play crucial roles in solving some of these issues. Thus, this review paper provides a basic understanding of the fundamental and rationales of hyperthermia and recent development in the modeling and simulation applied to depict the heat generation and transfer phenomena in the MFH.

  17. Magnetization relaxation, critical current density, and vortex dynamics in a Ba0.66K0.32BiO3 +δ single crystal

    NASA Astrophysics Data System (ADS)

    Tao, Jian; Deng, Qiang; Yang, Huan; Wang, Zhihe; Zhu, Xiyu; Wen, Hai-Hu

    2015-06-01

    We have conducted extensive investigations on the magnetization and its dynamical relaxation on a Ba0.66K0.32BiO3 +δ single crystal. It is found that the magnetization-relaxation rate is rather weak compared to that in cuprate superconductors, indicating a higher collective vortex pinning potential (or activation energy), although the intrinsic pinning potential Uc is weaker. A detailed analysis leads to the following discoveries: (1) A second-peak effect on the magnetization-hysteresis loop was observed in a very wide temperature region, ranging from 2 to 24 K. Its general behavior is similar to that in YBa2Cu3O7 . (2) Associated with the second-peak effect, the magnetization-relaxation rate is inversely related to the transient superconducting current density Js, revealing a quite general and similar mechanism for the second-peak effect in many high-temperature superconductors. (3) A detailed analysis based on the collective creep model reveals a large glassy exponent μ and a small intrinsic pinning potential Uc. (4) Investigation on the volume pinning force density shows that the data can be scaled to the formula Fp∝bp(1-b ) q , with p =2.79 and q =3.14 , where b is the reduced magnetic field to the irreversible magnetic field. The maximum normalized pinning force density appears near b ≈0.47 . Finally, a vortex phase diagram is drawn to show the phase transitions or crossovers between different vortex phases.

  18. High homogeneity B(1) 30.2 MHz Nuclear Magnetic Resonance Probe for off-resonance relaxation times measurements.

    PubMed

    Baranowski, M; Woźniak-Braszak, A; Jurga, K

    2011-01-01

    This paper reports on design and construction of a double coil high-homogeneity ensuring Nuclear Magnetic Resonance Probe for off-resonance relaxation time measurements. NMR off-resonance experiments pose unique technical problems. Long irradiation can overheat the sample, dephase the spins because of B(1) field inhomogeneity and degrade the signal received by requiring the receiver bandwidth to be broader than that needed for normal experiment. The probe proposed solves these problems by introducing a separate off-resonance irradiation coil which is larger than the receiver coil and is wound up on the dewar tube that separates it from the receiver coil thus also thermally protects the sample from overheating. Large size of the irradiation coil also improves the field homogeneity because as a ratio of the sample diameter to the magnet (coil) diameter increases, the field inhomogeneity also increases (Blümich et al., 2008) [1]. The small receiver coil offers maximization of the filling factor and a high signal to the noise ratio.

  19. Elastic and anelastic relaxations accompanying magnetic ordering and spin-flop transitions in hematite, Fe2O3

    NASA Astrophysics Data System (ADS)

    Oravova, Lucie; Zhang, Zhiying; Church, Nathan; Harrison, Richard J.; Howard, Christopher J.; Carpenter, Michael A.

    2013-03-01

    Hematite, Fe2O3, provides in principle a model system for multiferroic (ferromagnetic/ferroelastic) behavior at low levels of strain coupling. The elastic and anelastic behavior associated with magnetic phase transitions in a natural polycrystalline sample have therefore been studied by resonant ultrasound spectroscopy (RUS) in the temperature range from 11 to 1072 K. Small changes in softening and attenuation are interpreted in terms of weak but significant coupling of symmetry-breaking and non-symmetry-breaking strains with magnetic order parameters in the structural sequence R\\overline{3}c{1}^{\\prime}\\rightarrow C 2/c\\rightarrow R\\overline{3}c. The R\\overline{3}c{1}^{\\prime}\\rightarrow C 2/c transition at TN = 946 ± 1 K is an example of a multiferroic transition which has both ferromagnetic (from canting of antiferromagnetically ordered spin moments) and ferroelastic (rhombohedral → monoclinic) character. By analogy with the improper ferroelastic transition in Pb3(PO4)2, W and W‧ ferroelastic twin walls which are also 60° and 120° magnetic domain walls should develop. These have been tentatively identified from microstructures reported in the literature. The very low attenuation in the stability field of the C2/c structure in the polycrystalline sample used in the present study, in comparison with the strong acoustic dissipation reported for single crystal samples, implies, however, that the individual grains each consist of a single ferroelastic domain or that the twin walls are strongly pinned by grain boundaries. This absence of attenuation allows an intrinsic loss mechanism associated with the transition point to be seen and interpreted in terms of local coupling of shear strains with fluctuations which have relaxation times in the vicinity of ˜10-8 s. The first order C 2/c\\rightarrow R\\overline{3}c (Morin) transition occurs through a temperature interval of coexisting phases but the absence of an acoustic loss peak suggests that the

  20. Slow relaxation of the magnetization observed in an antiferromagnetically ordered phase for SCM-based two-dimensional layered compounds.

    PubMed

    Kagesawa, Koichi; Nishimura, Yuki; Yoshida, Hiroki; Breedlove, Brian K; Yamashita, Masahiro; Miyasaka, Hitoshi

    2017-03-07

    Two-dimensional layered compounds with different counteranions, [{Mn(salen)}4C6](BF4)2·2(CH3OH) (1) and [{Mn(salen)}4C6](PF6)2·2(CH3OH) (2) (salen(2-) = N,N'-bis(salicylideneiminato), C6(2-) = C6H12(COO)2(2-)), were synthesized by assembling [Mn(salen)(H2O)]X (X(-) = BF4(-) and PF6(-)) and C6H12(CO2(-))2 (C6(2-)) in a methanol/2-propanol medium. The compounds have similar structures, which are composed of Mn(salen) out-of-plane dimers bridged by μ(4)-type C6(2-) ions, forming a brick-wall-type network of [-{Mn2}-OCO-] chains alternately connected via C6H12 linkers of C6(2-) moieties. The counteranions for 1 and 2, i.e., BF4(-) and PF6(-), respectively, are located between layers. Since the size of BF4(-) is smaller than that of PF6(-), intra-layer inter-chain and inter-plane nearest-neighbor MnMn distances are shorter in 1 than in 2. The zigzag chain moiety of [-{Mn2}-OCO-] leads to a canted S = 2 spin arrangement with ferromagnetic coupling in the Mn(III) out-of-plane dimer moiety and antiferromagnetic coupling through -OCO- bridges. Due to strong uniaxial anisotropy of the Mn(III) ion, the [-{Mn2}-OCO-] chains could behave as a single-chain magnet (SCM), which exhibits slow relaxation of magnetization at low temperatures. Nevertheless, these compounds fall into an antiferromagnetic ground state at higher temperatures of TN = 4.6 and 3.8 K for 1 and 2, respectively, than active temperatures for SCM behavior. The spin flip field at 1.8 K is 2.7 and 1.8 kOe for 1 and 2, respectively, which is attributed to the inter-chain interactions tuned by the size of the counteranions. The relaxation times of magnetization become longer at the boundary between the antiferromagnetic phase and the paramagnetic phase.

  1. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    SciTech Connect

    Ivanov, I. A. Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N.; Burdakov, A. V.; Sorokina, N. V.; Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A.; Kurkuchekov, V. V.; Kuznetsov, S. A.; Polosatkin, S. V.

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  2. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Arzhannikov, A. V.; Burdakov, A. V.; Burmasov, V. S.; Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Kurkuchekov, V. V.; Kuznetsov, S. A.; Mekler, K. I.; Polosatkin, S. V.; Popov, S. S.; Postupaev, V. V.; Rovenskikh, A. F.; Sklyarov, V. F.; Sorokina, N. V.; Trunev, Yu. A.; Vyacheslavov, L. N.

    2015-12-01

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70-110 keV for the electron energy, 1-10 MW for the beam power and 30-300 μs for its duration. The spectrum was measured in 75-230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  3. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    NASA Astrophysics Data System (ADS)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique; Koehler, Sven P. K.

    2016-11-01

    We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber-Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe-H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm-1, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  4. Determination of the Melting Curve of the Modified Lennard-Jones System Using the Nonequilibrium Relaxation Method

    NASA Astrophysics Data System (ADS)

    Asano, Yuta; Fuchizaki, Kazuhiro

    2017-02-01

    The melting curve of the modified Lennard-Jones system, which has been obtained by equating the free energies between the solid and liquid phases, was reinvestigated using the nonequilibrium relaxation method. The latter method satisfactorily reproduced the previous result with much simplified procedures.

  5. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  6. Electric Potential Surrounding Two Conducting Spheres: An Exercise for Advancing Student Understanding of the Method of Relaxation

    NASA Astrophysics Data System (ADS)

    Gallagher, Hugh; Chartrand, Bridget; Beach, John

    2016-03-01

    In undergraduate computational physics courses, the method of relaxation provides a well-established technique for obtaining solutions to Laplace's Equation. The technique's value stems from its accessibility and clear dependence on the properties of solutions to Laplace's Equation. We have created an exercise that allows students to develop an experiential understanding of the method of images and its connection to the properties of solutions to Laplace's Equation. The problem of two conducting spheres separated by a relatively small distance and maintained at fixed but distinct electric potentials is considered. Using the method of relaxation, students solve the problem in two-dimensions, three-dimensions with a Dirichlet condition on the outer boundary and three-dimensions using a Neumann condition on the outer boundary. At each step, the results are compared to a solution obtained using the method of images for a spherical conductor in an iterative fashion. Through this comparison, students gain insight into the significance of their choices for the solving the problem using the method of relaxation. We will discuss application of the relaxation method to this problem, validation by the method of images, and potential use in an undergraduate computational physics course.

  7. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  8. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  9. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy

    SciTech Connect

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; Hunter, Seth C.; Zhang, Yi-Quan; Chen, Xue-Tai; Sun, Yi-Chen; Wang, Zhenxing; Song, You; Podlesnyak, Andrey A.; Ouyang, Zhong-Wen; Xue, Zi-Ling

    2016-12-07

    We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A)2[Co(NO3)4] with different countercations, Ph4P+ (1), MePh3P+ (2), and Ph4As+ (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to the zero-field splitting (2(D2 + 3E2)1/2) from 22.5(2) cm–1 in 1 to 26.6(3) cm–1 in 2 and 11.1(5) cm–1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm–1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.

  10. Novel measurement method for magnetic particles.

    PubMed

    Mäkiranta, J; Verho, J; Lekkala, J; Matintupa, N

    2006-01-01

    This paper represents a novel magnetic nanoparticle measurement method for applications in clinical diagnostics. Planar microcoils and impedance bridge measurement are used to measure the amount of the particles. Macro size coils made on PCB are used to test and verify the measurement method and measurement electronics. Experimental tests and simulative results will be used for a future microscale sensing system.

  11. Magnetic Flux Reconstruction Methods for Shaped Tokamaks

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Wa.

    The use of a variational method permits the Grad -Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a pararmeterization of the plasma boundary and the current profile (p^' and FF^' functions). We treat the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. We found that the matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green's function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle (60) provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. We found that the performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package have been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perceptron neural network as a interface, and the volume integration of plasma current density using Green's functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising. Also, we found that some plasmas in the tokamak Alcator C-Mod lie

  12. Collisional relaxation of an isotopic, strongly magnetized pure ion plasma and topics in resonant wave-particle interaction of plasmas

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung

    First in Chapter 2, we discuss the collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses, but both with singly-ionized atoms. In a limit of high cyclotron frequencies O j, the total cyclotron action Ij for the two species are adiabatic invariants. In a few collisions, maximizing entropy yields a modified Gibbs distribution of the form exp[-H/T ∥-alpha1 I 1-alpha2I2]. Here, H is the total Hamiltonian and alphaj's are related to parallel and perpendicular temperatures through T ⊥j=(1/T∥ +alphaj/Oj) -1. On a longer timescale, the two species share action so that alpha 1 and alpha2 relax to a common value alpha. On an even longer timescale, the total action ceases to be a constant of the motion and alpha relaxes to zero. Next, weak transport produces a low density halo of electrons moving radially outward from the pure electron plasma core, and the m = 1 mode begins to damp algebraically when the halo reaches the wall. The damping rate is proportional to the particle flux through the resonant layer at the wall. Chapter 3 explains analytically the new algebraic damping due to both mobility and diffusion transport. Electrons swept around the resonant "cat's eye" orbits form a dipole (m = 1) density distribution, setting up a field that produces ExB-drift of the core back to the axis, that is, damps the mode. Finally, Chapter 4 provides a simple mechanistic interpretation of the resonant wave-particle interaction of Landau. For the simple case of a Vlasov plasma oscillation, the non-resonant electrons are driven resonantly by the bare electric field from the resonant electrons, and this complex driver field is of a phase to reduce the oscillation amplitude. The wave-particle resonant interaction also occurs in 2D ExB-drift waves, such as a diocotron wave. In this case, the bare electric field from the resonant electrons causes ExB-drift motion back in the core plasma, thus damping the wave.

  13. 31P NMR Relaxation of Cortical Bone Mineral at Multiple Magnetic Field Strengths and Levels of Demineralization

    PubMed Central

    Seifert, Alan C.; Wright, Alexander C.; Wehrli, Suzanne L.; Ong, Henry H.; Li, Cheng; Wehrli, Felix W.

    2013-01-01

    Purpose Recent work has shown that solid-state 1H and 31P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, 31P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus. Methods In this work, 31P MRI signal-to-noise ratio (SNR) was predicted on the basis of T1 and T2* (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5 – 11.7 T) and subsequently verified by 3-D ultra-short echo-time and zero echo-time imaging. Further, T1 was measured in deuterium-exchanged bone and partially demineralized bone. Results 31P T2* was found to decrease from 220.3 ± 4.3 μs to 98.0 ± 1.4 μs from 1.5 to 11.7 T, and T1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s. Deuteron substitution of exchangeable water showed that 76% of the 31P longitudinal relaxation rate is due to 1H-31P dipolar interactions. Lastly, hypomineralization was found to decrease T1, which may have implications for 31P MRI based mineralization density quantification. Conclusion Despite the steep decrease in the T2*/T1 ratio, SNR should increase with field strength as Bo0.4 for sample-dominated noise and as Bo1.1 for coil-dominated noise. This was confirmed by imaging experiments. PMID:23505120

  14. Influence of magnetic field change on the magnetization relaxation of YBa 2Cu 3O 7-δ superconductor

    NASA Astrophysics Data System (ADS)

    Hsu, S. W.; Chen, Y. C.; Lee, W. H.

    1990-12-01

    Measurements of time-dependent magnetization for the melt-textured YBa 2Cu 3O 7-δ bulk superconductor in the measuring field range H c1 ≪ H ≪ H ∗ at T > {1}/{2} T c reveal that the decay obeys a t {-2}/{3} or a t {-1}/{3} rather than a logarithmic law, depending on the measuring field which was applied by an increasing of a lower field or by a decreasing of a higher field.

  15. A nine-coordinated dysprosium(III) compound with an oxalate-bridged dysprosium(III) layer exhibiting two slow magnetic relaxation processes.

    PubMed

    Zhang, Sheng; Ke, Hongshan; Liu, Xiangyu; Wei, Qing; Xie, Gang; Chen, Sanping

    2015-10-21

    A 2D oxalate-bridged dysprosium(III) compound, formulated as [Dy(C2O4)1.5(H2O)3]n·2nH2O (1), has been hydrothermally isolated. As for compound 1, structural analysis reveals that the nine-coordinated Dy(III) ions reside in a slightly distorted tricapped trigonal prism. Under an applied magnetic field of 700 Oe, the compound was magnetically characterized as a new example that two slow relaxations of the magnetization processes can be observed in a 2D oxalate-bridged dysprosium(III) layer.

  16. Atomization methods for forming magnet powders

    SciTech Connect

    Sellers, C.H.; Branagan, D.J.; Hyde, T.A.

    2000-02-08

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: (a) forming a melt comprising R{sub 2.1}Q{sub 13.9}B{sub 1}, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; (b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and (c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R{sub 2.1}Q{sub 13.9}B{sub 1}.

  17. Atomization methods for forming magnet powders

    DOEpatents

    Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.

    2000-01-01

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

  18. Ammonia synthesis using magnetic induction method (MIM)

    NASA Astrophysics Data System (ADS)

    Puspitasari, P.; Razak, J. Abd; Yahya, N.

    2012-09-01

    The most challenging issues for ammonia synthesis is to get the high yield. New approach of ammonia synthesis by using Magnetic Induction Method (MIM) and the Helmholtz Coils has been proposed. The ammonia detection was done by using Kjeldahl Method and FTIR. The system was designed by using Autocad software. The magnetic field of MIM was vary from 100mT-200mT and the magnetic field for the Helmholtz coils was 14mT. The FTIR result shows that ammonia has been successfully formed at stretching peaks 1097,1119,1162,1236, 1377, and 1464 cm-1. UV-VIS result shows the ammonia bond at 195nm of wavelength. The ammonia yield was increase to 244.72μmole/g.h by using the MIM and six pairs of Helmholtz coils. Therefore this new method will be a new promising method to achieve the high yield ammonia at ambient condition (at 25δC and 1atm), under the Magnetic Induction Method (MIM).

  19. Relaxation of magnetotail plasmas

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, A.

    1987-01-01

    A quasi-thermodynamic model is presented for the relaxation of magnetotail plasmas during substorms, followed by quiet times. It is proposed that the plasma relaxes to a state of low-potential energy subject to a small number of global constraints. The constraints are exactly preserved by all ideal motions and, approximately, by a wide class of motions of the plasma undergoing magnetic reconnection. A variational principle which minimizes the free energy predicts the relaxed state. Exact, two-dimensional solutions of the relaxed state are obtained. A universal feature of the exact solutions is a chain of magnetic islands along the tail axis. Sufficient conditions for the stability of relaxed states are obtained from the second variation of the free-energy functional.

  20. Structures, luminescent and magnetic properties of six lanthanide-organic frameworks: observation of slow magnetic relaxation behavior in the DyIII compound.

