Science.gov

Sample records for magnetic resonance examination

  1. Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations

    PubMed Central

    Hundley, W Gregory; Bluemke, David; Bogaert, Jan G; Friedrich, Matthias G; Higgins, Charles B; Lawson, Mark A; McConnell, Michael V; Raman, Subha V; van Rossum, Albert C; Flamm, Scott; Kramer, Christopher M; Nagel, Eike; Neubauer, Stefan

    2009-01-01

    These reporting guidelines are recommended by the Society for Cardiovascular Magnetic Resonance (SCMR) to provide a framework for healthcare delivery systems to disseminate cardiac and vascular imaging findings related to the performance of cardiovascular magnetic resonance (CMR) examinations. PMID:19257889

  2. [Study of skin markers for magnetic resonance imaging examinations].

    PubMed

    Takatsu, Yasuo; Umezaki, Yoshie; Miyati, Tosiaki; Yamamura, Kenichirou

    2013-03-01

    In magnetic resonance imaging (MRI), skin markers are used as a landmark in order to make plans for examinations. However, there isn't a lot of research about the material and shape of skin markers. The skin marker's essential elements are safety, good cost performance, high signal intensity for T1 weighted image (T1WI) and T2 weighted image (T2WI), and durable. In order to get a high signal-to-noise ratio (SNR) of T1WI and T2WI, baby oil, salad oil and olive oil were chosen, because these materials were easy to obtain and safe for the skin. The SNR of baby oil was the best. Baby oil was injected into the infusion tube, and the tube was solvent welded and cut by a heat sealer. In order to make ring shaped skin markers, both ends of the tube were stuck with adhesive tape. Three different diameters of markers were made (3, 5, 10 cmψ). Ring shaped skin markers were put on to surround the examination area, therefore, the edge of the examination area could be seen at every cross section. Using baby oil in the ring shaped infusion tube is simple, easy, and a highly useful skin marker.

  3. Claustrophobia and premature termination of magnetic resonance imaging examinations.

    PubMed

    Eshed, Iris; Althoff, Christian E; Hamm, Bernd; Hermann, Kay-Geert A

    2007-08-01

    To evaluate the incidence of MRI-related claustrophobia and prematurely terminated MRI (ptMRI) examinations due to claustrophobia in a large-scale cohort study. The hospital's computerized radiology information system (RIS) was retrospectively analyzed for all 1.5-Tesla MRI examinations and reports during the year 2004. Data collected included demographic information, body part examined, known claustrophobia, and whether the examination was prematurely terminated. All information available on the MRI examinations and the patient-based data (i.e., excluding any additional examinations per patient) were analyzed. A total of 5798 MRI reports of 4821 patients were evaluated. A total of 95 patients (1.97%) suffered from claustrophobia and 59 (1.22%) prematurely terminated the examination due to claustrophobia. The incidence of ptMRI was higher in women than men (no statistical significance). The majority of patients with ptMRI were between 20 and 80 years old. Patients undergoing head MRI showed the highest incidence of ptMRI and those undergoing extremity, breast, or pelvic MRI had the lowest. Prone compared to supine positioning results in the lowest ptMRI incidence (P < 0.05). Claustrophobic reactions cause a relatively low incidence of ptMRI and are influenced by sex, body part examined, and positioning within the MR scanner. Sedation and prone positioning might help overcome these reactions. (c) 2007 Wiley-Liss, Inc.

  4. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    PubMed

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported < 3 symptoms and 1 ≥ 3 symptoms, all exhibiting GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  5. Effects of outsourcing magnetic resonance examinations from a public university hospital to a private agent.

    PubMed

    Tavakol, Parvin; Labruto, Fausto; Bergstrand, Lott; Blomqvist, Lennart

    2011-02-01

    Sometimes the measures taken to make a radiology department more effective, such as prioritizing the workload and keeping equipment running for as many hours as staffing permits, are not enough. In such cases, outsourcing radiological examinations is a potential solution for reducing waiting times. To investigate differences in waiting time, quality and costs between magnetic resonance (MR) examinations performed in a university hospital and examinations outsourced to private service. We retrospectively selected a group of consecutive, outsourced MR examinations (n=97) and a control group of in-house MR examinations, matched for type of examination. In each group there were referrals that had a specified preferred timeframe for completion. We measured the percentage of cases in which this timeframe was met and if it was not met, how many days exceeded the preferred time. In referrals without a specified preferred timeframe, we also calculated the waiting time. Quality standards were measured by the percentage of examinations that had to be re-done and re-assessed. Finally, we calculated the cumulative costs, taking into account the costs for re-doing and re-assessing examinations. There was no statistically significant difference between the groups, in either the number of examinations that were not performed within the preferred time or the number of days that exceeded the preferred timeframe. For referrals without a preferred timeframe, the waiting time was shorter for outsourced examinations than those not outsourced. There were no differences in the number of examinations that had to be re-done, but more examinations needed to be re-assessed in the outsourced group than in the in-house group. The calculated costs for outsourced examinations were lower than the costs for internally performed examinations. Outsourcing magnetic resonance examinations may be an effective way of reducing a radiology department's workload. Ways in which to reduce the additional costs

  6. A comparative analysis of magnetic resonance imaging and radiographic examinations of patients with atypical odontalgia.

    PubMed

    Pigg, Maria; List, Thomas; Abul-Kasim, Kasim; Maly, Pavel; Petersson, Arne

    2014-01-01

    To examine (1) the occurrence of magnetic resonance imaging (MRI) signal changes in the painful regions of patients with atypical odontalgia (AO) and (2) the correlation of such findings to periapical bone defects detected with a comprehensive radiographic examination including cone beam computed tomography (CBCT). A total of 20 patients (mean age 52 years, range 34 to 65) diagnosed with AO participated. Mean pain intensity (± standard deviation) was 5.6 ± 1.8 on a 0-10 numerical rating scale, and mean pain duration was 4.3 ± 5.2 years. The inclusion criterion was chronic pain (> 6 months) located in a region with no clear pathologic cause identified clinically or in periapical radiographs. In addition to a clinical examination and a self-report questionnaire, the assessments included radiographic examinations (panoramic, periapical, and CBCT images), and an MRI examination. Changes in MRI signal in the painful region were recorded. Spearman's rank correlation between radiographic and MRI findings was calculated. Eight of the patients (40%) had MRI signal changes in the pain region. The correlation to radiographic periapical radiolucencies was 0.526 (P = .003). Of the eight teeth displaying changes in MRI signal, six showed periapical radiolucency in the radiographs. MRI examination revealed no changes in the painful region in a majority of patients with AO, suggesting that inflammation was not present. MRI findings were significantly correlated to radiographic findings.

  7. Lateral hip pain: findings from magnetic resonance imaging and clinical examination.

    PubMed

    Woodley, Stephanie J; Nicholson, Helen D; Livingstone, Vicki; Doyle, Terence C; Meikle, Grant R; Macintosh, Janet E; Mercer, Susan R

    2008-06-01

    Prospective cross-sectional study. To examine the radiological and physical therapy diagnoses of lateral hip pain (LHP), and determine the validity of selected clinical variables for predicting gluteal tendon pathology. LHP is frequently encountered by clinicians. Further investigation is required to establish the specific pathologies implicated in the cause of LHP, and which clinical tests are useful in the assessment of this problem. Forty patients with unilateral LHP underwent a physical therapy examination followed by magnetic resonance imaging (MRI) studies. Three radiologists analyzed the images of both hips for signs of pathology. Interobserver reliability of the image analyses, the agreement between the physical therapy and radiological diagnoses, and the validity of the clinical tests were examined. Gluteus medius tendon pathology, bursitis, osteoarthritis and gluteal muscle atrophy (predominantly affecting gluteus minimus) were all implicated in the imaging report of LHP. While prevalent in symptomatic hips, abnormalities were also identified in asymptomatic hips, particularly relating to the diagnosis of bursitis. The strength of agreement between radiologists was variable and little agreement existed between the physical therapy and radiological diagnoses of pathology. Nine of the 26 clinical variables examined in relation to gluteal tendon pathology had likelihood ratios above 2.0 or below 0.5, but the associated 95% confidence intervals were large. The diagnosis of LHP is challenging and our results highlight some problems associated with the use of MRI as a diagnostic reference standard. This factor, together with the imprecise point estimates of the likelihood ratios, means that no firm conclusions can be made regarding the diagnostic utility of the clinical tests used in the assessment of gluteal tendon pathology.

  8. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for making ...

  9. Gated in vivo examination of cardiac metabolites with /sup 31/P nuclear magnetic resonance

    SciTech Connect

    Kantor, H.L.; Briggs, R.W.; Metz, K.R.; Balaban, R.S.

    1986-07-01

    Phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR) spectroscopy was used to study the temporal aspects of metabolism of canine heart in vivo. An NMR catheter coil was passed through the jugular vein of a dog into the apex of the right ventricle and spectra were recorded at four points in the cardiac cycle by triggering from the blood pressure trace of the animal. The /sup 31/P spin-lattice relaxation times of phosphocreatine (PC) and the ..gamma../sup -/,..cap alpha../sup -/, and ..beta..-phosphates of ATP at 1.89 Tesla are 4.4, 1.8, 1.7, and 1.6 s, respectively. The ratio of PC to ATP is 2.0. No changes in PC/ATP were noted in any of the four portions of the cardiac cycle examined, and difference spectra exhibited no observable signals, in contrast to previously reported results for glucose-perfused rat hearts. On the assumption that intracellular pH and the total creatine pool were constant, the expression for the creatine kinase reaction was used to deduce that free ADP concentrations were invariant throughout the cardiac cycle. This is in apparent disagreement with the proposed regulatory role for ADP in heart oxidative phosphorylation.

  10. Visualising uncertainty: Examining women's views on the role of Magnetic Resonance Imaging (MRI) in late pregnancy.

    PubMed

    Reed, Kate; Kochetkova, Inna; Whitby, Elspeth

    2016-09-01

    Prenatal screening occupies a prominent role within sociological debates on medical uncertainty. A particular issue concerns the limitations of routine screening which tends to be based on risk prediction. Computer assisted visual technologies such as Magnetic Resonance Imaging (MRI) are now starting to be applied to the prenatal realm to assist in the diagnosis of a range of fetal and maternal disorders (from problems with the fetal brain to the placenta). MRI is often perceived in popular and medical discourse as a technology of certainty and truth. However, little is known about the use of MRI as a tool to confirm or refute the diagnosis of a range of disorders in pregnancy. Drawing on qualitative research with pregnant women attending a fetal medicine clinic in the North of England this paper examines the potential role that MRI can play in mediating pregnancy uncertainty. The paper will argue that MRI can create and manage women's feelings of uncertainty during pregnancy. However, while MRI may not always provide women with unequivocal answers, the detailed information provided by MR images combined with the interpretation and communication skills of the radiologist in many ways enables women to navigate the issue. Our analysis of empirical data therefore highlights the value of this novel technological application for women and their partners. It also seeks to stress the merit of taking a productive approach to the study of diagnostic uncertainty, an approach which recognises the concepts dual nature.

  11. [Magnetic resonance tomography examination of thoracolumbar spinal fractures after fixateur interne stabilization].

    PubMed

    Rudig, L; Runkel, M; Kreitner, K F; Seidel, T; Degreif, J

    1997-07-01

    To analyse the possible injuries of vertebral segments, especially the disc, after unstable thoracolumbar fractures stabilised with AO internal fixator, we performed magnetic resonance imaging (MRI) of the traumatised region after implant removal. There were two aspects of disc degeneration (DD):(1) biochemical changes and (2) structural damage. MRI detects biochemical processes as one aspect of DD that is often small even in the presence of greater structural damage of the nucleus pulposus caused by fracture. None of the patients presented with structural failure of the anulus fibrosus, which is the essential structural component of the vertebral segments with regard to stability. We observed biochemical changes more often in the lower of the two fracture-adjacent discs and alterations of discal shape more often in the upper of the two, whereas loss of height concerned both discs to approximately the same degree. The supporters of upper-disc resection in thoracolumbar fractures justify their procedure among other things with the structural disc damage, such as alteration of shape and loss of height (altogether more frequent in the upper disc). Our observations that a disc with a structurally altered nucleus pulposus can be biochemically intact and can show an intact anulus fibrosus are arguments in favour of disc preservation. With regard to the upper disc, the widespread opinion that complete and regular disc damage requires a resection has to be revised. The question of whether the lower disc should be resected more often because of its greater biochemical changes cannot be answered by the present study alone. Besides the excellent static information in all anatomical structures of the vertebral column available by MRI, a repeat examination in a prone position yields dynamic information on the spinal cord in the case of suspected dorsal adhesions.

  12. Examination of cucurbit[7]uril and its host-guest complexes by diffusion nuclear magnetic resonance.

    PubMed

    Wheate, Nial J; Kumar, P G Anil; Torres, Allan M; Aldrich-Wright, Janice R; Price, William S

    2008-02-28

    The self-diffusion of cucurbit[7]uril (CB[7]) and its host-guest complexes in D2O has been examined using pulsed gradient spin-echo nuclear magnetic resonance spectroscopy. CB[7] diffuses freely at a concentration of 2 mM with a diffusion coefficient (D) of 3.07 x 10(-10) m(2) s(-1). At saturation (3.7 mM), CB[7] diffuses more slowly (D = 2.82 x 10(-10) m(2) s(-1)) indicating that it partially self-associates. At concentrations between 2 and 200 mM, CsCl has no effect on the diffusion coefficient of CB[7] (1 mM). Conversely, CB[7] (2 mM) significantly affects the diffusion of 133Cs+ (1 mM), decreasing its diffusion coefficient from 1.86 to 0.83 x 10(-9) m(2) s(-1). Similar changes in the rate of diffusion of other alkali earth metal cations are observed upon the addition of CB[7]. The diffusion coefficient of 23Na+ changes from 1.26 to 0.90 x 10(-9) m(2) s(-1) and 7Li+ changes from 3.40 to 3.07 x 10(-9) m(2) s(-1). In most cases, encapsulation of a variety of inorganic and organic guests within CB[7] decreases their rates of diffusion in D2O. For instance, the diffusion coefficient of the dinuclear platinum complex trans-[[PtCl(NH3)2}2mu-dpzm](2+) (where dpzm is 4,4'-dipyrazolylmethane) decreases from 4.88 to 2.95 x 10(-10) m(2) s(-1) upon encapsulation with an equimolar concentration of CB[7].

  13. Anatomy, Variants, and Pathologies of the Superior Glenohumeral Ligament: Magnetic Resonance Imaging with Three-Dimensional Volumetric Interpolated Breath-Hold Examination Sequence and Conventional Magnetic Resonance Arthrography

    PubMed Central

    Ogul, Hayri; Karaca, Leyla; Can, Cahit Emre; Pirimoglu, Berhan; Tuncer, Kutsi; Topal, Murat; Okur, Aylin

    2014-01-01

    The purpose of this review was to demonstrate magnetic resonance (MR) arthrography findings of anatomy, variants, and pathologic conditions of the superior glenohumeral ligament (SGHL). This review also demonstrates the applicability of a new MR arthrography sequence in the anterosuperior portion of the glenohumeral joint. The SGHL is a very important anatomical structure in the rotator interval that is responsible for stabilizing the long head of the biceps tendon. Therefore, a torn SGHL can result in pain and instability. Observation of the SGHL is difficult when using conventional MR imaging, because the ligament may be poorly visualized. Shoulder MR arthrography is the most accurately established imaging technique for identifying pathologies of the SGHL and associated structures. The use of three dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences produces thinner image slices and enables a higher in-plane resolution than conventional MR arthrography sequences. Therefore, shoulder MR arthrography using 3D VIBE sequences may contribute to evaluating of the smaller intraarticular structures such as the SGHL. PMID:25053912

  14. Anatomy, variants, and pathologies of the superior glenohumeral ligament: magnetic resonance imaging with three-dimensional volumetric interpolated breath-hold examination sequence and conventional magnetic resonance arthrography.

    PubMed

    Ogul, Hayri; Karaca, Leyla; Can, Cahit Emre; Pirimoglu, Berhan; Tuncer, Kutsi; Topal, Murat; Okur, Aylin; Kantarci, Mecit

    2014-01-01

    The purpose of this review was to demonstrate magnetic resonance (MR) arthrography findings of anatomy, variants, and pathologic conditions of the superior glenohumeral ligament (SGHL). This review also demonstrates the applicability of a new MR arthrography sequence in the anterosuperior portion of the glenohumeral joint. The SGHL is a very important anatomical structure in the rotator interval that is responsible for stabilizing the long head of the biceps tendon. Therefore, a torn SGHL can result in pain and instability. Observation of the SGHL is difficult when using conventional MR imaging, because the ligament may be poorly visualized. Shoulder MR arthrography is the most accurately established imaging technique for identifying pathologies of the SGHL and associated structures. The use of three dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences produces thinner image slices and enables a higher in-plane resolution than conventional MR arthrography sequences. Therefore, shoulder MR arthrography using 3D VIBE sequences may contribute to evaluating of the smaller intraarticular structures such as the SGHL.

  15. An examination of the rapid automatized naming-reading relationship using functional magnetic resonance imaging.

    PubMed

    Cummine, J; Chouinard, B; Szepesvari, E; Georgiou, G K

    2015-10-01

    Rapid automatized naming (RAN) has been established to be a strong predictor of reading. Yet, the neural correlates underlying the RAN-reading relationship remain unknown. Thus, the purpose of this study was to determine: (a) the extent to which RAN and reading activate similar brain regions (within subjects), (b) whether RAN and reading are directly related in the shared activity network outlined in (a), and (c) to what extent RAN neural activation predicts behavioral reading performance. Using functional magnetic resonance imaging (fMRI), university students (N=15; Mean age=20.6 years) were assessed on RAN (letters and digits) and single-word reading (words and non-words). The results revealed a common RAN-reading network that included regions associated with motor planning (cerebellum), semantic access (middle temporal gyrus), articulation (supplementary motor area, pre-motor), and grapheme-phoneme translation (supramarginal gyrus). We found differences between RAN and reading with respect to percent signal change (PSC) in phonological and orthographic regions, but not in articulatory regions. Significant correlations between the neural RAN and reading parameters were found primarily in motor/articulatory regions. Further, we found a unique relationship between in-scanner reading response time and RAN PSC in the left inferior frontal gyrus. Taken together, these findings support the notion that RAN and reading activate similar neural networks. However, the relationship between RAN and reading is primarily driven by commonalities in the motor-sequencing/articulatory processes. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. [Magnetic resonance imaging of stents: quantitative in vitro examination at 3 Tesla].

    PubMed

    Reinhardt, Julia; Nguyen-Trong, Thien-Hoa; Hähnel, Stefan; Bellemann, Matthias E; Heiland, Sabine

    2009-01-01

    The aim of this study was to qualitatively and quantitatively study MR artifacts of various stents on the basis of in vitro experiments. We were particularly interested whether sequence type and orientation of the stent with respect to the static magnetic field influences the artifact. We examined 18 stents of different material (nitinol, stainless steel, cobalt alloy), different design of the stent meshes (AccuLink, OmniLink, DynaLink, Xact, Protoge, Wallstent Monorail), different diameter (5-10mm) and different length (18-58 mm) with a turbo spin echo (TSE), a 2D-fast low angle shot (FLASH) and a 3D-FLASH sequence. The MR images were examined qualitatively with respect to possible artifacts. Furthermore we examined the MR data quantitatively: The contrast-noise-ratio (CNR) was determined both within the stent and outside (within the tube); based on these values we calculated the transparency factor P, furthermore we calculated the apparent vascular lumen within the tube and within the stent. The stents made of stainless steel and cobalt alloy displayed severe susceptibility artifacts. Therefore the vessel lumen within the stent could not be assessed. The nitinol stents showed different artifact patterns: The AccuLink and DynaLink stents showed less artifacts compared to the Xact and Protoge stents. Besides the susceptibility artifacts we found artifacts due to RF shielding by the stent mesh, particularly in TSE sequences. A MR control of patients after stenting is possible and may yield diagnostic information when using the AccuLink or DynaLink stents. However, it is important to make sure that the stent is MR safe for the field strength used for the examination.

  17. [Magnetic resonance imaging (MRI) in children and adolescents – study design of a feasibility study concerning examination related emotions].

    PubMed

    Jaite, Charlotte; Bachmann, Christian; Dewey, Marc; Weschke, Bernhard; Spors, Birgit; von Moers, Arpad; Napp, Adriane; Lehmkuhl, Ulrike; Kappel, Viola

    2013-11-01

    Numerous research centres apply magnetic resonance imaging (MRI) for research purposes in children. In view of this practical research, ethical concerns regarding the strains the study participants are exposed to during the MRI examination are discussed. The study evaluates whether an MRI examination induces negative emotions in children and adolescents which are more intense than the ones caused by electroencephalography (EEG), an examination method currently classified as causing "minimal stress." Furthermore, the emotional stress induced by the MRI examination in children and adolescents is compared with that induced in adults. The study gathers data on examination-related emotions in children (age 8-17;11, male and female) who undergo an MRI examination of the cerebrum with a medical indication. The comparison group is a sample of children and adolescents examined with EEG (age 8-17;11, male and female) as well as a sample of adults (age 18-65, male and female) examined with MRI. At present, the study is in the stage of data collection. This article presents the study design of the MRI research project.

  18. Patients' experience of outsourcing and care related to magnetic resonance examinations.

    PubMed

    Tavakol Olofsson, Parvin; Aspelin, Peter; Bergstrand, Lott; Blomqvist, Lennart

    2014-11-01

    Outsourcing radiological examinations from public university hospitals affects the patient, who has to attend a different clinic or hospital for the radiological examination. We currently have a limited understanding of how patients view outsourcing and their care related to MR examinations. To examine the experiences of patients who are sent to private radiology units when their referrals for MR examinations are outsourced from a university hospital, as well as to explore factors which influence patient satisfaction regarding the quality of care related to the MR examination. A group of patients (n = 160) referred for MR examinations and either examined at a university hospital or at an external private unit were interviewed. The interview was designed as a verbal questionnaire. Data were analyzed using Student's t test, analysis of variance (ANOVA), and Pearson's correlation. Sixty-nine percent of the patients could neither choose nor influence the location at which they were examined. For those who could, aspects that influenced the patient's choice of radiology department were: short waiting time 79% (127/160), ease of traveling to the radiology department 68% (110/160), and short distance to their home or work 58% (93/160). For 40% (60/160) of the patients, a short time in the waiting room was related to a positive experience of the MR examination. If patients were informed about outsourcing and could also choose where to have their examination, key factors contributing to patient satisfaction could be met even when MR examinations are outsourced.

  19. Patients’ experience of outsourcing and care related to magnetic resonance examinations

    PubMed Central

    Aspelin, Peter; Bergstrand, Lott; Blomqvist, Lennart

    2014-01-01

    Background Outsourcing radiological examinations from public university hospitals affects the patient, who has to attend a different clinic or hospital for the radiological examination. We currently have a limited understanding of how patients view outsourcing and their care related to MR examinations. Aim Aim. To examine the experiences of patients who are sent to private radiology units when their referrals for MR examinations are outsourced from a university hospital, as well as to explore factors which influence patient satisfaction regarding the quality of care related to the MR examination. Methods A group of patients (n = 160) referred for MR examinations and either examined at a university hospital or at an external private unit were interviewed. The interview was designed as a verbal questionnaire. Data were analyzed using Student’s t test, analysis of variance (ANOVA), and Pearson’s correlation. Results Sixty-nine percent of the patients could neither choose nor influence the location at which they were examined. For those who could, aspects that influenced the patient’s choice of radiology department were: short waiting time 79% (127/160), ease of traveling to the radiology department 68% (110/160), and short distance to their home or work 58% (93/160). For 40% (60/160) of the patients, a short time in the waiting room was related to a positive experience of the MR examination. Conclusion Conclusion. If patients were informed about outsourcing and could also choose where to have their examination, key factors contributing to patient satisfaction could be met even when MR examinations are outsourced. PMID:25142133

  20. Arthroscopic verification of objectivity of the orthopaedic examination and magnetic resonance imaging in intra-articular knee injury. Retrospective study

    PubMed Central

    Skowronek, Michał; Skowronek, Paweł; Dutka, Łukasz

    2011-01-01

    Introduction Arthroscopy of the knee joint is regarded as the most objective diagnostic method in intra-articular knee joint lesions. Aim The purpose of this study was to assess the objectivity and diagnostic value of orthopaedic examination (OE) and magnetic resonance imaging (MRI) in reference to the arthroscopic result. Material and methods In a group of 113 patients treated by arthroscopic surgery for post-traumatic knee pathology between 2008 and 2010 in our department, accuracy of clinical and MRI findings that preceded surgery were studied retrospectively using a statistical method. Sensitivity, specificity, accuracy and predictive negative and positive values were the subject of analysis. Results In the presented trial, sensitivity values of the orthopaedic examination for injuries of the anterior cruciate ligament (ACL), meniscus medialis (MM), meniscus lateralis (ML) and chondral injuries (ChI) were 86%, 65%, 38% and 51%, respectively. Specificity values were 90%, 65%, 100% and 100%, respectively. The MR sensitivity and specificity values were 80%, 88%, 44% and 32%, and 86%, 64%, 93% and 97%, respectively. Conclusions Assessment of intra-articular knee joint lesions is a difficult diagnostic problem. In making a decision about arthroscopy of the knee joint, an appropriate sequence of examinations should be carried out: OE, MRI and arthroscopy. The improvement in the effectiveness of the orthopaedic examination and MRI can limit the too high frequency of diagnostic arthroscopies, which generates the risk of operation treatment and costs. PMID:23255995

  1. Diagnostic accuracy of physical examination, transvaginal sonography, rectal endoscopic sonography, and magnetic resonance imaging to diagnose deep infiltrating endometriosis.

    PubMed

    Bazot, Marc; Lafont, Clarisse; Rouzier, Roman; Roseau, Gilles; Thomassin-Naggara, Isabelle; Daraï, Emile

    2009-12-01

    To compare the value of physical examination, transvaginal sonography (TVS), rectal endoscopic sonography (RES), and magnetic resonance imaging (MRI) for the assessment of different locations of deep infiltrating endometriosis (DIE). Retrospective longitudinal study. Tertiary university gynecology unit. Ninety-two consecutive patients with clinical evidence of pelvic endometriosis. Physical examination, TVS, RES, and MRI, performed preoperatively. Descriptive statistics, calculation of likelihood ratios (LR(+) and LR(-)) of physical examination, TVS, RES, and MRI for DIE in specific locations confirmed by surgery/histology. The sensitivity and LR(+) and LR(-) values of physical examination, TVS, RES, and MRI were, respectively, 73.5%, 3.3, and 0.34, 78.3%, 2.34, and 0.32, 48.2%, 0.86, and 1.16, and 84.4%, 7.59, and 0.18 for uterosacral ligament endometriosis; 50%, 3.88, and 0.57, 46.7%, 9.64, and 0.56, 6.7%, -, and 0.93, and 80%, 5.51, and 0.23 for vaginal endometriosis; and 46%, 1.67, and 0.75, 93.6%, -, and 0.06, 88.9%, 12.89, and 0.12, and 87.3%, 12.66, and 0.14 for intestinal endometriosis. The MRI performs similarly to TVS and RES for the diagnosis of intestinal endometriosis but has higher sensitivity and likelihood ratios for uterosacral ligament and vaginal endometriosis.

  2. A prospective study of the value of pre- and post-treatment magnetic resonance imaging examinations for advanced cervical cancer

    PubMed Central

    CSUTAK, CSABA; ORDEANU, CLAUDIA; NAGY, VIORICA MAGDALENA; POP, DIANA CRISTINA; BOLBOACA, SORANA DANIELA; BADEA, RADU; CHIOREAN, LILIANA; DUDEA, SORIN MARIAN

    2016-01-01

    Background and aim Cervical cancer has high incidence and mortality in developing countries. It is the only gynecological malignancy that is clinically staged. Staging at the time of diagnosis is crucial for treatment planning. After radiation therapy, clinical examination is limited because of radiation changes. An imaging method relatively unaffected by radiation changes would be useful for the assessment of therapy results and for management. We sought to demonstrate the value of magnetic resonance imaging (MRI) in the pre- and post-treatment assessment of cervical cancer. Methods This was a prospective study, carried out between November 2012 and October 2014 on 18 subjects with advanced-stage cervical cancer diagnosed by colposcopy. The disease stage was determined clinically according to the International Federation of Gynecology and Obstetrics (FIGO) criteria. Only patients with disease stage ≥ IIB or IIA with one of the tumor dimensions > 4 cm were enrolled in the study. All patients underwent abdominal-pelvic contrast-enhanced MRI as part of the workup. Tumor size, local invasion, involved pelvic lymph nodes, and staging according to MRI criteria were evaluated. Clinical and MRI examinations were also performed after chemoradiotherapy. After chemoradiotherapy, 94% of the patients (17 of 18) were treated surgically. Results Eighteen patients aged 32–67 met the inclusion criteria and were enrolled: 10 stage IIB, 6 stage IIIA, 1 stage IIA and 1 stage IIIB, according to clinical staging. Using histopathological findings as a reference, MRI staging accuracy was 83.3%. The concordance of the clinical stage with MRI stage at the first examination was 56%. Parametrial involvement was assessed on pretreatment and post-treatment MRI, with post-treatment MRI compared with histology. There was no statistically significant difference between the pre- and post-therapy gynecological examinations (GYN) and the corresponding MRI assessments as to tumor size

  3. Sacroiliitis at diagnosis of juvenile spondyloarthritis assessed by radiography, magnetic resonance imaging, and clinical examination

    PubMed Central

    Weiss, Pamela F; Xiao, Rui; Biko, David M; Chauvin, Nancy A

    2015-01-01

    Objective We evaluated the prevalence of sacroiliitis at diagnosis of juvenile spondyloarthritis (JSpA) and the accuracy of physical examination and back pain to detect sacroiliitis, using imaging as the reference standard. Methods We performed a prospective cross-sectional study of 40 children with newly diagnosed JSpA and 14 healthy controls. Subjects were assessed using physical examination, anteroposterior pelvic radiograph, and pelvic MRI. Differences in clinical features between those children with and without sacroiliitis were assessed by Fisher’s exact test for categorical variables and Wilcoxon rank sum test for continuous variables. Accuracy of physical examination and back pain for detection of sacroiliitis was determined using MRI as the reference standard. Predicted probability of sacroiliitis was determined using exact multivariate logistic regression. Results Eight (20%) children with JSpA had active sacroiliitis. Of those subjects with active changes on MRI, 7/8 (88%) also had evidence of erosions or sclerosis. Five (13%) children with JSpA and 1 (7%) control had non-periarticular bone marrow edema. Of the subjects with active sacroiliitis only 3 (38%) reported a history of back pain or tenderness on palpation of the sacroiliac joints. The positive and negative predictive values of clinical exam features and back pain for detection of sacroiliitis were low. The estimated probability of having sacroiliitis was 0.84 (95% CI: 0.40–1.00) in HLA-B27+ patients with an elevated CRP. Conclusion Active sacroiliitis by MRI is common at diagnosis in JSpA and is frequently asymptomatic. Children who are HLA-B27+ and have elevated CRP levels have the highest probability of sacroiliitis. PMID:26212574

  4. Magnetic resonance imaging findings in epileptic cats with a normal interictal neurological examination: 188 cases.

    PubMed

    Raimondi, F; Shihab, N; Gutierrez-Quintana, R; Smith, A; Trevail, R; Sanchez-Masian, D; Smith, P M

    2017-06-24

    Epilepsy is a common neurological condition in dogs and cats. Although an increased likelihood of significant brain lesions with age has been identified in neurologically normal dogs with epileptic seizures, the underlying aetiology of epileptic seizures in cats that present with normal physical and neurological examinations remains unknown. In this cross-sectional study, the authors examined MRI findings in a large population of cats with a normal interictal physical and neurological examination. They hypothesised that age would have an impact on the prevalence of detectable lesions. First, following the guidelines for dogs and in accordance with previous studies, the authors divided the cats into three age groups (aged one year or younger, between one and six, and older than six) and calculated the proportion of cats with a detectable lesion on MRI in these groups. In the first group, 3/32 cats (9.4 per cent) had significant MRI abnormalities that were all consistent with congenital malformation; in the second group, only 5/92 (5.4 per cent) MRI scans were abnormal and in the third group, 15/ 65 (23.1 per cent) cats showed abnormal findings that were predominantly lesions of neoplastic origin. Second, to investigate the impact of age further, data were investigated as a continuous variable using receiver operating characteristic analysis. This indicated an optimal cut-off age of five years, above which MRI abnormalities were more likely, with an increase in the odds of a significant structural lesion increasing by 14 per cent per year. British Veterinary Association.

  5. A longitudinal study of patients with cirrhosis treated with L-ornithine L-aspartate, examined with magnetization transfer, diffusion-weighted imaging and magnetic resonance spectroscopy.

    PubMed

    Grover, Vijay P B; McPhail, Mark J W; Wylezinska-Arridge, Marzena; Crossey, Mary M E; Fitzpatrick, Julie A; Southern, Louise; Saxby, Brian K; Cook, Nicola A; Cox, I Jane; Waldman, Adam D; Dhanjal, Novraj S; Bak-Bol, Aluel; Williams, Roger; Morgan, Marsha Y; Taylor-Robinson, Simon D

    2017-02-01

    The presence of overt hepatic encephalopathy (HE) is associated with structural, metabolic and functional changes in the brain discernible by use of a variety of magnetic resonance (MR) techniques. The changes in patients with minimal HE are less well documented. Twenty-two patients with well-compensated cirrhosis, seven of whom had minimal HE, were examined with cerebral 3 Tesla MR techniques, including T1- and T2-weighted, magnetization transfer and diffusion-weighted imaging and proton magnetic resonance spectroscopy sequences. Studies were repeated after a 4-week course of oral L-ornithine L-aspartate (LOLA). Results were compared with data obtained from 22 aged-matched healthy controls. There was no difference in mean total brain volume between patients and controls at baseline. Mean cerebral magnetization transfer ratios were significantly reduced in the globus pallidus and thalamus in the patients with cirrhosis irrespective of neuropsychiatric status; the mean ratio was significantly reduced in the frontal white matter in patients with minimal HE compared with healthy controls but not when compared with their unimpaired counterparts. There were no significant differences in either the median apparent diffusion coefficients or the mean fractional anisotropy, calculated from the diffusion-weighted imaging, or in the mean basal ganglia metabolite ratios between patients and controls. Psychometric performance improved in 50 % of patients with minimal HE following LOLA, but no significant changes were observed in brain volumes, cerebral magnetization transfer ratios, the diffusion weighted imaging variables or the cerebral metabolite ratios. MR variables, as applied in this study, do not identify patients with minimal HE, nor do they reflect changes in psychometric performance following LOLA.

  6. Validation of clinical examination versus magnetic resonance imaging and arthroscopy for the detection of rotator cuff lesions.

    PubMed

    Ostör, Andrew J K; Richards, Christine A; Tytherleigh-Strong, Graham; Bearcroft, Philip W; Prevost, A Toby; Speed, Cathy A; Hazleman, Brian L

    2013-09-01

    Limited evidence exists regarding the validity of clinical examination for the detection of shoulder pathology. We therefore wished to establish the sensitivity, specificity, positive predictive value and negative predictive value of clinical tests and magnetic resonance imaging (MRI) in the diagnosis of rotator cuff disorders against findings at arthroscopy. Using recognised tests for specific shoulder lesions, 117 patients with shoulder symptoms awaiting surgery were examined in a standard manner. The diagnoses were categorised and compared with abnormalities found on MRI and at surgery. Results were cross-tabulated to determine the above parameters. Ninety-four patients formed the study group with a mean age of 51 years. The median duration of symptoms was 45 weeks. For clinical examination, sensitivity and specificity to detect a tear or rupture of supraspinatus were 30 % (16/54) and 38 % (15/40) and, for the detection of any pathology, were 94 % (67/71) and 22 % (5/23), respectively, compared with arthroscopy. Correspondingly, the sensitivity of MRI compared with arthroscopy to detect a tear or rupture of supraspinatus was 90 % (28/31) with a specificity of 70 % (46/53), whereas for the detection of any abnormality, the sensitivity was 92 % (65/71) with a specificity of 48 % (11/23). The sensitivity of detecting any rotator cuff abnormality is high when examination and MRI is compared with arthroscopy with the specificity being greater with MRI than examination. In patients with shoulder symptoms severe enough to consider surgery, clinical assessment followed by specific imaging may help define the pathology in order to direct appropriate management.

  7. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations.

    PubMed

    Dziuda, Łukasz; Skibniewski, Franciszek W; Krej, Mariusz; Baran, Paulina M

    2013-05-01

    We present a fiber-optic sensor for monitoring respiration and heart activity designed to operate in the magnetic resonance imaging (MRI) environment. The sensor employs a Plexiglas springboard, which converts movements of the patient's body lying on the board (i.e., lung- and heart-induced vibrations) to strain, where a fiber Bragg grating attached to the board is used to measure this strain. Experimental studies are carried out during thoracic spine MRI examinations. The presence of the metal-free sensor construction in the MRI environment does not pose a threat to the patient and has no influence over the quality of imaging, and the signal is identical to that obtained without any electromagnetic interference. The results show that the sensor is able to accurately reflect the ballistocardiographic signal, enabling determinations of the respiration rate (RR) and heart rate (HR). The data delivered by the sensor are normally distributed on the Bland-Altman plot for the characteristic point determination and exhibit clear dependence on the RR and HR values for the RR and HR determinations, respectively. Measurement accuracies are better than 7% of the average values, and thus, with further development, the sensor will be implemented in routine MRI examinations.

  8. Accuracy of physical examination, ultrasonography, and magnetic resonance imaging in predicting response to neo-adjuvant chemotherapy for breast cancer.

    PubMed

    Chen, Man; Zhan, Wei-Wei; Han, Bao-San; Fei, Xiao-Chun; Jin, Xiao-Long; Chai, Wei-Min; Wang, Deng-Bing; Shen, Kun-Wei; Wang, Wen-Ping

    2012-06-01

    Accurate evaluation of response following chemotherapy treatment is essential for surgical decision making in patients with breast cancer. Modalities that have been used to monitor response to neo-adjuvant chemotherapy (NAC) include physical examination (PE), ultrasound (US), and magnetic resonance imaging (MRI). The purpose of this study was to evaluate the accuracy of PE, US, and MRI in predicting the response to NAC in patients with breast cancer. According to the response evaluation criteria in solid tumors guidelines, the largest unidimensional measurement of the tumor diameter evaluated by PE, US, and MRI before and after NAC was classified into four grades, including clinical complete response, clinical partial response, clinical progressive disease, clinical stable disease, and compared with the final histopathological examination. Of the 64 patients who received NAC, the pathologic complete response (pCR) was shown in 13 of 64 patients (20%). The sensitivity of PE, US, and MRI in predicting the major pathologic response was 73%, 75%, and 80%, respectively, and the specificity was 45%, 50%, and 50% respectively. For predicting a pCR, the sensitivity of PE, US, and MRI was 46%, 46%, and 39%, respectively, and the specificity was 65%, 98%, and 92% respectively. Compared with final pathologic findings, all these three clinical and imaging modalities tended to obviously underestimate the pCR rate. A more appropriate, universal, and practical standard by clinical and imaging modalities in predicting the response to neo-adjuvant chemotherapy in vivo is essential.

  9. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  10. Predictive value of clinical examination, transrectal ultrasound and magnetic resonance imaging prior to radiotherapy in carcinoma of the cervix.

    PubMed

    Hawnaur, J M; Johnson, R J; Carrington, B M; Hunter, R D

    1998-08-01

    The objectives of this study were to compare tumour staging and volume assessment by examination under anaesthesia (EUA), transrectal ultrasound (TRU) and magnetic resonance imaging (MRI) in patients with invasive carcinoma of the cervix, and to correlate findings with long-term outcome following treatment by radiotherapy. Tumour staging was performed on 60 patients immediately before starting radiotherapy. Clinicians and radiologists performing EUA, TRU or MRI were blinded to the results of other investigations. Tumour stage and dimensions were recorded prospectively for each technique, and analysed for concordance. The relationship between pre-treatment stage, size of tumour and patient outcome after radiotherapy was assessed, using clinical status 5 years after treatment as the truth measure. EUA, TRU and MRI assigned the same tumour stage in only 30% of patients and EUA and MRI agreed tumour stage in a further 27%. In cases of disagreement, the MRI stage correlated better with outcome than the TRU or EUA stage. There was a significant difference between tumour volume obtained from measurements made on MRI and those from TRU. 62% of patients with enlarged lymph nodes on pre-treatment MRI either died, or developed tumour recurrence or metastases. The ability of MRI to assess the full extent of bulky tumours and the presence of lymph node enlargement was an advantage over both EUA and TRU in identifying patients with a poor prognosis.

  11. Assessment of nerve involvement in the lumbar spine: agreement between magnetic resonance imaging, physical examination and pain drawing findings

    PubMed Central

    2010-01-01

    Background Detection of nerve involvement originating in the spine is a primary concern in the assessment of spine symptoms. Magnetic resonance imaging (MRI) has become the diagnostic method of choice for this detection. However, the agreement between MRI and other diagnostic methods for detecting nerve involvement has not been fully evaluated. The aim of this diagnostic study was to evaluate the agreement between nerve involvement visible in MRI and findings of nerve involvement detected in a structured physical examination and a simplified pain drawing. Methods Sixty-one consecutive patients referred for MRI of the lumbar spine were - without knowledge of MRI findings - assessed for nerve involvement with a simplified pain drawing and a structured physical examination. Agreement between findings was calculated as overall agreement, the p value for McNemar's exact test, specificity, sensitivity, and positive and negative predictive values. Results MRI-visible nerve involvement was significantly less common than, and showed weak agreement with, physical examination and pain drawing findings of nerve involvement in corresponding body segments. In spine segment L4-5, where most findings of nerve involvement were detected, the mean sensitivity of MRI-visible nerve involvement to a positive neurological test in the physical examination ranged from 16-37%. The mean specificity of MRI-visible nerve involvement in the same segment ranged from 61-77%. Positive and negative predictive values of MRI-visible nerve involvement in segment L4-5 ranged from 22-78% and 28-56% respectively. Conclusion In patients with long-standing nerve root symptoms referred for lumbar MRI, MRI-visible nerve involvement significantly underestimates the presence of nerve involvement detected by a physical examination and a pain drawing. A structured physical examination and a simplified pain drawing may reveal that many patients with "MRI-invisible" lumbar symptoms need treatment aimed at nerve

  12. Diagnosis of knee injuries: comparison of the physical examination and magnetic resonance imaging with the findings from arthroscopy☆

    PubMed Central

    Orlando Júnior, Nilton; de Souza Leão, Marcos George; de Oliveira, Nelson Henrique Carvalho

    2015-01-01

    Objectives To ascertain the sensitivity, specificity, accuracy and concordance of the physical examination (PE) and magnetic resonance imaging (MRI) in comparison with arthroscopy, in diagnosing knee injuries. Methods Prospective study on 72 patients, with evaluation and comparison of PE, MRI and arthroscopic findings, to determine the concordance, accuracy, sensitivity and specificity. Results PE showed sensitivity of 75.00%, specificity of 62.50% and accuracy of 69.44% for medial meniscal (MM) lesions, while it showed sensitivity of 47.82%, specificity of 93.87% and accuracy of 79.16% for lateral meniscal (LM) lesions. For anterior cruciate ligament (ACL) injuries, PE showed sensitivity of 88.67%, specificity of 94.73% and accuracy of 90.27%. For MM lesions, MRI showed sensitivity of 92.50%, specificity of 62.50% and accuracy of 69.44%, while for LM injuries, it showed sensitivity of 65.00%, specificity of 88.46% and accuracy of 81.94%. For ACL injuries, MRI showed sensitivity of 86.79%, specificity of 73.68% and accuracy of 83.33%. For ACL injuries, the best concordance was with PE, while for MM and LM lesions, it was with MRI (p < 0.001). Conclusions Meniscal and ligament injuries can be diagnosed through careful physical examination, while requests for MRI are reserved for complex or doubtful cases. PE and MRI used together have high sensitivity for ACL and MM lesions, while for LM lesions the specificity is higher. Level of evidence II – Development of diagnostic criteria on consecutive patients (with universally applied reference “gold” standard). PMID:27218085

  13. Assessment of physical examination and magnetic resonance imaging findings of hamstring injury as predictors for recurrent injury.

