Science.gov

Sample records for magnetic resonance linewidth

  1. Broadband ferromagnetic resonance linewidth measurement of magnetic tunnel junction multilayers

    NASA Astrophysics Data System (ADS)

    Sierra, J. F.; Aliev, F. G.; Heindl, R.; Russek, S. E.; Rippard, W. H.

    2009-01-01

    The broadband ferromagnetic resonance (FMR) linewidth of the free layer of magnetic tunnel junctions is used as a simple diagnostic of the quality of the magnetic structure. The FMR linewidth increases near the field regions of free layer reversal and pinned layer reversal, and this increase correlates with an increase in magnetic hysteresis in unpatterned films, low-frequency noise in patterned devices, and previous observations of magnetic domain ripple by use of Lorentz microscopy. Postannealing changes the free layer FMR linewidth, indicating that considerable magnetic disorder, originating in the exchange-biased pinned layer, is transferred to the free layer.

  2. Ferromagnetic resonance linewidth in ultrathin films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Beaujour, J.-M.; Ravelosona, D.; Tudosa, I.; Fullerton, E. E.; Kent, A. D.

    2009-11-01

    Transition-metal ferromagnetic films with perpendicular magnetic anisotropy (PMA) have ferromagnetic resonance (FMR) linewidths that are one order of magnitude larger than soft magnetic materials, such as pure iron (Fe) and Permalloy (NiFe) thin films. A broadband FMR setup has been used to investigate the origin of the enhanced linewidth in a material in which the PMA could be systematically reduced by irradiation with Helium ions: Ni∣Co multilayers. The FMR linewidth depends linearly on frequency for perpendicular applied fields and increases significantly when the magnetization is rotated into the film plane. Irradiation of the film with Helium ions decreases the PMA and the distribution of PMA parameters, leading to a large reduction in the FMR linewidth for in-plane magnetization. These results suggest that fluctuations in PMA lead to a large two magnon scattering contribution to the linewidth for in-plane magnetization and establish that the Gilbert damping is enhanced in such materials ( α≈0.04 , compared to α≈0.002 for pure Fe).

  3. Frequency-selective control of ferromagnetic resonance linewidth in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Schäfer, S.; Pachauri, N.; Mewes, C. K. A.; Mewes, T.; Kaiser, C.; Leng, Q.; Pakala, M.

    2012-01-01

    We report on a frequency-specific linewidth broadening of the ferromagnetic resonance (FMR) mode of a NiFe free layer within a magnetic multilayer stack. The FMR studies reveal a significant broadening of the FMR linewidth of the free layer at frequencies where this resonance is degenerate with FMR modes stemming from other layers within the multilayer stack. By pinning part of the magnetic multilayer to an antiferromagnet, we tailor a ferromagnetic linewidth behavior that is anisotropic for a specific frequency.

  4. Enhanced ferromagnetic resonance linewidth of the free layer in perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Dennis, C. L.; McMichael, R. D.; Hao, X.; Wang, Z.; Wang, X.; Gan, H.; Zhou, Y.; Zhang, J.; Huai, Y.

    2017-05-01

    We report the frequency dependence of the ferromagnetic resonance linewidth of the free layer in magnetic tunnel junctions with all perpendicular-to-the-plane magnetized layers. While the magnetic-field-swept linewidth nominally shows a linear growth with frequency in agreement with Gilbert damping, an additional frequency-dependent linewidth broadening occurs that shows a strong asymmetry between the absorption spectra for increasing and decreasing external magnetic field. Inhomogeneous magnetic fields produced during reversal of the reference and pinned layer complex is demonstrated to be at the origin of the symmetry breaking and the linewidth enhancement. Consequentially, this linewidth enhancement provides indirect information on the magnetic coercivity of the reference and pinned layers. These results have important implications for the characterization of perpendicular magnetized magnetic random access memory bit cells.

  5. Enhanced ferromagnetic resonance linewidth of the free layer in perpendicular magnetic tunnel junctions

    PubMed Central

    Gopman, D. B.; Dennis, C. L.; McMichael, R. D.; Hao, X.; Wang, Z.; Wang, X.; Gan, H.; Zhou, Y.; Zhang, J.; Huai, Y.

    2017-01-01

    We report the frequency dependence of the ferromagnetic resonance linewidth of the free layer in magnetic tunnel junctions with all perpendicular–to–the–plane magnetized layers. While the magnetic–field–swept linewidth nominally shows a linear growth with frequency in agreement with Gilbert damping, an additional frequency–dependent linewidth broadening occurs that shows a strong asymmetry between the absorption spectra for increasing– and decreasing external magnetic field. Inhomogeneous magnetic fields produced during reversal of the reference and pinned layer complex is demonstrated to be at the origin of the symmetry breaking and the linewidth enhancement. Consequentially, this linewidth enhancement provides indirect information on the magnetic coercivity of the reference and pinned layers. These results have important implications for the characterization of perpendicular magnetized magnetic random access memory bit cells. PMID:28690916

  6. Nuclear magnetic resonance linewidth and spin diffusion in {sup 29}Si isotopically controlled silicon

    SciTech Connect

    Hayashi, Hiroshi; Itoh, Kohei M.; Vlasenko, Leonid S.

    2008-10-15

    A nuclear magnetic resonance (NMR) study was performed with n-type silicon single crystals containing {sup 29}Si isotope abundance f ranges from 1.2% to 99.2%. The nuclear spin diffusion coefficient D has been determined from the linewidth of significantly enhanced {sup 29}Si NMR signals utilizing a developed dynamic nuclear polarization (DNP) method. The {sup 29}Si NMR linewidth depends linearly on f, at least when f<10%, and approaches {proportional_to}f{sup 1/2} dependence when f>50%. The estimated {sup 29}Si nuclear spin diffusion time T{sub sd} between phosphorus atoms used for DNP is more than ten times shorter than the nuclear polarization time T{sub 1}{sup p} of {sup 29}Si nuclei around phosphorus. Therefore, the regime of 'rapid spin diffusion' is realized in the DNP experiments.

  7. Ferromagnetic resonance linewidth and damping in perpendicular-anisotropy magnetic multilayers thin films

    NASA Astrophysics Data System (ADS)

    Beaujour, Jean-Marc

    2010-03-01

    Transition metal ferromagnetic films with perpendicular magnetic anisotropy (PMA) have ferromagnetic resonance (FMR) linewidths that are one order of magnitude larger than soft magnetic materials, such as pure iron (Fe) and permalloy (NiFe) thin films. We have conducted systematic studies of a variety of thin film materials with perpendicular magnetic anisotropy to investigate the origin of the enhanced FMR linewidths, including Ni/Co and CoFeB/Co/Ni multilayers. In Ni/Co multilayers the PMA was systematically reduced by irradiation with Helium ions, leading to a transition from out-of-plane to in-plane easy axis with increasing He ion fluence [1,2]. The FMR linewidth depends linearly on frequency for perpendicular applied fields and increases significantly when the magnetization is rotated into the film plane with an applied in-plane magnetic field. Irradiation of the film with Helium ions decreases the PMA and the distribution of PMA parameters, leading to a large reduction in the FMR linewidth for in-plane magnetization. These results suggest that fluctuations in the PMA lead to a large two magnon scattering contribution to the linewidth for in-plane magnetization and establish that the Gilbert damping is enhanced in such materials (α˜0.04, compared to α˜0.002 for pure Fe) [2]. We compare these results to those on CoFeB/Co/Ni and published results on other thin film materials with PMA [e.g., Ref. 3]. [1] D. Stanescu et al., J. Appl. Phys. 103, 07B529 (2008). [2] J-M. L. Beaujour, D. Ravelosona, I. Tudosa, E. Fullerton, and A. D. Kent, Phys. Rev. B RC 80, 180415 (2009). [3] N. Mo, J. Hohlfeld, M. ulIslam, C. S. Brown, E. Girt, P. Krivosik, W. Tong, A. Rebel, and C. E. Patton, Appl. Phys. Lett. 92, 022506 (2008). *Research done in collaboration with: A. D. Kent, New York University, D. Ravelosona, Institut d'Electronique Fondamentale, UMR CNRS 8622, Universit'e Paris Sud, E. E. Fullerton, Center for Magnetic Recording Research, UCSD, and supported by NSF

  8. Oscillations of the ferromagnetic resonance linewidth and magnetic phases in Co/Ru superlattices

    NASA Astrophysics Data System (ADS)

    Alayo, W.; Baggio-Saitovitch, E.; Pelegrini, F.; Nascimento, V. P.

    2008-10-01

    The interlayer exchange coupling (IEC) and the magnetic anisotropy of Co/Ru(0002) hcp superlattices, produced by magnetron sputtering, were studied by ferromagnetic resonance (FMR). The main mode and a secondary mode, with a higher resonance field, were identified in the perpendicular FMR spectra. The secondary mode is attributed to the resonance of the bulk of Co magnetic layers while the main mode is associated with the Co/Ru interfacial phase. The linewidth dependence of the main FMR mode on the Ru thickness clearly reproduces the oscillations of the IEC between Co layers. These oscillations are attributed to the effects of lateral inhomogeneities of the IEC strength and have a period of about 12Å . Moreover, they are in good agreement with magnetoresistance and magnetization measurements performed in the same samples. The dependence of the effective anisotropy constants on the Co layer thickness leads to the volume and surface anisotropy constants of KV=-1.10×107erg/cm3 and 2Ks=0.95erg/cm2 , respectively, and also to a critical Co thickness of approximately 9Å below which the magnetization is oriented perpendicular to the plane of the film.

  9. Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, X.; Xie, L.; Hu, Z.; Lin, H.; Zhou, Z.; Nan, T.; Yang, X.; Howe, B. M.; Jones, J. G.; Brown, G. J.; Sun, N. X.

    2016-06-01

    It has been challenging to achieve combined strong magnetoelectric coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175 Oe and narrow FMR linewidth of 40 Oe were observed in FeCoSiB/Si/SiO2/PMN-PT heterostructures with substrate clamping effect minimized through removing the Si substrate. As a comparison, FeCoSiB/PMN-PT heterostructures with FeCoSiB film directly deposited on PMN-PT showed a comparable voltage induced effective magnetic field but a significantly larger FMR linewidth of 283 Oe. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for integrated voltage tunable RF magnetic devices.

  10. Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth

    SciTech Connect

    Su, Zhijuan; Bennett, Steven; Hu, Bolin; Chen, Yajie Harris, Vincent G.

    2014-05-07

    U-type barium hexaferrite films (Ba{sub 4}Ni{sub 1.4}Co{sub 0.6}Fe{sub 36}O{sub 60}) were deposited on (0001) sapphire substrates by pulsed laser deposition. Microstructure and magnetic properties of the films were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. Ferromagnetic resonance (FMR) measurements were performed at X-band. The results indicate an anisotropy field of ∼8 kOe, and the saturation magnetization (4πM{sub s}) of ∼3.6 kG. An optimal post-deposition annealing of films results in a strong (0 0 n) crystallographic texture and a high hysteresis loop squareness (M{sub r}/M{sub s} = 92%) leading to self biased properties. Furthermore, the highly self-biased ferrite films exhibited an FMR linewidth of ∼200 Oe. The U-type hexaferrite films having low microwave loss, low magnetic anisotropy field, and high squareness are a suitable alternative to Sc or In doped BaM ferrites that have been the choice material for self-biased microwave devices at X-band frequencies.

  11. Giant Electric Field Control of Magnetism and Narrow Ferromagnetic Resonance Linewidth in FeCoSiB/Si/SiO2/PMN PT Multiferroic Heterostructures (Open Access Author’s Manuscript)

    DTIC Science & Technology

    2016-06-06

    1 Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures...c) 1Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, 02115, USA 2Materials and Manufacturing...coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175Oe

  12. Low temperature FMR linewidth in reentrant magnets

    SciTech Connect

    Belozorov, D.P.; Vertiy, A.A.; Golik, A.V.; Tarapov, S.I.

    1994-03-01

    The FMR linewidth is studied experimentally for reentrant magnets (Fe{sub x}Ni{sub 100{minus}x}){sub 77}B{sub 13}Si{sub 10} in the temperature interval 0.3K < T < 200K, for frequencies 68 GHz < {h_bar}{omega}/kT < 78 GHz. The low temperature interval down to T {approx} 0.3K is thoroughly explored. The linewidth behavior agrees qualitatively with the theoretical model.

  13. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  14. Effects of iron deficiency on anisotropy and ferromagnetic resonance linewidth in Bi-doped LiZn ferrite

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaona; Wang, Wei; Yu, Zhong; Sun, Ke; Lan, Zhongwen; Zhang, Xinran; Harris, Vincent G.

    2017-05-01

    Bi-doped LiZn ferrites with different iron deficiencies were fabricated by a conventional ceramic method. Anisotropy constant (K1) was calculated and ferromagnetic resonance (FMR) linewidth (ΔH) was investigated. Crystalline anisotropy broadening linewidth (ΔHa) and porosity broadening linewidth (ΔHp) were derived by an approximate calculation based on dipolar narrowing theory, which play a significant role in contributions to FMR linewidth and occupy more than 90 % of ΔH. Physical and static magnetic properties of LiZn ferrite with iron deficiency are presented, which supports a decline in linewidths with increasing iron deficiency. Iron deficiency makes K1, ΔHa and ΔHp reduce. The results also show that ΔHp is the majority of contributions to ΔH in Bi-doped LiZn ferrite and densification is an effective method to decrease ΔH.

  15. Near-infrared linewidth narrowing in plasmonic Fano-resonant metamaterials via tuning of multipole contributions

    NASA Astrophysics Data System (ADS)

    Lim, Wen Xiang; Han, Song; Gupta, Manoj; MacDonald, Kevin F.; Singh, Ranjan

    2017-08-01

    We report on an experimental and computational (multipole decomposition) study of Fano resonance modes in complementary near-IR plasmonic metamaterials. Resonance wavelengths and linewidths can be controlled by changing the symmetry of the unit cell so as to manipulate the balance among multipole contributions. In the present case, geometrically inverting one half of a four-slot (paired asymmetric double bar) unit cell design changes the relative magnitude of magnetic quadrupole and toroidal dipole contributions leading to the enhanced quality factor, figure of merit, and spectral tuning of the plasmonic Fano resonance.

  16. An Injection-seeded Narrow Linewidth Singly Resonant ZGP OPO

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Barnes, Norman P.; Lee, Hyung R.; Bai, Yingxin

    2006-01-01

    Injection seeding of a singly resonant ZnGeP2 (ZGP) mid-infrared optical parametric oscillator (OPO) using a continuous wave 3.39 micrometers laser and a tunable near-infrared laser has been demonstrated. This ZGP OPO utilizes a bow-tie shape cavity with a partially reflective mirror for injection seeding at the signal wavelength. It produces high energy pulses in the mid-IR range from 4-10 micrometers. The injection seeded OPO provides a narrow idler wavelength linewidth of approximately 1 nm, limited by the measurement resolution of the monochromator.

  17. The investigation of ferromagnetic resonance linewidth in Ni80Fe20 films with submicron rectangular elements

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Yue, J. J.; Kou, Z. X.; Lin, L.; Zhai, Y.; Zhai, H. R.

    2016-05-01

    Patterned magnetic films with nano-scaled dots exhibit some special magnetic properties. In this paper, we investigate the in-plane shape anisotropy and the magnetization dynamic damping in permalloy (Ni80Fe20) arrays of submicron rectangular elements using ferromagnetic resonance (FMR). The FMR linewidth exhibits a dependence on the element size, and mainly comes from the contribution of the intrinsic damping. Also the contribution of two-magnon scattering plays an important role and is reduced with increasing aspect ratio. The damping coefficient decreases from 0.0129 to 0.0118 with the element length increasing from 300 nm to 1200 nm, and the theoretical calculation suggests that the change of damping results from the longitudinal and transverse interlayer spin current due to the spatially inhomogeneous magnetization dynamics.

  18. Influence of phonon confinement on the optically detected electron-phonon resonance linewidth in quantum wells

    NASA Astrophysics Data System (ADS)

    Dinh Hien, Nguyen; Dinh, Le; Thanh Lam, Vo; Cong Phong, Tran

    2016-06-01

    We investigate the influence of phonon confinement on the optically detected electrophonon resonance (ODEPR) effect and ODEPR line-width in quantum wells. The obtained numerical result for the GaAs/AlAs quantum well shows that the ODEPR line-widths depend on the well's width and temperature. Besides, in the two cases of confined and bulk phonons, the linewidth (LW) decreases with the increase of well's width and increases with the increase of temperature. Furthermore, in the small range of the well's width, the influence of phonon confinement plays an important role and cannot be neglected in considering the ODEPR line-width.

  19. The linewidth of distributed feedback resonators: the combined effect of thermally induced chirp and gain narrowing

    NASA Astrophysics Data System (ADS)

    Kores, Cristine C.; Geskus, Dimitri; Ismail, Nur; Dijkstra, Meindert; Bernhardi, Edward H.; Pollnau, Markus

    2017-02-01

    Distributed-feedback (DFB) laser resonators are widely recognized for their advantage of generating laser emission with extremely narrow linewidth. Our investigation concerns ytterbium-doped amorphous Al2O3 channel waveguides with a corrugated homogeneous Bragg grating inscribed into its SiO2 top cladding, in which a λ/4 phase-shift provides a resonance and allows for laser emission with a linewidth as narrow as a few kHz. Pump absorption imposes a thermal chirp of the grating period, which has implications for the spectral characteristics of the resonator. Thermal effects on the spectral response of a DFB passive resonator were investigated via simulations using Coupled Mode Theory by considering (i) a constant deviation of the grating period or (ii) a chirp with a linear profile. We report an increase of the resonance linewidth up to 15%. This result is due to two factors, namely changes of the grating reflectivity at the resonance frequency up to 2.4% and of the shift of resonance frequency up to 61 pm due to an accumulated phase shift imposed on the grating by the chirp profile. The linewidth decrease due to gain is on the order of 106, which is a much larger value. Nevertheless, according to the Schawlow-Townes equation the linewidth increase of the passive resonator due to a thermal chirp quadratically increases the laser linewidth.

  20. A theoretical investigation of Ferromagnetic Resonance Linewidth and damping constants in coupled trilayer and spin valve systems

    SciTech Connect

    Layadi, A.

    2015-05-15

    The ferromagnetic resonance intrinsic field linewidth ΔH is investigated for a multilayer system such as a coupled trilayer and a spin valve structure. The magnetic coupling between two ferromagnetic layers separated by a nonmagnetic interlayer will be described by the bilinear J{sub 1} and biquadratic J{sub 2} coupling parameters. The interaction at the interface of the first ferromagnetic layer with the antiferromagnetic one is account for by the exchange anisotropy field, H{sub E}. A general formula is derived for the intrinsic linewidth ΔH. The explicit dependence of ΔH with H{sub E}, J{sub 1} and J{sub 2} will be highlighted. Analytical expressions for each mode field linewidth are found in special cases. Equivalent damping constants will be discussed.

  1. CaF2 whispering-gallery-mode-resonator stabilized-narrow-linewidth laser.

    PubMed

    Sprenger, B; Schwefel, H G L; Lu, Z H; Svitlov, S; Wang, L J

    2010-09-01

    A fiber laser is stabilized by introducing a calcium fluoride (CaF(2)) whispering-gallery-mode resonator as a filtering element in a ring cavity. It is set up using a semiconductor optical amplifier as a gain medium. The resonator is critically coupled through prisms, and used as a filtering element to suppress the laser linewidth. A three-cornered-hat method is used and shows a stability of 10(-11) after 10 micros. Using the self-heterodyne beat technique, the linewidth is determined to be 13 kHz. This implies an enhancement factor of 10(3) with respect to the passive cavity linewidth.

  2. Magnetic Semiconductor Quantum Wells in High Fields to 60 Tesla: Photoluminescence Linewidth Annealing at Magnetization Steps

    SciTech Connect

    Awschalom, D.D.; Crooker, S.A.; Lyo, S.K.; Rickel, D.G.; Samarth, N.

    1999-05-24

    Magnetic semiconductors offer a unique possibility for strongly tuning the intrinsic alloy disorder potential with applied magnetic field. We report the direct observation of a series of step-like reductions in the magnetic alloy disorder potential in single ZnSe/Zn(Cd,Mn)Se quantum wells between O and 60 Tesla. This disorder, measured through the linewidth of low temperature photoluminescence spectra drops abruptly at -19, 36, and 53 Tesla, in concert with observed magnetization steps. Conventional models of alloy disorder (developed for nonmagnetic semiconductors) reproduce the general shape of the data, but markedly underestimate the size of the linewidth reduction.

  3. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser.

    PubMed

    Liang, W; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2010-08-15

    We demonstrate a miniature self-injection locked distributed-feedback laser using resonant optical feedback from a high-Q crystalline whispering-gallery-mode resonator. The linewidth reduction factor is greater than 10,000, with resultant instantaneous linewidth of less than 200 Hz. The minimal value of the Allan deviation for the laser-frequency stability is 3 x 10(-12) at the integration time of 20 micros. The laser possesses excellent spectral purity and good long-term stability.

  4. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for making ...

  5. Impedance self-matching ultra-narrow linewidth fiber resonator by use of a tunable π-phase-shifted FBG.

    PubMed

    Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang

    2017-05-15

    In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.

  6. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  7. A Narrow Linewidth Singly Resonant ZGP OPO for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Lee, Hyung R.; Bai, Yingxin; Barnes, Norman P.

    2006-01-01

    A singly resonant, injection seeded Zinc Germanium Phosphide (ZGP) optical parametric oscillator (OPO), capable to tune over 4.3-10.1 microns, is demonstrated. This ZGP OPO uses a bow-tie cavity with a partially reflective mirror for injection seeding at the signal wavelength. The injection seed source can be either a continuous wave 3.39 m laser or a tunable near-infrared OPO laser, which provides wide wavelength tuning capability. The injection seeded ZGP OPO narrows the idler wavelength linewidth to less than 1nm, limited by the measurement resolution of the monochromator. This device has potential to be used as a transmitter for multiple purpose lidar applications.

  8. Control of Ferromagnetic Resonance Frequency and Frequency Linewidth by Electrical Fields in FeCo/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32(011) Heterostructures

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2016-10-01

    We report our detailed investigation of the electrical tuning of the ferromagnetic resonance frequency and frequency linewidth in multiferroic heterostructures consisting of FeCo thin films grown onto [Pb(Mg1/3Nb2/3) O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates with NiFe underlayers. Our study shows that the electrical tuning range of both ferromagnetic resonance frequency and frequency linewidth in this FeCo/PMN-PT heterostructure can be very large. Specifically, the resonance frequency can be tuned from 1.8 GHz to 10.3 GHz, and the frequency linewidth can be changed from 1.6 GHz to 7.3 GHz. The electrical tuning of these microwave properties is discussed in conjunction with the result from the static magnetic characterization and is explained based on the strain-driven magnetoelectric heterostructured effect.

  9. Spectral linewidth and resonant frequency characteristics of InGaAsP/InP multiquantum well lasers

    SciTech Connect

    Sasai, Y.; Ohya, J.; Ogura, M.

    1989-04-01

    The spectral linewidth and resonant frequency characteristics of 1.3 ..mu..m InGaAsP/InP multiquantum well (MQW) lasers grown by liquid phase epitaxy (LPE) were investigated, compared to those of the conventional double heterostructure (DH) lasers. The result showed a decrease in spectral linewidth and an increase in resonant frequency f/sub r/ with decreasing well thickness. Moreover, it was recognized that the linewidth enhancement factor became smaller in well thicknesses of less than -- 200 A, namely, the factor ..cap alpha.. reduced to -- 2, while that of the DH laser was -- 6. The f/sub r/ of 9 GHz, which is about twice as large as that of conventional DH lasers, was achieved at an optical power of 5.3 mW/facet.

  10. Population Pulsation Resonances of Excitons in Monolayer MoSe2 with Sub-1 μeV Linewidths

    DOE PAGES

    Schaibley, John R.; Karin, Todd; Yu, Hongyi; ...

    2015-04-01

    Monolayer transition metal dichalcogenides, a new class of atomically thin semiconductors, possess optically coupled 2D valley excitons. The nature of exciton relaxation in these systems is currently poorly understood. In this paper, we investigate exciton relaxation in monolayer MoSe2 using polarization-resolved coherent nonlinear optical spectroscopy with high spectral resolution. We report strikingly narrow population pulsation resonances with two different characteristic linewidths of 1 and <0.2 μeV at low temperature. These linewidths are more than 3 orders of magnitude narrower than the photoluminescence and absorption linewidth, and indicate that a component of the exciton relaxation dynamics occurs on time scales longermore » than 1 ns. Finally, the ultranarrow resonance (<0.2 μeV) emerges with increasing excitation intensity, and implies the existence of a long-lived state whose lifetime exceeds 6 ns.« less

  11. Nanoscale nuclear magnetic resonance with chemical resolution

    NASA Astrophysics Data System (ADS)

    Aslam, Nabeel; Pfender, Matthias; Neumann, Philipp; Reuter, Rolf; Zappe, Andrea; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, Jörg

    2017-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in 1H and 19F NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was ~1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.

  12. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  13. Magnetic field in molecular cloud cores: Limits on field strengths and linewidths

    NASA Technical Reports Server (NTRS)

    Goodman, A. A.

    1986-01-01

    Preliminary observations by others indicate that the magnetic field strength in dense molecular cloud cores is on the order of 30 micro G, much closer to the background field strength than to the flux-freezing prediction for this density. This result implies that some process must exist to decrease the magnetic field strength in these regions to much less than its flux-frozen value, e.g., ambipolar diffusion. At these moderate field strengths, magnetohydrodynamic waves in the cores provide a good explanation of observed supra-thermal molecular linewidths.

  14. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    NASA Astrophysics Data System (ADS)

    Loh, William; Becker, Joe; Cole, Daniel C.; Coillet, Aurelien; Baynes, Fred N.; Papp, Scott B.; Diddams, Scott A.

    2016-04-01

    We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6 mm diameter microrod resonator used in our experiments has a large optical mode area of ˜100 μm2, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz2 Hz-1. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency. We demonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.

  15. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  16. 30-Hz relative linewidth watt output power 1.65 µm continuous-wave singly resonant optical parametric oscillator.

    PubMed

    Ly, Aliou; Siour, Christophe; Bretenaker, Fabien

    2017-04-17

    We built a 1-watt cw singly resonant optical parametric oscillator operating at an idler wavelength of 1.65 µm for application to quantum interfaces. The non resonant idler is frequency stabilized by side-fringe locking on a relatively high-finesse Fabry-Perot cavity, and the influence of intensity noise is carefully analyzed. A relative linewidth down to the sub-kHz level (about 30 Hz over 2 s) is achieved. A very good long term stability is obtained for both frequency and intensity.

  17. Magnetic resonance annual, 1988

    SciTech Connect

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

  18. Evaluation of radio frequency microcoils as nuclear magnetic resonance detectors in low-homogeneity high-field superconducting magnets

    NASA Astrophysics Data System (ADS)

    Wright, A. C.; Neideen, T. A.; Magin, R. L.; Norcross, J. A.

    1998-11-01

    We describe here experiments evaluating the performance of solenoidal radio frequency probes having submillimeter dimensions (microcoils) as detectors for liquid nuclear magnetic resonance (NMR) in very low-homogeneity (100 ppm/cm) magnetic fields. Performance is based on the measured H2O linewidth. A series of solenoidal microcoils having sample volumes 8, 53, and 593 nl were filled with distilled H2O and evaluated for smallest obtainable unshimmed NMR spectral linewidths in a vertical bore superconducting magnet, stabilized at 5.9 T (1H frequency=250 MHz). The smallest microcoil (472 μm diameter) gave a smallest H2O linewidth of 525 Hz, 25 times smaller than that from a standard 5.7 mm probe. Linewidth increased approximately as the square root of sample volume. For comparison, shimmed H2O linewidths using the same microcoils in a high-homogeneity (0.1 ppm/cm) NMR magnet were also measured. Shimmed linewidths in the high-homogeneity magnet were two orders of magnitude smaller and exhibited a similar dependence on volume. The results demonstrate that by using microcoils the volume over which the polarizing magnetic field must meet a specified homogeneity can be significantly reduced, which would be advantageous for smaller, less expensive NMR systems.