    PubMed

    Hou, Yin-Ling; Xiong, Gang; Shen, Bo; Zhao, Bin; Chen, Zhi; Cui, Jian-Zhong

    2013-03-14

    Six novel three-dimensional (3D) lanthanide metal-organic frameworks (LnMOFs), {[Ln(2)(ispc)(3)(H(2)O)(3)]·mH(2)O}(n) (Ln = Pr (1, m = 5); Eu (2, m = 5); Gd (3, m = 4); Tb (4, m = 5); Dy (5, m = 5) and Ho (6, m = 4)), ispc = 3-(4-carboxyphenylsulfonyloxy)-4-methoxybenzoic anion) have been synthesized under hydrothermal conditions. Single crystal X-ray diffraction revealed they are isostructural and crystallize in the triclinic crystal system, space group P1[combining macron]. The investigations on luminescent properties and lifetimes of 2 (Eu(III)), 4 (Tb(III)), and 5 (Dy(III)) exhibit characteristic emissions of Eu(III), Tb(III) and Dy(III) ions and the corresponding luminescent lifetimes are 0.14 ms, 9.93 μs and 1.25 ms, respectively. The different luminescent intensities and lifetimes among them were further discussed. Furthermore, magnetic studies of 1-6 reveal that 3-6 exhibit ferromagnetic coupling, and 5 (Dy(III)) exhibits remarkably slow magnetic relaxation behavior with the energy barrier ΔE/k(B) = 49.2 K.

  1. Pediatric obesity phenotyping by magnetic resonance methods

    PubMed Central

    Shen, Wei; Liu, Haiying; Punyanitya, Mark; Chen, Jun; Heymsfield, Steven B.

    2007-01-01

    Purpose of review Accurate measurement of adiposity in obese children is required for characterizing the condition’s phenotype, severity, and treatment effects in vivo. Non-invasive and safe, magnetic resonance imaging and spectroscopy provide an important new approach for characterizing key aspects of pediatric obesity. This review focuses on recent advances in non-invasive magnetic resonance imaging and spectroscopy for quantifying total body and regional adiposity, mapping adipose tissue distribution, and evaluating selected metabolic disturbances in children. The aim is to provide an investigator-focused overview of magnetic resonance methods for use in the study of pediatric body composition and metabolism. Recent findings Whole body axial images can be rapidly acquired on most clinical magnetic resonance imaging scanners. The images can then be semi-automatically segmented into subcutaneous, visceral, and intramuscular adipose tissue. Specific pediatric studies of errors related to slice gap and number are available. The acquisition of scans in healthy and premature infants is now feasible with recent technological advances. Spectroscopic, Dixon, and other approaches can be used to quantify the lipid content of liver, skeletal muscle, and other organs. Protocol selection is based on factors such as subject age and cost. Particular attention should be directed towards identification of landmarks in growth studies. Recent advances promise to reduce the requirement of subjects to remain motionless for relatively long periods. Summary Magnetic resonance imaging and spectroscopy are safe, practical, and widely available methods for phenotyping adiposity in children that open new opportunities for metabolism and nutritional research. PMID:16205458

  2. Magnetic Field Strength Dependence of Transverse Relaxation and Signal-to-Noise Ratio for Hyperpolarized Xenon-129 and Helium-3 Gas Magnetic Resonance Imaging of Lungs

    NASA Astrophysics Data System (ADS)

    Dominguez-Viqueira, William

    Magnetic resonance (MR) imaging with hyperpolarized noble gases (HNG), 3He or 129Xe, has become a promising approach for studying lung anatomy and function. Unlike conventional MR imaging, the magnetization in HNG MR is independent of the magnetic field strength. This means that no improvement in signal-to-noise ratio (SNR) is expected with increasing clinical field strength above ˜0.25T. Furthermore, it has been predicted that the SNR may decline at clinical field strength due to decreases in the apparent transverse relaxation time (T2*), caused by the increased magnetic susceptibility induced field gradients at the air-tissue interface. In this thesis the magnetic field strength dependence of T2* and SNR in HNG MR is investigated experimentally in rodent and human lungs. For rodent imaging, a novel broad-band (0.1-100MHz) variable field strength MR imaging system for rodents was built. This system permitted imaging of 129Xe, 3He and 1H at low magnetic field strengths (3-73.5mT) to experimentally investigate the field dependence of HNG imaging SNR in rodent lungs. In vivo 129Xe and 3He signals were acquired at 73.5mT and T 2* was estimated to be approximately 180+/-8 ms, in good agreement with previously reported values. At 73.5mT, image noise is dominated by losses originated from the radiofrequency (RF) coils. To address this issue, RF coils were built using different types of copper wire and compared in phantoms and in vivo in rat lungs using hyperpolarized 3He and 129Xe gas. An SNR improvement of up to 200% was obtained with Litz wire compared to conventional copper wire. This improvement demonstrated the feasibility of HNG lung imaging in rodents at 73.5mT with SNR comparable to that obtained at clinical field strengths. To verify the SNR field dependence in humans, hyperpolarized 3He lung imaging at two commonly used clinical field strengths (1.5T and 3T) was performed in the same volunteers and compared. No significant differences in SNR were obtained

  3. Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel

    PubMed Central

    Cho, Sun-Hee; Kim, Ahreum; Shin, Woojung; Heo, Min Beom; Noh, Hyun Jong; Hong, Kwan Soo; Cho, Jee-Hyun; Lim, Yong Taik

    2017-01-01

    Injectable and stimuli-responsive hydrogels have attracted attention in molecular imaging and drug delivery because encapsulated diagnostic or therapeutic components in the hydrogel can be used to image or change the microenvironment of the injection site by controlling various stimuli such as enzymes, temperature, pH, and photonic energy. In this study, we developed a novel injectable and photoresponsive composite hydrogel composed of anticancer drugs, imaging contrast agents, bio-derived collagen, and multifaceted anionic polypeptide, poly (γ-glutamic acid) (γ-PGA). By the introduction of γ-PGA, the intrinsic temperature-dependent phase transition behavior of collagen was modified to a low viscous sol state at room temperature and nonflowing gel state around body temperature. The modified temperature-dependent phase transition behavior of collagen/γ-PGA hydrogels was also evaluated after loading of near-infrared (NIR) fluorophore, indocyanine green (ICG), which could transform absorbed NIR photonic energy into thermal energy. By taking advantage of the abundant carboxylate groups in γ-PGA, cationic-charged doxorubicin (Dox) and hydrophobic MnFe2O4 magnetic nanoparticles were also incorporated successfully into the collagen/γ-PGA hydrogels. By illumination of NIR light on the collagen/γ-PGA/Dox/ICG/MnFe2O4 hydrogels, the release kinetics of Dox and magnetic relaxation of MnFe2O4 nanoparticles could be modulated. The experimental results suggest that the novel injectable and NIR-responsive collagen/γ-PGA hydrogels developed in this study can be used as a theranostic platform after loading of various molecular imaging probes and therapeutic components.

  4. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOEpatents

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  5. Cutting stems before relaxing xylem tension induces artefacts in Vitis coignetiae, as evidenced by magnetic resonance imaging.

    PubMed

    Ogasa, Mayumi Y; Utsumi, Yasuhiro; Miki, Naoko H; Yazaki, Kenichi; Fukuda, Kenji

    2016-02-01

    It was recently reported that cutting artefacts occur in some species when branches under tension are cut, even under water. We used non-destructive magnetic resonance imaging (MRI) to investigate the change in xylem water distribution at the cellular level in Vitis coignetiae standing stems before and after relaxing tension. Less than 3% of vessels were cavitated when stems under tension were cut under water at a position shorter than the maximum vessel length (MVL) from the MRI point, in three of four plants. The vessel contents remained at their original status, and cutting artefact vessel cavitation declined to <1% when stems were cut at a position farther than the MVL from the MRI point. Water infiltration into the originally cavitated vessels after cutting the stem, i.e. vessel refilling, was found in <1% of vessels independent of cutting position on three of nine plants. The results indicate that both vessel cavitation and refilling occur in xylem tissue under tension following stem cutting, but its frequency is quite small, and artefacts can be minimized altogether if the distance between the monitoring position and the cutting point is longer than the MVL.

  6. A Dynamic Discrete Dislocation Plasticity Method for the Dimulation of Plastic Relaxation under Shock Loading

    NASA Astrophysics Data System (ADS)

    Gurrutxaga-Lerma, Benat; Sutton, Adrian; Eakins, Daniel; Balint, Daniel; Dini, Daniele

    2013-06-01

    This talk intends to offer some insight as to how Discrete Dislocation Plasticity (DDP) can be adapted to simulate plastic relaxation processes under weak shock loading and high strain rates. In those circumstances, dislocations are believed to be the main cause of plastic relaxation in crystalline solids. Direct simulation of dislocations as the dynamic agents of plastic relaxation in those cases remains a challenge. DDP, where dislocations are modelled as discrete discontinuities in elastic continuum media, is often unable to adequately simulate plastic relaxation because it treats dislocation motion quasi-statically, thus neglecting the time-dependent nature of the elastic fields and assuming that they instantaneously acquire the shape and magnitude predicted by elastostatics. Under shock loading, this assumption leads to several artefacts that can only be overcome with a fully time-dependent formulation of the elastic fields. In this talk one of such formulations for the creation, annihilation and arbitrary motion of straight edge dislocations will be presented. These solutions are applied in a two-dimensional model of time-dependent plastic relaxation under shock loading, and some relevant results will be presented. EPSRC CDT in Theory and Simulation of Materials

  7. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Spin Relaxation of Electrons in Single InAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ma, Shan-Shan; Dou, Xiu-Ming; Chang, Xiu-Ying; Sun, Bao-Quan; Xiong, Yong-Hua; Niu, Zhi-Chuan; Ni, Hai-Qiao

    2009-11-01

    By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.

  8. Quantitative Evaluation of the Total Magnetic Moments of Colloidal Magnetic Nanoparticles: A Kinetics-based Method.

    PubMed

    Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning

    2015-06-08

    A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine.

  9. Apparatus and method for handling magnetic particles in a fluid

    DOEpatents

    Holman, David A.; Grate, Jay W.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The present invention is an apparatus and method for handling magnetic particles suspended in a fluid, relying upon the known features of a magnetic flux conductor that is permeable thereby permitting the magnetic particles and fluid to flow therethrough; and a controllable magnetic field for the handling. The present invention is an improvement wherein the magnetic flux conductor is a monolithic porous foam.

  10. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1997-08-05

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  11. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1996-10-08

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  12. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  13. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  14. Response delay caused by dielectric relaxation of polymer insulators for organic transistors and resolution method

    NASA Astrophysics Data System (ADS)

    Suemori, Kouji; Kamata, Toshihide

    2012-08-01

    We investigated the effect of dielectric relaxation in polymer gate insulators on the device characteristics of organic field effect transistors. Dielectric relaxation of polymer gate insulators caused an increase in drain current (ID) in a period starting immediately after the application of the gate voltage (VG) and lasting several milliseconds. This induced an apparent delay in the response of ID. Based on the observed results, we suggested an ideal gate insulator to achieve organic field effect transistors that have a fast response and high performance.

  15. Yellow to greenish-blue colour-tunable photoluminescence and 4f-centered slow magnetic relaxation in a cyanido-bridged Dy(III)(4-hydroxypyridine)-Co(III) layered material.

    PubMed

    Chorazy, Szymon; Wang, Junhao; Ohkoshi, Shin-Ichi

    2016-09-14

    A cyanido-bridged layered {[Dy(III)(4-OHpy)2(H2O)3][Co(III)(CN)6]}·0.5H2O (1) (4-OHpy = 4-hydroxypyridine) framework with dual photo-luminescence and magnetic properties was prepared. 1 exhibits visible emission whose color, yellow to greenish-blue, is switchable by selected wavelengths of UV excitation light. Magnetic data revealed that 1 shows not only the slow magnetic relaxation of a typical Dy(III) single-ion origin but also the relaxation process caused by the magnetic dipole-magnetic dipole interactions between the neighbouring Dy(III) centers.

  16. A Comparison of 1D and 2D (Unbiased) Experimental Methods for Measuring CSAsolarDD Cross-Correlated Relaxation

    NASA Astrophysics Data System (ADS)

    Batta, Gy.; Kövér, K. E.; Kowalewski, J.

    1999-01-01

    Conventional and enhanced 1D experiments and different NOESY experiments (the 2D unbiased method) were performed for measuring CSA/DD cross-correlated relaxation on trehalose, a compound which could be approximated as a spherical top, and on simple model compounds comprisingC3vsymmetry (CHCl3, triphenylsilane (TPSi)). The comparison gives experimental evidence for the equivalence of the methods within the limits of the two-spin approach. 1D data are evaluated with both the simple initial rate and the Redfield relaxation matrix approach. The 2D data are obtained from the so-called transfer matrix using the Perrin-Gipe eigenvalue/eigenvector method. For the improved performance of the 2D method, anX-filtered (HHH) NOESY is suggested at the natural abundance of13C (or other dilute, low γ species). Also, experimental parameters crucial for reliable CSA data are tested (e.g., the impact of insufficient relaxation delay). Error estimation is carried out for fair comparison of methods. Revised liquid state1H and13C (29Si) CSA data are presented for chloroform and TPSi.

  17. Influence of annealing on magnetic, relaxation and structural properties of composite and multilayer films.

    PubMed

    Kotov, L N; Vlasov, V S; Turkov, V K; Kalinin, Y E; Sitnikov, A V

    2012-02-01

    This work is devoted to the research of influence of annealing to ferromagnetic resonance (FMR) properties of films of the A, B series with the compositions of (Co45-Fe45-Zr10)x(Al2O3)y, multilayer films of the D series with compositions {[(Co45-Fe45-Zr10)x(Al2O3)y]-[alpha-Si]}120 and revealing their relationship with the nanostructure characteristics. The films were obtained in an argon atmosphere (the A, D series) and with addition of oxygen (the B series). All samples were deposited on substrates by the ion-beam sputtering method and were annealed. The resonant fields and width of ferromagnetic resonance (FMR) line were measured before and after annealing. The changes in the FMR field and width of the line at varying temperatures of annealing for the composite and multilayer films are analyzed in the work. The character of changes in the structural characteristics of films at different annealing temperatures is determined.

  18. New method for predicting lifetime of seals from compression-stress relaxation experiments

    SciTech Connect

    Gillen, K.T.; Keenan, M.R.; Wise, J.

    1998-06-01

    Interpretation of compression stress-relaxation (CSR) experiments for elastomers in air is complicated by (1) the presence of both physical and chemical relaxation and (2) anomalous diffusion-limited oxidation (DLO) effects. For a butyl material, the authors first use shear relaxation data to indicate that physical relaxation effects are negligible during typical high temperature CSR experiments. They then show that experiments on standard CSR samples ({approximately}15 mm diameter when compressed) lead to complex non-Arrhenius behavior. By combining reaction kinetics based on the historic basic autoxidation scheme with a diffusion equation appropriate to disk-shaped samples, they derive a theoretical DLO model appropriate to CSR experiments. Using oxygen consumption and permeation rate measurements, the theory shows that important DLO effects are responsible for the observed non-Arrhenius behavior. To minimize DLO effects, they introduce a new CSR methodology based on the use of numerous small disk samples strained in parallel. Results from these parallel, minidisk experiments lead to Arrhenius behavior with an activation energy consistent with values commonly observed for elastomers, allowing more confident extrapolated predictions. In addition, excellent correlation is noted between the CSR force decay and the oxygen consumption rate, consistent with the expectation that oxidative scission processes dominate the CSR results.

  19. Flux Pinning Properties and Magnetic Relaxation of Superconducting SmFe0.9Co0.1AsO

    NASA Astrophysics Data System (ADS)

    Zhuang, J. C.; Sun, Y.; Ding, Y.; Yuan, F. F.; Liu, J. T.; Shi, Z. X.; Li, X. W.

    2012-12-01

    Magnetic Co ion doped SmFeAsO polycrystal was synthesized via solid-state reaction. Resistivity, SEM and magnetic hysteresis loops (MHLs) were measured to investigate magnetic properties of the sample. Critical current densities as well as the flux pinning forces densities were estimated from MHLs. This paper reports for the first time the research of superconducting MHLs as well as magnetic relaxation properties of SmFe0.9Co0.1AsO. Results suggest that: (i) A tail effect in the resistivity measurement together with the rapid decrease in critical current densities at low fields shows the evidence for granularity of the sample; (ii) The asymmetry of the MHLs may be caused by the Bean-Livingstone (BL) surface pinning or granular nature, and none of theoretical models are suitable to the scaling behaviors of flux pinning forces densities; (iii) The anomalous tendency of the temperature dependence of magnetic relaxation rate as well as the effective pinning energy were observed, which may be attributed to the competition between the bulk pinning and the BL surface pinning.

  20. Magnetic relaxation of 1D coordination polymers (X)₂[Mn(acacen)Fe(CN)₆], X = Ph₄P⁺, Et₄N⁺.

    PubMed

    Rams, Michał; Peresypkina, Eugenia V; Mironov, Vladimir S; Wernsdorfer, Wolfgang; Vostrikova, Kira E

    2014-10-06

    Substitution of the organic cation X in the 1D polymer, (X)2[Mn(acacen)Fe(CN)6], leads to an essential change in magnetic behavior. Due to the presence of more voluminous Ph4P(+) cations, the polyanion has a more geometrically distorted chain skeleton and, as a consequence, enhanced single chain magnet (SCM) characteristics compared to those for Et4N(+). The Arrhenius relaxation energy barriers, the exchange interaction constant and the zero-field splitting anisotropy of Mn(III) are determined from the analysis of magnetic measurements. The discussion is supported with ligand field calculations for [Fe(CN)6](3-) that unveils the significant anisotropy of Fe magnetic moments.

  1. Apparatus and method for magnetically processing a specimen

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  2. Magnetic relaxation: Coal swelling, extraction, pore size. Quarterly technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Doetschman, D.C.; Mehlenbacher, R.C.; Ito, O.