    PubMed

    Verrall, Geoffrey M; Slavotinek, John P; Barnes, Peter G; Fon, Gerald T; Esterman, Adrian

    2006-04-01

    Prospective cohort study. To examine clinical and magnetic resonance imaging (MRI) features of hamstring muscle injury to determine if any are predictive for recurrent injury. Hamstring muscle strain injury and subsequent recurrent injury are common. Little information exists on factors that may increase the risk for recurrent injury. The subjects were athletes from 3 professional Australian Rules football teams (n = 162). Anthropometric measurements, clinical signs, convalescent interval, and MRI assessment and measurement were undertaken and recorded in athletes with hamstring muscle strain injury. Athletes were followed for the presence, or absence, of recurrent injury to the same-side posterior thigh over the same and subsequent playing seasons. Thirty athletes met criteria for hamstring injury. Twelve (40%) of 30 athletes had recurrent injury within the same season, with an additional 7 athletes having recurrent injury in the subsequent season. None of the features examined were associated with increased recurrent injury risk within the same playing season. Statistical analysis demonstrated that when combining the same with the subsequent playing season a larger size of initial hamstring injury, as measured by MRI, was associated with an increased risk for recurrent injury (P<.01). A measured transverse size of injury greater than 55% of the muscle, or calculated volume of injury greater than 21.8 cm3, resulted in an increased risk for hamstring recurrence of 2.2 (95% CI, 0.88-5.32) and 2.3 (95% CI, 0.94-5.81) times, respectively, when compared to athletes with hamstring injuries below these measurements. A larger size of hamstring injury was indicative of higher risk for recurrent injury but only after the subsequent playing season was considered along with the same playing season. None of the other parameters tested, including a shorter convalescent interval and clinical features, were associated with an increased risk for recurrent injury. However, due to

  14. Diagnosis of knee injuries: comparison of the physical examination and magnetic resonance imaging with the findings from arthroscopy.

    PubMed

    Orlando Júnior, Nilton; de Souza Leão, Marcos George; de Oliveira, Nelson Henrique Carvalho

    2015-01-01

    To ascertain the sensitivity, specificity, accuracy and concordance of the physical examination (PE) and magnetic resonance imaging (MRI) in comparison with arthroscopy, in diagnosing knee injuries. Prospective study on 72 patients, with evaluation and comparison of PE, MRI and arthroscopic findings, to determine the concordance, accuracy, sensitivity and specificity. PE showed sensitivity of 75.00%, specificity of 62.50% and accuracy of 69.44% for medial meniscal (MM) lesions, while it showed sensitivity of 47.82%, specificity of 93.87% and accuracy of 79.16% for lateral meniscal (LM) lesions. For anterior cruciate ligament (ACL) injuries, PE showed sensitivity of 88.67%, specificity of 94.73% and accuracy of 90.27%. For MM lesions, MRI showed sensitivity of 92.50%, specificity of 62.50% and accuracy of 69.44%, while for LM injuries, it showed sensitivity of 65.00%, specificity of 88.46% and accuracy of 81.94%. For ACL injuries, MRI showed sensitivity of 86.79%, specificity of 73.68% and accuracy of 83.33%. For ACL injuries, the best concordance was with PE, while for MM and LM lesions, it was with MRI (p < 0.001). Meniscal and ligament injuries can be diagnosed through careful physical examination, while requests for MRI are reserved for complex or doubtful cases. PE and MRI used together have high sensitivity for ACL and MM lesions, while for LM lesions the specificity is higher. Level of evidence II - Development of diagnostic criteria on consecutive patients (with universally applied reference "gold" standard).

  15. [Comparison of prenatal ultrasound examination, post-mortem magnetic resonance imaging and autopsy (a case report--schizencephaly)].

    PubMed

    Vanĕcková, M; Seidl, Z; Goldová, B; Vítková, I; Baxová, A; Calda, P

    2009-06-01

    To improve prenatal diagnostic with a feedback of autopsy, complemented by post mortem magnetic resonance imaging (MRI). MRI is important for malformations of CNS, where autopsy can be insufficient. Case report. MR unit of the Department of radiology, Department of obstetrics and gynaecology and Department of pathology, 1st medical school, Charles University in Prague, General Teaching Hospital. To compare prenatal ultrasound, post mortem MRI and autopsy. Case report documented complementarity of all three method; full agreement in brain malformation type was found.

  16. Magnetic resonance annual, 1988

    SciTech Connect

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

  17. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias

    PubMed Central

    Hsu, Yuan-Yu; Du, An-Tao; Schuff, Norbert; Weiner, Michael W.

    2007-01-01

    This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection of affected individuals, monitoring disease progression, and evaluation of therapeutic effect. PMID:11563438

  18. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  19. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  20. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  2. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  3. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  4. Resonant magnetic vortices

    SciTech Connect

    Decanini, Yves; Folacci, Antoine

    2003-04-01

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.

  5. Magnetic Resonance Safety

    PubMed Central

    Sammet, Steffen

    2016-01-01

    Magnetic Resonance Imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy and the potential risks of MRI contrast agents will also be discussed and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented. PMID:26940331

  6. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  7. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results].

    PubMed

    Milner, Rafał; Rusiniak, Mateusz; Wolak, Tomasz; Piatkowska-Janko, Ewa; Naumczyk, Patrycja; Bogorodzki, Piotr; Senderski, Andrzej; Ganc, Małgorzata; Skarzyński, Henryk

    2011-01-01

    Processing of auditory information in central nervous system bases on the series of quickly occurring neural processes that cannot be separately monitored using only the fMRI registration. Simultaneous recording of the auditory evoked potentials, characterized by good temporal resolution, and the functional magnetic resonance imaging with excellent spatial resolution allows studying higher auditory functions with precision both in time and space. was to implement the simultaneous AEP-fMRI recordings method for the investigation of information processing at different levels of central auditory system. Five healthy volunteers, aged 22-35 years, participated in the experiment. The study was performed using high-field (3T) MR scanner from Siemens and 64-channel electrophysiological system Neuroscan from Compumedics. Auditory evoked potentials generated by acoustic stimuli (standard and deviant tones) were registered using modified odd-ball procedure. Functional magnetic resonance recordings were performed using sparse acquisition paradigm. The results of electrophysiological registrations have been worked out by determining voltage distributions of AEP on skull and modeling their bioelectrical intracerebral generators (dipoles). FMRI activations were determined on the basis of deviant to standard and standard to deviant functional contrasts. Results obtained from electrophysiological studies have been integrated with functional outcomes. Morphology, amplitude, latency and voltage distribution of auditory evoked potentials (P1, N1, P2) to standard stimuli presented during simultaneous AEP-fMRI registrations were very similar to the responses obtained outside scanner room. Significant fMRI activations to standard stimuli were found mainly in the auditory cortex. Activations in these regions corresponded with N1 wave dipoles modeled based on auditory potentials generated by standard tones. Auditory evoked potentials to deviant stimuli were recorded only outside the MRI

  8. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  9. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  10. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  11. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  12. Nuclear magnetic resonance blood flowmeter

    SciTech Connect

    Battocletti, J.H.; Halbach, R.E.; Antonich, F.J.; Sances, A. Jr.; Knox, T.A.

    1986-09-23

    An improved nuclear magnetic resonance blood flowmeter is described for non-invasively measuring blood flow in a human limb comprising; polarizing magnet means for generating a substantially uniform magnetic field; a limb receiving lumen for supporting a human limb within the field generated by the polarizing magnet means so that blood molecules within the limb are magnetically polarized thereby; transmitter means located adjacent the lumen for inducing a nuclear magnetic resonance response in the blood molecules of the human limb disposed within the lumen; scanning means including: first means for generating a first pair of opposing magnetic fields within the lumen for cancelling the nuclear magnetic resonance response induced by the transmitter means everywhere except within a first null plane along which the first opposing magnetic fields cancel each other; second means for generating a second pair of opposing magnetic fields; and control means coupled to the first and second means for generating the first and second pair of opposing magnetic fields.

  13. Cardiovascular Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  14. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  15. Physical examination and magnetic resonance imaging in the diagnosis of superior labrum anterior-posterior lesions of the shoulder: a sensitivity analysis.

    PubMed

    Pandya, Nirav K; Colton, Anne; Webner, David; Sennett, Brian; Huffman, G Russell

    2008-03-01

    The overall purpose of our study was to examine the sensitivity of physical examination, magnetic resonance imaging (MRI), and magnetic resonance (MR) arthrogram for the identification of arthroscopically confirmed SLAP lesions of the shoulder. An analysis of 51 consecutive patients with arthroscopically confirmed SLAP lesions and no history of shoulder dislocation was performed. Before undergoing surgery, all patients underwent a standardized physical examination and had either an MRI and/or MR arthrogram performed. Sensitivity analysis was then performed on the results of both the physical examination maneuvers and the radiologic imaging compared to the arthroscopic findings at surgery. The sensitivity of O'Brien's (active compression) test was 90%, whereas the Mayo (dynamic) shear was 80% and Jobe's relocation test was 76%. The sensitivity of a physical examination with any 1 of these 3 SLAP provocative tests being positive was 100%. Neer's sign (41%) and Hawkin's impingement tests (31%) each had low sensitivity for SLAP lesions. The sensitivity of MRI for SLAP lesions was 67% when interpreted by the performing surgeon, 53% when read by a radiologist. When the MR arthrograms were analyzed alone, the sensitivity was 72% (surgeon) and 50% (radiologist), respectively. All 3 physical examination maneuvers traditionally considered provocative for SLAP pathology (O'Brien's, Mayo shear, and Jobe's relocation) were sensitive for the diagnosis of SLAP lesions. MRI and MR arthrogram imaging had lower sensitivity than these physical examination tests in diagnosing SLAP lesions. Patient history, demographics, and the surgeon's physical examination should remain central to the diagnosis of SLAP lesions. Level II, development of diagnostic criteria on basis of consecutive patients with universally applied gold standard.

  16. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  17. Partially orthogonal resonators for magnetic resonance imaging

    PubMed Central

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-01-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density. PMID:28186135

  18. Partially orthogonal resonators for magnetic resonance imaging.

    PubMed

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R

    2017-02-10

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  19. Magnetic resonance urography.

    PubMed

    Leyendecker, John R; Gianini, John W

    2009-07-01

    Excellent contrast resolution and lack of ionizing radiation make magnetic resonance urography (MRU) a promising technique for noninvasively evaluating the entire urinary tract. While MRU currently lags behind CT urography (CTU) in spatial resolution and efficiency, new hardware and sequence developments have contributed to a resurgence of interest in MRU techniques. By combining unenhanced sequences with multiphase contrast-enhanced and excretory phase imaging, a comprehensive assessment of the kidneys, ureters, bladder, and surrounding structures is possible with image quality rivaling that obtained with other techniques. At the same time, formidable challenges remain to be overcome and further clinical validation is necessary before MRU can replace other forms of urography. In this article, we demonstrate the current potential of MRU to demonstrate a spectrum of urologic pathology involving the kidneys, ureters, and bladder while discussing the limitations and current status of this evolving technique.

  20. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  1. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  2. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks.

  3. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Reuhs, Bradley L.; Simsek, Senay

    Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique with a wide variety of applications. It may be used for complex structural studies, for protocol or process development, or as a simple quality assay for which structural information is important. It is nondestructive, and high-quality data may be obtained from milligram, even microgram, quantities of sample. Whereas other spectroscopy techniques may be used to determine the nature of the functional groups present in a sample, only NMR spectroscopy can provide the data necessary to determine the complete structure of a molecule. The applicability of NMR to food analysis has increased over the last three decades. In addition to improved instrumentation and much lower costs, very complex and specialized NMR techniques can now be routinely performed by a student or technician. These experiments can be set up with the click of a button/icon, as all the basic parameters are embedded into default experiment files listed in the data/work station software, and the results are obtained in a short time.

  4. Pediatric magnetic resonance urography.

    PubMed

    Jones, Richard A; Grattan-Smith, J Damien; Little, Stephen

    2011-03-01

    Magnetic resonance urography (MRU) is a powerful clinical tool that fuses anatomic information with functional data in a single test without the use of ionizing radiation. This article provides an overview of the technical aspects, as well as common clinical applications with an emphasis on the evaluation of hydronephrosis. A fluid challenge is an essential part of our MRU protocol and enables the definition of compensated or decompensated kidneys within the spectrum of hydronephrosis. This classification may have prognostic implications when surgery is being considered. In addition, underlying uropathy can be identified on the anatomical scans and renal scarring can be seen on both the anatomical and dynamic scans. MRU can identify and categorize dysmorphic kidneys in vivo and may provide insight into congenital abnormalities seen in conjunction with vesicoureteric reflux. MRU is still in its infancy and as the technique develops and becomes widely available, it seems likely that it will supplant renal scintigraphy in the evaluation of renal tract disorders in children. Copyright © 2011 Wiley-Liss, Inc.

  5. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  6. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  7. Introduction to nuclear magnetic resonance.

    PubMed

    Mlynárik, Vladimír

    2016-05-19

    Nuclear magnetic resonance spectroscopy is a useful tool for studying normal and pathological biochemical processes in tissues. In this review, the principles of nuclear magnetic resonance and methods of obtaining nuclear magnetic resonance spectra are briefly outlined. The origin of the most important spectroscopic parameters-chemical shifts, coupling constants, longitudinal and transverse relaxation times, and spectroscopic line intensities-is explained, and the role of these parameters in interpretation of spectra is addressed. Basic methodological concepts of localized spectroscopy and spectroscopic imaging for the study of tissue metabolism in vivo are also described.

  8. Comparative study of the detection of joint injury in early-stage rheumatoid arthritis by magnetic resonance imaging of the wrist and finger joints and physical examination.

    PubMed

    Tamai, Mami; Kawakami, Atsushi; Iwamoto, Naoki; Kawashiri, Shin-Ya; Fujikawa, Keita; Aramaki, Toshiyuki; Kita, Junko; Okada, Akitomo; Koga, Tomohiro; Arima, Kazuhiko; Kamachi, Makoto; Yamasaki, Satoshi; Nakamura, Hideki; Ida, Hiroaki; Origuchi, Tomoki; Takao, Shoichiro; Aoyagi, Kiyoshi; Uetani, Masataka; Eguchi, Katsumi

    2011-03-01

    To verify whether magnetic resonance imaging (MRI)-proven joint injury is sensitive as compared with joint injury determined by physical examination. MRI of the wrist and finger joints of both hands was examined in 51 early-stage rheumatoid arthritis (RA) patients by both plain and gadolinium diethylenetriaminepentaacetic acid-enhanced MRI. Synovitis, bone edema, and bone erosion (the latter two included as bone lesions at the wrist joints); metacarpophalangeal joints; and proximal interphalangeal joints were considered as MRI-proven joint injury. Japan College of Rheumatology-certified rheumatologists had given a physical examination just before the MRI study. The presence of tender and/or swollen joints in the same fields as MRI was considered as joint injury on physical examination. The association of MRI-proven joint injury with physical examination-proven joint injury was examined. A total of 1,110 sites were available to be examined. MRI-proven joint injury was found in 521 sites, whereas the other 589 sites were normal. Physical examination-proven joint injury was found in 305 sites, which was significantly low as compared with MRI-proven joint injury (P = 1.1 × 10(-12) versus MRI). Joint injury on physical examination was not found in 81.5% of the sites where MRI findings were normal. Furthermore, an association of the severity of MRI-proven joint injury with that of joint injury on physical examination was clearly demonstrated (P = 1.6 × 10(-15), r(s) = 0.469). Our present data suggest that MRI is not only sensitive but accurately reflects the joint injury in patients with early-stage RA. Copyright © 2011 by the American College of Rheumatology.

  9. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  10. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  11. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... the area being scanned include: Metallic spinal rod Plates, pins, screws, or metal mesh used to repair ...

  12. Suppression of the PI3K pathway in vivo reduces cystitis-induced bladder hypertrophy and restores bladder capacity examined by magnetic resonance imaging.

    PubMed

    Qiao, Zhongwei; Xia, Chunmei; Shen, Shanwei; Corwin, Frank D; Liu, Miao; Guan, Ruijuan; Grider, John R; Qiao, Li-Ya

    2014-01-01

    This study utilized magnetic resonance imaging (MRI) to monitor the real-time status of the urinary bladder in normal and diseased states following cyclophosphamide (CYP)-induced cystitis, and also examined the role of the phosphoinositide 3-kinase (PI3K) pathway in the regulation of urinary bladder hypertrophy in vivo. Our results showed that under MRI visualization the urinary bladder wall was significantly thickened at 8 h and 48 h post CYP injection. The intravesical volume of the urinary bladder was also markedly reduced. Treatment of the cystitis animals with a specific PI3K inhibitor LY294002 reduced cystitis-induced bladder wall thickening and enlarged the intravesical volumes. To confirm the MRI results, we performed H&E stain postmortem and examined the levels of type I collagen by real-time PCR and western blot. Inhibition of the PI3K in vivo reduced the levels of type I collagen mRNA and protein in the urinary bladder ultimately attenuating cystitis-induced bladder hypertrophy. The bladder mass calculated according to MRI data was consistent to the bladder weight measured ex vivo under each drug treatment. MRI results also showed that the urinary bladder from animals with cystitis demonstrated high magnetic signal intensity indicating considerable inflammation of the urinary bladder when compared to normal animals. This was confirmed by examination of the pro-inflammatory factors showing that interleukin (IL)-1α, IL-6 and tumor necrosis factor (TNF)α levels in the urinary bladder were increased with cystitis. Our results suggest that MRI can be a useful technique in tracing bladder anatomy and examining bladder hypertrophy in vivo during disease development and the PI3K pathway has a critical role in regulating bladder hypertrophy during cystitis.

  13. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  14. RF tissue-heating near metallic implants during magnetic resonance examinations: an approach in the ac limit.

    PubMed

    Ballweg, Verena; Eibofner, Frank; Graf, Hansjorg

    2011-10-01

    State of the art to access radiofrequency (RF) heating near implants is computer modeling of the devices and solving Maxwell's equations for the specific setup. For a set of input parameters, a fixed result is obtained. This work presents a theoretical approach in the alternating current (ac) limit, which can potentially render closed formulas for the basic behavior of tissue heating near metallic structures. Dedicated experiments were performed to support the theory. For the ac calculations, the implant was modeled as an RLC parallel circuit, with L being the secondary of a transformer and the RF transmission coil being its primary. Parameters influencing coupling, power matching, and specific absorption rate (SAR) were determined and formula relations were established. Experiments on a copper ring with a radial gap as capacitor for inductive coupling (at 1.5 T) and on needles for capacitive coupling (at 3 T) were carried out. The temperature rise in the embedding dielectric was observed as a function of its specific resistance using an infrared (IR) camera. Closed formulas containing the parameters of the setup were obtained for the frequency dependence of the transmitted power at fixed load resistance, for the calculation of the resistance for optimum power transfer, and for the calculation of the transmitted power in dependence of the load resistance. Good qualitative agreement was found between the course of the experimentally obtained heating curves and the theoretically determined power curves. Power matching revealed as critical parameter especially if the sample was resonant close to the Larmor frequency. The presented ac approach to RF heating near an implant, which mimics specific values for R, L, and C, allows for closed formulas to estimate the potential of RF energy transfer. A first reference point for worst-case determination in MR testing procedures can be obtained. Numerical approaches, necessary to determine spatially resolved heating maps, can

  15. The negative predictive value of clinical examination with or without anesthesia versus magnetic resonance imaging for parametrial infiltration in cervical cancer stages IB1 to IIA.

    PubMed

    Bleker, Suzanne M; Bipat, Shandra; Spijkerboer, Anje M; van der Velden, Jacobus; Stoker, Jaap; Kenter, Gemma G

    2013-01-01

    This study aimed to compare the negative predictive value (NPV) of clinical examination with or without anesthesia and magnetic resonance imaging (MRI) in identifying patients with cervical carcinoma without parametrial infiltration. This retrospective cohort study was conducted at the Academic Medical Center in Amsterdam. The medical files of 203 patients diagnosed with cervical cancer stages IB1-IIA, who underwent surgical treatment between January 1, 2003, and January 31, 2011, were reviewed. We compared clinical International Federation of Gynecology and Obstetrics staging and MRI during the staging procedure. The results were compared with the parametrial status by surgical-pathological investigation, which was considered to be the reference standard. Based on the surgical-pathological findings, 16.7% of the patients treated surgically had parametrial infiltration. For parametrial infiltration, examination under anesthesia (EUA) had an NPV of 65.3% and MRI of 76.9%, respectively. We found no significant difference between these NPVs. Examination under anesthesia and MRI are equal in identifying cervical cancer patients without parametrial infiltration with a tendency for MRI to perform better than EUA. When outpatient clinical staging is considered inconclusive, pretreatment staging may be limited to MRI. In these cases, EUA seems to have no additional value.

  16. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  17. Early History of Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ramsey, N. F.

    1999-06-01

    The early history of magnetic resonance to around 1950 is discussed from the point of view of a participant in it. I. I. Rabi's theory of space quantization in a gyrating magnetic field and his molecular beam experiments in the 1930s laid the foundation of the magnetic resonance method, which he and his associates subsequently pursued and developed further at Columbia University, leading eventually to the development of NMR after World War II and the invention of the separated oscillatory fields method in 1950.

  18. Basics of magnetic resonance imaging

    SciTech Connect

    Oldendorf, W.; Oldendorf, W. Jr.

    1988-01-01

    Beginning with the behavior of a compass needle in a magnetic field, this text uses analogies from everyday experience to explain the phenomenon of nuclear magnetic resonance and how it is used for imaging. Using a minimum of scientific abbreviations and symbols, the basics of tissue visualization and characterization are presented. A description of the various types of magnets and scanners is followed by the practical advantages and limitations of MRI relative to x-ray CT scanning.

  19. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  20. Gadofosveset-enhanced magnetic resonance angiography

    PubMed Central

    Goyen, Mathias

    2008-01-01

    Gadofosveset (Vasovist®, Bayer Schering Pharma AG, Berlin/Germany) is the first intravascular contrast agent approved for use with magnetic resonance angiography in the European Union, Switzerland, Turkey, Canada, and Australia. Gadofosveset reversibly binds to albumin providing extended intravascular enhancement compared wth existing extracellular magnetic resonance contrast agents. Prior to approval, gadofosveset underwent extensive testing to evaluate the safety and efficacy of the drug; the clinical trials show that gadofosveset-enhanced magnetic resonance angiography (MRA) is safe and well tolerated in patients with vascular disease and effective for the detection of vascular stenosis and aneurysms gadofosveset has the potential to open new horizons in diagnostic MRA by increasing the spatial resolution and the robustness of MRA examinations and facilitating the examination of multiple vascular beds. PMID:18629367

  1. Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function

    PubMed Central

    Schroeder, Marie

    2016-01-01

    Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society’s most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch. PMID:27899435

  2. Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function.

    PubMed

    Schroeder, Marie; Laustsen, Christoffer

    2017-02-28

    Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society's most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch. © 2017 The Author(s).

  3. The relationship between magnetic resonance imaging findings and postural maneuver and physical examination tests in patients with thoracic outlet syndrome: results of a double-blind, controlled study.

    PubMed

    Demirbag, Derya; Unlu, Ercument; Ozdemir, Ferda; Genchellac, Hakan; Temizoz, Osman; Ozdemir, Huseyin; Demir, M Kemal

    2007-07-01

    To investigate the differences in findings from magnetic resonance imaging (MRI) in the neutral and provocative positions, and to examine the relationship between these differences and the results of physical examination tests in patients with thoracic outlet syndrome (TOS). Prospective. University physical medicine and rehabilitation outpatient and radiology clinics. Twenty-nine patients and 12 healthy controls. All of the patients had positive bilateral TOS stress tests; control group participants were symptom free and had negative TOS stress tests bilaterally. Not applicable. All participants underwent Adson's test, the Halsted maneuver, and a hyperabduction test. All were evaluated with MRI while in 2 positions: the neutral position (upper extremities adducted) and in a provocative position. Measurements were obtained at the interscalene triangle, at the costoclavicular space, and at the retropectoralis minor space. There was a significant difference in MRI findings between the neutral and provocative position in the patients (P<.05), but there were no significant differences in the control group. There was a significant difference in the positional change values in MRI between the patients and the control subjects (P<.05). The difference was found in the minimum costoclavicular distance between patients with a positive Halsted maneuver and a negative Halsted maneuver (P<.05). Our findings indicate that MRI findings in patients in a provocative position are more valuable in the diagnosis of TOS, and these findings are in accord with findings from the physical evaluation tests.

  4. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  5. Observer agreement in the reporting of knee and lumbar spine magnetic resonance (MR) imaging examinations: selectively trained MR radiographers and consultant radiologists compared with an index radiologist.

    PubMed

    Brealey, S; Piper, K; King, D; Bland, M; Caddick, J; Campbell, P; Gibbon, A; Highland, A; Jenkins, N; Petty, D; Warren, D

    2013-10-01

    To assess agreement between trained radiographers and consultant radiologists compared with an index radiologist when reporting on magnetic resonance imaging (MRI) examinations of the knee and lumbar spine and to examine the subsequent effect of discordant reports on patient management and outcome. At York Hospital two MR radiographers, two consultant radiologists and an index radiologist reported on a prospective, random sample of 326 MRI examinations. The radiographers reported in clinical practice conditions and the radiologists during clinical practice. An independent consultant radiologist compared these reports with the index radiologist report for agreement. Orthopaedic surgeons then assessed whether the discordance between reports was clinically important. Overall observer agreement with the index radiologist was comparable between observers and ranged from 54% to 58%; for the knee it was 46-57% and for the lumbar spine was 56-66%. There was a very small observed difference of 0.6% (95% CI -11.9 to 13.0) in mean agreement between the radiographers and radiologists (P=0.860). For the knee, lumbar spine and overall, radiographers' discordant reports, when compared with the index radiologist, were less likely to have a clinically important effect on patient outcome than the radiologists' discordant reports. Less than 10% of observer's reports were sufficiently discordant with the index radiologist's reports to be clinically important. Carefully selected MR radiographers with postgraduate education and training reported in clinical practice conditions on specific MRI examinations of the knee and lumbar spine to a level of agreement comparable with non-musculoskeletal consultant radiologists. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Nuclear magnetic resonance scanners

    SciTech Connect

    Danby, G.T.; Hsieh, H.C.H.; Jackson, J.W.; Damadian, R.V.

    1988-08-23

    This patent describes a medical NMR scanner comprising a primary field magnet assembly including: (a) a ferromagnetic frame defining a patient-receiving space adapted to receive a human body, the frame having a pair of opposed polar regions aligned on a polar axis and disposed on opposite sides of the patient-receiving space, and the frame including a substantially continuous ferro-magnetic flux return path extending between the polar regions remote from the patient-receiving space; (b) flux-generating means including superconductive windings and cryostat means for maintaining the windings at superconducting temperatures; and (c) support means for maintaining the windings in proximity to the frame so that when a current passes through the windings magnetic flux emanating from the windings produces a magnetic field within the patient-receiving space and at least a portion of the flux passes into the patient-receiving space by way of the polar regions.

  7. Magnetic Resonance (MR) Defecography

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  8. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  9. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... cholangiopancreatography or MRCP uses a powerful magnetic field, radio waves and a computer to evaluate the liver, gallbladder, ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  10. Advances in Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Price, R. R.

    1996-05-01

    Nuclear Magnetic Resonance (NMR) Imaging, now more commonly referred to as Magnetic Resonance Imaging (MRI), developed into an important clinical modality between the years of 1978 and 1985. In 1945 it was demonstrated independently by Bloch(F. Bloch, The Principle of Nuclear Induction, Nobel Lectures in Physics: 1946-1962 New York, Elsevier Science Publishing Co., Inc. 1964.) and Purcell(E.M. Purcell, Research in Nuclear Magnetism, Nobel Lectures in Physics: 1946-1962, New York. Elsevier Science Publishing Co., Inc. 1964.) that magnetic nuclei in a sample when placed in a static magnetic field exhibit a characteristic resonance frequency which is proportional to the field strength and unique to nuclei of the same type and same environment. The net magnetization of the sample when irradiated by an RF wave at the resonance frequency could thus be manipulated to produce an induced "NMR signal" in a conducting loop placed near the sample. In the early 1970's, methods were developed whereby the NMR signal could be spatially encoded in both frequency and phase by means of superimposed linear magnetic field gradients to produce NMR images. NMR image contrast is a function of nuclear concentration and magnetic relaxation times (T1 and T2). MRI became the first medical imaging modality to provide both high resolution and high contrast images of soft tissue. Current clinical MRI systems produce images of the distribution of ^1H nuclei (primarily water) within the body. Other biologically important nuclei (^13C, ^23N, ^31P), as well as the imaging of hyperpolarized inert gases (^3He, ^129Xe) are under investigation. Recent developments in ^1H-MRI have included chemical shift imaging (hydrogen containing metabolites), blood flow imaging (MR angiography), ultra high-speed imaging (Echo Planar), and imaging of brain function based upon magnetic susceptibility differences resulting from blood oxygenation changes during brain activity.

  11. Magnetic resonance imaging of semicircular canals.

    PubMed Central

    Sbarbati, A; Leclercq, F; Zancanaro, C; Antonakis, K

    1992-01-01

    The present paper reports the results of the first investigation of the semicircular canals in a living, small animal by means of high spatial resolution magnetic resonance imaging. This procedure is noninvasive and allows identification of the endolymphatic and perilymphatic spaces yielding a morphology quite consistent with direct anatomical examination. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1506290

  12. Interventional Cardiovascular Magnetic Resonance Imaging

    PubMed Central

    Saikus, Christina E.; Lederman, Robert J.

    2010-01-01

    Cardiovascular magnetic resonance (CMR) combines excellent soft-tissue contrast, multiplanar views, and dynamic imaging of cardiac function without ionizing radiation exposure. Interventional cardiovascular magnetic resonance (iCMR) leverages these features to enhance conventional interventional procedures or to enable novel ones. Although still awaiting clinical deployment, this young field has tremendous potential. We survey promising clinical applications for iCMR. Next, we discuss the technologies that allow CMR-guided interventions and, finally, what still needs to be done to bring them to the clinic. PMID:19909937

  13. Ultra-high magnetic resonance imaging (MRI): a potential examination for deep brain stimulation devices and the limitation study concerning MRI-related heating injury.

    PubMed

    Chen, Ying-Chuan; Li, Jun-Ju; Zhu, Guan-Yu; Shi, Lin; Yang, An-Chao; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo

    2017-03-01

    Nowadays, the patients with deep brain stimulation (DBS) devices are restricted to undertake 1.5T magnetic resonance imaging (MRI) according to the guideline. Nevertheless, we conducted an experiment to test pathological change near the leads in different field-strength MRI. Twenty-four male New Zealand rabbits were assigned to Group 1 (G1, n = 6, 7.0T, DBS), Group 2 (G2, n = 6, 3.0T, DBS), Group 3 (G3, n = 6, 1.5T, DBS), and Group 4 (G4, n = 6, 1.5T, paracentesis). DBS leads were implanted in G1, G2 and G3, targeting left nucleus ventralis posterior thalami. Paracentesis was performed in G4. 24 h after MRI scan, all animals were killed for examining pathological alternation (at different distance from lead) via transmission electron microscopy. Our results suggest that the severity of tissue injury correlates with the distance to electrode instead of field strength of MRI. Up to now, the reason for the restriction of MRI indicated no significantly different pathological change.

  14. Magnetic resonance apparatus

    DOEpatents

    Jackson, Jasper A.; Cooper, Richard K.

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  15. Magnetic Resonance Image Wavelet Enhancer

    DTIC Science & Technology

    2001-10-25

    1Departamento de Ingenieria Electrica , UAM Iztapalapa, Mexico−DF, 09340, Mexico email:arog@xanum.uam.mx. Magnetic Resonance Centre, School of Physics...Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Departamento de Ingenieria Electrica , UAM Iztapalapa, Mexico-DF

  16. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: Examination of noise conduction through the ear canal, head, and bodya)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.

    2007-01-01

    Approaches were examined for reducing acoustic noise levels heard by subjects during functional magnetic resonance imaging (fMRI), a technique for localizing brain activation in humans. Specifically, it was examined whether a device for isolating the head and ear canal from sound (a “helmet”) could add to the isolation provided by conventional hearing protection devices (i.e., earmuffs and earplugs). Both subjective attenuation (the difference in hearing threshold with versus without isolation devices in place) and objective attenuation (difference in ear-canal sound pressure) were measured. In the frequency range of the most intense fMRI noise (1–1.4 kHz), a helmet, earmuffs, and earplugs used together attenuated perceived sound by 55–63 dB, whereas the attenuation provided by the conventional devices alone was substantially less: 30–37 dB for earmuffs, 25–28 dB for earplugs, and 39–41 dB for earmuffs and earplugs used together. The data enabled the clarification of the relative importance of ear canal, head, and body conduction routes to the cochlea under different conditions: At low frequencies (≤500 Hz), the ear canal was the dominant route of sound conduction to the cochlea for all of the device combinations considered. At higher frequencies (>500 Hz), the ear canal was the dominant route when either earmuffs or earplugs were worn. However, the dominant route of sound conduction was through the head when both earmuffs and earplugs were worn, through both ear canal and body when a helmet and earmuffs were worn, and through the body when a helmet, earmuffs, and earplugs were worn. It is estimated that a helmet, earmuffs, and earplugs together will reduce the most intense fMRI noise levels experienced by a subject to 60–65 dB SPL. Even greater reductions in noise should be achievable by isolating the body from the surrounding noise field. PMID:11206150

  17. Magnetic resonance apparatus

    DOEpatents

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  18. The principles of magnetic resonance.

    PubMed

    Longmore, D B

    1989-10-01

    Magnetic Resonance (MR), which has no known biological hazard, is capable of producing high resolution thin tomographic images in any plane and blocks of 3-dimensional information. It can be used to study blood flow and to gain information about the composition of important materials seen and quantified on dimensionally accurate images. The MR image is a thin tomographic slice or a true three dimensional block of data which can be reconstructed in any desired way rather than a shadowgram of all the structures in the beam. It is the only imaging technique which can acquire data in a 3-dimensional format. CT images can be reconstructed to form a pseudo 3-D image or a hologram but the flexibility conferred by acquiring the data as a true 3-D block gives many advantages. The spatial resolution of MR images are theoretically those of low powered microscopy, the practical limits with the present generation of equipment are voxel sizes of one third by one third by two millimetres. The term Magnetic Resonance Imaging (MRI) is used commonly, particularly in the USA, avoiding association with the term, nuclear, and emphasizing the imaging potential of the technique. The terms Nuclear Magnetic Resonance (NMR) or Magnetic Resonance (MR) more correctly describe the most powerful diagnostic instrument yet devised. The simplified description of the phenomena involved in MR which follows is intended to be comprehensive and does not require foreknowledge of classical physics, quantum mechanics, fluency with mathematical formulae or an understanding of image reconstruction. There are many explanations of MR, some omitting the more difficult concepts. An accurate, comprehensive description is found on the textbook on MR by Gadian, Nuclear Magnetic Resonance and its Applications for Living Systems (Oxford University Press, 1982).

  19. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    MedlinePlus

    ... to 2-Year-Old Magnetic Resonance Imaging (MRI): Brain KidsHealth > For Parents > Magnetic Resonance Imaging (MRI): Brain ... child may be given headphones to listen to music or earplugs to block the noise, and will ...

  20. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus

    ... Sponsored by Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info ... I’d like to talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. ...

  1. Proton magnetic resonance spectrum of polywater.

    PubMed

    Petsko, G A

    1970-01-09

    With the aid of a time average computer, the proton magnetic resonance spectrum of anomalous water (polywater) is obtained. The spectrum conisists of a single broad resonance shifted approximately 300 hertz downfield from the resonance of ordinary water.

  2. Improving magnetic resonance imaging (MRI) examinations: Development and evaluation of an intervention to reduce movement in scanners and facilitate scan completion.

    PubMed

    Powell, Rachael; Ahmad, Mahadir; Gilbert, Fiona J; Brian, David; Johnston, Marie

    2015-09-01

    The movement of patients in magnetic resonance imaging (MRI) scanners results in motion artefacts which impair image quality. Non-completion of scans leads to delay in diagnosis and increased costs. This study aimed to develop and evaluate an intervention to enable patients to stay still in MRI scanners (reducing motion artefacts) and to enhance scan completion. Successful scan outcome was deemed to be completing the scan with no motion artefacts. Previous research indicated self-efficacy to predict successful scan outcome, and interviews with patients identified a need for procedural and sensory information to facilitate successful scan behaviour. A DVD intervention was developed which targeted self-efficacy and included procedural and sensory information. It was successfully piloted with 10 patients and then evaluated in a randomized controlled trial compared with the standard hospital information leaflet (intervention group N = 41; control group N = 42). The clinic radiographer, who was blind to group allocation, rated MRI scans for motion artefact and recorded whether the participant completed the scan; participants completed MRI self-efficacy and anxiety measures. Only one participant reported not finding the DVD useful. Thirty-five participants in the intervention group and 23 in the control group completed scans and had no motion artefacts, χ(2) (1, 83) = 7.84, p < .001 (relative risk of an unsatisfactory outcome in the control group/intervention group = 3.09). The intervention effect was mediated by self-efficacy. The DVD intervention was efficacious and warrants further research to examine generalizability. © 2015 The British Psychological Society.

  3. Shiftless nuclear magnetic resonance spectroscopy.

    PubMed

    Wu, Chin H; Opella, Stanley J

    2008-02-07

    The acquisition and analysis of high resolution one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectra without chemical shift frequencies are described. Many variations of shiftless NMR spectroscopy are feasible. A two-dimensional experiment that correlates the dipole-dipole and dipole-dipole couplings in the model peptide , (15)N labeled N-acetyl-leucine is demonstrated. In addition to the resolution of resonances from individual sites in a single crystal sample, the bond lengths and angles are characterized by the two-dimensional powder pattern obtained from a polycrystalline sample.

  4. Magnetic resonance imaging in inflammatory rheumatoid diseases.

    PubMed

    Sudoł-Szopińska, Iwona; Mróz, Joanna; Ostrowska, Monika; Kwiatkowska, Brygida

    2016-01-01

    Magnetic resonance (MR) is used more and more frequently to diagnose changes in the musculoskeletal system in the course of rheumatic diseases, at their initial assessment, for treatment monitoring and for identification of complications. The article presents the history of magnetic resonance imaging, the basic principles underlying its operation as well as types of magnets, coils and MRI protocols used in the diagnostic process of rheumatic diseases. It enumerates advantages and disadvantages of individual MRI scanners. The principles of MRI coil operation are explained, and the sequences used for MR image analysis are described, particularly in terms of their application in rheumatology, including T1-, T2-, PD-weighted, STIR/TIRM and contrast-enhanced T1-weighted images. Furthermore, views on the need to use contrast agents to optimise diagnosis, particularly in synovitis-like changes, are presented. Finally, methods for the assessment of MR images are listed, including the semi-quantitative method by RAMRIS and quantitative dynamic examination.

  5. Pediatric Body Magnetic Resonance Imaging.

    PubMed

    Kandasamy, Devasenathipathy; Goyal, Ankur; Sharma, Raju; Gupta, Arun Kumar

    2016-09-01

    Magnetic resonance imaging (MRI) is a radiation-free imaging modality with excellent contrast resolution and multiplanar capabilities. Since ionizing radiation is an important concern in the pediatric population, MRI serves as a useful alternative to computed tomography (CT) and also provides additional clues to diagnosis, not discernible on other investigations. Magnetic resonance cholangiopancreatography (MRCP), urography, angiography, enterography, dynamic multiphasic imaging and diffusion-weighted imaging provide wealth of information. The main limitations include, long scan time, need for sedation/anesthesia, cost and lack of widespread availability. With the emergence of newer sequences and variety of contrast agents, MRI has become a robust modality and may serve as a one-stop shop for both anatomical and functional information.

  6. Fast fetal magnetic resonance imaging.

    PubMed

    Sandrasegaran, Kumaresan; Lall, Chandana; Aisen, Alex A; Rajesh, Arumugam; Cohen, Mervyn D

    2005-01-01

    Fetal magnetic resonance imaging (MRI) can be used as a problem-solving tool when ultrasonic findings are equivocal. The role of fetal MRI has increased as obstetricians become aware of its potential and in utero therapy for anomalies becomes increasingly sophisticated. In this pictorial essay, we present a wide range of anomalies diagnosed or confirmed using MRI and discuss findings that help in the differential diagnosis.

  7. Examining the Role of the Human Hippocampus in Approach-Avoidance Decision Making Using a Novel Conflict Paradigm and Multivariate Functional Magnetic Resonance Imaging.

    PubMed

    O'Neil, Edward B; Newsome, Rachel N; Li, Iris H N; Thavabalasingam, Sathesan; Ito, Rutsuko; Lee, Andy C H

    2015-11-11

    Rodent models of anxiety have implicated the ventral hippocampus in approach-avoidance conflict processing. Few studies have, however, examined whether the human hippocampus plays a similar role. We developed a novel decision-making paradigm to examine neural activity when participants made approach/avoidance decisions under conditions of high or absent approach-avoidance conflict. Critically, our task required participants to learn the associated reward/punishment values of previously neutral stimuli and controlled for mnemonic and spatial processing demands, both important issues given approach-avoidance behavior in humans is less tied to predation and foraging compared to rodents. Participants played a points-based game where they first attempted to maximize their score by determining which of a series of previously neutral image pairs should be approached or avoided. During functional magnetic resonance imaging, participants were then presented with novel pairings of these images. These pairings consisted of images of congruent or opposing learned valences, the latter creating conditions of high approach-avoidance conflict. A data-driven partial least squares multivariate analysis revealed two reliable patterns of activity, each revealing differential activity in the anterior hippocampus, the homolog of the rodent ventral hippocampus. The first was associated with greater hippocampal involvement during trials with high as opposed to no approach-avoidance conflict, regardless of approach or avoidance behavior. The second pattern encompassed greater hippocampal activity in a more anterior aspect during approach compared to avoid responses, for conflict and no-conflict conditions. Multivoxel pattern classification analyses yielded converging findings, underlining a role of the anterior hippocampus in approach-avoidance conflict decision making. Approach-avoidance conflict has been linked to anxiety and occurs when a stimulus or situation is associated with reward

  8. Accuracy of magnetic resonance imaging signal intensity ratio measurements in the evaluation of multifidus muscle injury and atrophy relative to that of histological examinations.

    PubMed

    Zhi-Jun, Hu; Wen-Bin, Xu; Shuai, Chen; Zhi-Jie, Zhou; Feng-Dong, Zhao; Xiao-Jing, Yu; Ji-Ying, Wang; Li-Li, Han; Feng, Jiang; Guo-Xiang, Fu; Dan-Ju, Wu; Shun-Wu, Fan; Xiang-Qian, Fang

    2014-05-01

    A matched-pairs animal study. To confirm the accuracy of magnetic resonance imaging (MRI) as a means of evaluating edema and fat degeneration of the multifidus muscle by comparing measurements made using MRI with those made using histological examination. MRI is considered a reliable means of evaluating multifidus muscle edema and fat degeneration. However, it is not clear whether its results are always consistent with histological findings. Models of different degrees of multifidus injury were created at the L2-L3, L3-L4, and L4-L5 disc levels in 56 New Zealand white rabbits. These were divided into 4 groups and subjected to different processes: sham surgery, dissection and stripping of the multifidus, crushing of the muscle lasting 1 hour, and crushing of the muscle lasting 2 hours. Two rabbits per group were examined at each of the indicated points in time. Multifidus edema was assessed using fat-suppressed T2 signal intensity ratio of gross multifidus to psoas (T2R) on MRI bilaterally, wet weight and wet:dry weight ratio on the left side (edema-left), and visual edema score on the right side (edema-right). Muscle fat degeneration was detected bilaterally using the T1 signal intensity ratio of gross multifidus to psoas with MRI (T1R) and visual fat degeneration score (fat score) with histology. Pearson correlation coefficient analyses showed significant correlations (P < 0.001) between left T2R and edema-left (r = 0.927), right T2R and edema-right (r = 0.868), and T1R and fat score (r = 0.804). A paired t test demonstrated no significant differences between MRI measurements and histological changes (P = 0.999, 1.000, and 0.998). Bland-Altman plots also depicted good agreement between MRI measurements and histological changes (limits of agreement: left multifidus edema, ± 0.75; right multifidus edema, ± 1.01; fat degeneration, ± 1.23). The MRI technique is an accuracy means of evaluating multifidus muscle injury and atrophy.

  9. Ethanol-induced fatty liver in the rat examined by in vivo 1H chemical shift selective magnetic resonance imaging and localized spectroscopic methods.

    PubMed

    Ling, M; Brauer, M

    1992-01-01

    In vivo 1H magnetic resonance imaging (MRI), chemical shift selective imaging (CSI), and localized (VOSY) 1H magnetic resonance spectroscopy (MRS) were used to study fatty infiltration in the livers of rats chronically fed an ethanol-containing all-liquid DeCarli-Lieber diet. Conventional total proton MRI showed a somewhat hyperintense liver for ethanol-fed rats, compared with pair-fed controls. CSI showed a dramatic increase in the fat signal intensity for ethanol-treated rats that was fairly homogeneous throughout the liver. However, CSI also showed a substantial decrease in the water signal intensity for the ethanol-treated rats compared to pair-fed control rats. 1H VOSY MR spectra also showed a 5.5-fold increase in the methylene resonance (1.3 ppm) of fat and a 50-70% decrease in the water resonance (4.8 ppm). Relative in vivo proton T1 and T2 relaxation times for the water resonance separate from the fat resonance, determined from modified VOSY experiments, were found to tend to increase and decrease, respectively, for ethanol-treated rat livers compared with controls. The decrease in hepatic water signal intensity could be accounted for by the decrease in T2 and decrease in water density due to the presence of accumulated hepatic fat (approximately 25 mg/g wet weight of liver). When ethanol was withdrawn from the chronically treated rats, fatty infiltration was observed by both CSI and VOSY spectra to revert toward control values with a half-life of 2-4 days. By day 16, however, the signal intensity for hepatic fat was still significantly higher than control levels. In vitro 1H MRS studies of chloroform-methanol extracts confirmed the 5.5-fold increase in total hepatic fat induced by the chronic ethanol treatment, and showed further that triacylglycerols were increased 7.7-fold, cholesterol was increased fourfold, and phospholipids were increased 3.3-fold, compared with liver extracts from pair-fed control rats.