  19. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias

    PubMed Central

    Hsu, Yuan-Yu; Du, An-Tao; Schuff, Norbert; Weiner, Michael W.

    2007-01-01

    This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection of affected individuals, monitoring disease progression, and evaluation of therapeutic effect. PMID:11563438

  20. Electron spin resonance shift and linewidth broadening of nitrogen-vacancy centers in diamond as a function of electron irradiation dose

    SciTech Connect

    Kim, Edwin; Acosta, Victor M.; Bauch, Erik; Budker, Dmitry; Hemmer, Philip R.

    2012-08-20

    A high-nitrogen-concentration diamond sample was subjected to 200-keV electron irradiation using a transmission electron microscope. The optical and spin-resonance properties of the nitrogen-vacancy (NV) color centers were investigated as a function of the irradiation dose up to 6.4 Multiplication-Sign 10{sup 21} e{sup -}/cm{sup 2}. The microwave transition frequency of the NV{sup -} center was found to shift by up to 0.6% (17.1 MHz) and the linewidth broadened with increasing electron-irradiation dose. Unexpectedly, the measured magnetic sensitivity is best at the lowest irradiation dose, even though the NV concentration increases monotonically with increasing dose. This is in large part due to a sharp reduction in optically detected spin contrast at higher doses.

  1. Electron spin resonance shift and linewidth broadening of nitrogen-vacancy centers in diamond as a function of electron irradiation dose

    PubMed Central

    Kim, Edwin; Acosta, Victor M.; Bauch, Erik; Budker, Dmitry; Hemmer, Philip R.

    2012-01-01

    A high-nitrogen-concentration diamond sample was subjected to 200-keV electron irradiation using a transmission electron microscope. The optical and spin-resonance properties of the nitrogen-vacancy (NV) color centers were investigated as a function of the irradiation dose up to 6.4 × 1021 e−/cm2. The microwave transition frequency of the NV− center was found to shift by up to 0.6% (17.1 MHz) and the linewidth broadened with increasing electron-irradiation dose. Unexpectedly, the measured magnetic sensitivity is best at the lowest irradiation dose, even though the NV concentration increases monotonically with increasing dose. This is in large part due to a sharp reduction in optically detected spin contrast at higher doses. PMID:22991479

  2. Electron spin resonance shift and linewidth broadening of nitrogen-vacancy centers in diamond as a function of electron irradiation dose

    NASA Astrophysics Data System (ADS)

    Kim, Edwin; Acosta, Victor M.; Bauch, Erik; Budker, Dmitry; Hemmer, Philip R.

    2012-08-01

    A high-nitrogen-concentration diamond sample was subjected to 200-keV electron irradiation using a transmission electron microscope. The optical and spin-resonance properties of the nitrogen-vacancy (NV) color centers were investigated as a function of the irradiation dose up to 6.4 × 1021 e-/cm2. The microwave transition frequency of the NV- center was found to shift by up to 0.6% (17.1 MHz) and the linewidth broadened with increasing electron-irradiation dose. Unexpectedly, the measured magnetic sensitivity is best at the lowest irradiation dose, even though the NV concentration increases monotonically with increasing dose. This is in large part due to a sharp reduction in optically detected spin contrast at higher doses.

  3. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  4. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  5. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  7. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  8. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  9. Resonant magnetic vortices

    SciTech Connect

    Decanini, Yves; Folacci, Antoine

    2003-04-01

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.

  10. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers

    SciTech Connect

    Devolder, Thibaut

    2016-04-21

    Strong ferromagnetic interlayer exchange couplings J in perpendicularly magnetized systems are becoming increasingly desirable for applications. We study whether ferromagnetic interlayer exchange couplings can be measured by a combination of broadband ferromagnetic resonance methods and magnetometry hysteresis loops. For this, we model the switching and the eigenexcitations in bilayer systems comprising a soft layer coupled to a thicker harder layer that possesses higher perpendicular magnetic anisotropy. For large J > 0, the switching fields are essentially independent of J but the frequency of the optical eigenmode of the bilayer and the linewidth of the acoustical and optical eigenmode are directly sensitive to the coupling. We derive a corpus of compact analytical expressions to analyze these frequencies, their linewidth and discuss the meaning thereof. We illustrate this corpus on a system mimicking the fixed layers of a magnetic tunnel junction meant for spin torque applications.

  11. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut

    2016-04-01

    Strong ferromagnetic interlayer exchange couplings J in perpendicularly magnetized systems are becoming increasingly desirable for applications. We study whether ferromagnetic interlayer exchange couplings can be measured by a combination of broadband ferromagnetic resonance methods and magnetometry hysteresis loops. For this, we model the switching and the eigenexcitations in bilayer systems comprising a soft layer coupled to a thicker harder layer that possesses higher perpendicular magnetic anisotropy. For large J > 0, the switching fields are essentially independent of J but the frequency of the optical eigenmode of the bilayer and the linewidth of the acoustical and optical eigenmode are directly sensitive to the coupling. We derive a corpus of compact analytical expressions to analyze these frequencies, their linewidth and discuss the meaning thereof. We illustrate this corpus on a system mimicking the fixed layers of a magnetic tunnel junction meant for spin torque applications.

  12. Magnetic Resonance Safety

    PubMed Central

    Sammet, Steffen

    2016-01-01

    Magnetic Resonance Imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy and the potential risks of MRI contrast agents will also be discussed and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented. PMID:26940331

  13. X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions.

    PubMed

    Rudolph, J K; Bernitt, S; Epp, S W; Steinbrügge, R; Beilmann, C; Brown, G V; Eberle, S; Graf, A; Harman, Z; Hell, N; Leutenegger, M; Müller, A; Schlage, K; Wille, H-C; Yavaş, H; Ullrich, J; Crespo López-Urrutia, J R

    2013-09-06

    Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.

  14. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity.

    PubMed

    Ismail, Nur; Kores, Cristine Calil; Geskus, Dimitri; Pollnau, Markus

    2016-07-25

    We systematically characterize the Fabry-Pérot resonator. We derive the generic Airy distribution of a Fabry-Pérot resonator, which equals the internal resonance enhancement factor, and show that all related Airy distributions are obtained by simple scaling factors. We analyze the textbook approaches to the Fabry-Pérot resonator and point out various misconceptions. We verify that the sum of the mode profiles of all longitudinal modes is the fundamental physical function that characterizes the Fabry-Pérot resonator and generates the Airy distribution. Consequently, the resonator losses are quantified by the linewidths of the underlying Lorentzian lines and not by the measured Airy linewidth. Therefore, we introduce the Lorentzian finesse which provides the spectral resolution of the Lorentzian lines, whereas the usually considered Airy finesse only quantifies the performance of the Fabry-Pérot resonator as a scanning spectrometer. We also point out that the concepts of linewidth and finesse of the Airy distribution of a Fabry-Pérot resonator break down at low reflectivity. Furthermore, we show that a Fabry-Pérot resonator has no cut-off resonance wavelength. Finally, we investigate the influence of frequency-dependent mirror reflectivities, allowing for the direct calculation of its deformed mode profiles.

  15. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  16. Narrow line-width single-longitudinal-mode fiber laser using silicon-on-insulator based micro-ring-resonator

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Hsu, Yung; Hsu, Chin-Wei; Yang, Ling-Gang; Chow, Chi-Wai; Yeh, Chien-Hung; Lai, Yin-Chieh; Tsang, Hon-Ki

    2016-02-01

    In this work, we propose and demonstrate a stable single-longitudinal-mode (SLM) fiber laser with narrow line-width by using an integrated silicon-on-insulator micro-ring resonator (SOI MRR) and two subsidiary fiber rings for the first time, to the best of our knowledge. The laser is tunable over the wavelength range from 1546 to 1570 nm, with only step tuning of 2 nm steps. A maximum 49 dB side mode suppression ratio (SMSR) can be achieved. The compact SOI MRR provides a large free-spectral-range (FSR), while the subsidiary rings provide Vernier effect producing a single lasing mode. The FSR of the SOI MRR can be very large and controllable (since it is easy to fabricate small SOI MRR when compared with making small fiber-rings) using the complementary-metal-oxide-semiconductor (CMOS) compactable SOI fabrication processes. In our proposed laser, the measured single sideband (SSB) spectrum shows that the densely spaced longitudinal modes can be significantly suppressed to achieve SLM. The laser linewidth is only 3.5 kHz measured by using the self-heterodyne method. 30 min stability evaluation in terms of lasing wavelength and optical power is performed; showing the optical wavelength and power are both very stable, with fluctuations of only 0.02 nm and 0.8 dB, respectively.

  17. Tunable resonator-based devices for producing variable delays and narrow spectral linewidths

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)

    2006-01-01

    Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.

  18. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  19. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  20. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  1. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  2. Population Pulsation Resonances of Excitons in Monolayer MoSe2 with Sub-1 μeV Linewidths

    SciTech Connect

    Schaibley, John R.; Karin, Todd; Yu, Hongyi; Ross, Jason S.; Rivera, Pasqual; Jones, Aaron M.; Scott, Marie E.; Yan, Jiaqiang; Mandrus, D. G.; Yao, Wang; Fu, Kai-Mei; Xu, Xiaodong

    2015-04-01

    Monolayer transition metal dichalcogenides, a new class of atomically thin semiconductors, possess optically coupled 2D valley excitons. The nature of exciton relaxation in these systems is currently poorly understood. In this paper, we investigate exciton relaxation in monolayer MoSe2 using polarization-resolved coherent nonlinear optical spectroscopy with high spectral resolution. We report strikingly narrow population pulsation resonances with two different characteristic linewidths of 1 and <0.2 μeV at low temperature. These linewidths are more than 3 orders of magnitude narrower than the photoluminescence and absorption linewidth, and indicate that a component of the exciton relaxation dynamics occurs on time scales longer than 1 ns. Finally, the ultranarrow resonance (<0.2 μeV) emerges with increasing excitation intensity, and implies the existence of a long-lived state whose lifetime exceeds 6 ns.

  3. Nuclear magnetic resonance blood flowmeter

    SciTech Connect

    Battocletti, J.H.; Halbach, R.E.; Antonich, F.J.; Sances, A. Jr.; Knox, T.A.

    1986-09-23

    An improved nuclear magnetic resonance blood flowmeter is described for non-invasively measuring blood flow in a human limb comprising; polarizing magnet means for generating a substantially uniform magnetic field; a limb receiving lumen for supporting a human limb within the field generated by the polarizing magnet means so that blood molecules within the limb are magnetically polarized thereby; transmitter means located adjacent the lumen for inducing a nuclear magnetic resonance response in the blood molecules of the human limb disposed within the lumen; scanning means including: first means for generating a first pair of opposing magnetic fields within the lumen for cancelling the nuclear magnetic resonance response induced by the transmitter means everywhere except within a first null plane along which the first opposing magnetic fields cancel each other; second means for generating a second pair of opposing magnetic fields; and control means coupled to the first and second means for generating the first and second pair of opposing magnetic fields.

  4. Cardiovascular Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  5. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  6. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  7. Partially orthogonal resonators for magnetic resonance imaging

    PubMed Central

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-01-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density. PMID:28186135

  8. Partially orthogonal resonators for magnetic resonance imaging.

    PubMed

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R

    2017-02-10

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  9. Effects of size, shape, and frequency on the antiferromagnetic resonance linewidth of MnF

    NASA Technical Reports Server (NTRS)

    Obrien, K. C.

    1973-01-01

    The research concerning the properties and application of solid state materials at submillimeter frequencies is summarized. Work reported includes: far infrared Fourier spectroscopy; studies of the antiferromagnetic resonance line in MnF2 at millimeter wavelengths; numerical solution of the equations of motion of a general two-sublattice antiferromagnet; study of antiferromagnetic resonance line in NiO powder; and resonance investigations of several indium thisospinels at millimeter wavelengths.

  10. Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field.

    PubMed

    Tayler, Michael C D; Theis, Thomas; Sjolander, Tobias F; Blanchard, John W; Kentner, Arne; Pustelny, Szymon; Pines, Alexander; Budker, Dmitry

    2017-09-01

    We review experimental techniques in our laboratory for nuclear magnetic resonance (NMR) in zero and ultralow magnetic field (below 0.1 μT) where detection is based on a low-cost, non-cryogenic, spin-exchange relaxation free (87)Rb atomic magnetometer. The typical sensitivity is 20-30 fT/Hz(1/2) for signal frequencies below 1 kHz and NMR linewidths range from Hz all the way down to tens of mHz. These features enable precision measurements of chemically informative nuclear spin-spin couplings as well as nuclear spin precession in ultralow magnetic fields.

  11. Magnetic resonance urography.

    PubMed

    Leyendecker, John R; Gianini, John W

    2009-07-01

    Excellent contrast resolution and lack of ionizing radiation make magnetic resonance urography (MRU) a promising technique for noninvasively evaluating the entire urinary tract. While MRU currently lags behind CT urography (CTU) in spatial resolution and efficiency, new hardware and sequence developments have contributed to a resurgence of interest in MRU techniques. By combining unenhanced sequences with multiphase contrast-enhanced and excretory phase imaging, a comprehensive assessment of the kidneys, ureters, bladder, and surrounding structures is possible with image quality rivaling that obtained with other techniques. At the same time, formidable challenges remain to be overcome and further clinical validation is necessary before MRU can replace other forms of urography. In this article, we demonstrate the current potential of MRU to demonstrate a spectrum of urologic pathology involving the kidneys, ureters, and bladder while discussing the limitations and current status of this evolving technique.

  12. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  13. Ultrahigh sensitivity of rotation sensing beyond the trade-off between sensitivity and linewidth by the storage of light in a dynamic slow-light resonator

    SciTech Connect

    Zhang Xuenan; Zhang Yundong; Tian He; Wu Hao; Li Geng; Zhu Ruidong; Yuan Ping

    2011-12-15

    We propose to employ the storage of light in a dynamically tuned add-drop resonator to realize an optical gyroscope of ultrahigh sensitivity and compact size. Taking the impact of the linewidth of incident light on the sensitivity into account, we investigate the effect of rotation on the propagation of a partially coherent light field in this dynamically tuned slow-light structure. It is demonstrated that the fundamental trade-off between the rotation-detection sensitivity and the linewidth will be overcome and the sensitivity-linewidth product will be enhanced by two orders of magnitude in comparison to that of the corresponding static slow-light structure. Furthermore, the optical gyroscope employing the storage of light in the dynamically tuned add-drop resonator can acquire ultrahigh sensitivity by extremely short fiber length without a high-performance laser source of narrow linewidth and a complex laser frequency stabilization system. Thus the proposal in this paper provides a promising and feasible scheme to realize highly sensitive and compact integrated optical gyroscopes by slow-light structures.

  14. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  15. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks.

  16. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Reuhs, Bradley L.; Simsek, Senay

    Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique with a wide variety of applications. It may be used for complex structural studies, for protocol or process development, or as a simple quality assay for which structural information is important. It is nondestructive, and high-quality data may be obtained from milligram, even microgram, quantities of sample. Whereas other spectroscopy techniques may be used to determine the nature of the functional groups present in a sample, only NMR spectroscopy can provide the data necessary to determine the complete structure of a molecule. The applicability of NMR to food analysis has increased over the last three decades. In addition to improved instrumentation and much lower costs, very complex and specialized NMR techniques can now be routinely performed by a student or technician. These experiments can be set up with the click of a button/icon, as all the basic parameters are embedded into default experiment files listed in the data/work station software, and the results are obtained in a short time.

  17. Pediatric magnetic resonance urography.

    PubMed

    Jones, Richard A; Grattan-Smith, J Damien; Little, Stephen

    2011-03-01

    Magnetic resonance urography (MRU) is a powerful clinical tool that fuses anatomic information with functional data in a single test without the use of ionizing radiation. This article provides an overview of the technical aspects, as well as common clinical applications with an emphasis on the evaluation of hydronephrosis. A fluid challenge is an essential part of our MRU protocol and enables the definition of compensated or decompensated kidneys within the spectrum of hydronephrosis. This classification may have prognostic implications when surgery is being considered. In addition, underlying uropathy can be identified on the anatomical scans and renal scarring can be seen on both the anatomical and dynamic scans. MRU can identify and categorize dysmorphic kidneys in vivo and may provide insight into congenital abnormalities seen in conjunction with vesicoureteric reflux. MRU is still in its infancy and as the technique develops and becomes widely available, it seems likely that it will supplant renal scintigraphy in the evaluation of renal tract disorders in children. Copyright © 2011 Wiley-Liss, Inc.

  18. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  19. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  20. Introduction to nuclear magnetic resonance.

    PubMed

    Mlynárik, Vladimír

    2016-05-19

    Nuclear magnetic resonance spectroscopy is a useful tool for studying normal and pathological biochemical processes in tissues. In this review, the principles of nuclear magnetic resonance and methods of obtaining nuclear magnetic resonance spectra are briefly outlined. The origin of the most important spectroscopic parameters-chemical shifts, coupling constants, longitudinal and transverse relaxation times, and spectroscopic line intensities-is explained, and the role of these parameters in interpretation of spectra is addressed. Basic methodological concepts of localized spectroscopy and spectroscopic imaging for the study of tissue metabolism in vivo are also described.

  1. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  2. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  3. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... the area being scanned include: Metallic spinal rod Plates, pins, screws, or metal mesh used to repair ...

  4. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  5. Minimalist-design, high-functionality, micro-ring resonator-based optical filter with narrow linewidth and low group delay using Looped Back Over- and Under-coupled Resonator (LOBOUR)

    NASA Astrophysics Data System (ADS)

    Ye, Bo; Dingel, Benjamin B.; Cui, Weili

    2013-01-01

    We present a minimalist design but high functionality micro-ring resonator based optical filter with narrow linewidth and low group delay using a novel design we called LOBOUR for LOoped-Back Over- and Under- Coupled Resonator (LOBOUR). The characteristics of both narrow linewidth and low group delay (low chromatic dispersion) generally do not come together especially when using a single ring resonator. The Cascaded Over- and Under-Coupled Resonator (COUR) design was able to achieve this goal but introduced many practical fabrication issues. Here, we present an alternative design to COUR which uses only one ring resonator and without fabrication and manufacturing issues. It can achieve 50 dB extinction ratio and tens of ps performance. We also present important parameter selection mapping for LOBOUR.

  6. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  7. Early History of Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ramsey, N. F.

    1999-06-01

    The early history of magnetic resonance to around 1950 is discussed from the point of view of a participant in it. I. I. Rabi's theory of space quantization in a gyrating magnetic field and his molecular beam experiments in the 1930s laid the foundation of the magnetic resonance method, which he and his associates subsequently pursued and developed further at Columbia University, leading eventually to the development of NMR after World War II and the invention of the separated oscillatory fields method in 1950.

  8. Basics of magnetic resonance imaging

    SciTech Connect

    Oldendorf, W.; Oldendorf, W. Jr.

    1988-01-01

    Beginning with the behavior of a compass needle in a magnetic field, this text uses analogies from everyday experience to explain the phenomenon of nuclear magnetic resonance and how it is used for imaging. Using a minimum of scientific abbreviations and symbols, the basics of tissue visualization and characterization are presented. A description of the various types of magnets and scanners is followed by the practical advantages and limitations of MRI relative to x-ray CT scanning.

  9. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  10. The internal magnetic field distribution, and single exponential magnetic resonance free induction decay, in rocks.

    PubMed

    Chen, Quan; Marble, Andrew E; Colpitts, Bruce G; Balcom, Bruce J

    2005-08-01

    When fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally. We show that the 'decay due to diffusion in internal field' magnetic resonance technique may be applied to measure the pore size distribution in partially saturated porous media. For the first time, we have observed that the internal magnetic field and its gradients in porous rocks have a Lorentzian distribution, with an average gradient value of zero. The Lorentzian distribution of internal magnetic field arises from the large susceptibility contrast and an intrinsic disordered pore structure in these porous media. We confirm that the single exponential magnetic resonance free induction decay commonly observed in fluid saturated porous media arises from a Lorentzian internal field distribution. A linear relationship between the magnetic resonance linewidth, and the product of the susceptibility difference in the porous media and the applied magnetic field, is observed through simulation and experiment.

  11. Electrically detected and conventional magnetic resonance investigation of surface and bulk states in polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Castro, Fernando A.; Graeff, Carlos F. O.

    2007-04-01

    Electrically detected magnetic resonance (EDMR) and electron paramagnetic resonance (EPR) were used to investigate emeraldine base polyaniline films. The magnetic susceptibility presented a Curie (localized spins)—Pauli (delocalized spins) transition at 240 K, when we also observed a transition in the dependence of the g factor with temperature (T). Peak-to-peak linewidth decreases with increasing temperature, reflecting that motional narrowing limits the hyperfine and dipolar broadening in this polymer. EDMR spectra could only be observed above 250 K in accordance to EPR results. Surface and bulk transport could be separated and their analysis reflected the effect of magnetic interaction with oxygen.

  12. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  13. Nuclear magnetic resonance scanners

    SciTech Connect

    Danby, G.T.; Hsieh, H.C.H.; Jackson, J.W.; Damadian, R.V.

    1988-08-23

    This patent describes a medical NMR scanner comprising a primary field magnet assembly including: (a) a ferromagnetic frame defining a patient-receiving space adapted to receive a human body, the frame having a pair of opposed polar regions aligned on a polar axis and disposed on opposite sides of the patient-receiving space, and the frame including a substantially continuous ferro-magnetic flux return path extending between the polar regions remote from the patient-receiving space; (b) flux-generating means including superconductive windings and cryostat means for maintaining the windings at superconducting temperatures; and (c) support means for maintaining the windings in proximity to the frame so that when a current passes through the windings magnetic flux emanating from the windings produces a magnetic field within the patient-receiving space and at least a portion of the flux passes into the patient-receiving space by way of the polar regions.

  14. Magnetic Resonance (MR) Defecography

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  15. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  16. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... cholangiopancreatography or MRCP uses a powerful magnetic field, radio waves and a computer to evaluate the liver, gallbladder, ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  17. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    NASA Astrophysics Data System (ADS)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2017-02-01

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in Mx configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design.

  18. Advances in Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Price, R. R.

    1996-05-01

    Nuclear Magnetic Resonance (NMR) Imaging, now more commonly referred to as Magnetic Resonance Imaging (MRI), developed into an important clinical modality between the years of 1978 and 1985. In 1945 it was demonstrated independently by Bloch(F. Bloch, The Principle of Nuclear Induction, Nobel Lectures in Physics: 1946-1962 New York, Elsevier Science Publishing Co., Inc. 1964.) and Purcell(E.M. Purcell, Research in Nuclear Magnetism, Nobel Lectures in Physics: 1946-1962, New York. Elsevier Science Publishing Co., Inc. 1964.) that magnetic nuclei in a sample when placed in a static magnetic field exhibit a characteristic resonance frequency which is proportional to the field strength and unique to nuclei of the same type and same environment. The net magnetization of the sample when irradiated by an RF wave at the resonance frequency could thus be manipulated to produce an induced "NMR signal" in a conducting loop placed near the sample. In the early 1970's, methods were developed whereby the NMR signal could be spatially encoded in both frequency and phase by means of superimposed linear magnetic field gradients to produce NMR images. NMR image contrast is a function of nuclear concentration and magnetic relaxation times (T1 and T2). MRI became the first medical imaging modality to provide both high resolution and high contrast images of soft tissue. Current clinical MRI systems produce images of the distribution of ^1H nuclei (primarily water) within the body. Other biologically important nuclei (^13C, ^23N, ^31P), as well as the imaging of hyperpolarized inert gases (^3He, ^129Xe) are under investigation. Recent developments in ^1H-MRI have included chemical shift imaging (hydrogen containing metabolites), blood flow imaging (MR angiography), ultra high-speed imaging (Echo Planar), and imaging of brain function based upon magnetic susceptibility differences resulting from blood oxygenation changes during brain activity.

  19. Interventional Cardiovascular Magnetic Resonance Imaging

    PubMed Central

    Saikus, Christina E.; Lederman, Robert J.

    2010-01-01

    Cardiovascular magnetic resonance (CMR) combines excellent soft-tissue contrast, multiplanar views, and dynamic imaging of cardiac function without ionizing radiation exposure. Interventional cardiovascular magnetic resonance (iCMR) leverages these features to enhance conventional interventional procedures or to enable novel ones. Although still awaiting clinical deployment, this young field has tremendous potential. We survey promising clinical applications for iCMR. Next, we discuss the technologies that allow CMR-guided interventions and, finally, what still needs to be done to bring them to the clinic. PMID:19909937

  20. Magnetic resonance apparatus

    DOEpatents

    Jackson, Jasper A.; Cooper, Richard K.

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  1. Magnetic Resonance Image Wavelet Enhancer

    DTIC Science & Technology

    2001-10-25

    1Departamento de Ingenieria Electrica , UAM Iztapalapa, Mexico−DF, 09340, Mexico email:arog@xanum.uam.mx. Magnetic Resonance Centre, School of Physics...Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Departamento de Ingenieria Electrica , UAM Iztapalapa, Mexico-DF

  2. Magnetic resonance apparatus

    DOEpatents

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  3. The principles of magnetic resonance.

    PubMed

    Longmore, D B

    1989-10-01

    Magnetic Resonance (MR), which has no known biological hazard, is capable of producing high resolution thin tomographic images in any plane and blocks of 3-dimensional information. It can be used to study blood flow and to gain information about the composition of important materials seen and quantified on dimensionally accurate images. The MR image is a thin tomographic slice or a true three dimensional block of data which can be reconstructed in any desired way rather than a shadowgram of all the structures in the beam. It is the only imaging technique which can acquire data in a 3-dimensional format. CT images can be reconstructed to form a pseudo 3-D image or a hologram but the flexibility conferred by acquiring the data as a true 3-D block gives many advantages. The spatial resolution of MR images are theoretically those of low powered microscopy, the practical limits with the present generation of equipment are voxel sizes of one third by one third by two millimetres. The term Magnetic Resonance Imaging (MRI) is used commonly, particularly in the USA, avoiding association with the term, nuclear, and emphasizing the imaging potential of the technique. The terms Nuclear Magnetic Resonance (NMR) or Magnetic Resonance (MR) more correctly describe the most powerful diagnostic instrument yet devised. The simplified description of the phenomena involved in MR which follows is intended to be comprehensive and does not require foreknowledge of classical physics, quantum mechanics, fluency with mathematical formulae or an understanding of image reconstruction. There are many explanations of MR, some omitting the more difficult concepts. An accurate, comprehensive description is found on the textbook on MR by Gadian, Nuclear Magnetic Resonance and its Applications for Living Systems (Oxford University Press, 1982).

  4. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    MedlinePlus

    ... to 2-Year-Old Magnetic Resonance Imaging (MRI): Brain KidsHealth > For Parents > Magnetic Resonance Imaging (MRI): Brain ... child may be given headphones to listen to music or earplugs to block the noise, and will ...

  5. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus

    ... Sponsored by Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info ... I’d like to talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. ...

  6. Proton magnetic resonance spectrum of polywater.

    PubMed

    Petsko, G A

    1970-01-09

    With the aid of a time average computer, the proton magnetic resonance spectrum of anomalous water (polywater) is obtained. The spectrum conisists of a single broad resonance shifted approximately 300 hertz downfield from the resonance of ordinary water.

  7. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance

    PubMed Central

    Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V.