    1993-11-01

    An electron spin and proton magnetic relaxation study is presented on the effects of the solvent extraction of coal on the macromolecular network of the coal and on the mobile molecular species that are initially within the coal. The eight Argonne Premium coals were extracted at room temperature with a 1:1 (v/v) N-methylpyrrolidinone (NMP)-CS{sub 2} solvent mixture under an inert atmosphere. As much solvent as possible was removed from extract and residue by treatment under vacuum oven conditions ({approximately}10{sup {minus}2} torr at 145--150{degrees}C) until constant weight was achieved. The extraction, without further washing with other solvents, results in substantial uptake of NMP, apparently by H-bonding or acid-base interactions. The NMP uptake tends to be higher in coal matter with higher heteroatom (N,O,S) content and the NMP more tightly bound. The molecular material in the medium rank bituminous coals is more aromatic and heteroatom-poor than the macromolecular material and is mobilized by the extracting solvent. Likewise the more aromatic and heteroatom-poor molecular, free radicals are also extracted. However, mobilization of the molecular free radicals by solvent and the exposure of free radicals by the macromolecular matrix to solvent or species dissolved in the solvent, results in preferential reactions of the more aromatic and heteroatom-poor free radicals. Greater losses of extract free radicals, being the more aromatic, occur than residue free radicals. As a consequence, the surviving extract radicals exhibit a greater heteroatom content than the original whole coals, as determined from EPR g value changes.

  3. Pentanuclear [2.2] spirocyclic lanthanide(III) complexes: slow magnetic relaxation of the Dy(III) analogue.

    PubMed

    Biswas, Sourav; Das, Sourav; van Leusen, Jan; Kögerler, Paul; Chandrasekhar, Vadapalli

    2015-11-28

    The reaction of LnCl3·6H2O (Ln = Dy(3+), Tb(3+) and Ho(3+)) with the multisite coordinating ligand N'-(2-hydroxy-3-(hydroxymethyl)-5-methylbenzylidene)acetohydrazide (LH3) in the presence of pivalic acid (PivH) leads to the formation of three isostructural homometallic pentanuclear complexes, [Dy5(LH)4(η(1)-Piv)(η(2)-Piv)3(μ2-η(2)η(1)Piv)2(H2O)]·Cl·9·5H2O·5MeOH (1), [Tb5(LH)4(η(1)-Piv)(η(2)-Piv)3(μ2-η(2)η(1)Piv)2(H2O)]·Cl·10.5H2O·2MeOH·2CHCl3 (2) and [Ho5(LH)4(η(1)-Piv)(η(2)-Piv)3(μ2-η(2)η(1)Piv)2(H2O)]·Cl·14.5H2O·2CHCl3 (3). 1-3 are monocationic and are comprised of four doubly deprotonated [LH](2-) ligands along with six pivalate ions. These complexes possess a [2.2] spirocyclic topology formed by the fusion of two triangles of Ln(III) ions at a common vertex. The magneto chemical analysis reveals the presence of antiferromagnetic exchange interactions at low temperature, and the Dy(III) complex 1 gives an out-of-phase signal with a small curvature in alternating current (ac) magnetic susceptibility measurement. Application of a 3000 G static field during ac measurement intensifies the signals, revealing a second slow relaxation process in the Dy(III) analogue.

  4. Treatment motives as predictors of acquisition and transfer of relaxation methods to everyday life.

    PubMed

    Krampen, Günter; von Eye, Alexander

    2006-01-01

    This article presents results from four studies of the significance of type and number of initial treatment motives for acquisition and transfer to everyday life of progressive relaxation (PR) and autogenic training (AT). On the basis of theories of treatment motivation and compliance, we hypothesize that motives for participation are determinants of learning and transfer. Results are reported from (1) two studies with 113 participants in introductory courses on AT and 94 participants in introductory courses on PR and (2) two replication studies with 94 (AT) and 101 participants (PR). Participants indicated their motives for participation. Short-term indicators of treatment success include number of dropouts and subjective evaluations of relaxation exercises; long-term outcomes include transfer of relaxation exercises to everyday life and evaluations of exercise evaluations at follow-up 3 to 6 months after the end of course. Results suggest that for both AT and PR, dropout and subjective relaxation exercise evaluations can be predicted from participation motives. Long-term outcomes can be predicted only for AT. However, for both PR and AT it is shown that for up to four motives, the number of initial course motives is correlated with short-term and long-term predictors of course outcome. We conclude that motivation for participation is highly relevant to client-course matching and adaptive indication of relaxation therapies. Results lead to a threshold hypothesis about the relationship between the number of participation motives and short-term as well as long-term learning and transfer outcome.

  5. Magnetic irreversibility: An important amendment in the zero-field-cooling and field-cooling method

    NASA Astrophysics Data System (ADS)

    Teixeira Dias, Fábio; das Neves Vieira, Valdemar; Esperança Nunes, Sabrina; Pureur, Paulo; Schaf, Jacob; Fernanda Farinela da Silva, Graziele; de Paiva Gouvêa, Cristol; Wolff-Fabris, Frederik; Kampert, Erik; Obradors, Xavier; Puig, Teresa; Roa Rovira, Joan Josep

    2016-02-01

    The present work reports about experimental procedures to correct significant deviations of magnetization data, caused by magnetic relaxation, due to small field cycling by sample transport in the inhomogeneous applied magnetic field of commercial magnetometers. The extensively used method for measuring the magnetic irreversibility by first cooling the sample in zero field, switching on a constant applied magnetic field and measuring the magnetization M(T) while slowly warming the sample, and subsequently measuring M(T) while slowly cooling it back in the same field, is very sensitive even to small displacement of the magnetization curve. In our melt-processed YBaCuO superconducting sample we observed displacements of the irreversibility limit up to 7 K in high fields. Such displacements are detected only on confronting the magnetic irreversibility limit with other measurements, like for instance zero resistance, in which the sample remains fixed and so is not affected by such relaxation. We measured the magnetic irreversibility, Tirr(H), using a vibrating sample magnetometer (VSM) from Quantum Design. The zero resistance data, Tc0(H), were obtained using a PPMS from Quantum Design. On confronting our irreversibility lines with those of zero resistance, we observed that the Tc0(H) data fell several degrees K above the Tirr(H) data, which obviously contradicts the well known properties of superconductivity. In order to get consistent Tirr(H) data in the H-T plane, it was necessary to do a lot of additional measurements as a function of the amplitude of the sample transport and extrapolate the Tirr(H) data for each applied field to zero amplitude.

  6. Method and apparatus for control of a magnetic structure

    DOEpatents

    Challenger, Michael P.; Valla, Arthur S.

    1996-06-18

    A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.

  7. Tracking evolution of myoglobin stability in cetaceans using experimentally calibrated computational methods that account for generic protein relaxation.

    PubMed

    Holm, Jeppe; Dasmeh, Pouria; Kepp, Kasper P

    2016-07-01

    The evolution of cetaceans (whales, dolphins, and porpoises) from land to water is one of the most spectacular events in mammal evolution. It has been suggested that selection for higher myoglobin stability (∆G of folding) allowed whales to conquer the deep-diving niche. The stability of multi-site protein variants, including ancient proteins, is however hard to describe theoretically. From a compilation of experimental ∆∆G vs. ∆G we first find that protein substitutions are subject to large generic protein relaxation effects. Using this discovery, we develop a simple two-parameter model that predicts multi-site ∆∆G as accurately as standard methods do for single-site mutations and reproduces trends in contemporary myoglobin stabilities. We then apply this new method to the study of the evolution of Mb stability in cetaceans: With both methods the main change in stability (about 1kcal/mol) occurred very early, and stability was later relaxed in dolphins and porpoises, but was further increased in the sperm whales. This suggests that single proteins can affect whole organism evolution and indicates a role of Mb stability in the evolution of cetaceans. Transition to the deep-diving niche probably occurred already in the ancestor of contemporary baleen and toothed whales. In summary, we have discovered generic stability relaxation effects in proteins that, when incorporated into a simple model, improves the description of multi-site protein variants.

  8. Investigation of preparation methods on surface/bulk structural relaxation and glass fragility of amorphous solid dispersions.

    PubMed

    Ke, Peng; Hasegawa, Susumu; Al-Obaidi, Hisham; Buckton, Graham

    2012-01-17

    The objective of this study was to investigate the effect of preparation methods on the surface/bulk molecular mobility and glass fragility of solid dispersions. Solid dispersions containing indomethacin and PVP K30 were chosen as the model system. An inverse gas chromatography method was used to determine the surface structural relaxation of the solid dispersions and these data were compared to those for bulk relaxation obtained by DSC. The values of τ(β) for the surface relaxation were 4.6, 7.1 and 1.8h for melt quenched, ball milled and spray dried solid dispersions respectively, compared to 15.6, 7.9 and 9.8h of the bulk. In all systems, the surface had higher molecular mobility than the bulk. The glass fragility of the solid dispersions was also influenced by the preparation methods with the most fragile system showing the best stability. The zero mobility temperature (T(0)) was used to correlate with the physical stability of the solid dispersions. Despite having similar T(g) (65°C), the T(0) of the melt quenched, ball milled and spray dried samples were 21.6, -4.2 and 16.7°C respectively which correlated well with their physical stability results. Therefore, T(0) appears to be a better indicator than T(g) for predicting stability of amorphous materials.

  9. Material degradation detection by magnetic method

    SciTech Connect

    Yamaguchi, A.; Maeda, N.; Sugibayashi, T.

    1995-08-01

    To be able to evaluate the life of nuclear power plant becomes inevitable as the plant operating period extends. So, magnetic methods using Barkhausen noise (BHN) and B-H curve were applied to detect the degradation by fatigue and thermal aging. Low alloy steel (SA 508 cl.2) was fatigued, and duplex stainless steel (SCS 14A) was aged at 400 C. For the degradation by thermal aging, BHN and B-H curve were measured and good correlations between magnetic properties and aging time were obtained. For fatigue, BHN was measured at predetermined loading cycles and, at each predetermined cycle, the effect of stress or strain condition in the measurement was evaluated. The results showed that BHN was affected by the stress or strain condition in the measurement, the cause of which seemed to be the change of internal stress condition, and by identifying the measuring condition, good correlation between BHN and fatigue damage was obtained.

  10. My starting point: the discovery of an NMR method for measuring blood oxygenation using the transverse relaxation time of blood water.

    PubMed

    Thulborn, Keith R

    2012-08-15

    This invited personal story, covering the period from 1979 to 2010, describes the discovery of the dependence of the transverse relaxation time of water in blood on the oxygenation state of hemoglobin in the erythrocytes. The underlying mechanism of the compartmentation of the different magnetic susceptibilities of hemoglobin in its different oxygenation states also explains the mechanism that underlies blood oxygenation level dependent contrast used in fMRI. The story begins with the initial observation of line broadening during ischemia in small rodents detected by in vivo 31P NMR spectroscopy at high field. This spectroscopic line broadening or T2* relaxation effect was demonstrated to be related to the oxygenation state of blood. The effect was quantified more accurately using T2 values measured by the Carr-Purcell-Meiboom-Gill method. The effect was dependent on the integrity of the erythrocytes to compartmentalize the different magnetic susceptibilities produced by the changing spin state of the ferrous iron of hemoglobin in its different oxygenation states between the erythrocytes and the suspending solution. The hematocrit and magnetic field dependence, the requirement for erythrocyte integrity and lack of T1 dependence confirmed that the magnetic susceptibility effect explained the oxygenation state dependence of T2* and T2. This T2/T2* effect was combined with T1 based measurements of blood flow to measure oxygen consumption in animals. This blood oxygenation assay and its underlying magnetic susceptibility gradient mechanism was published in the biochemistry literature in 1982 and largely forgotten. The observation was revived to explain evolving imaging features of cerebral hematoma as MR imaging of humans increased in field strength to 1.5 T by the mid 1980s. Although the imaging version of this assay was used to measure a global metabolic rate of cerebral oxygen consumption in humans at 1.5-T by 1991, the global measurement had little clinical value

  11. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  12. The solution of the relaxation problem for the Boltzmann equation by the integral iteration method

    NASA Technical Reports Server (NTRS)

    Limar, Y. F.

    1972-01-01

    The Boltzmann equation is considered in terms of the problem of relaxation of some initial distribution function which depends only on velocities, to Maxwell's distribution function. The Boltzmann equation is given for the relaxation problem in which the distribution function f(t, u, v) is time dependent and is also dependent on two other variables u and v (the velocities of rigid spherical molecules). An iteration process is discussed in which the velocity space u, v is subdivided into squares, the distribution function in each square being approximated by the second-order surface from the values of the distribution function at nine points. The set of all of these points forms a network of u, v values at the nodes of which the distribution function can be found.

  13. Real Gas Computation Using an Energy Relaxation Method and High-Order WENO Schemes

    NASA Technical Reports Server (NTRS)

    Montarnal, Philippe; Shu, Chi-Wang

    1998-01-01

    In this paper, we use a recently developed energy relaxation theory by Coquel and Perthame and high order weighted essentially non-oscillatory (WENO) schemes to simulate the Euler equations of real gas. The main idea is an energy decomposition into two parts: one part is associated with a simpler pressure law and the other part (the nonlinear deviation) is convected with the flow. A relaxation process is performed for each time step to ensure that the original pressure law is satisfied. The necessary characteristic decomposition for the high order WENO schemes is performed on the characteristic fields based on the first part. The algorithm only calls for the original pressure law once per grid point per time step, without the need to compute its derivatives or any Riemann solvers. Both one and two dimensional numerical examples are shown to illustrate the effectiveness of this approach.

  14. Numerical methods for TVD transport and coupled relaxing processes in gases and plasmas

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1990-01-01

    The construction of second-order upwind schemes for nonequilibrium plasmas, for both one- and two-fluid formulations is demonstrated. Coupled relaxation processes, including ionization kinetics and radiative processes and their algorithms for nonequilibrium, multiple temperature conditions are described as well. The paper applies the numerical techniques on some simple test cases, points out critical problems and their solutions, and makes qualitative comparisons with known results, whenever possible.

  15. Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds.

    PubMed

    Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K

    2015-11-02

    Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.

  16. Method and apparatus for separating materials magnetically

    DOEpatents

    Hise, Jr., Eugene C.; Holman, Allen S.

    1982-01-01

    Magnetic and non-magnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  17. Slow magnetic relaxation in four square-based pyramidal dysprosium hydroxo clusters ligated by chiral amino acid anions - a comparative study.

    PubMed

    Thielemann, Dominique T; Wagner, Anna T; Lan, Yanhua; Anson, Christopher E; Gamer, Michael T; Powell, Annie K; Roesky, Peter W

    2013-10-01

    The synthesis and characterization of three chiral and one achiral amino acid anion ligated dysprosium hydroxo clusters [Dy5(OH)5(α-AA)4(Ph2acac)6] (α-AA = d-PhGly, l-Pro, l-Trp, Ph2Gly; Ph2acac = dibenzoylmethanide) are reported. The solid state structures were determined using single crystal X-ray diffraction and show that five Dy(iii) ions are arranged in a square-based pyramidal geometry with NO7-donor-sets for the basal and O8-donor-sets for the apical Dy atom. Both static (dc) and dynamic (ac) magnetic properties were investigated for all four compounds and show a slow relaxation of magnetization, indicative of single molecule magnet (SMM) behaviour below 10 K in all cases. The similar SMM behaviour observed for all four compounds suggests that the very similar coordination geometries seen for the dysprosium atoms in all members of this family, which are independent of the amino acid ligand used, play a decisive role in steering the contribution of the single ion anisotropies to the observed magnetic relaxation.

  18. Direct observation of temperature-/magnetic-field-induced transition between martensite and premartensite and their relaxation in Ni–Mn–In–Al alloy

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Xia, Z. C.; Wang, R. L.; Wei, M.; Jin, Z.; Huang, S.; Shang, C.; Wu, H.; Zhang, X. X.; Xiao, G. L.; Ouyang, Z. W.

    2017-04-01

    The microstructure evolution of the transition between premartensite and martensite in Ni50Mn34In15.5Al0.5 alloy was investigated directly by in situ optical microscope under various temperatures and pulsed magnetic fields. The microscopic observations at different temperatures indicate that the martensitic transition from premartensite to martensite and the reverse transition can be induced through cooling and heating respectively. A time-dependent relaxation phenomenon can be detected in the cooling process, in other words, the martensite continues to grow with holding time at temperatures between the martensite start and finish temperature, and the relaxation time to the equilibrium state at temperatures near the martensitic transition finishing temperature is shorter than that at higher temperatures. Reverse martensitic transition from martensite to premartensite induced by a pulsed magnetic field and the isothermal growth of martensite after removing the pulsed high magnetic field can be observed at a temperature of 230 K, at which the reverse transition induced by the magnetic field is partly reversible. Hence, the result here directly evidences the isothermal nature of the martensitic transition and the athermal nature of the reverse transition.

  19. Graphene oxide-Fe{sub 3}O{sub 4} nanoparticle composite with high transverse proton relaxivity value for magnetic resonance imaging

    SciTech Connect

    Venkatesha, N.; Srivastava, Chandan; Poojar, Pavan; Geethanath, Sairam; Qurishi, Yasrib

    2015-04-21

    The potential of graphene oxide–Fe{sub 3}O{sub 4} nanoparticle (GO-Fe{sub 3}O{sub 4}) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe{sub 3}O{sub 4} composites synthesized by precipitating Fe{sub 3}O{sub 4} nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe{sub 3}O{sub 4} composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe{sub 3}O{sub 4} composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells.

  20. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  1. Processes of structural relaxation in the amorphous alloy Co69Fe3.7Cr3.8Si12.5B11 with a near-zero magnetostriction and their effect on the magnetic properties and the characteristics of magnetic noise caused by Barkhausen jumps

    NASA Astrophysics Data System (ADS)

    Kekalo, I. B.; Lubyanyi, D. Z.; Mogil'nikov, P. S.; Chichibaba, I. A.