  10. [A comparative study of lacrimal magnetic resonance hydrography and lacrimal endoscopy examination in the diagnosis and treatment of lacrimal duct obstructive diseases].

    PubMed

    Xiang, N; Liu, R; Zhang, S J; Hu, W K; Zhan, X Y; Luo, B; Ai, T

    2016-02-01

    To evaluate the diagnostic value and treatment guidance of lacrimal magnetic resonance hydrography (LMRH) and lacrimal endoscopy examination in lacrimal duct obstruction. A retrospective analysis of clinical and imaging data of 59 patients with epiphora who had LMRH examination in Tongji Hospital during June 2013 and January 2014. Multiplanar reconstruction (MPR) and maximum intensity projection (MIP) were used to process the three dimensions T2-weighted images (T2WI). The size of lacrimal sac, lacrimal mucosal lesions and the obstructed plane of nasolacrimal duct were observed. The lacrimal irrigation results were used as gold standard. The sensitivity, specificity, accuracy of LMRH in diagnosis of lacrimal duct obstructive diseases and the consistency between the two methods were analyzed. In addition, 22 cases had lacrimal endoscopy examination in less than half month after MRD. The results of lacrimal endoscopy were compared with LMRH images. The treatment method was made according to the results of LMRH and lacrimal endoscopy. According to the results of lacrimal irrigation, among 78 eyes of 59 patients, 2 eyes were diagnosed as lacrimal canalicular obstruction (2.6%, 2/78), 8 eyes were diagnosed as nasolacrimal duct stenosis (10.3%, 8/78), 24 eyes were diagnosed as nasolacrimal duct obstruction (30.8%, 24/78), 44 eyes were diagnosed as nasolacrimal duct obstruction accompanied with chronic dacryocystitis (56.4%, 44/78). The other 40 eyes were negative controls. LMRH had a high degree of consistency with lacrimal irrigation in diagnosis of lacrimal duct obstructive diseases. The value of Kappa was 0.963 (P= 0.026). The sensitivity of MRD in diagnosis of lacrimal duct obstructive diseases was 97.4%, the specificity was 100%, the accuracy was 98.3%, the positive predictive value was 100% and the negative predictive value was 95.2% . According to 40 eyes of the control group, the mean value of the maximum cross-sectional area of the lacrimal sac was: (10.9 ± 0

  11. [The benefit of magnetic resonance for diagnosing cardiomyopathy and myocarditis].

    PubMed

    Fikrle, Michal; Kuchynka, Petr; Mašek, Martin; Podzimková, Jana; Kuchař, Jan; Linhart, Aleš; Paleček, Tomáš

    Magnetic resonance is becoming an increasingly used examination in cardiology, since it greatly improves the accuracy of diagnosing of many heart diseases. At present magnetic resonance is the gold standard in assessing the volumes of the heart chambers and the systolic function of both ventricles. The possibility of detecting tissue characteristics to refine the diagnostics of different types of myocardial pathology is of essential importance. The authors summarize in the article the present knowledge about the use of magnetic resonance of the heart in the field of myocardial disease, i.e. cardiomyopathy and myocarditis. The first part of the review gives a general introduction into the topic of magnetic resonance examination of myocardial diseases, which is followed by a detailed descrip-tion of the benefits of this imaging method in dilated cardiomyopathy and myocarditis,in hypertrophic cardio-myopathy, and arrhythmogenic right ventricular cardiomyopathy.Key words: fibrosis - cardiomyopathy - magnetic resonance - myocarditis - late contrast agent saturation.

  12. Muscle functional magnetic resonance imaging and acute low back pain: a pilot study to characterize lumbar muscle activity asymmetries and examine the effects of osteopathic manipulative treatment

    PubMed Central

    Clark, Brian C; Walkowski, Stevan; Conatser, Robert R; Eland, David C; Howell, John N

    2009-01-01

    Background Muscle functional magnetic resonance imaging (mfMRI) measures transverse relaxation time (T2), and allows for determination of the spatial pattern of muscle activation. The purposes of this pilot study were to examine whether MRI-derived T2 or side-to-side differences in T2 (asymmetries) differ in low back muscles between subjects with acute low back pain (LBP) compared to asymptomatic controls, and to determine if a single osteopathic manipulative treatment (OMT) session alters these T2 properties immediately and 48-hours after treatment. Methods Subjects with non-specific acute LBP (mean score on 1-10 visual analog score = 3.02 ± 2.81) and asymptomatic controls (n = 9/group) underwent an MRI, and subsequently the LBP subjects received OMT and then underwent another MRI. The LBP subjects reported back for an additional MRI 48-hours following their initial visit. T2 and T2 asymmetry were calculated from regions of interest for the psoas, quadratus lumborum (QL), multifidus, and iliocostalis lumborum/longissimus thoracis (IL/LT) muscles. Results No differences were observed between the groups when T2 was averaged for the left and right side muscles. However, the QL displayed a significantly greater T2 asymmetry in LBP subjects when compared to controls (29.1 ± 4.3 vs. 15.9 ± 4.1%; p = 0.05). The psoas muscle also displayed a relatively large, albeit non-significant, mean difference (22.7 ± 6.9 vs. 9.5 ± 2.8%; p = 0.11). In the subjects with LBP, psoas T2 asymmetry was significantly reduced immediately following OMT (25.3 ± 6.9 to 6.1 ± 1.8%, p = 0.05), and the change in LBP immediately following OMT was correlated with the change in psoas T2 asymmetry (r = 0.75, p = 0.02). Conclusion Collectively, this pilot work demonstrates the feasibility of mfMRI for quantification and localization of muscle abnormalities in patients with acute low back pain. Additionally, this pilot work provides insight into the mechanistic actions of OMT during acute LBP, as

  13. Advantages of T2 Weighted Three Dimensional and T1 Weighted Three Dimensional Contrast Medium Enhanced Magnetic Resonance Urography in Examination of the Child Population

    PubMed Central

    Sehic, Adnan; Julardzija, Fuad; Vegar-Zubovic, Sandra; Sefic-Pasic, Irmina

    2017-01-01

    Aim: The aim of this study is to prove the advantages of combined use of T2 weighted three dimensional (T2 W 3D) and T1 weighted three dimensional contrast medium enhanced (T1 W 3D CE) magnetic resonance (MR) urography in displaying urinary tract in child population. Material and methods: Total of 120 patients were included in the study, 71 (59%) male patients and 49 (41%) female patients. The study was conducted on the Radiology clinic, University of Sarajevo Clinical Center, during the period from February to November 2016. Patients were examined on the 1.5T and 3T MRI, with standard protocol which includes T2 W 3D and T1 W 3D contrast medium enhanced MR urography. In the post procesing quantitative measurement of signal intensity and evaluation of the display quality in the area of renal pelvis, middle of ureter and the mouth of the ureter were done. Measurement was concluded on Syngo software B13. Results: Analyzing the acquired data and statistically processing them we got results which have shown higher signal intensity of measured structures on T1 W 3D contrast medium enhanced MR urography on the level p<0.01 and p<0.05 compared to T2 W 3D MR urography in patients that had normal dynamics of contrast medium secretion. However, in kidneys with decreased function, T2 W 3D MR urography provided higher signal intensity and better display compared to T1 W 3D contrast medium enhanced MR urography on the level p<0.05 and p<0.01. Conclusion: T2 W3D MR urography is useful in imaging nonfunctional kidney as well as in patients prone to allergic reactions, where as T1 W3D CE MR urography is at an advantage over T2 W 3D MR urography in imaging the kidney functionality, kidney dynamics measurement, it provides higher MRI signal intensity required for clear 3D reconstructions. PMID:28484293

  14. [Magnetic resonance and hepatic siderosis].

    PubMed

    Rocchi, E

    1994-09-01

    The principles of generation of magnetic resonance imaging (MRI) are resumed by briefly explaining the effects of an external magnetic field (EMF) on hydrogen nuclei and of pulses of radiofrequency (RF) radiation. The latter creates a resonant effect, and the same nuclei, moved from the external field axis, when RF pulse is stopped, will "relax" to their original alignment in the magnetic field and in so doing radiate the absorbed energy to their surroundings. This energy provides a signal that can be detected and spatially resolved by the receiver coil wrapped around the patient, through a computerized system. After briefly explaining also the distinctive parameters T2 and T1, the author presents his experience in the MRI detection of different degrees of siderosis of the liver--ranging from idiopathic and secondary haemochromatosis to milder siderosis of alcoholic liver disease and porphyria cutanea tarda. The results were accomplished by employing an equipment operating at an enhanced field strength (1.5 Tesla). Previous reports have validated this technique in order to distinguish idiopathic from secondary haemochromatosis. Furthermore, the present study shows that even low to moderate degrees of liver iron deposition can be appreciated and roughly quantitated by the decrease of the transverse relaxation time (T2), which resulted proportional to the amount of liver iron, under these operating conditions. Thus, MRI is proposed as an useful and non-invasive way to detect iron deposition and to follow up iron depletion treatments.

  15. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  16. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  17. Nerves on magnetic resonance imaging.

    PubMed Central

    Collins, J. D.; Shaver, M. L.; Batra, P.; Brown, K.

    1989-01-01

    Nerves are often visualized on magnetic resonance imaging (MRI) studies of the soft tissues on the chest and shoulder girdle. To learn the reasons for the contrast between the nerves and adjacent tissues, the authors obtained a fresh specimen containing part of the brachial plexus nerves from the left axilla and compared MRI with x-ray projections and photomicrographs of histologic sections. The results suggest that the high signals from the nerves stand out in contrast to the low signals from their rich vascular supply. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6A Figure 6B Figure 7 PMID:2733051

  18. Evanescent Waves Nuclear Magnetic Resonance

    PubMed Central

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  19. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  20. The Marinesco-Sjoegren syndrome examined by computed tomography, magnetic resonance, and sup 18 F-2-fluoro-2-deoxy-D-glucose and positron emission tomography

    SciTech Connect

    Bromberg, M.B.; Junck, L.; Gebarski, S.S.; McLean, M.J.; Gilman, S. )

    1990-11-01

    The Marinesco-Sjoegren syndrome is an autosomal recessive degenerative disorder characterized by congenital cataracts, cerebellar ataxia, spasticity, mental deficiency, and skeletal abnormalities. We studied two adult siblings with Marinesco-Sjoegren syndrome using anatomic and metabolic brain imaging techniques to characterize the pattern and nature of abnormalities in the brain. Computed tomographic and magnetic resonance imaging showed diffuse brain atrophy of mild to moderate degree, involving primarily the white matter of the cerebrum, cerebellum, brain stem, and cervical spinal cord. The pattern of atrophy resembled that seen in diffuse leukoencephalopathies. Measurements of local cerebral glucose metabolic rates with positron emission tomography revealed no statistically significant differences from normal control subjects in most regions, but metabolic rate was decreased in the thalamus in one patient. The findings support a diffuse white matter disorder in Marinesco-Sjoegren syndrome.Aut

  1. The lie of fMRI: an examination of the ethics of a market in lie detection using functional magnetic resonance imaging.

    PubMed

    White, Amy E

    2010-09-01

    In this paper, I argue that companies who use functional Magnetic Resonance Imaging (fMRI) scans for lie detection encounter the same basic ethical stumbling blocks as commercial companies that market traditional polygraphs. Markets in traditional voluntary polygraphs are common and fail to elicit much uproar among ethicists. Thus, for consistency, if markets in polygraphs are ethically unproblematic, markets using fMRIs for lie detection are equally as acceptable. Furthermore, while I acknowledge two substantial differences between the ethical concerns involving polygraphs and fMRI lie detection, I argue that these concerns can be overcome and do not lead to the conclusion that markets in fMRI lie detection are ethically dubious. It is my conclusion that voluntary markets in fMRI lie detection can be justified by consumer autonomy and should be allowed to persist.

  2. Gynecologic masses: value of magnetic resonance imaging.

    PubMed

    Hricak, H; Lacey, C; Schriock, E; Fisher, M R; Amparo, E; Dooms, G; Jaffe, R

    1985-09-01

    Forty-two women with gynecologic abnormalities were studied with the use of magnetic resonance imaging. Magnetic resonance imaging correctly assessed the origin of the pelvic mass in all patients. In the evaluation of leiomyoma, magnetic resonance imaging accurately depicted the number, size, and location of the lesion. In the evaluation of endometrial carcinoma, magnetic resonance imaging depicted the location of the lesion, the presence of cervical extension, and the depth of myometrial penetration in the majority of the cases. In the analysis of adnexal cysts, magnetic resonance imaging was sensitive in localizing the lesion and was able to distinguish serous from hemorrhagic fluid. This preliminary report indicates that magnetic resonance imaging may become a valuable imaging modality in the diagnosis of gynecologic abnormalities.

  3. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  4. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  5. Apparatus for investigating resonance with application to magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; Jones, Dyan L.; Gross, Josh; Zollman, Dean

    2015-11-01

    Resonance is typically studied in the context of either a pendulum or a mass on a spring. We have developed an apparatus that enables beginning students to investigate resonant behavior of changing magnetic fields, in addition to the properties of the magnetic field due to a wire and the superposition of magnetic fields. In this resonant system, a compass oscillates at a frequency determined by the compass's physical properties and an external magnetic field. While the analysis is mathematically similar to that of the pendulum, this apparatus has an advantage that the magnetic field is easily controlled, while it is difficult to control the strength of gravity. This apparatus has been incorporated into a teaching module on magnetic resonance imaging.

  6. Magnetic resonance-fluoroscopy as long-term follow-up examination in patients with narrow gastric tube reconstruction after radical esophagectomy.

    PubMed

    Panebianco, Valeria; Francioni, Federico; Anzidei, Michele; Anile, Marco; Rolla, Matilde; Passariello, Roberto

    2006-10-01

    To evaluate the functionality and morphology of neo-esophagus in subjects who underwent narrow gastric tube (NGT) reconstruction after total esophagectomy using magnetic resonance (MR)-fluoroscopy with Turbo-FLASH sequences acquired during positive oral contrast agent administration. Ten patients, who underwent NGT reconstruction after total esophagectomy between 2002 and 2004, were studied using a 1.5 T magnet (Magnetom Avanto: Siemens, Erlangen, Germany, featuring total imaging matrix-TIM technology), equipped with surface phased-array and integrated spine coils. Imaging protocol included TRUFI and Turbo-FLASH sequences (TR=600 ms; TE=1.3 ms; Flip Angle 8 degrees ; Thickness 20 mm; FoV 350; Matrix 128 x 256; N. acquisition 120; TA=50 s) acquired on sagittal and axial planes to achieve motility evaluation during oral administration of positive contrast agent (yoghurt+Gd-DTPA 0.5M, 1:100 boluses). Good quality images were obtained in all patients, with adequate lumen contrast and a frame rate of 2.5 frames per second (fps). Three patients had completely re-established motility of NGT; six patients had mild to moderate alterations including raised transit time, reflux and contrast agent stasis; one patient had severe alterations with grossly dilated NGT, severe reflux and stasis. MR-fluoroscopy approach represents a promising radiation-free modality in the evaluation of functionality and morphology of NGT. Further investigation in the evaluation of post-surgery patients is necessary.

  7. MAGNETIC RESONANCE ELASTOGRAPHY: A REVIEW

    PubMed Central

    Mariappan, Yogesh K; Glaser, Kevin J; Ehman, Richard L

    2011-01-01

    Magnetic Resonance Elastography (MRE) is a rapidly developing technology for quantitatively assessing the mechanical properties of tissue. The technology can be considered to be an imaging-based counterpart to palpation, commonly used by physicians to diagnose and characterize diseases. The success of palpation as a diagnostic method is based on the fact that the mechanical properties of tissues are often dramatically affected by the presence of disease processes such as cancer, inflammation, and fibrosis. MRE obtains information about the stiffness of tissue by assessing the propagation of mechanical waves through the tissue with a special magnetic resonance imaging (MRI) technique. The technique essentially involves three steps: generating shear waves in the tissue,acquiring MR images depicting the propagation of the induced shear waves andprocessing the images of the shear waves to generate quantitative maps of tissue stiffness, called elastograms. MRE is already being used clinically for the assessment of patients with chronic liver diseases and is emerging as a safe, reliable and noninvasive alternative to liver biopsy for staging hepatic fibrosis. MRE is also being investigated for application to pathologies of other organs including the brain, breast, blood vessels, heart, kidneys, lungs and skeletal muscle. The purpose of this review article is to introduce this technology to clinical anatomists and to summarize some of the current clinical applications that are being pursued. PMID:20544947

  8. Advances in mechanical detection of magnetic resonance

    PubMed Central

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge. PMID:18266413

  9. Torque-mixing magnetic resonance spectroscopy.

    PubMed

    Losby, J E; Fani Sani, F; Grandmont, D T; Diao, Z; Belov, M; Burgess, J A J; Compton, S R; Hiebert, W K; Vick, D; Mohammad, K; Salimi, E; Bridges, G E; Thomson, D J; Freeman, M R

    2015-11-13

    A universal, torque-mixing method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by magnetic induction, the transverse component of a precessing dipole moment can be measured in sensitive broadband spectroscopy, here using a resonant mechanical torque sensor. Unlike induction, the torque amplitude allows equilibrium magnetic properties to be monitored simultaneously with the spin dynamics. Comprehensive electron spin resonance spectra of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature reveal assisted switching between magnetization states and mode-dependent spin resonance interactions with nanoscale surface imperfections. The rich detail allows analysis of even complex three-dimensional spin textures. The flexibility of microelectromechanical and optomechanical devices combined with broad generality and capabilities of torque-mixing magnetic resonance spectroscopy offers great opportunities for development of integrated devices.

  10. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  11. Magnetic Resonance Imaging of Electrolysis.

    PubMed Central

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-01-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942

  12. Microcoil nuclear magnetic resonance spectroscopy.

    PubMed

    Webb, A G

    2005-08-10

    In comparison with most analytical chemistry techniques, nuclear magnetic resonance has an intrinsically low sensitivity, and many potential applications are therefore precluded by the limited available quantity of certain types of sample. In recent years, there has been a trend, both commercial and academic, towards miniaturization of the receiver coil in order to increase the mass sensitivity of NMR measurements. These small coils have also proved very useful in coupling NMR detection with commonly used microseparation techniques. A further development enabled by small detectors is parallel data acquisition from many samples simultaneously, made possible by incorporating multiple receiver coils into a single NMR probehead. This review article summarizes recent developments and applications of "microcoil" NMR spectroscopy.

  13. Magnetic Resonance Elastography of Abdomen

    PubMed Central

    Venkatesh, Sudhakar K.; Ehman, Richard L.

    2015-01-01

    Many diseases cause substantial changes in the mechanical properties of tissue and this provides motivation for developing methods to non-invasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate non-invasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  14. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  15. Magnetic resonance imaging in medicine

    NASA Astrophysics Data System (ADS)

    Keevil, Stephen F.

    2001-11-01

    Over the past twenty years, magnetic resonance imaging (MRI) has become one of the most important imaging modalities available to clinical medicine. It offers great technical flexibility, and is free of the hazards associated with ionizing radiation. In addition to its role as a routine imaging technique with a growing range of clinical applications, the pace of development in MRI methodology remains high, and new ideas with significant potential emerge on a regular basis. MRI is a prime example of the spin-off benefits of basic science, and is an area of medicine in which physical science continues to play a major role, both in supporting clinical applications and in developing new techniques. This article presents a brief history of MRI and an overview of the underlying physics, followed by a short survey of current and emerging clinical applications.

  16. Magnetic Resonance Imaging of Electrolysis.

    NASA Astrophysics Data System (ADS)

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  17. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  18. Magnetic resonance imaging of radiation optic neuropathy

    SciTech Connect

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S. )

    1990-10-15

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence.

  19. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  20. Advances in breast imaging: magnetic resonance imaging.

    PubMed

    Bartella, Lia; Morris, Elizabeth A

    2006-01-01

    Magnetic resonance imaging (MRI) of the breast is rapidly becoming incorporated into clinical practice. Indications for breast MRI include staging of known breast cancer, monitoring response to chemotherapy, assessing recurrence, problem solving, and high-risk screening. Magnetic resonance spectroscopy is a promising technique that may decrease the number of benign biopsies generated by breast MRI in the clinical setting.

  1. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  2. Clinical applications of magnetic resonance angiography.

    PubMed

    Glazer, M; McCormack, J; Dross, P

    1992-08-01

    Recent technical advances in magnetic resonance imaging (MRI) now allow for the noninvasive study of blood flow in vessels, or magnetic resonance angiography (MRA). We describe several case reports involving the use of MRA and discuss its advantages in evaluating patients for carotid artery stenosis, intracerebral aneurysms, and arteriovenous malformations (AVMs).

  3. Magnetic resonance sees lesions of multiple sclerosis

    SciTech Connect

    Ziporyn, T.

    1985-02-15

    The value of nuclear magnetic resonance imaging in the diagnosis and quantitation of the progression of multiple sclerosis is discussed. Magnetic resonance imaging generates images that reflect differential density and velocity of hydrogen nuclei between cerebral gray and white matter, as well as between white matter and pathological lesions of the disease.

  4. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  5. Combined high‐resolution magnetic resonance imaging and histological examination to explore the role of ligaments and tendons in the phenotypic expression of early hand osteoarthritis

    PubMed Central

    Tan, A L; Toumi, H; Benjamin, M; Grainger, A J; Tanner, S F; Emery, P; McGonagle, D

    2006-01-01

    Background The pathogenesis of the early stages of hand osteoarthritis is poorly understood, but recent high‐resolution magnetic resonance imaging (hrMRI) studies suggest that the joint ligaments have a major role in the phenotypic expression of the disease. Objective To combine hrMRI and cadaveric histological studies to better understand the mechanisms of damage, and especially the role of joint ligaments and tendons in disease expression. Methods hrMRI was carried out in the distal interphalangeal (DIP) and proximal interphalangeal (PIP) joints in 20 patients with osteoarthritis,with a disease duration ⩽12 months. Histological sections of the DIP and PIP joints were obtained from three dissecting‐room specimens for comparative analysis. Results The collateral ligaments influenced the location of both hrMRI‐determined bone oedema and bone erosion in early osteoarthritis. These changes were best understood in relation to the enthesis organ concept, whereby the interaction between ligament fibrocartilages leads to bone disease. Normal ligaments were commonly associated with microdamage at insertions corresponding to ligament thickening noted in early osteoarthritis. The ligaments also influenced the location of node formation in early osteoarthritis. The DIP extensor tendon insertions were associated with the development of a neoarticular surface. Conclusions Small‐joint collateral ligaments and tendons have a central role in the early stages of hand osteoarthritis, and determine the early expression of both the soft tissue and bony changes in disease. PMID:16627540

  6. Magnetic resonance of the musculoskeletal system

    SciTech Connect

    Berquist, T.H.; Ehman, R.L.; Richardson, M.L.

    1986-01-01

    Magnetic Resonance of the Musculoskeletal System features coverage of the use of MRI in evaluation of specific diseases: bone and soft tissue tumors; infections; musculoskeletal trauma; spinal disorders; and miscellaneous conditions. The authors comparisons of MRI with computed tomography, ultrasound, isotopes, and other techniques will assist the physician in determining which clinical problems are best evaluated by MRI. Where MRI is the optimal technique, the text outlines the examination procedure, indicates which sequences provide the most information, and describes the pathologic findings that can be observed in MRI scans. An outstanding selection of more than 250 detail-revealing illustrations depicts representatives MRI findings.

  7. Magnetic resonance imaging of the nasopharynx

    SciTech Connect

    Dillon, W.P.; Mills, C.M.; Kjos, B.; DeGroot, J.; Brant-Zawadzki, M.

    1984-09-01

    Thirty subjects with normal nasopharyngeal anatomy and 12 patients with a variety of abnormalities were examined with computed tomography (CT) and magnetic resonance imaging (MR), using a prototype 0.35-T superconducting system. MR was superior to CT for display of both superficial and deep nasopharyngeal soft tissues in all 30 normal subjects and 10 of the 12 abnormal patients. MR was also superior to CT in distinguishing tumor from soft tissues and more sensitive to carotid sheath adenopathy. Bones, calcification, and subtle abnormalities at the base of the skull were shown better by CT. The specificity of MR and its ability to differentiate nodal metastases from reactive lymphadenopathy require further evaluation.

  8. Magnetic resonance imaging of the temporomandibular joint.

    PubMed

    Hayt, M W; Abrahams, J J; Blair, J

    2000-04-01

    The spectrum of disease that affects the temporomandibular joint (TMJ) can be varied. To differentiate among the diseases that cause pain and dysfunction, an intimate knowledge of the anatomy, physiology, and pathology of this region is necessary. Due to the joint's complex anatomy and relationship to the skin, it has been difficult to image in the past. Magnetic resonance imaging is ideally suited for visualizing TMJ because of its superb contrast resolution when imaging soft tissues. Magnetic resonance imaging allows simultaneous bilateral visualization of both joints. The ability to noninvasively resolve anatomic detail can be performed easily and quickly using magnetic resonance imaging. The development of magnetic resonance imaging has greatly aided the diagnosis of TMJ disorders. An understanding of TMJ anatomy and pathogenesis of TMJ pain is crucial for interpretation of magnetic resonance imaging and subsequent treatment.

  9. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  10. Free-breathing radial volumetric interpolated breath-hold examination vs breath-hold cartesian volumetric interpolated breath-hold examination magnetic resonance imaging of the liver at 1.5T

    PubMed Central

    Yedururi, Sireesha; Kang, HyunSeon C; Wei, Wei; Wagner-Bartak, Nicolaus A; Marcal, Leonardo P; Stafford, R Jason; Willis, Brandy J; Szklaruk, Janio

    2016-01-01

    AIM To compare breath-hold cartesian volumetric interpolated breath-hold examination (cVIBE) and free-breathing radial VIBE (rVIBE) and determine whether rVIBE could replace cVIBE in routine liver magnetic resonance imaging (MRI). METHODS In this prospective study, 15 consecutive patients scheduled for routine MRI of the abdomen underwent pre- and post-contrast breath-hold cVIBE imaging (19 s acquisition time) and free-breathing rVIBE imaging (111 s acquisition time) on a 1.5T Siemens scanner. Three radiologists with 2, 4, and 8 years post-fellowship experience in abdominal imaging evaluated all images. The radiologists were blinded to the sequence types, which were presented in a random order for each patient. For each sequence, the radiologists scored the cVIBE and rVIBE images for liver edge sharpness, hepatic vessel clarity, presence of artifacts, lesion conspicuity, fat saturation, and overall image quality using a five-point scale. RESULTS Compared to rVIBE, cVIBE yielded significantly (P < 0.001) higher scores for liver edge sharpness (mean score, 3.87 vs 3.37), hepatic-vessel clarity (3.71 vs 3.18), artifacts (3.74 vs 3.06), lesion conspicuity (3.81 vs 3.2), and overall image quality (3.91 vs 3.24). cVIBE and rVIBE did not significantly differ in quality of fat saturation (4.12 vs 4.03, P = 0.17). The inter-observer variability with respect to differences between rVIBE and cVIBE scores was close to zero compared to random error and inter-patient variation. Quality of rVIBE images was rated as acceptable for all parameters. CONCLUSION rVIBE cannot replace cVIBE in routine liver MRI. At 1.5T, free-breathing rVIBE yields acceptable, although slightly inferior image quality compared to breath-hold cVIBE. PMID:27551341

  11. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... If You Have Questions en español Resonancia magnética: columna lumbar What It Is Magnetic resonance imaging (MRI) ... MORE ON THIS TOPIC Magnetic Resonance Imaging (MRI): Cervical Spine Lumbar Puncture (Spinal Tap) Magnetic Resonance Imaging ( ...

  12. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  13. Magnetic resonance imaging in inflammatory rheumatoid diseases

    PubMed Central

    Mróz, Joanna; Ostrowska, Monika; Kwiatkowska, Brygida

    2016-01-01

    Magnetic resonance (MR) is used more and more frequently to diagnose changes in the musculoskeletal system in the course of rheumatic diseases, at their initial assessment, for treatment monitoring and for identification of complications. The article presents the history of magnetic resonance imaging, the basic principles underlying its operation as well as types of magnets, coils and MRI protocols used in the diagnostic process of rheumatic diseases. It enumerates advantages and disadvantages of individual MRI scanners. The principles of MRI coil operation are explained, and the sequences used for MR image analysis are described, particularly in terms of their application in rheumatology, including T1-, T2-, PD-weighted, STIR/TIRM and contrast-enhanced T1-weighted images. Furthermore, views on the need to use contrast agents to optimise diagnosis, particularly in synovitis-like changes, are presented. Finally, methods for the assessment of MR images are listed, including the semi-quantitative method by RAMRIS and quantitative dynamic examination. PMID:27826171

  14. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  15. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  16. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  17. Evaluation of Focal Liver Reaction after Proton Beam Therapy for Hepatocellular Carcinoma Examined Using Gd-EOB-DTPA Enhanced Hepatic Magnetic Resonance Imaging

    PubMed Central

    Yamamoto, Kazutaka; Maeda, Yoshikazu; Kawamura, Mariko; Shibata, Satoshi; Sato, Yoshitaka; Terashima, Kazuki; Shimizu, Yasuhiro; Tameshige, Yuji; Sasaki, Makoto; Asahi, Satoko; Kondou, Tamaki; Kobayashi, Satoshi; Matsui, Osamu; Gabata, Toshifumi

    2016-01-01

    Background Proton beam therapy (PBT) achieves good local control for hepatocellular carcinoma (HCC), and toxicity tends to be lower than for photon radiotherapy. Focal liver parenchymal damage in radiotherapy is described as the focal liver reaction (FLR); the threshold doses (TDs) for FLR in the background liver have been analyzed in stereotactic ablative body radiotherapy and brachytherapy. To develop a safer approach for PBT, both TD and liver volume changes are considered clinically important in predicting the extent of damage before treatment, and subsequently in reducing background liver damage. We investigated appearance time, TDs and volume changes regarding FLR after PBT for HCC. Material and Methods Patients who were treated using PBT and were followed up using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA MRI) after PBT were enrolled. Sixty-eight lesions in 58 patients were eligible for analysis. MRI was acquired at the end of treatment, and at 1, 2, 3 and 6 months after PBT. We defined the FLR as a clearly depicted hypointense area on the hepatobiliary phase of Gd-EOB-DTPA MRI, and we monitored TDs and volume changes in the FLR area and the residual liver outside of the FLR area. Results FLR was depicted in all lesions at 3 months after PBT. In FLR expressed as the 2-Gy equivalent dose (α/β = 3 Gy), TDs did not differ significantly (27.0±6.4 CGE [10 fractions [Fr] vs. 30.5±7.3 CGE [20 Fr]). There were also no correlations between the TDs and clinical factors, and no significant differences between Child-Pugh A and B scores. The volume of the FLR area decreased and the residual liver volume increased, particularly during the initial 3 months. Conclusion This study established the FLR dose for liver with HCC, which might be useful in the prediction of remnant liver volume for PBT. PMID:27907063

  18. Effects of oral D-tagatose, a stereoisomer of D-fructose, on liver metabolism in man as examined by 31P-magnetic resonance spectroscopy.

    PubMed

    Buemann, B; Gesmar, H; Astrup, A; Quistorff, B

    2000-10-01

    D-tagatose, which is a stereoisomer of D-fructose, is phosphorylated to D-tagatose-1-phosphate by fructokinase in the liver. Because of a slow degradation rate of D-tagatose-1-phosphate, this substance may accumulate, and ingested D-tagatose may therefore cause a longer lasting reduction in inorganic phosphate (Pi) and adenosine triphosphate (ATP) levels in the liver compared with D-fructose. Similar to what is seen in patients with hereditary fructose intolerance, this may increase purine nucleotide degradation and thereby increase uric acid production. The effect of 30 g D-tagatose or D-fructose administered orally on ketohexose-1-phosphates, ATP, and Pi levels in the liver was studied by 31P-magnetic resonance spectroscopy (PMRS) in 5 young male volunteers. Blood and urine were collected to detect a possible increased uric acid production. A peak at 5.2 ppm assigned as D-tagatose-1-phosphate equivalent to about 1 mmol/L was found in the spectrum within 30 minutes after D-tagatose was administered in all subjects. Concomitantly, ATP was reduced by about 12% (P < .05). Both effects had vanished after 150 minutes. Serum uric acid concentration was increased by 17% 50 minutes after D-tagatose (P < .05) and did not reach baseline level when the experiment was terminated 230 minutes after the load. Although renal fractional extraction of uric acid decreased by approximately 12%, this could not explain the acute hyperuricemic effect of D-tagatose. No changes in 31PMRS spectra or serum uric acid concentration were found after D-fructose. These results suggest that a moderate intake of D-tagatose may affect liver metabolism by phosphate trapping despite the fact that the sugar may only be incompletely absorbed in the gut.

  19. Examining a supramodal network for conflict processing: a systematic review and novel functional magnetic resonance imaging data for related visual and auditory stroop tasks.

    PubMed

    Roberts, Katherine L; Hall, Deborah A

    2008-06-01

    Cognitive control over conflicting information has been studied extensively using tasks such as the color-word Stroop, flanker, and spatial conflict task. Neuroimaging studies typically identify a fronto-parietal network engaged in conflict processing, but numerous additional regions are also reported. Ascribing putative functional roles to these regions is problematic because some may have less to do with conflict processing per se, but could be engaged in specific processes related to the chosen stimulus modality, stimulus feature, or type of conflict task. In addition, some studies contrast activation on incongruent and congruent trials, even though a neutral baseline is needed to separate the effect of inhibition from that of facilitation. In the first part of this article, we report a systematic review of 34 neuroimaging publications, which reveals that conflict-related activity is reliably reported in the anterior cingulate cortex and bilaterally in the lateral prefrontal cortex, the anterior insula, and the parietal lobe. In the second part, we further explore these candidate "conflict" regions through a novel functional magnetic resonance imaging experiment, in which the same group of subjects perform related visual and auditory Stroop tasks. By carefully controlling for the same task (Stroop), the same to-be-ignored stimulus dimension (word meaning), and by separating out inhibitory processes from those of facilitation, we attempt to minimize the potential differences between the two tasks. The results provide converging evidence that the regions identified by the systematic review are reliably engaged in conflict processing. Despite carefully matching the Stroop tasks, some regions of differential activity remained, particularly in the parietal cortex. We discuss some of the task-specific processes which might account for this finding.

  20. Nuclear magnetic resonance imaging of liver hemangiomas

    SciTech Connect

    Sigal, R.; Lanir, A.; Atlan, H.; Naschitz, J.E.; Simon, J.S.; Enat, R.; Front, D.; Israel, O.; Chisin, R.; Krausz, Y.

    1985-10-01

    Nine patients with cavernous hemangioma of the liver were examined by nuclear magnetic resonance imaging (MRI) with a 0.5 T superconductive magnet. Spin-echo technique was used with varying time to echo (TE) and repetition times (TR). Results were compared with /sup 99m/Tc red blood cell (RBC) scintigraphy, computed tomography (CT), echography, and arteriography. Four illustrated cases are reported. It was possible to establish a pattern for MRI characteristics of cavernous hemangiomas; rounded or smooth lobulated shape, marked increase in T1 and T2 values as compared with normal liver values. It is concluded that, although more experience is necessary to compare the specificity with that of ultrasound and CT, MRI proved to be very sensitive for the diagnosis of liver hemangioma, especially in the case of small ones which may be missed by /sup 99m/Tc-labeled RBC scintigraphy.

  1. Magnetic resonance elastometry using a single-sided permanent magnet

    NASA Astrophysics Data System (ADS)

    Tan, Carl S.; Marble, Andrew E.; Ono, Yuu

    2012-04-01

    In this paper, we describe a magnetic resonance method of measuring material elasticity using a single-sided magnet with a permanent static field gradient. This method encodes sample velocity in a reciprocal space using Hahn spin-echoes with variable timing. The experimental results show a strong correlation between magnetic resonance signal attenuation and elasticity when an oscillating force is applied on the sample. This relationship in turn provides us with information about the displacement velocity experienced by the sample, which is inversely proportional to Young's modulus. The proposed method shows promise in offering a portable and cost-effective magnetic resonance elastography system.

  2. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  3. Stepped impedance resonators for high-field magnetic resonance imaging.

    PubMed

    Akgun, Can E; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J Thomas

    2014-02-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high-field magnetic resonance imaging. In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections, referred to as stepped impedance resonators (SIRs), is investigated. Single-element simulation results in free space and in a phantom at 7 T (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 T in a phantom and human head illustrate the improvements in a transmit magnetic field, as well as RF efficiency (transmit magnetic field versus specific absorption rate) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements.

  4. Magnetic resonance image guided brachytherapy.

    PubMed

    Tanderup, Kari; Viswanathan, Akila N; Kirisits, Christian; Frank, Steven J

    2014-07-01

    The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education.

  5. Use of magnetic resonance urography.

    PubMed

    Klein, L T; Frager, D; Subramanium, A; Lowe, F C

    1998-10-01

    Magnetic resonance urography (MRU) is a new technique that uses heavily weighted T2 coronal images with fat suppression pulse. Urine appears white on MRU, resembling an intravenous urogram (IVU). Contrast agents are not necessary. This study describes the use of MRU in the diagnosis and treatment of patients with hematuria. One hundred six patients with microscopic or gross hematuria and 6 normal volunteers underwent MRU between 1992 and 1995. A modified, heavily weighted T2 technique with intravenous administration of furosemide and ureteral compression was used. Thirty-two patients had other imaging techniques as well for comparison. MRU provided high-resolution images in almost all cases; 73 (69%) had a normal MRU. Significant findings in the 33 patients with abnormalities included renal cysts in 17 (51%), renal cell carcinoma in 6 (18%), transitional cell carcinoma in 5 (15%), ureteropelvic junction obstruction in 3 (9%), and stones causing obstruction in 6 (18%). Five patients with renal failure also had good visualization of the entire urinary tract. MRU was comparable to other imaging modalities except in identifying nonobstructing calculi. MRU provides an alternative to conventional imaging of the urinary tract, especially in those patients who have contraindications to ionizing radiation and contrast agents. Improvements in resolution, technique, and cost have to be addressed before it can be used regularly in urologic practice.

  6. [Presurgical functional magnetic resonance imaging].

    PubMed

    Stippich, C

    2010-02-01

    Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI.

  7. [Comprehensive magnetic resonance imaging for breast cancer].

    PubMed

    Meladze, N V; Ternovoĭ, S K; Sharia, M A; Solopova, A E

    2013-01-01

    To enhance the efficiency of diagnosis of breast tumors by comprehensive magnetic resonance imaging (MRI) involving dynamic contrast-enhanced magnetic resonance mammography (MRM) and magnetic resonance spectroscopy (MRS). Eighty-seven women aged 32 to 75 years with breast neoplasms were examined. MRM was performed on a Philips Achieva 3.0T TX scanner. The MRI protocol consisted of axial fat-suppressed T1- and T2-weighted spin-echo images and 8 postcontrast dynamic series. Changes in contrast-enhanced MRI of breast cancer (BC) were estimated by constructing the signal intensity-time curves. MRS was carried out using a PRESS sequence. Dynamic MRM determined type III signal intensity-time curve in 83.9% of the patients with BC and type II curve in 16.1% of those with breast malignancies and in 33.3% of those with breast fibroadenomas. Type I signal intensity-time curve was identified in 66.7% of the cases of fibroadenomas. Elevated choline concentrations in the malignancies were detected in 17.7% of cases. Their tumors were larger than 2 cm. The choline peak in the malignancies could not be revealed in the other cases, which was associated to the large voxel size exceeding the mass size. There was a drastic fall in the signal-to-noise ratio with smaller voxel sizes. Furthermore, higher choline levels were determined in 9.5% of the fibroadenoma cases. Comparison of MRS findings before and after contrast injection revealed the advantage of the latter, which is primarily attributed to the more accurate voxel position on the tumor than that during non-contrast-enhanced MRS. Dynamic intravenous contrast-enhanced MRM is an effective method for the differential diagnosis of breast masses. MRS cannot be included in the standard study protocol for women with breast masses for the present.

  8. Effects of magnetic resonance imaging on implantable permanent magnets.

    PubMed

    Schneider, M L; Walker, G B; Dormer, K J

    1995-09-01

    Implantable permanent magnets are increasingly used in devices for otolaryngologic applications. It is likely that at least some of the patients with implanted magnets will be in need of magnetic resonance imaging (MRI). The effect of an MRI scan on the magnetic properties of implanted permanent magnets has not been previously demonstrated. Some of the basic concepts and descriptive terminology used in industry regarding permanent magnets are reviewed. Experiments presented show that the MRI scan is capable of demagnetizing permanent magnets. A case history is also presented that demonstrates demagnetizing of an implanted Audiant magnet by an MRI scan.

  9. Nuclear magnetic resonance imaging of the spine

    SciTech Connect

    Modic, M.T.; Weinstein, M.A.; Pavlicek, W.; Starnes, D.L.; Duchesneau, P.M.; Boumphrey, F.; Hardy, R.J. Jr.

    1984-01-01

    Forty subjects were examined to determine the accuracy and clinical usefulness of nuclear magnetic resonance (NMR) examination of the spine. The NMR images were compared with plain radiographs, high-resolution computed tomograms, and myelograms. The study included 15 patients with normal spinal cord anatomy and 25 patients whose pathological conditions included canal stenosis, herniated discs, metastatic tumors, primary cord tumor, trauma, Chiari malformations, syringomyelia, and developmental disorders. Saturation recovery images were best in differentiating between soft tissue and cerebrospinal fluid. NMR was excellent for the evaluation of the foramen magnum region and is presently the modality of choice for the diagnosis of syringomyelia and Chiari malformation. NMR was accurate in diagnosing spinal cord trauma and spinal canal block.

  10. Cardiovascular magnetic resonance: deeper insights through bioengineering.

    PubMed

    Young, A A; Prince, J L

    2013-01-01

    Heart disease is the main cause of morbidity and mortality worldwide, with coronary artery disease, diabetes, and obesity being major contributing factors. Cardiovascular magnetic resonance (CMR) can provide a wealth of quantitative information on the performance of the heart, without risk to the patient. Quantitative analyses of these data can substantially augment the diagnostic quality of CMR examinations and can lead to more effective characterization of disease and quantification of treatment benefit. This review provides an overview of the current state of the art in CMR with particular regard to the quantification of motion, both microscopic and macroscopic, and the application of bioengineering analysis for the evaluation of cardiac mechanics. We discuss the current clinical practice and the likely advances in the next 5-10 years, as well as the ways in which clinical examinations can be augmented by bioengineering analysis of strain, compliance, and stress.

  11. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  12. Chronic liver disease: evaluation by magnetic resonance

    SciTech Connect

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR.

  13. Polywater: proton nuclear magnetic resonance spectrum.

    PubMed

    Page, T F; Jakobsen, R J; Lippincott, E R

    1970-01-02

    In the presence of water, the resonance of the strongly hydrogenbonded protons characteristic of polywater appears at 5 parts per million lower applied magnetic field than water. Polywater made by a new method confirms the infrared spectrum reported originally.

  14. Pocket atlas of cranial magnetic resonance imaging

    SciTech Connect

    Haughton, V.M.; Daniels, D.L.

    1986-01-01

    This atlas illustrates normal cerebral anatomy in magnetic resonance images. From their studies in cerebral anatomy utilizing cryomicrotome and other techniques, the authors selected more than 100 high-resolution images that represent the most clinically useful scans.

  15. Coronary computed tomography and magnetic resonance imaging.

    PubMed

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C

    2009-04-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use.

  16. International Society for Magnetic Resonance in Medicine

    MedlinePlus

    ... Join the ISMRM Journals History & Mission Central Office Society Award Winners Strategic Plan Policies Corporate Members Contact ... E-Library Virtual Meetings Connect With Us International Society for Magnetic Resonance in Medicine 2300 Clayton Road, ...

  17. Magnetic resonance imaging of the cryptorchid testis.

    PubMed

    Landa, H M; Gylys-Morin, V; Mattrey, R F; Krous, H F; Kaplan, G W; Packer, M G

    1987-01-01

    Magnetic resonance imaging was used to evaluate seven patients with undescended testes. In six patients the presence or absence of testicular tissue was predicted correctly prior to surgery. Spermatic cord structures, if present, were accurately visualized in all patients.