    2008-01-01

    This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold–silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron–surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron–surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron–surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances—approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron–surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping. PMID:18846243

  8. Shiftless nuclear magnetic resonance spectroscopy.

    PubMed

    Wu, Chin H; Opella, Stanley J

    2008-02-07

    The acquisition and analysis of high resolution one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectra without chemical shift frequencies are described. Many variations of shiftless NMR spectroscopy are feasible. A two-dimensional experiment that correlates the dipole-dipole and dipole-dipole couplings in the model peptide , (15)N labeled N-acetyl-leucine is demonstrated. In addition to the resolution of resonances from individual sites in a single crystal sample, the bond lengths and angles are characterized by the two-dimensional powder pattern obtained from a polycrystalline sample.

  9. Pediatric Body Magnetic Resonance Imaging.

    PubMed

    Kandasamy, Devasenathipathy; Goyal, Ankur; Sharma, Raju; Gupta, Arun Kumar

    2016-09-01

    Magnetic resonance imaging (MRI) is a radiation-free imaging modality with excellent contrast resolution and multiplanar capabilities. Since ionizing radiation is an important concern in the pediatric population, MRI serves as a useful alternative to computed tomography (CT) and also provides additional clues to diagnosis, not discernible on other investigations. Magnetic resonance cholangiopancreatography (MRCP), urography, angiography, enterography, dynamic multiphasic imaging and diffusion-weighted imaging provide wealth of information. The main limitations include, long scan time, need for sedation/anesthesia, cost and lack of widespread availability. With the emergence of newer sequences and variety of contrast agents, MRI has become a robust modality and may serve as a one-stop shop for both anatomical and functional information.

  10. Fast fetal magnetic resonance imaging.

    PubMed

    Sandrasegaran, Kumaresan; Lall, Chandana; Aisen, Alex A; Rajesh, Arumugam; Cohen, Mervyn D

    2005-01-01

    Fetal magnetic resonance imaging (MRI) can be used as a problem-solving tool when ultrasonic findings are equivocal. The role of fetal MRI has increased as obstetricians become aware of its potential and in utero therapy for anomalies becomes increasingly sophisticated. In this pictorial essay, we present a wide range of anomalies diagnosed or confirmed using MRI and discuss findings that help in the differential diagnosis.

  11. Electron spin resonance studies on deuterated nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging.

    PubMed

    David Jebaraj, D; Utsumi, Hideo; Milton Franklin Benial, A

    2017-08-01

    The electron spin resonance studies were carried out for 2 mm concentration of (14) N-labeled and (15) N-labeled 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl, 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and their deuterated nitroxyl radicals using X-band electron spin resonance spectrometer. The electron spin resonance line shape analysis was carried out. The electron spin resonance parameters such as linewidth, Lorentzian component, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g-factor were estimated. The deuterated nitroxyl radicals have narrow linewidth and an increase in Lorentzian component, compared with undeuterated nitroxyl radicals. The dynamic nuclear polarization factor was observed for all nitroxyl radicals. Upon (2) H labeling, about 70% and 40% increase in dynamic nuclear polarization factor were observed for (14) N-labeled and (15) N-labeled nitroxyl radicals, respectively. The signal intensity ratio and g-value indicate the isotropic nature of the nitroxyl radicals in pure water. Therefore, the deuterated nitroxyl radicals are suitable spin probes for in vivo/in vitro electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Magnetization damping in two-component metal oxide micropowder and nanopowder compacts by broadband ferromagnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Youssef, Jamal Ben; Brosseau, Christian

    2006-12-01

    The microwave damping mechanisms in magnetic inhomogeneous systems have displayed a richness of phenomenology that has attracted widespread interest over the years. Motivated by recent experiments, we report an extensive experimental study of the Gilbert damping parameter of multicomponent metal oxides micro- and nanophases. We label the former by M samples, and the latter by N samples. The main thrust of this examination is the magnetization dynamics in systems composed of mixtures of magnetic (γ-Fe2O3) and nonmagnetic (ZnO and epoxy resin) materials fabricated via powder processing. Detailed ferromagnetic resonance (FMR) measurements on N and M samples are described so to determine changes in the microwave absorption over the 6-18GHz frequency range as a function of composition and static magnetic field. The FMR linewidth and the field dependent resonance were measured for the M and N samples, at a given volume fraction of the magnetic phase. The asymmetry in the form and change in the linewidth for the M samples are caused by the orientation distribution of the local anisotropy fields, whereas the results for the N samples suggest that the linewidth is very sensitive to details of the spatial magnetic inhomogeneities. For N samples, the peak-to-peak linewidth increases continuously with the volume content of magnetic material. The influence of the volume fraction of the magnetic phase on the static internal field was also investigated. Furthermore, important insights are gleaned through analysis of the interrelationship between effective permeability and Gilbert damping constant. Different mechanisms have been considered to explain the FMR linewidth: the intrinsic Gilbert damping, the broadening induced by the magnetic inhomogeneities, and the extrinsic magnetic relaxation. We observed that the effective Gilbert damping constant of the series of N samples are found to be substantially smaller in comparison to M samples. This effect is attributed to the surface

  13. Spectral linewidth narrowing in a strongly coupled atom-cavity system via squeezed-light excitation of a ``vacuum'' Rabi resonance

    NASA Astrophysics Data System (ADS)

    Parkins, A. S.; Zoller, P.; Carmichael, H. J.

    1993-07-01

    The system consisting of a two-level atom coupled strongly to a cavity mode behaves as a two-state system when excited near one of the ``vacuum'' Rabi resonances. With finite-bandwidth squeezed light incident upon the cavity and tuned to one of these resonances, we show that it is possible to realize a two-state system coupled to a squeezed vacuum. This system exhibits subnatural linewidths in the emitted spectra, as described by Gardiner [Phys. Rev. Lett. 56, 1917 (1986)] in a study of spontaneous emission of a two-level atom in a squeezed vacuum, but requires that only a single cavity mode be subject to squeezing rather than the entire three-dimensional vacuum.

  14. Influence of the finite linewidth of the laser radiation spectrum on the shape of the coherent population trapping resonance line in an optically dense medium with a buffer gas

    SciTech Connect

    Barantsev, K. A. Popov, E. N.; Litvinov, A. N.

    2015-11-15

    The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.

  15. [Magnetic resonance and hepatic siderosis].

    PubMed

    Rocchi, E

    1994-09-01

    The principles of generation of magnetic resonance imaging (MRI) are resumed by briefly explaining the effects of an external magnetic field (EMF) on hydrogen nuclei and of pulses of radiofrequency (RF) radiation. The latter creates a resonant effect, and the same nuclei, moved from the external field axis, when RF pulse is stopped, will "relax" to their original alignment in the magnetic field and in so doing radiate the absorbed energy to their surroundings. This energy provides a signal that can be detected and spatially resolved by the receiver coil wrapped around the patient, through a computerized system. After briefly explaining also the distinctive parameters T2 and T1, the author presents his experience in the MRI detection of different degrees of siderosis of the liver--ranging from idiopathic and secondary haemochromatosis to milder siderosis of alcoholic liver disease and porphyria cutanea tarda. The results were accomplished by employing an equipment operating at an enhanced field strength (1.5 Tesla). Previous reports have validated this technique in order to distinguish idiopathic from secondary haemochromatosis. Furthermore, the present study shows that even low to moderate degrees of liver iron deposition can be appreciated and roughly quantitated by the decrease of the transverse relaxation time (T2), which resulted proportional to the amount of liver iron, under these operating conditions. Thus, MRI is proposed as an useful and non-invasive way to detect iron deposition and to follow up iron depletion treatments.

  16. Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media

    SciTech Connect

    Yang Baodong; Liang Qiangbing; He Jun; Zhang Tiancai; Wang Junmin

    2010-04-15

    Based on the cesium 6S{sub 1/2}-6P{sub 3/2}-8S{sub 1/2} ladder-type atomic system, double-resonance optical pumping (DROP) spectra including electromagnetically induced transparency (EIT) effects have been investigated with a room-temperature cesium vapor cell. For both cases of the probe and the coupling laser beams passing through the cesium vapor cell with the counter-propagation (CTP) and co-propagation (CP) configurations, the DROP spectra measured in the experiment display explicitly different linewidths. Thanks to the EIT effect, the linewidth of the DROP spectrum is explicitly narrower for the CTP configuration than for the CP configuration. Experimental results agree with the theoretical analysis considering Doppler averaging. Furthermore, when the coupling laser has moderate power, the DROP spectrum for the CTP configuration clearly shows two components: the narrow part due to the EIT effect and the broad part caused by optical pumping (but these two different components are never seen in the CP configuration). Also, the effect of the intensity of the coupling and probe lasers on the DROP spectra is investigated.

  17. Defect-induced magnetism in SiC probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Yutian; Helm, M.; Zhou, Shengqiang; Kühne, H.

    2017-02-01

    We give evidence for intrinsic defect-induced bulk paramagnetism in SiC by means of 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy. The temperature dependence of the internal dipole-field distribution, probed by the spin part of the NMR Knight shift and the spectral linewidth, follows the Curie law and scales very well with the macroscopic dc susceptibility. In order to quantitatively analyze the NMR spectra, a microscopic model based on dipole-dipole interactions was developed. The very good agreement between these simulations and the NMR data establishes a direct relation between the frequency distribution of the spectral intensity and the corresponding real-space volumes of nuclear spins. The presented approach by NMR can be applied to a variety of similar materials and, thus, opens a new avenue for the microscopic exploration and exploitation of diluted bulk magnetism in semiconductors.

  18. Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.

    2012-10-01

    Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical

  19. Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages.

    PubMed

    Usselman, Robert J; Russek, Stephen E; Klem, Michael T; Allen, Mark A; Douglas, Trevor; Young, Mark; Idzerda, Yves U; Singel, David J

    2012-10-15

    Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe(2)O(3)) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves

  20. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  1. On the feasibility of neurocurrent imaging by low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Burghoff, Martin; Albrecht, Hans-Helge; Hartwig, Stefan; Hilschenz, Ingo; Körber, Rainer; Höfner, Nora; Scheer, Hans-Jürgen; Voigt, Jens; Trahms, Lutz; Curio, Gabriel

    2010-06-01

    We describe a nuclear magnetic resonance (NMR) spectrometer operating at 20 μT with a frequency resolution of 2 mHz to determine the intrinsic linewidth of the proton resonance in the human brain to be about 3 Hz. Using the same system we measured a biomagnetic field of 0.5 to 1 pT amplitude, which was generated by sustained brain activity evoked during repetitive median nerve stimulation. From these data, the effect of neuronal currents on the proton NMR signal was estimated. We conclude that neuronal currents may cause a measurable shift of the proton NMR line of brain tissue in low-fields.

  2. Nerves on magnetic resonance imaging.

    PubMed Central

    Collins, J. D.; Shaver, M. L.; Batra, P.; Brown, K.

    1989-01-01

    Nerves are often visualized on magnetic resonance imaging (MRI) studies of the soft tissues on the chest and shoulder girdle. To learn the reasons for the contrast between the nerves and adjacent tissues, the authors obtained a fresh specimen containing part of the brachial plexus nerves from the left axilla and compared MRI with x-ray projections and photomicrographs of histologic sections. The results suggest that the high signals from the nerves stand out in contrast to the low signals from their rich vascular supply. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6A Figure 6B Figure 7 PMID:2733051

  3. Evanescent Waves Nuclear Magnetic Resonance

    PubMed Central

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  4. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  5. Gynecologic masses: value of magnetic resonance imaging.

    PubMed

    Hricak, H; Lacey, C; Schriock, E; Fisher, M R; Amparo, E; Dooms, G; Jaffe, R

    1985-09-01

    Forty-two women with gynecologic abnormalities were studied with the use of magnetic resonance imaging. Magnetic resonance imaging correctly assessed the origin of the pelvic mass in all patients. In the evaluation of leiomyoma, magnetic resonance imaging accurately depicted the number, size, and location of the lesion. In the evaluation of endometrial carcinoma, magnetic resonance imaging depicted the location of the lesion, the presence of cervical extension, and the depth of myometrial penetration in the majority of the cases. In the analysis of adnexal cysts, magnetic resonance imaging was sensitive in localizing the lesion and was able to distinguish serous from hemorrhagic fluid. This preliminary report indicates that magnetic resonance imaging may become a valuable imaging modality in the diagnosis of gynecologic abnormalities.

  6. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  7. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  8. Apparatus for investigating resonance with application to magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; Jones, Dyan L.; Gross, Josh; Zollman, Dean

    2015-11-01

    Resonance is typically studied in the context of either a pendulum or a mass on a spring. We have developed an apparatus that enables beginning students to investigate resonant behavior of changing magnetic fields, in addition to the properties of the magnetic field due to a wire and the superposition of magnetic fields. In this resonant system, a compass oscillates at a frequency determined by the compass's physical properties and an external magnetic field. While the analysis is mathematically similar to that of the pendulum, this apparatus has an advantage that the magnetic field is easily controlled, while it is difficult to control the strength of gravity. This apparatus has been incorporated into a teaching module on magnetic resonance imaging.

  9. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles.

    PubMed

    El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L

    2017-06-26

    Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

  10. Magnetic resonance study of bulk and thin film EuTiO3

    NASA Astrophysics Data System (ADS)

    Laguta, V. V.; Kamba, S.; Maryško, M.; Andrzejewski, B.; Kachlík, M.; Maca, K.; Lee, J. H.; Schlom, D. G.

    2017-03-01

    Magnetic resonance spectra of EuTiO3 in both bulk and thin film form were taken at temperatures from 3–350 K and microwave frequencies from 9.2–9.8 and 34 GHz. In the paramagnetic phase, magnetic resonance spectra are determined by magnetic dipole and exchange interactions between Eu2+ spins. In the film, a large contribution arises from the demagnetization field. From detailed analysis of the linewidth and its temperature dependence, the parameters of spin–spin interactions were determined: the exchange frequency is 10.5 GHz and the estimated critical exponent of the spin correlation length is  ≈0.4. In the bulk samples, the spectra exhibited a distinct minimum in the linewidth at the Néel temperature, T N  ≈  5.5 K, while the resonance field practically does not change even on cooling below T N. This is indicative of a small magnetic anisotropy ~320 G in the antiferromagnetic phase. In the film, the magnetic resonance spectrum is split below T N into several components due to excitation of the magnetostatic modes, corresponding to a non-uniform precession of magnetization. Moreover, the film was observed to degrade over two years. This was manifested by an increase of defects and a change in the domain structure. The saturated magnetization in the film, estimated from the magnetic resonance spectrum, was about 900 emu cm‑3 or 5.5 µ B/unit cell at T  =  3.5 K.

  11. MAGNETIC RESONANCE ELASTOGRAPHY: A REVIEW

    PubMed Central

    Mariappan, Yogesh K; Glaser, Kevin J; Ehman, Richard L

    2011-01-01

    Magnetic Resonance Elastography (MRE) is a rapidly developing technology for quantitatively assessing the mechanical properties of tissue. The technology can be considered to be an imaging-based counterpart to palpation, commonly used by physicians to diagnose and characterize diseases. The success of palpation as a diagnostic method is based on the fact that the mechanical properties of tissues are often dramatically affected by the presence of disease processes such as cancer, inflammation, and fibrosis. MRE obtains information about the stiffness of tissue by assessing the propagation of mechanical waves through the tissue with a special magnetic resonance imaging (MRI) technique. The technique essentially involves three steps: generating shear waves in the tissue,acquiring MR images depicting the propagation of the induced shear waves andprocessing the images of the shear waves to generate quantitative maps of tissue stiffness, called elastograms. MRE is already being used clinically for the assessment of patients with chronic liver diseases and is emerging as a safe, reliable and noninvasive alternative to liver biopsy for staging hepatic fibrosis. MRE is also being investigated for application to pathologies of other organs including the brain, breast, blood vessels, heart, kidneys, lungs and skeletal muscle. The purpose of this review article is to introduce this technology to clinical anatomists and to summarize some of the current clinical applications that are being pursued. PMID:20544947

  12. Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations

    PubMed Central

    Hundley, W Gregory; Bluemke, David; Bogaert, Jan G; Friedrich, Matthias G; Higgins, Charles B; Lawson, Mark A; McConnell, Michael V; Raman, Subha V; van Rossum, Albert C; Flamm, Scott; Kramer, Christopher M; Nagel, Eike; Neubauer, Stefan

    2009-01-01

    These reporting guidelines are recommended by the Society for Cardiovascular Magnetic Resonance (SCMR) to provide a framework for healthcare delivery systems to disseminate cardiac and vascular imaging findings related to the performance of cardiovascular magnetic resonance (CMR) examinations. PMID:19257889

  13. Microtesla magnetic resonance imaging with a superconducting quantum interference device

    SciTech Connect

    McDermott, Robert; Lee, SeungKyun; ten Haken, Bennie; Trabesinger, Andreas H.; Pines, Alexander; Clarke, John

    2004-03-15

    We have constructed a magnetic resonance imaging (MRI) scanner based on a dc Superconducting QUantum Interference Device (SQUID) configured as a second-derivative gradiometer. The magnetic field sensitivity of the detector is independent of frequency; it is therefore possible to obtain high-resolution images by prepolarizing the nuclear spins in a field of 300 mT and detecting the signal at 132 fYT, corresponding to a proton Larmor frequency of 5.6 kHz. The reduction in the measurement field by a factor of 10,000 compared with conventional scanners eliminates inhomogeneous broadening of the nuclear magnetic resonance lines, even in fields with relatively poor homogeneity. The narrow linewidths result in enhanced signal-to-noise ratio and spatial resolution for a fixed strength of the magnetic field gradients used to encode the image. We present two-dimensional images of phantoms and pepper slices, obtained in typical magnetic field gradients of 100 fYT/m, with a spatial resolution of about 1mm. We further demonstrate a slice-selected image of an intact pepper. By varying the time delay between removal of the polarizing field and initiation of the spin echo sequence we acquire T1-weighted contrast images of water phantoms, some of which are doped with a paramagnetic salt; here, T1 is the nuclear spin-lattice relaxation time. The techniques presented here could readily be adapted to existing multichannel SQUID systems used for magnetic source imaging of brain signals. Further potential applications include low-cost systems for tumor screening and imaging peripheral regions of the body.

  14. Advances in mechanical detection of magnetic resonance

    PubMed Central

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge. PMID:18266413

  15. Torque-mixing magnetic resonance spectroscopy.

    PubMed

    Losby, J E; Fani Sani, F; Grandmont, D T; Diao, Z; Belov, M; Burgess, J A J; Compton, S R; Hiebert, W K; Vick, D; Mohammad, K; Salimi, E; Bridges, G E; Thomson, D J; Freeman, M R

    2015-11-13

    A universal, torque-mixing method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by magnetic induction, the transverse component of a precessing dipole moment can be measured in sensitive broadband spectroscopy, here using a resonant mechanical torque sensor. Unlike induction, the torque amplitude allows equilibrium magnetic properties to be monitored simultaneously with the spin dynamics. Comprehensive electron spin resonance spectra of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature reveal assisted switching between magnetization states and mode-dependent spin resonance interactions with nanoscale surface imperfections. The rich detail allows analysis of even complex three-dimensional spin textures. The flexibility of microelectromechanical and optomechanical devices combined with broad generality and capabilities of torque-mixing magnetic resonance spectroscopy offers great opportunities for development of integrated devices.

  16. Magnetic Resonance Imaging of Electrolysis.

    PubMed Central

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-01-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942

  17. Microcoil nuclear magnetic resonance spectroscopy.

    PubMed

    Webb, A G

    2005-08-10

    In comparison with most analytical chemistry techniques, nuclear magnetic resonance has an intrinsically low sensitivity, and many potential applications are therefore precluded by the limited available quantity of certain types of sample. In recent years, there has been a trend, both commercial and academic, towards miniaturization of the receiver coil in order to increase the mass sensitivity of NMR measurements. These small coils have also proved very useful in coupling NMR detection with commonly used microseparation techniques. A further development enabled by small detectors is parallel data acquisition from many samples simultaneously, made possible by incorporating multiple receiver coils into a single NMR probehead. This review article summarizes recent developments and applications of "microcoil" NMR spectroscopy.

  18. Magnetic Resonance Elastography of Abdomen

    PubMed Central

    Venkatesh, Sudhakar K.; Ehman, Richard L.

    2015-01-01

    Many diseases cause substantial changes in the mechanical properties of tissue and this provides motivation for developing methods to non-invasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate non-invasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  19. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  20. Magnetic resonance imaging in medicine

    NASA Astrophysics Data System (ADS)

    Keevil, Stephen F.

    2001-11-01

    Over the past twenty years, magnetic resonance imaging (MRI) has become one of the most important imaging modalities available to clinical medicine. It offers great technical flexibility, and is free of the hazards associated with ionizing radiation. In addition to its role as a routine imaging technique with a growing range of clinical applications, the pace of development in MRI methodology remains high, and new ideas with significant potential emerge on a regular basis. MRI is a prime example of the spin-off benefits of basic science, and is an area of medicine in which physical science continues to play a major role, both in supporting clinical applications and in developing new techniques. This article presents a brief history of MRI and an overview of the underlying physics, followed by a short survey of current and emerging clinical applications.

  1. Magnetic Resonance Imaging of Electrolysis.

    NASA Astrophysics Data System (ADS)

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  2. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  3. Magnetic resonance imaging of radiation optic neuropathy

    SciTech Connect

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S. )

    1990-10-15

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence.

  4. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  5. Advances in breast imaging: magnetic resonance imaging.

    PubMed

    Bartella, Lia; Morris, Elizabeth A

    2006-01-01

    Magnetic resonance imaging (MRI) of the breast is rapidly becoming incorporated into clinical practice. Indications for breast MRI include staging of known breast cancer, monitoring response to chemotherapy, assessing recurrence, problem solving, and high-risk screening. Magnetic resonance spectroscopy is a promising technique that may decrease the number of benign biopsies generated by breast MRI in the clinical setting.

  6. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  7. Clinical applications of magnetic resonance angiography.

    PubMed

    Glazer, M; McCormack, J; Dross, P

    1992-08-01

    Recent technical advances in magnetic resonance imaging (MRI) now allow for the noninvasive study of blood flow in vessels, or magnetic resonance angiography (MRA). We describe several case reports involving the use of MRA and discuss its advantages in evaluating patients for carotid artery stenosis, intracerebral aneurysms, and arteriovenous malformations (AVMs).

  8. Magnetic resonance sees lesions of multiple sclerosis

    SciTech Connect

    Ziporyn, T.

    1985-02-15

    The value of nuclear magnetic resonance imaging in the diagnosis and quantitation of the progression of multiple sclerosis is discussed. Magnetic resonance imaging generates images that reflect differential density and velocity of hydrogen nuclei between cerebral gray and white matter, as well as between white matter and pathological lesions of the disease.

  9. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  10. Magnetic resonance imaging of the temporomandibular joint.

    PubMed

    Hayt, M W; Abrahams, J J; Blair, J

    2000-04-01

    The spectrum of disease that affects the temporomandibular joint (TMJ) can be varied. To differentiate among the diseases that cause pain and dysfunction, an intimate knowledge of the anatomy, physiology, and pathology of this region is necessary. Due to the joint's complex anatomy and relationship to the skin, it has been difficult to image in the past. Magnetic resonance imaging is ideally suited for visualizing TMJ because of its superb contrast resolution when imaging soft tissues. Magnetic resonance imaging allows simultaneous bilateral visualization of both joints. The ability to noninvasively resolve anatomic detail can be performed easily and quickly using magnetic resonance imaging. The development of magnetic resonance imaging has greatly aided the diagnosis of TMJ disorders. An understanding of TMJ anatomy and pathogenesis of TMJ pain is crucial for interpretation of magnetic resonance imaging and subsequent treatment.

  11. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  12. Off-resonance nutation nuclear magnetic resonance study of framework aluminosilicate glasses with Li, Na, K, Rb or Cs as charge-balancing cation.

    PubMed

    Dirken, P J; Nachtegaal, G H; Kentgens, A P

    1995-11-01

    Framework aluminosilicate glasses with varying charge-balancing cation (Li, Na, K, Rb and Cs) have been studied with 27Al and 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) and 27Al on-resonance and off-resonance nutation NMR spectroscopy. This first application of off-resonance nutation NMR to disordered samples proves that it is a promising technique for the determination of mean quadrupole interactions in amorphous systems. Linewidths for Al decrease systematically with increasing size of the cation, due to a decrease in the quadrupole interaction from 5.0 MHz for the Li glass to 2.8 MHz for the Cs glass. A simple point-charge model effectively predicts the decrease in the quadrupole interaction. This indicates that the alkali ion is located close to aluminum. Looking at the residual linewidth after subtraction of the quadrupole broadening, the Al chemical shift distribution does not change significantly with the type of alkali ion. The same is true for the observed Si linewidth.

  13. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... If You Have Questions en español Resonancia magnética: columna lumbar What It Is Magnetic resonance imaging (MRI) ... MORE ON THIS TOPIC Magnetic Resonance Imaging (MRI): Cervical Spine Lumbar Puncture (Spinal Tap) Magnetic Resonance Imaging ( ...

  14. Conversion of Laser Phase Noise to Amplitude Noise in a Resonant Atomic Vapor: The Role of Laser Linewidth

    DTIC Science & Technology

    2007-11-02

    fiber optic sensors ; atomic frequency standards, applied laser spectroscopy, laser chemistry, atmospheric propagation and beam control, LIDAR/LADAR...SMC-TR-99-11 AEROSPACE REPORT NO. TR-98(8555)-14 Conversion of Laser Phase Noise to Amplitude Noise in a Resonant Atomic Vapor: The Role of Laser ...1999 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE Conversion of Laser Phase Noise to Amplitude Noise in a Resonant Atomic Vapor: The Role

  15. Influence of spin-transfer torque on thermally activated ferromagnetic resonance excitations in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Petit, S.; de Mestier, N.; Baraduc, C.; Thirion, C.; Liu, Y.; Li, M.; Wang, P.; Dieny, B.

    2008-11-01

    Voltage noise measurements on magnetic tunnel junctions show that thermal fluctuations of the magnetization are either amplified or quenched by subcritical spin-transfer torque depending on the current direction. We present an analytical model that describes the dependence of thermally activated ferromagnetic resonance on bias current. The evolution of the peak amplitude and linewidth with the applied current is directly related to the longitudinal torque, whereas the shift of the resonance frequency is sensitive to the transverse torque. Both spin torque terms are independently extracted from the measured noise spectra. Our results support the general idea that it is more pertinent to describe spin torque in terms of voltage rather than current in magnetic tunnel junctions.

  16. Ferromagnetic resonance study of structure and relaxation of magnetization in NiFe/Ru superlattices

    NASA Astrophysics Data System (ADS)

    Alayo, W.; Landi, S., Jr.; Pelegrini, F.; Baggio-Saitovitch, E.

    2014-01-01

    The structural properties and relaxation processes of magnetization in [Ni81Fe19(t1)/Ru(t2)]N superlattices (N=number of bilayers) were analyzed by ferromagnetic resonance (FMR) with a fixed microwave frequency. One series of samples was deposited with constant NiFe layer thickness (t1) and variable Ru layer thickness (t2); the other series, with constant t2 and variable t1. A single FMR mode was observed for t2<15 Å and t1>75 Å and it has been attributed to the resonance of the exchange-coupled NiFe layers across the Ru interlayers. For the other values of t1 and t2, several FMR modes appeared and they were associated to non-coupled magnetic phases with different effective magnetization formed during the multilayer growth. The FMR linewidths were analyzed as a function of the magnetic layer thickness and a strong dependence on t1-2 was observed. It was attributed to the contribution of the two-magnon scattering mechanism for the linewidth.

  17. Ferromagnetic resonance study of ion irradiated Co/Ni multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Beaujour, J.-M.; Kent, A.; Ravelosona, D.; Fullerton, E.; Samson, Y.; Beigne, C.