    2015-07-01

    The evolution of hysteretic magnetic properties and the characteristics of magnetic noise caused by Barkhausen jumps have been studied in different ranges of annealing temperature where different processes of structural relaxation develop. It has been shown that the amorphous cobalt-based alloy under study is characterized by a high (in comparison with the iron-based alloys) spatial homogeneity of magnetic noise. The stabilization of domain walls was caused by directional ordering (at annealing temperatures T a < T C) and the processes of clustering (at T a > T C) fixed by the method of small-angle X-ray scattering not only affect the level of hysteretic magnetic properties, but also determine the magnetic-noise characteristics of the alloy. A comparison of the dynamics of magnetic-noise behavior with changes in the saturation magnetostriction λs made it possible to conclude that the magnetic-noise characteristics depend not only on the directional, but also on the isotropic short-range ordering. The ranges of annealing temperature that ensure acceptable values of hysteretic magnetic properties and, simultaneously, a low level of magnetic noise have been established. This situation takes place at a certain optimum concentration of clusters arising in the alloy studied.

  2. Triimidosulfonates as Acute Bite-Angle Chelates: Slow Relaxation of the Magnetization in Zero Field and Hysteresis Loop of a Co(II) Complex.

    PubMed

    Carl, Elena; Demeshko, Serhiy; Meyer, Franc; Stalke, Dietmar

    2015-07-06

    Starting from a polyimido sulfonate the four-coordinate, N,N'-chelated Co(II) complex [Co{(NtBu)3 SMe}2 ] (1) was synthesized, and its molecular structure was elucidated by single-crystal X-ray structural analysis. The acute N-Co-N bite angle imposed by the N,N'-chelating ligand (NtBu)3 SMe(-) leads to pronounced C2v distortion of the tetrahedral coordination environment and thus to high anisotropy of the Co(II) ion (D≈-58 cm(-1) ), favorable for single-molecule-magnet (SMM) properties. Magnetic measurements revealed a high barrier to spin reversal (Ueff =75 cm(-1) ) that gives rise to the observation of slow relaxation of the magnetization in zero field and a hysteresis loop at 2 K for this unique complex.

  3. Dual stage active magnetic regenerator and method

    DOEpatents

    Pecharsky, Vitalij K.; Gschneidner, Jr., Karl A.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl.sub.2 or (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen.

  4. Dual stage active magnetic regenerator and method

    DOEpatents

    Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl{sub 2} or (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen. 17 figs.

  5. Exploring the Influence of Diamagnetic Ions on the Mechanism of Magnetization Relaxation in {Co(III)2Ln(III)2} (Ln = Dy, Tb, Ho) "Butterfly" Complexes.

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan

    2017-03-06

    The synthesis and magnetic and theoretical studies of three isostructural heterometallic [Co(III)2Ln(III)2(μ3-OH)2(o-tol)4(mdea)2(NO3)2] (Ln = Dy (1), Tb (2), Ho (3)) "butterfly" complexes are reported (o-tol = o-toluate, (mdea)(2-) = doubly deprotonated N-methyldiethanolamine). The Co(III) ions are diamagnetic in these complexes. Analysis of the dc magnetic susceptibility measurements reveal antiferromagnetic exchange coupling between the two Ln(III) ions for all three complexes. ac magnetic susceptibility measurements reveal single-molecule magnet (SMM) behavior for complex 1, in the absence of an external magnetic field, with an anisotropy barrier Ueff of 81.2 cm(-1), while complexes 2 and 3 exhibit field induced SMM behavior, with a Ueff value of 34.2 cm(-1) for 2. The barrier height for 3 could not be quantified. To understand the experimental observations, we performed DFT and ab initio CASSCF+RASSI-SO calculations to probe the single-ion properties and the nature and magnitude of the Ln(III)-Ln(III) magnetic coupling and to develop an understanding of the role the diamagnetic Co(III) ion plays in the magnetization relaxation. The calculations were able to rationalize the experimental relaxation data for all complexes and strongly suggest that the Co(III) ion is integral to the observation of SMM behavior in these systems. Thus, we explored further the effect that the diamagnetic Co(III) ions have on the magnetization blocking of 1. We did this by modeling a dinuclear {Dy(III)2} complex (1a), with the removal of the diamagnetic ions, and three complexes of the types {K(I)2Dy(III)2} (1b), {Zn(II)2Dy(III)2} (1c), and {Ti(IV)2Dy(III)2} (1d), each containing a different diamagnetic ion. We found that the presence of the diamagnetic ions results in larger negative charges on the bridging hydroxides (1b > 1c > 1 > 1d), in comparison to 1a (no diamagnetic ion), which reduces quantum tunneling of magnetization effects, allowing for more desirable SMM characteristics

  6. In vivo proton magnetic resonance spectroscopy of liver metabolites in non-alcoholic fatty liver disease in rats: T2 relaxation times in methylene protons.

    PubMed

    Song, Kyu-Ho; Baek, Hyeon-Man; Lee, Do-Wan; Choe, Bo-Young

    2015-10-01

    The aim of this study was to evaluate the transverse relaxation time of methylene resonance as compared to other lipid resonances. The examinations were performed using a 3.0 T scanner with a point-resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated with a repetition time (TR) of 6000ms and echo time (TE) of 40-550ms. For in vivo proton magnetic resonance spectroscopy ((1)H-MRS), eight male Sprague-Dawley rats were given free access to a normal-chow (NC) and another eight male Sprague-Dawley rats were given free access to a high-fat (HF) diet. Both groups drank water ad libitum. T2 measurements in the rats' livers were conducted at a fixed TR of 6000ms and TE of 40-220ms. Exponential curve fitting quality was calculated through the coefficients of determination (R(2)). Chemical analyses of the phantom and livers were not performed, but T2 decay curves were acquired. The T2 relaxation time of methylene resonance was estimated as follows: NC rats, 37.1±4.3ms; HF rats, 31.4±1.8ms (p<0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p<0.005). This study of (1)H MRS led to sufficient spectral resolution and signal-to-noise ratio differences to characterize the T2 relaxation times of methylene resonance. (1)H MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease.

  7. Field-Induced Slow Magnetic Relaxation in the Ni(I) Complexes [NiCl(PPh3)2]·C4H8O and [Ni(N(SiMe3)2)(PPh3)2].

    PubMed

    Lin, Weiquan; Bodenstein, Tilmann; Mereacre, Valeriu; Fink, Karin; Eichhöfer, Andreas

    2016-03-07

    Direct current (dc) and alternating current (ac) magnetic measurements have been performed on the three Ni(I) complexes: [NiCl(PPh3)3], [NiCl(PPh3)2]·C4H8O, and [Ni(N(SiMe3)2)(PPh3)2]. Fits of the dc magnetic data suggest an almost similar behavior of the three compounds, which display only moderate deviations from the spin-only values. The ac magnetic investigations reveal that the two complexes with trigonal planar coordination--[NiCl(PPh3)2]·C4H8O and [Ni(N(SiMe3)2)(PPh3)2]--display slow magnetic relaxation at low temperatures under applied dc fields, whereas tetrahedral [NiCl(PPh3)3] does not. Ground and excited states as well as magnetic data were calculated by ab initio wave function based multi-configurational methods, including dynamic correlation as well as spin-orbit coupling. The two trigonal planar complexes comprise well-isolated S = (1)/2 ground states, whereas two S = (1)/2 states with a splitting of less than 100 cm(-1) were found in the tetrahedral compound.

  8. Observation of zero-point quantum fluctuations of a single-molecule magnet through the relaxation of its nuclear spin bath.

    PubMed

    Morello, A; Millán, A; de Jongh, L J

    2014-03-21

    A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.

  9. New evidence for deep defect relaxation in hydrogenated amorphous silicon from junction capacitance methods

    SciTech Connect

    Cohen, J.D.; Gardner, A.D.; Kwon, D.

    1996-12-31

    The authors have carried out capacitance transient measurements on lightly PH{sub 3} doped a-Si:H films incorporating both ohmic and blocking contacts. They find that the previously reported anomalous variation of emission time with filling pulse duration is completely independent of whether one uses an n{sup +} c-Si substrate (providing a reasonably ohmic back contact) or a p{sup +} c-Si substrate (giving a blocking back contact). Quite similar behavior is observed on a sample which includes an n{sup +} a-Si:H layer at the back contact, exhibiting a variation of more than 2 orders of magnitude change in emission time when the filling pulse duration is decreased from 1s to 100{micro}s. Computer simulations are used to demonstrate that for a fixed (non-relaxing) deep state distribution, a filling problem in general cannot account for the observed experimental behavior. Finally, the authors report measurements that demonstrate that the filling of defects too close to the barrier interface can create difficulties observing the relaxation effects when an n{sup +} a-Si:H contacting layer is used.

  10. Magnetic resonance imaging method based on magnetic susceptibility effects to estimate bubble size in alveolar products: application to bread dough during proving.

    PubMed

    De Guio, François; Musse, Maja; Benoit-Cattin, Hugues; Lucas, Tiphaine; Davenel, Armel

    2009-05-01

    Magnetic resonance imaging has proven its potential application in bread dough and gas cell monitoring studies, and dynamic processes such as dough proving and baking can be monitored. However, undesirable magnetic susceptibility effects often affect quantification studies, especially at high fields. A new low-field method is presented based on local assessment of porosity in spin-echo imaging, local characterization of signal loss in gradient-echo imaging and prediction of relaxation times by simulation to estimate bubble radii in bread dough during proving. Maps of radii showed different regions of dough constituting networks which evolved during proving. Mean radius and bubble distribution were assessed during proving.

  11. Calorimetric method for the determination of Curie temperatures of magnetic nanoparticles in dispersion.

    PubMed

    Nica, V; Sauer, H M; Embs, J; Hempelmann, R

    2008-05-21

    Mn(x)Zn(1-x)Fe(2)O(4)-based magnetic fluids with x = 0.1-0.9 are synthesized by coprecipitation. The samples are heated in a radio frequency (rf) magnetic field using an rf generator at different powers, and the temperature is measured as function of time using an optical thermometer. The heating effect of the dispersed magnetic nanoparticles is proportional to the imaginary part of the dynamic magnetic susceptibility of the ferrofluid, a quantity that depends on the temperature through the magnetization of the ferrite nanoparticles and the Néel or Brownian relaxation times, respectively. We propose an extrapolation method to actuate the Curie temperatures of the dispersed magnetic nanoparticles. By means of appropriate fitting functions for (dT/dt) versus T for both the heating and the cooling process, we deduce the Curie temperature of the samples under investigation. For Mn(x)Zn(1-x)Fe(2)O(4)-based magnetic nanoparticles the Curie temperatures decrease with increasing Zn content. They turn out to be lower than the literature values for bulk Mn(x)Zn(1-x)Fe(2)O(4), a phenomenon which is generally observed for phase transitions of nanocrystalline materials.

  12. A 3D MOF constructed from dysprosium(III) oxalate and capping ligands: ferromagnetic coupling and field-induced two-step magnetic relaxation.

    PubMed

    Liu, Cai-Ming; Zhang, De-Qing; Zhu, Dao-Ben

    2016-04-04

    A novel 3D MOF based on dysprosium(iii) oxalate and 1,10-phenanthroline (phen), {[Dy(C2O4)1.5phen]·0.5H2O}n (1), has been hydrothermally synthesized. The Dy(3+) ion acts as a typical Y-shaped node, linking to each other to generate an interesting 3D topology structure. Complex 1 is the first 3D DyMOF displaying both ferromagnetic coupling and field-induced two-step magnetic relaxation.

  13. TEACHING NEUROMUSCULAR RELAXATION.

    ERIC Educational Resources Information Center

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  14. Relaxed heaps

    SciTech Connect

    Driscoll, J.R. ); Gabow, H.N.; Shrairman, R. ); Tarjan, R.E. )

    1988-11-01

    The relaxed heap is a priority queue data structure that achieves the same amortized time bounds as the Fibonacci heap - a sequence of m decrease key and n delete min operations takes time O(m + n log n). A variant of relaxed heaps achieves similar bounds in the worst case - O(1) time for decrease key and O(log n) for delete min. Relaxed heaps give a processor-efficient parallel implementation of Dijkstra's shortest path algorithm, and hence other algorithms in network optimization. A relaxed heap is a type of binomial queue that allows heap order to be violated.

  15. Probing the Residual Structure of the Low Populated Denatured State of ADA2h under Folding Conditions by Relaxation Dispersion Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Pustovalova, Yulia; Kukic, Predrag; Vendruscolo, Michele; Korzhnev, Dmitry M

    2015-08-04

    The structural characterization of low populated states of proteins with accuracy comparable to that achievable for native states is important for understanding the mechanisms of protein folding and function, as well as misfolding and aggregation. Because of the transient nature of these low populated states, they are seldom detected directly under conditions that favor folding. The activation domain of human procarboxypeptidase A2 (ADA2h) is an α/β-protein that forms amyloid fibrils at low pH, presumably initiated from a denatured state with a considerable amount of residual structure. Here we used Carr-Parcell-Meiboom-Gill relaxation dispersion (CPMG RD) nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the denatured state of the ADA2h I71V mutant under conditions that favor folding. Under these conditions, the lifetime of the denatured state of I71V ADA2h is on the order of milliseconds and its population is approximately several percent, which makes this mutant amenable to studies by CPMG RD methods. The nearly complete set of CPMG RD-derived backbone (15)N, (13)C, and (1)H NMR chemical shifts in the I71V ADA2h denatured state reveals that it retains a significant fraction (up to 50-60%) of nativelike α-helical structure, while the regions encompassing native β-strands are structured to a much lesser extent. The nativelike α-helical structure of the denatured state can bring together hydrophobic residues on the same sides of α-helices, making them available for intra- or intermolecular interactions. CPMG RD data analysis thus allowed a detailed structural characterization of the ADA2h denatured state under folding conditions not previously achieved for this protein.

  16. Magnetic resonance imaging of the calcaneus: preliminary assessment of trabecular bone-dependent regional variations in marrow relaxation time compared with dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.

    1996-01-01

    RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.

  17. Method of magnetic separation and apparatus therefore

    NASA Technical Reports Server (NTRS)

    Oder, Robin R. (Inventor)

    1991-01-01

    An apparatus for magnetically separating and collecting particulate matter fractions of a raw sample according to relative magnetic susceptibilities of each fraction so collected is disclosed. The separation apparatus includes a splitter which is used in conjunction with a magnetic separator for achieving the desired fractionation.

  18. Pentametallic lanthanide-alkoxide square-based pyramids: high energy barrier for thermal relaxation in a holmium single molecule magnet.

    PubMed

    Blagg, Robin J; Tuna, Floriana; McInnes, Eric J L; Winpenny, Richard E P

    2011-10-14

    Pentametallic Ln complexes of formula [Ln(5)O(O(i)Pr)(13)] have been made, where Ln(III) = Sm, Gd, Tb, Ho and Er; slow magnetisation relaxation to 33 K is observed for the Ho complex with an energy barrier of ca. 400 K.

  19. Albumin binding, relaxivity, and water exchange kinetics of the diastereoisomers of MS-325, a gadolinium(III)-based magnetic resonance angiography contrast agent.

    PubMed

    Caravan, Peter; Parigi, Giacomo; Chasse, Jaclyn M; Cloutier, Normand J; Ellison, Jeffrey J; Lauffer, Randall B; Luchinat, Claudio; McDermid, Sarah A; Spiller, Marga; McMurry, Thomas J

    2007-08-06

    The amphiphilic gadolinium complex MS-325 ((trisodium-{(2-(R)-[(4,4-diphenylcyclohexyl) phosphonooxymethyl] diethylenetriaminepentaacetato) (aquo)gadolinium(III)}) is a contrast agent for magnetic resonance angiography (MRA). MS-325 consists of two slowly interconverting diastereoisomers, A and B (65:35 ratio), which can be isolated at pH > 8.5 (TyeklAr, Z.; Dunham, S. U.; Midelfort, K.; Scott, D. M.; Sajiki, H.; Ong, K.; Lauffer, R. B.; Caravan, P.; McMurry, T. J. Inorg. Chem. 2007, 46, 6621-6631). MS-325 binds to human serum albumin (HSA) in plasma resulting in an extended plasma half-life, retention of the agent within the blood compartment, and an increased relaxation rate of water protons in plasma. Under physiological conditions (37 degrees C, pH 7.4, phosphate buffered saline (PBS), 4.5% HSA, 0.05 mM complex), there is no statistical difference in HSA affinity or relaxivity between the two isomers (A 88.6 +/- 0.6% bound, r1 = 42.0 +/- 1.0 mM(-1) s(-1) at 20 MHz; B 90.2 +/- 0.6% bound, r1 = 38.3 +/- 1.0 mM(-1) s(-1) at 20 MHz; errors represent 1 standard deviation). At lower temperatures, isomer A has a higher relaxivity than isomer B. The water exchange rates in the absence of HSA at 298 K, kA298 = 5.9 +/- 2.8 x 10(6) s(-1), kB298 = 3.2 +/- 1.8 x 10(6) s(-1), and heats of activation, DeltaHA = 56 +/- 8 kJ/mol, DeltaHB = 59 +/- 11 kJ/mol, were determined by variable-temperature 17O NMR at 7.05 T. Proton nuclear magnetic relaxation dispersion (NMRD) profiles were recorded over the frequency range of 0.01-50 MHz at 5, 15, 25, and 35 degrees C in a 4.5% HSA in PBS solution for each isomer (0.1 mM). Differences in the relaxivity in HSA between the two isomers could be attributed to the differing water exchange rates.

  20. Dynamics of helical worm-like chains. VIII. Higher-order subspace approximations to dielectric and magnetic relaxation and fluorescence depolarization for flexible chains

    NASA Astrophysics Data System (ADS)

    Yamakawa, Hiromi; Yoshizaki, Takenao; Fujii, Motoharu

    1986-04-01

    Following the general scheme developed in the preceding paper (paper VII), dielectric and magnetic relaxation and fluorescence depolarization for flexible chain polymers in dilute solution are reinvestigated on the basis of the discrete helical worm-like chain in the higher-order subspace approximation. A comparison of theory with experiment is made with respect to the dielectric correlation time τD, the spin-lattice relaxation time T1, the spin-spin relaxation time T2, the nuclear Overhauser enhancement (NOE), the fluorescence emission anisotropy r(t), the average fluorescence anisotropy r¯, and the fluorescence correlation time τF. It is found that there is agreement between the diameters of the chains determined from these dynamic properties and those from chemical structures, better than in the previous crude subspace approximation, indicating that the theory is remarkably improved in the present approximation. The magnetic correlation time τM is in general not an observable, and therefore an empirical equation to be used for its determination from the observed T1 is constructed. It is then found that there is good correlation between the dynamic chain stiffness τX/τ0X and the static chain stiffness λ-1, where τ0X is the correlation time of the isolated subbody (monomer unit) with X=D, M, and F; τX/τ0X is a monotonically increasing function of λ-1 nearly independent of X as far as perpendicular dipoles are concerned. An explanation of this result is given. However, the dependence of τX on temperature cannot be explained very satisfactorily.