  18. Coronary Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C.

    2009-01-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use. PMID:19269527

  19. Miniature Magnet for Electron Spin Resonance Experiments

    ERIC Educational Resources Information Center

    Rupp, L. W.; And Others

    1976-01-01

    Describes commercially available permanent magnets that have been incorporated in a compact and inexpensive structure providing both field sweep and modulation suitable for electron spin resonance at microwave frequencies. (MLH)

  20. General review of magnetic resonance elastography

    PubMed Central

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-01

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  1. General review of magnetic resonance elastography.

    PubMed

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-28

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing "virtual palpation", MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration.

  2. Magnetic resonance force microscopy using ferromagnetic resonance of a magnetic tip excited by microwave transmission via a coaxial resonator.

    PubMed

    Kinoshita, Yukinori; Li, Yanjun; Yoshimura, Satoru; Saito, Hitoshi; Sugawara, Yasuhiro

    2017-10-04

    The present work proposes magnetic resonance force microscopy (MRFM) based on ferromagnetic resonance (FMR) modulation of a magnetic tip using microwave transmission via a coaxial resonator instead of using conventional microwave irradiation by an external antenna. In this MRFM, the coaxial resonator is electrically connected to the magnetic cantilever tip, which enables simple implementation of FMR excitation of a magnetic tip in conventional magnetic force microscopy. The FMR frequency of the tip can be easily extracted from the reflection spectrum of a transmission line connected to the magnetic tip. The excitation of tip FMR is confirmed from the microwave frequency dependence of the mechanical response of the tip oscillation. This MRFM is effective for extracting the magnetic interaction force near a sample surface without perturbation of its sample magnetic state. Nanometer-scale imaging of magnetic domain structures on a demagnetized thin-film permanent magnet is successfully demonstrated. © 2017 IOP Publishing Ltd.

  3. Detection of atherosclerosis via magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew L.; Pytlewski, Victor T.; Brown, Michael F.; Gmitro, Arthur F.

    1992-08-01

    Magnetic resonance imaging (MRI) of atherosclerotic lipids using a stimulated-echo diffusion- weighted (STED) sequence is demonstrated. The STED sequence exploits the large difference in diffusion between lipid (primarily cholesteryl ester) and water. The optimization of the STED sequence is discussed. The results of lipid imaging are corroborated with nuclear magnetic resonance (NMR) spectroscopy. This technique is non-invasive, and therefore, it is potentially useful in following the progression of the disease in animal models and in humans.

  4. Single Nuclear Spin Magnetic Resonance Force Microscopy

    DTIC Science & Technology

    2010-05-02

    Lab. In work not directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of...directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of submicron magnetic structures...our earlier NMR detection of 19F spins in CaF2 we have conducted 65Cu, 63Cu NMR stud- ies for studies of interface phenomena in multilayered magnetic

  5. [Nuclear magnetic resonance in psychiatry].

    PubMed

    Hamad, H

    1993-01-01

    Magnetic Resonance Imaging (MRI) is a more recent technique than computerized tomography (CT), with which morphological, high quality, three-dimensional images can be obtained, it is capable of differentiating gray/white matter without patients' exposure to radiation. Clinical investigation studies demonstrate the following findings: In Schizophrenics: Enlargement of lateral ventricles volume in 67-73%, in naive patients 21-33%. The increase of the third ventricle varies from 19 to 73%, whose patients have significant flat affect. The temporal lobe gray matter is reduced, including amygdala-hippocampal complex, and parahippocampal gyrus. No specific corpus callosum results are concluded. There is cortical atrophy, specially of bilateral prefrontal regions. Basal ganglia (lenticular and caudate nuclei) are increased. The prefrontal, temporal and limbic dysfunction supports the abnormal connection hypothesis in schizophrenics. Basal ganglia also are involved in the pathogenesis of the disease. Clinical cortical atrophy symptoms are demonstrated by neuropsychological tests, although some cognitive deficits are remediable. Perinatal complications are more frequent, in children who will be schizophrenics, than their siblings (23.6% vs 12.8%); those of special interest are: toxemia, prematurity, long labor, jaundice and bleeding during pregnancy. In affective Bipolar Disorders: There is increase (19-50%) in the number of focal signal hyperintensities at the lateral limits of ventricles and in both hemispheres, and a trend towards larger ventricular size. The temporal lobe is smaller bilaterally, but the right side is 15% larger; its volume correlates negatively with long-term illness in males. In Unipolar Disorder an increase of frontal white matter T1 values is registered.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Development and validation of a questionnaire evaluating patient anxiety during Magnetic Resonance Imaging: the Magnetic Resonance Imaging-Anxiety Questionnaire (MRI-AQ).

    PubMed

    Ahlander, Britt-Marie; Årestedt, Kristofer; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2016-06-01

    To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging- Anxiety Questionnaire. Questionnaires measuring patients' anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients' experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Psychometric cross-sectional study with test-retest design. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbach's alpha. Criterion-related validity, known-group validity and test-retest was calculated. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbach's alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  7. Torque-mixing Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  8. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... radiation. Instead, MRI uses a powerful magnetic field, radio waves, rapidly changing magnetic fields, and a computer to ... in most of the body's tissues. The applied radio waves then cause these protons to produce signals that ...

  9. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, N.; Ruchotzke, W.; Belding, A.; Cardellino, J.; Blomberg, E. C.; McCullian, B. A.; Bhallamudi, V. P.; Pelekhov, D. V.; Hammel, P. C.

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q ∼106 [1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300 K is 4 fN/√{Hz } , indicating a potential low temperature (4 K) sensitivity of 25 aN/√{Hz } . Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches.

  10. Acoustic noise during functional magnetic resonance imaging.

    PubMed

    Ravicz, M E; Melcher, J R; Kiang, N Y

    2000-10-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions.

  11. Magnetic resonance imaging of pancreatitis: An update

    PubMed Central

    Manikkavasakar, Sriluxayini; AlObaidy, Mamdoh; Busireddy, Kiran K; Ramalho, Miguel; Nilmini, Viragi; Alagiyawanna, Madhavi; Semelka, Richard C

    2014-01-01

    Magnetic resonance (MR) imaging plays an important role in the diagnosis and staging of acute and chronic pancreatitis and may represent the best imaging technique in the setting of pancreatitis due to its unmatched soft tissue contrast resolution as well as non-ionizing nature and higher safety profile of intravascular contrast media, making it particularly valuable in radiosensitive populations such as pregnant patients, and patients with recurrent pancreatitis requiring multiple follow-up examinations. Additional advantages include the ability to detect early forms of chronic pancreatitis and to better differentiate adenocarcinoma from focal chronic pancreatitis. This review addresses new trends in clinical pancreatic MR imaging emphasizing its role in imaging all types of acute and chronic pancreatitis, pancreatitis complications and other important differential diagnoses that mimic pancreatitis. PMID:25356038

  12. Magnetic Resonance Imaging of the Knee

    PubMed Central

    Hash, Thomas W.

    2013-01-01

    Context: Magnetic resonance imaging (MRI) affords high-resolution visualization of the soft tissue structures (menisci, ligaments, cartilage, etc) and bone marrow of the knee. Evidence Acquisition: Pertinent clinical and research articles in the orthopaedic and radiology literature over the past 30 years using PubMed. Results: Ligament tears can be accurately assessed with MRI, but distinguishing partial tears from ruptures of the anterior cruciate ligament (ACL) can be challenging. Determining the extent of a partial tear is often extremely difficult to accurately assess. The status of the posterolateral corner structures, menisci, and cartilage can be accurately evaluated, although limitations in the evaluation of certain structures exist. Patellofemoral joint, marrow, tibiofibular joint, and synovial pathology can supplement physical examination findings and provide definitive diagnosis. Conclusions: MRI provides an accurate noninvasive assessment of knee pathology. PMID:24381701

  13. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  14. Infected aortoiliofemoral grafts: magnetic resonance imaging.

    PubMed

    Justich, E; Amparo, E G; Hricak, H; Higgins, C B

    1985-01-01

    Three patients with proved infected aortoiliofemoral grafts were examined by magnetic resonance (MR) imaging using a spin echo technique. MR clearly identified the perigraft abscess, the involvement of adjacent structures, and the longitudinal extent of the process in all patients. The MR findings were: Abscesses create a high signal intensity, somewhat less than fat. The perigraft abscess has a great contrast with the signal void of flowing blood in the graft. Inflammatory changes cause an inhomogeneous intermediate signal, slightly more intense than muscle. Both abscesses and edematous areas increase their signal intensity with long repetition rates and long echo delays. Areas of gas appear black. They cannot be distinguished from calcified plaques. Additional information is gained about the graft patency. Although the specificity has to be proved, MR imaging is sensitive in the detection of infected grafts and for defining the longitudinal extent of the perigraft abscess.

  15. Magnetic resonance imaging after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Leblanc, Adrian

    1993-01-01

    A number of physiological changes were demonstrated in bone, muscle, and blood from exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long-duration space missions is an important NASA goal. Historically, NASA has had to rely on tape measures, x-ray, and metabolic balance studies with collection of excreta and blood specimens to obtain this information. The development of magnetic resonance imaging (MRI) offers the possibility of greatly extending these early studies in ways not previously possible; MRI is also non-invasive and safe; i.e., no radiation exposure. MRI provides both superb anatomical images for volume measurements of individual structures and quantification of chemical/physical changes induced in the examined tissues. This investigation will apply MRI technology to measure muscle, intervertebral disc, and bone marrow changes resulting from exposure to microgravity.

  16. Cardiac magnetic resonance imaging: patient safety considerations.

    PubMed

    Giroletti, Elio; Corbucci, Giorgio

    Magnetic Resonance Imaging (MRI) is widely used in medicine. In cardiology, it is used to assess congenital or acquired diseases of the heat: and large vessels. Unless proper precautions are taken, it is generally advisable to avoid using this technique in patients with implanted electronic stimulators, such as pacemakers and defibrillators, on account of the potential risk of inducing electrical currents on the endocardial catheters, since these currents might stimulate the heart at a high frequency, thereby triggering dangerous arrhythmias. In addition to providing some basic information on pacemakers, defibrillators and MRI, and on the possible physical phenomena that may produce harmful effects, the present review examines the indications given in the literature, with particular reference to coronary stents, artificial heart valves and implantable cardiac stimulators.

  17. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  18. Coherence of magnetic resonators in a metamaterial

    SciTech Connect

    Hou, Yumin

    2013-12-15

    The coherence of periodic magnetic resonators (MRs) under oblique incidence is studied using simulations. The correlated phase of interaction including both the retardation effect and relative phase difference between two MRs is defined, and it plays a key role in the MR interaction. The correlated phase is anisotropic, as is the coherence condition. The coherence condition is the same as the Wood's anomaly and verified by the Fano resonance. This study shows that the applications of the Fano resonance of periodic MRs will become widespread owing to achieving the Fano resonance simply by tuning the incident angle.

  19. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  20. Magnetic resonance imaging of the fetal brain.

    PubMed

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  1. Burn injury by nuclear magnetic resonance imaging.

    PubMed

    Eising, Ernst G; Hughes, Justin; Nolte, Frank; Jentzen, Walter; Bockisch, Andreas

    2010-01-01

    Nuclear magnetic resonance imaging has become a standard diagnostic procedure in clinical medicine and is well known to have hazards for patients with pacemaker or metallic foreign bodies. Compared to CT, the frequency of MRI examinations is increasing due to the missing exposure of the patients by X-rays. Furthermore, high-field magnetic resonance tomograph (MRT) with 3 T has entered clinical practice, and 7-T systems are installed in multiple scientific institutions. On the other hand, the possibility of burn injuries has been reported only in very few cases. Based on a clinical finding of a burn injury in a 31-year-old male patient during a routine MRI of the lumbar spine with standard protocol, the MR scanner was checked and the examination was simulated in an animal model. The patient received a third-degree burn injury of the skin of the right hand and pelvis in a small region of skin contact. The subsequent control of the MRI scanner indicated no abnormal values for radiofrequency (RF) and power. In the subsequent animal experiment, comparable injuries could only be obtained by high RF power in a microwave stove. It is concluded that 'tissue loops' resulting from a contact between hand and pelvis must be avoided. With regard to forensic aspects, the need to inform patients of such a minimal risk can be avoided if the patients are adequately positioned using an isolating material between the hands and pelvis. These facts must be emphasized more in the future, if high-field MRI with stronger RF gradients is available in routine imaging. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-07-01

    Several demonstrations of resonance phenomena associated with nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are described. The demonstrations comprise common orienteering compasses, whose needles represent magnetic dipoles, along with three collinear permanent magnets and a magnetic stir plate or pulseable electromagnets. The trio of permanent magnets provides a laterally uniform magnetic field, whose strength decreases with distance from the magnets. Resonance can be observed by adjusting the frequency of the magnetic stirrer to match the resonant frequency of the compass needle, which is shown to depend on magnetic field strength, that is, the needle's position relative to the permanent magnets. Another demonstration involves pulsing electromagnets that apply a perpendicular magnetic field that causes the compass needles to oscillate. The effects of shielding, spin-spin coupling, magnetogyric ratio, and free induction decay can also be demonstrated. By moving the trio of permanent magnets relative to the compasses, the MRI experiment can be mimicked. Complete instructions for the construction of the demonstrations, which can be used on an overhead projector, are included.

  3. Magnetic resonance imaging findings in acute canine distemper virus infection.

    PubMed

    Bathen-Noethen, A; Stein, V M; Puff, C; Baumgaertner, W; Tipold, A

    2008-09-01

    Demyelination is the prominent histopathological hallmark in the acute stage of canine distemper virus infection. Magnetic resonance imaging is an important diagnostic tool in human beings to determine demyelination in the brain, for example in multiple sclerosis. Five young dogs with clinically suspected canine distemper virus infection were subjected to magnetic resonance imaging of the brain and histopathological and immunohistochemical examinations. Hyperintense lesions and loss of contrast between grey and white matter were detected in T2-weighted images in the cerebellum and/or in the brainstem of three dogs, which correlated with demyelination demonstrated in histopathological examination. Furthermore, increased signal intensities in T2-weighted images were seen in the temporal lobe of four dogs with no evidence of demyelination. Magnetic resonance imaging seems to be a sensitive tool for the visualisation of in vivo myelination defects in dogs with acute canine distemper virus infection. Postictal oedema and accumulation of antigen positive cells have to be considered an important differential diagnosis.

  4. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    PubMed

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  5. Detection and estimation of magnetization induced resonances in unilateral nuclear magnetic resonance (NMR) sensors

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, N.; Bulu, I.; Song, Y. Q.; Mina, M.; Jiles, D. C.

    2017-05-01

    In this work a systematic identification of factors contributing to signal ringing in unilateral nuclear magnetic resonance (NMR) sensors is conducted. Resonant peaks that originate due to multiple factors such as NMR, electrical, magneto-acoustic, core material response, eddy currents and other factors were observed. The peaks caused by the measurement system or electrical resonances and induced magnet vibrations are further analyzed. They appear in every measurement and are considered as interference to signals received from the magnetic core. Forming a distinction between different peaks is essential in identifying the primary contribution to the captured resonant signal. The measurements for the magnetic core indicate that the magnetization induced resonant peaks of the core have relatively higher amplitudes and shorter decay times at low frequencies.

  6. Pediatric obesity phenotyping by magnetic resonance methods

    PubMed Central

    Shen, Wei; Liu, Haiying; Punyanitya, Mark; Chen, Jun; Heymsfield, Steven B.

    2007-01-01

    Purpose of review Accurate measurement of adiposity in obese children is required for characterizing the condition’s phenotype, severity, and treatment effects in vivo. Non-invasive and safe, magnetic resonance imaging and spectroscopy provide an important new approach for characterizing key aspects of pediatric obesity. This review focuses on recent advances in non-invasive magnetic resonance imaging and spectroscopy for quantifying total body and regional adiposity, mapping adipose tissue distribution, and evaluating selected metabolic disturbances in children. The aim is to provide an investigator-focused overview of magnetic resonance methods for use in the study of pediatric body composition and metabolism. Recent findings Whole body axial images can be rapidly acquired on most clinical magnetic resonance imaging scanners. The images can then be semi-automatically segmented into subcutaneous, visceral, and intramuscular adipose tissue. Specific pediatric studies of errors related to slice gap and number are available. The acquisition of scans in healthy and premature infants is now feasible with recent technological advances. Spectroscopic, Dixon, and other approaches can be used to quantify the lipid content of liver, skeletal muscle, and other organs. Protocol selection is based on factors such as subject age and cost. Particular attention should be directed towards identification of landmarks in growth studies. Recent advances promise to reduce the requirement of subjects to remain motionless for relatively long periods. Summary Magnetic resonance imaging and spectroscopy are safe, practical, and widely available methods for phenotyping adiposity in children that open new opportunities for metabolism and nutritional research. PMID:16205458

  7. Magnetic resonance imaging measurement of iron overload

    PubMed Central

    Wood, John C.

    2010-01-01

    Purpose of review To highlight recent advances in magnetic resonance imaging estimation of somatic iron overload. This review will discuss the need and principles of magnetic resonance imaging-based iron measurements, the validation of liver and cardiac iron measurements, and the key institutional requirements for implementation. Recent findings Magnetic resonance imaging assessment of liver and cardiac iron has achieved critical levels of availability, utility, and validity to serve as the primary endpoint of clinical trials. Calibration curves for the magnetic resonance imaging parameters R2 and R2* (or their reciprocals, T2 and T2*) have been developed for the liver and the heart. Interscanner variability for these techniques has proven to be on the order of 5–7%. Summary Magnetic resonance imaging assessment of tissue iron is becoming increasingly important in the management of transfusional iron load because it is noninvasive, relatively widely available and offers a window into presymptomatic organ dysfunction. The techniques are highly reproducible within and across machines and have been chemically validated in the liver and the heart. These techniques will become the standard of care as industry begins to support the acquisition and postprocessing software. PMID:17414205

  8. Magnetic resonance imaging of skeletal muscle.

    PubMed

    Koltzenburg, Martin; Yousry, Tarek

    2007-10-01

    Clinical investigations of neuromuscular diseases routinely involve genetic, neurophysiological, biochemical and histopathological methods. More recently, various magnetic resonance imaging techniques have become available and extended the differential diagnostic possibilities. Using magnetic resonance imaging it is now possible to quantify muscle volume in selected body regions and measure wasting and exercise-induced muscle hypertrophy. Evidence is forthcoming that many hereditary myopathies are characterized by distinct patterns of muscle degeneration and this helps in selecting other relevant genetic and biochemical investigations. With diffusion-weighted tensor imaging it is possible to identify the microstructure of normal and diseased muscles. Arterial spin labelling is an emerging non-invasive tool to assess blood-flow changes in individual muscles. Magnetic resonance spectroscopy now provides an exciting opportunity to visualize metabolic changes and the pathophysiologically relevant cellular perturbations in muscle channelopathies affecting the muscle-specific sodium-channel isoform Na(v)1.4. Magnetic resonance imaging supplements investigations for the differential diagnosis of neuromuscular diseases. An advantage over routine neurophysiological or histopathological methods is that they are operator-independent, non-invasive and painless. Magnetic resonance imaging also has the advantage of providing a lasting detailed topographical picture of regional variations and allows robust measurements of muscle volume and various functional parameters.

  9. Magnetic Resonance Imaging (MRI) (For Parents)

    MedlinePlus

    ... painless test that uses a magnetic field and radio waves to produce detailed pictures of the body's ... in hospitals and radiology centers. During the examination, radio waves manipulate the magnetic position of the atoms ...

  10. Noninvasive imaging and spectroscopy--broad applications of magnetic resonance.

    PubMed

    Hornung, P A; Schuff, N

    1992-09-01

    The present utility of nuclear magnetic resonance (NMR) spectroscopy in chemical analysis and magnetic resonance imaging (MRI) in the clinical environment has made this technology commonplace in the chemical industry, clinical medicine, and academic research. The attributes of nuclear magnetism that make the technique especially powerful in biology are discussed. This paper reviews the uses of NMR and MRI, with an emphasis on spatially resolved applications. These applications include imaging, localized spectroscopy, flow sensing, and diffusion mapping from using magnetic-field gradients. The limits of spatially resolved NMR and imaging will be examined in terms of both scientific principles and engineering practice. Block diagrams of both imaging and spectroscopy apparatus are presented and technical requirements of the critical components are discussed. Developing trends in sensing probes, magnets, and applications are highlighted.

  11. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  12. Use of magnetic resonance imaging for detecting clinically and mammographically occult ductal carcinoma in situ.

    PubMed

    Lo, G; Cheung, Polly S Y

    2008-06-01

    We report on two cases where breast magnetic resonance imaging examination changed clinical management. Breast magnetic resonance imaging is now recognised as an indispensable adjunctive examination to mammography and ultrasound. In each of the two cases described, breast magnetic resonance imaging revealed unsuspected, extensive, and mammographically and ultrasonologically occult, ductal carcinoma in situ. In each of these cases, planned breast conserving surgery was changed to mastectomy. The success of breast conservation treatment depends on removal of all tumour with clear margins at the time of surgery. Magnetic resonance imaging is now considered the most sensitive method for evaluating the extent of breast cancer. Breast magnetic resonance imaging has a very high sensitivity for invasive carcinoma (near 100%), and recent studies show its specificity in high-risk patients is between 93 and 99%. Magnetic resonance imaging may well be proven an important adjunctive examination in patients who have dense breasts or extensive fibrocystic change.

  13. Magnetic resonance imaging by using nano-magnetic particles

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.; Khorramdin, A.; Isapour, Gh.

    2014-11-01

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants.

  14. Off-resonance frequency filtered magnetic resonance imaging.

    PubMed

    Medic, Jure; Tomazic, Saso

    2010-05-01

    One of the main problems with rapid magnetic resonance imaging (MRI) techniques is the artifacts that result from off-resonance effects. The proposed off-resonance frequency filtered MRI (OFF-MRI) method focuses on the elimination of off-resonance components from the image of the observed object. To maintain imaging speed and simultaneously achieve good frequency selectivity, MRI is divided into two steps: signal acquisition and post-processing. After the preliminary phase in which we determine imaging parameters, MRI takes place; the signal from the same object is successively acquired M times. As a result, we obtain M partial signals in k-space, from which we form the image of the observed object in the post-processing phase, after signal acquisition has been completed. This paper demonstrates that with proper selection of acquisition parameters and weighting coefficients in the post-processing phase, OFF-MRI is equivalent to filtering the signal by finite impulse response filter of length M. It is shown that with M successive acquisitions M-1 off-resonance components can be eliminated (filtered-out) from images, and therefore, only two acquisitions are needed to eliminate one off-resonance components. On the other hand, with OFF-MRI, it is also possible to form the image of an arbitrary off-resonance component by eliminating all other off-resonance components, including the on-resonance component. The proposed OFF-MRI method is suitable for MRI where rapid acquisition is required and elimination of off-resonance components can improve reliability of measurements. 2010 Elsevier Inc. All rights reserved.

  15. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  16. Euclidean resonance in a magnetic field

    SciTech Connect

    Ivlev, B.

    2007-08-15

    An analogy is found between Wigner resonant tunneling and tunneling across a static potential barrier in a static magnetic field. Whereas in the process of Wigner tunneling an electron encounters a classically allowed region where a discrete energy level coincides with its energy, in the magnetic field the potential barrier is constant in the direction of tunneling. Along the tunneling path, certain regions are formed where, in the classical language, the kinetic energy of the motion perpendicular to tunneling is negative. These regions play the role of potential wells, where a discrete energy level can coincide with the electron energy. This phenomenon, which occurs at a certain magnetic field, is called Euclidean resonance and substantially depends on the shape of the potential forces in the direction perpendicular to tunneling. Under conditions of Euclidean resonance, a long-distance underbarrier motion is possible, which can be observed in experiments.

  17. Magnetic resonance imaging of the body

    SciTech Connect

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  18. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  19. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures

    ERIC Educational Resources Information Center

    Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.

    2011-01-01

    Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian…

  1. Subtle cord magnetic resonance changes in cervical myelomalacia.

    PubMed

    Heinz, R; Woodruff, W W; Drayer, B P; Djang, W T; Friedman, A H

    1986-01-01

    After spinal cord injury cystic lesions of different types are known to develop. However, in a large group of patients radiologic examinations have not revealed abnormalities in spite of neurologic deficit symptoms. Magnetic resonance imaging in 6 such patients demonstrated subtle changes in the cervical spinal cord, confirming the diagnosis of myelomalacia.

  2. Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures

    ERIC Educational Resources Information Center

    Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.

    2011-01-01

    Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian…

  3. Magnetic resonance imaging as a tool for extravehicular activity analysis

    NASA Technical Reports Server (NTRS)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  4. Magnetic resonance imaging as a tool for extravehicular activity analysis

    NASA Technical Reports Server (NTRS)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  5. Magnetic Microparticle Aggregation For Viscosity Determination By Magnetic Resonance

    PubMed Central

    Hong, Rui; Cima, Michael J.; Weissleder, Ralph; Josephson, Lee

    2009-01-01

    Micron-sized magnetic particles were induced to aggregate when placed in homogeneous magnetic fields, like those of magnetic resonance (MR) imagers and relaxometers, and then spontaneously returned to their dispersed state when removed from the field. Associated with the aggregation and dispersion of the magnetic particles were time dependent increases and decreases in the spin-spin relaxation time (T2) of the water. Magnetic nanoparticles, with far smaller magnetic moments per particle, did not undergo magnetically induced aggregation, and exhibited time independent values of T2. The rate of T2 change associated with magnetic micro-particle aggregation was used to determine the viscosity of liquid samples, providing a method that can be of particular advantage for determining the viscosity of small volumes of potentially biohazardous samples of blood or blood plasma. PMID:18306403

  6. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance.

    PubMed

    Arima, Eiji; Naitoh, Yoshitaka; Li, Yan Jun; Yoshimura, Satoru; Saito, Hitoshi; Nomura, Hikaru; Nakatani, Ryoichi; Sugawara, Yasuhiro

    2015-03-27

    In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium.

  7. Cardiovascular magnetic resonance of anomalous coronary arteries.

    PubMed

    Varghese, Anitha; Keegan, Jennifer; Pennell, Dudley J

    2005-09-01

    Cardiovascular magnetic resonance of anomalous coronary arteries is a class I indication. The term anomalous coronary artery encompasses those with an abnormal origin (from the incorrect sinus, too-high or too-low from the correct sinus, or from the pulmonary artery) and/or number of ostia. Their clinical significance results from the increased risk of myocardial infarction and sudden cardiac death associated with those traversing an interarterial course between the aorta and main pulmonary artery/right ventricular outflow tract. In this article, we review the role and practice of cardiovascular magnetic resonance in this field.

  8. Magnetic resonance neurography of the brachial plexus

    PubMed Central

    Upadhyaya, Vaishali; Upadhyaya, Divya Narain; Kumar, Adarsh; Pandey, Ashok Kumar; Gujral, Ratni; Singh, Arun Kumar

    2015-01-01

    Magnetic Resonance Imaging (MRI) is being increasingly recognised all over the world as the imaging modality of choice for brachial plexus and peripheral nerve lesions. Recent refinements in MRI protocols have helped in imaging nerve tissue with greater clarity thereby helping in the identification, localisation and classification of nerve lesions with greater confidence than was possible till now. This article on Magnetic Resonance Neurography (MRN) is based on the authors’ experience of imaging the brachial plexus and peripheral nerves using these protocols over the last several years. PMID:26424974

  9. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  10. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  11. Can magnetic resonance imaging be an alternative to computed tomography in immunocompromised patients with suspected fungal infections? Feasibility of a speed optimized examination protocol at 3 Tesla.

    PubMed

    Nagel, Sebastian Niko; Wyschkon, Sebastian; Schwartz, Stefan; Hamm, Bernd; Elgeti, Thomas

    2016-04-01

    To prospectively evaluate a short MRI examination protocol for the detection of nodular pulmonary infiltrates in immunocompromised patients with hematologic diseases and suspected invasive fungal infections. Patients with nodular infiltrates on CT scans were examined on a 3T MRI scanner. The standardized protocol included axial T2-weighted fast spin echo (FSE) sequences +/- fat saturation (FS), and axial T1-weighted gradient echo (GRE) sequences. Long and short axis diameters of nodular infiltrates and visibility were assessed on MR images at least six months after the CT scan, blinded to patient and examination data. Inter- and intra-reader reliability was assessed in two patients. Statistical testing included Wilcoxon-test, Cohen's kappa, and intra-class correlation coefficients. Bland-Altman plots were created to visualize differences in the measurements. In all 13 patients MRI examinations were completed successfully (average examination time 12 min and maximum breath-hold time of 8s). CT detected 409 nodules. Sensitivity of MRI was 93.2% when using all sequences in combination; considering nodules >5mm, sensitivity increased to 97.9%. Reliability analysis showed excellent correlations with an intra-class correlation coefficient of at least 0.89 for T2 FSE (95% CI 0.79-0.93, p<0.01) images for the intra-, and the lowest of 0.77 for T2 FSE (95% CI 0.55-0.89, p<0.01) images for the inter-reader comparison. Agreement on nodule visibility was at least kappa=0.95 (p<0.01) for the intra- and 0.72 (p<0.01) for the inter-reader analysis. With an average examination time of 12 min, pulmonary MRI at 3T is feasible in immunocompromised patients with hematologic diseases and suspected invasive fungal infections. MRI might serve as an alternative diagnostic tool during follow-up examinations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. [Magnetic resonance neurography for the identification of pudendal neuralgia].

    PubMed

    Cejas, Claudia P; Bordegaray, Susana; Stefanoff, Nadia I; Rollán, Cecilia; Escobar, Inés T; Consigliere Rodríguez, Pablo

    2017-01-01

    The pudendal nerve entrapment is an entity understudied by diagnosis imaging. Various causes are recognized in relation to difficult labors, rectal, perineal, urological and gynecological surgery, pelvic trauma fracture, bones tumors and compression by tumors or pelvic pseudotumors. Pudendal neuropathy should be clinically suspected, and confirmed by different methods such as electrofisiological testing: evoked potentials, terminal motor latency test and electromyogram, neuronal block and magnetic resonance imaging. The radiologist should be acquainted with the complex anatomy of the pelvic floor, particularly on the path of pudendal nerve studied by magnetic resonance imaging. High resolution magnetic resonance neurography should be used as a complementary diagnostic study along with clinical and electrophysiological examinations in patients with suspected pudendal nerve neuralgia.

  13. Magnetic resonance spectroscopy and imaging for the study of fossils.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Proton magnetic resonance spectroscopy of a gray matter heterotopia.

    PubMed

    Marsh, L; Lim, K O; Sullivan, E V; Lane, B; Spielman, D

    1996-12-01

    We used proton magnetic resonance spectroscopy to examine resonances representing metabolites containing N-acetyl (NA) groups (predominantly N-acetyl aspartate), choline, and creatine within a large left-hemispheric gray matter heterotopia (GMH) in a 35-year-old man with corpus callosum agenesis. In contrast to normal brain tissue, including gray matter regions, heterotopic gray matter was characterized by relatively increased choline and creatine resonances and a normal NA signal. These data suggest increased cellular activity or persistent immature neuronal tissue in GMH relative to unaffected tissue.

  15. Advances in Magnetic Resonance Electrical Impedance Mammography

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Nataliya

    Magnetic Resonance Electrical Impedance Mammography (MREIM) is a new imaging technique under development by Wollin Ventures, Inc. in conjunction with the H. Lee Moffitt Cancer Center & Research Institute. MREIM addresses the problem of low specificity of magnetic resonance mammography and high false-positive rates, which lead to unnecessary biopsies. Because cancerous tissue has a higher electrical conductivity than benign tissue, it may serve as a biomarker for differentiation between malignant and benign lesions. The MREIM principle is based on measuring both magnetic resonance and electric properties of the breast by adding a quasi-steady-state electric field to the standard magnetic resonance breast image acquisition. This applied electric field produces a current density that creates an additional magnetic field that in turn alters the native magnetic resonance signal in areas of higher electrical conductivity, corresponding to cancerous tissue. This work comprises MREIM theory, computer simulations, and experimental developments. First, a general overview and background review of tissue modeling and electrical-impedance imaging techniques are presented. The experimental part of this work provides a description of the MREIM apparatus and the imaging results of a custom-made breast phantom. This phantom was designed and developed to mimic the magnetic resonance and electrical properties of the breast. The theoretical part of this work provides an extension to the initial MREIM theoretical developments to further understand the MREIM effects. MREIM computer simulations were developed for both idealized and realistic tumor models. A method of numerical calculation of electric potential and induced magnetic field distribution in objects with irregular boundaries and anisotropic conductivity was developed based on the Finite Difference Method. Experimental findings were replicated with simulations. MREIM effects were analyzed with contrast diagrams to show the

  16. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  17. Magnetic resonance microscopy in biomedical research.

    PubMed

    Serša, I

    2012-01-01

    Magnetic resonance (MR) microscopy is a special modality of MRI with an emphasis on high spatial resolution. While its main principle is identical to conventional clinical MRI, there are several differences between the two that are mainly associated with a use of stronger magnets and gradients. MR microscopy has numerous interesting applications in material and bio sciences in which high spatial resolution is demanded and long experiment times are allowed.

  18. Diagnosis of avascular necrosis of the hip in asymptomatic HIV-infected patients: Clinical correlation of physical examination with magnetic resonance imaging.

    PubMed

    Joe, Galen O; Kovacs, Joseph A; Miller, Kirk D; Kelly, Grace G; Koziol, Deloris E; Jones, Elizabeth C; Mican, Joann M; Masur, Henry; Gerber, Lynn

    2002-01-01

    To determine if physical examination can identify avascular necrosis of the hip (AVN) in asymptomatic HIV-infected patients. Prospective, blinded population studyResults: Ten of the 176 patients were positive for AVN by MRI. Four subjects had unilateral disease and six had bilateral disease. Five hips (1.4%) in four patients were indeterminate. We evaluated physical examination maneuvers both singly and in combination. Tests done singly generally provided a higher degree of specificity (67-92%) but sensitivities were lower (0-50%) with all p-values ≥0.08. Positive predictive values based on physical exam, were <17% and negative predictive values were >90% for any single test. Combining all tests gave a high sensitivity (88%) and negative predictive value (98%), but low specificity (34%) and positive predictive value (6%) with p = 0.10. Only two of 16 hips with positive MRI findings showed no abnormalities when all tests were combinedConclusions: This study establishes the limited usefulness of a detailed physical examination of the hip early in the course of AVN. Patients who test negative on physical exam are unlikely to have AVN positive by MRI. Positive findings on physical examination of the hip may help identify patients who need further evaluation by MRI based on overall clinical suspicion.

  19. Enhancement of artificial magnetism via resonant bianisotropy

    PubMed Central

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  20. Magnetic resonance appearance of monoclonal gammopathies of unknown significance and multiple myeloma. The GRI Study Group.

    PubMed

    Bellaïche, L; Laredo, J D; Lioté, F; Koeger, A C; Hamze, B; Ziza, J M; Pertuiset, E; Bardin, T; Tubiana, J M

    1997-11-01

    A prospective multicenter study. To evaluate the use of magnetic resonance imaging, in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. Although multiple myeloma has been studied extensively with magnetic resonance imaging, to the authors' knowledge, no study has evaluated the clinical interest of magnetic resonance imaging in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. The magnetic resonance examinations of the thoracolumbar spine in 24 patients with newly diagnosed monoclonal gammopathies of unknown significance were compared with those performed in 44 patients with newly diagnosed nontreated multiple myeloma. All findings on magnetic resonance examination performed in patients with monoclonal gammopathies of unknown significance were normal, whereas findings on 38 (86%) of the 44 magnetic resonance examinations performed in patients with multiple myeloma were abnormal. Magnetic resonance imaging can be considered as an additional diagnostic tool in differentiating between monoclonal gammopathies of unknown significance and multiple myeloma, which may be helpful when routine criteria are not sufficient. An abnormal finding on magnetic resonance examination in a patient with monoclonal gammopathies of unknown significance should suggest the diagnosis of multiple myeloma after other causes of marrow signal abnormalities are excluded. Magnetic resonance imaging also may be proposed in the long-term follow-up of monoclonal gammopathies of unknown significance when a new biologic or clinical event suggests the diagnosis of malignant monoclonal gammopathy.

  1. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  2. Magnetic Resonance Imaging in Biomedical Engineering

    NASA Astrophysics Data System (ADS)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  3. Pituitary magnetic resonance imaging in Cushing's disease.

    PubMed

    Vitale, Giovanni; Tortora, Fabio; Baldelli, Roberto; Cocchiara, Francesco; Paragliola, Rosa Maria; Sbardella, Emilia; Simeoli, Chiara; Caranci, Ferdinando; Pivonello, Rosario; Colao, Annamaria

    2017-03-01

    Adrenocorticotropin-secreting pituitary tumor represents about 10 % of pituitary adenomas and at the time of diagnosis most of them are microadenomas. Transsphenoidal surgery is the first-line treatment of Cushing's disease and accurate localization of the tumor within the gland is essential for selectively removing the lesion and preserving normal pituitary function. Magnetic resonance imaging is the best imaging modality for the detection of pituitary tumors, but adrenocorticotropin-secreting pituitary microadenomas are not correctly identified in 30-50 % of cases, because of their size, location, and enhancing characteristics. Several recent studies were performed with the purpose of better localizing the adrenocorticotropin-secreting microadenomas through the use in magnetic resonance imaging of specific sequences, reduced contrast medium dose and high-field technology. Therefore, an improved imaging technique for pituitary disease is mandatory in the suspect of Cushing's disease. The aims of this paper are to present an overview of pituitary magnetic resonance imaging in the diagnosis of Cushing's disease and to provide a magnetic resonance imaging protocol to be followed in case of suspicion adrenocorticotropin-secreting pituitary adenoma.

  4. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  5. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  6. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  7. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  8. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  9. Giant infantile gliosarcoma: magnetic resonance imaging findings.

    PubMed

    Sanal, Hatice Tuba; Bulakbasi, Nail; Kocaoglu, Murat; Onguru, Onder; Chen, Lina

    2008-08-01

    Gliosarcoma is an uncommon variant of glioblastoma multiforme, which is composed of gliomatous and sarcomatous elements. The tumor is rarely encountered in childhood. This case report presents the magnetic resonance imaging characteristics of a giant gliosarcoma in a 3-year-old girl. Size and location of the tumor are described.

  10. Magnetic Resonance Angiography: Principles and Applications.

    PubMed

    Dyke, Lara M

    2013-12-01

    Magnetic Resonance Angiography: Principles and Applications. Carr J. C., Carroll T. J., Springer-Verlag, Heidelberg/New York, 2012. 412 pp. Price $179.00. ISBN 978-1-4419-1685-3 (hardcover). © 2013 American Association of Physicists in Medicine.

  11. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  12. Cardiovascular magnetic resonance: physics and terminology.

    PubMed

    Rodgers, Christopher T; Robson, Matthew D

    2011-01-01

    Cardiovascular magnetic resonance (CMR) is the branch of magnetic resonance imaging (MRI) whose acquisition methods are adapted to surmount the particular challenges caused by motion of the heart and blood in vivo. Magnetic resonance imaging is supremely flexible; it can produce images showing the spatial distribution of diverse tissue characteristics, for example, proton density, T(1), T(2), T(2)(⁎), fat concentration, flow rate, and diffusion parameters. The image contrast may usefully be modified by intravenous infusion of contrast agents. Magnetic resonance imaging permits 2-dimensional or 3-dimensional acquisitions with arbitrary slice orientation. Unfortunately, MRI's flexibility is matched by a remarkable complexity not only in its fundamental principles but also in the optimization of applications in the clinic. This article attempts to demystify the basic principles of CMR and provides a primer on the terminology used in CMR. Complete confidence in the principles of CMR is not essential to use the technology. Nevertheless, knowledge of the principal terminology of MRI is a valuable first step when seeking to understand and apply modern methods in a clinical or research setting. Thus, the article closes with a glossary of terminology and references to high-quality educational resources. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Intralabyrinthine schwannoma shown by magnetic resonance imaging.

    PubMed

    Saeed, S R; Birzgalis, A R; Ramsden, R T

    1994-01-01

    Intralabyrinthine schwannomas are rare benign tumours which present with progressive or fluctuant audiovestibular symptoms and may mimic Meniéres disease. The size and position of these lesions make preoperative diagnosis unusual and most are discovered incidentally at labyrinthectomy. A case is reported which was diagnosed on magnetic resonance imaging and confirmed at surgery.

  14. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  15. Optimal magnetic resonance imaging of the brain.

    PubMed

    Robertson, Ian

    2011-01-01

    Quality magnetic resonance (MR) imaging is complex and requires optimization of many technical factors. The most important factors are: magnet field and gradient strengths, coil selection, receiver bandwidth, field of view and image matrix size, number of excitations, slice thickness, image weighting and contrast, imaging planes and the direction of the phase, and frequency gradients. The ability to augment a standard MR study with additional sequences, and the need to ensure the completed study is comprehensive and robust must be balanced against the time the patient spends under anesthesia in the magnet.

  16. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  17. Introduction to magnetic resonance methods in photosynthesis.

    PubMed

    Huber, Martina

    2009-01-01

    Electron paramagnetic resonance (EPR) and, more recently, solid-state nuclear magnetic resonance (NMR) have been employed to study photosynthetic processes, primarily related to the light-induced charge separation. Information obtained on the electronic structure, the relative orientation of the cofactors, and the changes in structure during these reactions should help to understand the efficiency of light-induced charge separation. A short introduction to the observables derived from magnetic resonance experiments is given. The relation of these observables to the electronic structure is sketched using the nitroxide group of spin labels as a simple example. © The Author(s) 2009. This article is published with open access at Springerlink.com

  18. Magnetic Resonance Force Microscopy Detected Long-Lived Spin Magnetization.

    PubMed

    Chen, Lei; Longenecker, Jonilyn G; Moore, Eric W; Marohn, John A

    2013-07-01

    Magnetic resonance force microscopy (MRFM), which combines magnetic resonance imaging with scanning probe microscopy together, is capable of performing ultra-sensitive detection of spin magnetization. In an attempt to observe dynamic nuclear polarization (DNP) in an MRFM experiment, which could possibly further improve its sensitivity towards a single proton spin, a film of perdeuterated polystyrene doped with a nitroxide electron-spin probe was prepared. A high-compliance cantilever with a 4 μm diameter magnetic tip was brought near the film at a temperature of 7.3 K and in a background magnetic field of ~0.6 T. The film was irradiated with 16.7 GHz microwaves while the resulting transient change in cantilever frequency was recorded in real time. In addition to observing the expected prompt change in cantilever frequency due to saturation of the nitroxide's electron-spin magnetization, we observed a persistent cantilever frequency change. Based on its magnitude, lifetime, and field dependence, we tentatively attribute the persistent signal to polarized deuteron magnetization created via transfer of magnetization from electron spins. Further measurements of the persistent signal's dependence on the cantilever amplitude and tip-sample separation are presented and explained by the cross-effect DNP mechanism in high magnetic field gradients.

  19. Interaction of magnetic resonators studied by the magnetic field enhancement

    SciTech Connect

    Hou, Yumin

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  20. Nuclear Magnetic Resonance Imaging. South Carolina Health Service Area 2

    SciTech Connect

    Not Available

    1984-12-01

    Contents include: Nuclear Magnetic Resonance Imaging (NMRI); (Clinical applications, Magnet types, Comparisons with other systems, Manpower, Manufacturers, Contraindications); Analysis of systems; (Availability, Accessibility, Cost, Quality, Continuity, Acceptability).

  1. Examining the validity of the rheumatoid arthritis magnetic resonance imaging score according to the OMERACT filter-a systematic literature review.

    PubMed

    Woodworth, Thasia G; Morgacheva, Olga; Pimienta, Olga L; Troum, Orrin M; Ranganath, Veena K; Furst, Daniel E

    2017-07-01

    To examine whether the RA MRI score (RAMRIS) for RA of the wrist/hand meets the OMERACT filter criteria-truth (validity), discrimination and feasibility. We conducted a systematic literature review in PubMed and Scopus, from 1970 through June 2014, focused on MRI measures of synovitis, osteitis/bone marrow oedema, erosions and/or joint space narrowing in RA randomized controlled trials and observational studies with cohort size ⩾10. Strength of evidence was assessed using the Cochrane Handbook criteria. Of 634 MRI titles/abstracts, 202 met the review criteria, with 92 providing at least 1 type of validity. Four articles provided criterion validity, and 26 articles utilized RAMRIS to assess 1.5 T MRI images. Histopathology data showed inflammation corresponding to MRI of synovitis and osteitis. MRI erosions corresponded to those identified with CT. Content and construct validity for RAMRIS synovitis, osteitis and erosions were documented by correlations with clinical, laboratory and/or radiographic data. Each measure was sensitive to change and responsive to therapy. RAMRIS synovitis and osteitis were able to discriminate between the efficacy of treatments vs placebo in 12-week studies, whereas RAMRIS erosions required studies of ⩾24 weeks. RAMRIS synovitis, osteitis and erosions imaged with 1.5 T MRI are valid and useful for evaluating joint inflammation and damage for RA of the wrist/hand, according to the OMERACT filter.