    2009-03-01

    Ferromagnetic resonance (FMR) spectroscopy was used to investigate the effect of helium ion-irradiation on the magnetic properties and the magnetization dynamics of Co/Ni multilayer films. The anisotropy in these materials is associated with interfaces, which can be systematically disordered with light ion-irradiation without inducing major structural changes to the films. [Pd/Co]x2|[8åNi/1.4åCo]x3 |Pd|Co|Pd| have been exposed to He^+ irradiation with fluence up to 10^15 ions/cm^2 [1]. FMR was conducted with a broad band coplanar waveguide up to 30 GHz. The resonance field and the FMR linewidth were determined as a function of frequency for dc magnetic fields in-plane, out-of-plane and for selected field angles. The perpendicular anisotropy decreases linearly with fluence, and at a particular fluence the direction of easy magnetization switches from perpendicular to in-plane. The Gilbert damping constant of the films irradiated at the higher and lower fluence is about the same: 0.03<=α<=0.04. However, the linewidth exhibits a non-monotonic dependence on fluence, with a maximum at intermediate fluence. We will discuss this effect as well as possible explanations in terms of the changes in interface structure as a function of fluence. [1] Stanescu et al., J. Appl. Phys. (2008).

  18. Magnetic resonance elastometry using a single-sided permanent magnet

    NASA Astrophysics Data System (ADS)

    Tan, Carl S.; Marble, Andrew E.; Ono, Yuu

    2012-04-01

    In this paper, we describe a magnetic resonance method of measuring material elasticity using a single-sided magnet with a permanent static field gradient. This method encodes sample velocity in a reciprocal space using Hahn spin-echoes with variable timing. The experimental results show a strong correlation between magnetic resonance signal attenuation and elasticity when an oscillating force is applied on the sample. This relationship in turn provides us with information about the displacement velocity experienced by the sample, which is inversely proportional to Young's modulus. The proposed method shows promise in offering a portable and cost-effective magnetic resonance elastography system.

  19. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  20. Stepped impedance resonators for high-field magnetic resonance imaging.

    PubMed

    Akgun, Can E; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J Thomas

    2014-02-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high-field magnetic resonance imaging. In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections, referred to as stepped impedance resonators (SIRs), is investigated. Single-element simulation results in free space and in a phantom at 7 T (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 T in a phantom and human head illustrate the improvements in a transmit magnetic field, as well as RF efficiency (transmit magnetic field versus specific absorption rate) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements.

  1. 31P nuclear magnetic resonance study of the proton-irradiated KTiOPO4

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun; Lee, Cheol Eui

    2013-08-01

    31P nuclear magnetic resonance (NMR) was employed to study the effects of proton irradiation on KTiOPO4 (KTP) in view of the previously studied paramagnetic impurity doping effects. High-resolution 31P NMR measurements showed significant increase in the isotropic chemical shifts of the two inequivalent phosphorus sites in the proton-irradiated KTP system, indicating decrease in the electron density around the phosphorous nuclei. The 31P NMR linewidths of the KTP system manifested anomalies associated with the superionic transition and with the polaron formation, which became much weaker after proton irradiation. Besides, the activation energy of the charge carriers increased significantly after proton irradiation.

  2. Magnetic resonance image guided brachytherapy.

    PubMed

    Tanderup, Kari; Viswanathan, Akila N; Kirisits, Christian; Frank, Steven J

    2014-07-01

    The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education.

  3. Use of magnetic resonance urography.

    PubMed

    Klein, L T; Frager, D; Subramanium, A; Lowe, F C

    1998-10-01

    Magnetic resonance urography (MRU) is a new technique that uses heavily weighted T2 coronal images with fat suppression pulse. Urine appears white on MRU, resembling an intravenous urogram (IVU). Contrast agents are not necessary. This study describes the use of MRU in the diagnosis and treatment of patients with hematuria. One hundred six patients with microscopic or gross hematuria and 6 normal volunteers underwent MRU between 1992 and 1995. A modified, heavily weighted T2 technique with intravenous administration of furosemide and ureteral compression was used. Thirty-two patients had other imaging techniques as well for comparison. MRU provided high-resolution images in almost all cases; 73 (69%) had a normal MRU. Significant findings in the 33 patients with abnormalities included renal cysts in 17 (51%), renal cell carcinoma in 6 (18%), transitional cell carcinoma in 5 (15%), ureteropelvic junction obstruction in 3 (9%), and stones causing obstruction in 6 (18%). Five patients with renal failure also had good visualization of the entire urinary tract. MRU was comparable to other imaging modalities except in identifying nonobstructing calculi. MRU provides an alternative to conventional imaging of the urinary tract, especially in those patients who have contraindications to ionizing radiation and contrast agents. Improvements in resolution, technique, and cost have to be addressed before it can be used regularly in urologic practice.

  4. [Presurgical functional magnetic resonance imaging].

    PubMed

    Stippich, C

    2010-02-01

    Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI.

  5. Effects of magnetic resonance imaging on implantable permanent magnets.

    PubMed

    Schneider, M L; Walker, G B; Dormer, K J

    1995-09-01

    Implantable permanent magnets are increasingly used in devices for otolaryngologic applications. It is likely that at least some of the patients with implanted magnets will be in need of magnetic resonance imaging (MRI). The effect of an MRI scan on the magnetic properties of implanted permanent magnets has not been previously demonstrated. Some of the basic concepts and descriptive terminology used in industry regarding permanent magnets are reviewed. Experiments presented show that the MRI scan is capable of demagnetizing permanent magnets. A case history is also presented that demonstrates demagnetizing of an implanted Audiant magnet by an MRI scan.

  6. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  7. Feasibility Studies for the Implementation of Nuclear Magnetic Resonance in a 25T Hybrid Magnet

    NASA Astrophysics Data System (ADS)

    van Bentum, P. J. M.; Maan, J. C.; van Os, J. W. M.; Kentgens, A. P. M.

    As an exploratory study for NMR experiments in the future 20 MW Nijmegen high field magnet laboratory, the possibilities of field stabilization and field gradient compensation in a 25 T hybrid magnet in the present installation were evaluated. High frequency field fluctuations from the power supply can be compensated to better than 10-3 ppm in the 10 Hz-10 kHz range using a computer controlled feedback system. Field mapping by 2H magnetic resonance using a homebuilt device not only showed that there are substantial axial but also strong radial field gradients. It can be shown that for any cylindrical multicoil Bitter magnet the main components of these gradients can be compensated with simple ferromagnetic inserts. In this way we achieved a linewidth under 5 ppm in 1 mm3 without further shimming or optimization. The low frequency drift of the field due to instabilities of the present power supply and the effects of temperature fluctuations of the coil are determined by simultaneous acquisition of an in-situ deuterium reference signal together with the signal of interest. This allows for a full compensation of the field fluctuations by deconvolution techniques. We will report preliminary NMR results on solid27 Al samples in fields up to 25 T.

  8. Feasibility Studies for the Implementation of Nuclear Magnetic Resonance in a 25T Hybrid Magnet

    NASA Astrophysics Data System (ADS)

    Bentum, P. J. M. Van; Maan, J. C.; van Os, J. W. M.; Kentgens, A. P. M.

    2002-07-01

    As an exploratory study for NMR experiments in the future 20 MW Nijmegen high field magnet laboratory, the possibilities of field stabilization and field gradient compensation in a 25 T hybrid magnet in the present installation were evaluated. High frequency field fluctuations from the power supply can be compensated to better than 10-3 ppm in the 10 Hz-10 kHz range using a computer controlled feedback system. Field mapping by 2H magnetic resonance using a homebuilt device not only showed that there are substantial axial but also strong radial field gradients. It can be shown that for any cylindrical multicoil Bitter magnet the main components of these gradients can be compensated with simple ferromagnetic inserts. In this way we achieved a linewidth under 5 ppm in 1 mm3 without further shimming or optimization. The low frequency drift of the field due to instabilities of the present power supply and the effects of temperature fluctuations of the coil are determined by simultaneous acquisition of an in-situ deuterium reference signal together with the signal of interest. This allows for a full compensation of the field fluctuations by deconvolution techniques. We will report preliminary NMR results on solid 27Al samples in fields up to 25 T.

  9. Chronic liver disease: evaluation by magnetic resonance

    SciTech Connect

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR.

  10. Polywater: proton nuclear magnetic resonance spectrum.

    PubMed

    Page, T F; Jakobsen, R J; Lippincott, E R

    1970-01-02

    In the presence of water, the resonance of the strongly hydrogenbonded protons characteristic of polywater appears at 5 parts per million lower applied magnetic field than water. Polywater made by a new method confirms the infrared spectrum reported originally.

  11. Pocket atlas of cranial magnetic resonance imaging

    SciTech Connect

    Haughton, V.M.; Daniels, D.L.

    1986-01-01

    This atlas illustrates normal cerebral anatomy in magnetic resonance images. From their studies in cerebral anatomy utilizing cryomicrotome and other techniques, the authors selected more than 100 high-resolution images that represent the most clinically useful scans.

  12. Coronary computed tomography and magnetic resonance imaging.

    PubMed

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C

    2009-04-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use.

  13. International Society for Magnetic Resonance in Medicine

    MedlinePlus

    ... Join the ISMRM Journals History & Mission Central Office Society Award Winners Strategic Plan Policies Corporate Members Contact ... E-Library Virtual Meetings Connect With Us International Society for Magnetic Resonance in Medicine 2300 Clayton Road, ...

  14. Magnetic resonance imaging of the cryptorchid testis.

    PubMed

    Landa, H M; Gylys-Morin, V; Mattrey, R F; Krous, H F; Kaplan, G W; Packer, M G

    1987-01-01

    Magnetic resonance imaging was used to evaluate seven patients with undescended testes. In six patients the presence or absence of testicular tissue was predicted correctly prior to surgery. Spermatic cord structures, if present, were accurately visualized in all patients.

  15. Coronary Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C.

    2009-01-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use. PMID:19269527

  16. Miniature Magnet for Electron Spin Resonance Experiments

    ERIC Educational Resources Information Center

    Rupp, L. W.; And Others

    1976-01-01

    Describes commercially available permanent magnets that have been incorporated in a compact and inexpensive structure providing both field sweep and modulation suitable for electron spin resonance at microwave frequencies. (MLH)

  17. Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing

    NASA Astrophysics Data System (ADS)

    Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin

    2017-05-01

    By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.

  18. 200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE.

    PubMed

    Lin, Gong-Ru; Cheng, Tzu-Kang; Chi, Yu-Chieh; Lin, Gong-Cheng; Wang, Hai-Lin; Lin, Yi-Hong

    2009-09-28

    In a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) based DWDM-PON system with an array-waveguide-grating (AWG) channelized amplified spontaneous emission (ASE) source located at remote node, we study the effect of AWG filter bandwidth on the transmission performances of the 1.25-Gbit/s directly modulated WRC-FPLD transmitter under the AWG channelized ASE injection-locking. With AWG filters of two different channel spacings at 50 and 200 GHz, several characteristic parameters such as interfered reflection, relatively intensity noise, crosstalk reduction, side-mode-suppressing ratio and power penalty of BER effect of the WRC-FPLD transmitted data are compared. The 200-GHz AWG filtered ASE injection minimizes the noises of WRC-FPLD based ONU transmitter, improving the power penalty of upstream data by -1.6 dB at BER of 10(-12). In contrast, the 50-GHz AWG channelized ASE injection fails to promote better BER but increases the power penalty by + 1.5 dB under back-to-back transmission. A theoretical modeling elucidates that the BER degradation up to 4 orders of magnitude between two injection cases is mainly attributed to the reduction on ASE injection linewidth, since which concurrently degrades the signal-to-noise and extinction ratios of the transmitted data stream.

  19. Determination of spin pumping as a source of linewidth in sputtered Co90Fe10/Pd multilayers by use of broadband ferromagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Shaw, Justin M.; Nembach, Hans T.; Silva, T. J.

    2012-02-01

    We performed a systematic study of damping in Co90Fe10/Pd multilayers by use of broadband (1-60 GHz) ferromagnetic resonance (FMR) spectroscopy in the perpendicular geometry. The data were fitted with the conventional Landau-Lifshitz equation in conjunction with an inhomogeneous contribution to linewidth ΔH0. Samples were prepared with net perpendicular anisotropy field values ranging from -0.5 to +1.2 T. ΔH0 shows a dependence on the perpendicular anisotropy, though the Landau-Lifshitz damping parameter α, which ranged from 0.016 to 0.04, exhibits no trend as a function of anisotropy. We explain the wide variation of α as a result of spin pumping from Co90Fe10 into adjacent nonmagnetic layers. We use a quantitative model for spin pumping that includes the intrinsic spin-mixing conductance at the Co90Fe10/Pd interface and the spin-diffusion length of Pd, which were experimentally measured at room temperature to be (1.07 ± 0.13) × 1019 m-2 and 8.6 ± 1.0 nm, respectively. We quantitatively show how α is enhanced by spin pumping through an FMR investigation of individual Pd/CoFe/Pd, and Pd/CoFe/Pd/CoFe/Pd layer structures.

  20. Zinc doped copper ferrite particles as temperature sensors for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hankiewicz, Janusz H.; Alghamdi, Noweir; Hammelev, Nicholas M.; Anderson, Nick R.; Camley, Robert E.; Stupic, Karl; Przybylski, Marek; Zukrowski, Jan; Celinski, Zbigniew J.

    2017-05-01

    We investigate the use of Cu0.35Zn0.65Fe2O4 particles as temperature-dependent sensors in magnetic resonance imaging (MRI). This material has a Curie temperature near 290 K, but in the large magnetic fields found in MRI scanners, there is a significant temperature-dependent magnetic moment near body temperature; 310 K. When the ferrite particles are doped into an agar gel, the temperature-dependent magnetic moment leads to a temperature-dependent broadening of the NMR linewidth for water protons and to a temperature-dependent image intensity for MRI, allowing one to make temperature maps within objects. The temperature resolution is about 1.3 K.

  1. Magnetic resonance force microscopy using ferromagnetic resonance of a magnetic tip excited by microwave transmission via a coaxial resonator.

    PubMed

    Kinoshita, Yukinori; Li, Yanjun; Yoshimura, Satoru; Saito, Hitoshi; Sugawara, Yasuhiro

    2017-10-04

    The present work proposes magnetic resonance force microscopy (MRFM) based on ferromagnetic resonance (FMR) modulation of a magnetic tip using microwave transmission via a coaxial resonator instead of using conventional microwave irradiation by an external antenna. In this MRFM, the coaxial resonator is electrically connected to the magnetic cantilever tip, which enables simple implementation of FMR excitation of a magnetic tip in conventional magnetic force microscopy. The FMR frequency of the tip can be easily extracted from the reflection spectrum of a transmission line connected to the magnetic tip. The excitation of tip FMR is confirmed from the microwave frequency dependence of the mechanical response of the tip oscillation. This MRFM is effective for extracting the magnetic interaction force near a sample surface without perturbation of its sample magnetic state. Nanometer-scale imaging of magnetic domain structures on a demagnetized thin-film permanent magnet is successfully demonstrated. © 2017 IOP Publishing Ltd.

  2. Detection of atherosclerosis via magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew L.; Pytlewski, Victor T.; Brown, Michael F.; Gmitro, Arthur F.

    1992-08-01

    Magnetic resonance imaging (MRI) of atherosclerotic lipids using a stimulated-echo diffusion- weighted (STED) sequence is demonstrated. The STED sequence exploits the large difference in diffusion between lipid (primarily cholesteryl ester) and water. The optimization of the STED sequence is discussed. The results of lipid imaging are corroborated with nuclear magnetic resonance (NMR) spectroscopy. This technique is non-invasive, and therefore, it is potentially useful in following the progression of the disease in animal models and in humans.

  3. Single Nuclear Spin Magnetic Resonance Force Microscopy

    DTIC Science & Technology

    2010-05-02

    Lab. In work not directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of...directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of submicron magnetic structures...our earlier NMR detection of 19F spins in CaF2 we have conducted 65Cu, 63Cu NMR stud- ies for studies of interface phenomena in multilayered magnetic

  4. [Nuclear magnetic resonance in psychiatry].

    PubMed

    Hamad, H

    1993-01-01

    Magnetic Resonance Imaging (MRI) is a more recent technique than computerized tomography (CT), with which morphological, high quality, three-dimensional images can be obtained, it is capable of differentiating gray/white matter without patients' exposure to radiation. Clinical investigation studies demonstrate the following findings: In Schizophrenics: Enlargement of lateral ventricles volume in 67-73%, in naive patients 21-33%. The increase of the third ventricle varies from 19 to 73%, whose patients have significant flat affect. The temporal lobe gray matter is reduced, including amygdala-hippocampal complex, and parahippocampal gyrus. No specific corpus callosum results are concluded. There is cortical atrophy, specially of bilateral prefrontal regions. Basal ganglia (lenticular and caudate nuclei) are increased. The prefrontal, temporal and limbic dysfunction supports the abnormal connection hypothesis in schizophrenics. Basal ganglia also are involved in the pathogenesis of the disease. Clinical cortical atrophy symptoms are demonstrated by neuropsychological tests, although some cognitive deficits are remediable. Perinatal complications are more frequent, in children who will be schizophrenics, than their siblings (23.6% vs 12.8%); those of special interest are: toxemia, prematurity, long labor, jaundice and bleeding during pregnancy. In affective Bipolar Disorders: There is increase (19-50%) in the number of focal signal hyperintensities at the lateral limits of ventricles and in both hemispheres, and a trend towards larger ventricular size. The temporal lobe is smaller bilaterally, but the right side is 15% larger; its volume correlates negatively with long-term illness in males. In Unipolar Disorder an increase of frontal white matter T1 values is registered.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Torque-mixing Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  6. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... radiation. Instead, MRI uses a powerful magnetic field, radio waves, rapidly changing magnetic fields, and a computer to ... in most of the body's tissues. The applied radio waves then cause these protons to produce signals that ...

  7. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, N.; Ruchotzke, W.; Belding, A.; Cardellino, J.; Blomberg, E. C.; McCullian, B. A.; Bhallamudi, V. P.; Pelekhov, D. V.; Hammel, P. C.

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q ∼106 [1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300 K is 4 fN/√{Hz } , indicating a potential low temperature (4 K) sensitivity of 25 aN/√{Hz } . Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches.

  8. Nonlinear current resonance in a spin-torque diode with planar magnetization

    NASA Astrophysics Data System (ADS)

    Kulagin, N. E.; Skirdkov, P. N.; Popkov, A. F.; Zvezdin, K. A.; Lobachev, A. V.

    2017-06-01

    The microwave sensitivity of a spin diode consisting of a tunnel junction with two magnetic electrodes is investigated. The specific feature of the magnetic tunnel structure under consideration is a skew of the electrode magnetizations in the plane of the layers, arising due to exchange interaction with the adjacent antiferromagnetic layers with different superparamagnetic blocking temperatures. Within the framework of the macrospin model the stability analysis of the stationary magnetization states is carried out as a function of the electric current and the skew angle between the magnetizations of the magnetic layers on the angle-current plane, taking into account the effect of spin torque transfer. For the obtained stationary states, variations of the resonant response to an ac current of microwave range and volt-watt sensitivity of the spin diode far away from and near the critical bias-current lines of the transition to self-oscillations are determined. It is shown that with increasing the bias current upon the approach to the critical point, hysteresis of the frequency branches of resonant response appears, induced by the nonlinear microwave modulation of torque. This effect is different from the foldover-effect under the condition of initial Lorentzian character of the ferromagnetic resonance with a constant linewidth. Furthermore, micromagnetic simulation of the diode sensitivity for similar magnetic parameters is carried out.

  9. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0<0.01ppm. In many cases however, inherent properties of the objects under investigation, pulsating arteries, breathing lungs, tissue-air interfaces, surgical implants, etc., lead to fluctuations and losses of local homogeneity. A new method dubbed “long-lived-coherence correlation spectroscopy” (LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  10. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  11. Coherence of magnetic resonators in a metamaterial

    SciTech Connect

    Hou, Yumin

    2013-12-15

    The coherence of periodic magnetic resonators (MRs) under oblique incidence is studied using simulations. The correlated phase of interaction including both the retardation effect and relative phase difference between two MRs is defined, and it plays a key role in the MR interaction. The correlated phase is anisotropic, as is the coherence condition. The coherence condition is the same as the Wood's anomaly and verified by the Fano resonance. This study shows that the applications of the Fano resonance of periodic MRs will become widespread owing to achieving the Fano resonance simply by tuning the incident angle.

  12. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  13. Magnetic resonance imaging of the fetal brain.

    PubMed

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  14. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-07-01

    Several demonstrations of resonance phenomena associated with nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are described. The demonstrations comprise common orienteering compasses, whose needles represent magnetic dipoles, along with three collinear permanent magnets and a magnetic stir plate or pulseable electromagnets. The trio of permanent magnets provides a laterally uniform magnetic field, whose strength decreases with distance from the magnets. Resonance can be observed by adjusting the frequency of the magnetic stirrer to match the resonant frequency of the compass needle, which is shown to depend on magnetic field strength, that is, the needle's position relative to the permanent magnets. Another demonstration involves pulsing electromagnets that apply a perpendicular magnetic field that causes the compass needles to oscillate. The effects of shielding, spin-spin coupling, magnetogyric ratio, and free induction decay can also be demonstrated. By moving the trio of permanent magnets relative to the compasses, the MRI experiment can be mimicked. Complete instructions for the construction of the demonstrations, which can be used on an overhead projector, are included.

  15. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    PubMed

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  16. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)).

  17. Spin wave resonance and relaxation in microwave magnetic multilayer structures and devices

    NASA Astrophysics Data System (ADS)

    Wu, Cheng

    The continuous and increasing demand for higher frequency magnetic microwave structures triggered a tremendous development in the field of magnetization dynamics over the past decade. In order to develop smaller and faster devices, more efforts are required to achieve a better understanding of the complex magnetization precessional dynamics, the magnetization anisotropy, and the sources of spin scattering at the nanoscale. This thesis presents measurements of magnetic precession and relaxation dynamics in multilayer ferromagnetic films of CoFe/PtMn/CoFe in both frequency and time domain. First, we conducted the ferromagnetic resonance (FMR) measurements for samples with the ferromagnetic CoFe layer thicknesses varying from 10 A to 500 A. The magnetic anisotropic parameters were determined by rotating the field aligned axis with respect to the spectral field in the configurations of both in-plane and out-of-plane. Moreover, we identified a high-order standing spin wave in our spectra and found a "critical angle" in the multilayer samples. We included an effective surface anisotropy field to describe our results. This allows us to determine the exchange interaction stiffness in the CoFe layers. Next, we performed pump-probe Magneto-Optical Kerr Effect experiments in the multilayer films. Three precession modes were observed in the Voigt geometry. The modes are assigned to the exchange-dominated spin wave excitations and the non-homogeneous dipole mode. We developed a comprehensive model of the magnetic eigenmodes and their coupling to light to gain accurate values of the exchange, bulk and surface anisotropy constants. The results are consistent with those from the FMR measurements. Finally, the measured resonance linewidths of CoFe/PtMn/CoFe films were analyzed by the thickness dependence of the CoFe layers. We discussed the contribution of the Gilbert damping, two magnon scattering, as well as surface and interface to the FMR linewidth and concluded the two magnon

  18. Detection and estimation of magnetization induced resonances in unilateral nuclear magnetic resonance (NMR) sensors

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, N.; Bulu, I.; Song, Y. Q.; Mina, M.; Jiles, D. C.

    2017-05-01

    In this work a systematic identification of factors contributing to signal ringing in unilateral nuclear magnetic resonance (NMR) sensors is conducted. Resonant peaks that originate due to multiple factors such as NMR, electrical, magneto-acoustic, core material response, eddy currents and other factors were observed. The peaks caused by the measurement system or electrical resonances and induced magnet vibrations are further analyzed. They appear in every measurement and are considered as interference to signals received from the magnetic core. Forming a distinction between different peaks is essential in identifying the primary contribution to the captured resonant signal. The measurements for the magnetic core indicate that the magnetization induced resonant peaks of the core have relatively higher amplitudes and shorter decay times at low frequencies.

  19. Pediatric obesity phenotyping by magnetic resonance methods

    PubMed Central

    Shen, Wei; Liu, Haiying; Punyanitya, Mark; Chen, Jun; Heymsfield, Steven B.

    2007-01-01

    Purpose of review Accurate measurement of adiposity in obese children is required for characterizing the condition’s phenotype, severity, and treatment effects in vivo. Non-invasive and safe, magnetic resonance imaging and spectroscopy provide an important new approach for characterizing key aspects of pediatric obesity. This review focuses on recent advances in non-invasive magnetic resonance imaging and spectroscopy for quantifying total body and regional adiposity, mapping adipose tissue distribution, and evaluating selected metabolic disturbances in children. The aim is to provide an investigator-focused overview of magnetic resonance methods for use in the study of pediatric body composition and metabolism. Recent findings Whole body axial images can be rapidly acquired on most clinical magnetic resonance imaging scanners. The images can then be semi-automatically segmented into subcutaneous, visceral, and intramuscular adipose tissue. Specific pediatric studies of errors related to slice gap and number are available. The acquisition of scans in healthy and premature infants is now feasible with recent technological advances. Spectroscopic, Dixon, and other approaches can be used to quantify the lipid content of liver, skeletal muscle, and other organs. Protocol selection is based on factors such as subject age and cost. Particular attention should be directed towards identification of landmarks in growth studies. Recent advances promise to reduce the requirement of subjects to remain motionless for relatively long periods. Summary Magnetic resonance imaging and spectroscopy are safe, practical, and widely available methods for phenotyping adiposity in children that open new opportunities for metabolism and nutritional research. PMID:16205458

  20. Magnetic resonance imaging measurement of iron overload

    PubMed Central

    Wood, John C.

    2010-01-01

    Purpose of review To highlight recent advances in magnetic resonance imaging estimation of somatic iron overload. This review will discuss the need and principles of magnetic resonance imaging-based iron measurements, the validation of liver and cardiac iron measurements, and the key institutional requirements for implementation. Recent findings Magnetic resonance imaging assessment of liver and cardiac iron has achieved critical levels of availability, utility, and validity to serve as the primary endpoint of clinical trials. Calibration curves for the magnetic resonance imaging parameters R2 and R2* (or their reciprocals, T2 and T2*) have been developed for the liver and the heart. Interscanner variability for these techniques has proven to be on the order of 5–7%. Summary Magnetic resonance imaging assessment of tissue iron is becoming increasingly important in the management of transfusional iron load because it is noninvasive, relatively widely available and offers a window into presymptomatic organ dysfunction. The techniques are highly reproducible within and across machines and have been chemically validated in the liver and the heart. These techniques will become the standard of care as industry begins to support the acquisition and postprocessing software. PMID:17414205

  1. Magnetic resonance imaging of skeletal muscle.

    PubMed

    Koltzenburg, Martin; Yousry, Tarek

    2007-10-01

    Clinical investigations of neuromuscular diseases routinely involve genetic, neurophysiological, biochemical and histopathological methods. More recently, various magnetic resonance imaging techniques have become available and extended the differential diagnostic possibilities. Using magnetic resonance imaging it is now possible to quantify muscle volume in selected body regions and measure wasting and exercise-induced muscle hypertrophy. Evidence is forthcoming that many hereditary myopathies are characterized by distinct patterns of muscle degeneration and this helps in selecting other relevant genetic and biochemical investigations. With diffusion-weighted tensor imaging it is possible to identify the microstructure of normal and diseased muscles. Arterial spin labelling is an emerging non-invasive tool to assess blood-flow changes in individual muscles. Magnetic resonance spectroscopy now provides an exciting opportunity to visualize metabolic changes and the pathophysiologically relevant cellular perturbations in muscle channelopathies affecting the muscle-specific sodium-channel isoform Na(v)1.4. Magnetic resonance imaging supplements investigations for the differential diagnosis of neuromuscular diseases. An advantage over routine neurophysiological or histopathological methods is that they are operator-independent, non-invasive and painless. Magnetic resonance imaging also has the advantage of providing a lasting detailed topographical picture of regional variations and allows robust measurements of muscle volume and various functional parameters.