  1. Transverse spin relaxation and magnetic correlation in Pr1-xCaxMnO3: Influence of particle size variation and chemical doping

    NASA Astrophysics Data System (ADS)

    Shukla, Vinay Kumar; Mukhopadhyay, Soumik

    2017-03-01

    The short ranged magnetic correlations and dynamics of hole doped Pr1-xCaxMnO3 (0.33 < x < 0.5) of different crystallite sizes have been investigated using electron spin resonance spectroscopy. The major contribution to the temperature dependence of paramagnetic line-width is attributed to the spin-lattice relaxation dominated by thermally activated hopping of small polarons with the typical activation energy of 20-50 meV. Irrespective of the crystallite size and dopant concentration, the transverse spin relaxation time (t2) follows a universal scaling behaviour of the type t 2 ˜ ( T / T 0 ) n in the paramagnetic regime, where T0 and n are the scaling parameters. Using the temperature dependence of t2, we construct a phase diagram which shows that near half-doping, the magnetic correlations associated with charge ordering not only survives even down to the crystallite size of 22 nm but is also actually enhanced. We conclude that the eventual suppression of charge ordering with reduction in the particle size is possibly more to do with the greater influence of chemical disorder than any intrinsic effect.

  2. Multiple-relaxation-time lattice Boltzmann method for study of two-lid-driven cavity flow solution multiplicity

    NASA Astrophysics Data System (ADS)

    Guo, Xixiong; Zhong, Chengwen; Zhuo, Congshan; Cao, Jun

    2014-04-01

    As a fundamental subject in fluid mechanics, sophisticated cavity flow patterns due to the movement of multi-lids have been routinely analyzed by the computational fluid dynamics community. Unlike those reported computational studies that were conducted using more conventional numerical methods, this paper features employing the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) to numerically investigate the two-dimensional cavity flows generated by the movements of two adjacent lids. The obtained MRT-LBM results reveal a number of important bifurcation flow features, such as the symmetry and steadiness of cavity flows at low Reynolds numbers, the multiplicity of stable cavity flow patterns when the Reynolds number exceeds its first critical value, as well as the periodicity of the cavity flow after the second critical Reynolds number is reached. Detailed flow characteristics are reported that include the critical Reynolds numbers, the locations of the vortex centers, and the values of stream function at the vortex centers. Through systematic comparison against the simulation results obtained elsewhere by using the lattice Bhatnagar-Gross-Krook model and other numerical schemes, not only does the MRT-LBM approach exhibit fairly satisfactory accuracy, but also demonstrates its remarkable flexibility that renders the adjustment of its multiple relaxation factors fully manageable and, thus, particularly accommodates the need of effectively investigating the multiplicity of flow patterns with complex behaviors.

  3. Selection of Genetic and Phenotypic Features Associated with Inflammatory Status of Patients on Dialysis Using Relaxed Linear Separability Method

    PubMed Central

    Bobrowski, Leon; Łukaszuk, Tomasz; Lindholm, Bengt; Stenvinkel, Peter; Heimburger, Olof; Axelsson, Jonas; Bárány, Peter; Carrero, Juan Jesus; Qureshi, Abdul Rashid; Luttropp, Karin; Debowska, Malgorzata; Nordfors, Louise; Schalling, Martin; Waniewski, Jacek

    2014-01-01

    Identification of risk factors in patients with a particular disease can be analyzed in clinical data sets by using feature selection procedures of pattern recognition and data mining methods. The applicability of the relaxed linear separability (RLS) method of feature subset selection was checked for high-dimensional and mixed type (genetic and phenotypic) clinical data of patients with end-stage renal disease. The RLS method allowed for substantial reduction of the dimensionality through omitting redundant features while maintaining the linear separability of data sets of patients with high and low levels of an inflammatory biomarker. The synergy between genetic and phenotypic features in differentiation between these two subgroups was demonstrated. PMID:24489753

  4. Influence of Tuned Linker Functionality on Modulation of Magnetic Properties and Relaxation Dynamics in a Family of Six Isotypic Ln2 (Ln = Dy and Gd) Complexes.

    PubMed

    Mukherjee, Soumya; Lu, Jingjing; Velmurugan, Gunasekaran; Singh, Shweta; Rajaraman, Gopalan; Tang, Jinkui; Ghosh, Sujit K

    2016-11-07

    A coordination complex family comprising of six new dinuclear symmetric lanthanide complexes, namely, [Ln2(Lx)2(L')2(CH3OH)2]·yG (H2Lx: three related yet distinct Schiff-base linkers; x = 1-3, according to the nomenclature of the Schiff-base linker employed herein. HL': 2,6-dimethoxyphenol. yG refers to crystallographically assigned guest solvent species in the respective complexes; y = number of solvent molecules; Ln(III) = Dy/Gd) were isolated employing a mixed-ligand strategy stemming out of a strategic variation of the functionalities introduced among the constituent Schiff-base linkers. The purposeful introduction of three diverse auxiliary groups with delicate differences in their electrostatic natures affects the local anisotropy and magnetic coupling of Ln(III) ion-environment in the ensuing Ln2 dinuclear complexes, consequentially resulting into distinctly dynamical magnetic behaviors among the investigated new-fangled family of isotypic Ln2 complexes. Among the entire family, subtle alterations in the chemical moieties render two of the Dy2 analogues to behave as single molecule magnets, while the other Dy2 congener merely exhibits slow relaxation of the magnetization. The current observation marks one of the rare paradigms, wherein magnetic behavior modulation was achieved by virtue of the omnipresent influence of subtly tuned linker functionalities among the constituent motifs of the lanthanide nanomagnets. To rationalize the observed difference in the magnetic coupling, density functional theory and ab initio calculations (CASSCF/RASSI-SO/POLY_ANISO) were performed on all six complexes. Subtle difference in the bond angles leads to difference in the J values observed for Gd2 complexes, while difference in the tunnel splitting associated with the structural alterations lead to variation in the magnetization blockade in the Dy2 complexes.

  5. A relaxation method for the energy and morphology of grain boundaries and interfaces

    NASA Astrophysics Data System (ADS)

    Runnels, Brandon; Beyerlein, Irene J.; Conti, Sergio; Ortiz, Michael

    2016-09-01

    The energy density of crystal interfaces exhibits a characteristic "cusp" structure that renders it non-convex. Furthermore, crystal interfaces are often observed to be faceted, i.e., to be composed of flat facets in alternating directions. In this work, we forge a connection between these two observations by positing that the faceted morphology of crystal interfaces results from energy minimization. Specifically, we posit that the lack of convexity of the interfacial energy density drives the development of finely faceted microstructures and accounts for their geometry and morphology. We formulate the problem as a generalized minimal surface problem couched in a geometric measure-theoretical framework. We then show that the effective, or relaxed, interfacial energy density, with all possible interfacial morphologies accounted for, corresponds to the convexification of the bare or unrelaxed interfacial energy density, and that the requisite convexification can be attained by means of a faceting construction. We validate the approach by means of comparisons with experiment and atomistic simulations including symmetric and asymmetric tilt boundaries in face-centered cubic (FCC) and body-centered cubic (BCC) crystals. By comparison with simulated and experimental data, we show that this simple model of interfacial energy combined with a general microstructure construction based on convexification is able to replicate complex interfacial morphologies, including thermally induced morphological transitions.

  6. Irradiation Creep of Chemically Vapor Deposited Silicon Carbide as Estimated by Bend Stress Relaxation Method

    SciTech Connect

    Katoh, Yutai; Snead, Lance Lewis; Hinoki, Tatsuya; Kondo, Sosuke; Kohyama, Akira

    2007-01-01

    The bend stress relaxation technique was applied for an irradiation creep study of high purity, chemically vapor-deposited beta-phase silicon carbide (CVD SiC) ceramic. A constant bend strain was applied to thin strip samples during neutron irradiation to fluences 0.2-4.2 dpa at various temperatures in the range {approx}400 to {approx}1080 C. Irradiation creep strain at <0.7 dpa exhibited only a weak dependence on irradiation temperature. However, the creep strain dependence on fluence was non-linear due to the early domination of the initial transient creep, and a transition in creep behavior was found between 950 and 1080 C. Steady-state irradiation creep compliances of polycrystalline CVD SiC at doses >0.7 dpa were estimated to be 2.7({+-}2.6) x 10{sup -7} and 1.5({+-}0.8) x 10{sup -6} (MPa dpa){sup -1} at {approx}600 to {approx}950 C and {approx}1080 C, respectively, whereas linear-averaged creep compliances of 1-2 x 10{sup -6} (MPa dpa){sup -1} were obtained for doses of 0.6-0.7 dpa at all temperatures. Monocrystalline 3C SiC samples exhibited significantly smaller transient creep strain and greater subsequent deformation when loaded along <0 1 1> direction.

  7. Superparamagnetic behaviour and T 1, T 2 relaxivity of ZnFe2O4 nanoparticles for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Manjura Hoque, S.; Srivastava, C.; Venkatesha, N.; Kumar, P. S. Anil; Chattopadhyay, K.

    2013-05-01

    In the present study, ZnFe2O4 nanoparticles were synthesized by the chemical co-precipitation followed by calcinations at 473 and 673 K for 4 h. Particle sizes obtained were 4 and 6 nm for the calcination temperatures of 473 and 673 K, respectively. To study the origin of system's low temperature spin dynamic behaviour, temperature dependence of susceptibility ? was investigated as a function of particle size and frequency. Slight increase in the grain size from 4 nm at 473 K to 6 nm at 673 K has led to a peak shift of temperature dependence of susceptibility measured at a constant frequency of 400 Hz. Temperature dependence of ? at different frequencies also resulted in peak shift. Relaxation time dependence of peak temperature obeys a power law, which provides the fitting parameters within the range of superparamagnetic nature of the particles. Further, dependence of relaxation time and peak temperature obeys Vogel-Fulcher law rather than Néel-Brown equation demonstrating that the particles follow the behaviour of superparamagnetism of slightly interacting system. Spin-lattice, T 1 and spin-spin, T 2 relaxivity of proton of the water molecule in the presence of chitosan-coated superparamagnetic ZnFe2O4 nanoparticle yields the values of 0.002 and 0.360 s-1 per ppm.

  8. Integrated breathing and relaxation training (the Papworth method) for adults with asthma in primary care: a randomised controlled trial

    PubMed Central

    Holloway, Elizabeth A; West, Robert J

    2007-01-01

    Background An integrated breathing and relaxation technique known as the Papworth method has been implemented by physiotherapists since the 1960s for patients with asthma and dysfunctional breathing, but no controlled trials have been reported. This study evaluated the effectiveness of the Papworth method in a randomised controlled trial. Methods Eighty‐five patients (36 men) were individually randomised to the control group (n = 46) or to the intervention group receiving five sessions of treatment by the Papworth method (n = 39). Both groups received usual medical care. Assessments were undertaken at baseline, post‐treatment (6 months after baseline) and at 12 months. The primary outcome measure was the St George's Respiratory Symptoms Questionnaire (SGRQ). Secondary outcome measures included the Hospital Anxiety and Depression Scale (HADS), the Nijmegen dysfunctional breathing questionnaire and objective measures of respiratory function. Results Post‐treatment and 12 month data were available for 78 and 72 patients, respectively. At the post‐treatment assessment the mean (SD) score on the SGRQ Symptom subscale was 21.8 (18.1) in the intervention group and 32.8 (20.1) in the control group (p = 0.001 for the difference). At the 12 month follow‐up the corresponding figures were 24.9 (17.9) and 33.5 (15.9) (p = 0.007 for the difference). SGRQ Total scores and HADS and Nijmegen scores were similarly significantly lower in the intervention group than in the control group. The groups did not differ significantly following the treatment on objective measures of respiratory function except for relaxed breathing rate. Conclusions The Papworth method appears to ameliorate respiratory symptoms, dysfunctional breathing and adverse mood compared with usual care. Further controlled trials are warranted to confirm this finding, assess the effect in other patient groups and determine whether there is some effect on objective measures of

  9. Controlled Source Magnetics: A Method for Imaging High-resolution Near-surface Magnetic Heterogeneity

    NASA Astrophysics Data System (ADS)

    Noh, K.; Lee, K. H.; Oh, S.; Seol, S. J.; Byun, J.

    2015-12-01

    Magnetic property in subsurface has been a target of the magnetic method for a wide variety of geophysical applications in mineral, hydrocarbon, groundwater, and environmental arenas. Anomalous magnetic property also affects controlled source electromagnetic (EM) data due to source-driven induced magnetization. At very low frequencies, a few to tens of hertz, the EM response predominantly consists of static-like magnetic field due to induced magnetization. Taking advantage of this property we have developed a numerical procedure to image subsurface magnetic heterogeneity with much improved resolutions. Incidentally, sensitivities of commercially available sensors and geomagnetic noise spectra at these frequencies are reasonably manageable compared to the anticipated magnetic field strength generated by numerical modeling. We, in this study, show that the resolution of three-dimensional inversion result(s) of controlled source magnetic data (fig. 1(a)) is better than that of geomagnetic data (fig. 1(b)). This is because use of EM excitations from different directions reduces non-uniqueness of inverse problem. These results show that a controlled source magnetic method can be a useful exploration tool when higher resolution of magnetic property is needed or strong remnant magnetization hinders the interpretation of magnetic method.

  10. Magnetic properties of Sm5Fe17/Fe composite magnets produced by spark plasma sintering method

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuji; Miyoshi, Hiroya

    2012-04-01

    Mixtures of powdered Sm5Fe17 melt-spun ribbon and Fe powder were consolidated into bulk magnets by the spark plasma sintering (SPS) method. Although these bulk magnets consisted of the hard magnetic Sm5Fe17 and soft magnetic α-Fe phases, they had a smooth hysteresis loop and exhibited coercivity. Among the magnets studied, the Sm5Fe17/Fe composite magnet with 30%Fe showed a remanence of 94 emu/g with a coercivity of 2.9 kOe.

  11. Nonlinear Boltzmann equation for the homogeneous isotropic case: Some improvements to deterministic methods and applications to relaxation towards local equilibrium

    NASA Astrophysics Data System (ADS)

    Asinari, P.

    2011-03-01

    Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).

  12. Computational electromagnetic methods for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Gomez, Luis J.

    Transcranial magnetic stimulation (TMS) is a noninvasive technique used both as a research tool for cognitive neuroscience and as a FDA approved treatment for depression. During TMS, coils positioned near the scalp generate electric fields and activate targeted brain regions. In this thesis, several computational electromagnetics methods that improve the analysis, design, and uncertainty quantification of TMS systems were developed. Analysis: A new fast direct technique for solving the large and sparse linear system of equations (LSEs) arising from the finite difference (FD) discretization of Maxwell's quasi-static equations was developed. Following a factorization step, the solver permits computation of TMS fields inside realistic brain models in seconds, allowing for patient-specific real-time usage during TMS. The solver is an alternative to iterative methods for solving FD LSEs, often requiring run-times of minutes. A new integral equation (IE) method for analyzing TMS fields was developed. The human head is highly-heterogeneous and characterized by high-relative permittivities (107). IE techniques for analyzing electromagnetic interactions with such media suffer from high-contrast and low-frequency breakdowns. The novel high-permittivity and low-frequency stable internally combined volume-surface IE method developed. The method not only applies to the analysis of high-permittivity objects, but it is also the first IE tool that is stable when analyzing highly-inhomogeneous negative permittivity plasmas. Design: TMS applications call for electric fields to be sharply focused on regions that lie deep inside the brain. Unfortunately, fields generated by present-day Figure-8 coils stimulate relatively large regions near the brain surface. An optimization method for designing single feed TMS coil-arrays capable of producing more localized and deeper stimulation was developed. Results show that the coil-arrays stimulate 2.4 cm into the head while stimulating 3

  13. Practical method using superposition of individual magnetic fields for initial arrangement of undulator magnets

    SciTech Connect

    Tsuchiya, K.; Shioya, T.

    2015-04-15

    We have developed a practical method for determining an excellent initial arrangement of magnetic arrays for a pure-magnet Halbach-type undulator. In this method, the longitudinal magnetic field distribution of each magnet is measured using a moving Hall probe system along the beam axis with a high positional resolution. The initial arrangement of magnetic arrays is optimized and selected by analyzing the superposition of all distribution data in order to achieve adequate spectral quality for the undulator. We applied this method to two elliptically polarizing undulators (EPUs), called U#16-2 and U#02-2, at the Photon Factory storage ring (PF ring) in the High Energy Accelerator Research Organization (KEK). The measured field distribution of the undulator was demonstrated to be excellent for the initial arrangement of the magnet array, and this method saved a great deal of effort in adjusting the magnetic fields of EPUs.

  14. Practical method using superposition of individual magnetic fields for initial arrangement of undulator magnets.

    PubMed

    Tsuchiya, K; Shioya, T

    2015-04-01

    We have developed a practical method for determining an excellent initial arrangement of magnetic arrays for a pure-magnet Halbach-type undulator. In this method, the longitudinal magnetic field distribution of each magnet is measured using a moving Hall probe system along the beam axis with a high positional resolution. The initial arrangement of magnetic arrays is optimized and selected by analyzing the superposition of all distribution data in order to achieve adequate spectral quality for the undulator. We applied this method to two elliptically polarizing undulators (EPUs), called U#16-2 and U#02-2, at the Photon Factory storage ring (PF ring) in the High Energy Accelerator Research Organization (KEK). The measured field distribution of the undulator was demonstrated to be excellent for the initial arrangement of the magnet array, and this method saved a great deal of effort in adjusting the magnetic fields of EPUs.