  2. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  3. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  4. An introduction to nuclear magnetic resonance in biomedicine.

    PubMed

    Andrew, E R

    1990-02-01

    In this paper the author illustrates the historical aspects of the development, first, of the fundamental principles of nuclear magnetic resonance and, second, the extension of these principles to magnetic resonance imaging and in vivo spectroscopy.

  5. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  6. Physician provider type influences utilization and diagnostic utility of magnetic resonance imaging of the knee.

    PubMed

    Wylie, James D; Crim, Julia R; Working, Zachary M; Schmidt, Robert L; Burks, Robert T

    2015-01-07

    Magnetic resonance imaging of the knee is expensive and is neither needed nor useful for all patients presenting with knee pain. Our objective was to determine the completeness of evaluation prior to ordering magnetic resonance imaging of the knee correlated to the ordering providers' postgraduate medical training and the rate of positive findings on the subsequent magnetic resonance imaging. Six hundred consecutive knee magnetic resonance images were reviewed, including 200 consecutive knee magnetic resonance imaging examinations from each of three provider types: orthopaedic surgeons, non-surgical physicians with sports medicine training, and primary care providers. Positive findings on magnetic resonance imaging were recorded as well as a history of present illness, a physical examination, and radiographs made prior to ordering magnetic resonance imaging of the knee. Patient and injury factors were recorded. Differences in patient factors, evaluation before magnetic resonance imaging, and positive findings were examined. A modified Poisson regression approach was used to determine predictors of a proper evaluation before magnetic resonance imaging and positive findings on knee magnetic resonance imaging. Orthopaedists and non-surgical sports physicians were significantly more likely to document a physical examination, to evaluate radiographs made prior to ordering a magnetic resonance image, and to identify positive findings on the magnetic resonance image (all p < 0.001). In multivariate models, orthopaedists were more likely to document a history of present illness (relative risk, 1.05; p = 0.043). Compared with primary care physicians, a physical examination was more likely to be documented by both non-surgical sports medicine physicians (relative risk, 1.61; p < 0.001) and orthopaedists (relative risk, 1.60; p < 0.001) and positive magnetic resonance imaging findings were more likely to be found by non-surgical sports medicine physicians (relative risk, 1

  7. Biomechanical factors and physical examination findings in osteoarthritis of the knee: associations with tissue abnormalities assessed by conventional radiography and high-resolution 3.0 Tesla magnetic resonance imaging

    PubMed Central

    2012-01-01

    Introduction We aimed to explore the associations between knee osteoarthritis (OA)-related tissue abnormalities assessed by conventional radiography (CR) and by high-resolution 3.0 Tesla magnetic resonance imaging (MRI), as well as biomechanical factors and findings from physical examination in patients with knee OA. Methods This was an explorative cross-sectional study of 105 patients with knee OA. Index knees were imaged using CR and MRI. Multiple features from CR and MRI (cartilage, osteophytes, bone marrow lesions, effusion and synovitis) were related to biomechanical factors (quadriceps and hamstrings muscle strength, proprioceptive accuracy and varus-valgus laxity) and physical examination findings (bony tenderness, crepitus, bony enlargement and palpable warmth), using multivariable regression analyses. Results Quadriceps weakness was associated with cartilage integrity, effusion, synovitis (all detected by MRI) and CR-detected joint space narrowing. Knee joint laxity was associated with MRI-detected cartilage integrity, CR-detected joint space narrowing and osteophyte formation. Multiple tissue abnormalities including cartilage integrity, osteophytes and effusion, but only those detected by MRI, were found to be associated with physical examination findings such as crepitus. Conclusion We observed clinically relevant findings, including a significant association between quadriceps weakness and both effusion and synovitis, detected by MRI. Inflammation was detected in over one-third of the participants, emphasizing the inflammatory component of OA and a possible important role for anti-inflammatory therapies in knee OA. In general, OA-related tissue abnormalities of the knee, even those detected by MRI, were found to be discordant with biomechanical and physical examination features. PMID:23039323

  8. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  9. Magnetic resonance of calcified tissues

    PubMed Central

    Wehrli, Felix W.

    2016-01-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues – key among them bone – are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author’s laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI. PMID:23414678

  10. Magnetic resonance imaging of pelvic endometriosis.

    PubMed

    Méndez Fernández, R; Barrera Ortega, J

    Endometriosis is common in women of reproductive age; it can cause pelvic pain and infertility. It is important to diagnose endometriosis and to thoroughly evaluate its extension, especially when surgical treatment is being considered. Magnetic resonance imaging (MRI) with careful examination technique and interpretation enables more accurate and complete diagnosis and staging than ultrasonography, especially in cases of deep pelvic endometriosis. Furthermore, MRI can identify implants in sites that can be difficult to access in endoscopic or laparoscopic explorations. In this article, we describe the appropriate MRI protocol for the study of pelvic endometriosis and the MRI signs of pelvic organ involvement. It is necessary to know the subtle findings and to look for them so we can ensure that they are not overlooked. We describe clinical grading systems for endometriosis and review the diagnostic efficacy of MRI in comparison with other imaging techniques and surgery. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Musculoskeletal magnetic resonance imaging: importance of radiography.

    PubMed

    Taljanovic, Mihra S; Hunter, Tim B; Fitzpatrick, Kimberly A; Krupinski, Elizabeth A; Pope, Thomas L

    2003-07-01

    To determine the usefulness of radiography for interpretation of musculoskeletal (MSK) magnetic resonance imaging (MRI) studies. DESIGNS AND PATIENTS: In a 1-year period, 1,030 MSK MRI studies were performed in 1,002 patients in our institution. For each study, the interpreting radiologist completed a questionnaire regarding the availability and utility of radiographs, radiological reports and clinical information for the interpretation of the MRI study. Radiographs were essential, very important or added information in 61-75% of all MSK MRI cases. Radiographs were judged as essential for reading of MRI studies more often for trauma, infection/inflammation and tumors than for degenerative and miscellaneous/normal diagnoses (chi(2)=60.95, df=16, P<0.0001). The clinical information was rated as "essential" or "useful" significantly more often than not (chi(2)=93.07, df=16, P<0.0001). The clinical and MRI diagnoses were the same or partially concordant significantly more often for tumors than for trauma, infection/inflammation and degenerative conditions, while in the miscellaneous/normal group they were different in 64% of cases. When the diagnoses were different, there were more instances in which radiographs were not available. Radiographs are an important, and sometimes essential, initial complementary study for reading of MSK MRI examinations. It is highly recommended that radiographs are available when MSK MRI studies are interpreted.

  12. Vibration safety limits for magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Ehman, E. C.; Rossman, P. J.; Kruse, S. A.; Sahakian, A. V.; Glaser, K. J.

    2008-02-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  13. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  14. Vibration safety limits for magnetic resonance elastography

    PubMed Central

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2010-01-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure, and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast, and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values, and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans. PMID:18263949

  15. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  16. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  17. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  18. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  19. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  20. Cardiac magnetic resonance for prediction of arrhythmogenic areas

    PubMed Central

    Ipek, Esra Gucuk; Nazarian, Saman

    2015-01-01

    Catheter ablation has been widely used to manage recurrent atrial and ventricular arrhythmias. It has been established that contrast-enhanced magnetic resonance can accurately characterize the myocardium. In this review, we summarize the role of cardiac magnetic resonance in identification of arrhythmogenic substrates, and the potential utility of cardiac magnetic resonance for catheter ablation of complex atrial and ventricular arrhythmias. PMID:25937045

  1. [Magnetic resonance compatibility research for coronary mental stents].

    PubMed

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  2. Magnetic resonance imaging with an optical atomicmagnetometer

    SciTech Connect

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-05-09

    Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

  3. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  4. A hyperpolarized equilibrium for magnetic resonance

    PubMed Central

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10−3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  5. A Metric for Reducing False Positives in the Computer-Aided Detection of Breast Cancer from Dynamic Contrast-Enhanced Magnetic Resonance Imaging Based Screening Examinations of High-Risk Women.

    PubMed

    Levman, Jacob E D; Gallego-Ortiz, Cristina; Warner, Ellen; Causer, Petrina; Martel, Anne L

    2016-02-01

    Magnetic resonance imaging (MRI)-enabled cancer screening has been shown to be a highly sensitive method for the early detection of breast cancer. Computer-aided detection systems have the potential to improve the screening process by standardizing radiologists to a high level of diagnostic accuracy. This retrospective study was approved by the institutional review board of Sunnybrook Health Sciences Centre. This study compares the performance of a proposed method for computer-aided detection (based on the second-order spatial derivative of the relative signal intensity) with the signal enhancement ratio (SER) on MRI-based breast screening examinations. Comparison is performed using receiver operating characteristic (ROC) curve analysis as well as free-response receiver operating characteristic (FROC) curve analysis. A modified computer-aided detection system combining the proposed approach with the SER method is also presented. The proposed method provides improvements in the rates of false positive markings over the SER method in the detection of breast cancer (as assessed by FROC analysis). The modified computer-aided detection system that incorporates both the proposed method and the SER method yields ROC results equal to that produced by SER while simultaneously providing improvements over the SER method in terms of false positives per noncancerous exam. The proposed method for identifying malignancies outperforms the SER method in terms of false positives on a challenging dataset containing many small lesions and may play a useful role in breast cancer screening by MRI as part of a computer-aided detection system.

  6. [To Test Glutamate Hypothesis for Schizophrenia Utilizing Proton Magnetic Resonance Spectroscopy].

    PubMed

    Tsugawa, Sachiko; Nakajima, Shin-Ichiro Luke

    2017-09-01

    Recent advancement in magnetic resonance spectroscopy (MRS) has elucidated the pathophysiology of mental illness, including schizophrenia. MRS is a neuroimaging technique that non-invasively measures chemicals, using nuclear magnetic resonance. This narrative review explains proton MRS (1H-MRS) and introduces pivotal studies to examine a glutamate hypothesis for schizophrenia, employing 1H-MRS.

  7. [Value of magnetic resonance imaging in the diagnosis of recurrent colorectal cancer].

    PubMed

    Dan'ko, N A; Vazhenin, A V; Nadvikova, E A

    2012-01-01

    To diagnose recurrent colorectal cancer is an urgent problem of oncoproctology. Eighty patients with suspected recurrent colon tumor were examined. All the patients underwent irrigoscopy, colonoscopy, magnetic resonance imaging of the abdomen and small pelvis. The major magnetic resonance symptoms of recurrent colon tumors were studied; a differential diagnosis of recurrent processes and postoperative changes at the site of intervention was made.

  8. [Standardizing a protocol of magnetic resonance imaging of temporomandibular joints. Part I].

    PubMed

    Bulanova, T V

    2004-01-01

    The paper presents the standard of a procedure for magnetic resonance imaging of temporomandibular joints, which has been used to examine 275 patients. It describes the study projections, that are most significant for visualization, and scanning protocols. Illustrations of magnetic resonance imaging of the structures of the intact temporomandibular joint are presented.

  9. Magnetic resonance imaging of the elbow.

    PubMed

    Stevens, Kathryn J

    2010-05-01

    Elbow pain is frequently encountered in clinical practice and can result in significant morbidity, particularly in athletes. Magnetic resonance imaging (MRI) is an excellent diagnostic imaging tool for the evaluation of soft tissue and osteochondral pathology around the elbow. Recent advances in magnetic field strength and coil design have lead to improved spatial resolution and superior soft tissue contrast, making it ideal for visualization of complex joint anatomy. This article describes the normal imaging appearances of anatomy around the elbow and reviews commonly occurring ligamentous, myotendinous, neural, and bursal pathology around the elbow.

  10. Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Geraci, Andrew A.

    2014-10-01

    We describe a method based on precision magnetometry that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, our approach can substantially improve upon current experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 109 and 1012 GeV or axion masses between 10-6 and 10-3 eV, independent of the cosmic axion abundance.

  11. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  12. UK Biobank's cardiovascular magnetic resonance protocol.

    PubMed

    Petersen, Steffen E; Matthews, Paul M; Francis, Jane M; Robson, Matthew D; Zemrak, Filip; Boubertakh, Redha; Young, Alistair A; Hudson, Sarah; Weale, Peter; Garratt, Steve; Collins, Rory; Piechnik, Stefan; Neubauer, Stefan

    2016-02-01

    UK Biobank's ambitious aim is to perform cardiovascular magnetic resonance (CMR) in 100,000 people previously recruited into this prospective cohort study of half a million 40-69 year-olds. We describe the CMR protocol applied in UK Biobank's pilot phase, which will be extended into the main phase with three centres using the same equipment and protocols. The CMR protocol includes white blood CMR (sagittal anatomy, coronary and transverse anatomy), cine CMR (long axis cines, short axis cines of the ventricles, coronal LVOT cine), strain CMR (tagging), flow CMR (aortic valve flow) and parametric CMR (native T1 map). This report will serve as a reference to researchers intending to use the UK Biobank resource or to replicate the UK Biobank cardiovascular magnetic resonance protocol in different settings.

  13. Magnetic resonances in nano-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Hao, Zhao; Liddle, Alex; Martin, Michael

    2006-03-01

    We have designed, fabricated, and optically measured several different kinds of nano-scale metamaterials. We make use e-beam nano-lithography technology at LBNL's Center for X-Ray Optics for fabricating these structures on extremely thin SiN substrates so that they are close to free-standing. Optical properties were measured as a function of incidence angle and polarization. We directly observe a strong magnetic resonance consistent with a negative magnetic permeability in our samples at mid- and near-IR optical frequencies. We will discuss the results in comparison with detailed simulations, and will discuss the electric dipole or quadrupole resonances observed in the samples. Finally, we will report on our progress towards constructing a fully negative index of refraction meta-material.

  14. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  15. Nuclear magnetic resonance spectrometer and method

    SciTech Connect

    Peterson, P.E.; Vidrine, D.W.

    1981-08-18

    A nuclear magnetic resonance techniis described that allows simultaneous temperature determination and spectral acquisition. The technique employs a modification of the lock circuit of a varian xl-100 spectrometer which permits accurate measurement of the difference in resonance frequency between a primary lock nucleus and another , secondary, nucleus. The field stabilization function of the main lock circuit is not compromised. A feedback signal having a frequency equal to the frequency difference is substituted for the normal power supply in the spectrometer's existing radio frequency transmitter to modulate that transmitter. Thus, the transmitter's radio frequency signal is enhanced in a frequency corresponding to the resonance peak of the secondary nucleus. Determination of the frequency difference allows the determination of temperature without interference with the observed spectrum. The feedback character of the circuit and the presence of noise make the circuit self-activating.

  16. Magnetic resonance imaging: Principles and applications

    SciTech Connect

    Kean, D.; Smith, M.

    1986-01-01

    This text covers the physics underlying magnetic resonance (MR) imaging; pulse sequences; image production; equipment; aspects of clinical imaging; and the imaging of the head and neck, thorax, abdomen and pelvis, and musculoskeletal system; and MR imaging. The book provides about 150 examples of MR images that give an overview of the pathologic conditions imaged. There is a discussion of the physics of MR imaging and also on the spin echo.

  17. Magnetic resonance imaging of diabetic foot complications

    PubMed Central

    Low, Keynes TA; Peh, Wilfred CG

    2015-01-01

    This pictorial review aims to illustrate the various manifestations of the diabetic foot on magnetic resonance (MR) imaging. The utility of MR imaging and its imaging features in the diagnosis of pedal osteomyelitis are illustrated. There is often difficulty encountered in distinguishing osteomyelitis from neuroarthropathy, both clinically and on imaging. By providing an accurate diagnosis based on imaging, the radiologist plays a significant role in the management of patients with complications of diabetic foot. PMID:25640096

  18. Neurosurgical uses for intraprocedural magnetic resonance imaging.

    PubMed

    Mutchnick, Ian S; Moriarty, Thomas M

    2005-10-01

    Neurosurgical procedures demand precision, and efforts to create accurate neurosurgical navigation have been central to the profession through its history. Magnetic resonance image (MRI)-guided navigation offers the possibility of real-time, image-based stereotactic information for the neurosurgeon, which makes possible a number of diagnostic and therapeutic procedures. This article will review both current options for intraoperative MRI operative suite arrangements and the current therapeutic/diagnostic uses of intraoperative MRI.

  19. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  20. Magnetic resonance venography and liver transplant complications.

    PubMed

    Strovski, Evgeny; Liu, Dave; Scudamore, Charles; Ho, Stephen; Yoshida, Eric; Klass, Darren

    2013-09-28

    Hepatic vein stenosis is a rare but serious complication following liver transplantation. Multiple modalities can be utilized to image the hepatic vasculature. Magnetic resonance venography (MRV) provides certain advantages over ultrasound, computed tomography angiography and digital subtraction venography. MRV utilizes the same imaging principles of magnetic resonance angiography in order to image the venous system. Blood pool contrast agents, specifically gadofosveset trisodium, allow for steady state imaging up to 1 h following injection, with improved visualisation of vital venous structures by utilising delayed steady state imaging. Additionally, the inherent physics properties of magnetic resonance imaging also provide excellent soft tissue detail and thus help define the extent of complications that often plague the post-liver transplant patient. This case report describes the use of gadofosveset trisodium in a patient with hepatic venous stenosis following liver transplantation. Initial venography failed to outline the stenoses and thus MRV using a blood pool contrast agent was utilised in order to delineate the anatomy and plan a therapeutic endovascular procedure.

  1. Magnetic Resonance Imaging Features of Solitary Hypothalamitis.

    PubMed

    Zhang, Hua; Wang, Jing; Wu, Yue; Tang, Ying; Tao, Ran; Ye, Hongying; Yao, Zhenwei

    The study aimed to characterize magnetic resonance imaging (MRI) findings of solitary hypothalamitis and evaluate their clinical value in diagnosis. Magnetic resonance imaging scans, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted sequences, of 8 biopsy-proven hypothalamitis lesions were retrospectively analyzed along with MRI features including size, shape, signal intensity, enhancement pattern, correlation with adjacent tissues, and changes in infundibular stalk and sella turcica. Of 8 patients, 5 were diagnosed with lymphoplasmacytic proliferative inflammation, 2 with Langerhans cell histocytosis, and 1 with Rosai-Dorfman disease. Solitary hypothalamitis predominantly demonstrated mild hypointensity/isointensity in T1WI and mild hyperintensity in T2-weighted imaging. In contrast-enhanced T1WI, all lesions showed heterogeneous but primarily peripheral enhancement patterns. Seven cases showed the polygon sign. In T1WI, the normal high signal intensity of neurohypophysis was absent from all patients, with no infundibular stalk thickening. Seven patients presented with optic chiasma edema, and 5 with edema-like changes along the optic tract (OTE), but most showed no visual impairment (n = 7). Magnetic resonance imaging, particularly postcontrast MRI, is the optimal modality for assessment of hypothalamic lesions. Peripheral enhancement with polygon sign and optic tract or chiasm edema without visual impairment are highly suggestive of hypothalamitis.

  2. Magnetic resonance acoustic radiation force imaging.

    PubMed

    McDannold, Nathan; Maier, Stephan E

    2008-08-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are "stiffness weighted" and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery.

  3. Magnetic resonance imaging of the internal auditory canal

    SciTech Connect

    Daniels, D.L.; Herfkins, R.; Koehler, P.R.; Millen, S.J.; Shaffer, K.A.; Williams, A.L.; Haughton, V.M.

    1984-04-01

    Three patients with exclusively or predominantly intracanalicular neuromas and 5 with presumably normal internal auditory canals were examined with prototype 1.4- or 1.5-tesla magnetic resonance (MR) scanners. MR images showed the 7th and 8th cranial nerves in the internal auditory canal. The intracanalicular neuromas had larger diameter and slightly greater signal strength than the nerves. Early results suggest that minimal enlargement of the nerves can be detected even in the internal auditory canal.

  4. Recent trends in high spin sensitivity magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    Magnetic resonance is a very powerful methodology that has been employed successfully in many applications for about 70 years now, resulting in a wealth of scientific, technological, and diagnostic data. Despite its many advantages, one major drawback of magnetic resonance is its relatively poor sensitivity and, as a consequence, its bad spatial resolution when examining heterogeneous samples. Contemporary science and technology often make use of very small amounts of material and examine heterogeneity on a very small length scale, both of which are well beyond the current capabilities of conventional magnetic resonance. It is therefore very important to significantly improve both the sensitivity and the spatial resolution of magnetic resonance techniques. The quest for higher sensitivity led in recent years to the development of many alternative detection techniques that seem to rival and challenge the conventional ;old-fashioned; induction-detection approach. The aim of this manuscript is to briefly review recent advances in the field, and to provide a quantitative as well as qualitative comparison between various detection methods with an eye to future potential advances and developments. We first offer a common definition of sensitivity in magnetic resonance to enable proper quantitative comparisons between various detection methods. Following that, up-to-date information about the sensitivity capabilities of the leading recently-developed detection approaches in magnetic resonance is provided, accompanied by a critical comparison between them and induction detection. Our conclusion from this comparison is that induction detection is still indispensable, and as such, it is very important to look for ways to significantly improve it. To do so, we provide expressions for the sensitivity of induction-detection, derived from both classical and quantum mechanics, that identify its main limiting factors. Examples from current literature, as well as a description of

  5. Open magnetic resonance imaging (MRI) scanners.

    PubMed

    Hailey, D

    2006-11-01

    (1) In most MRI scanners, the patient examination table fits inside a long cylindrical tube. Large patients cannot be accommodated, and some persons experience claustrophobic reactions. Open MRI systems, in which the patient is placed between two plates, overcome these disadvantages. (2) Open MRI scanners are widely used in health care. High-field closed MRI systems are preferred for many examinations. (3) Early versions of open MRI scanners had low magnetic field strength, gave poorer image quality than most closed systems, and required longer examination times. Newer open scanners include machines with higher magnetic field strengths and improved image quality. (4) Closed high magnetic field scanners with short magnets and wide bore tubes offer improved comfort to patients, and may be an alternative to open scanners. (5) There is interest in using open systems for intra-operative and image-guided interventions.

  6. Artifacts in magnetic resonance imaging from metals

    NASA Astrophysics Data System (ADS)

    Bennett, L. H.; Wang, P. S.; Donahue, M. J.

    1996-04-01

    Metallic biomedical implants, such as aneurysm clips, endoprostheses, and internal orthopedic devices give rise to artifacts in the magnetic resonance image (MRI) of patients. Such artifacts impair the information contained in the image in precisely the region of most interest, namely near the metallic device. Ferromagnetic materials are contraindicated because of the hazards associated with their movement during the MRI procedure. In less-magnetic metals, it has been suggested that the extent of the artifact is related to the magnetic susceptibility of the metal, but no systematic data appear to be available. When the susceptibility is sufficiently small, an additional artifact due to electrical conductivity is observed. We present an initial systematic study of MRI artifacts produced by two low susceptibility metals, titanium (relative permeability μr≊1.0002) and copper (μr≊0.99998), including experimental, theoretical, and computer simulation results.

  7. Fetal magnetic resonance imaging in obstetric practice.

    PubMed

    Köşüş, Aydın; Köşüş, Nermin; Usluoğulları, Betül; Duran, Müzeyyen; Turhan, Nilgün Öztürk; Tekşam, Mehmet

    2011-01-01

    Ultrasonography (USG) is the primary imaging method for prenatal diagnosis of fetal abnormalities since its discovery. Although it is the primary method of fetal imaging, it cannot provide sufficient information about the fetus in some conditions such as maternal obesity, oligohydramnios and engagement of the fetal head. At this stage, magnetic resonance imaging (MRI) facilitates examination by providing more specific information. The need and importance of fetal MRI applications further increased by the intrauterine surgery which is currently gaining popularity. Some advantages of fetal MRI over USG are the good texture of contrast, a greater study area and visualization of the lesion and neighbourhood relations, independence of the operators. Also it is not affected by maternal obesity and severe oligohydramnios. However, MRI is inadequate in detecting fetal limb and cardiac abnormalities when compared to USG. MRI is not used routinely in pregnancy. It is used in situations where nonionizing imaging methods are inadequate or ionizing radiation is required in pregnant women. It is not recommended during the first trimester. Contrast agent (Godalinium) is not used during pregnancy. It is believed that MRI is not harmful to the fetus, although the biological risk of MRI application is not known. MRI technique is superior to USG in the detection of corpus callosum dysgenesis, third-trimester evaluation of posterior fossa malformations, bilateral renal agenesis, diaphragmatic hernia and assessment of lung maturation. Especially, it is the method of choice for evaluation of central nervous system (CNS) abnormalities. Fetal MRI has a complementary role with USG. It provides important information for prenatal diagnosis, increases diagnostic accuracy, and in turn affects the prenatal treatment, prenatal interventions and birth plan.

  8. Magnetic resonance imaging of thyroid nodules

    SciTech Connect

    Kroop, S.A.; Margouleff, D.; Stein, H.L.; Zanzi, I.; Susin, M.; Goldman, M.A.

    1985-05-01

    The capacity of Magnetic Resonance (MR) imaging to characterize the nature of palpable thyroid nodules was prospectively evaluated in 9 patients. Seven nodules were nonfunctioning and 2 showed function on radio-iodine Nuclear Medicine (NM) scans. Each patient underwent high-resolution real time ultrasound (US) examination followed by MR imaging with a 0.6 Tesla superconducting whole body coil utilizing T/sub 1/ and T/sub 2/ weighted inversion recovery and spin-echo pulse sequences in coronal, transverse and sagittal planes. All NM, US and MR studies were evaluated independently by each of two physicians. Diagnoses were established by surgical pathology (n=7) or by radiologic and clinical correlation (n=2). There were 3 cases of solitary adenoma, 4 cases of adenomatous goiter, 1 case of papillary carcinoma and 1 case of epidermoid carcinoma. Lesions demonstrated variable signal intensity on T/sub 1/ weighted images. All lesions demonstrated nonspecific increased signal intensity on T/sub 2/ weighted images. One malignancy was correctly diagnosed by the identification of adjacent cervical lymph nodes of increased signal intensity and another by demonstration of tracheal invasion on MR images, both not visible by other imaging modalities. Regions of hemorrhage and cystic degeneration as well as additional non-palpable thyroid nodules could be detected on MR images. Vascular displacement, tracheal compression and deviation, and substernal thyroid extension were also well demonstrated. The findings suggest that qualitative assessment of MR signal intensity alone cannot reliably differentiate benign from malignant thyroid lesions, but that MR images can provide other useful information to aid in this differentiation.

  9. Brain Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Findings of Children with Kernicterus

    PubMed Central

    Sarı, Sahabettin; Yavuz, Alpaslan; Batur, Aabdussamet; Bora, Aydın; Caksen, Huseyin

    2015-01-01

    Summary Background The term kernicterus, or bilirubin encephalopathy, is used to describe pathological bilirubin staining of the basal ganglia, brain stem, and cerebellum, and is associated with hyperbilirubinemia. Kernicterus generally occurs in untreated hyperbilirubinemia or cases where treatment is delayed. Magnetic resonance imaging (MRI)-based studies have shown characteristic findings in kernicterus. The objective of our study was to describe the role of 1H magnetic resonance spectroscopy (MRS) in demonstrating these metabolic changes and to review conventional MRI findings of kernicterus. Material/Methods Forty-eight pediatric cases with kernicterus were included in this study. MRI and MRS examinations were performed on variable dates (10–29 days after birth). NAA, Cr, Cho, NAA/Cr, NAA/Cho, and Cho/Cr values were evaluated visually and by computer analysis. Results There was no statistically significant difference between the NAA and Cho levels in the acute kernicterus patients and the control group (healthy patients), whereas both were significantly elevated in the chronic kernicterus patients. Both the mean NAA/Cr and Cho/Cr ratio values were significantly higher in the acute and chronic cases compared to the control group. The NAA/Cho ratio value was statistically lower in the acute cases than in the control group while it was similar in the chronic cases. Conclusions Conventional MR imaging and 1H-MRS are important complementary tools in the diagnostics of neonatal bilirubin encephalopathy. This study provided important information for applying these MR modalities in the evaluation of neonates with bilirubin encephalopathy. PMID:25745520

  10. The use of magnetic resonance spectroscopy and magnetic resonance imaging in alcohol research.

    PubMed

    Nagel, Bonnie J; Kroenke, Christopher D

    2008-01-01

    The recent emergence of magnetic resonance (MR)-based neuroimaging techniques has dramatically improved researchers' ability to understand the neuropathology of alcoholism. These techniques range from those that directly monitor the metabolism and the biochemical and physiological effects (i.e., the pharmacodynamics) of alcohol within the brain to techniques that examine the impact of heavy alcohol use on brain structure and function. In general, MR-based techniques measure electromagnetic signals (the same type of signals detected by a radio antenna) generated by nuclei of endogenous molecules in the body of a person placed in a powerful magnet field. When influenced by a magnet, tissue itself transiently becomes magnetic. In part, this is because of the properties of atomic nuclei. Different MR-based techniques have been developed to utilize nuclear magnetism induced in tissue to generate images of internal structure. The most commonly used MR imaging (MRI) techniques rely on signals derived from hydrogen nuclei in water, which is by far the most concentrated molecular species in the body. The physical properties of water molecules vary from one region of tissue to another, and this influences the nuclear magnetism generated by water hydrogen nuclei. As a result, MRI can differentiate regions in soft tissue at a high level of detail. A second approach-MR spectroscopy (MRS)- uses the same strategy to detect electromagnetic signals, but they are derived from nuclei of atoms (hydrogen as well as some other atoms) on molecules other than water, such as lipids, amino acids, or even alcohol (i.e., ethanol). The resulting data on the molecule(s) under investigation can provide detailed information about the metabolic activity of various tissues, including the brain. The main advantage of MR-based techniques is that they do not expose the subject to radioactive tracers and therefore can be used repeatedly in the same subject, allowing researchers to track metabolic or

  11. Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging.

    PubMed

    Jeon, Ju Hyun; Bae, Mi Ran; Chang, Jae Won; Choi, Jae Young

    2012-08-01

    The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety.

  12. Portal biliopathy, magnetic resonance imaging and magnetic resonance cholangiopancreatography findings: a case series

    PubMed Central

    Baskan, Ozdil; Erol, Cengiz; Sahingoz, Yusuf

    2016-01-01

    Portal biliopathy (PB) is a rare disorder, characterized by biliary ductal and gallbladder wall abnormalities seen in patients with portal hypertension. It most commonly occurs due to idiopathic extrahepatic portal vein obstruction (EHPVO). The abnormalities consist mainly of bile duct compression, stenoses, fibrotic strictures and dilation of both extrahepatic and intrahepatic bile ducts, as well as gallbladder varices. PB may mimic cholangiocarcinoma, sclerosing cholangitis, or choledocholithiasis. Misdiagnosis can be avoided using appropriate imaging modalities to prevent complications. We present the magnetic resonance imaging (MRI) and magnetic resonance cholangiography (MRCP) features of three patients with PB. PMID:25216728

  13. Accuracy of magnetic resonance based susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  14. Quantitative Neuromorphometry Using Magnetic Resonance Histology

    PubMed Central

    Johnson, G. Allan; Badea, Alexandra; Jiang, Yi

    2010-01-01

    Magnetic resonance imaging (MRI), now common in the clinical domain, has been adapted for use by the neuropathologist by increasing the spatial resolution over 100,000-times what is common in human clinical imaging. This increase in spatial resolution has been accomplished through a variety of technical advances—higher magnetic fields, more sensitive receivers, and clever encoding methods. Magnetic resonance histology (MRH), i.e. the application of MRI to study tissue specimens, now makes three-dimensional imaging of the fixed brain in the cranium routine. Active staining (perfusion fixation with a paramagnetic contrast agent) has allowed us to reduce the scan time by more than 8-times over earlier methods. The result is a three-dimensional isotropic image array that can be viewed along any direction without loss of spatial resolution. Homologous slices can be chosen interactively. Since the tissue is still fully hydrated in the cranium, tissue shrinkage and distortion are virtually eliminated. Volume measurements of neural structures can be made with a high degree of precision and accuracy. MRH will not replace more traditional methods, but it promises enormous value in choosing particular areas and times for more traditional sectioning and assessment. PMID:21119052

  15. Magnetic scanner for forensic examination of audiotapes

    NASA Astrophysics Data System (ADS)

    Read, Michael E.; Schwarz, Willi G.; Malsawma, Lex; Wallace, Robert B.; Ryan, James J.

    1999-02-01

    The use of a new Magnetic Media Imaging Instrument (MMII) as applied to the forensic investigation of audio tapes is reported. The MMII is an instrument that produces a 2D image of the magnetic fields on a segment of tape up to 5 cm long, with a resolution of about 3 microns. The dynamic range exceeds 40 dB. This allows the visualization of important characteristics such as stop marks with much greater detail than is possible with conventional means such as ferrofluids. Results of tests representing typical forensic examinations are presented.

  16. Gadolinium-Enhanced Magnetic Resonance Angiography for Pulmonary Embolism

    PubMed Central

    Stein, Paul D.; Chenevert, Thomas L.; Fowler, Sarah E.; Goodman, Lawrence R.; Gottschalk, Alexander; Hales, Charles A.; Hull, Russell D.; Jablonski, Kathleen A.; Leeper, Kenneth V.; Naidich, David P.; Sak, Daniel J.; Sostman, H. Dirk; Tapson, Victor F.; Weg, John G.; Woodard, Pamela K.

    2011-01-01

    Background The accuracy of gadolinium-enhanced magnetic resonance pulmonary angiography and magnetic resonance venography for diagnosing pulmonary embolism has not been determined conclusively. Objective To investigate performance characteristics of magnetic resonance angiography, with or without magnetic resonance venography, for diagnosing pulmonary embolism. Design Prospective, multicenter study from 10 April 2006 to 30 September 2008. (ClinicalTrials.gov registration number: NCT00241826) Setting 7 hospitals and their emergency services. Patients 371 adults with diagnosed or excluded pulmonary embolism. Measurements Sensitivity, specificity, and likelihood ratios were measured by comparing independently read magnetic resonance imaging with the reference standard for diagnosing pulmonary embolism. Reference standard diagnosis or exclusion was made by using various tests, including computed tomographic angiography and venography, ventilation–perfusion lung scan, venous ultra-sonography, D-dimer assay, and clinical assessment. Results Magnetic resonance angiography, averaged across centers, was technically inadequate in 25% of patients (92 of 371). The proportion of technically inadequate images ranged from 11% to 52% at various centers. Including patients with technically inadequate images, magnetic resonance angiography identified 57% (59 of 104) with pulmonary embolism. Technically adequate magnetic resonance angiography had a sensitivity of 78% and a specificity of 99%. Technically adequate magnetic resonance angiography and venography had a sensitivity of 92% and a specificity of 96%, but 52% of patients (194 of 370) had technically inadequate results. Limitation A high proportion of patients with suspected embolism was not eligible or declined to participate. Conclusion Magnetic resonance pulmonary angiography should be considered only at centers that routinely perform it well and only for patients for whom standard tests are contraindicated. Magnetic

  17. Magnetic Resonance Imaging Guided Vacuum Assisted and Core Needle Biopsies.

    PubMed

    Kılıç, Fahrettin; Eren, Abdulkadir; Tunç, Necmettin; Velidedeoğlu, Mehmet; Bakan, Selim; Aydoğan, Fatih; Çelik, Varol; Gazioğlu, Ertuğrul; Yılmaz, Mehmet Halit

    2016-01-01

    The purpose of this study to present the results of Magnetic resonance imaging (MRI) guided cutting needle biopsy procedures of suspicious breast lesions that can be solely detected on Magnetic resonance (MR) examination. The study included 48 patients with 48 lesions which were solely be observed in breast MRI, indistinguishable in ultrasonography and mammography, for MR guided vacuum-assisted cutting needle biopsy and 42 patients with 42 lesions for MR guided cutting needle biopsy for the lesions of the same nature. MR imaging was performed using a 1.5-Tesla MRI device. Acquired MR images were determined and biopsy protocol was performed using computer-aided diagnosis system on the workstation. Vacuum biopsies were performed using 10 G or 12 G automatic biopsy systems, cutting needle biopsy procedures were performed using fully automated 12 G biopsy needle. All biopsy procedures were finalized successfully without major complications. The lesions were 54 mass (60%), 28 were non-mass contrast enhancement (31%) and 8 were foci (9%) in the MR examination. Histopathological evaluation revealed 18 malignant (invasive, in-situ ductal carcinoma and lobular carcinoma), 66 benign (apocrine metaplasia, fibrosis, fibroadenomatoid lesion, sclerosing adenosis, fibrocystic disease and mild-to-severe epithelial proliferation) and 6 high-risk (atypical ductal hyperplasia, intraductal papilloma, radial scar) lesions. Magnetic resonance guided vacuum and cutting needle biopsy methods are successful methods fort he evaluation of solely MRI detected suspicious breast lesions. There are several advantages relative to each other in both methods.

  18. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, Nicolas; Ruchotzke, William; Belding, Amanda; Cardellino, Jeremy; Blomberg, Erick; McCullian, Brendan; Bhallamudi, Vidya; Pelekhov, Denis; Hammel, P. Chris

    Silicon nitride (Si3N4) membranes are commercially-available, versatile structures that have a variety of applications. Although most commonly used as the support structure for transmission electron microscopy (TEM) studies, membranes are also ultrasensitive high-frequency mechanical oscillators. The sensitivity stems from the high quality factor Q 106 , which has led to applications in sensitive quantum optomechanical experiments. The high sensitivity also opens the door to ultrasensitive force detection applications. We report force detection of electron spin magnetic resonance at 300 K using a Si3N4 membrane with a force sensitivity of 4 fN/√{ Hz}, and a potential low temperature sensitivity of 25 aN/√{ Hz}. Given membranes' sensitivity, robust construction, large surface area and low cost, SiN membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional NMR.

  19. Thoracic outlet syndromes and magnetic resonance imaging.

    PubMed

    Panegyres, P K; Moore, N; Gibson, R; Rushworth, G; Donaghy, M

    1993-08-01

    The thoracic outlet syndromes encompass the diverse clinical entities affecting the branchial plexus or subclavian artery including cervical ribs or bands. Thoracic outlet syndrome are often difficult to diagnose on existing clinical and electrophysiological criteria and new diagnostic methods are necessary. This study reports our experience with magnetic resonance imaging (MRI) of the brachial plexus in 20 patients with suspected thoracic outlet syndrome. The distribution of pain and sensory disturbance varied widely, weakness and wasting usually affected C8/T1 innervated muscles, and electrophysiology showed combinations of reduced sensory nerve action potentials from the fourth and fifth digits, and prolonged F-responses or tendon reflex latencies. The MRI study was interpreted blind. Deviation of the brachial plexus was recorded in 19 out of the 24 symptomatic sides (sensitivity 79%). Absence of distortion was correctly identified in 14 out of 16 asymptomatic sides (specificity 87.5%). The false positive rate was 9.5%. Magnetic resonance imaging demonstrated all seven cervical ribs visible on plain cervical spine radiographs. Magnetic resonance imaging also showed a band-like structure extending from the C7 transverse process in 25 out of 33 sides; similar structures were detected in three out of 18 sides in control subjects. These MRI bands often underlay the brachial plexus distortion observed in our patients. We also observed instances of plexus distortion by post-traumatic callus of the first rib, and by a hypertrophied serratus anterior muscle. If they did not demonstrate a cervical rib, plain cervical spine radiographs had no value in predicting brachial plexus distortion. We believe MRI to be of potential value in the diagnosis of thoracic outlet syndrome by: (i) demonstrating deviation or distortion of nerves or blood vessels; (ii) suggesting the presence of radiographically invisible bands; (iii) disclosing other causes of thoracic outlet syndrome

  20. Achilles Impingement Tendinopathy on Magnetic Resonance Imaging.

    PubMed

    Bullock, Mark J; Mourelatos, Jan; Mar, Alice

    2017-02-28

    Haglund's syndrome is impingement of the retrocalcaneal bursa and Achilles tendon caused by a prominence of the posterosuperior calcaneus. Radiographic measurements are not sensitive or specific for diagnosing Haglund's deformity. Localization of a bone deformity and tendinopathy in the same sagittal section of a magnetic resonance imaging scan can assist with the diagnosis in equivocal cases. The aim of the present cross-sectional study was to determine the prevalence of Haglund's syndrome in patients presenting with Achilles tendinopathy and note any associated findings to determine the criteria for a diagnosis of Haglund's syndrome. We reviewed 40 magnetic resonance imaging scans with Achilles tendinopathy and 19 magnetic resonance imaging scans with Achilles high-grade tears and/or ruptures. Achilles tendinopathy was often in close proximity to the superior aspect of the calcaneal tuberosity, consistent with impingement (67.5%). Patients with Achilles impingement tendinopathy were more often female (p < .04) and were significantly heavier than patients presenting with noninsertional Achilles tendinopathy (p = .014) or Achilles tendon rupture (p = .010). Impingement tendinopathy occurred medially (8 of 20) and centrally (10 of 20) more often than laterally (2 of 20) and was associated with a posterior prominence or hyperconvexity with a loss of calcaneal recess more often than a superior projection (22 of 27 versus 8 of 27; p < .001). Haglund's deformity should be reserved for defining a posterior prominence or hyperconvexity with loss of calcaneal recess because this corresponds with impingement. Achilles impingement tendinopathy might be more appropriate terminology for Haglund's syndrome, because the bone deformity is often subtle. Of the 27 images with Achilles impingement tendinopathy, 10 (37.0%) extended to a location prone to Achilles tendon rupture. Given these findings, insertional and noninsertional Achilles tendinopathy are not mutually

  1. [Safety of magnetic resonance imaging after coronary stenting].

    PubMed

    Sinitsyn, V E; Stukalova, O V; Kupriianova, O M; Ternovoĭ, S K

    2007-01-01

    Magnetic resonance imaging (MRI) is contraindicated to some patients with certain types of metallic devices and implants (e.g. cerebral surgical clips, defibrillators). There are some controversies concerning safety of MRI in patients with metallic coronary stents in cases when MRI examination is performed earlier then one month after stent implantation. Analysis of published data has shown that MRI performed with systems having field strength up to 3 Tesla does not cause migration and heating of both bare and coated stent and is not associated with increased risk of coronary artery thrombosis. MRI can be performed safely in first days after coronary stent implantation. Small local artifacts on MRI images do not influence interpretation of the data (except for cases of coronary magnetic resonance angiography).

  2. Hair product artifact in magnetic resonance imaging.

    PubMed

    Chenji, Sneha; Wilman, Alan H; Mah, Dennell; Seres, Peter; Genge, Angela; Kalra, Sanjay

    2017-01-01

    The presence of metallic compounds in facial cosmetics and permanent tattoos may affect the quality of magnetic resonance imaging. We report a case study describing a signal artifact due to the use of a leave-on powdered hair dye. On reviewing the ingredients of the product, it was found to contain several metallic compounds. In lieu of this observation, we suggest that MRI centers include the use of metal- or mineral-based facial cosmetics or hair products in their screening protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cardiovascular magnetic resonance in systemic hypertension

    PubMed Central

    2012-01-01

    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension. PMID:22559053

  4. Magnetic Resonance of Pelvic and Gastrointestinal Emergencies.

    PubMed

    Wongwaisayawan, Sirote; Kaewlai, Rathachai; Dattwyler, Matthew; Abujudeh, Hani H; Singh, Ajay K

    2016-05-01

    Magnetic resonance (MR) imaging is gaining increased acceptance in the emergency setting despite the continued dominance of computed tomography. MR has the advantages of more precise tissue characterization, superior soft tissue contrast, and a lack of ionizing radiation. Traditional barriers to emergent MR are being overcome by streamlined imaging protocols and newer rapid-acquisition sequences. As the utilization of MR imaging in the emergency department increases, a strong working knowledge of the MR appearance of the most commonly encountered abdominopelvic pathologies is essential. In this article, MR imaging protocols and findings of acute pelvic, scrotal, and gastrointestinal pathologies are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Imaging of myocardial perfusion with magnetic resonance.

    PubMed

    Barkhausen, Jörg; Hunold, Peter; Jochims, Markus; Debatin, Jörg F

    2004-06-01

    Coronary artery disease (CAD) is currently the leading cause of death in developed nations. Reflecting the complexity of cardiac function and morphology, noninvasive diagnosis of CAD represents a major challenge for medical imaging. Although coronary artery stenoses can be depicted with magnetic resonance (MR) and computed tomography (CT) techniques, its functional or hemodynamic impact frequently remains elusive. Therefore, there is growing interest in other, target organ-specific parameters such as myocardial function at stress and first-pass myocardial perfusion imaging to assess myocardial blood flow. This review explores the pathophysiologic background, recent technical developments, and current clinical status of first-pass MR imaging (MRI) of myocardial perfusion.