  2. Magnetic resonance imaging by using nano-magnetic particles

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.; Khorramdin, A.; Isapour, Gh.

    2014-11-01

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants.

  3. Off-resonance frequency filtered magnetic resonance imaging.

    PubMed

    Medic, Jure; Tomazic, Saso

    2010-05-01

    One of the main problems with rapid magnetic resonance imaging (MRI) techniques is the artifacts that result from off-resonance effects. The proposed off-resonance frequency filtered MRI (OFF-MRI) method focuses on the elimination of off-resonance components from the image of the observed object. To maintain imaging speed and simultaneously achieve good frequency selectivity, MRI is divided into two steps: signal acquisition and post-processing. After the preliminary phase in which we determine imaging parameters, MRI takes place; the signal from the same object is successively acquired M times. As a result, we obtain M partial signals in k-space, from which we form the image of the observed object in the post-processing phase, after signal acquisition has been completed. This paper demonstrates that with proper selection of acquisition parameters and weighting coefficients in the post-processing phase, OFF-MRI is equivalent to filtering the signal by finite impulse response filter of length M. It is shown that with M successive acquisitions M-1 off-resonance components can be eliminated (filtered-out) from images, and therefore, only two acquisitions are needed to eliminate one off-resonance components. On the other hand, with OFF-MRI, it is also possible to form the image of an arbitrary off-resonance component by eliminating all other off-resonance components, including the on-resonance component. The proposed OFF-MRI method is suitable for MRI where rapid acquisition is required and elimination of off-resonance components can improve reliability of measurements. 2010 Elsevier Inc. All rights reserved.

  4. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  5. Gadofosveset-enhanced magnetic resonance angiography

    PubMed Central

    Goyen, Mathias

    2008-01-01

    Gadofosveset (Vasovist®, Bayer Schering Pharma AG, Berlin/Germany) is the first intravascular contrast agent approved for use with magnetic resonance angiography in the European Union, Switzerland, Turkey, Canada, and Australia. Gadofosveset reversibly binds to albumin providing extended intravascular enhancement compared wth existing extracellular magnetic resonance contrast agents. Prior to approval, gadofosveset underwent extensive testing to evaluate the safety and efficacy of the drug; the clinical trials show that gadofosveset-enhanced magnetic resonance angiography (MRA) is safe and well tolerated in patients with vascular disease and effective for the detection of vascular stenosis and aneurysms gadofosveset has the potential to open new horizons in diagnostic MRA by increasing the spatial resolution and the robustness of MRA examinations and facilitating the examination of multiple vascular beds. PMID:18629367

  6. Euclidean resonance in a magnetic field

    SciTech Connect

    Ivlev, B.

    2007-08-15

    An analogy is found between Wigner resonant tunneling and tunneling across a static potential barrier in a static magnetic field. Whereas in the process of Wigner tunneling an electron encounters a classically allowed region where a discrete energy level coincides with its energy, in the magnetic field the potential barrier is constant in the direction of tunneling. Along the tunneling path, certain regions are formed where, in the classical language, the kinetic energy of the motion perpendicular to tunneling is negative. These regions play the role of potential wells, where a discrete energy level can coincide with the electron energy. This phenomenon, which occurs at a certain magnetic field, is called Euclidean resonance and substantially depends on the shape of the potential forces in the direction perpendicular to tunneling. Under conditions of Euclidean resonance, a long-distance underbarrier motion is possible, which can be observed in experiments.

  7. Magnetic resonance imaging of the body

    SciTech Connect

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  8. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  9. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Magnetic Microparticle Aggregation For Viscosity Determination By Magnetic Resonance

    PubMed Central

    Hong, Rui; Cima, Michael J.; Weissleder, Ralph; Josephson, Lee

    2009-01-01

    Micron-sized magnetic particles were induced to aggregate when placed in homogeneous magnetic fields, like those of magnetic resonance (MR) imagers and relaxometers, and then spontaneously returned to their dispersed state when removed from the field. Associated with the aggregation and dispersion of the magnetic particles were time dependent increases and decreases in the spin-spin relaxation time (T2) of the water. Magnetic nanoparticles, with far smaller magnetic moments per particle, did not undergo magnetically induced aggregation, and exhibited time independent values of T2. The rate of T2 change associated with magnetic micro-particle aggregation was used to determine the viscosity of liquid samples, providing a method that can be of particular advantage for determining the viscosity of small volumes of potentially biohazardous samples of blood or blood plasma. PMID:18306403

  11. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance.

    PubMed

    Arima, Eiji; Naitoh, Yoshitaka; Li, Yan Jun; Yoshimura, Satoru; Saito, Hitoshi; Nomura, Hikaru; Nakatani, Ryoichi; Sugawara, Yasuhiro

    2015-03-27

    In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium.

  12. Cardiovascular magnetic resonance of anomalous coronary arteries.

    PubMed

    Varghese, Anitha; Keegan, Jennifer; Pennell, Dudley J

    2005-09-01

    Cardiovascular magnetic resonance of anomalous coronary arteries is a class I indication. The term anomalous coronary artery encompasses those with an abnormal origin (from the incorrect sinus, too-high or too-low from the correct sinus, or from the pulmonary artery) and/or number of ostia. Their clinical significance results from the increased risk of myocardial infarction and sudden cardiac death associated with those traversing an interarterial course between the aorta and main pulmonary artery/right ventricular outflow tract. In this article, we review the role and practice of cardiovascular magnetic resonance in this field.

  13. Magnetic resonance neurography of the brachial plexus

    PubMed Central

    Upadhyaya, Vaishali; Upadhyaya, Divya Narain; Kumar, Adarsh; Pandey, Ashok Kumar; Gujral, Ratni; Singh, Arun Kumar

    2015-01-01

    Magnetic Resonance Imaging (MRI) is being increasingly recognised all over the world as the imaging modality of choice for brachial plexus and peripheral nerve lesions. Recent refinements in MRI protocols have helped in imaging nerve tissue with greater clarity thereby helping in the identification, localisation and classification of nerve lesions with greater confidence than was possible till now. This article on Magnetic Resonance Neurography (MRN) is based on the authors’ experience of imaging the brachial plexus and peripheral nerves using these protocols over the last several years. PMID:26424974

  14. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  15. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  16. Advances in Magnetic Resonance Electrical Impedance Mammography

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Nataliya

    Magnetic Resonance Electrical Impedance Mammography (MREIM) is a new imaging technique under development by Wollin Ventures, Inc. in conjunction with the H. Lee Moffitt Cancer Center & Research Institute. MREIM addresses the problem of low specificity of magnetic resonance mammography and high false-positive rates, which lead to unnecessary biopsies. Because cancerous tissue has a higher electrical conductivity than benign tissue, it may serve as a biomarker for differentiation between malignant and benign lesions. The MREIM principle is based on measuring both magnetic resonance and electric properties of the breast by adding a quasi-steady-state electric field to the standard magnetic resonance breast image acquisition. This applied electric field produces a current density that creates an additional magnetic field that in turn alters the native magnetic resonance signal in areas of higher electrical conductivity, corresponding to cancerous tissue. This work comprises MREIM theory, computer simulations, and experimental developments. First, a general overview and background review of tissue modeling and electrical-impedance imaging techniques are presented. The experimental part of this work provides a description of the MREIM apparatus and the imaging results of a custom-made breast phantom. This phantom was designed and developed to mimic the magnetic resonance and electrical properties of the breast. The theoretical part of this work provides an extension to the initial MREIM theoretical developments to further understand the MREIM effects. MREIM computer simulations were developed for both idealized and realistic tumor models. A method of numerical calculation of electric potential and induced magnetic field distribution in objects with irregular boundaries and anisotropic conductivity was developed based on the Finite Difference Method. Experimental findings were replicated with simulations. MREIM effects were analyzed with contrast diagrams to show the

  17. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  18. Magnetic resonance microscopy in biomedical research.

    PubMed

    Serša, I

    2012-01-01

    Magnetic resonance (MR) microscopy is a special modality of MRI with an emphasis on high spatial resolution. While its main principle is identical to conventional clinical MRI, there are several differences between the two that are mainly associated with a use of stronger magnets and gradients. MR microscopy has numerous interesting applications in material and bio sciences in which high spatial resolution is demanded and long experiment times are allowed.

  19. Enhancement of artificial magnetism via resonant bianisotropy

    PubMed Central

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  20. Narrow linewidth single frequency microfiber laser.

    PubMed

    Fan, Wei; Gan, Jiulin; Zhang, Zhishen; Wei, Xiaoming; Xu, Shanhui; Yang, Zhongmin

    2012-10-15

    A compact 2 kHz linewidth single frequency microfiber ring laser is demonstrated. Microfiber, with a diameter of 1.88 μm, which is drawn from an Er(3+)/Yb(3+) co-doped phosphate glass fiber, serves as the gain medium. By using this microfiber, a double-knot resonator with a total length of 1.75 mm is constructed. Based on this resonator, a narrow linewidth single frequency laser with output power higher than 0.95 μW is obtained at the wavelength of 1536.1 nm. The linewidth of this microfiber laser is as narrow as 2 kHz, and the side-mode-suppression ratio is higher than 38 dB.

  1. Annealing effects on the ferromagnetic resonance linewidths of sputter-deposited Fe{sub 100−x}Co{sub x}(001) thin films (x < 11)

    SciTech Connect

    Kusaoka, A.; Kimura, J.; Takahashi, Y. Inaba, N.; Kirino, F.; Ohtake, M.; Futamoto, M.

    2015-05-07

    Effects of post-growth annealing on the magnetic damping of 3d transition alloy thin films were investigated. Fe{sub 100−x}Co{sub x} (x < 11 at. %) thin films were epitaxially deposited on GaAs(001) substrates by rf magnetron sputtering, and some of them were annealed without exposing to atmosphere. Electrical measurement showed that in-plane resistivity was smaller in the annealed films than in the as-deposited ones, indicating that the annealing mitigates crystalline imperfections and leads to reduced electron scattering rates. Magnetic damping was evaluated by the peak widths of ferromagnetic resonance (FMR) spectra obtained by a conventional Q-band spectrometer. Comparison of as-deposited and annealed specimens showed that the damping was decreased by annealing. Combined with the electrical and FMR measurements, these observations are consistent with the theoretical predictions that crystalline imperfections strongly influence the magnetic damping, both in intrinsic and extrinsic origins.

  2. Damping constant in a free layer in nanoscale CoFeB/MgO magnetic tunnel junctions investigated by homodyne-detected ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Shinozaki, Motoya; Hirayama, Eriko; Kanai, Shun; Sato, Hideo; Matsukura, Fumihiro; Ohno, Hideo

    2017-01-01

    We investigate the damping constant of a free layer with a perpendicular magnetic easy axis in nanoscale CoFeB/MgO magnetic tunnel junctions (MTJs) with a reference layer with an in-plane easy direction. The built-in noncollinear magnetization configuration in the MTJs allows us to measure homodyne-detected ferromagnetic resonance without tilting the magnetization direction of the free layer from the device normal. The damping constants determined from the spectral linewidths after the subtraction of the inhomogeneous broadening are nearly independent of the device diameter ranging from 70 to 100 nm, and take values similar to those reported for blanket CoFeB films.

  3. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  4. Magnetic resonance imaging of semicircular canals.

    PubMed Central

    Sbarbati, A; Leclercq, F; Zancanaro, C; Antonakis, K

    1992-01-01

    The present paper reports the results of the first investigation of the semicircular canals in a living, small animal by means of high spatial resolution magnetic resonance imaging. This procedure is noninvasive and allows identification of the endolymphatic and perilymphatic spaces yielding a morphology quite consistent with direct anatomical examination. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1506290

  5. Magnetic Resonance Imaging in Biomedical Engineering

    NASA Astrophysics Data System (ADS)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  6. Pituitary magnetic resonance imaging in Cushing's disease.

    PubMed

    Vitale, Giovanni; Tortora, Fabio; Baldelli, Roberto; Cocchiara, Francesco; Paragliola, Rosa Maria; Sbardella, Emilia; Simeoli, Chiara; Caranci, Ferdinando; Pivonello, Rosario; Colao, Annamaria

    2017-03-01

    Adrenocorticotropin-secreting pituitary tumor represents about 10 % of pituitary adenomas and at the time of diagnosis most of them are microadenomas. Transsphenoidal surgery is the first-line treatment of Cushing's disease and accurate localization of the tumor within the gland is essential for selectively removing the lesion and preserving normal pituitary function. Magnetic resonance imaging is the best imaging modality for the detection of pituitary tumors, but adrenocorticotropin-secreting pituitary microadenomas are not correctly identified in 30-50 % of cases, because of their size, location, and enhancing characteristics. Several recent studies were performed with the purpose of better localizing the adrenocorticotropin-secreting microadenomas through the use in magnetic resonance imaging of specific sequences, reduced contrast medium dose and high-field technology. Therefore, an improved imaging technique for pituitary disease is mandatory in the suspect of Cushing's disease. The aims of this paper are to present an overview of pituitary magnetic resonance imaging in the diagnosis of Cushing's disease and to provide a magnetic resonance imaging protocol to be followed in case of suspicion adrenocorticotropin-secreting pituitary adenoma.

  7. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  8. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  9. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  10. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  11. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  12. Giant infantile gliosarcoma: magnetic resonance imaging findings.

    PubMed

    Sanal, Hatice Tuba; Bulakbasi, Nail; Kocaoglu, Murat; Onguru, Onder; Chen, Lina

    2008-08-01

    Gliosarcoma is an uncommon variant of glioblastoma multiforme, which is composed of gliomatous and sarcomatous elements. The tumor is rarely encountered in childhood. This case report presents the magnetic resonance imaging characteristics of a giant gliosarcoma in a 3-year-old girl. Size and location of the tumor are described.

  13. Magnetic Resonance Angiography: Principles and Applications.

    PubMed

    Dyke, Lara M

    2013-12-01

    Magnetic Resonance Angiography: Principles and Applications. Carr J. C., Carroll T. J., Springer-Verlag, Heidelberg/New York, 2012. 412 pp. Price $179.00. ISBN 978-1-4419-1685-3 (hardcover). © 2013 American Association of Physicists in Medicine.

  14. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  15. Cardiovascular magnetic resonance: physics and terminology.

    PubMed

    Rodgers, Christopher T; Robson, Matthew D

    2011-01-01

    Cardiovascular magnetic resonance (CMR) is the branch of magnetic resonance imaging (MRI) whose acquisition methods are adapted to surmount the particular challenges caused by motion of the heart and blood in vivo. Magnetic resonance imaging is supremely flexible; it can produce images showing the spatial distribution of diverse tissue characteristics, for example, proton density, T(1), T(2), T(2)(⁎), fat concentration, flow rate, and diffusion parameters. The image contrast may usefully be modified by intravenous infusion of contrast agents. Magnetic resonance imaging permits 2-dimensional or 3-dimensional acquisitions with arbitrary slice orientation. Unfortunately, MRI's flexibility is matched by a remarkable complexity not only in its fundamental principles but also in the optimization of applications in the clinic. This article attempts to demystify the basic principles of CMR and provides a primer on the terminology used in CMR. Complete confidence in the principles of CMR is not essential to use the technology. Nevertheless, knowledge of the principal terminology of MRI is a valuable first step when seeking to understand and apply modern methods in a clinical or research setting. Thus, the article closes with a glossary of terminology and references to high-quality educational resources. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Intralabyrinthine schwannoma shown by magnetic resonance imaging.

    PubMed

    Saeed, S R; Birzgalis, A R; Ramsden, R T

    1994-01-01

    Intralabyrinthine schwannomas are rare benign tumours which present with progressive or fluctuant audiovestibular symptoms and may mimic Meniéres disease. The size and position of these lesions make preoperative diagnosis unusual and most are discovered incidentally at labyrinthectomy. A case is reported which was diagnosed on magnetic resonance imaging and confirmed at surgery.

  17. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  18. Optimal magnetic resonance imaging of the brain.

    PubMed

    Robertson, Ian

    2011-01-01

    Quality magnetic resonance (MR) imaging is complex and requires optimization of many technical factors. The most important factors are: magnet field and gradient strengths, coil selection, receiver bandwidth, field of view and image matrix size, number of excitations, slice thickness, image weighting and contrast, imaging planes and the direction of the phase, and frequency gradients. The ability to augment a standard MR study with additional sequences, and the need to ensure the completed study is comprehensive and robust must be balanced against the time the patient spends under anesthesia in the magnet.

  19. One dimensional FexCo1-x nanowires; ferromagnetic resonance and magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Aslam, Shehreen; Khanna, Manoj; Kuanr, Bijoy K.; Celinski, Z.

    2017-05-01

    Soft magnetic nanowires (NWs) are widely used for microwave and mm-wave components. The investigation of magnetization damping behavior of NWs have attracted great interest due to large influence of loss to the device, like integrated microwave device, magnetic sensors, and magnetic random access memory. With increasing operational frequency and degree of integration, the requirements to characterize 1-dimensional NWs become increasingly high. The purpose of this work is to study the magnetization dynamics in FexCo1-x NWs. A series of FexCo1-x (x=0, 0.25, 0.5, 0.75, 1) NWs were grown by controlled electro-deposition. By adjusting FexCo1-x concentration (x=0 to 1), the saturation magnetization, increased more than 20%. Ferromagnetic resonance (FMR) both in field and frequency sweep mode are employed to characterize the NWs in flip-chip geometry. It is observed that FMR field (Hr) increases with increase in applied frequency. At a fixed frequency, Fe NWs resonate at a lower field than the Co substituted NWs. FMR field linewidth (ΔH) as well as frequency width (Δf) are largest for Co NWs and decreased for Fe NWs. Whereas ΔH and Δf decreased further for FexCo1-x nanowires with increasing x.

  20. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  1. Optically detected nuclear magnetic resonance in n-GaAs using an on-chip microcoil

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.; Huang, J.; Reuter, D.; Ludwig, A.; Wieck, A. D.; Bacher, G.

    2011-02-01

    Optically detected nuclear magnetic resonance (NMR) with micrometer resolution is demonstrated in n-GaAs using an on-chip microcoil. To trace the Overhauser field, the electron Larmor frequency is monitored via time-resolved magneto-optical Kerr rotation. Sweeping the frequency of the rf magnetic field induced by an on-chip microscale current loop, nuclear spin depolarization is achieved for each isotope species. The experimental data indicate an impact of a local quadrupole field, most likely caused by ionized donors, on the amplitude and linewidth of the NMR spectrum. By applying rf pulse sequences, the Rabi oscillation of A75s nuclear spins is obtained with an effective dephasing time of ˜200 μs.

  2. Introduction to magnetic resonance methods in photosynthesis.

    PubMed

    Huber, Martina

    2009-01-01

    Electron paramagnetic resonance (EPR) and, more recently, solid-state nuclear magnetic resonance (NMR) have been employed to study photosynthetic processes, primarily related to the light-induced charge separation. Information obtained on the electronic structure, the relative orientation of the cofactors, and the changes in structure during these reactions should help to understand the efficiency of light-induced charge separation. A short introduction to the observables derived from magnetic resonance experiments is given. The relation of these observables to the electronic structure is sketched using the nitroxide group of spin labels as a simple example. © The Author(s) 2009. This article is published with open access at Springerlink.com

  3. Magnetic Resonance Force Microscopy Detected Long-Lived Spin Magnetization.

    PubMed

    Chen, Lei; Longenecker, Jonilyn G; Moore, Eric W; Marohn, John A

    2013-07-01

    Magnetic resonance force microscopy (MRFM), which combines magnetic resonance imaging with scanning probe microscopy together, is capable of performing ultra-sensitive detection of spin magnetization. In an attempt to observe dynamic nuclear polarization (DNP) in an MRFM experiment, which could possibly further improve its sensitivity towards a single proton spin, a film of perdeuterated polystyrene doped with a nitroxide electron-spin probe was prepared. A high-compliance cantilever with a 4 μm diameter magnetic tip was brought near the film at a temperature of 7.3 K and in a background magnetic field of ~0.6 T. The film was irradiated with 16.7 GHz microwaves while the resulting transient change in cantilever frequency was recorded in real time. In addition to observing the expected prompt change in cantilever frequency due to saturation of the nitroxide's electron-spin magnetization, we observed a persistent cantilever frequency change. Based on its magnitude, lifetime, and field dependence, we tentatively attribute the persistent signal to polarized deuteron magnetization created via transfer of magnetization from electron spins. Further measurements of the persistent signal's dependence on the cantilever amplitude and tip-sample separation are presented and explained by the cross-effect DNP mechanism in high magnetic field gradients.

  4. Interaction of magnetic resonators studied by the magnetic field enhancement

    SciTech Connect

    Hou, Yumin

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  5. Nuclear Magnetic Resonance Imaging. South Carolina Health Service Area 2

    SciTech Connect

    Not Available

    1984-12-01

    Contents include: Nuclear Magnetic Resonance Imaging (NMRI); (Clinical applications, Magnet types, Comparisons with other systems, Manpower, Manufacturers, Contraindications); Analysis of systems; (Availability, Accessibility, Cost, Quality, Continuity, Acceptability).

  6. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  7. Magnetic resonance imaging in inflammatory rheumatoid diseases.

    PubMed

    Sudoł-Szopińska, Iwona; Mróz, Joanna; Ostrowska, Monika; Kwiatkowska, Brygida

    2016-01-01

    Magnetic resonance (MR) is used more and more frequently to diagnose changes in the musculoskeletal system in the course of rheumatic diseases, at their initial assessment, for treatment monitoring and for identification of complications. The article presents the history of magnetic resonance imaging, the basic principles underlying its operation as well as types of magnets, coils and MRI protocols used in the diagnostic process of rheumatic diseases. It enumerates advantages and disadvantages of individual MRI scanners. The principles of MRI coil operation are explained, and the sequences used for MR image analysis are described, particularly in terms of their application in rheumatology, including T1-, T2-, PD-weighted, STIR/TIRM and contrast-enhanced T1-weighted images. Furthermore, views on the need to use contrast agents to optimise diagnosis, particularly in synovitis-like changes, are presented. Finally, methods for the assessment of MR images are listed, including the semi-quantitative method by RAMRIS and quantitative dynamic examination.

  8. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  9. An introduction to nuclear magnetic resonance in biomedicine.

    PubMed

    Andrew, E R

    1990-02-01

    In this paper the author illustrates the historical aspects of the development, first, of the fundamental principles of nuclear magnetic resonance and, second, the extension of these principles to magnetic resonance imaging and in vivo spectroscopy.

  10. Nuclear magnetic resonance line shapes of Wigner crystals in 13C-enriched graphene

    NASA Astrophysics Data System (ADS)

    Côté, R.; Parent, Jean-Michel

    2017-06-01

    Assuming that the nuclear magnetic resonance (NMR) signal from a 13C-isotope-enriched layer of graphene can be made sufficiently intense to be measured, we compute the NMR line shape of the different crystals' ground states that are expected to occur in graphene in a strong magnetic field. We first show that in nonuniform states there is, in addition to the frequency shift due to the spin hyperfine interaction, a second contribution of equal importance from the coupling between the orbital motion of the electrons and the nuclei. We then show that if the linewidth of the bare signal can be made sufficiently small, the Wigner and bubble crystals have line shapes that differ qualitatively from that of the uniform state at the same density while crystal states that have spin or valley pseudospin textures do not. Finally, we find that a relatively small value of the bare linewidth is sufficient to wash out the distinctive signature of the crystal states in the NMR line shape.

  11. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  12. Ferromagnetic resonance and damping properties of CoFeB thin films as free layers in MgO-based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyong; Zhang, Wenzhe; Carter, Matthew J.; Xiao, Gang

    2011-08-01

    We have investigated the magnetization dynamics of sputtered Co40Fe40B20 thin films in a wide range of thicknesses used as free layers in MgO-based magnetic tunnel junctions, with the technique of broadband ferromagnetic resonance (FMR). We have observed a large interface-induced magnetic perpendicular anisotropy in the thin film limit. The out-of-plane angular dependence of the FMR measurement revealed the contributions of two different damping mechanisms in thick and thin film limits. In thinner films (< 2 nm), two-magnon scattering and inhomogeneous broadening are significant for the FMR linewidth, while the Gilbert damping dominates the linewidth in thicker films (≥ 4 nm). Lastly, we have observed an inverse scaling of Gilbert damping constant with film thickness, and an intrinsic damping constant of 0.004 in the CoFeB alloy film is determined.

  13. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  14. Magnetic resonance of calcified tissues

    PubMed Central

    Wehrli, Felix W.

    2016-01-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues – key among them bone – are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author’s laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI. PMID:23414678

  15. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  16. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  17. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  18. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  19. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  20. Cardiac magnetic resonance for prediction of arrhythmogenic areas

    PubMed Central

    Ipek, Esra Gucuk; Nazarian, Saman

    2015-01-01

    Catheter ablation has been widely used to manage recurrent atrial and ventricular arrhythmias. It has been established that contrast-enhanced magnetic resonance can accurately characterize the myocardium. In this review, we summarize the role of cardiac magnetic resonance in identification of arrhythmogenic substrates, and the potential utility of cardiac magnetic resonance for catheter ablation of complex atrial and ventricular arrhythmias. PMID:25937045

  1. [Magnetic resonance compatibility research for coronary mental stents].

    PubMed

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  2. Magnetic resonance imaging with an optical atomicmagnetometer

    SciTech Connect

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-05-09

    Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

  3. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  4. A hyperpolarized equilibrium for magnetic resonance

    PubMed Central

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10−3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  5. Magnetic resonance imaging of the elbow.

    PubMed

    Stevens, Kathryn J

    2010-05-01

    Elbow pain is frequently encountered in clinical practice and can result in significant morbidity, particularly in athletes. Magnetic resonance imaging (MRI) is an excellent diagnostic imaging tool for the evaluation of soft tissue and osteochondral pathology around the elbow. Recent advances in magnetic field strength and coil design have lead to improved spatial resolution and superior soft tissue contrast, making it ideal for visualization of complex joint anatomy. This article describes the normal imaging appearances of anatomy around the elbow and reviews commonly occurring ligamentous, myotendinous, neural, and bursal pathology around the elbow.

  6. Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Geraci, Andrew A.

    2014-10-01

    We describe a method based on precision magnetometry that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, our approach can substantially improve upon current experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 109 and 1012 GeV or axion masses between 10-6 and 10-3 eV, independent of the cosmic axion abundance.

  7. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  8. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  9. UK Biobank's cardiovascular magnetic resonance protocol.

    PubMed

    Petersen, Steffen E; Matthews, Paul M; Francis, Jane M; Robson, Matthew D; Zemrak, Filip; Boubertakh, Redha; Young, Alistair A; Hudson, Sarah; Weale, Peter; Garratt, Steve; Collins, Rory; Piechnik, Stefan; Neubauer, Stefan

    2016-02-01

    UK Biobank's ambitious aim is to perform cardiovascular magnetic resonance (CMR) in 100,000 people previously recruited into this prospective cohort study of half a million 40-69 year-olds. We describe the CMR protocol applied in UK Biobank's pilot phase, which will be extended into the main phase with three centres using the same equipment and protocols. The CMR protocol includes white blood CMR (sagittal anatomy, coronary and transverse anatomy), cine CMR (long axis cines, short axis cines of the ventricles, coronal LVOT cine), strain CMR (tagging), flow CMR (aortic valve flow) and parametric CMR (native T1 map). This report will serve as a reference to researchers intending to use the UK Biobank resource or to replicate the UK Biobank cardiovascular magnetic resonance protocol in different settings.