  15. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor. 1: One-step method

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1986-01-01

    An algorithm for solving a large class of two- and three-dimensional nonseparable elliptic partial differential equations (PDE's) is developed and tested. It uses a modified D'Yakanov-Gunn iterative procedure in which the relaxation factor is grid-point dependent. It is easy to implement and applicable to a variety of boundary conditions. It is also computationally efficient, as indicated by the results of numerical comparisons with other established methods. Furthermore, the current algorithm has the advantage of possessing two important properties which the traditional iterative methods lack; that is: (1) the convergence rate is relatively insensitive to grid-cell size and aspect ratio, and (2) the convergence rate can be easily estimated by using the coefficient of the PDE being solved.

  16. A method for embedding circular force-free flux ropes in potential magnetic fields

    SciTech Connect

    Titov, V. S.; Török, T.; Mikic, Z.; Linker, J. A.

    2014-08-01

    We propose a method for constructing approximate force-free equilibria in pre-eruptive configurations in which a thin force-free flux rope is embedded into a locally bipolar-type potential magnetic field. The flux rope is assumed to have a circular-arc axis, a circular cross-section, and electric current that is either concentrated in a thin layer at the boundary of the rope or smoothly distributed across it with a maximum of the current density at the center. The entire solution is described in terms of the magnetic vector potential in order to facilitate the implementation of the method in numerical magnetohydrodynamic (MHD) codes that evolve the vector potential rather than the magnetic field itself. The parameters of the flux rope can be chosen so that its subsequent MHD relaxation under photospheric line-tied boundary conditions leads to nearly exact numerical equilibria. To show the capabilities of our method, we apply it to several cases with different ambient magnetic fields and internal flux-rope structures. These examples demonstrate that the proposed method is a useful tool for initializing data-driven simulations of solar eruptions.

  17. The nuclear magnetic resonance relaxation data analysis in solids: General R1/R1ρ equations and the model-free approach

    NASA Astrophysics Data System (ADS)

    Kurbanov, Rauf; Zinkevich, Tatjana; Krushelnitsky, Alexey

    2011-11-01

    The advantage of the solid state NMR for studying molecular dynamics is the capability to study slow motions without limitations: in the liquid state, if orienting media are not used, all anisotropic magnetic interactions are averaged out by fast overall Brownian tumbling of a molecule and thus investigation of slow internal conformational motions (e.g., of proteins) in solution can be conducted using only isotropic interactions. One of the main tools for obtaining amplitudes and correlation times of molecular motions in the μs time scale is measuring relaxation rate R1ρ. Yet, there have been a couple of unresolved problems in the quantitative analysis of the relaxation rates. First, when the resonance offset of the spin-lock pulse is used, the spin-lock field can be oriented under an arbitrary angle in respect to B0. Second, the spin-lock frequency can be comparable or even less than the magic angle spinning rate. Up to now, there have been no equations for R1ρ that would be applicable for any values of the spin-lock frequency, magic angle spinning rate and resonance offset of the spin-lock pulse. In this work such equations were derived for two most important relaxation mechanisms: heteronuclear dipolar coupling and chemical shift anisotropy. The validity of the equations was checked by numerical simulation of the R1ρ experiment using SPINEVOLUTION program. In addition to that, the applicability of the well-known model-free approach to the solid state NMR relaxation data analysis was considered. For the wobbling in a cone at 30° and 90° cone angles and two-site jump models, it has been demonstrated that the auto-correlation functions G0(t), G1(t), G2(t), corresponding to different spherical harmonics, for isotropic samples (powders, polycrystals, etc.) are practically the same regardless of the correlation time of motion. This means that the model-free approach which is widely used in liquids can be equally applied, at least assuming these two motional

  18. Three isostructural one-dimensional Ln(III) chains with distorted cubane motifs showing dual fluorescence and slow magnetic relaxation/magnetocaloric effect.

    PubMed

    Li, Yan; Yu, Jia-Wen; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2015-01-05

    Three new homometallic lanthanide complexes with mixed carboxylate-modified rigid ligands, [Ln(μ3-OH)(na)(pyzc)]n (na(-) = 1-naphtholate, pyzc(-) = 2-pyrazinecarboxylate, Ln = Dy (1), Yb (2), and Gd (3)), were solvothermally synthesized, and their structures and magnetic as well as photophysical properties were completely investigated. Complexes 1-3 are crystallographically isostructural, exhibiting linear chains with four bidentate bridging μ-COO(-) moieties encapsulated cubic {Ln4(μ3-OH)4}(8+) clusters repeatedly extended by 4-fold chelating-bridging-pyzc(-) connectors. Magnetically, the former two complexes with highly anisotropic Dy(III) and weak anisotropic Yb(III) ions in the distorted NO7 triangular dodecahedron coordination environment display field-induced slow relaxation of magnetization. Fitting the dynamic magnetic data to the Arrhenius law gives energy barrier ΔE/kB = 39.6 K and pre-exponential factor τo = 1.52 × 10(-8) s for 1 and ΔE/kB = 14.1 K and τo = 2.13 × 10(-7) s for 2. By contrast, complex 3 with isotropic Gd(III) ion and weak intracluster antiferromagnetic coupling shows a significant cryogenic magnetocaloric effect, with a maximum -ΔSm value of 30.0 J kg(-1) K(-1) at 2.5 K and 70 kOe. Additionally, the chromophoric na(-) and pyzc(-) ligands can serve as antenna groups, selectively sensitizing the Dy(III)- and Yb(III)-based luminescence of 1 and 2 in the UV-visible region by an intramolecular energy transfer process. Thus, complexes 1-3, incorporating field-induced slow magnetic magnetization and interesting luminescence together, can be used as composite magneto-optical materials. More importantly, these interesting results further demonstrate that the mixed-ligand system with rigid carboxylate-functionalized chromophores can be excellent candidates for the preparations of new bifunctional magneto-optical materials.

  19. Magnetorelaxometry—a new binding specific detection method based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lange, J.; Kötitz, R.; Haller, A.; Trahms, L.; Semmler, W.; Weitschies, W.

    2002-11-01

    The measurement of the relaxing magnetisation of magnetic nanoparticles after switching off a magnetising field (magnetorelaxometry) was investigated towards its applicability for the determination of the binding of antibodies to their antigens. For this purpose a direct solid phase immunoassay using magnetic nanoparticles conjugated with an antibody against human IgG and a sandwich solid phase immunoassay using the identical biotinylated antibody against human IgG and magnetic nanoparticles conjugated with streptavidin were performed. Both assays yielded binding specific magnetic nanoparticle relaxation signals that were dependent on the amount of antigen. The comparison of the magnetic relaxation immunoassay (MARIA) with an established immunoassy technique (enzyme-linked immunosorbent assay, ELISA) showed, that both techniques yielded well comparable results.

  20. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  1. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  2. Rapid longitudinal relaxation measurement of hyperpolarized 129Xe by a highly sensitive atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Zhao, Hongchang; Luo, Hui

    2017-02-01

    A fast and accurate determination of longitudinal relaxation time is put forward for hyperpolarized 129Xe. The theoretical framework for the method is developed. Measurement of the longitudinal relaxation time is by the determination of a close-loop response of 129Xe magnetization to the external magnetic fields and is implemented with a highly sensitive Rb magnetometer. The indirect measurement dramatically reduces the time consuming than the conventional inversion-recovery method and is more suitable for the samples with long longitudinal relaxation time.

  3. Biohazard Detoxification Method Utilizing Magnetic Particles

    DTIC Science & Technology

    2007-05-01

    developing a detoxification system for the human blood that is based on magnetic nanoparticles . A key component of the proposed system is a portable...Targeting of Functionalized Nanoparticles ," Argonne National Laboratory Report ANL-CMT-04/02, September 2004. 7. M. D. Kaminski and A. J. Rosengart...Finck, S. Guy, and A.J. Rosengart, "In Vitro Studies of Functionalized Magnetic Nanoparticles for Selective Removal of a Simulant Biotoxin," J. Magn. Magn

  4. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  5. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  6. A comparison of magnetic resonance methods for spatially resolved T2 distribution measurements in porous media

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Marica, F.; Newling, B.; Balcom, B. J.

    2015-05-01

    Naturally occurring porous media are usually characterized by a distribution of pore sizes. If the material is fluid saturated, the 1H magnetic resonance (MR) signal depends on the pore size, the surface relaxivity and the fluid itself. Measurement of the transverse relaxation time T2 is a well-established technique to characterize material samples by means of MR. T2 distribution measurements, including T2 distribution mapping, are widely employed in clinical applications and in petroleum engineering. T2 distribution measurements are the most basic measurement employed to determine the fluid-matrix properties in MR core analysis. Three methods for T2 distribution mapping, namely spin-echo single point imaging (SE-SPI), DANTE-Z Carr-Purcell-Meiboom-Gill (CPMG) and adiabatic inversion CPMG are compared in terms of spatial resolution, minimum observable T2 and sensitivity. Bulk CPMG measurement is considered to be the gold standard for T2 determination. Bulk measurement of uniform samples is compared to the three spatially resolved measurements. SE-SPI is an imaging method, which measures spatially resolved T2s in samples of interest. A variant is introduced in this work that employs pre-equalized magnetic field gradient waveforms and is therefore able to measure shorter T2s than previously reported. DANTE-Z CPMG and adiabatic inversion CPMG are faster, non-imaging, local T2 distribution measurements. The DANTE-Z pulse train and adiabatic inversion pulse are compared in terms of T1 or T2 relaxation time effects during the RF pulse application, minimum pulse duration, requisite RF pulse power, and inversion profile quality. In addition to experimental comparisons, simulation results are presented.

  7. Bending moment evaluation of a long specimen using a radial speckle pattern interferometer in combination with relaxation methods

    NASA Astrophysics Data System (ADS)

    Pacheco, Anderson; Fontana, Filipe; Viotti, Matias R.; Veiga, Celso L. N.; Lothhammer, Lívia R.; Albertazzi G., Armando, Jr.

    2015-08-01

    The authors developed an achromatic speckle pattern interferometer able to measure in-plane displacements in polar coordinates. It has been used to measure combined stresses resulting from the superposition of mechanical loading and residual stresses. Relaxation methods have been applied to produce on the surface of the specimen a displacement field that can be used to determine the amount of combined stresses. Two relaxation methods are explored in this work: blind hole-drilling and indentation. The first one results from a blind hole drilled with a high-speed drilling unit in the area of interest. The measured displacement data is fitted in an appropriate model to quantify the stress level using an indirect approach based on a set of finite element coefficients. The second approach uses indentation, where a hard spherical tip is firmly pressed against the surface to be measured with a predetermined indentation load. A plastic flow occurs around the indentation mark producing a radial in-plane displacement field that is related to the amount of combined stresses. Also in this case, displacements are measured by the radial interferometer and used to determine the stresses by least square fitting it to a displacement field determined by calibration. Both approaches are used to quantify the amount of bending stresses and moment in eight sections of a 12 m long 200 mm diameter steel pipe submitted to a known transverse loading. Reference values of bending stresses are also determined by strain gauges. The comparison between the four results is discussed in the paper.

  8. Magnetic field, additive and structural effects on the decay kinetics of micellized triplet radical pairs. Role of diffusion, spin-orbit coupling and paramagnetic relaxation

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Kuzmin, V. A.

    1992-05-01

    The geminate recombination kinetics of the radical pairs produced by quenching of the triplet aromatic ketones or quinones by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium alkyl sulfates in the presence of additives (ethanol, NaCl, bromo- and iodobenzenes, paramagnetic species) has been examined using the laser flash technique. The recombination rates increase as the micellar size in decreased. Application of an external magnetic field (0.45 T) results in the retardation of geminate recombination up to 25 times. The magnetic field effect is quenched by internal or even external heavy atoms as well as by paramagnetic species, including 3O 2. The magnetic field dependences and attendant regularities are considered in terms of a simple kinetic scheme, in which the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms, as well as intersystem recombination due to the spin-orbit coupling in the contact states of a pair, are included as first-order processes. The corresponding kinetic parameters of the different pathways involved are also discussed.

  9. Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products

    NASA Astrophysics Data System (ADS)

    Brown, Jennifer R.; Brox, Timothy I.; Vogt, Sarah J.; Seymour, Joseph D.; Skidmore, Mark L.; Codd, Sarah L.

    2012-12-01

    Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and molecular diffusion, useful for probing pore structure and transport dynamics in porous systems, were used to physically characterize the unfrozen vein network structure in ice and its response to the presence of metabolic products produced by V3519-10, a cold tolerant microorganism isolated from the Vostok ice core. Recent research has found microorganisms that can remain viable and even metabolically active within icy environments at sub-zero temperatures. One potential mechanism of survival for V3519-10 is secretion of an extracellular ice binding protein that binds to the prism face of ice crystals and inhibits ice recrystallization, a coarsening process resulting in crystal growth with ice aging. Understanding the impact of ice binding activity on the bulk vein network structure in ice is important to modeling of frozen geophysical systems and in development of ice interacting proteins for biotechnology applications, such as cryopreservation of cell lines, and manufacturing processes in food sciences. Here, we present the first observations of recrystallization inhibition in low porosity ice containing V3519-10 extracellular protein extract as measured with Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

  10. Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products.

    PubMed

    Brown, Jennifer R; Brox, Timothy I; Vogt, Sarah J; Seymour, Joseph D; Skidmore, Mark L; Codd, Sarah L

    2012-12-01

    Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and molecular diffusion, useful for probing pore structure and transport dynamics in porous systems, were used to physically characterize the unfrozen vein network structure in ice and its response to the presence of metabolic products produced by V3519-10, a cold tolerant microorganism isolated from the Vostok ice core. Recent research has found microorganisms that can remain viable and even metabolically active within icy environments at sub-zero temperatures. One potential mechanism of survival for V3519-10 is secretion of an extracellular ice binding protein that binds to the prism face of ice crystals and inhibits ice recrystallization, a coarsening process resulting in crystal growth with ice aging. Understanding the impact of ice binding activity on the bulk vein network structure in ice is important to modeling of frozen geophysical systems and in development of ice interacting proteins for biotechnology applications, such as cryopreservation of cell lines, and manufacturing processes in food sciences. Here, we present the first observations of recrystallization inhibition in low porosity ice containing V3519-10 extracellular protein extract as measured with Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

  11. General Method for Describing Three-Dimensional Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav; Forbes, Terry; Priest, Eric; Mikic, Zoran; Linker, Jon

    2009-11-01

    A general method for describing magnetic reconnection in arbitrary three-dimensional magnetic configurations is proposed. The method is based on the field-line mapping technique previously used only for the analysis of magnetic structure at a given time. This technique is extended here so as to analyze the evolution of magnetic structure. Such a generalization is made with the help of new dimensionless quantities called ``slip-squashing factors''. Their large values define the surfaces that border the reconnected or to-be-reconnected magnetic flux tubes for a given period of time during the magnetic evolution. The proposed method is universal, since it assumes only that the time sequence of evolving magnetic field and the tangential boundary flows are known. We illustrate our method for several examples and compare it with the general magnetic reconnection theory, proposed previously by Hesse and coworkers. The new method admits a straightforward numerical implementation and provides a powerful tool for the diagnostics of numerical data obtained in theoretical or experimental studies of magnetic reconnection in space and laboratory plasmas.

  12. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    DOE PAGES

    S. -H. Baek; Gu, G. D.; Utz, Y.; ...

    2015-10-26

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T–11 sharply upturns at the charge-ordering temperature TCO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T–11 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥ [001], which are completely suppressed for largemore » fields along the CuO2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less

  13. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength.

    PubMed

    Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A

    2016-02-01

    Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements.

  14. Method to study temperature and stress induced magnetic transitions

    NASA Astrophysics Data System (ADS)

    Chopra, Harsh Deep; Sullivan, Matthew R.

    2005-01-01

    A new method called magnetic transition spectrum (MTS) is described for studying magnetic phase transitions. The MTS method is an electronic method that monitors the dynamics of the micromagnetic structure as a function of temperature, stress, or any other perturbation that can cause a sudden variation in flux inside the magnetic material. It is based on the same principle upon which the well-known and established Barkhausen method is based, namely, Faraday's law. However, instead of applying a magnetic field as in the Barkhausen method, temperature or stress is the external "force." The efficacy of the MTS method is illustrated by studying magnetic transitions in magnetic shape memory alloys. The MTS method is simple to implement and is equally applicable for studying magnetic transitions in other systems, such as, for example, dynamics of exchange anisotropy, using the Co-CoO system, by cooling the sample across the Néel temperature. In general, it can be used to study magnetic phase transitions driven by any external influence that would cause an abrupt change in the micromagnetic state of the sample (for example, change in temperature, pressure, etc.).

  15. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  16. Kinetic arrest of first-order transition between charge-ordered and ferromagnetic phases in Gd0.5Sr0.5MnO3 single crystals: magnetization relaxation studies

    NASA Astrophysics Data System (ADS)

    Wagh, Aditya A.; Kumar, P. S. Anil; Elizabeth, Suja

    2016-10-01

    We have studied the span and nature of first-order phase transition (FOPT) between charge-ordered insulating and ferromagnetic metallic phases in oriented single crystals of Gd0.5Sr0.5MnO3. Magnetic field—temperature phase diagram was formulated from magnetization data for different crystallographic axes and non-monotonic variation of supercooling limit was observed at low temperature. A peculiar nature of magnetization was observed as irreversible open hysteresis loops during thermal cycling. We perceive that the nature of metastable states responsible for open hysteresis loops is different from that of supercooled ones. Further, thermal cycling magnetization data reveal that magnetic phases formed at 8 K after zero-field or field-cooled protocols (89 kOe) are not in equilibrium. Relaxation time constant is found to increase below 30 K in magnetization relaxation measurements made across the FOPT. The non-monotonic variation of relaxation time constant is a manifestation of kinetic arrest of the FOPT. We propose that the non-equilibrium, glass-like magnetic phase (at 8 K and 89 kOe) is a consequence of kinetic arrest.

  17. Methods for the fabrication of thermally stable magnetic tunnel junctions

    SciTech Connect

    Chang, Y. Austin; Yang, Jianhua J.; Ladwig, Peter F.

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  18. A study of coal extraction with electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance relaxation techniques. Quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Doetschman, D.C.; Mehlenbacher, R.C.; Ito, O.