  6. Magnetic Resonance Imaging of the Retina

    PubMed Central

    Duong, Timothy Q.; Muir, Eric R.

    2010-01-01

    This paper reviews recent developments in high-resolution magnetic resonance imaging (MRI) and its application to image anatomy, physiology, and function in the retina of animals. It describes technical issues and solutions in performing retinal MRI, anatomical MRI, blood oxygenation level-dependent functional MRI (fMRI), and blood-flow MRI both of normal retinas and of retinal degeneration. MRI offers unique advantages over existing retinal imaging techniques, including the ability to image multiple layers without depth limitation and to provide multiple clinically relevant data in a single setting. Retinal MRI has the potential to complement existing retinal imaging techniques. PMID:19763752

  7. Magnetic Resonance Imaging in Epidemic Adenoviral Keratoconjunctivitis

    PubMed Central

    Horton, Jonathan C.; Miller, Steven

    2015-01-01

    Most clinicians would agree that there is no reason to obtain a magnetic resonance (MR) scan to evaluate a patient with viral conjunctivitis. We scheduled a patient for an annual MR scan to monitor his optic nerve meningiomas. By coincidence, he had florid viral conjunctivitis the day the scan was performed. It showed severe eyelid edema, contrast enhancement of the anterior orbit, enlargement of the lacrimal gland, and obstruction of the nasolacrimal duct. Adenovirus produces deep orbital inflammation, in addition to infection of the conjunctival surface. PMID:26022084

  8. Magnetic Resonance Imaging of Spinal Emergencies.

    PubMed

    Kawakyu-O'Connor, Daniel; Bordia, Ritu; Nicola, Refky

    2016-05-01

    Magnetic resonance (MR) imaging of the spine is increasingly being used in the evaluation of spinal emergencies because it is highly sensitive and specific in the diagnosis of acute conditions of the spine. The prompt and accurate recognition allows for appropriate medical and surgical intervention. This article reviews the MR imaging features of common emergent conditions, such as spinal trauma, acute disc herniation, infection, and tumors. In addition, we describe common MR imaging sequences, discuss challenges encountered in emergency imaging of the spine, and illustrate multiple mimics of acute conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Magnetic resonance imaging characteristics of granulomatous mastitis.

    PubMed

    Chu, Amanda N; Seiler, Stephen J; Hayes, Jody C; Wooldridge, Rachel; Porembka, Jessica H

    Granulomatous mastitis (GM) is a benign chronic inflammatory condition of the breast. This study was performed to determine the utility of magnetic resonance imaging (MRI) in differentiating GM from malignancy. MRI findings in 12 women with clinical or histopathologically-proven GM were retrospectively reviewed. Non-mass enhancement on MRI was present in all 12 patients with clustered ring enhancement being the most common pattern (n=7, 58%). Architectural distortion (n=10, 83%), skin thickening (n=10, 83%) and focal skin enhancement (n=10, 83%) were also very common. MRI features of GM are often identical to features considered suspicious for malignancy on MRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Sciatic neuropathy: findings on magnetic resonance neurography

    PubMed Central

    Agnollitto, Paulo Moraes; Chu, Marcio Wen King; Simão, Marcelo Novelino; Nogueira-Barbosa, Marcello Henrique

    2017-01-01

    Injuries of the sciatic nerve are common causes of pain and limitation in the lower limbs. Due to its particular anatomy and its long course, the sciatic nerve is often involved in diseases of the pelvis or leg. In recent years, magnetic resonance neurography has become established as an important tool for the study of peripheral nerves and can be widely applied to the study of the sciatic nerve. Therefore, detailed knowledge of its anatomy and of the most prevalent diseases affecting it is essential to maximizing the accuracy of diagnostic imaging. PMID:28670031

  11. Creating a magnetic resonance imaging ontology

    PubMed Central

    Lasbleiz, Jérémy; Saint-Jalmes, Hervé; Duvauferrier, Régis; Burgun, Anita

    2011-01-01

    The goal of this work is to build an ontology of Magnetic Resonance Imaging. The MRI domain has been analysed regarding MRI simulators and the DICOM standard. Tow MRI simulators have been analysed: JEMRIS, which is developed in XML and C++, has a hierarchical organisation and SIMRI, which is developed in C, has a good representation of MRI physical processes. To build the ontology we have used Protégé 4, owl2 that allows quantitative representations. The ontology has been validated by a reasoner (Fact++) and by a good representation of DICOM headers and of MRI processes. The MRI ontology would improved MRI simulators and eased semantic interoperability. PMID:21893854

  12. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  13. Optically pumped nuclear magnetic resonance of semiconductors.

    PubMed

    Hayes, Sophia E; Mui, Stacy; Ramaswamy, Kannan

    2008-02-07

    Optically pumped NMR (OPNMR) of direct gap and indirect gap semiconductors has been an area of active research interest, motivated by both basic science and technological perspectives. Proposals to enhance and to spatially localize nuclear polarization have stimulated interest in this area. Recent progress in OPNMR has focused on exploring the experimental parameter space in order to elucidate details of the underlying photophysics of optical pumping phenomena. The focus of this review is on recent studies of bulk samples of GaAs and InP, namely, the photon energy dependence, the magnetic field dependence, and the phase dependence of OPNMR resonances. Models for the development of nuclear polarization are discussed.

  14. Breast magnetic resonance imaging: current clinical indications.

    PubMed

    Yeh, Eren D

    2010-05-01

    Breast magnetic resonance (MR) is highly sensitive in the detection of invasive breast malignancies. As technology improves, as interpretations and reporting by radiologists become standardized through the development of guidelines by expert consortiums, and as scientific investigation continues, the indications and uses of breast MR as an adjunct to mammography continue to evolve. This article discusses the current clinical indications for breast MR including screening for breast cancer, diagnostic indications for breast MR, and MR guidance for interventional procedures. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Magnetic Resonance Imaging of Acute Stroke.

    PubMed

    Nael, Kambiz; Kubal, Wayne

    2016-05-01

    Neuroimaging plays a critical role in the management of patients with acute stroke syndrome, with diagnostic, therapeutic, and prognostic implications. A multiparametric magnetic resonance (MR) imaging protocol in the emergency setting can address both primary goals of neuroimaging (ie, detection of infarction and exclusion of hemorrhage) and secondary goals of neuroimaging (ie, identifying the site of arterial occlusion, tissue characterization for defining infarct core and penumbra, and determining stroke cause/mechanism). MR imaging provides accurate diagnosis of acute ischemic stroke (AIS) and can differentiate AIS from other potential differential diagnoses. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Magnetic resonance imaging of the temporomandibular joint].

    PubMed

    Ros Mendoza, L H; Cañete Celestino, E; Velilla Marco, O

    2008-01-01

    The temporomandibular joint (TMJ) is a small joint with complex anatomy and function. Diverse pathologies with very different symptoms can affect the TMJ. While various imaging techniques such as plain-film radiography and computed tomography can be useful, magnetic resonance imaging's superior contrast resolution reveals additional structures like the articular disk, making this technique essential for accurate diagnosis and treatment planning. We analyze the MRI signs of the different pathologies that can affect the TMJ from the structural and functional points of view.

  17. Magnetic resonance-guided prostate interventions.

    PubMed

    Haker, Steven J; Mulkern, Robert V; Roebuck, Joseph R; Barnes, Agnieska Szot; Dimaio, Simon; Hata, Nobuhiko; Tempany, Clare M C

    2005-10-01

    We review our experience using an open 0.5-T magnetic resonance (MR) interventional unit to guide procedures in the prostate. This system allows access to the patient and real-time MR imaging simultaneously and has made it possible to perform prostate biopsy and brachytherapy under MR guidance. We review MR imaging of the prostate and its use in targeted therapy, and describe our use of image processing methods such as image registration to further facilitate precise targeting. We describe current developments with a robot assist system being developed to aid radioactive seed placement.

  18. Basic principles of magnetic resonance imaging.

    PubMed

    McGowan, Joseph C

    2008-11-01

    Magnetic resonance (MR) imaging has become the dominant clinical imaging modality with widespread, primarily noninvasive, applicability throughout the body and across many disease processes. The flexibility of MR imaging enables the development of purpose-built optimized applications. Concurrent developments in digital image processing, microprocessor power, storage, and computer-aided design have spurred and enabled further growth in capability. Although MR imaging may be viewed as "mature" in some respects, the field is rich with new proposals and applications that hold great promise for future research health care uses. This article delineates the basic principles of MR imaging and illuminates specific applications.

  19. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  20. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  1. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  2. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  3. Nanoscale nuclear magnetic resonance with chemical resolution

    NASA Astrophysics Data System (ADS)

    Aslam, Nabeel; Pfender, Matthias; Neumann, Philipp; Reuter, Rolf; Zappe, Andrea; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, Jörg

    2017-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in 1H and 19F NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was ~1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.

  4. In vivo nuclear magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leblanc, A.

    1986-05-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  5. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible-near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  6. [Appropriateness of referrals for magnetic resonance imaging in Latium, Italy].

    PubMed

    Prota, Federica; Rosano, Aldo; San Martini, Elena; Cau, Norberto; Guasticchi, Gabriella

    2012-01-01

    Long wait times for access to Nuclear Magnetic resonance imaging (MRI) examinations are a concern and for this reason the project "Appropriateness of referrals for MRI examinations" has been launched in Latium (Italy). The aim of this preliminary study was to describe the main characteristics of MRI referrals in the region. Findings highlight a large variation in referral rates across the region, with 80% of MRI referrals being ordered by general practitioners and family pediatricians. The latter points to the possibility of inappropriate referrals for MRI imaging in Latium.

  7. Magnetic Resonance Elastography to Assess Fibrosis in Kidney Allografts.

    PubMed

    Kirpalani, Anish; Hashim, Eyesha; Leung, General; Kim, Jin K; Krizova, Adriana; Jothy, Serge; Deeb, Maya; Jiang, Nan N; Glick, Lauren; Mnatzakanian, Gevork; Yuen, Darren A

    2017-10-06

    Fibrosis is a major cause of kidney allograft injury. Currently, the only means of assessing allograft fibrosis is by biopsy, an invasive procedure that samples <1% of the kidney. We examined whether magnetic resonance elastography, an imaging-based measure of organ stiffness, could noninvasively estimate allograft fibrosis and predict progression of allograft dysfunction. Kidney allograft recipients >1 year post-transplant undergoing an allograft biopsy first underwent free-breathing, flow-compensated magnetic resonance elastography on a 3.0-T magnetic resonance imaging scanner. Each patient had serial eGFR measurements after the elastography scan for a follow-up period of up to 1 year. The mean stiffness value of the kidney allograft was compared with both the histopathologic Banff fibrosis score and the rate of eGFR change during the follow-up period. Sixteen patients who underwent magnetic resonance elastography and biopsy were studied (mean age: 54±9 years old). Whole-kidney mean stiffness ranged between 3.5 and 7.3 kPa. Whole-kidney stiffness correlated with biopsy-derived Banff fibrosis score (Spearman rho =0.67; P<0.01). Stiffness was heterogeneously distributed within each kidney, providing a possible explanation for the lack of a stronger stiffness-fibrosis correlation. We also found negative correlations between whole-kidney stiffness and both baseline eGFR (Spearman rho =-0.65; P<0.01) and eGFR change over time (Spearman rho =-0.70; P<0.01). Irrespective of the baseline eGFR, increased kidney stiffness was associated with a greater eGFR decline (regression r(2)=0.48; P=0.03). Given the limitations of allograft biopsy, our pilot study suggests the potential for magnetic resonance elastography as a novel noninvasive measure of whole-allograft fibrosis burden that may predict future changes in kidney function. Future studies exploring the utility and accuracy of magnetic resonance elastography are needed. Copyright © 2017 by the American Society of

  8. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  9. Neuronal correlates of functional magnetic resonance imaging in human temporal cortex

    PubMed Central

    Corina, David P.; Corrigan, Neva; Schoenfield-McNeill, Julie; Poliakov, Andrew; Zamora, Leona; Zanos, Stavros

    2010-01-01

    The relationship between changes in functional magnetic resonance imaging and neuronal activity remains controversial. Data collected during awake neurosurgical procedures for the treatment of epilepsy provided a rare opportunity to examine this relationship in human temporal association cortex. We obtained functional magnetic resonance imaging blood oxygen dependent signals, single neuronal activity and local field potentials from 8 to 300 Hz at 13 temporal cortical sites, from nine subjects, during paired associate learning and control measures. The relation between the functional magnetic resonance imaging signal and the electrophysiologic parameters was assessed in two ways: colocalization between significant changes in these signals on the same paired associate-control comparisons and multiple linear regressions of the electrophysiologic measures on the functional magnetic resonance imaging signal, across all tasks. Significant colocalization was present between increased functional magnetic resonance imaging signals and increased local field potentials power in the 50–250 Hz range. Local field potentials power greater than 100 Hz was also a significant regressor for the functional magnetic resonance imaging signal, establishing this local field potentials frequency range as a neuronal correlate of the functional magnetic resonance imaging signal. There was a trend for a relation between power in some low frequency local field potentials frequencies and the functional magnetic resonance imaging signal, for 8–15 Hz increases in the colocalization analysis and 16–23 Hz in the multiple linear regression analysis. Neither analysis provided evidence for an independent relation to frequency of single neuron activity. PMID:19773355

  10. Magnetic resonance imaging of granular materials

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  11. Magnetic resonance imaging of fetal pelvic cysts.

    PubMed

    Archontaki, Styliani; Vial, Yvan; Hanquinet, Sylviane; Meuli, Reto; Alamo, Leonor

    2016-12-01

    The detection of fetal anomalies has improved in the last years as a result of the generalization of ultrasound pregnancy screening exams. The presence of a cystic imaging in the fetal pelvis is a relatively common finding, which can correspond to a real congenital cystic lesion or result from the anomalous liquid accumulation in a whole pelvic organ, mainly the urinary bladder, the uterus, or the vagina. In selected cases with poor prognosis and/or inconclusive echographic findings, magnetic resonance may bring additional information in terms of the characterization, anatomical location, and real extension of the pathology. This pictorial essay describes the normal pelvic fetal anatomy, as well as the most common pelvic cysts. It also describes the causes of an anomalous distension of the whole pelvic organs detected in utero, with emphasis on prenatal magnetic resonance imaging exams. Moreover, it proposes practical teaching points to reduce the differential diagnosis of these lesions based on the sex of the fetus, the division of the pelvis in anatomical spaces, and the imaging findings of the pathology. Finally, it discusses the real utility of complementary MRI.

  12. Magnetic Resonance Imaging of Liver Metastasis.

    PubMed

    Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Magnetic Resonance Imaging Evaluation of Cardiac Masses

    PubMed Central

    Braggion-Santos, Maria Fernanda; Koenigkam-Santos, Marcel; Teixeira, Sara Reis; Volpe, Gustavo Jardim; Trad, Henrique Simão; Schmidt, André

    2013-01-01

    Background Cardiac tumors are extremely rare; however, when there is clinical suspicion, proper diagnostic evaluation is necessary to plan the most appropriate treatment. In this context, cardiovascular magnetic resonance imaging (CMRI) plays an important role, allowing a comprehensive characterization of such lesions. Objective To review cases referred to a CMRI Department for investigation of cardiac and paracardiac masses. To describe the positive case series with a brief review of the literature for each type of lesion and the role of cardiovascular magnetic resonance imaging in evaluation. Methods Between August 2008 and December 2011, all cases referred for CMRI with suspicion of tumor involving the heart were reviewed. Cases with positive histopathological diagnosis, clinical evolution or therapeutic response compatible with the clinical suspicion and imaging findings were selected. Results Among the 13 cases included in our study, eight (62%) had histopathological confirmation. We describe five benign tumors (myxomas, rhabdomyoma and fibromas), five malignancies (sarcoma, lymphoma, Richter syndrome involving the heart and metastatic disease) and three non-neoplastic lesions (pericardial cyst, intracardiac thrombus and infectious vegetation). Conclusion CMRI plays an important role in the evaluation of cardiac masses of non-neoplastic and neoplastic origin, contributing to a more accurate diagnosis in a noninvasive manner and assisting in treatment planning, allowing safe clinical follow-up with good reproducibility. PMID:23887734

  14. Magnetic resonance imaging of granular materials.

    PubMed

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  15. Magnetic resonance elastography hardware design: a survey.

    PubMed

    Tse, Z T H; Janssen, H; Hamed, A; Ristic, M; Young, I; Lamperth, M

    2009-05-01

    Magnetic resonance elastography (MRE) is an emerging technique capable of measuring the shear modulus of tissue. A suspected tumour can be identified by comparing its properties with those of tissues surrounding it; this can be achieved even in deep-lying areas as long as mechanical excitation is possible. This would allow non-invasive methods for cancer-related diagnosis in areas not accessible with conventional palpation. An actuating mechanism is required to generate the necessary tissue displacements directly on the patient in the scanner and three different approaches, in terms of actuator action and position, exist to derive stiffness measurements. However, the magnetic resonance (MR) environment places considerable constraints on the design of such devices, such as the possibility of mutual interference between electrical components, the scanner field, and radio frequency pulses, and the physical space restrictions of the scanner bore. This paper presents a review of the current solutions that have been developed for MRE devices giving particular consideration to the design criteria including the required vibration frequency and amplitude in different applications, the issue of MR compatibility, actuation principles, design complexity, and scanner synchronization issues. The future challenges in this field are also described.

  16. Magnetic resonance methods in fetal neurology.

    PubMed

    Mailath-Pokorny, M; Kasprian, G; Mitter, C; Schöpf, V; Nemec, U; Prayer, D

    2012-10-01

    Fetal magnetic resonance imaging (MRI) has become an established clinical adjunct for the in-vivo evaluation of human brain development. Normal fetal brain maturation can be studied with MRI from the 18th week of gestation to term and relies primarily on T2-weighted sequences. Recently diffusion-weighted sequences have gained importance in the structural assessment of the fetal brain. Diffusion-weighted imaging provides quantitative information about water motion and tissue microstructure and has applications for both developmental and destructive brain processes. Advanced magnetic resonance techniques, such as spectroscopy, might be used to demonstrate metabolites that are involved in brain maturation, though their development is still in the early stages. Using fetal MRI in addition to prenatal ultrasound, morphological, metabolic, and functional assessment of the fetus can be achieved. The latter is not only based on observation of fetal movements as an indirect sign of activity of the fetal brain but also on direct visualization of fetal brain activity, adding a new component to fetal neurology. This article provides an overview of the MRI methods used for fetal neurologic evaluation, focusing on normal and abnormal early brain development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Magnetic resonance imaging. Application to family practice.

    PubMed Central

    Goh, R. H.; Somers, S.; Jurriaans, E.; Yu, J.

    1999-01-01

    OBJECTIVE: To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. QUALITY OF EVIDENCE: Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. MAIN MESSAGE: For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. CONCLUSIONS: With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:10509224

  18. [Surface coils for magnetic-resonance images].

    PubMed

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  19. Triaxial magnetic field gradient system for microcoil magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Seeber, D. A.; Hoftiezer, J. H.; Daniel, W. B.; Rutgers, M. A.; Pennington, C. H.

    2000-11-01

    There is a great advantage in signal to noise ratio (S/N) that can be obtained in nuclear magnetic resonance (NMR) experiments on very small samples (having spatial dimensions ˜100 μm or less) if one employs NMR "micro" receiver coils, "microcoils," which are of similarly small dimensions. The gains in S/N could enable magnetic resonance imaging (MRI) microscopy with spatial resolution of ˜1-2 μm, much better than currently available. Such MRI microscopy however requires very strong (>10 T/m), rapidly switchable triaxial magnetic field gradients. Here, we report the design and construction of such a triaxial gradient system, producing gradients substantially greater than 15 T/m in all three directions, x, y, and z (and as high as 50 T/m for the x direction). The gradients are switchable within time ˜10 μs and adequately uniform (within 5% over a volume of [600μm3] for microcoil MRI of small samples.

  20. Non-contrast-enhanced magnetic resonance angiography: techniques and applications.

    PubMed

    Blankholm, Anne Dorte; Ringgaard, Steffen

    2012-01-01

    Non-contrast-enhanced magnetic resonance angiography has gained renewed interest since the discovery of the association between gadolinium-based contrast agents and nephrogenic systemic fibrosis. The following article is an overview of the different magnetic resonance angiography sequences, the technical possibilities and new developments. Clinical options and recent advancements will be highlighted, and recommendations for non-contrast-enhanced magnetic resonance angiography techniques in different anatomical regions will be given. Furthermore, the authors seek to predict the future of non-contrast-enhanced magnetic resonance angiography, with special focus on patients at risk.

  1. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications.

    PubMed

    Salerno, Michael; Sharif, Behzad; Arheden, Håkan; Kumar, Andreas; Axel, Leon; Li, Debiao; Neubauer, Stefan

    2017-06-01

    Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications. © 2017 American Heart Association, Inc.

  2. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are

  3. Texaco looks at magnetic resonance logs vs. coring in GOM

    SciTech Connect

    Smith, S.; Pickens, T.

    1997-11-01

    The latest generation of magnetic resonance wireline tools allows explorationists to obtain accurate values for formation permeability, moveable and bound-fluid volumes, irreducible water saturation and formation fluid types in one continuous pass under a wide range of borehole conditions. These petrophysical formation parameters were previously attainable only by going through the expensive process of taking a conventional core, or extensive sidewall cores on wireline. This article details how Texaco Exploration and Production Inc. examined this concept in one of its recent exploration wells in the Gulf of Mexico. The company combined data from Schlumberger Well Service`s Combinable Magnetic Resonance (CMR) and Formation MicroImager (FMI) tools to obtain accurate reserve figures for a submarine canyon-fill play, and reduced the need for extensive sidewall cores in future wells in the field. Texaco now uses magnetic resonance technology as an integral part of its formation package. They have found it highly reliable for predicting the production potential of an exploration well--a critical step when allocating resources for a new platform or subsea development project.

  4. Magnetic resonance imaging appearance of cartilage repair in the knee.

    PubMed

    Brown, Wendy E; Potter, Hollis G; Marx, Robert G; Wickiewicz, Thomas L; Warren, Russell F

    2004-05-01

    Assessment of surgically repaired cartilage lesions with standardized cartilage sensitive magnetic resonance imaging was done to evaluate the integrity, morphologic features, and signal of the articular surface, thereby obtaining information about the natural history of these procedures in the knee. Magnetic resonance imaging also assessed the interface between the repaired and native cartilage, changes in the subchondral bone, and the appearance of cartilage over the opposite and adjacent (native) surfaces. One hundred eighty magnetic resonance imaging examinations were obtained in 112 patients who had cartilage-resurfacing procedures, including 86 microfractures and 35 autologous chondrocyte implantations, at a mean of 15 and 13 months after surgery, respectively. Autologous chondrocyte implantations showed consistently better fill of the defects at all times compared with microfracture. The graft hypertrophied in 63% of surgeries. The repair cartilage over the microfracture generally was depressed with respect to native cartilage. Propensity for bony overgrowth was most marked in the microfracture group, with loss of adjacent cartilage evident with progressive followup.

  5. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  6. Magnetic Resonance Imaging Methods in Soil Science

    NASA Astrophysics Data System (ADS)

    Pohlmeier, A.; van Dusschoten, D.; Blümler, P.

    2009-04-01

    Magnetic Resonance Imaging (MRI) is a powerful technique to study water content, dynamics and transport in natural porous media. However, MRI systems and protocols have been developed mainly for medical purposes, i.e. for media with comparably high water contents and long relaxation times. In contrast, natural porous media like soils and rocks are characterized by much lower water contents, typically 0 < theta < 0.4, and much faster T1 and T2 relaxation times. So, the usage of standard medical scanners and protocols is of limited benefit. Three strategies can be applied for the monitoring of water contents and dynamics in natural porous media: i) Dedicated high-field scanners (with vertical bore) allowing stronger gradients and faster switching so that shorter echo times can be realized. ii) Special measurement sequences using ultrashort rf- and gradient-pulses like single point imaging derivates (SPI, SPRITE)(1) and multi-echo methods, which monitor series of echoes and allow for extrapolation to zero time(2). Hence, the loss of signal during the first echo period may be compensated to determine the initial magnetization (= water content) as well as relaxation time maps simultaneously. iii) Finally low field( < 1T) scanners also provide longer echo times and hence detect larger fractions of water, since the T2 relaxation time of water in most porous media increases with decreasing magnetic field strength(3). In the presentation examples for all three strategies will be given. References 1) Pohlmeier et al. Vadose Zone J. 7, 1010-1017 (2008) 2) Edzes et al., Magn. Res. Imag. 16, 185-196 (1998) 3) Raich H, and Blümler P, Concepts in Magn. Reson. B 23B, 16-25 (2004) 4) Pohlmeier et al. Magn. Res. Imag. doi:10.1016/j.mri.2008.06.007 (2008)

  7. Magnetic resonance imaging findings of neuroaxonal dystrophy in a papillon puppy.

    PubMed

    Tamura, S; Tamura, Y; Uchida, K

    2007-08-01

    A 3.5-month-old papillon puppy was brought to our clinic with chief complaints of progressive quadriparesis, ataxia and head tremor. Lesions in the cerebellum, brainstem and spinal cord were suspected on the basis of a neurological examination. No abnormality was found in a clinicopathological examination or on magnetic resonance imaging. On the basis of these results differential diagnoses including an inflammatory disease, a degenerative condition or a storage disorder were considered. Subsequently, the signs progressed and glossoplegia and dysphagia developed at six months of age. At a second magnetic resonance imaging, severe atrophy of the entire brain was found. After these examinations, the puppy was euthanased and histopathologically diagnosed with neuroaxonal dystrophy. Because magnetic resonance imaging detected abnormal features that were characteristic of neuroaxonal dystrophy in this case, we speculate that magnetic resonance imaging can assist in the pre-mortem diagnosis of this disease.

  8. Magnetic resonance image enhancement using stochastic resonance in Fourier domain.

    PubMed

    Rallabandi, V P Subramanyam; Roy, Prasun Kumar

    2010-11-01

    In general, low-field MRI scanners such as the 0.5- and 1-T ones produce images that are poor in quality. The motivation of this study was to lessen the noise and enhance the signal such that the image quality is improved. Here, we propose a new approach using stochastic resonance (SR)-based transform in Fourier space for the enhancement of magnetic resonance images of brain lesions, by utilizing an optimized level of Gaussian fluctuation that maximizes signal-to-noise ratio (SNR). We acquired the T1-weighted MR image of the brain in DICOM format. We processed the original MR image using the proposed SR procedure. We then tested our approach on about 60 patients of different age groups with different lesions, such as arteriovenous malformation, benign lesion and malignant tumor, and illustrated the image enhancement by using just-noticeable difference visually as well as by utilizing the relative enhancement factor quantitatively. Our method can restore the original image from noisy image and optimally enhance the edges or boundaries of the tissues, clarify indistinct structural brain lesions without producing ringing artifacts, as well as delineate the edematous area, active tumor zone, lesion heterogeneity or morphology, and vascular abnormality. The proposed technique improves the enhancement factor better than the conventional techniques like the Wiener- and wavelet-based procedures. The proposed method can readily enhance the image fusing a unique constructive interaction of noise and signal, and enables improved diagnosis over conventional methods. The approach well illustrates the novel potential of using a small amount of Gaussian noise to improve the image quality. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Extended MHD simulation of resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Sugiyama, L.; Park, G. Y.; Chang, C. S.; Ku, S.; Joseph, I.

    2009-05-01

    Resonant magnetic perturbations (RMPs) have been found effective in suppressing edge localized modes (ELMs) in the DIII-D experiment (Evans et al 2006 Phys. Plasmas 13 056121, Moyer et al 2005 Phys. Plasmas 12 056119). Simulations with the M3D initial value code indicate that plasma rotation, due to an MHD toroidal rotation or to two-fluid drifts, has an essential effect on the RMP. When the flow is below a threshold, the RMP field can couple to a resistive mode with a helical structure, different from the usual ELM, that amplifies the non-axisymmetric field. The magnetic field becomes stochastic in the outer part of the plasma, causing density and temperature loss. At higher rotation speed, the resistive mode is stabilized and the applied RMP is screened from the plasma, so that the stochastic magnetic layer is thinner and the temperature remains similar to the initial unperturbed state. The rotational flow effects, along with the remnants of the screened RMP, cause a density loss which extends into the plasma core. The two-fluid model contains intrinsic drift motion and axisymmetric toroidal rotation may not be needed to screen the RMP nor stabilize the resistive mode.

  10. A desktop magnetic resonance imaging system.

    PubMed

    Wright, Steven M; Brown, David G; Porter, Jay R; Spence, David C; Esparza, Emilio; Cole, David C; Huson, F Russell

    2002-01-01

    Modern magnetic resonance imaging (MRI) systems consist of several complex, high cost subsystems. The cost and complexity of these systems often makes them impractical for use as routine laboratory instruments, limiting their use to hospitals and dedicated laboratories. However, advances in the consumer electronics industry have led to the widespread availability of inexpensive radio-frequency integrated circuits with exceptional abilities. We have developed a small, low-cost MR system derived from these new components. When combined with inexpensive desktop magnets, this type of MR scanner has the promise of becoming standard laboratory equipment for both research and education. This paper describes the development of a prototype desktop MR scanner utilizing a 0.21 T permanent magnet with an imaging region of approximately 2 cm diameter. The system uses commercially available components where possible and is programmed in LabVIEW software. Results from 3D data sets of resolution phantoms and fixed, newborn mice demonstrate the capability of this system to obtain useful images from a system constructed for approximately $13,500.

  11. Spatial localization in nuclear magnetic resonance spectroscopy.

    PubMed

    Keevil, Stephen F

    2006-08-21

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.

  12. Multidataset Refinement Resonant Diffraction, and Magnetic Structures

    PubMed Central

    Attfield, J. Paul

    2004-01-01

    The scope of Rietveld and other powder diffraction refinements continues to expand, driven by improvements in instrumentation, methodology and software. This will be illustrated by examples from our research in recent years. Multidataset refinement is now commonplace; the datasets may be from different detectors, e.g., in a time-of-flight experiment, or from separate experiments, such as at several x-ray energies giving resonant information. The complementary use of x rays and neutrons is exemplified by a recent combined refinement of the monoclinic superstructure of magnetite, Fe3O4, below the 122 K Verwey transition, which reveals evidence for Fe2+/Fe3+ charge ordering. Powder neutron diffraction data continue to be used for the solution and Rietveld refinement of magnetic structures. Time-of-flight instruments on cold neutron sources can produce data that have a high intensity and good resolution at high d-spacings. Such profiles have been used to study incommensurate magnetic structures such as FeAsO4 and β–CrPO4. A multiphase, multidataset refinement of the phase-separated perovskite (Pr0.35Y0.07Th0.04Ca0.04Sr0.5)MnO3 has been used to fit three components with different crystal and magnetic structures at low temperatures. PMID:27366599

  13. Magnetic resonance tracking of fluorescent nanodiamond fabrication

    NASA Astrophysics Data System (ADS)

    Shames, A. I.; Osipov, V. Yu; Boudou, J. P.; Panich, A. M.; von Bardeleben, H. J.; Treussart, F.; Vul', A. Ya

    2015-04-01

    Magnetic resonance techniques (electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR)) are used for tracking the multi-stage process of the fabrication of fluorescent nanodiamonds (NDs) produced by high-energy electron irradiation, annealing, and subsequent nano-milling. Pristine commercial high pressure and high temperature microdiamonds (MDs) with mean size 150 μm contain ~5  ×  1018 spins/g of singlet (S = 1/2) substitutional nitrogen defects P1, as well as sp3 C-C dangling bonds in the crystalline lattice. The half-field X-band EPR clearly shows (by the appearance of the intense ‘forbidden’ g = 4.26 line) that high-energy electron irradiation and annealing of MDs induce a large amount (~5  ×  1017 spins/g) of triplet (S = 1) magnetic centers, which are identified as negatively charged nitrogen vacancy defects (NV-). This is supported by EPR observations of the ‘allowed’ transitions between Zeeman sublevels of the triplet state. After progressive milling of the fluorescent MDs down to an ultrasubmicron scale (≤100 nm), the relative abundance of EPR active NV- defects in the resulting fluorescent NDs (FND) substantially decreases and, vice versa, the content of C-inherited singlet defects correlatively increases. In the fraction of the finest FNDs (mean particle size <20 nm), which are contained in the dried supernatant of ultracentrifuged aqueous dispersion of FNDs, the NV- content is found to be reduced by one order of magnitude whereas the singlet defects content increases up to ~2  ×  1019 spins/g. In addition, another triplet-type defect, which is characterized by the g = 4.00 ‘forbidden’ line, appears. On reduction of the particle size below the 20 nm limit, the ‘allowed’ EPR lines become practically unobservable, whereas the ‘forbidden’ lines remain as a reliable fingerprint of the presence of NV- centers in small ND systems. The same size reduction causes the disappearance of the

  14. Gradient and RF Coil Issues in Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Martens, Michael Alan

    Techniques are presented for new analysis of coils in magnetic resonance imaging that should lead to faster and more accurate pictures of humans. Insertable planar, cylindrical or elliptical gradient coils offer the potential for significant performance increases in magnetic resonance imaging. Using variational methods to minimize inductance and thereby optimize switching speeds, we have analyzed coils with these three geometries. In the interest of improving image quality by reducing eddy current artifacts, the same methods are used to design a set of self-shielded gradient coils. In the cylindrical and planar cases, scale models of the new coils have been constructed and tested. In the elliptical case, the theory and mathematics necessary to design elliptic gradient coils is presented. This includes the development of a Green function expansion in elliptic cylinder coordinates. The expansion is in terms of cosine -elliptic and Mathieu functions. Improvements in the field uniformity of rf coils results in improved image quality in magnetic resonance imaging. Using a waveguide structure instead of traditional coil designs leads to the possibility of generating more uniform fields at higher frequencies. A new conformal transformation is developed in order to analyze TEM excitations of microstrips and coupled microstrips with circular and elliptical cross-sections. This new transformation is derived by expressing a Schwarz-Christoffel transformation in terms of elliptic integrals of the first and third kind. Exact solutions for the complex potential of these geometries are presented for the first time. The uniformity of the magnetic field inside slotted tube transmission lines is examined using the newly developed conformal mapping technique. The degree to which the transmission lines with elliptical cross-sections provide more uniform magnetic fields than those with the circular cross-sections is investigated.

  15. Prostate Magnetic Resonance Imaging and Magnetic Resonance Imaging Targeted Biopsy in Patients with a Prior Negative Biopsy: A Consensus Statement by AUA and SAR.

    PubMed

    Rosenkrantz, Andrew B; Verma, Sadhna; Choyke, Peter; Eberhardt, Steven C; Eggener, Scott E; Gaitonde, Krishnanath; Haider, Masoom A; Margolis, Daniel J; Marks, Leonard S; Pinto, Peter; Sonn, Geoffrey A; Taneja, Samir S

    2016-12-01

    After an initial negative biopsy there is an ongoing need for strategies to improve patient selection for repeat biopsy as well as the diagnostic yield from repeat biopsies. As a collaborative initiative of the AUA (American Urological Association) and SAR (Society of Abdominal Radiology) Prostate Cancer Disease Focused Panel, an expert panel of urologists and radiologists conducted a literature review and formed consensus statements regarding the role of prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a negative biopsy, which are summarized in this review. The panel recognizes that many options exist for men with a previously negative biopsy. If a biopsy is recommended, prostate magnetic resonance imaging and subsequent magnetic resonance imaging targeted cores appear to facilitate the detection of clinically significant disease over standardized repeat biopsy. Thus, when high quality prostate magnetic resonance imaging is available, it should be strongly considered for any patient with a prior negative biopsy who has persistent clinical suspicion for prostate cancer and who is under evaluation for a possible repeat biopsy. The decision of whether to perform magnetic resonance imaging in this setting must also take into account the results of any other biomarkers and the cost of the examination, as well as the availability of high quality prostate magnetic resonance imaging interpretation. If magnetic resonance imaging is done, it should be performed, interpreted and reported in accordance with PI-RADS version 2 (v2) guidelines. Experience of the reporting radiologist and biopsy operator are required to achieve optimal results and practices integrating prostate magnetic resonance imaging into patient care are advised to implement quality assurance programs to monitor targeted biopsy results. Patients receiving a PI-RADS assessment category of 3 to 5 warrant repeat biopsy with image guided targeting. While

  16. Computed tomography and magnetic resonance imaging in diagnosing hepatocellular carcinoma.

    PubMed

    Dalla Palma, L; Pozzi-Mucelli, R S

    1992-02-01

    The evaluation of hepatocellular carcinoma (HCC) is based upon ultrasonography (US) which has proved to have a high sensitivity and is also extremely useful in guiding the percutaneous needle biopsy. The main role of computed tomography (CT) and magnetic resonance imaging (MRI) is to supplement US in evaluating the extent of HCC. The Authors discuss the different techniques of examinations of the liver both for CT and MRI as far as the modalities of contrast enhancement, site of injection, and type of contrast agents are concerned. The differences between low field and high field magnets are also discussed. The main CT and MRI findings are illustrated, depending upon the technique of examination. Finally the role of these techniques is discussed. Based upon personal experience and the data in CT literature, and if performed with updated technology and intraarterial injection (lipiodol), CT is the method of choice in order to supplement US in the evaluation of HCC.

  17. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  18. Biogenic Magnetite in Humans and New Magnetic Resonance Hazard Questions

    NASA Astrophysics Data System (ADS)

    Strbak, O.; Kopcansky, P.; Frollo, I.

    2011-01-01

    The widespread use of magnetic resonance (MR) techniques in clinical practice, and recent discovery of biogenic ferrimagnetic substances in human tissue, open new questions regarding health hazards and MR. Current studies are restricted just to the induction of Faraday currents and consequent thermal effects, or ‘inoffensive’ interaction with static magnetic field. We outlined that magnetic energies associated with interaction of ferrimagnetic particles and MR magnetic fields can be dangerous for sensitive tissues like the human brain is. To simulate the interaction mechanism we use our. ‘Cube’ model approach, which allows more realistic calculation of the particle's magnetic moments. Biogenic magnetite nanoparticles face during MR examination three principal fields: (i) main B0 field, (ii) gradient field, and (iii) B1 field. Interaction energy of biogenic magnetite nanoparticle with static magnetic field B0 exceeds the covalent bond energy 5 times for particles from 4 nm up to 150 nm. Translation energy in gradient field exceeds biochemical bond energy for particles bigger than 50 nm. Biochemical bond disruption and particle release to the tissue environment, in the presence of all MR fields, are the most critical points of this interaction. And together with relaxation processes after application of RF pulses, they make biogenic magnetite nanoparticles a potential MR health hazard issue.

  19. Interpreting the behavior of a quarter-wave transmission line resonator in a magnetized plasma

    SciTech Connect

    Gogna, G. S. Turner, M. M.; Karkari, S. K.

    2014-12-15

    The quarter wave resonator immersed in a strongly magnetized plasma displays two possible resonances occurring either below or above its resonance frequency in vacuum, f{sub o}. This fact was demonstrated in our recent articles [G. S. Gogna and S. K. Karkari, Appl. Phys. Lett. 96, 151503 (2010); S. K. Karkari, G. S. Gogna, D. Boilson, M. M. Turner, and A. Simonin, Contrib. Plasma Phys. 50(9), 903 (2010)], where the experiments were carried out over a limited range of magnetic fields at a constant electron density, n{sub e}. In this paper, we present the observation of dual resonances occurring over the frequency scan and find that n{sub e} calculated by considering the lower resonance frequency is 25%–30% smaller than that calculated using the upper resonance frequency with respect to f{sub o}. At a given magnetic field strength, the resonances tend to shift away from f{sub o} as the background density is increased. The lower resonance tends to saturate when its value approaches electron cyclotron frequency, f{sub ce}. Interpretation of these resonance conditions are revisited by examining the behavior of the resonance frequency response as a function of n{sub e}. A qualitative discussion is presented which highlights the practical application of the hairpin resonator for interpreting n{sub e} in a strongly magnetized plasma.

  20. Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting

    PubMed Central

    Zhao, Bo; Setsompop, Kawin; Ye, Huihui; Cauley, Stephen; Wald, Lawrence L.

    2017-01-01

    This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization. PMID:26915119

  1. Chronic subdural hematoma: demonstration by magnetic resonance

    SciTech Connect

    Sipponen, J.T.; Sepponen, R.E.; Sivula, A.

    1984-01-01

    The ability of magnetic resonance (MR) to identify intracranial hematomas was tested in five patients with clinical and computed tomographic signs of chronic subdural hematoma. The extracerebral collections were displayed as a zone of bright intensity using the T1-weighted inversion recovery (IR 1500/400) sequence, reflecting the lesions' short T1 relaxation times. The collections also showed high intensity using the spin echo (SE) sequence, with a longer delay of 100ms and 160ms, reflecting the long T2 relaxation time. The spin echo sequence with a repetition time of 500ms and an echo delay of 160ms (SE 500/160) almost effaced other structures in the image, thus increasing the specificity of this pulse scheme for detection of chronic blood collections. Although in two of the five patients the subdural hematomas were in the isodense CT phase, all were easily visualized with MR.

  2. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  3. Magnetic resonance image segmentation using multifractal techniques

    NASA Astrophysics Data System (ADS)

    Yu, Yue-e.; Wang, Fang; Liu, Li-lin

    2015-11-01

    In order to delineate target region for magnetic resonance image (MRI) with diseases, the classical multifractal spectrum (MFS)-segmentation method and latest multifractal detrended fluctuation spectrum (MF-DFS)-based segmentation method are employed in our study. One of our main conclusions from experiments is that both of the two multifractal-based methods are workable for handling MRIs. The best result is obtained by MF-DFS-based method using Lh10 as local characteristic. The anti-noises experiments also suppot the conclusion. This interest finding shows that the features can be better represented by the strong fluctuations instead of the weak fluctuations for the MRIs. By comparing the multifractal nature between lesion and non-lesion area on the basis of the segmentation results, an interest finding is that the gray value's fluctuation in lesion area is much severer than that in non-lesion area.

  4. Small-Volume Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fratila, Raluca M.; Velders, Aldrik H.

    2011-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most information-rich analytical techniques available. However, it is also inherently insensitive, and this drawback precludes the application of NMR spectroscopy to mass- and volume-limited samples. We review a particular approach to increase the sensitivity of NMR experiments, namely the use of miniaturized coils. When the size of the coil is reduced, the sample volume can be brought down to the nanoliter range. We compare the main coil geometries (solenoidal, planar, and microslot/stripline) and discuss their applications to the analysis of mass-limited samples. We also provide an overview of the hyphenation of microcoil NMR spectroscopy to separation techniques and of the integration with lab-on-a-chip devices and microreactors.

  5. Magnetic resonance imaging of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Tofts, P S; Johnson, G; Landon, D N

    1986-01-01

    Triethyl tin(TET)-induced cerebral oedema has been studied in cats by magnetic resonance imaging (MRI), and the findings correlated with the histology and fine structure of the cerebrum following perfusion-fixation. MRI is a sensitive technique for detecting cerebral oedema, and the distribution and severity of the changes correlate closely with the morphological abnormalities. The relaxation times, T1 and T2 increase progressively as the oedema develops, and the proportional increase in T2 is approximately twice that in T1. Analysis of the magnetisation decay curves reveals slowly-relaxing and rapidly-relaxing components which probably correspond to oedema fluid and intracellular water respectively. The image appearances taken in conjunction with relaxation data provide a basis for determining the nature of the oedema in vivo. Images PMID:3806109

  6. Overview of Functional Magnetic Resonance Imaging

    PubMed Central

    Glover, Gary H.

    2010-01-01

    Synopsis Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) depicts changes in deoxyhemoglobin concentration consequent to task-induced or spontaneous modulation of neural metabolism. Since its inception in 1990, this method has been widely employed in thousands of studies of cognition for clinical applications such as surgical planning, for monitoring treatment outcomes, and as a biomarker in pharmacologic and training programs. Technical developments have solved most of the challenges of applying fMRI in practice. These challenges include low contrast to noise ratio of BOLD signals, image distortion, and signal dropout. More recently, attention is turning to the use of pattern classification and other statistical methods to draw increasingly complex inferences about cognitive brain states from fMRI data. This paper reviews the methods, some of the challenges and the future of fMRI. PMID:21435566

  7. Stem cell labeling for magnetic resonance imaging.

    PubMed

    Himmelreich, Uwe; Hoehn, Mathias

    2008-01-01

    In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized.