  10. Magnetic resonances in nano-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Hao, Zhao; Liddle, Alex; Martin, Michael

    2006-03-01

    We have designed, fabricated, and optically measured several different kinds of nano-scale metamaterials. We make use e-beam nano-lithography technology at LBNL's Center for X-Ray Optics for fabricating these structures on extremely thin SiN substrates so that they are close to free-standing. Optical properties were measured as a function of incidence angle and polarization. We directly observe a strong magnetic resonance consistent with a negative magnetic permeability in our samples at mid- and near-IR optical frequencies. We will discuss the results in comparison with detailed simulations, and will discuss the electric dipole or quadrupole resonances observed in the samples. Finally, we will report on our progress towards constructing a fully negative index of refraction meta-material.

  11. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  12. Nuclear magnetic resonance spectrometer and method

    SciTech Connect

    Peterson, P.E.; Vidrine, D.W.

    1981-08-18

    A nuclear magnetic resonance techniis described that allows simultaneous temperature determination and spectral acquisition. The technique employs a modification of the lock circuit of a varian xl-100 spectrometer which permits accurate measurement of the difference in resonance frequency between a primary lock nucleus and another , secondary, nucleus. The field stabilization function of the main lock circuit is not compromised. A feedback signal having a frequency equal to the frequency difference is substituted for the normal power supply in the spectrometer's existing radio frequency transmitter to modulate that transmitter. Thus, the transmitter's radio frequency signal is enhanced in a frequency corresponding to the resonance peak of the secondary nucleus. Determination of the frequency difference allows the determination of temperature without interference with the observed spectrum. The feedback character of the circuit and the presence of noise make the circuit self-activating.

  13. Magnetic resonance imaging: Principles and applications

    SciTech Connect

    Kean, D.; Smith, M.

    1986-01-01

    This text covers the physics underlying magnetic resonance (MR) imaging; pulse sequences; image production; equipment; aspects of clinical imaging; and the imaging of the head and neck, thorax, abdomen and pelvis, and musculoskeletal system; and MR imaging. The book provides about 150 examples of MR images that give an overview of the pathologic conditions imaged. There is a discussion of the physics of MR imaging and also on the spin echo.

  14. Magnetic resonance imaging of diabetic foot complications

    PubMed Central

    Low, Keynes TA; Peh, Wilfred CG

    2015-01-01

    This pictorial review aims to illustrate the various manifestations of the diabetic foot on magnetic resonance (MR) imaging. The utility of MR imaging and its imaging features in the diagnosis of pedal osteomyelitis are illustrated. There is often difficulty encountered in distinguishing osteomyelitis from neuroarthropathy, both clinically and on imaging. By providing an accurate diagnosis based on imaging, the radiologist plays a significant role in the management of patients with complications of diabetic foot. PMID:25640096

  15. Neurosurgical uses for intraprocedural magnetic resonance imaging.

    PubMed

    Mutchnick, Ian S; Moriarty, Thomas M

    2005-10-01

    Neurosurgical procedures demand precision, and efforts to create accurate neurosurgical navigation have been central to the profession through its history. Magnetic resonance image (MRI)-guided navigation offers the possibility of real-time, image-based stereotactic information for the neurosurgeon, which makes possible a number of diagnostic and therapeutic procedures. This article will review both current options for intraoperative MRI operative suite arrangements and the current therapeutic/diagnostic uses of intraoperative MRI.

  16. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  17. Magnetic resonance venography and liver transplant complications.

    PubMed

    Strovski, Evgeny; Liu, Dave; Scudamore, Charles; Ho, Stephen; Yoshida, Eric; Klass, Darren

    2013-09-28

    Hepatic vein stenosis is a rare but serious complication following liver transplantation. Multiple modalities can be utilized to image the hepatic vasculature. Magnetic resonance venography (MRV) provides certain advantages over ultrasound, computed tomography angiography and digital subtraction venography. MRV utilizes the same imaging principles of magnetic resonance angiography in order to image the venous system. Blood pool contrast agents, specifically gadofosveset trisodium, allow for steady state imaging up to 1 h following injection, with improved visualisation of vital venous structures by utilising delayed steady state imaging. Additionally, the inherent physics properties of magnetic resonance imaging also provide excellent soft tissue detail and thus help define the extent of complications that often plague the post-liver transplant patient. This case report describes the use of gadofosveset trisodium in a patient with hepatic venous stenosis following liver transplantation. Initial venography failed to outline the stenoses and thus MRV using a blood pool contrast agent was utilised in order to delineate the anatomy and plan a therapeutic endovascular procedure.

  18. Magnetic Resonance Imaging Features of Solitary Hypothalamitis.

    PubMed

    Zhang, Hua; Wang, Jing; Wu, Yue; Tang, Ying; Tao, Ran; Ye, Hongying; Yao, Zhenwei

    The study aimed to characterize magnetic resonance imaging (MRI) findings of solitary hypothalamitis and evaluate their clinical value in diagnosis. Magnetic resonance imaging scans, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted sequences, of 8 biopsy-proven hypothalamitis lesions were retrospectively analyzed along with MRI features including size, shape, signal intensity, enhancement pattern, correlation with adjacent tissues, and changes in infundibular stalk and sella turcica. Of 8 patients, 5 were diagnosed with lymphoplasmacytic proliferative inflammation, 2 with Langerhans cell histocytosis, and 1 with Rosai-Dorfman disease. Solitary hypothalamitis predominantly demonstrated mild hypointensity/isointensity in T1WI and mild hyperintensity in T2-weighted imaging. In contrast-enhanced T1WI, all lesions showed heterogeneous but primarily peripheral enhancement patterns. Seven cases showed the polygon sign. In T1WI, the normal high signal intensity of neurohypophysis was absent from all patients, with no infundibular stalk thickening. Seven patients presented with optic chiasma edema, and 5 with edema-like changes along the optic tract (OTE), but most showed no visual impairment (n = 7). Magnetic resonance imaging, particularly postcontrast MRI, is the optimal modality for assessment of hypothalamic lesions. Peripheral enhancement with polygon sign and optic tract or chiasm edema without visual impairment are highly suggestive of hypothalamitis.

  19. Magnetic resonance acoustic radiation force imaging.

    PubMed

    McDannold, Nathan; Maier, Stephan E

    2008-08-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are "stiffness weighted" and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery.

  20. Frequency-based nanoparticle sensing over large field ranges using the ferromagnetic resonances of a magnetic nanodisc

    NASA Astrophysics Data System (ADS)

    Albert, Maximilian; Beg, Marijan; Chernyshenko, Dmitri; Bisotti, Marc-Antonio; Carey, Rebecca L.; Fangohr, Hans; Metaxas, Peter J.

    2016-11-01

    Using finite element micromagnetic simulations, we study how resonant magnetisation dynamics in thin magnetic discs with perpendicular anisotropy are influenced by magnetostatic coupling to a magnetic nanoparticle. We identify resonant modes within the disc using direct magnetic eigenmode calculations and study how their frequencies and spatial profiles are changed by the nanoparticle’s stray magnetic field. We demonstrate that particles can generate shifts in the resonant frequency of the disc’s fundamental mode which exceed resonance linewidths in recently studied spin torque oscillator devices. Importantly, it is shown that the simulated shifts can be maintained over large field ranges (here up to 1 T). This is because the resonant dynamics (the basis of nanoparticle detection here) respond directly to the nanoparticle stray field, i.e. detection does not rely on nanoparticle-induced changes to the magnetic ground state of the disc. A consequence of this is that in the case of small disc-particle separations, sensitivities to the particle are highly mode- and particle-position-dependent, with frequency shifts being maximised when the intense stray field localised directly beneath the particle can act on a large proportion of the disc’s spins that are undergoing high amplitude precession.

  1. Exciton Diamagnetic Shifts and Magnetic Field Dependent Linewidths in Ordered and Disordered InGaP Alloys

    DTIC Science & Technology

    2002-01-01

    system are important for laser and solar cell applications. In particular, this material system’s bandgap energy can be tuned by the phenomenon known...as spontaneous ordering, where, depending on the growth conditions, the InGaP crystal structure can be a randomly disordered alloy with the zinc...like structures , in the small-bore pulsed-field magnet solenoid. Figure 1 shows 4-K spectra for the two InGaP samples discussed here. Spectrum (a) is

  2. Artifacts in magnetic resonance imaging from metals

    NASA Astrophysics Data System (ADS)

    Bennett, L. H.; Wang, P. S.; Donahue, M. J.

    1996-04-01

    Metallic biomedical implants, such as aneurysm clips, endoprostheses, and internal orthopedic devices give rise to artifacts in the magnetic resonance image (MRI) of patients. Such artifacts impair the information contained in the image in precisely the region of most interest, namely near the metallic device. Ferromagnetic materials are contraindicated because of the hazards associated with their movement during the MRI procedure. In less-magnetic metals, it has been suggested that the extent of the artifact is related to the magnetic susceptibility of the metal, but no systematic data appear to be available. When the susceptibility is sufficiently small, an additional artifact due to electrical conductivity is observed. We present an initial systematic study of MRI artifacts produced by two low susceptibility metals, titanium (relative permeability μr≊1.0002) and copper (μr≊0.99998), including experimental, theoretical, and computer simulation results.

  3. Radiation damping and reciprocity in nuclear magnetic resonance: the replacement of the filling factor.

    PubMed

    Tropp, James; Van Criekinge, Mark

    2010-09-01

    The basic equation describing radiation damping in nuclear magnetic resonance (NMR) is rewritten by means of the reciprocity principle, to remove the dependence of the damping constant upon filling factor - a parameter which is neither uniquely defined for easily measured. The new equation uses instead the transceive efficiency, i.e. the peak amplitude of the radiofrequency B field in laboratory coordinates, divided by the square root of the resistance of the detection coil, for which a simple and direct means of measurement exists. We use the efficiency to define the intrinsic damping constant, i.e. that which obtains when both probe and preamplifier are perfectly matched to the system impedance. For imperfect matching of the preamp, it is shown that the damping constant varies with electrical distance to the probe, and equations are given and simulations performed, to predict the distance dependence, which (for lossless lines) is periodic modulo a half wavelength. Experimental measurements of the radiation-damped free induction NMR signal of protons in neat water are performed at a static B field strength of 14.1T; and an intrinsic damping constant measured using the variable line method. For a sample of 5mm diameter, in an inverse detection probe we measure an intrinsic damping constant of 204 s(-1), corresponding to a damping linewidth of 65 Hz for small tip angles. The predicted intrinsic linewidth, based upon three separate measurements of the efficiency, is 52.3 Hz, or 80% of the measured value.

  4. Radiation damping and reciprocity in nuclear magnetic resonance: The replacement of the filling factor

    NASA Astrophysics Data System (ADS)

    Tropp, James; Criekinge, Mark Van

    2010-09-01

    The basic equation describing radiation damping in nuclear magnetic resonance (NMR) is rewritten by means of the reciprocity principle, to remove the dependence of the damping constant upon filling factor - a parameter which is neither uniquely defined for easily measured. The new equation uses instead the transceive efficiency, i.e. the peak amplitude of the radiofrequency B field in laboratory coordinates, divided by the square root of the resistance of the detection coil, for which a simple and direct means of measurement exists. We use the efficiency to define the intrinsic damping constant, i.e. that which obtains when both probe and preamplifier are perfectly matched to the system impedance. For imperfect matching of the preamp, it is shown that the damping constant varies with electrical distance to the probe, and equations are given and simulations performed, to predict the distance dependence, which (for lossless lines) is periodic modulo a half wavelength. Experimental measurements of the radiation-damped free induction NMR signal of protons in neat water are performed at a static B field strength of 14.1 T; and an intrinsic damping constant measured using the variable line method. For a sample of 5 mm diameter, in an inverse detection probe we measure an intrinsic damping constant of 204 s -1, corresponding to a damping linewidth of 65 Hz for small tip angles. The predicted intrinsic linewidth, based upon three separate measurements of the efficiency, is 52.3 Hz, or 80% of the measured value.

  5. Zero-field nuclear magnetic resonance spectroscopy of viscous liquids.

    PubMed

    Shimizu, Y; Blanchard, J W; Pustelny, S; Saielli, G; Bagno, A; Ledbetter, M P; Budker, D; Pines, A

    2015-01-01

    We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin-spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Portal biliopathy, magnetic resonance imaging and magnetic resonance cholangiopancreatography findings: a case series

    PubMed Central

    Baskan, Ozdil; Erol, Cengiz; Sahingoz, Yusuf

    2016-01-01

    Portal biliopathy (PB) is a rare disorder, characterized by biliary ductal and gallbladder wall abnormalities seen in patients with portal hypertension. It most commonly occurs due to idiopathic extrahepatic portal vein obstruction (EHPVO). The abnormalities consist mainly of bile duct compression, stenoses, fibrotic strictures and dilation of both extrahepatic and intrahepatic bile ducts, as well as gallbladder varices. PB may mimic cholangiocarcinoma, sclerosing cholangitis, or choledocholithiasis. Misdiagnosis can be avoided using appropriate imaging modalities to prevent complications. We present the magnetic resonance imaging (MRI) and magnetic resonance cholangiography (MRCP) features of three patients with PB. PMID:25216728

  7. Accuracy of magnetic resonance based susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  8. Magnetic resonance imaging in inflammatory rheumatoid diseases

    PubMed Central

    Mróz, Joanna; Ostrowska, Monika; Kwiatkowska, Brygida

    2016-01-01

    Magnetic resonance (MR) is used more and more frequently to diagnose changes in the musculoskeletal system in the course of rheumatic diseases, at their initial assessment, for treatment monitoring and for identification of complications. The article presents the history of magnetic resonance imaging, the basic principles underlying its operation as well as types of magnets, coils and MRI protocols used in the diagnostic process of rheumatic diseases. It enumerates advantages and disadvantages of individual MRI scanners. The principles of MRI coil operation are explained, and the sequences used for MR image analysis are described, particularly in terms of their application in rheumatology, including T1-, T2-, PD-weighted, STIR/TIRM and contrast-enhanced T1-weighted images. Furthermore, views on the need to use contrast agents to optimise diagnosis, particularly in synovitis-like changes, are presented. Finally, methods for the assessment of MR images are listed, including the semi-quantitative method by RAMRIS and quantitative dynamic examination. PMID:27826171

  9. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  10. Quantitative Neuromorphometry Using Magnetic Resonance Histology

    PubMed Central

    Johnson, G. Allan; Badea, Alexandra; Jiang, Yi

    2010-01-01

    Magnetic resonance imaging (MRI), now common in the clinical domain, has been adapted for use by the neuropathologist by increasing the spatial resolution over 100,000-times what is common in human clinical imaging. This increase in spatial resolution has been accomplished through a variety of technical advances—higher magnetic fields, more sensitive receivers, and clever encoding methods. Magnetic resonance histology (MRH), i.e. the application of MRI to study tissue specimens, now makes three-dimensional imaging of the fixed brain in the cranium routine. Active staining (perfusion fixation with a paramagnetic contrast agent) has allowed us to reduce the scan time by more than 8-times over earlier methods. The result is a three-dimensional isotropic image array that can be viewed along any direction without loss of spatial resolution. Homologous slices can be chosen interactively. Since the tissue is still fully hydrated in the cranium, tissue shrinkage and distortion are virtually eliminated. Volume measurements of neural structures can be made with a high degree of precision and accuracy. MRH will not replace more traditional methods, but it promises enormous value in choosing particular areas and times for more traditional sectioning and assessment. PMID:21119052

  11. Gadolinium-Enhanced Magnetic Resonance Angiography for Pulmonary Embolism

    PubMed Central

    Stein, Paul D.; Chenevert, Thomas L.; Fowler, Sarah E.; Goodman, Lawrence R.; Gottschalk, Alexander; Hales, Charles A.; Hull, Russell D.; Jablonski, Kathleen A.; Leeper, Kenneth V.; Naidich, David P.; Sak, Daniel J.; Sostman, H. Dirk; Tapson, Victor F.; Weg, John G.; Woodard, Pamela K.

    2011-01-01

    Background The accuracy of gadolinium-enhanced magnetic resonance pulmonary angiography and magnetic resonance venography for diagnosing pulmonary embolism has not been determined conclusively. Objective To investigate performance characteristics of magnetic resonance angiography, with or without magnetic resonance venography, for diagnosing pulmonary embolism. Design Prospective, multicenter study from 10 April 2006 to 30 September 2008. (ClinicalTrials.gov registration number: NCT00241826) Setting 7 hospitals and their emergency services. Patients 371 adults with diagnosed or excluded pulmonary embolism. Measurements Sensitivity, specificity, and likelihood ratios were measured by comparing independently read magnetic resonance imaging with the reference standard for diagnosing pulmonary embolism. Reference standard diagnosis or exclusion was made by using various tests, including computed tomographic angiography and venography, ventilation–perfusion lung scan, venous ultra-sonography, D-dimer assay, and clinical assessment. Results Magnetic resonance angiography, averaged across centers, was technically inadequate in 25% of patients (92 of 371). The proportion of technically inadequate images ranged from 11% to 52% at various centers. Including patients with technically inadequate images, magnetic resonance angiography identified 57% (59 of 104) with pulmonary embolism. Technically adequate magnetic resonance angiography had a sensitivity of 78% and a specificity of 99%. Technically adequate magnetic resonance angiography and venography had a sensitivity of 92% and a specificity of 96%, but 52% of patients (194 of 370) had technically inadequate results. Limitation A high proportion of patients with suspected embolism was not eligible or declined to participate. Conclusion Magnetic resonance pulmonary angiography should be considered only at centers that routinely perform it well and only for patients for whom standard tests are contraindicated. Magnetic

  12. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, Nicolas; Ruchotzke, William; Belding, Amanda; Cardellino, Jeremy; Blomberg, Erick; McCullian, Brendan; Bhallamudi, Vidya; Pelekhov, Denis; Hammel, P. Chris

    Silicon nitride (Si3N4) membranes are commercially-available, versatile structures that have a variety of applications. Although most commonly used as the support structure for transmission electron microscopy (TEM) studies, membranes are also ultrasensitive high-frequency mechanical oscillators. The sensitivity stems from the high quality factor Q 106 , which has led to applications in sensitive quantum optomechanical experiments. The high sensitivity also opens the door to ultrasensitive force detection applications. We report force detection of electron spin magnetic resonance at 300 K using a Si3N4 membrane with a force sensitivity of 4 fN/√{ Hz}, and a potential low temperature sensitivity of 25 aN/√{ Hz}. Given membranes' sensitivity, robust construction, large surface area and low cost, SiN membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional NMR.

  13. Thoracic outlet syndromes and magnetic resonance imaging.

    PubMed

    Panegyres, P K; Moore, N; Gibson, R; Rushworth, G; Donaghy, M

    1993-08-01

    The thoracic outlet syndromes encompass the diverse clinical entities affecting the branchial plexus or subclavian artery including cervical ribs or bands. Thoracic outlet syndrome are often difficult to diagnose on existing clinical and electrophysiological criteria and new diagnostic methods are necessary. This study reports our experience with magnetic resonance imaging (MRI) of the brachial plexus in 20 patients with suspected thoracic outlet syndrome. The distribution of pain and sensory disturbance varied widely, weakness and wasting usually affected C8/T1 innervated muscles, and electrophysiology showed combinations of reduced sensory nerve action potentials from the fourth and fifth digits, and prolonged F-responses or tendon reflex latencies. The MRI study was interpreted blind. Deviation of the brachial plexus was recorded in 19 out of the 24 symptomatic sides (sensitivity 79%). Absence of distortion was correctly identified in 14 out of 16 asymptomatic sides (specificity 87.5%). The false positive rate was 9.5%. Magnetic resonance imaging demonstrated all seven cervical ribs visible on plain cervical spine radiographs. Magnetic resonance imaging also showed a band-like structure extending from the C7 transverse process in 25 out of 33 sides; similar structures were detected in three out of 18 sides in control subjects. These MRI bands often underlay the brachial plexus distortion observed in our patients. We also observed instances of plexus distortion by post-traumatic callus of the first rib, and by a hypertrophied serratus anterior muscle. If they did not demonstrate a cervical rib, plain cervical spine radiographs had no value in predicting brachial plexus distortion. We believe MRI to be of potential value in the diagnosis of thoracic outlet syndrome by: (i) demonstrating deviation or distortion of nerves or blood vessels; (ii) suggesting the presence of radiographically invisible bands; (iii) disclosing other causes of thoracic outlet syndrome

  14. Achilles Impingement Tendinopathy on Magnetic Resonance Imaging.

    PubMed

    Bullock, Mark J; Mourelatos, Jan; Mar, Alice

    2017-02-28

    Haglund's syndrome is impingement of the retrocalcaneal bursa and Achilles tendon caused by a prominence of the posterosuperior calcaneus. Radiographic measurements are not sensitive or specific for diagnosing Haglund's deformity. Localization of a bone deformity and tendinopathy in the same sagittal section of a magnetic resonance imaging scan can assist with the diagnosis in equivocal cases. The aim of the present cross-sectional study was to determine the prevalence of Haglund's syndrome in patients presenting with Achilles tendinopathy and note any associated findings to determine the criteria for a diagnosis of Haglund's syndrome. We reviewed 40 magnetic resonance imaging scans with Achilles tendinopathy and 19 magnetic resonance imaging scans with Achilles high-grade tears and/or ruptures. Achilles tendinopathy was often in close proximity to the superior aspect of the calcaneal tuberosity, consistent with impingement (67.5%). Patients with Achilles impingement tendinopathy were more often female (p < .04) and were significantly heavier than patients presenting with noninsertional Achilles tendinopathy (p = .014) or Achilles tendon rupture (p = .010). Impingement tendinopathy occurred medially (8 of 20) and centrally (10 of 20) more often than laterally (2 of 20) and was associated with a posterior prominence or hyperconvexity with a loss of calcaneal recess more often than a superior projection (22 of 27 versus 8 of 27; p < .001). Haglund's deformity should be reserved for defining a posterior prominence or hyperconvexity with loss of calcaneal recess because this corresponds with impingement. Achilles impingement tendinopathy might be more appropriate terminology for Haglund's syndrome, because the bone deformity is often subtle. Of the 27 images with Achilles impingement tendinopathy, 10 (37.0%) extended to a location prone to Achilles tendon rupture. Given these findings, insertional and noninsertional Achilles tendinopathy are not mutually

  15. [Comprehensive magnetic resonance imaging for breast cancer].

    PubMed

    Meladze, N V; Ternovoĭ, S K; Sharia, M A; Solopova, A E

    2013-01-01

    To enhance the efficiency of diagnosis of breast tumors by comprehensive magnetic resonance imaging (MRI) involving dynamic contrast-enhanced magnetic resonance mammography (MRM) and magnetic resonance spectroscopy (MRS). Eighty-seven women aged 32 to 75 years with breast neoplasms were examined. MRM was performed on a Philips Achieva 3.0T TX scanner. The MRI protocol consisted of axial fat-suppressed T1- and T2-weighted spin-echo images and 8 postcontrast dynamic series. Changes in contrast-enhanced MRI of breast cancer (BC) were estimated by constructing the signal intensity-time curves. MRS was carried out using a PRESS sequence. Dynamic MRM determined type III signal intensity-time curve in 83.9% of the patients with BC and type II curve in 16.1% of those with breast malignancies and in 33.3% of those with breast fibroadenomas. Type I signal intensity-time curve was identified in 66.7% of the cases of fibroadenomas. Elevated choline concentrations in the malignancies were detected in 17.7% of cases. Their tumors were larger than 2 cm. The choline peak in the malignancies could not be revealed in the other cases, which was associated to the large voxel size exceeding the mass size. There was a drastic fall in the signal-to-noise ratio with smaller voxel sizes. Furthermore, higher choline levels were determined in 9.5% of the fibroadenoma cases. Comparison of MRS findings before and after contrast injection revealed the advantage of the latter, which is primarily attributed to the more accurate voxel position on the tumor than that during non-contrast-enhanced MRS. Dynamic intravenous contrast-enhanced MRM is an effective method for the differential diagnosis of breast masses. MRS cannot be included in the standard study protocol for women with breast masses for the present.

  16. Hair product artifact in magnetic resonance imaging.

    PubMed

    Chenji, Sneha; Wilman, Alan H; Mah, Dennell; Seres, Peter; Genge, Angela; Kalra, Sanjay

    2017-01-01

    The presence of metallic compounds in facial cosmetics and permanent tattoos may affect the quality of magnetic resonance imaging. We report a case study describing a signal artifact due to the use of a leave-on powdered hair dye. On reviewing the ingredients of the product, it was found to contain several metallic compounds. In lieu of this observation, we suggest that MRI centers include the use of metal- or mineral-based facial cosmetics or hair products in their screening protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Magnetic resonance of the musculoskeletal system

    SciTech Connect

    Berquist, T.H.; Ehman, R.L.; Richardson, M.L.

    1986-01-01

    Magnetic Resonance of the Musculoskeletal System features coverage of the use of MRI in evaluation of specific diseases: bone and soft tissue tumors; infections; musculoskeletal trauma; spinal disorders; and miscellaneous conditions. The authors comparisons of MRI with computed tomography, ultrasound, isotopes, and other techniques will assist the physician in determining which clinical problems are best evaluated by MRI. Where MRI is the optimal technique, the text outlines the examination procedure, indicates which sequences provide the most information, and describes the pathologic findings that can be observed in MRI scans. An outstanding selection of more than 250 detail-revealing illustrations depicts representatives MRI findings.

  18. Cardiovascular magnetic resonance in systemic hypertension

    PubMed Central

    2012-01-01

    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension. PMID:22559053

  19. Magnetic Resonance of Pelvic and Gastrointestinal Emergencies.

    PubMed

    Wongwaisayawan, Sirote; Kaewlai, Rathachai; Dattwyler, Matthew; Abujudeh, Hani H; Singh, Ajay K

    2016-05-01

    Magnetic resonance (MR) imaging is gaining increased acceptance in the emergency setting despite the continued dominance of computed tomography. MR has the advantages of more precise tissue characterization, superior soft tissue contrast, and a lack of ionizing radiation. Traditional barriers to emergent MR are being overcome by streamlined imaging protocols and newer rapid-acquisition sequences. As the utilization of MR imaging in the emergency department increases, a strong working knowledge of the MR appearance of the most commonly encountered abdominopelvic pathologies is essential. In this article, MR imaging protocols and findings of acute pelvic, scrotal, and gastrointestinal pathologies are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Imaging of myocardial perfusion with magnetic resonance.

    PubMed

    Barkhausen, Jörg; Hunold, Peter; Jochims, Markus; Debatin, Jörg F

    2004-06-01

    Coronary artery disease (CAD) is currently the leading cause of death in developed nations. Reflecting the complexity of cardiac function and morphology, noninvasive diagnosis of CAD represents a major challenge for medical imaging. Although coronary artery stenoses can be depicted with magnetic resonance (MR) and computed tomography (CT) techniques, its functional or hemodynamic impact frequently remains elusive. Therefore, there is growing interest in other, target organ-specific parameters such as myocardial function at stress and first-pass myocardial perfusion imaging to assess myocardial blood flow. This review explores the pathophysiologic background, recent technical developments, and current clinical status of first-pass MR imaging (MRI) of myocardial perfusion.

  1. Magnetic Resonance Imaging of the Retina

    PubMed Central

    Duong, Timothy Q.; Muir, Eric R.