    1993-09-01

    An electron spin and proton magnetic relaxation study is presented on the effects of the solvent extraction of coal on the macromoleculer network of the coal and on the mobile molecular species that are initially within the coal. The eight Argonne Premium coals were extracted at room temperature with a 1:1 (v/v) N-methylpyrrolidinone (NMP)-CS2 solvent mixture under an inert atmosphere. As much solvent as possible was removed from extract and residue by treatment in a vacuum. The mobilization of molecular free radicals by the solvent and the exposure of free radicals in the macromoleculer matrix to solvent or to species dissolved in the solvent, results in a preferential survival of residue radicals of types that depend on the particular coal and results in the apparently fairly uniform loss of all types of radicals in bituminous coal extracts. The surviving extract and residue free radicals are more predominantly of the odd- alternate hydrocarbon free radical type. The spin-lattice relaxation (SLR) of these coal free radicals has previously been inferred (Doetschman and Dwyer, Energy Fuels, 1992, 6, 783) to be from the modulation of the intramolecular electron-nuclear dipole-interactions of the CH groups in a magnetic field by rocldng motions of the radical in the coal matrix. Such a modulation would depend not only on the rocking amplitude and frequency but also upon the electron spin density at the CH groups in the radical. The observed SLR rates decrease with coal rank in agreement with the smaller spin densities and the lower rocidng amplitudes that are expected for the larger polycondensed ring systems in coals of higher rank. The SLR rates are found to be generally faster in the extracts (than residues) where the molecular species would be expected to have a smaller polycondensed ring system than in the macromoleculer matrix of the residue.

  19. Selecting magnet laminations recipes using the method of simulated annealing

    SciTech Connect

    Russell, A.D.; Baiod, R.; Brown, B.C.

    1997-05-01

    The Fermilab Main Injector project is building 344 dipoles using more than 7000 tons of steel. There were significant run-to-run variations in the magnetic properties of the steel. Differences in stress relief in the steel after stamping resulted in variations of gap height. To minimize magnet-to-magnet strength and field shape variations the laminations were shuffled based on the available magnetic and mechanical data and assigned to magnets using a computer program based on the method of simulated annealing. The lamination sets selected by the program have produced magnets which easily satisfy the design requirements. This paper discussed observed gap variations, the program structure and the strength uniformity results for the magnets produced.

  20. Relaxation spectroscopy of deep levels in semiconductors: Laplace-DLTS method

    NASA Astrophysics Data System (ADS)

    Levin, M. N.; Bormontov, A. E.; Akhkubekov, A. É.; Tatokhin, E. A.

    2010-11-01

    Deep level transient spectroscopy (DLTS) is among the main methods used to determine the parameters of electrically active centers of charge localization in semiconductors. In order to increase the accuracy and adequacy of DLTS data, we propose a modified approach based on the application of an inverse Laplace transform. Using the proposed Laplace-DLTS method, it is possible to determine the parameters of centers with close carrier emission coefficients, which cannot be done using the traditional DLTS technique.

  1. Usage of internal magnetic fields to study the early hydration process of cement paste by MGSE method

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Ardelean, Ioan

    2016-11-01

    Internal magnetic field gradients, arising within the porous media due to susceptibility differences at the interfaces of solid and liquid as well as due to the contained magnetic impurities, can be employed by the method of modulated gradient spin echo to get insight into the velocity autocorrelation spectrum of liquid confined in the porous structure. New theoretical treatment of spin interaction with the radio-frequency field and the simultaneously applied static non-uniform magnetic field provides the formula that match well with the measurement of restricted diffusion of water in pores of cement paste. Its fitting to the experimental data gives the changes in the mean size of capillary pores, the spin relaxation and the magnitude of mean internal magnetic field gradients during the induction period and early acceleration stage of hydration processes at different temperatures.

  2. A component compensation method for magnetic interferential field

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Wan, Chengbiao; Pan, Mengchun; Liu, Zhongyan; Sun, Xiaoyong

    2017-04-01

    A new component searching with scalar restriction method (CSSRM) is proposed for magnetometer to compensate magnetic interferential field caused by ferromagnetic material of platform and improve measurement performance. In CSSRM, the objection function for parameter estimation is to minimize magnetic field (components and magnitude) difference between its measurement value and reference value. Two scalar compensation method is compared with CSSRM and the simulation results indicate that CSSRM can estimate all interferential parameters and external magnetic field vector with high accuracy. The magnetic field magnitude and components, compensated with CSSRM, coincide with true value very well. Experiment is carried out for a tri-axial fluxgate magnetometer, mounted in a measurement system with inertial sensors together. After compensation, error standard deviation of both magnetic field components and magnitude are reduced from more than thousands nT to less than 20 nT. It suggests that CSSRM provides an effective way to improve performance of magnetic interferential field compensation.

  3. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.

    PubMed

    St-Pierre, Jean-François; Mousseau, Normand

    2012-07-01

    We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction. This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we estimate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of exhaustive search methods.

  4. Accelerated radiation damping for increased spin equilibrium (ARISE): a new method for controlling the recovery of longitudinal magnetization.

    PubMed

    Huang, Susie Y; Witzel, Thomas; Wald, Lawrence L

    2008-11-01

    Control of the longitudinal magnetization in fast gradient-echo (GRE) sequences is an important factor in enabling the high efficiency of balanced steady-state free precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The accelerated radiation damping for increased spin equilibrium (ARISE) method uses an external feedback circuit to strengthen the radiation damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T(1) relaxation. The method is characterized in GRE phantom imaging at 3T as a function of feedback gain, phase, and duration, and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10 ms) during a refocused interval of a crushed GRE sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T(2) relaxation had time to occur. An appropriate application might be to improve navigated sequences. Unlike conventional flip-back schemes, the ARISE "flip-back" is generated by the spins themselves, thereby offering a potentially useful building block for enhancing GRE sequences.

  5. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  6. Method to manufacture bit patterned magnetic recording media

    DOEpatents

    Raeymaekers, Bart; Sinha, Dipen N

    2014-05-13

    A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic "cross-talk" between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.

  7. Muon spin relaxation study on itinerant ferromagnet CeCrGe₃ and the effect of Ti substitution on magnetism of CeCrGe₃.

    PubMed

    Das, Debarchan; Bhattacharyya, A; Anand, V K; Hillier, A D; Taylor, J W; Gruner, T; Geibel, C; Adroja, D T; Hossain, Z

    2015-01-14

    A Muon spin relaxation (µSR) study has been performed on the Kondo lattice heavy fermion itinerant ferromagnet CeCrGe3. Recent investigations of bulk properties have revealed a long-range ordering of Cr moments at Tc = 70 K in this compound. Our µSR investigation between 1.2 K and 125 K confirm the bulk magnetic order which is marked by a loss in initial asymmetry below 70 K accompanied with a sharp increase in the muon depolarization rate. Field dependent µSR spectra show that the internal field at the muon site is higher than 0.25 T apparently due to the ferromagnetic nature of ordering. The effect of Ti substitution on the magnetism in CeCrGe3 is presented. A systematic study has been made on polycrystalline CeCr(1-x)Ti(x)Ge3 (0 ⩽ x ⩽ 1) using magnetic susceptibility χ(T), isothermal magnetization M(H), specific heat C(T) and electrical resistivity ρ(T) measurements which clearly reveal that the substitution of Ti for Cr in CeCrGe3 strongly influences the exchange interaction and ferromagnetic ordering of Cr moments. The Cr moment ordering temperature is suppressed gradually with increasing Ti concentration up to x = 0.50 showing Tc = 7 K beyond which Ce moment ordering starts to dominate and a crossover between Cr and Ce moment ordering is observed with a Ce moment ordering Tc = 14 K for x = 1.0. The Kondo lattice behavior is evident from temperature dependence of ρ(T) in all CeCr(1-x)Ti(x)Ge3 samples.

  8. High relaxivity MRI contrast agents part 2: Optimization of inner- and second-sphere relaxivity

    PubMed Central

    Jacques, Vincent; Dumas, Stephane; Sun, Wei-Chuan; Troughton, Jeffrey S.; Greenfield, Matthew T.; Caravan, Peter

    2011-01-01

    Rationale and objectives The observed relaxivity of gadolinium based contrast agents has contributions from the water molecule(s) that bind directly to the gadolinium ion (inner-sphere water), long lived water molecules and exchangeable protons that make up the second-sphere of coordination, and water molecules that diffuse near the contrast agent (outer-sphere). Inner- and second-sphere relaxivity can both be increased by optimization of the lifetimes of the water molecules and protons in these coordination spheres, the rotational motion of the complex, and the electronic relaxation of the gadolinium ion. We sought to identify new high relaxivity contrast agents by systematically varying the donor atoms that bind directly to gadolinium to increase inner-sphere relaxivity and concurrently including substituents that influence the second-sphere relaxivity. Methods Twenty GdDOTA derivatives were prepared and their relaxivity determined in presence and absence of human serum albumin as a function of temperature and magnetic field. Data was analyzed to extract the underlying molecular parameters influencing relaxivity. Each compound had a common albumin-binding group and an inner-sphere donor set comprising the 4 tertiary amine N atoms from cyclen, an α-substituted acetate oxygen atom, two amide oxygen atoms, an inner-sphere water oxygen atom, and a variable donor group. Each amide nitrogen was substituted with different groups to promote hydrogen bonding with second-sphere water molecules. Results Relaxivites at 0.47T and 1.4T, 37 °C, in serum albumin ranged from 16.0 to 58.1 mM−1s−1 and from 12.3 to 34.8 mM−1s−1 respectively. The reduction of inner-sphere water exchange typical of amide donor groups could be offset by incorporating a phosphonate or phenolate oxygen atom donor in the first coordination sphere resulting in higher relaxivity. Amide nitrogen substitution with pendant phosphonate or carboxylate groups increased relaxivity by as much as 88

  9. Conductor-like screening model for relaxed excited states: Implementation in the semiempirical method MSINDO.

    PubMed

    Krause, Katharina; Bredow, Thomas

    2014-03-15

    Two approaches to treat solvent polarization and reorientation effects for excited states of molecules and surfaces have been implemented in the recently developed MSINDO-sCIS method (Gadaczek, Krause, Hintze, Bredow, J. Chem. Theory Comput. 2011, 7, 3675). They allow for an efficient calculation of analytical energy gradients and hence open the opportunity to investigate fluorescence effects or photochemical reactions in solution for large molecules that are difficult to treat with high-level methods. Both approaches are based on the conductor-like screening model (COSMO) (Klamt and Schüürmann, J. Chem. Soc., Perkin Trans. 1993, 2, 799) in combination with the configuration interaction singles (CIS) method (Foresman, Head-Gordon, Pople, and Frisch, J. Phys. Chem. 1992, 96, 135). The paper gives a brief outline of the theoretical background. As a first application, solvent shifts of three well-studied, environment-sensitive fluorescent dyes (Kucherak, Didier, Mély, and Klymchenko, J. Phys. Chem. Lett. 2010, 1, 616) have been calculated and compared with experimental results and standard time-dependent density functional theory. A statistical evaluation of MSINDO-COSMO-sCIS is provided for a set of 39 molecules suggested recently by Jacquemin et al. (Jacquemin, Planchat, Adamo, and Mennucci, J. Chem. Theory Comput. 2012, 8, 2359). Calculated vertical and adiabatic excitation energies and fluorescence energies are compared to experimental data.

  10. A Method for the Measurement of Nitrous Acid Flux Using Relaxed Eddy Accumulation

    NASA Astrophysics Data System (ADS)

    Bertman, S.; Marchewka, M.; King, J.

    2003-12-01

    HONO has recently received renewed attention as a byproduct of condensed nitrogen photolysis and as a potential atmospheric radical source. In particular, several recent accounts suggesting a photochemical source in forests have lead us to develop a method for assessing nitrous acid flux above a hardwood forest in northern Michigan. The technique was based on nitrous acid in ambient air being scrubbed into a 1mM phosphate buffer that was then derivatized into a light absorbing complex. A separate scrubbing system was used for updrafts and downdrafts after the air had been separated through Teflon valves according to input from a sonic anemometer. The detection of the complex was performed via UV absorption through a capillary flowthrough cell. Detection limit for this analytical method is around 10 pptv. Derivatized solution from each flow system was injected into the capillary cell via an 8-port valve with two sample loops. Each sample loop was injected as soon as it filled, which allowed measurement of all of the scrubbed material in each flow system. Laboratory tests were performed to assess the accuracy and suitability of this method. The field worthiness of the instrument was determined during the summer of 2003 at the University of Michigan Biological Station in northern Michigan where it was placed on top of a 35m tower above a forest canopy.

  11. Magnetic properties of cobalt ferrite synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Allaedini, Ghazaleh; Tasirin, Siti Masrinda; Aminayi, Payam

    2015-05-01

    In this study, the magnetic properties of nanocrystalline cobalt ferrite synthesized via the hydrothermal method have been investigated. The structural properties of the produced powders were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The observed XRD pattern confirmed the spinel/cubic structure of the prepared cobalt ferrite. The SEM pictures show that the simple hydrothermal method produces uniform sphere-shaped nanopowders. Moreover, infrared spectroscopy was used to confirm the formation of cobalt ferrite particles. Magnetic hysteresis was measured using a vibrating sample magnetometer in a maximum field of 10 kOe. The magnetization of the prepared nanoparticles was investigated, and the saturation magnetization ( M s), remanence ( M r), and coercivity ( H c) were derived from the hysteresis loops. The results revealed that the cobalt ferrite nanoparticles synthesized via the simple hydrothermal method exhibit superior magnetic properties.

  12. Magnetic Forces Simulation of Bulk HTS over Permanent Magnetic Railway with Numerical Method

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Zhuang, Shujun

    2012-10-01

    Magnetic levitation forces of bulk high temperature superconductor (HTS) above two types permanent magnet railway (PMR) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E- J power law is used to describe the electrical field vs. current density nonlinear characteristic of HTS. The applied magnetic fields induced by the PMR are calculated by the standard analysis method with the equivalent surface current model. By the method, the calculation formulation of magnetic fields generated by Halbach PMR and symmetrical PMR is derived respectively. The simulation results show that the finite element dynamic mesh rebuilding problem of HTS magnetic levitation transportation system comprised of bulk HTS and PMR can be easily avoided by the methods.

  13. Silica-F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T1 magnetic resonance relaxivity

    NASA Astrophysics Data System (ADS)

    Wei Hsu, Benedict You; Wang, Miao; Zhang, Yu; Vijayaragavan, Vimalan; Wong, Siew Yee; Yuang-Chi Chang, Alex; Bhakoo, Kishore Kumar; Li, Xu; Wang, John

    2013-12-01

    To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications.To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile

  14. Nuclear magnetic resonance as a method of fluid mobility detection in porous media

    NASA Astrophysics Data System (ADS)

    Zhakov, Sergey; Loskutov, Valentin

    2016-04-01

    The nuclear magnetic resonance (NMR) method is widely used for studying the structure of porous media and processes taking place in such media. This method permits to determine porosity and pore-size distributions, which have direct practical application in various areas. The problem of porous media permeability determination is connected directly with extraction of hydrocarbons from pays and water from aquiferous layers. But it is impossible to measure directly amount of fluid past through the fixes cross section for determination of bed permeability. So various indirect approaches are used to find correlation of permeability value with porosity and pore size distribution which can be determined directly using NMR relaxometry. In contrast to porosity, permeability is dynamic characteristic of porous media so it may be measured correctly only in conditions of moving fluid. Natural porous medium has branched pore structure, so a chaotic component of fluid velocity will occur even for constant mean filtration fluid velocity. In the presence of magnetic field gradient this chaotic fluid velocity will produce additional spin dephasing and decrease of relaxation time [1]. Direct detecting of fluid movement in porous core samples through the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been demonstrated and theoretical model and analysis was given. Experiments were made on a set of sandstone samples (Berea, Bentheimer, Castle Gate, Leopard) and with synthetic high-perm samples made of abrasive material. The experiments show that the NMR spin echo measurements permit to fix mean fluid velocity mm/sec. The experiments and the theoretical model show that for low fluid velocities the mean relaxation rate is proportional to fluid velocity . The results may serve as the basis for determination of mobility of liquids in porous media and permeability. 1. P.T.Callaghan. Principles of Nuclear Magnetic Resonance Microscopy. 1991, Oxford University Press.

  15. Method of using triaxial magnetic fields for making particle structures

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  16. Monte Carlo method for magnetic impurities in metals

    NASA Technical Reports Server (NTRS)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  17. On the analytical determination of relaxation modulus of viscoelastic materials by Prony's interpolation method

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro I.

    1986-01-01

    A computer implementation to Prony's curve fitting by exponential functions is presented. The method, although more than one hundred years old, has not been utilized to its fullest capabilities due to the restriction that the time range must be given in equal increments in order to obtain the best curve fit for a given set of data. The procedure used in this paper utilizes the 3-dimensional capabilities of the Interactive Graphics Design System (I.G.D.S.) in order to obtain the equal time increments. The resultant information is then input into a computer program that solves directly for the exponential constants yielding the best curve fit. Once the exponential constants are known, a simple least squares solution can be applied to obtain the final form of the equation.

  18. Magnetism and lithium diffusion in Li xCoO 2 by a muon-spin rotation and relaxation (μ +SR) technique

    NASA Astrophysics Data System (ADS)

    Mukai, Kazuhiko; Sugiyama, Jun; Ikedo, Yutaka; Nozaki, Hiroshi; Shimomura, Koichiro; Nishiyama, Kusuo; Ariyoshi, Kingo; Ohzuku, Tsutomu

    Microscopic magnetism of the electrochemically Li-deintercaleted Li xCoO 2 powders has been investigated by muon-spin rotation and relaxation (μ +SR) spectroscopy in the temperature (T) range between 10 and 300 K. Weak transverse-field μ +SR measurements indicate that localized moments appear in LiCoO 2 below 60 K, while both Li 0.53CoO 2 and Li 0.04CoO 2 are paramagnetic even at 10 K. Zero-field μ +SR measurements for the samples with x = 0.53 and 0.04 show that the field distribution width (Δ) due to randomly oriented nuclear magnetic moments of 7Li and 59Co decreases monotonically with increasing T up to 250 K, and then it decreases steeper (increasing slope (d Δ/d T)) above 250 K. Because the muon hopping rate (ν) is almost T independent for Li 0.53CoO 2 below 300 K, the decrease in Δ suggests that the time scale of Li + diffusion in Li xCoO 2 is within a microsecond scale.