  8. Chest magnetic resonance imaging: a protocol suggestion*

    PubMed Central

    Hochhegger, Bruno; de Souza, Vinícius Valério Silveira; Marchiori, Edson; Irion, Klaus Loureiro; Souza Jr., Arthur Soares; Elias Junior, Jorge; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Escuissato, Dante Luiz; Mançano, Alexandre Dias; Araujo Neto, César Augusto; Guimarães, Marcos Duarte; Nin, Carlos Schuler; Santos, Marcel Koenigkam; Silva, Jorge Luiz Pereira e

    2015-01-01

    In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI) has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation. PMID:26811555

  9. Myocardial Viability on Cardiac Magnetic Resonance

    PubMed Central

    Souto, Ana Luiza Mansur; Souto, Rafael Mansur; Teixeira, Isabella Cristina Resende; Nacif, Marcelo Souto

    2017-01-01

    The study of myocardial viability is of great importance in the orientation and management of patients requiring myocardial revascularization or angioplasty. The technique of delayed enhancement (DE) is accurate and has transformed the study of viability into an easy test, not only for the detection of fibrosis but also as a binary test detecting what is viable or not. On DE, fibrosis equal to or greater than 50% of the segmental area is considered as non-viable, whereas that below 50% is considered viable. During the same evaluation, cardiac magnetic resonance (CMR) may also use other techniques for functional and perfusion studies to obtain a global evaluation of ischemic heart disease. This study aims to highlight the current concepts and broadly emphasize the use of CMR as a method that over the last 20 years has become a reference in the detection of infarction and assessment of myocardial viability. PMID:28591322

  10. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1993-01-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  11. Whole body postmortem magnetic resonance angiography.

    PubMed

    Ruder, Thomas D; Hatch, Gary M; Ebert, Lars C; Flach, Patricia M; Ross, Steffen; Ampanozi, Garyfalia; Thali, Michael J

    2012-05-01

      Computed tomography (CT) and magnetic resonance (MR) imaging have become important elements of forensic radiology. Whereas the feasibility and potential of CT angiography have long been explored, postmortem MR angiography (PMMRA) has so far been neglected. We tested the feasibility of PMMRA on four adult human cadavers. Technical quality of PMMRA was assessed relative to postmortem CT angiography (PMCTA), separately for each body region. Intra-aortic contrast volumes were calculated on PMCTA and PMMRA with segmentation software. The results showed that technical quality of PMMRA images was equal to PMCTA in 4/4 cases for the head, the heart, and the chest, and in 3/4 cases for the abdomen, and the pelvis. There was a mean decrease in intra-aortic contrast volume from PMCTA to PMMRA of 46%. PMMRA is technically feasible and allows combining the soft tissue detail provided by MR and the information afforded by angiography. © 2011 American Academy of Forensic Sciences.

  12. A novel digital magnetic resonance imaging spectrometer.

    PubMed

    Liu, Zhengmin; Zhao, Cong; Zhou, Heqin; Feng, Huanqing

    2006-01-01

    Spectrometer is the essential part of magnetic resonance imaging (MRI) system. It controls the transmitting and receiving of signals. Many commercial spectrometers are now available. However, they are usually costly and complex. In this paper, a new digital spectrometer based on PCI extensions for instrumentation (PXI) architecture is presented. Radio frequency (RF) pulse is generated with the method of digital synthesis and its frequency and phase are continuously tunable. MR signal acquired by receiver coils is processed by digital quadrature detection and filtered to get the k-space data, which avoid the spectral distortion due to amplitude and phase errors between two channels of traditional detection. Compared to the conventional design, the presented spectrometer is built with general PXI platform and boards. This design works in a digital manner with features of low cost, high performance and accuracy. The experiments demonstrate its efficiency.

  13. Myocardial Tissue Characterization by Magnetic Resonance Imaging

    PubMed Central

    Ferreira, Vanessa M.; Piechnik, Stefan K.; Robson, Matthew D.; Neubauer, Stefan

    2014-01-01

    Cardiac magnetic resonance (CMR) imaging is a well-established noninvasive imaging modality in clinical cardiology. Its unsurpassed accuracy in defining cardiac morphology and function and its ability to provide tissue characterization make it well suited for the study of patients with cardiac diseases. Late gadolinium enhancement was a major advancement in the development of tissue characterization techniques, allowing the unique ability of CMR to differentiate ischemic heart disease from nonischemic cardiomyopathies. Using T2-weighted techniques, areas of edema and inflammation can be identified in the myocardium. A new generation of myocardial mapping techniques are emerging, enabling direct quantitative assessment of myocardial tissue properties in absolute terms. This review will summarize recent developments involving T1-mapping and T2-mapping techniques and focus on the clinical applications and future potential of these evolving CMR methodologies. PMID:24576837

  14. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  15. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Astrophysics Data System (ADS)

    Spaniol, Craig

    1993-06-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  16. Magnetic resonance urography by virtual reality modelling.

    PubMed

    Beigi, Navid; Sangild, Thomas; Terkildsen, Søren Vorre; Deding, Dorthe; Stødkilde-Jørgensen, Hans; Pedersen, Michael

    2003-01-01

    The purpose of this study was to create a 3D visualization of the urinary tract by a novel virtual reality approach, and to evaluate the usefulness of this method for papillary classification as compared with 2D urogram obtained by maximum intensity projection (MIP). In one healthy pig, magnetic resonance urography was performed using a T1-weighted 3D gradient echo pulse sequence. Post-processing was performed by means of an MIP algorithm and by using 3D virtual reality modelling, followed by manual classification of papillae as being either simple or compound. The 2D MIP urogram demonstrated 6 simple and 6 compound papillae, whereas the 3D urogram demonstrated 5 simple and 7 compound papillae. In both urograms, some papillae were unsuccessfully classified. The possibility of using virtual reality devices allowed 3D rotation and offered additional diagnostic information. However, further studies should reveal its feasibility in diseased kidneys.

  17. The magnetic resonance imaging-linac system.

    PubMed

    Lagendijk, Jan J W; Raaymakers, Bas W; van Vulpen, Marco

    2014-07-01

    The current image-guided radiotherapy systems are suboptimal in the esophagus, pancreas, kidney, rectum, lymph node, etc. These locations in the body are not easily accessible for fiducials and cannot be visualized sufficiently on cone-beam computed tomographies, making daily patient set-up prone to geometrical uncertainties and hinder dose optimization. Additional interfraction and intrafraction uncertainties for those locations arise from motion with breathing and organ filling. To allow real-time imaging of all patient tumor locations at the actual treatment position a fully integrated 1.5-T, diagnostic quality, magnetic resonance imaging with a 6-MV linear accelerator is presented. This system must enable detailed dose painting at all body locations. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  19. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  20. Prostate magnetic resonance imaging: challenges of implementation.

    PubMed

    Loch, Ronald; Fowler, Kathryn; Schmidt, Ryan; Ippolito, Joseph; Siegel, Cary; Narra, Vamsi

    2015-01-01

    Prostate cancer is among the most common causes of cancer and cancer deaths in men. Screening methods and optimal treatments have become controversial in recent years. Prostate magnetic resonance imaging (MRI) is gaining popularity as a tool to assist diagnosis, risk assessment, and staging. However, implementation into clinical practice can be difficult, with many challenges associated with image acquisition, postprocessing, interpretation, reporting, and radiologic-pathologic correlation. Although state-of-the-art technology is available at select sites for targeting tissue biopsy and interpreting multiparametric prostate MRI, many institutions struggle with adapting this new technology into an efficient multidisciplinary model of patient care. This article reviews several of the challenges that radiologists should be aware of when integrating prostate MRI into their clinical practice.

  1. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology.

    PubMed

    Jakab, András; Pogledic, Ivana; Schwartz, Ernst; Gruber, Gerlinde; Mitter, Christian; Brugger, Peter C; Langs, Georg; Schöpf, Veronika; Kasprian, Gregor; Prayer, Daniela

    2015-12-01

    The recent technological advancement of fast magnetic resonance imaging (MRI) sequences allowed the inclusion of diffusion tensor imaging, functional MRI, and proton MR spectroscopy in prenatal imaging protocols. These methods provide information beyond morphology and hold the key to improving several fields of human neuroscience and clinical diagnostics. Our review introduces the fundamental works that enabled these imaging techniques, and also highlights the most recent contributions to this emerging field of prenatal diagnostics, such as the structural and functional connectomic approach. We introduce the advanced image processing approaches that are extensively used to tackle fetal or maternal movement-related image artifacts, and which are necessary for the optimal interpretation of such imaging data. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Functional magnetic resonance imaging studies of language.

    PubMed

    Small, Steven L; Burton, Martha W

    2002-11-01

    Functional neuroimaging of language builds on almost 150 years of study in neurology, psychology, linguistics, anatomy, and physiology. In recent years, there has been an explosion of research using functional imaging technology, especially positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), to understand the relationship between brain mechanisms and language processing. These methods combine high-resolution anatomic images with measures of language-specific brain activity to reveal neural correlates of language processing. This article reviews some of what has been learned about the neuroanatomy of language from these imaging techniques. We first discuss the normal case, organizing the presentation according to the levels of language, encompassing words (lexicon), sound structure (phonemes), and sentences (syntax and semantics). Next, we delve into some unusual language processing circumstances, including second languages and sign languages. Finally, we discuss abnormal language processing, including developmental and acquired dyslexia and aphasia.

  3. Magnetic Resonance Studies of Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Vazquez Reina, Rafael

    In today's society there is high demand to have access to energy for portable devices in different forms. Capacitors with high performance in small package to achieve high charge/discharge rates, and batteries with their ability to store electricity and make energy mobile are part of this demand. The types of internal dielectric material strongly affect the characteristics of a capacitor, and its applications. In a battery, the choice of the electrolyte plays an important role in the Solid Electrolyte Interphase (SEI) formation, and the cathode material for high output voltage. Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopy are research techniques that exploit the magnetic properties of the electron and certain atomic nuclei to determine physical and chemical properties of the atoms or molecules in which they are contained. Both EPR and NMR spectroscopy technique can yield meaningful structural and dynamic information. Three different projects are discussed in this dissertation. First, High energy density capacitors where EPR measurements described herein provide an insight into structural and chemical differences in the dielectric material of a capacitor. Next, as the second project, Electrolyte solutions where an oxygen-17 NMR study has been employed to assess the degree of preferential solvation of Li+ ions in binary mixtures of EC (ethylene carbonate) and DMC (dimethyl carbonate) containing LiPF6 (lithium hexafluo-rophosphate) which may be ultimately related to the SEI formation mechanism. The third project was to study Bismuth fluoride as cathode material for rechargeable batteries. The objective was to study 19F and 7Li MAS NMR of some nanocomposite cathode materials as a conversion reaction occurring during lithiation and delithation of the BiF3/C nanocomposite.

  4. Could magnetic resonance provide in vivo histology?

    PubMed

    Dominietto, Marco; Rudin, Markus

    2014-01-13

    THE DIAGNOSIS OF A SUSPECTED TUMOR LESION FACES TWO BASIC PROBLEMS: detection and identification of the specific type of tumor. Radiological techniques are commonly used for the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced contrast between normal and neoplastic tissue. Identification of the tumor type is still based on histological analysis. The result depends critically on the sampling sites, which given the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo imaging might overcome this limitation providing comprehensive three-dimensional morphological, physiological, and metabolic information as well as the possibility for longitudinal studies. In this context, magnetic resonance based techniques are quite attractive since offer at the same time high spatial resolution, unique soft tissue contrast, good temporal resolution to study dynamic processes and high chemical specificity. The goal of this paper is to review the role of magnetic resonance techniques in characterizing tumor tissue in vivo both at morphological and physiological levels. The first part of this review covers methods, which provide information on specific aspects of tumor phenotypes, considered as indicators of malignancy. These comprise measurements of the inflammatory status, neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue morphology. Even if the spatial resolution is not sufficient to characterize the tumor phenotype at a cellular level, this multiparametric information might potentially be used for classification of tumors. The second part discusses mathematical tools, which allow characterizing tissue based on the acquired three-dimensional data set. In particular, methods addressing tumor heterogeneity will be highlighted. Finally, we address the potential and limitation of using MRI as a tool to provide in vivo tissue characterization.

  5. Magnetic resonance imaging in adolescent painful flexible flatfoot.

    PubMed

    Wong, Margaret W N; Griffith, James F

    2009-04-01

    The cause of navicular tuberosity pain in adolescents with flexible flatfeet is not well understood. We hypothesized that some of the navicular tuberosity pain may be related to insertional enthesopathy of the posterior tibial tendon at the navicular. Magnetic resonance imaging was performed to look for abnormal signal changes in a series of patients. Consecutive adolescent patients presenting with flexible flatfeet and navicular tuberosity pain were prospectively recruited. A detailed foot examination and body fat analysis was performed. Standing radiographs and Tekscan pedobarograph of both feet were obtained. Magnetic resonance examinations were performed on a 1.5-T whole-body magnetic resonance imaging system utilizing a standard extremity coil. MRI abnormality was detected in 15 of the 36 feet in 18 adolescents examined. Abnormalities detected included thickening of the posterior tibial tendon insertion, marrow edema in the accessory navicular, marrow edema in the navicular tuberosity, and contrast enhancement at the posterior tibial tendon insertion site. Patients with MRI abnormalities were significantly taller, had a lower body mass index and a lower body fat percentage than those without MRI abnormality. Forward stepwise logistic regression analysis identified low body fat percentage and presence of an accessory navicular as independent predictors for abnormality on MRI. MRI abnormality was frequently detected in adolescents with painful flexible flatfeet. The MRI signal changes indicated an enthesopathy like process occurring at the posterior tibial tendon insertion to the navicular which could explain the origin of pain in flexible flatfeet patients without an accessory navicular. Early identification and appropriate treatment to prevent progression may be helpful.

  6. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    SciTech Connect

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  7. Computed tomography and magnetic resonance findings in lipoid pneumonia.

    PubMed Central

    Bréchot, J M; Buy, J N; Laaban, J P; Rochemaure, J

    1991-01-01

    A case of exogenous lipoid pneumonia was documented by computed tomography and magnetic resonance imaging. Although strongly suggesting the presence of fat on T1 weighted images, magnetic resonance does not produce images specific for this condition. Computed tomography is the best imaging modality for its diagnosis. Images PMID:1750024

  8. Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images

    DTIC Science & Technology

    2009-04-01

    GEOMETRIC COMPUTATION OF HUMAN GYRIFICATION INDEXES FROM MAGNETIC RESONANCE IMAGES By Shu Su Tonya White Marcus Schmidt Chiu-Yen Kao and Guillermo...00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images 5a. CONTRACT NUMBER... Geometric Computation of Gyrification Indexes Chiu-Yen Kao 1 Geometric Computation of Human Gyrification

  9. Magnetic resonance advection imaging of cerebrovascular pulse dynamics.

    PubMed

    Voss, Henning U; Dyke, Jonathan P; Tabelow, Karsten; Schiff, Nicholas D; Ballon, Douglas J

    2017-04-01

    We analyze the pulsatile signal component of dynamic echo planar imaging data from the brain by modeling the dependence between local temporal and spatial signal variability. The resulting magnetic resonance advection imaging maps depict the location of major arteries. Color direction maps allow for visualization of the direction of blood vessels. The potential significance of magnetic resonance advection imaging maps is demonstrated on a functional magnetic resonance imaging data set of 19 healthy subjects. A comparison with the here introduced pulse coherence maps, in which the echo planar imaging signal is correlated with a cardiac pulse signal, shows that the magnetic resonance advection imaging approach results in a better spatial definition without the need for a pulse reference. In addition, it is shown that magnetic resonance advection imaging velocities can be estimates of pulse wave velocities if certain requirements are met, which are specified. Although for this application magnetic resonance advection imaging velocities are not quantitative estimates of pulse wave velocities, they clearly depict local pulsatile dynamics. Magnetic resonance advection imaging can be applied to existing dynamic echo planar imaging data sets with sufficient spatiotemporal resolution. It is discussed whether magnetic resonance advection imaging might have the potential to evolve into a biomarker for the health of the cerebrovascular system.

  10. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    SciTech Connect

    Nishimura, Seiya

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  11. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  12. Compact electrically detected magnetic resonance setup

    NASA Astrophysics Data System (ADS)

    Eckardt, Michael; Behrends, Jan; Münter, Detlef; Harneit, Wolfgang

    2015-04-01

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a "large-scale" state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  13. Compact electrically detected magnetic resonance setup

    SciTech Connect

    Eckardt, Michael Harneit, Wolfgang; Behrends, Jan; Münter, Detlef

    2015-04-15

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a “large-scale” state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  14. Magnetic resonance characterization of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Fanciulli, Marco; Belli, Matteo; Vellei, Antonio; Canevali, Carmen; Rotta, Davide; Paleari, Stefano; Basini, Martina

    2012-02-01

    Silicon nanowires (SiNWs) have been extensively investigated in the last decades. The interest in these nanostructures stems from both fundamental and applied research motivations. The functional properties of one- and zero-dimensional silicon structures are significantly different, at least below a certain critical dimension, from those well known in the bulk. The key and peculiar functional properties of SiNWs find applications in nanoelectronics, classical and quantum information processing and storage, optoelectronics, photovoltaics, thermoelectric, battery technology, nano-biotechnology, and neuroelectronics. We report our work on the characterization by continuous wave (CW) and pulse electron spin resonance (CW, FT-EPR) and electrically detected magnetic resonance (EDMR) measurements of silicon nanowires (SiNWs) produced by different top-down processes. SiNWs were fabricated starting from SOI wafers using standard e-beam lithography and anisotropic wet etching or by metal-assisted chemical etching. Further oxidation was used to reduce the wire cross section. Different EDMR implementations were used to address the electronic wave function of donors (P, As) and to characterize point defects at the SiNWs/SiO2 interface.

  15. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  16. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  17. Magnetic tuning of electrically resonant metamaterial with inclusion of ferrite

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Zhao, Qian; Zhao, Hongjie; Zhou, Ji

    2008-10-01

    We experimentally demonstrate a magnetic tuning of electrically resonant metamaterial (EMM) at microwave frequencies by introducing microwave ferrite rods into the periodic array of electrically resonant element. Different from those based on controlling the capacitance of equivalent LC circuit, this tunability arises from a mechanism of magnetically tuning the inductance of resonant element via the active ambient effective permeability. For magnetic fields from 0 to 5000 Oe, resonance frequency of the EMM can be continuously and reversibly tuned in a range of about 800 MHz. The active effective permittivity has also been investigated through the simulated scattering parameters.

  18. Rotational resonance of nonaxisymmetric magnetic braking in the KSTAR tokamak.

    PubMed

    Park, J-K; Jeon, Y M; Menard, J E; Ko, W H; Lee, S G; Bae, Y S; Joung, M; You, K-I; Lee, K-D; Logan, N; Kim, K; Ko, J S; Yoon, S W; Hahn, S H; Kim, J H; Kim, W C; Oh, Y-K; Kwak, J-G

    2013-08-30

    One of the important rotational resonances in nonaxisymmetric neoclassical transport has been experimentally validated in the KSTAR tokamak by applying highly nonresonant n=1 magnetic perturbations to rapidly rotating plasmas. These so-called bounce-harmonic resonances are expected to occur in the presence of magnetic braking perturbations when the toroidal rotation is fast enough to resonate with periodic parallel motions of trapped particles. The predicted and observed resonant peak along with the toroidal rotation implies that the toroidal rotation in tokamaks can be controlled naturally in favorable conditions to stability, using nonaxisymmetric magnetic perturbations.

  19. [Contrast agents in magnetic resonance imaging: development and problems].

    PubMed

    Xu, Yi-kai

    2002-09-01

    In spite of the inherent versatility of magnetic resonance imaging (MRI), researchers and clinicians from both home and aboard have made great achievements in developing safe and effective contrast agents. Many new agents are expected to be available for clinical use in the near future. It is of clinical importance that the agents should expand the diagnostic utility of MRI, improve the detection of tiny lesions and help evaluate specific tissue or organ functions. This article aims to examine current status of contrast agents for MRI and the problems waiting for solutions.

  20. Biological Effects and Safety in Magnetic Resonance Imaging: A Review

    PubMed Central

    Hartwig, Valentina; Giovannetti, Giulio; Vanello, Nicola; Lombardi, Massimo; Landini, Luigi; Simi, Silvana

    2009-01-01

    Since the introduction of Magnetic Resonance Imaging (MRI) as a diagnostic technique, the number of people exposed to electromagnetic fields (EMF) has increased dramatically. In this review, based on the results of a pioneer study showing in vitro and in vivo genotoxic effects of MRI scans, we report an updated survey about the effects of non-ionizing EMF employed in MRI, relevant for patients’ and workers’ safety. While the whole data does not confirm a risk hypothesis, it suggests a need for further studies and prudent use in order to avoid unnecessary examinations, according to the precautionary principle. PMID:19578460

  1. The electrically detected magnetic resonance microscope: Combining conductive atomic force microscopy with electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Klein, Konrad; Hauer, Benedikt; Stoib, Benedikt; Trautwein, Markus; Matich, Sonja; Huebl, Hans; Astakhov, Oleksandr; Finger, Friedhelm; Bittl, Robert; Stutzmann, Martin; Brandt, Martin S.

    2013-10-01

    We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8 × 10^6spins/sqrtHz at room temperature.

  2. The electrically detected magnetic resonance microscope: combining conductive atomic force microscopy with electrically detected magnetic resonance.

    PubMed

    Klein, Konrad; Hauer, Benedikt; Stoib, Benedikt; Trautwein, Markus; Matich, Sonja; Huebl, Hans; Astakhov, Oleksandr; Finger, Friedhelm; Bittl, Robert; Stutzmann, Martin; Brandt, Martin S

    2013-10-01

    We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8×10(6)spins/√Hz at room temperature.

  3. Torque-mixing magnetic resonance spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan T.; Diao, Zhu; Belov, Miro; Burgess, Jacob A.; Compton, Shawn R.; Hiebert, Wayne K.; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory E.; Thomson, Douglas J.; Freeman, Mark R.

    2016-10-01

    An optomechanical platform for magnetic resonance spectroscopy will be presented. The method relies on frequency mixing of orthogonal RF fields to yield a torque amplitude (arising from the transverse component of a precessing dipole moment, in analogy to magnetic resonance detection by electromagnetic induction) on a miniaturized resonant mechanical torsion sensor. In contrast to induction, the method is fully broadband and allows for simultaneous observation of the equilibrium net magnetic moment alongside the associated magnetization dynamics. To illustrate the method, comprehensive electron spin resonance spectra of a mesoscopic, single-crystal YIG disk at room temperature will be presented, along with situations where torque spectroscopy can offer complimentary information to existing magnetic resonance detection techniques. The authors are very grateful for support from NSERC, CRC, AITF, and NINT. Reference: Science 350, 798 (2015).

  4. Nuclear magnetic resonance techniques in medicine.

    PubMed

    Bradbury, E M; Radda, G K; Allen, P S

    1983-04-01

    Nuclear magnetic resonance (NMR) techniques are now finding exciting new noninvasive applications in medicine. There are two major approaches. The first is as an analytical technique using 31P NMR spectroscopy for the identification and quantitation of the more abundant phosphate metabolites in various tissues. Changes in the levels of these metabolites and in intracellular cytoplasmic pH can be followed in various ischemic and hypoxic conditions to monitor metabolic response to stress situations and to diagnose inborn errors of metabolism. The second major approach is an entirely different application of NMR techniques and uses 1H, the nucleus most abundant in biological tissues, largely in water and fats, to produce NMR images of any section of the body. By applying non-uniform magnetic fields across a section of the body, hydrogen nuclei in different elemental volumes in the section are tagged with different frequencies and their signals can be processed to give an image of the section. In contrast to computed tomographic scanning, NMR has particularly powerful application in the imaging of soft tissues.

  5. Safety planning for intraoperative magnetic resonance imaging.

    PubMed

    Hemingway, Maureen; Kilfoyle, Marguerite

    2013-11-01

    An intraoperative magnetic resonance imaging (MRI) suite (ie, a type of hybrid OR) is a high-risk zone that requires well-defined safety procedures to avoid adverse events related to magnetic forces. At one facility, the opening of an MRI suite necessitated the creation of a safety plan to establish guidelines, procedures, education, and nursing care specific to the use of MRI technology in the operative environment. Formation of a steering committee enabled a multidisciplinary approach to planning and implementation. The addition of two new perioperative nursing roles (ie, MRI control room monitor, MRI safety nurse) addressed staffing challenges related to strictly enforcing MRI safety procedures and delineating duties different from those of the RN circulator. Benefits of a safe approach to an MRI-integrated operative setting included the elimination of an entire surgical experience for patients who underwent additional resection of the tumor during their initial surgical procedure instead of postoperatively or during a subsequent return to the OR. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  6. Overhauser-enhanced magnetic resonance elastography.

    PubMed

    Salameh, Najat; Sarracanie, Mathieu; Armstrong, Brandon D; Rosen, Matthew S; Comment, Arnaud

    2016-05-01

    Magnetic resonance elastography (MRE) is a powerful technique to assess the mechanical properties of living tissue. However, it suffers from reduced sensitivity in regions with short T2 and T2 * such as in tissue with high concentrations of paramagnetic iron, or in regions surrounding implanted devices. In this work, we exploit the longer T2 * attainable at ultra-low magnetic fields in combination with Overhauser dynamic nuclear polarization (DNP) to enable rapid MRE at 0.0065 T. A 3D balanced steady-state free precession based MRE sequence with undersampling and fractional encoding was implemented on a 0.0065 T MRI scanner. A custom-built RF coil for DNP and a programmable vibration system for elastography were developed. Displacement fields and stiffness maps were reconstructed from data recorded in a polyvinyl alcohol gel phantom loaded with stable nitroxide radicals. A DNP enhancement of 25 was achieved during the MRE sequence, allowing the acquisition of 3D Overhauser-enhanced MRE (OMRE) images with (1.5 × 2.7 × 9) mm(3) resolution over eight temporal steps and 11 slices in 6 minutes. In conclusion, OMRE at ultra-low magnetic field can be used to detect mechanical waves over short acquisition times. This new modality shows promise to broaden the scope of conventional MRE applications, and may extend the utility of low-cost, portable MRI systems to detect elasticity changes in patients with implanted devices or iron overload. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Quantitative Magnetic Resonance Imaging and Phantom Development

    NASA Astrophysics Data System (ADS)

    Keenan, Kathryn

    2014-03-01

    Magnetic Resonance Imaging (MRI) uses strong magnetic fields and radiofrequency pulses to produce images of proton locations and properties. Image contrast reflects relative density of excited water protons, differences in relaxation times of water protons due to surrounding structure, and the sequence of RF pulses used to excite the water protons. MRI can be used to quantitatively measure longitudinal (T1) and transverse (T2) spin relaxation times, measure tissue volumes, track motion of water molecules (flow/diffusion), measure temperature, assess susceptibility differences, create maps of tissue electrical properties, etc. This talk will focus on quantitative measurement of relaxation times, diffusion and electrical properties. Diffusion MRI varies the homogeneous magnetic field using an initial gradient, followed by a refocusing gradient with the same magnitude with opposite direction: protons begin to precess at different rates, depending on the applied gradient, and will disperse. The refocusing gradient cannot refocus spins that have moved between gradient pulses, and the apparent proton diffusion can be calculated from the signal attenuation. Typically, gradient pulses are applied in three orthogonal directions to calculate a bulk diffusion coefficient. Tissue electrical properties can be mapped by measuring the complex RF transmit and receive fields (B1 +, B1-). New methods estimate local electrical conductivity from in vivo B1 + phase measurements based on the homogeneous Helmholtz equation. Quantitative relaxation measurements, diffusion and electrical properties can distinguish healthy tissue from malignant tumor from benign tumor or identify the time of a particular event, e.g. a stroke. In this talk, I will describe how the NIST system, diffusion, and breast phantoms help validate these important measurements.

  8. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    PubMed

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  9. Magnetic Resonance Imaging Guided Vacuum Assisted and Core Needle Biopsies

    PubMed Central

    Kılıç, Fahrettin; Eren, Abdulkadir; Tunç, Necmettin; Velidedeoğlu, Mehmet; Bakan, Selim; Aydoğan, Fatih; Çelik, Varol; Gazioğlu, Ertuğrul; Yılmaz, Mehmet Halit

    2016-01-01

    Objective The purpose of this study to present the results of Magnetic resonance imaging (MRI) guided cutting needle biopsy procedures of suspicious breast lesions that can be solely detected on Magnetic resonance (MR) examination. Materials and Methods The study included 48 patients with 48 lesions which were solely be observed in breast MRI, indistinguishable in ultrasonography and mammography, for MR guided vacuum-assisted cutting needle biopsy and 42 patients with 42 lesions for MR guided cutting needle biopsy for the lesions of the same nature. MR imaging was performed using a 1.5-Tesla MRI device. Acquired MR images were determined and biopsy protocol was performed using computer-aided diagnosis system on the workstation. Vacuum biopsies were performed using 10 G or 12 G automatic biopsy systems, cutting needle biopsy procedures were performed using fully automated 12 G biopsy needle. Results All biopsy procedures were finalized successfully without major complications. The lesions were 54 mass (60%), 28 were non-mass contrast enhancement (31%) and 8 were foci (9%) in the MR examination. Histopathological evaluation revealed 18 malignant (invasive, in-situ ductal carcinoma and lobular carcinoma), 66 benign (apocrine metaplasia, fibrosis, fibroadenomatoid lesion, sclerosing adenosis, fibrocystic disease and mild-to-severe epithelial proliferation) and 6 high-risk (atypical ductal hyperplasia, intraductal papilloma, radial scar) lesions. Conclusion Magnetic resonance guided vacuum and cutting needle biopsy methods are successful methods fort he evaluation of solely MRI detected suspicious breast lesions. There are several advantages relative to each other in both methods. PMID:28331727

  10. Magnetic resonance imaging of abdominal aortic aneurysms. [Aneurysm

    SciTech Connect

    Lee, J.K.T.; Ling, D.; Heiken, J.P.; Glazer, H.S.; Sicard, G.A.; Totty, W.G.; Levitt, R.G.; Murphy, W.A.

    1984-12-01

    Magnetic resonance imaging (MRI) was performed in 20 patients with radiologically or surgically proven abdominal aortic aneurysms using a Siemens Magnetom scanner with a 0.35-T superconductive magnet. Of nine patients who underwent surgical repair, MRI correctly demonstrated the origin of the aortic aneurysm in nine and accurately determined the status of the iliac arteries in eight. Of 11 patients who did not have surgical repair, MRI findings correlated well with other radiologic studies. MRI was found to be more reliable than sonography in determining the relation between the aneurysm and the renal arteries as well as the status of the iliac arteries. Despite these advantages, the authors still advocate sonography as the screening procedure of choice in patients with suspected abdominal aortic aneurysms because of its lower cost and ease of performance. MRI should be reserved for patients who have had unsuccessful or equivocal sonographic examinations.

  11. Flow in porous metallic materials: a magnetic resonance imaging study.

    PubMed

    Xu, Shoujun; Harel, Elad; Michalak, David J; Crawford, Charles W; Budker, Dmitry; Pines, Alexander

    2008-11-01

    To visualize flow dynamics of analytes inside porous metallic materials with laser-detected magnetic resonance imaging (MRI). We examine the flow of nuclear-polarized water in a porous stainless steel cylinder. Laser-detected MRI utilizes a sensitive optical atomic magnetometer as the detector. Imaging was performed in a remote-detection mode: the encoding was conducted in the Earth's magnetic field, and detection is conducted downstream of the encoding location. Conventional MRI (7T) was also performed for comparison. Laser-detected MRI clearly showed MR images of water flowing through the sample, whereas conventional MRI provided no image. We demonstrated the viability of laser-detected MRI at low-field for studying porous metallic materials, extending MRI techniques to a new group of systems that is normally not accessible to conventional MRI. Copyright (c) 2008 Wiley-Liss, Inc.

  12. Chiral discrimination in nuclear magnetic resonance spectroscopy.

    PubMed

    Lazzeretti, Paolo

    2017-08-08

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is in general favoured (e.g., L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry), because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ``blind'' to chirality, i.e., %%In fact, spectrometers presently used in NMR are unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants, are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between {\\em true} and {\\em false} chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e., the trace of a second-rank tensor, the mixed electric dipole/mag\\-net\\-ic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality

  13. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-25

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  14. Quantifying Mixing using Magnetic Resonance Imaging

    PubMed Central

    Tozzi, Emilio J.; McCarthy, Kathryn L.; Bacca, Lori A.; Hartt, William H.; McCarthy, Michael J.

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media 1, 2. The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile 1H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  15. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  16. [Magnetic resonance urography in the diagnosis of the ectopic ureters].

    PubMed

    Straub, Péter; Horváth, Gyula; Dávidovics, Sándor; Pintér, András

    2007-01-21

    Ectopic ureters are often very difficult to diagnose with conventional diagnostic modalities (physical examination, ultrasound, intravenous urography, cystography, urethro-cystoscopy, isotop examinations) in children. The authors report their experience with a relatively new method, the magnetic resonance urography (MRU) diagnosing ectopic ureters in childhood. MRU was used in 7 girls to detect an ectopic ureter in the last 3 years. On the basis of typical clinical signs, an ectopic ureter was suspected in all patients, but it could not be demonstrated by conventional diagnostic methods. Thus, MRU was done to confirm the suspected diagnosis. In all of the 7 patients, the examinations demonstrated ectopic ureters with the intraoperative findings further confirming the pre-operative diagnosis. In 2 patients, the intraoperative findings of the upper urinary tract anomalies were slightly different from the MRU report. The MRU is a reliable diagnostic method to diagnose ectopic ureters which are not easily detectable with conventional diagnostic modalities.

  17. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  18. Magnetic resonance imaging of oscillating electrical currents

    PubMed Central

    Halpern-Manners, Nicholas W.; Bajaj, Vikram S.; Teisseyre, Thomas Z.; Pines, Alexander

    2010-01-01

    Functional MRI has become an important tool of researchers and clinicians who seek to understand patterns of neuronal activation that accompany sensory and cognitive processes. However, the interpretation of fMRI images rests on assumptions about the relationship between neuronal firing and hemodynamic response that are not firmly grounded in rigorous theory or experimental evidence. Further, the blood-oxygen-level-dependent effect, which correlates an MRI observable to neuronal firing, evolves over a period that is 2 orders of magnitude longer than the underlying processes that are thought to cause it. Here, we instead demonstrate experiments to directly image oscillating currents by MRI. The approach rests on a resonant interaction between an applied rf field and an oscillating magnetic field in the sample and, as such, permits quantitative, frequency-selective measurements of current density without spatial or temporal cancellation. We apply this method in a current loop phantom, mapping its magnetic field and achieving a detection sensitivity near the threshold required for the detection of neuronal currents. Because the contrast mechanism is under spectroscopic control, we are able to demonstrate how ramped and phase-modulated spin-lock radiation can enhance the sensitivity and robustness of the experiment. We further demonstrate the combination of these methods with remote detection, a technique in which the encoding and detection of an MRI experiment are separated by sample flow or translation. We illustrate that remotely detected MRI permits the measurement of currents in small volumes of flowing water with high sensitivity and spatial resolution. PMID:20421504

  19. Nuclear magnetic resonance for cultural heritage.

    PubMed

    Brai, Maria; Camaiti, Mara; Casieri, Cinzia; De Luca, Francesco; Fantazzini, Paola

    2007-05-01

    Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T(1) and T(2) relaxation data of fully water-saturated samples to get "pore size" distributions, but the use of T(2) requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time tau is used in Carr-Purcell-Meiboom-Gill experiments. When a portable single-sided NMR apparatus is used, large field gradients due to the instrument, at the scale of the sample, are thought to be the dominant dephasing cause. In this paper, T(1) and T(2) (at different tau values) distributions were measured in natural (Lecce stone) and artificial (brick samples coming from the Greek-Roman Theatre of Taormina) porous media of interest for cultural heritage by a standard laboratory instrument and a portable device. While T(1) distributions do not show any appreciable effect from inhomogeneous fields, T(2) distributions can show strong effects, and a procedure is presented based on the dependence of 1/T(2) on tau to separate pore-scale gradient effects from sample-scale gradient effects. Unexpectedly, the gradient at the pore scale can be, in some cases, strong enough to make negligible the effects of gradients at the sample scale of the single-sided device.

  20. Magnetic resonance imaging in cardiac amyloidosis

    SciTech Connect

    O'Donnell, J.K.; Go, R.T.; Bott-Silverman, C.; Feiglin, D.H.; Salcedo, E.; MacIntyre, W.J.

    1984-01-01

    Primary amyloidosis (AL) involves the myocardium in 90% of cases and may present as apparent ischemia, vascular disease, or congestive heart failure. Two-dimensional echocardiography (echo) has proven useful in the diagnosis, particularly in differentiating AL from constrictive pericarditis. The findings of thickened RV and LV myocardium, normal LV cavity dimension, and a diffuse hyperrefractile ''granular sparkling'' appearance are virtually diagnostic. Magnetic resonance (MR) imaging may improve the resolution of anatomic changes seen in cardiac AL and has the potential to provide more specific information based on biochemical tissue alterations. In this preliminary study, the authors obtained both MR and echo images in six patients with AL and biopsy-proven myocardial involvement. 5/6 patients also had Tc-99 PYP myocardial studies including emission tomography (SPECT). MR studies utilized a 0.6 Tesla superconductive magnet. End diastolic gated images were obtained with TE=30msec and TR=R-R interval on the ECG. 6/6 pts. showed LV wall thickening which was concentric and included the septum. Papillary muscles were identified in all and were enlarged in 3/6. 4/6 pts. showed RV wall thickening but to a lesser degree than LV. Pericardial effusions were present in 4 cases. These findings correlated well with the results of echo although MR gave better RV free wall resolution. PYP scans were positive in 3 pts. but there was no correlation with degree of LV thickening. The authors conclude that there are no identifiable MR findings in patients with cardiac AL which encourage further attempts to characterize myocardial involvement by measurement of MR relaxation times in vivo.

  1. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  2. γ-aminobutyric acid as a metabolite: Interpreting magnetic resonance spectroscopy experiments.

    PubMed

    Myers, James Fm; Nutt, David J; Lingford-Hughes, Anne R

    2016-05-01

    The current rise in the prevalence of magnetic resonance spectroscopy experiments to measure γ-aminobutyric acid in the living human brain is an exciting and productive area of research. As research spreads into clinical populations and cognitive research, it is important to fully understand the source of the magnetic resonance spectroscopy signal and apply appropriate interpretation to the results of the experiments. γ-aminobutyric acid is present in the brain not only as a neurotransmitter, but also in high intracellular concentrations, both as a transmitter precursor and a metabolite. γ-aminobutyric acid concentrations measured by magnetic resonance spectroscopy are not necessarily implicated in neurotransmission and therefore may reflect a very different brain activity to that commonly suggested. In this perspective, we examine some of the considerations to be taken in the interpretation of any γ-aminobutyric acid signal measured by magnetic resonance spectroscopy. © The Author(s) 2016.

  3. Resting-state functional magnetic resonance imaging: review of neurosurgical applications.

    PubMed

    Lang, Stefan; Duncan, Niall; Northoff, Georg

    2014-05-01

    Recent research in brain imaging has highlighted the role of different neural networks in the resting state (ie, no task) in which the brain displays spontaneous low-frequency neuronal oscillations. These can be indirectly measured with resting-state functional magnetic resonance imaging, and functional connectivity can be inferred as the spatiotemporal correlations of this signal. This technique has proliferated in recent years and has allowed the noninvasive investigation of large-scale, distributed functional networks. In this review, we give a brief overview of resting-state networks and examine the use of resting-state functional magnetic resonance imaging in neurosurgical contexts, specifically with respect to neurooncology, epilepsy surgery, and deep brain stimulation. We discuss the advantages and disadvantages compared with task-based functional magnetic resonance imaging, the limitations of resting-state functional magnetic resonance imaging, and the emerging directions of this relatively new technology.

  4. Magnetic resonance imaging of benign prostatic hyperplasia.

    PubMed

    Guneyli, Serkan; Ward, Emily; Thomas, Stephen; Yousuf, Ambereen Nehal; Trilisky, Igor; Peng, Yahui; Antic, Tatjana; Oto, Aytekin

    2016-01-01

    Benign prostatic hyperplasia (BPH) is a common condition in middle-aged and older men and negatively affects the quality of life. An ultrasound classification for BPH based on a previous pathologic classification was reported, and the types of BPH were classified according to different enlargement locations in the prostate. Afterwards, this classification was demonstrated using magnetic resonance imaging (MRI). The classification of BPH is important, as patients with different types of BPH can have different symptoms and treatment options. BPH types on MRI are as follows: type 0, an equal to or less than 25 cm3 prostate showing little or no zonal enlargements; type 1, bilateral transition zone (TZ) enlargement; type 2, retrourethral enlargement; type 3, bilateral TZ and retrourethral enlargement; type 4, pedunculated enlargement; type 5, pedunculated with bilateral TZ and/or retrourethral enlargement; type 6, subtrigonal or ectopic enlargement; type 7, other combinations of enlargements. We retrospectively evaluated MRI images of BPH patients who were histologically diagnosed and presented the different types of BPH on MRI. MRI, with its advantage of multiplanar imaging and superior soft tissue contrast resolution, can be used in BPH patients for differentiation of BPH from prostate cancer, estimation of zonal and entire prostatic volumes, determination of the stromal/glandular ratio, detection of the enlargement locations, and classification of BPH types which may be potentially helpful in choosing the optimal treatment.

  5. Magnetic resonance imaging of benign prostatic hyperplasia

    PubMed Central

    Guneyli, Serkan; Ward, Emily; Thomas, Stephen; Yousuf, Ambereen Nehal; Trilisky, Igor; Peng, Yahui; Antic, Tatjana; Oto, Aytekin

    2016-01-01

    Benign prostatic hyperplasia (BPH) is a common condition in middle-aged and older men and negatively affects the quality of life. An ultrasound classification for BPH based on a previous pathologic classification was reported, and the types of BPH were classified according to different enlargement locations in the prostate. Afterwards, this classification was demonstrated using magnetic resonance imaging (MRI). The classification of BPH is important, as patients with different types of BPH can have different symptoms and treatment options. BPH types on MRI are as follows: type 0, an equal to or less than 25 cm3 prostate showing little or no zonal enlargements; type 1, bilateral transition zone (TZ) enlargement; type 2, retrourethral enlargement; type 3, bilateral TZ and retrourethral enlargement; type 4, pedunculated enlargement; type 5, pedunculated with bilateral TZ and/or retrourethral enlargement; type 6, subtrigonal or ectopic enlargement; type 7, other combinations of enlargements. We retrospectively evaluated MRI images of BPH patients who were histologically diagnosed and presented the different types of BPH on MRI. MRI, with its advantage of multiplanar imaging and superior soft tissue contrast resolution, can be used in BPH patients for differentiation of BPH from prostate cancer, estimation of zonal and entire prostatic volumes, determination of the stromal/glandular ratio, detection of the enlargement locations, and classification of BPH types which may be potentially helpful in choosing the optimal treatment. PMID:27015442

  6. Progesterone-Targeted Magnetic Resonance Imaging Probes

    PubMed Central

    2015-01-01

    Determination of progesterone receptor (PR) status in hormone-dependent diseases is essential in ascertaining disease prognosis and monitoring treatment response. The development of a noninvasive means of monitoring these processes would have significant impact on early detection, cost, repeated measurements, and personalized treatment options. Magnetic resonance imaging (MRI) is widely recognized as a technique that can produce longitudinal studies, and PR-targeted MR probes may address a clinical problem by providing contrast enhancement that reports on PR status without biopsy. Commercially available MR contrast agents are typically delivered via intravenous injection, whereas steroids are administered subcutaneously. Whether the route of delivery is important for tissue accumulation of steroid-modified MRI contrast agents to PR-rich tissues is not known. To address this question, modification of the chemistry linking progesterone with the gadolinium chelate led to MR probes with increased water solubility and lower cellular toxicity and enabled administration through the blood. This attribute came at a cost through lower affinity for PR and decreased ability to cross the cell membrane, and ultimately it did not improve delivery of the PR-targeted MR probe to PR-rich tissues or tumors in vivo. Overall, these studies are important, as they demonstrate that targeted contrast agents require optimization of delivery and receptor binding of the steroid and the gadolinium chelate for optimal translation in vivo. PMID:25019183

  7. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  8. Magnetic resonance imaging findings of musculoskeletal brucellosis.

    PubMed

    Bozgeyik, Zulkif; Aglamis, Serpil; Bozdag, Pinar Gundogan; Denk, Affan

    2014-01-01

    The aim of this retrospective study was to determine the magnetic resonance imaging (MRI) findings of patients with musculoskeletal brucellosis. Sixty-eight among 304 patients with musculoskeletal brucellosis, aged 12-82 years (average, 50.2 years), were included in the study. Patients were diagnosed based on clinical findings, Brucella agglutination tests, and MRI findings. MRI was performed to all of the patients with sacroiliitis, spondylitis-spondylodiscitis, and peripheral arthritis. Brucella serum agglutination test was >1/160 in all cases and blood cultures were positive in twelve cases. The most commonly affected site was the spine (57.3%), wherein lumbar vertebrae were found to be most commonly affected. The second most common affected site was sacroiliac joint (26.4%), whereas peripheral joints were affected in 11 cases (16.1%). Brucellosis may affect various sites in musculoskeletal system. The spine was the most frequently affected site in our study. Sacroiliac joints and the other peripheral joints were less commonly involved sites. Brucellosis should be included in the differential diagnosis of a patient with arthralgia or symptoms of musculoskeletal system disorders especially in endemic areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Adaptive fuzzy segmentation of magnetic resonance images.