    2010-01-01

    This paper reviews recent developments in high-resolution magnetic resonance imaging (MRI) and its application to image anatomy, physiology, and function in the retina of animals. It describes technical issues and solutions in performing retinal MRI, anatomical MRI, blood oxygenation level-dependent functional MRI (fMRI), and blood-flow MRI both of normal retinas and of retinal degeneration. MRI offers unique advantages over existing retinal imaging techniques, including the ability to image multiple layers without depth limitation and to provide multiple clinically relevant data in a single setting. Retinal MRI has the potential to complement existing retinal imaging techniques. PMID:19763752

  2. Magnetic Resonance Imaging in Epidemic Adenoviral Keratoconjunctivitis

    PubMed Central

    Horton, Jonathan C.; Miller, Steven

    2015-01-01

    Most clinicians would agree that there is no reason to obtain a magnetic resonance (MR) scan to evaluate a patient with viral conjunctivitis. We scheduled a patient for an annual MR scan to monitor his optic nerve meningiomas. By coincidence, he had florid viral conjunctivitis the day the scan was performed. It showed severe eyelid edema, contrast enhancement of the anterior orbit, enlargement of the lacrimal gland, and obstruction of the nasolacrimal duct. Adenovirus produces deep orbital inflammation, in addition to infection of the conjunctival surface. PMID:26022084

  3. Magnetic Resonance Imaging of Spinal Emergencies.

    PubMed

    Kawakyu-O'Connor, Daniel; Bordia, Ritu; Nicola, Refky

    2016-05-01

    Magnetic resonance (MR) imaging of the spine is increasingly being used in the evaluation of spinal emergencies because it is highly sensitive and specific in the diagnosis of acute conditions of the spine. The prompt and accurate recognition allows for appropriate medical and surgical intervention. This article reviews the MR imaging features of common emergent conditions, such as spinal trauma, acute disc herniation, infection, and tumors. In addition, we describe common MR imaging sequences, discuss challenges encountered in emergency imaging of the spine, and illustrate multiple mimics of acute conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Magnetic resonance imaging characteristics of granulomatous mastitis.

    PubMed

    Chu, Amanda N; Seiler, Stephen J; Hayes, Jody C; Wooldridge, Rachel; Porembka, Jessica H

    Granulomatous mastitis (GM) is a benign chronic inflammatory condition of the breast. This study was performed to determine the utility of magnetic resonance imaging (MRI) in differentiating GM from malignancy. MRI findings in 12 women with clinical or histopathologically-proven GM were retrospectively reviewed. Non-mass enhancement on MRI was present in all 12 patients with clustered ring enhancement being the most common pattern (n=7, 58%). Architectural distortion (n=10, 83%), skin thickening (n=10, 83%) and focal skin enhancement (n=10, 83%) were also very common. MRI features of GM are often identical to features considered suspicious for malignancy on MRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Sciatic neuropathy: findings on magnetic resonance neurography

    PubMed Central

    Agnollitto, Paulo Moraes; Chu, Marcio Wen King; Simão, Marcelo Novelino; Nogueira-Barbosa, Marcello Henrique

    2017-01-01

    Injuries of the sciatic nerve are common causes of pain and limitation in the lower limbs. Due to its particular anatomy and its long course, the sciatic nerve is often involved in diseases of the pelvis or leg. In recent years, magnetic resonance neurography has become established as an important tool for the study of peripheral nerves and can be widely applied to the study of the sciatic nerve. Therefore, detailed knowledge of its anatomy and of the most prevalent diseases affecting it is essential to maximizing the accuracy of diagnostic imaging. PMID:28670031

  6. Creating a magnetic resonance imaging ontology

    PubMed Central

    Lasbleiz, Jérémy; Saint-Jalmes, Hervé; Duvauferrier, Régis; Burgun, Anita

    2011-01-01

    The goal of this work is to build an ontology of Magnetic Resonance Imaging. The MRI domain has been analysed regarding MRI simulators and the DICOM standard. Tow MRI simulators have been analysed: JEMRIS, which is developed in XML and C++, has a hierarchical organisation and SIMRI, which is developed in C, has a good representation of MRI physical processes. To build the ontology we have used Protégé 4, owl2 that allows quantitative representations. The ontology has been validated by a reasoner (Fact++) and by a good representation of DICOM headers and of MRI processes. The MRI ontology would improved MRI simulators and eased semantic interoperability. PMID:21893854

  7. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  8. Magnetic resonance imaging of the nasopharynx

    SciTech Connect

    Dillon, W.P.; Mills, C.M.; Kjos, B.; DeGroot, J.; Brant-Zawadzki, M.

    1984-09-01

    Thirty subjects with normal nasopharyngeal anatomy and 12 patients with a variety of abnormalities were examined with computed tomography (CT) and magnetic resonance imaging (MR), using a prototype 0.35-T superconducting system. MR was superior to CT for display of both superficial and deep nasopharyngeal soft tissues in all 30 normal subjects and 10 of the 12 abnormal patients. MR was also superior to CT in distinguishing tumor from soft tissues and more sensitive to carotid sheath adenopathy. Bones, calcification, and subtle abnormalities at the base of the skull were shown better by CT. The specificity of MR and its ability to differentiate nodal metastases from reactive lymphadenopathy require further evaluation.

  9. Optically pumped nuclear magnetic resonance of semiconductors.

    PubMed

    Hayes, Sophia E; Mui, Stacy; Ramaswamy, Kannan

    2008-02-07

    Optically pumped NMR (OPNMR) of direct gap and indirect gap semiconductors has been an area of active research interest, motivated by both basic science and technological perspectives. Proposals to enhance and to spatially localize nuclear polarization have stimulated interest in this area. Recent progress in OPNMR has focused on exploring the experimental parameter space in order to elucidate details of the underlying photophysics of optical pumping phenomena. The focus of this review is on recent studies of bulk samples of GaAs and InP, namely, the photon energy dependence, the magnetic field dependence, and the phase dependence of OPNMR resonances. Models for the development of nuclear polarization are discussed.

  10. Breast magnetic resonance imaging: current clinical indications.

    PubMed

    Yeh, Eren D

    2010-05-01

    Breast magnetic resonance (MR) is highly sensitive in the detection of invasive breast malignancies. As technology improves, as interpretations and reporting by radiologists become standardized through the development of guidelines by expert consortiums, and as scientific investigation continues, the indications and uses of breast MR as an adjunct to mammography continue to evolve. This article discusses the current clinical indications for breast MR including screening for breast cancer, diagnostic indications for breast MR, and MR guidance for interventional procedures. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Magnetic Resonance Imaging of Acute Stroke.

    PubMed

    Nael, Kambiz; Kubal, Wayne

    2016-05-01

    Neuroimaging plays a critical role in the management of patients with acute stroke syndrome, with diagnostic, therapeutic, and prognostic implications. A multiparametric magnetic resonance (MR) imaging protocol in the emergency setting can address both primary goals of neuroimaging (ie, detection of infarction and exclusion of hemorrhage) and secondary goals of neuroimaging (ie, identifying the site of arterial occlusion, tissue characterization for defining infarct core and penumbra, and determining stroke cause/mechanism). MR imaging provides accurate diagnosis of acute ischemic stroke (AIS) and can differentiate AIS from other potential differential diagnoses. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. [Magnetic resonance imaging of the temporomandibular joint].

    PubMed

    Ros Mendoza, L H; Cañete Celestino, E; Velilla Marco, O

    2008-01-01

    The temporomandibular joint (TMJ) is a small joint with complex anatomy and function. Diverse pathologies with very different symptoms can affect the TMJ. While various imaging techniques such as plain-film radiography and computed tomography can be useful, magnetic resonance imaging's superior contrast resolution reveals additional structures like the articular disk, making this technique essential for accurate diagnosis and treatment planning. We analyze the MRI signs of the different pathologies that can affect the TMJ from the structural and functional points of view.

  13. Magnetic resonance-guided prostate interventions.

    PubMed

    Haker, Steven J; Mulkern, Robert V; Roebuck, Joseph R; Barnes, Agnieska Szot; Dimaio, Simon; Hata, Nobuhiko; Tempany, Clare M C

    2005-10-01

    We review our experience using an open 0.5-T magnetic resonance (MR) interventional unit to guide procedures in the prostate. This system allows access to the patient and real-time MR imaging simultaneously and has made it possible to perform prostate biopsy and brachytherapy under MR guidance. We review MR imaging of the prostate and its use in targeted therapy, and describe our use of image processing methods such as image registration to further facilitate precise targeting. We describe current developments with a robot assist system being developed to aid radioactive seed placement.

  14. Basic principles of magnetic resonance imaging.

    PubMed

    McGowan, Joseph C

    2008-11-01

    Magnetic resonance (MR) imaging has become the dominant clinical imaging modality with widespread, primarily noninvasive, applicability throughout the body and across many disease processes. The flexibility of MR imaging enables the development of purpose-built optimized applications. Concurrent developments in digital image processing, microprocessor power, storage, and computer-aided design have spurred and enabled further growth in capability. Although MR imaging may be viewed as "mature" in some respects, the field is rich with new proposals and applications that hold great promise for future research health care uses. This article delineates the basic principles of MR imaging and illuminates specific applications.

  15. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  16. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  17. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  18. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  19. In vivo nuclear magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leblanc, A.

    1986-05-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  20. Nuclear magnetic resonance imaging of liver hemangiomas

    SciTech Connect

    Sigal, R.; Lanir, A.; Atlan, H.; Naschitz, J.E.; Simon, J.S.; Enat, R.; Front, D.; Israel, O.; Chisin, R.; Krausz, Y.

    1985-10-01

    Nine patients with cavernous hemangioma of the liver were examined by nuclear magnetic resonance imaging (MRI) with a 0.5 T superconductive magnet. Spin-echo technique was used with varying time to echo (TE) and repetition times (TR). Results were compared with /sup 99m/Tc red blood cell (RBC) scintigraphy, computed tomography (CT), echography, and arteriography. Four illustrated cases are reported. It was possible to establish a pattern for MRI characteristics of cavernous hemangiomas; rounded or smooth lobulated shape, marked increase in T1 and T2 values as compared with normal liver values. It is concluded that, although more experience is necessary to compare the specificity with that of ultrasound and CT, MRI proved to be very sensitive for the diagnosis of liver hemangioma, especially in the case of small ones which may be missed by /sup 99m/Tc-labeled RBC scintigraphy.

  1. SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields

    SciTech Connect

    Moessle, Michael; Hatridge, Michael; Clarke, John

    2006-08-14

    Magnetic resonance imaging (MRI) has developed into a powerful clinical tool for imaging the human body (1). This technique is based on nuclear magnetic resonance (NMR) of protons (2, 3) in a static magnetic field B{sub 0}. An applied radiofrequency pulse causes the protons to precess about B{sub 0} at their Larmor frequency {nu}{sub 0} = ({gamma}/2{pi})B{sub 0}, where {gamma} is the gyromagnetic ratio; {gamma}/2{pi} = 42.58 MHz/tesla. The precessing protons generate an oscillating magnetic field and hence a voltage in a nearby coil that is amplified and recorded. The application of three-dimensional magnetic field gradients specifies a unique magnetic field and thus an NMR frequency in each voxel of the subject, so that with appropriate encoding of the signals one can acquire a complete image (4). Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems (5). Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. Commercially available 0.2-T systems based on permanent magnets offer both lower cost and a more open access than their higher-field counterparts, at the expense of signal-to-noise-ratio (SNR) and spatial resolution. At the still lower field of 0.03 mT maintained by a conventional, room-temperature solenoid, Connolly and co-workers (6, 7) obtain good spatial resolution and signal-to-noise ratio (SNR) by prepolarizing the protons in a field B{sub p} of 0.3 T. Prepolarization (8) enhances the magnetic moment of an ensemble of protons over that produced by the lower precession field; after the polarizing field is removed, the higher magnetic moment produces a correspondingly larger signal during its precession in B{sub 0}. Using the same method, Stepisnik et al. (9) obtained MR images in the Earth's magnetic field ({approx} 50 {micro}T). Alternatively, one can enhance the signal amplitude

  2. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible-near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  3. Acoustic Magnetic Resonance Investigations Utilizing Direct, Backward Wave, and SQUID Detection.

    NASA Astrophysics Data System (ADS)

    Mozurkewich, George, Jr.

    Acoustic magnetic resonance investigations were undertaken utilizing three distinct methods of detection. (1) In direct detection, increased ultrasonic attenuation due to resonant absorption is monitored directly. (2) In backward wave spectroscopy, resonant absorption introduces ultrasonic nonlinearities which generate a backward propagating wave. The amplitude of the resulting echo reflects the resonant susceptibility. (3) In SQUID detection, which is proposed here for the first time, changes in the magnetization of the spin system are detected using a superconducting quantum interference device. Using direct detection, nuclear acoustic resonance of ('183)W in metallic tungsten has been observed for the first time. Because ('183)W is isotopically dilute (14%) and has a small gyromagnetic ratio (179 Hz/G), the predicted dipolar linewidth is only 0.10 G. The observed, inhomogenously broadened lineshape (0.44 G peak to peak, with additional structure on the high field side) is attributed to spatial variation of the sample's demagnetizing field. Theoretical fits to the lineshape are calculated and discussed. The Knight shift is (1.0397 (+OR-) 0.0026)%. The neutral acceptor in indium doped silicon was examined using the recently developed technique of backward wave phonon spectroscopy. The high power results show multiple quantum transitions and a broad background feature which peaks near 2T and extends beyond 8T (spectrometer frequency = 6 GHz). It is shown that the background signal arises largely from transitions between Kramers doublets at sites with static strain of order 100 (mu)eV. In addition, a new interface phenomenon, the enhanced backward wave, is described. A new method of detection of acoustic magnetic resonance, using a SQUID magnetometer, is proposed. An attempt to realize such a detection system did not succeed. Reasons for the failure are analyzed, and design modifications are suggested. A SQUID detection system should be valuable for very weak

  4. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  5. Magnetic resonance imaging of granular materials

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  6. Magnetic resonance imaging of fetal pelvic cysts.

    PubMed

    Archontaki, Styliani; Vial, Yvan; Hanquinet, Sylviane; Meuli, Reto; Alamo, Leonor

    2016-12-01

    The detection of fetal anomalies has improved in the last years as a result of the generalization of ultrasound pregnancy screening exams. The presence of a cystic imaging in the fetal pelvis is a relatively common finding, which can correspond to a real congenital cystic lesion or result from the anomalous liquid accumulation in a whole pelvic organ, mainly the urinary bladder, the uterus, or the vagina. In selected cases with poor prognosis and/or inconclusive echographic findings, magnetic resonance may bring additional information in terms of the characterization, anatomical location, and real extension of the pathology. This pictorial essay describes the normal pelvic fetal anatomy, as well as the most common pelvic cysts. It also describes the causes of an anomalous distension of the whole pelvic organs detected in utero, with emphasis on prenatal magnetic resonance imaging exams. Moreover, it proposes practical teaching points to reduce the differential diagnosis of these lesions based on the sex of the fetus, the division of the pelvis in anatomical spaces, and the imaging findings of the pathology. Finally, it discusses the real utility of complementary MRI.

  7. General review of magnetic resonance elastography

    PubMed Central

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-01

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  8. Magnetic Resonance Imaging of Liver Metastasis.

    PubMed

    Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. General review of magnetic resonance elastography.

    PubMed

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-28

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing "virtual palpation", MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration.

  10. Magnetic Resonance Imaging Evaluation of Cardiac Masses

    PubMed Central

    Braggion-Santos, Maria Fernanda; Koenigkam-Santos, Marcel; Teixeira, Sara Reis; Volpe, Gustavo Jardim; Trad, Henrique Simão; Schmidt, André

    2013-01-01

    Background Cardiac tumors are extremely rare; however, when there is clinical suspicion, proper diagnostic evaluation is necessary to plan the most appropriate treatment. In this context, cardiovascular magnetic resonance imaging (CMRI) plays an important role, allowing a comprehensive characterization of such lesions. Objective To review cases referred to a CMRI Department for investigation of cardiac and paracardiac masses. To describe the positive case series with a brief review of the literature for each type of lesion and the role of cardiovascular magnetic resonance imaging in evaluation. Methods Between August 2008 and December 2011, all cases referred for CMRI with suspicion of tumor involving the heart were reviewed. Cases with positive histopathological diagnosis, clinical evolution or therapeutic response compatible with the clinical suspicion and imaging findings were selected. Results Among the 13 cases included in our study, eight (62%) had histopathological confirmation. We describe five benign tumors (myxomas, rhabdomyoma and fibromas), five malignancies (sarcoma, lymphoma, Richter syndrome involving the heart and metastatic disease) and three non-neoplastic lesions (pericardial cyst, intracardiac thrombus and infectious vegetation). Conclusion CMRI plays an important role in the evaluation of cardiac masses of non-neoplastic and neoplastic origin, contributing to a more accurate diagnosis in a noninvasive manner and assisting in treatment planning, allowing safe clinical follow-up with good reproducibility. PMID:23887734

  11. Magnetic resonance imaging of granular materials.

    PubMed

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  12. Magnetic resonance elastography hardware design: a survey.

    PubMed

    Tse, Z T H; Janssen, H; Hamed, A; Ristic, M; Young, I; Lamperth, M

    2009-05-01

    Magnetic resonance elastography (MRE) is an emerging technique capable of measuring the shear modulus of tissue. A suspected tumour can be identified by comparing its properties with those of tissues surrounding it; this can be achieved even in deep-lying areas as long as mechanical excitation is possible. This would allow non-invasive methods for cancer-related diagnosis in areas not accessible with conventional palpation. An actuating mechanism is required to generate the necessary tissue displacements directly on the patient in the scanner and three different approaches, in terms of actuator action and position, exist to derive stiffness measurements. However, the magnetic resonance (MR) environment places considerable constraints on the design of such devices, such as the possibility of mutual interference between electrical components, the scanner field, and radio frequency pulses, and the physical space restrictions of the scanner bore. This paper presents a review of the current solutions that have been developed for MRE devices giving particular consideration to the design criteria including the required vibration frequency and amplitude in different applications, the issue of MR compatibility, actuation principles, design complexity, and scanner synchronization issues. The future challenges in this field are also described.

  13. Magnetic resonance methods in fetal neurology.

    PubMed

    Mailath-Pokorny, M; Kasprian, G; Mitter, C; Schöpf, V; Nemec, U; Prayer, D

    2012-10-01

    Fetal magnetic resonance imaging (MRI) has become an established clinical adjunct for the in-vivo evaluation of human brain development. Normal fetal brain maturation can be studied with MRI from the 18th week of gestation to term and relies primarily on T2-weighted sequences. Recently diffusion-weighted sequences have gained importance in the structural assessment of the fetal brain. Diffusion-weighted imaging provides quantitative information about water motion and tissue microstructure and has applications for both developmental and destructive brain processes. Advanced magnetic resonance techniques, such as spectroscopy, might be used to demonstrate metabolites that are involved in brain maturation, though their development is still in the early stages. Using fetal MRI in addition to prenatal ultrasound, morphological, metabolic, and functional assessment of the fetus can be achieved. The latter is not only based on observation of fetal movements as an indirect sign of activity of the fetal brain but also on direct visualization of fetal brain activity, adding a new component to fetal neurology. This article provides an overview of the MRI methods used for fetal neurologic evaluation, focusing on normal and abnormal early brain development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Magnetic resonance imaging. Application to family practice.

    PubMed Central

    Goh, R. H.; Somers, S.; Jurriaans, E.; Yu, J.

    1999-01-01

    OBJECTIVE: To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. QUALITY OF EVIDENCE: Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. MAIN MESSAGE: For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. CONCLUSIONS: With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:10509224

  15. [Surface coils for magnetic-resonance images].

    PubMed

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  16. Triaxial magnetic field gradient system for microcoil magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Seeber, D. A.; Hoftiezer, J. H.; Daniel, W. B.; Rutgers, M. A.; Pennington, C. H.

    2000-11-01

    There is a great advantage in signal to noise ratio (S/N) that can be obtained in nuclear magnetic resonance (NMR) experiments on very small samples (having spatial dimensions ˜100 μm or less) if one employs NMR "micro" receiver coils, "microcoils," which are of similarly small dimensions. The gains in S/N could enable magnetic resonance imaging (MRI) microscopy with spatial resolution of ˜1-2 μm, much better than currently available. Such MRI microscopy however requires very strong (>10 T/m), rapidly switchable triaxial magnetic field gradients. Here, we report the design and construction of such a triaxial gradient system, producing gradients substantially greater than 15 T/m in all three directions, x, y, and z (and as high as 50 T/m for the x direction). The gradients are switchable within time ˜10 μs and adequately uniform (within 5% over a volume of [600μm3] for microcoil MRI of small samples.

  17. Non-contrast-enhanced magnetic resonance angiography: techniques and applications.

    PubMed

    Blankholm, Anne Dorte; Ringgaard, Steffen

    2012-01-01

    Non-contrast-enhanced magnetic resonance angiography has gained renewed interest since the discovery of the association between gadolinium-based contrast agents and nephrogenic systemic fibrosis. The following article is an overview of the different magnetic resonance angiography sequences, the technical possibilities and new developments. Clinical options and recent advancements will be highlighted, and recommendations for non-contrast-enhanced magnetic resonance angiography techniques in different anatomical regions will be given. Furthermore, the authors seek to predict the future of non-contrast-enhanced magnetic resonance angiography, with special focus on patients at risk.

  18. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications.

    PubMed

    Salerno, Michael; Sharif, Behzad; Arheden, Håkan; Kumar, Andreas; Axel, Leon; Li, Debiao; Neubauer, Stefan

    2017-06-01

    Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications. © 2017 American Heart Association, Inc.

  19. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are

  20. Acoustic noise during functional magnetic resonance imaging.

    PubMed

    Ravicz, M E; Melcher, J R; Kiang, N Y

    2000-10-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions.

  1. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  2. Magnetic Resonance Imaging Methods in Soil Science

    NASA Astrophysics Data System (ADS)

    Pohlmeier, A.; van Dusschoten, D.; Blümler, P.

    2009-04-01

    Magnetic Resonance Imaging (MRI) is a powerful technique to study water content, dynamics and transport in natural porous media. However, MRI systems and protocols have been developed mainly for medical purposes, i.e. for media with comparably high water contents and long relaxation times. In contrast, natural porous media like soils and rocks are characterized by much lower water contents, typically 0 < theta < 0.4, and much faster T1 and T2 relaxation times. So, the usage of standard medical scanners and protocols is of limited benefit. Three strategies can be applied for the monitoring of water contents and dynamics in natural porous media: i) Dedicated high-field scanners (with vertical bore) allowing stronger gradients and faster switching so that shorter echo times can be realized. ii) Special measurement sequences using ultrashort rf- and gradient-pulses like single point imaging derivates (SPI, SPRITE)(1) and multi-echo methods, which monitor series of echoes and allow for extrapolation to zero time(2). Hence, the loss of signal during the first echo period may be compensated to determine the initial magnetization (= water content) as well as relaxation time maps simultaneously. iii) Finally low field( < 1T) scanners also provide longer echo times and hence detect larger fractions of water, since the T2 relaxation time of water in most porous media increases with decreasing magnetic field strength(3). In the presentation examples for all three strategies will be given. References 1) Pohlmeier et al. Vadose Zone J. 7, 1010-1017 (2008) 2) Edzes et al., Magn. Res. Imag. 16, 185-196 (1998) 3) Raich H, and Blümler P, Concepts in Magn. Reson. B 23B, 16-25 (2004) 4) Pohlmeier et al. Magn. Res. Imag. doi:10.1016/j.mri.2008.06.007 (2008)

  3. Energy level systems and transitions of Ho:LuAG laser resonantly pumped by a narrow line-width Tm fiber laser.

    PubMed

    Chen, Hao; Zhao, Ting; Yang, Hao; Zhang, Le; Zhou, Tianyuan; Tang, Dingyuan; Wong, Chingping; Chen, Yung-Fu; Shen, Deyuan

    2016-11-28

    We presented a Ho:LuAG ceramic laser in-band pumped by a narrow emission line-width Tm fiber laser at 1907 nm. All of potential transitions between 5I7 and 5I8 manifold were discussed to form the Ho's in-band-pump energy level systems, which were not described in details earlier. For the emission band centered at ~2095 nm, both laser absorption and emission transition separately consisted of two groups were first analyzed and observed. Using output couplers (OCs) with different transmittances (T = 6, 10 and 20%), the similar ~0.5 W continuous-wave (CW) output power under an incident pump power of ~4.9 W was obtained, with twin (or triplet) emission bands respectively. The blue shift of center emission wavelengths was observed with the increase of transmittances.

  4. Narrow linewidth single-frequency terahertz source based on difference frequency generation of vertical-external-cavity source-emitting lasers in an external resonance cavity.

    PubMed

    Paul, Justin R; Scheller, Maik; Laurain, Alexandre; Young, Abram; Koch, Stephan W; Moloney, Jerome

    2013-09-15

    We demonstrate a continuous wave, single-frequency terahertz (THz) source emitting 1.9 THz. The linewidth is less than 100 kHz and the generated THz output power exceeds 100 μW. The THz source is based on parametric difference frequency generation within a nonlinear crystal located in an optical enhancement cavity. Two single-frequency vertical-external-cavity source-emitting lasers with emission wavelengths spaced by 6.8 nm are phase locked to the external cavity and provide pump photons for the nonlinear downconversion. It is demonstrated that the THz source can be used as a local oscillator to drive a receiver used in astronomy applications.

  5. Magnetic resonance image enhancement using stochastic resonance in Fourier domain.

    PubMed

    Rallabandi, V P Subramanyam; Roy, Prasun Kumar

    2010-11-01

    In general, low-field MRI scanners such as the 0.5- and 1-T ones produce images that are poor in quality. The motivation of this study was to lessen the noise and enhance the signal such that the image quality is improved. Here, we propose a new approach using stochastic resonance (SR)-based transform in Fourier space for the enhancement of magnetic resonance images of brain lesions, by utilizing an optimized level of Gaussian fluctuation that maximizes signal-to-noise ratio (SNR). We acquired the T1-weighted MR image of the brain in DICOM format. We processed the original MR image using the proposed SR procedure. We then tested our approach on about 60 patients of different age groups with different lesions, such as arteriovenous malformation, benign lesion and malignant tumor, and illustrated the image enhancement by using just-noticeable difference visually as well as by utilizing the relative enhancement factor quantitatively. Our method can restore the original image from noisy image and optimally enhance the edges or boundaries of the tissues, clarify indistinct structural brain lesions without producing ringing artifacts, as well as delineate the edematous area, active tumor zone, lesion heterogeneity or morphology, and vascular abnormality. The proposed technique improves the enhancement factor better than the conventional techniques like the Wiener- and wavelet-based procedures. The proposed method can readily enhance the image fusing a unique constructive interaction of noise and signal, and enables improved diagnosis over conventional methods. The approach well illustrates the novel potential of using a small amount of Gaussian noise to improve the image quality. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Extended MHD simulation of resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Sugiyama, L.; Park, G. Y.; Chang, C. S.; Ku, S.; Joseph, I.

    2009-05-01

    Resonant magnetic perturbations (RMPs) have been found effective in suppressing edge localized modes (ELMs) in the DIII-D experiment (Evans et al 2006 Phys. Plasmas 13 056121, Moyer et al 2005 Phys. Plasmas 12 056119). Simulations with the M3D initial value code indicate that plasma rotation, due to an MHD toroidal rotation or to two-fluid drifts, has an essential effect on the RMP. When the flow is below a threshold, the RMP field can couple to a resistive mode with a helical structure, different from the usual ELM, that amplifies the non-axisymmetric field. The magnetic field becomes stochastic in the outer part of the plasma, causing density and temperature loss. At higher rotation speed, the resistive mode is stabilized and the applied RMP is screened from the plasma, so that the stochastic magnetic layer is thinner and the temperature remains similar to the initial unperturbed state. The rotational flow effects, along with the remnants of the screened RMP, cause a density loss which extends into the plasma core. The two-fluid model contains intrinsic drift motion and axisymmetric toroidal rotation may not be needed to screen the RMP nor stabilize the resistive mode.