  19. A method for finding three-dimensional magnetic skeletons

    SciTech Connect

    Haynes, A. L.; Parnell, C. E.

    2010-09-15

    Magnetic fields are an essential component of a plasma. In many astrophysical, solar, magnetospheric, and laboratory situations the magnetic field in the plasma can be very dynamic and form highly complex structures. One approach to unraveling these structures is to determine the magnetic skeleton of the field, a set of topological features that divide the magnetic field into topologically distinct domains. In general, the features of the magnetic skeleton are difficult to locate, in particular those given by numerical experiments. In this paper, we propose a new set of tools to find the skeleton of general magnetic fields including null points, spines, separatrix surfaces, and separators. This set of tools is found to be considerably better at finding the skeleton than the currently favored methods used in magnetohydrodynamics.

  20. Post-earthquake relaxation using a spectral element method: 2.5-D case

    USGS Publications Warehouse

    Pollitz, Fred

    2014-01-01

    The computation of quasi-static deformation for axisymmetric viscoelastic structures on a gravitating spherical earth is addressed using the spectral element method (SEM). A 2-D spectral element domain is defined with respect to spherical coordinates of radius and angular distance from a pole of symmetry, and 3-D viscoelastic structure is assumed to be azimuthally symmetric with respect to this pole. A point dislocation source that is periodic in azimuth is implemented with a truncated sequence of azimuthal order numbers. Viscoelasticity is limited to linear rheologies and is implemented with the correspondence principle in the Laplace transform domain. This leads to a series of decoupled 2-D problems which are solved with the SEM. Inverse Laplace transform of the independent 2-D solutions leads to the time-domain solution of the 3-D equations of quasi-static equilibrium imposed on a 2-D structure. The numerical procedure is verified through comparison with analytic solutions for finite faults embedded in a laterally homogeneous viscoelastic structure. This methodology is applicable to situations where the predominant structure varies in one horizontal direction, such as a structural contrast across (or parallel to) a long strike-slip fault.

  1. Post-earthquake relaxation using a spectral element method: 2.5-D case

    NASA Astrophysics Data System (ADS)

    Pollitz, F. F.

    2014-07-01

    The computation of quasi-static deformation for axisymmetric viscoelastic structures on a gravitating spherical earth is addressed using the spectral element method (SEM). A 2-D spectral element domain is defined with respect to spherical coordinates of radius and angular distance from a pole of symmetry, and 3-D viscoelastic structure is assumed to be azimuthally symmetric with respect to this pole. A point dislocation source that is periodic in azimuth is implemented with a truncated sequence of azimuthal order numbers. Viscoelasticity is limited to linear rheologies and is implemented with the correspondence principle in the Laplace transform domain. This leads to a series of decoupled 2-D problems which are solved with the SEM. Inverse Laplace transform of the independent 2-D solutions leads to the time-domain solution of the 3-D equations of quasi-static equilibrium imposed on a 2-D structure. The numerical procedure is verified through comparison with analytic solutions for finite faults embedded in a laterally homogeneous viscoelastic structure. This methodology is applicable to situations where the predominant structure varies in one horizontal direction, such as a structural contrast across (or parallel to) a long strike-slip fault.

  2. Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods.

    PubMed

    Canales-Mayordomo, Angeles; Fayos, Rosa; Angulo, Jesús; Ojeda, Rafael; Martín-Pastor, Manuel; Nieto, Pedro M; Martín-Lomas, Manuel; Lozano, Rosa; Giménez-Gallego, Guillermo; Jiménez-Barbero, Jesús

    2006-08-01

    The binding site and backbone dynamics of a bioactive complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed heparin hexasaccharide has been investigated by HSQC and relaxation NMR methods. The comparison of the relaxation data for the free and bound states has allowed showing that the complex is monomeric, and still induces mutagenesis, and that the protein backbone presents reduced motion in different timescale in its bound state, except in certain points that are involved in the interaction with the fibroblast growth factor receptor (FGFR).

  3. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  4. Magnetic properties of isotropic Sm-Fe-N magnets produced by compression shearing method

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuji; Kitazima, Hiroshi

    2012-04-01

    TbCu7-type Sm-Fe-N powder was consolidated into bulk materials at room temperature by the compression shearing method. The resultant Sm-Fe-N bulk magnets retained the original TbCu7-type structure without any appreciable decomposition. It was found that the TbCu7-type Sm-Fe-N bulk magnet is magnetically isotropic. The isotropic Sm-Fe-N bulk magnets exhibited a maximum energy product of 20 MGOe with a coercivity of 9.5 kOe.

  5. Paramagnetic nuclear magnetic resonance relaxation and molecular mechanics studies of the chloroperoxidase-indole complex: insights into the mechanism of chloroperoxidase-catalyzed regioselective oxidation of indole.

    PubMed

    Zhang, Rui; He, Qinghao; Chatfield, David; Wang, Xiaotang

    2013-05-28

    To unravel the mechanism of chloroperoxidase (CPO)-catalyzed regioselective oxidation of indole, we studied the structure of the CPO-indole complex using nuclear magnetic resonance (NMR) relaxation measurements and computational techniques. The dissociation constant (KD) of the CPO-indole complex was calculated to be approximately 21 mM. The distances (r) between protons of indole and the heme iron calculated via NMR relaxation measurements and molecular docking revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. Both KD and r values are independent of pH in the range of 3.0-6.5. The stability and structure of the CPO-indole complex are also independent of the concentration of chloride or iodide ion. Molecular docking suggests the formation of a hydrogen bond between the NH group of indole and the carboxyl O of Glu 183 in the binding of indole to CPO. Simulated annealing of the CPO-indole complex using r values from NMR experiments as distance restraints reveals that the van der Waals interactions were much stronger than the Coulomb interactions in the binding of indole to CPO, indicating that the association of indole with CPO is primarily governed by hydrophobic rather than electrostatic interactions. This work provides the first experimental and theoretical evidence of the long-sought mechanism that leads to the "unexpected" regioselectivity of the CPO-catalyzed oxidation of indole. The structure of the CPO-indole complex will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications.

  6. Local Ordering at Mobile Sites in Proteins from Nuclear Magnetic Resonance Relaxation: The Role of Site Symmetry.

    PubMed

    Tchaicheeyan, Oren; Freed, Jack H; Meirovitch, Eva

    2016-03-24

    Restricted motions in proteins (e.g., N-H bond dynamics) are studied effectively with NMR. By analogy with restricted motions in liquid crystals (LC), the local ordering has in the past been primarily represented by potentials comprising the L = 2, |K| = 0, 2 spherical harmonics. However, probes dissolved in LCs experience nonpolar ordering, often referred to as alignment, while protein-anchored probes experience polar ordering, often referred to as orientation. In this study we investigate the role of local (site) symmetry in the context of the polarity of the local ordering. We find that potentials comprising the L = 1, |K| = 0, 1 spherical harmonics represent adequately polar ordering. It is useful to characterize potential symmetry in terms of the irreducible representations of D2h point group, which is already implicit in the definition of the rotational diffusion tensor. Thus, the relevant rhombic L = 1 potentials have B1u and B3u symmetry whereas the relevant rhombic L = 2 potentials have Ag symmetry. A comprehensive scheme where local potentials and corresponding probability density functions (PDFs) are represented in Cartesian and spherical coordinates clarifies how they are affected by polar and nonpolar ordering. The Cartesian coordinates are chosen so that the principal axis of polar axial PDF is pointing along the z-axis, whereas the principal axis of the nonpolar axial PDF is pointing along ±z. Two-term axial potentials with 1 ≤ L ≤ 3 exhibit substantial diversity; they are expected to be useful in NMR-relaxation-data-fitting. It is shown how potential coefficients are reflected in the experimental order parameters. The comprehensive scheme representing local potentials and PDFs is exemplified for the L = 2 case using experimental data from (15)N-labeled plexin-B1 and thioredoxin, (2)H-, and (13)C-labeled benzenehexa-n-alkanoates, and nitroxide-labeled T4 lysozyme. Future prospects for improved ordering analysis based on combined atomistic and

  7. Method of constructing a superconducting magnet

    DOEpatents

    Satti, John A.

    1981-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  8. Active magnetic regenerator method and apparatus

    DOEpatents

    DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.

    1993-01-01

    In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.

  9. Mössbauer spectroscopy studies of magnetic ordering and slow paramagnetic relaxation in the helium-3 temperature range

    NASA Astrophysics Data System (ADS)

    Reiff, W. M.

    1988-02-01

    Aspects of a carbon sorption pumped helium-3 cryostat are described with particular emphasis on applications to the study of weak exchange interactions between centers of delocalized electron spin density in a series of ionic fluorides of high spin iron (III). The novel vanishing of magnetic hyperfine splitting for T<1 K in certain charge transfer polymers based on polycyanide electron acceptors and decamethyl ferrocene is also discussed. In addition, source experiments for the ID-metamagnet Co(bipyridine) Cl2 are presented.

  10. Preparation of Thick Magnet Films by the Aerosol Deposition Method

    NASA Astrophysics Data System (ADS)

    Sugimoto, Satoshi

    The aerosol deposition method (ADM) is effective for the preparation of thick films with high deposition rate. We applied this method to fabricate NiZn ferrite or Sm-Fe-N films, which are used for microwave absorbers or permanent magnets, respectively. In this article, the magnetic properties of Sm-Fe-N thick films fabricated by the ADM are introduced and the possibility of the ADM for the fabrication process with high deposition rate is discussed.

  11. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander

    1987-01-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.

  12. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.

    1987-12-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.

  13. Desolvation-Driven 100-Fold Slow-down of Tunneling Relaxation Rate in Co(II)-Dy(III) Single-Molecule Magnets through a Single-Crystal-to-Single-Crystal Process

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Liang; Wu, Jie-Yi; Huang, Guo-Zhang; Chen, Yan-Cong; Jia, Jian-Hua; Ungur, Liviu; Chibotaru, Liviu F.; Chen, Xiao-Ming; Tong, Ming-Liang

    2015-11-01

    Single-molecule magnets (SMMs) are regarded as a class of promising materials for spintronic and ultrahigh-density storage devices. Tuning the magnetic dynamics of single-molecule magnets is a crucial challenge for chemists. Lanthanide ions are not only highly magnetically anisotropic but also highly sensitive to the changes in the coordination environments. We developed a feasible approach to understand parts of the magneto-structure correlations and propose to regulate the relaxation behaviors via rational design. A series of Co(II)-Dy(III)-Co(II) complexes were obtained using in situ synthesis; in this system of complexes, the relaxation dynamics can be greatly improved, accompanied with desolvation, via single-crystal to single-crystal transformation. The effective energy barrier can be increased from 293 cm-1 (422 K) to 416 cm-1 (600 K), and the tunneling relaxation time can be grown from 8.5 × 10-4 s to 7.4 × 10-2 s. These remarkable improvements are due to the change in the coordination environments of Dy(III) and Co(II). Ab initio calculations were performed to better understand the magnetic dynamics.

  14. Desolvation-Driven 100-Fold Slow-down of Tunneling Relaxation Rate in Co(II)-Dy(III) Single-Molecule Magnets through a Single-Crystal-to-Single-Crystal Process

    PubMed Central

    Liu, Jun-Liang; Wu, Jie-Yi; Huang, Guo-Zhang; Chen, Yan-Cong; Jia, Jian-Hua; Ungur, Liviu; Chibotaru, Liviu F.; Chen, Xiao-Ming; Tong, Ming-Liang

    2015-01-01

    Single-molecule magnets (SMMs) are regarded as a class of promising materials for spintronic and ultrahigh-density storage devices. Tuning the magnetic dynamics of single-molecule magnets is a crucial challenge for chemists. Lanthanide ions are not only highly magnetically anisotropic but also highly sensitive to the changes in the coordination environments. We developed a feasible approach to understand parts of the magneto-structure correlations and propose to regulate the relaxation behaviors via rational design. A series of Co(II)-Dy(III)-Co(II) complexes were obtained using in situ synthesis; in this system of complexes, the relaxation dynamics can be greatly improved, accompanied with desolvation, via single-crystal to single-crystal transformation. The effective energy barrier can be increased from 293 cm−1 (422 K) to 416 cm−1 (600 K), and the tunneling relaxation time can be grown from 8.5 × 10−4 s to 7.4 × 10−2 s. These remarkable improvements are due to the change in the coordination environments of Dy(III) and Co(II). Ab initio calculations were performed to better understand the magnetic dynamics. PMID:26573326

  15. Desolvation-Driven 100-Fold Slow-down of Tunneling Relaxation Rate in Co(II)-Dy(III) Single-Molecule Magnets through a Single-Crystal-to-Single-Crystal Process.

    PubMed

    Liu, Jun-Liang; Wu, Jie-Yi; Huang, Guo-Zhang; Chen, Yan-Cong; Jia, Jian-Hua; Ungur, Liviu; Chibotaru, Liviu F; Chen, Xiao-Ming; Tong, Ming-Liang

    2015-11-17

    Single-molecule magnets (SMMs) are regarded as a class of promising materials for spintronic and ultrahigh-density storage devices. Tuning the magnetic dynamics of single-molecule magnets is a crucial challenge for chemists. Lanthanide ions are not only highly magnetically anisotropic but also highly sensitive to the changes in the coordination environments. We developed a feasible approach to understand parts of the magneto-structure correlations and propose to regulate the relaxation behaviors via rational design. A series of Co(II)-Dy(III)-Co(II) complexes were obtained using in situ synthesis; in this system of complexes, the relaxation dynamics can be greatly improved, accompanied with desolvation, via single-crystal to single-crystal transformation. The effective energy barrier can be increased from 293 cm(-1) (422 K) to 416 cm(-1) (600 K), and the tunneling relaxation time can be grown from 8.5 × 10(-4) s to 7.4 × 10(-2) s. These remarkable improvements are due to the change in the coordination environments of Dy(III) and Co(II). Ab initio calculations were performed to better understand the magnetic dynamics.

  16. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    NASA Astrophysics Data System (ADS)

    Hai-Qiong, Xie; Zhong, Zeng; Liang-Qi, Zhang

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. Project supported by the National Natural Science Foundation of China (Grant No. 11572062), the Fundamental Research Funds for the Central Universities, China (Grant No. CDJZR13248801), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13043), and Key Laboratory of Functional Crystals and Laser Technology, TIPC, Chinese Academy of Sciences.

  17. Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Tani, Akira; Takahashi, Yoshiyuki; Saigusa, Nobuko; Ueyama, Masahito

    2014-02-01

    Terpenoids emitted from forests contribute to the formation of secondary organic aerosols and affect the carbon budgets of forest ecosystems. To investigate seasonal variation in terpenoid flux involved in the aerosol formation and carbon budget, we measured the terpenoid flux of a Larix kaempferi forest between May 2011 and May 2012 by using a relaxed eddy accumulation method. Isoprene was emitted from a fern plant species Dryopteris crassirhizoma on the forest floor and monoterpenes from the L. kaempferi. α-Pinene was the dominant compound, but seasonal variation of the monoterpene composition was observed. High isoprene and monoterpene fluxes were observed in July and August. The total monoterpene flux was dependent on temperature, but several unusual high positive fluxes were observed after rain fall events. We found a good correlation between total monoterpene flux and volumetric soil water content (r = 0.88), and used this correlation to estimate monoterpene flux after rain events and calculate annual terpenoid emissions. Annual carbon emission in the form of total monoterpenes plus isoprene was determined to be 0.93% of the net ecosystem exchange. If we do not consider the effect of rain fall, carbon emissions may be underestimated by about 50%. Our results suggest that moisture conditions in the forest soil is a key factor controlling the monoterpene emissions from the forest ecosystem.

  18. Evolution of Slow Magnetic Relaxation: from Diamagnetic Matrix Y(OH)CO3 to Dy(0.06)Y(0.94)(OH)CO3 with High Spin-Reversal Barrier and Blocking Temperature.

    PubMed

    Liu, Jiang; Chen, Yan-Cong; Lai, Jia-Jun; Wu, Zi-Hao; Wang, Long-Fei; Li, Quan-Wen; Huang, Guo-Zhang; Jia, Jian-Hua; Tong, Ming-Liang

    2016-03-21

    A stable Dy(III)-dispersed compound with single-molecule magnet behavior, Dy(0.06)Y(0.94)(OH)CO3, was isolated by a general strategy targeted at the doping of paramagnetic Dy(3+) into a diamagnetic 3D inorganic network of Y(OH)CO3. The single-ion origin of slow magnetic relaxation was gradually released as variations of the dysprosium/yttrium ratio and finally gave a relatively large spin-reversal barrier around 200 K and high hysteresis temperature of 8 K. This study opens up new opportunities to investigate the slow magnetic relaxation and magnetostructural correlation by choosing a suitable inorganic architecture with strong axial anisotropy.

  19. NMR Method for Characterizing Microsecond-to-Millisecond Chemical Exchanges Utilizing Differential Multiple-Quantum Relaxation in High Molecular Weight Proteins.

    PubMed

    Toyama, Yuki; Osawa, Masanori; Yokogawa, Mariko; Shimada, Ichio

    2016-02-24

    Chemical exchange processes of proteins on the order of microseconds (μs) to milliseconds (ms) play critical roles in biological functions. Developments in methyl-transverse relaxation optimized spectroscopy (methyl-TROSY), which observes the slowly relaxing multiple quantum (MQ) coherences, have enabled the studies of biologically important large proteins. However, the analyses of μs to ms chemical exchange processes based on the methyl-TROSY principle are still challenging, because the interpretation of the chemical exchange contributions to the MQ relaxation profiles is complicated, as significant chemical shift differences occur in both (1)H and (13)C nuclei. Here, we report a new methyl-based NMR method for characterizing chemical exchanges, utilizing differential MQ relaxation rates and a heteronuclear double resonance pulse technique. The method enables quantitative evaluations of the chemical exchange processes, in which significant chemical shift differences exist in both the (1)H and (13)C nuclei. The versatility of the method is demonstrated with the application to KirBac1.1, with an apparent molecular mass of 200 kDa.

  20. Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla

    PubMed Central

    Dieringer, Matthias A.; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I.; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of