    PubMed

    Pham, D L; Prince, J L

    1999-09-01

    An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomogeneities as a gain field that causes image intensities to smoothly and slowly vary through the image space. It iteratively adapts to the intensity inhomogeneities and is completely automated. In this paper, we fully generalize 2-D AFCM to three-dimensional (3-D) multispectral images. Because of the potential size of 3-D image data, we also describe a new faster multigrid-based algorithm for its implementation. We show, using simulated MR data, that 3-D AFCM yields lower error rates than both the standard fuzzy C-means (FCM) algorithm and two other competing methods, when segmenting corrupted images. Its efficacy is further demonstrated using real 3-D scalar and multispectral MR brain images.

  10. Magnetic resonance imaging of skeletal muscle disease.

    PubMed

    Damon, Bruce M; Li, Ke; Bryant, Nathan D

    2016-01-01

    Neuromuscular diseases often exhibit a temporally varying, spatially heterogeneous, and multifaceted pathology. The goals of this chapter are to describe and evaluate the use of quantitative magnetic resonance imaging (MRI) methods to characterize muscle pathology. The following criteria are used for this evaluation: objective measurement of continuously distributed variables; clear and well-understood relationship to the pathology of interest; sensitivity to improvement or worsening of clinical status; and the measurement properties of accuracy and precision. Two major classes of MRI methods meet all of these criteria: (1) MRI methods for measuring muscle contractile volume or cross-sectional area by combining structural MRI and quantitative fat-water MRI; and (2) an MRI method for characterizing the edema caused by inflammation, the measurement of the transverse relaxation time constant (T2). These methods are evaluated with respect to the four criteria listed above and examples from neuromuscular disorders are provided. Finally, these methods are summarized and synthesized and recommendations for additional quantitative MRI developments are made.

  11. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  12. Magnetic resonance imaging structured reporting in infertility.

    PubMed

    Montoliu-Fornas, Guillermina; Martí-Bonmatí, Luis

    2016-06-01

    Our objective was to define and propose a standardized magnetic resonance (MR) imaging structured report in patients with infertility to have clinical completeness on possible diagnosis and severity. Patients should be studied preferable on 3T equipment with a surface coil. Standard MR protocol should include high-resolution fast spin-echo T2-weighted, diffusion-weighted images and gradient-echo T1-weighted fat suppression images. The report should include ovaries (polycystic, endometrioma, tumor), oviduct (hydrosalpinx, hematosalpinx, pyosalpinx, peritubal anomalies), uterus (agenesia, hypoplasia, unicornuate, uterus didelphys, bicornuate, septate uterus), myometrium (leiomyomas, adenomyosis), endometrium (polyps, synechia, atrophy, neoplasia), cervix and vagina (isthmoceles, mucosal-parietal irregularity, stenosis, neoplasia), peritoneum (deep endometriosis), and urinary system-associated abnormalities. To be clinically useful, radiology reports must be structured, use standardized terminology, and convey actionable information. The structured report must comprise complete, comprehensive, and accurate information, allowing radiologists to continuously interact with patients and referring physicians to confirm that the information is used properly to affect the decision making process.

  13. Magnetic resonance imaging of the normal placenta.

    PubMed

    Blaicher, Wibke; Brugger, Peter C; Mittermayer, Christoph; Schwindt, Jens; Deutinger, Josef; Bernaschek, Gerhard; Prayer, Daniela

    2006-02-01

    The goal of this study was to provide a representative description of the normal placenta with contrast medium-free magnetic resonance imaging (MRI) in order to determine a standard of reference. One hundred consecutive singleton pregnancies were investigated by MRI without application of a contrast medium. The mean gestational age (GA) at the time of investigation was 29.5 weeks (range 19-40). Patients with suspected utero-placental insufficiency (UPI) or placental anomalies were excluded. Signal intensities were assessed and correlated with the respective GA. Antenatal MRI without contrast medium was able to depict placental status and morphological changes during gestation. A regular homogeneous structure was found in weeks 19-23. Subsequently, sporadic, slightly marked lobules appeared, which increased in number and markedness with ongoing gestation. Stratification of the lobules was observed after 36 weeks. The ratio of placental and amniotic fluid signal intensities decreased significantly with higher GA and with placental grading. MRI is well suited as an imaging method for the placenta. Our data may be used as a reference in the assessment of the placenta on MRI, and may have further clinical impact with respect to the determination of UPI.

  14. Magnetic resonance imaging in glenohumeral instability

    PubMed Central

    Jana, Manisha; Gamanagatti, Shivanand

    2011-01-01

    The glenohumeral joint is the most commonly dislocated joint of the body and anterior instability is the most common type of shoulder instability. Magnetic resonance (MR) imaging, and more recently, MR arthrography, have become the essential investigation modalities of glenohumeral instability, especially for pre-procedure evaluation before arthroscopic surgery. Injuries associated with glenohumeral instability are variable, and can involve the bones, the labor-ligamentous components, or the rotator cuff. Anterior instability is associated with injuries of the anterior labrum and the anterior band of the inferior glenohumeral ligament, in the form of Bankart lesion and its variants; whereas posterior instability is associated with reverse Bankart and reverse Hill-Sachs lesion. Multidirectional instability often has no labral pathology on imaging but shows specific osseous changes such as increased chondrolabral retroversion. This article reviews the relevant anatomy in brief, the MR imaging technique and the arthrographic technique, and describes the MR findings in each type of instability as well as common imaging pitfalls. PMID:22007285

  15. Wernicke encephalopathy with atypical magnetic resonance imaging.

    PubMed

    Liou, Kuang-Chung; Kuo, Shu-Fan; Chen, Lu-An

    2012-11-01

    Wernicke encephalopathy (WE) is a medical emergency caused by thiamine (vitamin B1) deficiency. Typical clinical manifestations are mental change, ataxia, and ocular abnormalities. Wernicke encephalopathy is an important differential diagnosis in all patients with acute mental change. However, the disorder is greatly underdiagnosed. Clinical suspicion, detailed history taking, and neurologic evaluations are important for early diagnosis. Magnetic resonance imaging (MRI) is currently considered the diagnostic method of choice. Typical MRI findings of WE are symmetrical involvement of medial thalamus, mammillary body, and periaqueductal gray matter. Prompt thiamine supplement is important in avoiding unfavorable outcomes. Here, we report a case of alcoholic WE with typical clinical presentation but with atypical MRI. Axial fluid-attenuated inversion recovery images showing symmetrical hyperintensity lesions in dentate nuclei of cerebellum, olivary bodies, and dorsal pons. Although atypical MRI findings are more common in nonalcoholic WE, it can also occur in alcoholic WE. This article is aimed to highlight the potential pitfalls in diagnosing acute mental change, the importance of clinical suspicion, and early treatment in WE.

  16. Meralgia paresthetica: 3-Tesla magnetic resonance neurography.

    PubMed

    Chhabra, Avneesh; Del Grande, Filippo; Soldatos, Theodoros; Chalian, Majid; Belzberg, Allan J; Williams, Eric H; Jalali, Farahani S; Thawait, Gaurav K; Eng, John; Carrino, John A

    2013-06-01

    To assess the diagnostic accuracy and observer performance of 3-Tesla magnetic resonance neurography (MRN) in the evaluation of meralgia paresthetica (MP). Two independent readers were blinded to the clinical diagnosis and evaluated the MRN studies of the pelvis of 11 patients with MP and 28 control participants. In each study, the lateral femoral cutaneous nerves were assessed for signal alteration and/or neuroma formation, indicating lateral femoral cutaneous neuropathy, at various levels along their course. Intra- and inter-observer reliability was evaluated. Both readers exhibited substantial intraobserver agreement in detecting signal alterations and neuroma formation of the lateral femoral cutaneous nerve (LFCN). The readers demonstrated moderate interobserver agreement in detecting signal alteration of the LFCN and poor interobserver agreement in diagnosing neuroma formation. Sensitivity, specificity, positive predictive value, and negative predictive value of LFCN neuropathy diagnosis were ≥ 71 % and ≥ 94 % for both readers respectively. The diagnostic test accuracy was ≥ 90 % for both readers. 3-Tesla MRN provides reliable and accurate diagnostic evaluation of meralgia paresthetica.

  17. Magnetic resonance imaging at ultrahigh fields.

    PubMed

    Ugurbil, Kamil

    2014-05-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.

  18. Magnetic Resonance Imaging at Ultrahigh Fields

    PubMed Central

    Uğurbil, Kamil

    2014-01-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229

  19. TOPICAL REVIEW: Endovascular interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bartels, L. W.; Bakker, C. J. G.

    2003-07-01

    Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.

  20. Cardiovascular magnetic resonance in pericardial diseases

    PubMed Central

    Bogaert, Jan; Francone, Marco

    2009-01-01

    The pericardium and pericardial diseases in particular have received, in contrast to other topics in the field of cardiology, relatively limited interest. Today, despite improved knowledge of pathophysiology of pericardial diseases and the availability of a wide spectrum of diagnostic tools, the diagnostic challenge remains. Not only the clinical presentation may be atypical, mimicking other cardiac, pulmonary or pleural diseases; in developed countries a shift for instance in the epidemiology of constrictive pericarditis has been noted. Accurate decision making is crucial taking into account the significant morbidity and mortality caused by complicated pericardial diseases, and the potential benefit of therapeutic interventions. Imaging herein has an important role, and cardiovascular magnetic resonance (CMR) is definitely one of the most versatile modalities to study the pericardium. It fuses excellent anatomic detail and tissue characterization with accurate evaluation of cardiac function and assessment of the haemodynamic consequences of pericardial constraint on cardiac filling. This review focuses on the current state of knowledge how CMR can be used to study the most common pericardial diseases. PMID:19413898

  1. Cardiovascular magnetic resonance in wet beriberi.

    PubMed

    Essa, Essa; Velez, Michael R; Smith, Sakima; Giri, Shivraman; Raman, Subha V; Gumina, Richard J

    2011-08-12

    The clinical presentation of beriberi can be quite varied. In the extreme form, profound cardiovascular involvement leads to circulatory collapse and death. This case report is of a 72 year-old male who was admitted to the Neurology inpatient ward with progressive bilateral lower extremity weakness and parasthesia. He subsequently developed pulmonary edema and high output cardiac failure requiring intubation and blood pressure support. With the constellation of peripheral neuropathy, encephalopathy, ophthalmoplegia, unexplained heart failure, and lactic acidosis, thiamine deficiency was suspected. He was empirically initiated on thiamine replacement therapy and his thiamine level pre-therapy was found to be 23 nmol/L (Normal: 80-150 nmol/L), consistent with the diagnosis of beriberi. Cardiovascular magnetic resonance (CMR) showed severe left ventricular systolic dysfunction, markedly increased myocardial T2, and minimal late gadolinium enhancement (LGE). After 5 days of daily 100 mg IV thiamine and supportive care, the hypotension resolved and the patient was extubated and was released from the hospital 3 weeks later. Our case shows via CMR profound myocardial edema associated with wet beriberi.

  2. Magnetic resonance imaging of fetal developmental anomalies.

    PubMed

    Girard, Nadine J

    2011-02-01

    Fetal developmental anomalies consist of central nervous system malformations, brain injury, and tumors. Overlap is often seen especially between malformation and injury because malformation may be genetically determined or related to external causative agent, whereas brain injury may be, on one hand, caused by malformation as with intracranial vascular malformation and, on another, can cause brain malformation when cerebral insult occurs during organogenesis and histogenesis. The goal of this review was not to describe by magnetic resonance imaging (MRI) all fetal developmental anomalies encountered in utero; it is most likely to focus on fetal brain anomalies that either are most commonly seen in fetal tertiary care facility or are extremely challenging for MRI. Consequently, the potential of advanced MR techniques such as proton MR spectroscopy and diffusion tensor imaging is also described especially when a challenge is highlighted. This review is therefore organized in subchapters as follows. The first section gives the place of MRI in prenatal development and cites the standard protocol and the advanced techniques. The rules of fetal brain MRI, the challenge and pitfalls, and the selection of MRI cases follow as 3 subchapters. Also, abnormalities are described as 3 separate subchapters entitled ventriculomegalies (hydrocephalus), malformations, and brain injury.

  3. Quantitative cardiovascular magnetic resonance for molecular imaging.

    PubMed

    Winter, Patrick M; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2010-11-03

    Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or oxygenation. In this review, examples will be presented that utilize a number of different molecular imaging quantification techniques, including measuring signal changes, calculating the area of contrast enhancement, mapping relaxation time changes or direct detection of contrast agents through multi-nuclear imaging or spectroscopy. The clinical application of CMR molecular imaging could offer far reaching benefits to patient populations, including early detection of therapeutic response, localizing ruptured atherosclerotic plaques, stratifying patients based on biochemical disease markers, tissue-specific drug delivery, confirmation and quantification of end-organ drug uptake, and noninvasive monitoring of disease recurrence. Eventually, such agents may play a leading role in reducing the human burden of cardiovascular disease, by providing early diagnosis, noninvasive monitoring and effective therapy with reduced side effects.

  4. Magnetic resonance urography in pediatric urology.

    PubMed

    Cerwinka, Wolfgang H; Kirsch, Andrew J

    2010-07-01

    Magnetic resonance urography (MRU) has evolved into an effective imaging tool for the evaluation of the urinary tract in children. The goal of this article is to describe current techniques and applications of MRU and to review recent advances. MRU is most commonly applied to the evaluation of hydronephrosis and provides valuable insight into a wide range of obstructive uropathies. MRU was shown to be superior to renal scintigraphy for the diagnosis of pyelonephritis and renal scarring. The use of MRU for the assessment of urolithiasis, vesicoureteral reflux, renal trauma, and fetal urinary tract abnormalities is limited and technical refinements are required. Judicious use of gadolinium-based contrast agents in patients at risk for nephrogenic systemic fibrosis was recently shown to avoid new occurrences. Potential future applications include virtual endoscopy and MRU-guided procedures. MRU has the potential to revolutionize imaging of the urinary tract in children. It integrates exquisite anatomical information with a variety of functional data and avoids ionizing radiation. MRU is increasingly employed as a problem solver when conventional imaging studies remain inconclusive and its growing application will likely improve availability and cost in the future.

  5. Magnetic resonance urography in pediatric urology.

    PubMed

    Cerwinka, Wolfgang H; Damien Grattan-Smith, J; Kirsch, Andrew J

    2008-02-01

    Magnetic resonance urography (MRU) has emerged as a powerful diagnostic tool in the evaluation of the pediatric genitourinary tract. The purpose of this review is to familiarize the reader with the basic techniques, strengths and limitations, as well as the current and potential future applications of MRU in pediatric urology. MRU can provide detailed anatomical information and assess renal function and drainage in a single study. MRU does not employ ionizing radiation and may be utilized in patients with iodine-based contrast allergy or impaired renal function. MRU has been most often applied to the evaluation of hydronephrosis and provides valuable insight into a wide range of obstructive uropathies. MRU was shown to be superior to renal scintigraphy for the diagnosis of pyelonephritis and renal scarring. The use of MRU for the assessment of urolithiasis and vesicoureteral reflux is limited and technical refinements are required. Potential future applications include fetal MRU, virtual endoscopy, and MRU-guided procedures. The development of new contrast agents and new image-processing software will further enhance the diagnostic potential of MRU in pediatric urology. MRU is currently thought of as a problem-solving tool to define anatomy and function when conventional methods fall short. This technique is likely to emerge as the imaging modality of choice for children with complex genitourinary pathology.

  6. Magnetic resonance urography in pediatric urology.

    PubMed

    Wille, Sebastian; von Knobloch, Rolf; Klose, Klaus Jochen; Heidenreich, Axel; Hofmann, Rainer

    2003-01-01

    To evaluate the efficiency of magnetic resonance urography (MRU) in pediatric urology. We report retrospectively on 12 children who underwent MRU between January 1999 and November 2001. MRU was performed to accurately evaluate the entire urinary tract because of megaureter, ectopic ureter, vesicoureteral reflux, Y-inverted duplication and hydronephrosis because of pyeloureteral stenosis. T1- and T2-weighted images were obtained in the coronal, sagittal and axial planes. The mean age of the children (8 females, 4 males) investigated was 36 months (range 2-140 months). An accurate anatomical picture of the entire urinary tract could be obtained in all children. The obstructive nature of megaureter could be differentiated. The distal orifice of ectopic ureter could be identified in the vagina. Vesicoureteral reflux into the blind-ending ureteral bud of a duplicated system was accurately identified. Hydronephrosis was demonstrated to be the result of pyeloureteral stenosis. The location of stenoses was easily identified in the sagittal and coronal planes. MRU is an excellent imaging modality for accurately depicting the urinary tract. MRU is superior to conventional intravenous urography because it does not use ionizing radiation, the gadolinium contrast medium used is not nephrotoxic and the imaging quality is excellent, reproducible and not interfered with by gas superposition. Considering the high costs and diagnostic benefit of MRU compared to intravenous urography, MRU should be performed in patients with impaired renal function, in those with an allergy to contrast medium and if anatomic relationships are not clear prior to reconstructive surgery.

  7. Magnetic resonance imaging of navicular bursa adhesions.

    PubMed

    Holowinski, Maureen E; Solano, Mauricio; Maranda, Louise; García-López, José M

    2012-01-01

    Adhesions occur in the navicular bursa between the deep digital flexor tendon (DDFT) and other structures. Our objectives were to describe the appearance of navicular bursa adhesions on high-field magnetic resonance (MR) images, to compare these findings to findings at navicular bursoscopy, and to determine the prevalence of lesions in the remainder of the podotrochlear apparatus. Sixteen forelimbs from 14 horses that underwent MR imaging and navicular bursoscopy were evaluated. Adhesions were considered type 1 when characterized by a discontinuity in the navicular bursa fluid signal between two structures, type 2 when the navicular bursa fluid signal was disrupted and ill-defined tissue was present between two structures, and type 3 when the fluid signal was disrupted and well-defined tissue was present between two structures. Twenty-six adhesions were suspected on MR images and nineteen were visualized at surgery. The positive predictive value was 50% for type 1 adhesions, 67% for type 2 adhesions, and 100% for type 3 adhesions. Additional lesions were detected in the navicular bursa in 15 limbs, the DDFT in 13, the navicular bone in 15, the collateral sesamoidean ligaments in 9, and the distal sesamoidean impar ligament in 8. A discontinuity in the navicular bursa fluid signal with well-defined tissue between two structures detected on high-field MR images is diagnostic for a navicular bursa adhesion. Additional lesions in the podotrochlear apparatus are common in horses with navicular bursa adhesions. © 2012 Veterinary Radiology & Ultrasound.

  8. Magnetic Resonance Elastography: Inversions in Bounded Media

    PubMed Central

    Kolipaka, Arunark; McGee, Kiaran P.; Manduca, Armando; Romano, Anthony J.; Glaser, Kevin J.; Araoz, Philip A.; Ehman, Richard L.

    2009-01-01

    Magnetic resonance elastography (MRE) is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, MRE inversions generally assume that the measured tissue motion consists primarily of shear waves propagating in a uniform, infinite medium. This assumption is not valid in organs such as the heart, eye, bladder, skin, fascia, bone and spinal cord in which the shear wavelength approaches the geometric dimensions of the object. The aim of this study was to develop and test mathematical inversion algorithms capable of resolving shear stiffness from displacement maps of flexural waves propagating in bounded media such as beams, plates and spherical shells using geometry-specific equations of motion. MRE and finite element modeling (FEM) of beam, plate, and spherical shell phantoms of various geometries were performed. Mechanical testing of the phantoms agreed with the stiffness values obtained from FEM and MRE data and a linear correlation of r2 ≥ 0.99 was observed between the stiffness values obtained using MRE and FEM data. In conclusion, we have demonstrated new inversion methods for calculating shear stiffness that may be more appropriate for waves propagating in bounded media. PMID:19780146

  9. Intra voxel analysis in magnetic resonance imaging.

    PubMed

    Ambrosanio, Michele; Baselice, Fabio; Ferraioli, Giampaolo; Lenti, Flavia; Pascazio, Vito

    2017-04-01

    A technique for analyzing the composition of each voxel, in the magnetic resonance imaging (MRI) framework, is presented. By combining different acquisitions, a novel methodology, called intra voxel analysis (IVA), for the detection of multiple tissues and the estimation of their spin-spin relaxation times is proposed. The methodology exploits the sparse Bayesian learning (SBL) approach in order to solve a highly underdetermined problem imposing the solution sparsity. IVA, developed for spin echo imaging sequence, can be easily extended to any acquisition scheme. For validating the approach, simulated and real data sets are considered. Monte Carlo simulations have been implemented for evaluating the performances of IVA compared to methods existing in literature. Two clinical datasets acquired with a 3T scanner have been considered for validating the approach. With respect to other approaches presented in literature, IVA has proved to be more effective in the voxel composition analysis, in particular in the case of few acquired images. Results are interesting and very promising: IVA is expected to have a remarkable impact on the research community and on the diagnostic field. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Magnetic resonance imaging for characterizing myocardial diseases.

    PubMed

    Saeed, Maythem; Liu, Hui; Liang, Chang-Hong; Wilson, Mark W

    2017-03-31

    The National Institute of Health defined cardiomyopathy as diseases of the heart muscle. These myocardial diseases have different etiology, structure and treatment. This review highlights the key imaging features of different myocardial diseases. It provides information on myocardial structure/orientation, perfusion, function and viability in diseases related to cardiomyopathy. The standard cardiac magnetic resonance imaging (MRI) sequences can reveal insight on left ventricular (LV) mass, volumes and regional contractile function in all types of cardiomyopathy diseases. Contrast enhanced MRI sequences allow visualization of different infarct patterns and sizes. Enhancement of myocardial inflammation and infarct (location, transmurality and pattern) on contrast enhanced MRI have been used to highlight the key differences in myocardial diseases, predict recovery of function and healing. The common feature in many forms of cardiomyopathy is the presence of diffuse-fibrosis. Currently, imaging sequences generating the most interest in cardiomyopathy include myocardial strain analysis, tissue mapping (T1, T2, T2*) and extracellular volume (ECV) estimation techniques. MRI sequences have the potential to decode the etiology by showing various patterns of infarct and diffuse fibrosis in myocarditis, amyloidosis, sarcoidosis, hypertrophic cardiomyopathy due to aortic stenosis, restrictive cardiomyopathy, arrythmogenic right ventricular dysplasia and hypertension. Integrated PET/MRI system may add in the future more information for the diagnosis and progression of cardiomyopathy diseases. With the promise of high spatial/temporal resolution and 3D coverage, MRI will be an indispensible tool in diagnosis and monitoring the benefits of new therapies designed to treat myocardial diseases.

  11. INVITED TOPICAL REVIEW: Parallel magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Larkman, David J.; Nunes, Rita G.

    2007-04-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed.

  12. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  13. Magnetic resonance imaging of the kidneys

    SciTech Connect

    Leung, A.W.L.; Bydder, G.M.; Steinter, R.E.; Bryant, D.J.; Young, I.R.

    1984-12-01

    A study of the magnetic resonance imaging (MRI) appearance of the kidneys in six normal volunteers and 52 patients is reported. Corticomedullary differentiation was seen with the inversion-recovery (IR 1400/400) sequence in the normal volunteers and in patients with functioning transplanted kidneys and acute tubular necrosis. Partial or total loss of corticomedullary differentiation was seen in glomerulonephritis, acute and chronic renal failure, renal artery stenosis, and transplant rejection. The T1 of the kidneys was increased in glomerulonephritis with neuphrotic syndrome, but the T1 was within the normal range for renal medulla in glomerulonephritis without nephrotic syndrome, renal artery stenosis, and chronic renal failure. A large staghorn calculus was demonstrated with MRI, but small calculi were not seen. Fluid within the hydonephrosis, simple renal cysts, and polycystic kidneys displayed very low signal intensity and long T1 values. Tumors displayed varied appearances. Hypernephromas were shown to be hypo- or hyperintense with the renal medulla on the IR 1400/400 sequence. After intravenous injection of gadolinium-DTPA, there was marked decrease in the tumor T1.

  14. Magnetic Resonance Angiography of the Aorta

    PubMed Central

    Takehara, Yasuo; Yamashita, Shuhei; Sakahara, Harumi; Masui, Takayuki; Isoda, Haruo

    2011-01-01

    Magnetic resonance angiography (MRA) is capable of imaging arteries in the half to whole body by a single acquisition without a nephrotoxic contrast medium, and acquired images can be reconstructed into a specific cross-sectional view in an arbitrary directions. MRA is applicable for vessels non-reachable by a catheter approach, and collateral vessels can be fully visualized. Since MRA is minimally-invasive with no exposure to ionized radiation, it can be repeatedly applied for follow-up. However, there are also disadvantages: the temporal and spatial resolutions are inferior to those of X-ray angiography, and, at present, it cannot be used as a guide for intervention. Moreover, gadolinium administrations may cause NSF in patients who have lost renal function, as a new risk. Accordingly, strict consideration is required for an indication of its application. Development of non-contrast MRA and evaluation of the wall itself may draw more attention in the future. Plaque imaging is being routinely performed nowadays, and the measurement of vascular wall shear stress, which has a close association with arteriosclerosis, may become possible by utilizing the time-resolved phase-contrast method capable of measuring the time-resolved velocity vectors of blood flow throughout the body. (*English Translation of J Jpn Coll Angiol, 2009, 49: 503-516.) PMID:23555465

  15. Magnetic resonance urography in evaluation of duplicated renal collecting systems.

    PubMed

    Adeb, Melkamu; Darge, Kassa; Dillman, Jonathan R; Carr, Michael; Epelman, Monica

    2013-11-01

    Duplex renal collecting systems are common congenital anomalies of the upper urinary tract. In most cases they are incidental findings and not associated with additional pathologies. They demonstrate, however, higher incidences of hydroureteronephrosis, ureteroceles, and ectopic ureters. The most comprehensive morphologic and functional evaluation of duplex systems can be achieved using magnetic resonance urography. Functional magnetic resonance urography allows better separation of the renal poles, thus more accurate calculation of the differential renal functions compared with renal scintigraphy. Magnetic resonance urography is the study of choice when upper urinary tract anatomy is complex or when functional evaluation is needed.

  16. Correlation of Magnetic Resonance Imaging Tumor Volume with Histopathology

    PubMed Central

    Turkbey, Baris; Mani, Haresh; Aras, Omer; Rastinehad, Ardeshir R.; Shah, Vijay; Bernardo, Marcelino; Pohida, Thomas; Daar, Dagane; Benjamin, Compton; McKinney, Yolanda L.; Linehan, W. Marston; Wood, Bradford J.; Merino, Maria J.; Choyke, Peter L.; Pinto, Peter A.

    2017-01-01

    Purpose The biology of prostate cancer may be influenced by the index lesion. The definition of index lesion volume is important for appropriate decision making, especially for image guided focal treatment. We determined the accuracy of magnetic resonance imaging for determining index tumor volume compared with volumes derived from histopathology. Materials and Methods We evaluated 135 patients (mean age 59.3 years) with a mean prostate specific antigen of 6.74 ng/dl who underwent multiparametric 3T endorectal coil magnetic resonance imaging of the prostate and subsequent radical prostatectomy. Index tumor volume was determined prospectively and independently by magnetic resonance imaging and histopathology. The ellipsoid formula was applied to determine histopathology tumor volume, whereas manual tumor segmentation was used to determine magnetic resonance tumor volume. Histopathology tumor volume was correlated with age and prostate specific antigen whereas magnetic resonance tumor volume involved Pearson correlation and linear regression methods. In addition, the predictive power of magnetic resonance tumor volume, prostate specific antigen and age for estimating histopathology tumor volume (greater than 0.5 cm3) was assessed by ROC analysis. The same analysis was also conducted for the 1.15 shrinkage factor corrected histopathology data set. Results There was a positive correlation between histopathology tumor volume and magnetic resonance tumor volume (Pearson coefficient 0.633, p <0.0001), but a weak correlation between prostate specific antigen and histopathology tumor volume (Pearson coefficient 0.237, p=0.003). On linear regression analysis histopathology tumor volume and magnetic resonance tumor volume were correlated (r2=0.401, p <0.00001). On ROC analysis AUC values for magnetic resonance tumor volume, prostate specific antigen and age in estimating tumors larger than 0.5 cm3 at histopathology were 0.949 (p <0.0000001), 0.685 (p=0.001) and 0.627 (p=0

  17. Correlation of magnetic resonance imaging tumor volume with histopathology.

    PubMed

    Turkbey, Baris; Mani, Haresh; Aras, Omer; Rastinehad, Ardeshir R; Shah, Vijay; Bernardo, Marcelino; Pohida, Thomas; Daar, Dagane; Benjamin, Compton; McKinney, Yolanda L; Linehan, W Marston; Wood, Bradford J; Merino, Maria J; Choyke, Peter L; Pinto, Peter A

    2012-10-01

    The biology of prostate cancer may be influenced by the index lesion. The definition of index lesion volume is important for appropriate decision making, especially for image guided focal treatment. We determined the accuracy of magnetic resonance imaging for determining index tumor volume compared with volumes derived from histopathology. We evaluated 135 patients (mean age 59.3 years) with a mean prostate specific antigen of 6.74 ng/dl who underwent multiparametric 3T endorectal coil magnetic resonance imaging of the prostate and subsequent radical prostatectomy. Index tumor volume was determined prospectively and independently by magnetic resonance imaging and histopathology. The ellipsoid formula was applied to determine histopathology tumor volume, whereas manual tumor segmentation was used to determine magnetic resonance tumor volume. Histopathology tumor volume was correlated with age and prostate specific antigen whereas magnetic resonance tumor volume involved Pearson correlation and linear regression methods. In addition, the predictive power of magnetic resonance tumor volume, prostate specific antigen and age for estimating histopathology tumor volume (greater than 0.5 cm(3)) was assessed by ROC analysis. The same analysis was also conducted for the 1.15 shrinkage factor corrected histopathology data set. There was a positive correlation between histopathology tumor volume and magnetic resonance tumor volume (Pearson coefficient 0.633, p <0.0001), but a weak correlation between prostate specific antigen and histopathology tumor volume (Pearson coefficient 0.237, p = 0.003). On linear regression analysis histopathology tumor volume and magnetic resonance tumor volume were correlated (r(2) = 0.401, p <0.00001). On ROC analysis AUC values for magnetic resonance tumor volume, prostate specific antigen and age in estimating tumors larger than 0.5 cm(3) at histopathology were 0.949 (p <0.0000001), 0.685 (p = 0.001) and 0.627 (p = 0.02), respectively. Similar

  18. Accurate temperature imaging based on intermolecular coherences in magnetic resonance.

    PubMed

    Galiana, Gigi; Branca, Rosa T; Jenista, Elizabeth R; Warren, Warren S

    2008-10-17

    Conventional magnetic resonance methods that provide interior temperature profiles, which find use in clinical applications such as hyperthermic therapy, can develop inaccuracies caused by the inherently inhomogeneous magnetic field within tissues or by probe dynamics, and work poorly in important applications such as fatty tissues. We present a magnetic resonance method that is suitable for imaging temperature in a wide range of environments. It uses the inherently sharp resonances of intermolecular zero-quantum coherences, in this case flipping up a water spin while flipping down a nearby fat spin. We show that this method can rapidly and accurately assign temperatures in vivo on an absolute scale.

  19. Anaesthesia for magnetic resonance imaging/computed tomography.

    PubMed

    Funk, W; Taeger, K

    2000-08-01

    The need for general anaesthesia for magnetic resonance imaging/computed tomography investigations can be reduced by the implementation of structured sedation programmes supervised by anaesthetists. Despite its side-effects, chloral hydrate is still the drug most widely used. Rectal thiopental or intravenous propofol are suggested anaesthetic agents for pre-school children and uncooperative or claustrophobic individuals. Spiral computed tomography scans and ultrafast magnetic resonance imaging shorten immobilization times further. However, functional magnetic resonance imaging and intervention techniques in neuroradiology depend on a motionless patient. A useful strategy for testing anaesthesia equipment has been outlined.

  20. Procedure for quantitative (1)H magnetic resonance spectroscopy and tissue characterization of human brain tissue based on the use of quantitative magnetic resonance imaging.

    PubMed

    Tisell, A; Leinhard, O Dahlqvist; Warntjes, J B M; Lundberg, P

    2013-10-01

    Existing methods for quantitative magnetic resonance spectroscopy are not widely used for magnetic resonance spectroscopy examinations in clinical practice due to the lengthy and difficult workflow. In this report, we aimed to investigate whether metabolite concentrations show co-variation with relaxation parameters (R1,H2O,R2,H2O), water concentration (ĈH2O), and age, using a quantitative magnetic resonance spectroscopy method, which is suitable for a clinical setting. We performed 166 single voxel magnetic resonance spectroscopy measurements in the white matter and thalamus in 47 healthy subjects, aged 18-72 years. Whole brain R1,H2O, R2,H2O, and ĈH2O maps were determined for each subject using quantitative magnetic resonance imaging. Absolute metabolite concentrations were calculated by calibrating the water-scaled magnetic resonance spectroscopy, using the quantitative magnetic resonance imaging maps of R1,H2O, R2,H2O, and ĈH2O. Absolute concentrations in white matter of total Creatine and myo-Inositol were correlated with age (total Creatine: 12 ± 4 μM/year, P < 0.01; myo-Inositol: 23 ± 9 μM/year, P < 0.05), suggesting a process of increased glia density in aging white matter. Moreover, total Creatine and total N-acetylaspartate were inversely correlated with the R1,H2O and positively correlated with the ĈH2O of white matter. In addition, the Cramér-Rao lower bound was biased regarding the metabolite concentration, suggesting that should not be used as a quality assessment. The implemented method was fast, robust, and user-independent. Copyright © 2012 Wiley Periodicals, Inc.

  1. Magnetic resonance force microscopy with a permanent magnet on the cantilever

    SciTech Connect

    Zhang, Z.; Hammel, P.C.

    1997-02-01

    The magnetic resonance force microscope (MRFM) is a microscopic 3-D imaging instrument based on a recent proposal to detect magnetic resonance signals mechanically using a micro-mechanical resonator. MRFM has been successfully demonstrated in various magnetic resonance experiments including electron spin resonance, ferromagnetic resonances and nuclear magnetic resonance. In order to apply this ultra-high, 3-D spatial resolution technique to samples of arbitrary size and shape, the magnetic particle which generates the field gradient {del}{bold B}, (and, therefore, the force {bold F = (m {center_dot} {del}B)} between itself and the spin magnetization {bold m} of the sample) will need to be mounted on the mechanical resonator. Up to the present, all experiments have been performed with the sample mounted on the resonator. This is done, in part, to avoid the spurious response of the mechanical resonator which is generated by the variation of the magnetization of the magnetic particle as the external field is varied.

  2. Cardiac magnetic resonance imaging of a patient with an magnetic resonance imaging conditional permanent pacemaker

    PubMed Central

    Hogarth, Andrew J.; Artis, Nigel J.; Sivananthan, U. Mohan; Pepper, Chris B.

    2011-01-01

    Cardiac magnetic resonance imaging (MRI) is increasingly used as the optimum modality for cardiac imaging. An aging population and rising numbers of patients with permanent pacemakers means many such individuals may require cardiac MRI scanning in the future. Whilst the presence of a permanent pacemaker is historically regarded as a contra-indication to MRI scanning, pacemaker systems have been developed to limit any associated risks. No reports have been published regarding the use of such devices with cardiac MRI in a clinical setting. We present the safe, successful cardiac MRI scan of a patient with an MRI-conditional permanent pacing system. PMID:22355486

  3. Cavity resonator coil for high field magnetic resonance imaging.

    PubMed

    Solis, S E; Tomasi, D; Rodriguez, A O

    2007-01-01

    A variant coil of the high frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. This coil design is similar to the popular birdcage coil but it has the advantage that it can be easily built following the physical principles of the cavity resonators [1]. The equivalent circuit approach was used to compute the resonant frequency of this coil design, and compared the results with those frequency values obtained with theory. A transceiver coil composed of 4 cavities with a rod length of 4.5 cm, and a resonant frequency of 170.29 MHz was built. Phantom images were then acquired to test its viability using standard imaging sequences. The theory facilitates its development for high frequency MRI applications of animal models.

  4. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  5. Magnetic resonance in ferromagnetic films, multilayers and nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia; Bates, Brittany; Greene, Nicole

    2014-03-01

    Incorporation of magnetic materials into metamaterial systems provides an opportunity to tune microwave permeability with external magnetic field. We studied magnetically dependent microwave properties of polymer composites with iron oxide nanoparticles, ferromagnetic films and ferromagnetic/dielectric multilayers. We show that the permeability of such systems can be magnetically tuned from positive to negative values in the range of ferromagnetic resonance, strongly affecting wave propagation. Strong changes in mu-metal permeability in low field range provides an additional possibility of tuning.

  6. [Magnetic resonance enterography: technique and indications. Findings in Crohn's disease].

    PubMed

    Torregrosa, A; Pallardó, Y; Hinojosa, J; Insa, S; Molina, R

    2013-09-01

    Radiology with oral contrast, or enteroclysis, have traditionally been the techniques of choice in the examination of the small intestine, due to the excellent visualisation of the mucosal pattern. However, the absence of extra-luminal information and the use of ionising radiation have replaced these examinations with sectional techniques which enable the abdominal cavity to be viewed with good resolution. Magnetic resonance enterography is a simple technique, with no ionising radiation, provided quality images, distends the intestinal lumen well by the administration of non-reabsorbable oral substances, minimises peristalsis, and establishes a protocol which includes sequences with intravenous contrast. These properties can be used in patients with Crohn's disease, achieving good diagnostic precision in the assessment of activity and monitoring of treatment, in intestinal obstruction, in the suspicion of small intestine tumours, and in paediatric patients due to it being harmless. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  7. [Cardiac magnetic resonance imaging of congenital heart defects in adults].

    PubMed

    Bastarrika Alemañ, G; Gavira Gómez, J J; Zudaire Díaz-Tejeiro, B; Castaño Rodríguez, S; Romero Ibarra, C; Sáenz de Buruaga, J D

    2007-01-01

    The study of congenital cardiopathies (CC) is one of the most clearly established indications of cardiac magnetic resonance imaging (CMRI). Different sequences, including anatomic, functional, flow (phase contrast), and 3D angiographic sequences, enable the diagnosis, treatment planning, and follow-up of these conditions. CMRI allows the anatomy, function, and alterations of flow in these cardiopathies to be evaluated in a single examination. Three-dimensional MR angiography enables the study of the great vessels and the anomalies associated to congenital heart defects in adults. This article describes an examination protocol and provides examples of MR images of the most common CC in adults: atrial septal defect, interventricular communication, atrioventricular canal, tetralogy of Fallot, transposition of the great arteries, congenitally corrected transposition of the great arteries, bicuspid aortic valve, subaortic stenosis, aortic coarctation, and Ebstein's anomaly.

  8. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  9. Magnetism of gold nanorods probed using electron spin resonance

    NASA Astrophysics Data System (ADS)

    Inagaki, Y.; Yonemura, H.; Sakai, N.; Makihara, Y.; Kawae, T.; Yamada, S.

    2016-08-01

    Electron spin resonance (ESR) spectroscopy has been performed for gold nanorods (AuNRs) of four different sizes covered with a diamagnetic stabilizing component, cetyltrimethylammonium bromide. ESR signals were detected in AuNRs except the largest one. Two smallest AuNRs showed an abrupt change in the temperature dependence of resonance field and line width at around 60 K, indicating ferromagnetic phase transition. In medium-size AuNRs, the resonance with a large shift was observed below 100 K. The resonance field shifts at the lowest temperature exhibit systematic variation with the system size, which is explained by considering magnetic anisotropy for the ferromagnetic resonance.

  10. Magnetism of gold nanorods probed using electron spin resonance

    SciTech Connect

    Inagaki, Y. Kawae, T.; Yonemura, H.; Yamada, S.; Sakai, N.; Makihara, Y.

    2016-08-15

    Electron spin resonance (ESR) spectroscopy has been performed for gold nanorods (AuNRs) of four different sizes covered with a diamagnetic stabilizing component, cetyltrimethylammonium bromide. ESR signals were detected in AuNRs except the largest one. Two smallest AuNRs showed an abrupt change in the temperature dependence of resonance field and line width at around 60 K, indicating ferromagnetic phase transition. In medium-size AuNRs, the resonance with a large shift was observed below 100 K. The resonance field shifts at the lowest temperature exhibit systematic variation with the system size, which is explained by considering magnetic anisotropy for the ferromagnetic resonance.

  11. Broadband electrically detected magnetic resonance using adiabatic pulses.

    PubMed

    Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR). Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Broadband electrically detected magnetic resonance using adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Hrubesch, F. M.; Braunbeck, G.; Voss, A.; Stutzmann, M.; Brandt, M. S.

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

  13. Patterns of Breast Magnetic Resonance Imaging Use in Community Practice

    PubMed Central

    Wernli, Karen J.; DeMartini, Wendy B.; Ichikawa, Laura; Lehman, Constance D.; Onega, Tracy; Kerlikowske, Karla; Henderson, Louise M.; Geller, Berta M.; Hofmann, Mike; Yankaskas, Bonnie C.

    2014-01-01

    Importance Breast magnetic resonance imaging (MRI) is increasingly used for breast cancer screening, diagnostic evaluation, and surveillance However, we lack data on national patterns of breast MRI use in community practice. Objective To describe 2005–2009 patterns of breast magnetic resonance imaging (MRI) use in U.S. community practice. Design Observational cohort study Setting Data collected from 2005–2009 on breast MRI and mammography from five national Breast Cancer Surveillance Consortium registries. Participants Data included 8931 breast MRI examinations and 1,288,924 screening mammograms from women aged 18–79 years. Main measures We calculated the rate of breast MRI examinations per 1000 women with breast imaging within the same year and described the clinical indications for the breast MRI examinations by year and age. We compared women screened with breast MRI to women screened with mammography alone for patient characteristics and lifetime breast cancer risk. Results The overall rate of breast MRI from 2005 through 2009 nearly tripled from 4.2 to 11.5 examinations per 1000 women with the most rapid rise from 2005–2007 (p=0.02). The most common clinical indication was diagnostic evaluation (40.3%), followed by screening (31.7%). Compared to women who received screening mammography alone, women who underwent screening breast MRI were more likely to be <50 years, white non-Hispanic, nulliparous, and have extremely dense breast tissue, a family history of breast cancer, and a personal history of breast cancer. The proportion of women screened by breast MRI at high lifetime risk for breast cancer (>20%) increased during the study period from 9% in 2005 to 29% in 2009. Conclusions and relevance Use of breast MRI for screening in high-risk women is increasing. However, our findings suggest there is a need to improve appropriate utilization, including among women who may benefit from screening breast MRI. PMID:24247555

  14. Nuclear magnetic resonance data of C10H15

    NASA Astrophysics Data System (ADS)

    Kalinowski, H.-O.; Kumar, M.; Gupta, V.; Gupta, R.

    This document is part of Part 1 `Aliphatic Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  15. Magnetic Resonance Fiber Tracking in a Neonate with Hemimegalencephaly

    PubMed Central

    Re, Thomas J; Scarciolla, Laura; Takahashi, Emi; Specchio, Nicola; Bernardi, Bruno; Longo, Daniela

    2015-01-01

    A magnetic resonance diffusion fiber tracking study in neonate diagnosed with left hemisphere hemimegalencephaly is presented. Despite diffuse morphologic deformities identified in conventional imaging, all major pathways were identifiable bilaterally with minor aberrations in vicinity of morphologic lesions. PMID:25655045

  16. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance.

    PubMed

    Dinsfriend, William; Rao, Krishnasree; Matulevicius, Susan

    2016-06-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis.

  17. Nuclear magnetic resonance data of C9H20OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  18. Nuclear magnetic resonance data of C8H18OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  19. Normal perinatal and paediatric postmortem magnetic resonance imaging appearances.

    PubMed

    Arthurs, Owen J; Barber, Joy L; Taylor, Andrew M; Sebire, Neil J

    2015-04-01

    As postmortem imaging becomes more widely used following perinatal and paediatric deaths, the correct interpretation of images becomes imperative, particularly given the increased use of postmortem magnetic resonance imaging. Many pathological processes may have similar appearances in life and following death. A thorough knowledge of normal postmortem changes is therefore required within postmortem magnetic resonance imaging to ensure that these are not mistakenly interpreted as significant pathology. Similarly, some changes that are interpreted as pathological if they occur during life may be artefacts on postmortem magnetic resonance imaging that are of limited significance. This review serves to illustrate briefly those postmortem magnetic resonance imaging changes as part of the normal changes after death in fetuses and children, and highlight imaging findings that may confuse or mislead an observer to identifying pathology where none is present.

  20. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance

    PubMed Central

    Rao, Krishnasree; Matulevicius, Susan

    2016-01-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis. PMID:27303242