  7. A desktop magnetic resonance imaging system.

    PubMed

    Wright, Steven M; Brown, David G; Porter, Jay R; Spence, David C; Esparza, Emilio; Cole, David C; Huson, F Russell

    2002-01-01

    Modern magnetic resonance imaging (MRI) systems consist of several complex, high cost subsystems. The cost and complexity of these systems often makes them impractical for use as routine laboratory instruments, limiting their use to hospitals and dedicated laboratories. However, advances in the consumer electronics industry have led to the widespread availability of inexpensive radio-frequency integrated circuits with exceptional abilities. We have developed a small, low-cost MR system derived from these new components. When combined with inexpensive desktop magnets, this type of MR scanner has the promise of becoming standard laboratory equipment for both research and education. This paper describes the development of a prototype desktop MR scanner utilizing a 0.21 T permanent magnet with an imaging region of approximately 2 cm diameter. The system uses commercially available components where possible and is programmed in LabVIEW software. Results from 3D data sets of resolution phantoms and fixed, newborn mice demonstrate the capability of this system to obtain useful images from a system constructed for approximately $13,500.

  8. Spatial localization in nuclear magnetic resonance spectroscopy.

    PubMed

    Keevil, Stephen F

    2006-08-21

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.

  9. Multidataset Refinement Resonant Diffraction, and Magnetic Structures

    PubMed Central

    Attfield, J. Paul

    2004-01-01

    The scope of Rietveld and other powder diffraction refinements continues to expand, driven by improvements in instrumentation, methodology and software. This will be illustrated by examples from our research in recent years. Multidataset refinement is now commonplace; the datasets may be from different detectors, e.g., in a time-of-flight experiment, or from separate experiments, such as at several x-ray energies giving resonant information. The complementary use of x rays and neutrons is exemplified by a recent combined refinement of the monoclinic superstructure of magnetite, Fe3O4, below the 122 K Verwey transition, which reveals evidence for Fe2+/Fe3+ charge ordering. Powder neutron diffraction data continue to be used for the solution and Rietveld refinement of magnetic structures. Time-of-flight instruments on cold neutron sources can produce data that have a high intensity and good resolution at high d-spacings. Such profiles have been used to study incommensurate magnetic structures such as FeAsO4 and β–CrPO4. A multiphase, multidataset refinement of the phase-separated perovskite (Pr0.35Y0.07Th0.04Ca0.04Sr0.5)MnO3 has been used to fit three components with different crystal and magnetic structures at low temperatures. PMID:27366599

  10. Magnetic resonance tracking of fluorescent nanodiamond fabrication

    NASA Astrophysics Data System (ADS)

    Shames, A. I.; Osipov, V. Yu; Boudou, J. P.; Panich, A. M.; von Bardeleben, H. J.; Treussart, F.; Vul', A. Ya

    2015-04-01

    Magnetic resonance techniques (electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR)) are used for tracking the multi-stage process of the fabrication of fluorescent nanodiamonds (NDs) produced by high-energy electron irradiation, annealing, and subsequent nano-milling. Pristine commercial high pressure and high temperature microdiamonds (MDs) with mean size 150 μm contain ~5  ×  1018 spins/g of singlet (S = 1/2) substitutional nitrogen defects P1, as well as sp3 C-C dangling bonds in the crystalline lattice. The half-field X-band EPR clearly shows (by the appearance of the intense ‘forbidden’ g = 4.26 line) that high-energy electron irradiation and annealing of MDs induce a large amount (~5  ×  1017 spins/g) of triplet (S = 1) magnetic centers, which are identified as negatively charged nitrogen vacancy defects (NV-). This is supported by EPR observations of the ‘allowed’ transitions between Zeeman sublevels of the triplet state. After progressive milling of the fluorescent MDs down to an ultrasubmicron scale (≤100 nm), the relative abundance of EPR active NV- defects in the resulting fluorescent NDs (FND) substantially decreases and, vice versa, the content of C-inherited singlet defects correlatively increases. In the fraction of the finest FNDs (mean particle size <20 nm), which are contained in the dried supernatant of ultracentrifuged aqueous dispersion of FNDs, the NV- content is found to be reduced by one order of magnitude whereas the singlet defects content increases up to ~2  ×  1019 spins/g. In addition, another triplet-type defect, which is characterized by the g = 4.00 ‘forbidden’ line, appears. On reduction of the particle size below the 20 nm limit, the ‘allowed’ EPR lines become practically unobservable, whereas the ‘forbidden’ lines remain as a reliable fingerprint of the presence of NV- centers in small ND systems. The same size reduction causes the disappearance of the

  11. Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance

    SciTech Connect

    Flores-Arias, Yesica Vázquez-Victorio, Gabriela; Ortega-Zempoalteca, Raul; Acevedo-Salas, Ulises; Valenzuela, Raul; Ammar, Souad

    2015-05-07

    Ferrite magnetic nanoparticles in the composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method, with an average size of 8 nm. Electron spin resonance (ESR) measurements were carried out at a frequency of 9.45 GHz in the 100–500 K temperature range. Obtained results exhibited a characteristic ESR signal in terms of resonance field, H{sub res}, linewidth, ΔH, and peak ratio, R, for each magnetic phase. At low temperatures, the ferrimagnetic phase showed low H{sub res}, broad ΔH, and asymmetric R. At high temperatures, these parameters exhibited opposite values: high H{sub res}, small ΔH, and R ∼ 1. For intermediate temperatures, a different phase was observed, which was identified as a superparamagnetic phase by means of zero-field cooling-field cooling and hysteresis loops measurements. The observed differences were explained in terms of the internal fields and especially due to the cubic anisotropy in the ordered phase.

  12. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  13. Electrically detected magnetic resonance modeling and fitting: An equivalent circuit approach

    NASA Astrophysics Data System (ADS)

    Leite, D. M. G.; Batagin-Neto, A.; Nunes-Neto, O.; Gómez, J. A.; Graeff, C. F. O.

    2014-01-01

    The physics of electrically detected magnetic resonance (EDMR) quadrature spectra is investigated. An equivalent circuit model is proposed in order to retrieve crucial information in a variety of different situations. This model allows the discrimination and determination of spectroscopic parameters associated to distinct resonant spin lines responsible for the total signal. The model considers not just the electrical response of the sample but also features of the measuring circuit and their influence on the resulting spectral lines. As a consequence, from our model, it is possible to separate different regimes, which depend basically on the modulation frequency and the RC constant of the circuit. In what is called the high frequency regime, it is shown that the sign of the signal can be determined. Recent EDMR spectra from Alq3 based organic light emitting diodes, as well as from a-Si:H reported in the literature, were successfully fitted by the model. Accurate values of g-factor and linewidth of the resonant lines were obtained.

  14. Electrically detected magnetic resonance modeling and fitting: An equivalent circuit approach

    SciTech Connect

    Leite, D. M. G.; Batagin-Neto, A.; Nunes-Neto, O.; Gómez, J. A.; Graeff, C. F. O.

    2014-01-21

    The physics of electrically detected magnetic resonance (EDMR) quadrature spectra is investigated. An equivalent circuit model is proposed in order to retrieve crucial information in a variety of different situations. This model allows the discrimination and determination of spectroscopic parameters associated to distinct resonant spin lines responsible for the total signal. The model considers not just the electrical response of the sample but also features of the measuring circuit and their influence on the resulting spectral lines. As a consequence, from our model, it is possible to separate different regimes, which depend basically on the modulation frequency and the RC constant of the circuit. In what is called the high frequency regime, it is shown that the sign of the signal can be determined. Recent EDMR spectra from Alq{sub 3} based organic light emitting diodes, as well as from a-Si:H reported in the literature, were successfully fitted by the model. Accurate values of g-factor and linewidth of the resonant lines were obtained.

  15. Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting

    PubMed Central

    Zhao, Bo; Setsompop, Kawin; Ye, Huihui; Cauley, Stephen; Wald, Lawrence L.

    2017-01-01

    This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization. PMID:26915119

  16. Chronic subdural hematoma: demonstration by magnetic resonance

    SciTech Connect

    Sipponen, J.T.; Sepponen, R.E.; Sivula, A.

    1984-01-01

    The ability of magnetic resonance (MR) to identify intracranial hematomas was tested in five patients with clinical and computed tomographic signs of chronic subdural hematoma. The extracerebral collections were displayed as a zone of bright intensity using the T1-weighted inversion recovery (IR 1500/400) sequence, reflecting the lesions' short T1 relaxation times. The collections also showed high intensity using the spin echo (SE) sequence, with a longer delay of 100ms and 160ms, reflecting the long T2 relaxation time. The spin echo sequence with a repetition time of 500ms and an echo delay of 160ms (SE 500/160) almost effaced other structures in the image, thus increasing the specificity of this pulse scheme for detection of chronic blood collections. Although in two of the five patients the subdural hematomas were in the isodense CT phase, all were easily visualized with MR.

  17. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  18. Magnetic resonance image segmentation using multifractal techniques

    NASA Astrophysics Data System (ADS)

    Yu, Yue-e.; Wang, Fang; Liu, Li-lin

    2015-11-01

    In order to delineate target region for magnetic resonance image (MRI) with diseases, the classical multifractal spectrum (MFS)-segmentation method and latest multifractal detrended fluctuation spectrum (MF-DFS)-based segmentation method are employed in our study. One of our main conclusions from experiments is that both of the two multifractal-based methods are workable for handling MRIs. The best result is obtained by MF-DFS-based method using Lh10 as local characteristic. The anti-noises experiments also suppot the conclusion. This interest finding shows that the features can be better represented by the strong fluctuations instead of the weak fluctuations for the MRIs. By comparing the multifractal nature between lesion and non-lesion area on the basis of the segmentation results, an interest finding is that the gray value's fluctuation in lesion area is much severer than that in non-lesion area.

  19. Small-Volume Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fratila, Raluca M.; Velders, Aldrik H.

    2011-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most information-rich analytical techniques available. However, it is also inherently insensitive, and this drawback precludes the application of NMR spectroscopy to mass- and volume-limited samples. We review a particular approach to increase the sensitivity of NMR experiments, namely the use of miniaturized coils. When the size of the coil is reduced, the sample volume can be brought down to the nanoliter range. We compare the main coil geometries (solenoidal, planar, and microslot/stripline) and discuss their applications to the analysis of mass-limited samples. We also provide an overview of the hyphenation of microcoil NMR spectroscopy to separation techniques and of the integration with lab-on-a-chip devices and microreactors.

  20. Magnetic resonance imaging of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Tofts, P S; Johnson, G; Landon, D N

    1986-01-01

    Triethyl tin(TET)-induced cerebral oedema has been studied in cats by magnetic resonance imaging (MRI), and the findings correlated with the histology and fine structure of the cerebrum following perfusion-fixation. MRI is a sensitive technique for detecting cerebral oedema, and the distribution and severity of the changes correlate closely with the morphological abnormalities. The relaxation times, T1 and T2 increase progressively as the oedema develops, and the proportional increase in T2 is approximately twice that in T1. Analysis of the magnetisation decay curves reveals slowly-relaxing and rapidly-relaxing components which probably correspond to oedema fluid and intracellular water respectively. The image appearances taken in conjunction with relaxation data provide a basis for determining the nature of the oedema in vivo. Images PMID:3806109

  1. Overview of Functional Magnetic Resonance Imaging

    PubMed Central

    Glover, Gary H.

    2010-01-01

    Synopsis Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) depicts changes in deoxyhemoglobin concentration consequent to task-induced or spontaneous modulation of neural metabolism. Since its inception in 1990, this method has been widely employed in thousands of studies of cognition for clinical applications such as surgical planning, for monitoring treatment outcomes, and as a biomarker in pharmacologic and training programs. Technical developments have solved most of the challenges of applying fMRI in practice. These challenges include low contrast to noise ratio of BOLD signals, image distortion, and signal dropout. More recently, attention is turning to the use of pattern classification and other statistical methods to draw increasingly complex inferences about cognitive brain states from fMRI data. This paper reviews the methods, some of the challenges and the future of fMRI. PMID:21435566

  2. Stem cell labeling for magnetic resonance imaging.

    PubMed

    Himmelreich, Uwe; Hoehn, Mathias

    2008-01-01

    In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized.

  3. Chest magnetic resonance imaging: a protocol suggestion*

    PubMed Central

    Hochhegger, Bruno; de Souza, Vinícius Valério Silveira; Marchiori, Edson; Irion, Klaus Loureiro; Souza Jr., Arthur Soares; Elias Junior, Jorge; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Escuissato, Dante Luiz; Mançano, Alexandre Dias; Araujo Neto, César Augusto; Guimarães, Marcos Duarte; Nin, Carlos Schuler; Santos, Marcel Koenigkam; Silva, Jorge Luiz Pereira e

    2015-01-01

    In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI) has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation. PMID:26811555

  4. Myocardial Viability on Cardiac Magnetic Resonance

    PubMed Central

    Souto, Ana Luiza Mansur; Souto, Rafael Mansur; Teixeira, Isabella Cristina Resende; Nacif, Marcelo Souto

    2017-01-01

    The study of myocardial viability is of great importance in the orientation and management of patients requiring myocardial revascularization or angioplasty. The technique of delayed enhancement (DE) is accurate and has transformed the study of viability into an easy test, not only for the detection of fibrosis but also as a binary test detecting what is viable or not. On DE, fibrosis equal to or greater than 50% of the segmental area is considered as non-viable, whereas that below 50% is considered viable. During the same evaluation, cardiac magnetic resonance (CMR) may also use other techniques for functional and perfusion studies to obtain a global evaluation of ischemic heart disease. This study aims to highlight the current concepts and broadly emphasize the use of CMR as a method that over the last 20 years has become a reference in the detection of infarction and assessment of myocardial viability. PMID:28591322

  5. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1993-01-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  6. Whole body postmortem magnetic resonance angiography.

    PubMed

    Ruder, Thomas D; Hatch, Gary M; Ebert, Lars C; Flach, Patricia M; Ross, Steffen; Ampanozi, Garyfalia; Thali, Michael J

    2012-05-01

      Computed tomography (CT) and magnetic resonance (MR) imaging have become important elements of forensic radiology. Whereas the feasibility and potential of CT angiography have long been explored, postmortem MR angiography (PMMRA) has so far been neglected. We tested the feasibility of PMMRA on four adult human cadavers. Technical quality of PMMRA was assessed relative to postmortem CT angiography (PMCTA), separately for each body region. Intra-aortic contrast volumes were calculated on PMCTA and PMMRA with segmentation software. The results showed that technical quality of PMMRA images was equal to PMCTA in 4/4 cases for the head, the heart, and the chest, and in 3/4 cases for the abdomen, and the pelvis. There was a mean decrease in intra-aortic contrast volume from PMCTA to PMMRA of 46%. PMMRA is technically feasible and allows combining the soft tissue detail provided by MR and the information afforded by angiography. © 2011 American Academy of Forensic Sciences.

  7. Magnetic resonance imaging of pancreatitis: An update

    PubMed Central

    Manikkavasakar, Sriluxayini; AlObaidy, Mamdoh; Busireddy, Kiran K; Ramalho, Miguel; Nilmini, Viragi; Alagiyawanna, Madhavi; Semelka, Richard C

    2014-01-01

    Magnetic resonance (MR) imaging plays an important role in the diagnosis and staging of acute and chronic pancreatitis and may represent the best imaging technique in the setting of pancreatitis due to its unmatched soft tissue contrast resolution as well as non-ionizing nature and higher safety profile of intravascular contrast media, making it particularly valuable in radiosensitive populations such as pregnant patients, and patients with recurrent pancreatitis requiring multiple follow-up examinations. Additional advantages include the ability to detect early forms of chronic pancreatitis and to better differentiate adenocarcinoma from focal chronic pancreatitis. This review addresses new trends in clinical pancreatic MR imaging emphasizing its role in imaging all types of acute and chronic pancreatitis, pancreatitis complications and other important differential diagnoses that mimic pancreatitis. PMID:25356038

  8. A novel digital magnetic resonance imaging spectrometer.

    PubMed

    Liu, Zhengmin; Zhao, Cong; Zhou, Heqin; Feng, Huanqing

    2006-01-01

    Spectrometer is the essential part of magnetic resonance imaging (MRI) system. It controls the transmitting and receiving of signals. Many commercial spectrometers are now available. However, they are usually costly and complex. In this paper, a new digital spectrometer based on PCI extensions for instrumentation (PXI) architecture is presented. Radio frequency (RF) pulse is generated with the method of digital synthesis and its frequency and phase are continuously tunable. MR signal acquired by receiver coils is processed by digital quadrature detection and filtered to get the k-space data, which avoid the spectral distortion due to amplitude and phase errors between two channels of traditional detection. Compared to the conventional design, the presented spectrometer is built with general PXI platform and boards. This design works in a digital manner with features of low cost, high performance and accuracy. The experiments demonstrate its efficiency.

  9. Magnetic Resonance Imaging of the Knee

    PubMed Central

    Hash, Thomas W.

    2013-01-01

    Context: Magnetic resonance imaging (MRI) affords high-resolution visualization of the soft tissue structures (menisci, ligaments, cartilage, etc) and bone marrow of the knee. Evidence Acquisition: Pertinent clinical and research articles in the orthopaedic and radiology literature over the past 30 years using PubMed. Results: Ligament tears can be accurately assessed with MRI, but distinguishing partial tears from ruptures of the anterior cruciate ligament (ACL) can be challenging. Determining the extent of a partial tear is often extremely difficult to accurately assess. The status of the posterolateral corner structures, menisci, and cartilage can be accurately evaluated, although limitations in the evaluation of certain structures exist. Patellofemoral joint, marrow, tibiofibular joint, and synovial pathology can supplement physical examination findings and provide definitive diagnosis. Conclusions: MRI provides an accurate noninvasive assessment of knee pathology. PMID:24381701

  10. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  11. Myocardial Tissue Characterization by Magnetic Resonance Imaging

    PubMed Central

    Ferreira, Vanessa M.; Piechnik, Stefan K.; Robson, Matthew D.; Neubauer, Stefan

    2014-01-01

    Cardiac magnetic resonance (CMR) imaging is a well-established noninvasive imaging modality in clinical cardiology. Its unsurpassed accuracy in defining cardiac morphology and function and its ability to provide tissue characterization make it well suited for the study of patients with cardiac diseases. Late gadolinium enhancement was a major advancement in the development of tissue characterization techniques, allowing the unique ability of CMR to differentiate ischemic heart disease from nonischemic cardiomyopathies. Using T2-weighted techniques, areas of edema and inflammation can be identified in the myocardium. A new generation of myocardial mapping techniques are emerging, enabling direct quantitative assessment of myocardial tissue properties in absolute terms. This review will summarize recent developments involving T1-mapping and T2-mapping techniques and focus on the clinical applications and future potential of these evolving CMR methodologies. PMID:24576837

  12. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  13. Nuclear magnetic resonance imaging of the spine

    SciTech Connect

    Modic, M.T.; Weinstein, M.A.; Pavlicek, W.; Starnes, D.L.; Duchesneau, P.M.; Boumphrey, F.; Hardy, R.J. Jr.

    1984-01-01

    Forty subjects were examined to determine the accuracy and clinical usefulness of nuclear magnetic resonance (NMR) examination of the spine. The NMR images were compared with plain radiographs, high-resolution computed tomograms, and myelograms. The study included 15 patients with normal spinal cord anatomy and 25 patients whose pathological conditions included canal stenosis, herniated discs, metastatic tumors, primary cord tumor, trauma, Chiari malformations, syringomyelia, and developmental disorders. Saturation recovery images were best in differentiating between soft tissue and cerebrospinal fluid. NMR was excellent for the evaluation of the foramen magnum region and is presently the modality of choice for the diagnosis of syringomyelia and Chiari malformation. NMR was accurate in diagnosing spinal cord trauma and spinal canal block.

  14. Cardiovascular magnetic resonance: deeper insights through bioengineering.

    PubMed

    Young, A A; Prince, J L

    2013-01-01

    Heart disease is the main cause of morbidity and mortality worldwide, with coronary artery disease, diabetes, and obesity being major contributing factors. Cardiovascular magnetic resonance (CMR) can provide a wealth of quantitative information on the performance of the heart, without risk to the patient. Quantitative analyses of these data can substantially augment the diagnostic quality of CMR examinations and can lead to more effective characterization of disease and quantification of treatment benefit. This review provides an overview of the current state of the art in CMR with particular regard to the quantification of motion, both microscopic and macroscopic, and the application of bioengineering analysis for the evaluation of cardiac mechanics. We discuss the current clinical practice and the likely advances in the next 5-10 years, as well as the ways in which clinical examinations can be augmented by bioengineering analysis of strain, compliance, and stress.

  15. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Astrophysics Data System (ADS)

    Spaniol, Craig

    1993-06-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  16. Magnetic resonance urography by virtual reality modelling.

    PubMed

    Beigi, Navid; Sangild, Thomas; Terkildsen, Søren Vorre; Deding, Dorthe; Stødkilde-Jørgensen, Hans; Pedersen, Michael

    2003-01-01

    The purpose of this study was to create a 3D visualization of the urinary tract by a novel virtual reality approach, and to evaluate the usefulness of this method for papillary classification as compared with 2D urogram obtained by maximum intensity projection (MIP). In one healthy pig, magnetic resonance urography was performed using a T1-weighted 3D gradient echo pulse sequence. Post-processing was performed by means of an MIP algorithm and by using 3D virtual reality modelling, followed by manual classification of papillae as being either simple or compound. The 2D MIP urogram demonstrated 6 simple and 6 compound papillae, whereas the 3D urogram demonstrated 5 simple and 7 compound papillae. In both urograms, some papillae were unsuccessfully classified. The possibility of using virtual reality devices allowed 3D rotation and offered additional diagnostic information. However, further studies should reveal its feasibility in diseased kidneys.

  17. The magnetic resonance imaging-linac system.

    PubMed

    Lagendijk, Jan J W; Raaymakers, Bas W; van Vulpen, Marco

    2014-07-01

    The current image-guided radiotherapy systems are suboptimal in the esophagus, pancreas, kidney, rectum, lymph node, etc. These locations in the body are not easily accessible for fiducials and cannot be visualized sufficiently on cone-beam computed tomographies, making daily patient set-up prone to geometrical uncertainties and hinder dose optimization. Additional interfraction and intrafraction uncertainties for those locations arise from motion with breathing and organ filling. To allow real-time imaging of all patient tumor locations at the actual treatment position a fully integrated 1.5-T, diagnostic quality, magnetic resonance imaging with a 6-MV linear accelerator is presented. This system must enable detailed dose painting at all body locations. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  19. Infected aortoiliofemoral grafts: magnetic resonance imaging.

    PubMed

    Justich, E; Amparo, E G; Hricak, H; Higgins, C B

    1985-01-01

    Three patients with proved infected aortoiliofemoral grafts were examined by magnetic resonance (MR) imaging using a spin echo technique. MR clearly identified the perigraft abscess, the involvement of adjacent structures, and the longitudinal extent of the process in all patients. The MR findings were: Abscesses create a high signal intensity, somewhat less than fat. The perigraft abscess has a great contrast with the signal void of flowing blood in the graft. Inflammatory changes cause an inhomogeneous intermediate signal, slightly more intense than muscle. Both abscesses and edematous areas increase their signal intensity with long repetition rates and long echo delays. Areas of gas appear black. They cannot be distinguished from calcified plaques. Additional information is gained about the graft patency. Although the specificity has to be proved, MR imaging is sensitive in the detection of infected grafts and for defining the longitudinal extent of the perigraft abscess.

  20. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  1. Prostate magnetic resonance imaging: challenges of implementation.

    PubMed

    Loch, Ronald; Fowler, Kathryn; Schmidt, Ryan; Ippolito, Joseph; Siegel, Cary; Narra, Vamsi

    2015-01-01

    Prostate cancer is among the most common causes of cancer and cancer deaths in men. Screening methods and optimal treatments have become controversial in recent years. Prostate magnetic resonance imaging (MRI) is gaining popularity as a tool to assist diagnosis, risk assessment, and staging. However, implementation into clinical practice can be difficult, with many challenges associated with image acquisition, postprocessing, interpretation, reporting, and radiologic-pathologic correlation. Although state-of-the-art technology is available at select sites for targeting tissue biopsy and interpreting multiparametric prostate MRI, many institutions struggle with adapting this new technology into an efficient multidisciplinary model of patient care. This article reviews several of the challenges that radiologists should be aware of when integrating prostate MRI into their clinical practice.

  2. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology.

    PubMed

    Jakab, András; Pogledic, Ivana; Schwartz, Ernst; Gruber, Gerlinde; Mitter, Christian; Brugger, Peter C; Langs, Georg; Schöpf, Veronika; Kasprian, Gregor; Prayer, Daniela

    2015-12-01

    The recent technological advancement of fast magnetic resonance imaging (MRI) sequences allowed the inclusion of diffusion tensor imaging, functional MRI, and proton MR spectroscopy in prenatal imaging protocols. These methods provide information beyond morphology and hold the key to improving several fields of human neuroscience and clinical diagnostics. Our review introduces the fundamental works that enabled these imaging techniques, and also highlights the most recent contributions to this emerging field of prenatal diagnostics, such as the structural and functional connectomic approach. We introduce the advanced image processing approaches that are extensively used to tackle fetal or maternal movement-related image artifacts, and which are necessary for the optimal interpretation of such imaging data. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Functional magnetic resonance imaging studies of language.

    PubMed

    Small, Steven L; Burton, Martha W

    2002-11-01

    Functional neuroimaging of language builds on almost 150 years of study in neurology, psychology, linguistics, anatomy, and physiology. In recent years, there has been an explosion of research using functional imaging technology, especially positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), to understand the relationship between brain mechanisms and language processing. These methods combine high-resolution anatomic images with measures of language-specific brain activity to reveal neural correlates of language processing. This article reviews some of what has been learned about the neuroanatomy of language from these imaging techniques. We first discuss the normal case, organizing the presentation according to the levels of language, encompassing words (lexicon), sound structure (phonemes), and sentences (syntax and semantics). Next, we delve into some unusual language processing circumstances, including second languages and sign languages. Finally, we discuss abnormal language processing, including developmental and acquired dyslexia and aphasia.

  4. Magnetic resonance imaging after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Leblanc, Adrian

    1993-01-01

    A number of physiological changes were demonstrated in bone, muscle, and blood from exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long-duration space missions is an important NASA goal. Historically, NASA has had to rely on tape measures, x-ray, and metabolic balance studies with collection of excreta and blood specimens to obtain this information. The development of magnetic resonance imaging (MRI) offers the possibility of greatly extending these early studies in ways not previously possible; MRI is also non-invasive and safe; i.e., no radiation exposure. MRI provides both superb anatomical images for volume measurements of individual structures and quantification of chemical/physical changes induced in the examined tissues. This investigation will apply MRI technology to measure muscle, intervertebral disc, and bone marrow changes resulting from exposure to microgravity.

  5. Cardiac magnetic resonance imaging: patient safety considerations.

    PubMed

    Giroletti, Elio; Corbucci, Giorgio

    Magnetic Resonance Imaging (MRI) is widely used in medicine. In cardiology, it is used to assess congenital or acquired diseases of the heat: and large vessels. Unless proper precautions are taken, it is generally advisable to avoid using this technique in patients with implanted electronic stimulators, such as pacemakers and defibrillators, on account of the potential risk of inducing electrical currents on the endocardial catheters, since these currents might stimulate the heart at a high frequency, thereby triggering dangerous arrhythmias. In addition to providing some basic information on pacemakers, defibrillators and MRI, and on the possible physical phenomena that may produce harmful effects, the present review examines the indications given in the literature, with particular reference to coronary stents, artificial heart valves and implantable cardiac stimulators.

  6. Burn injury by nuclear magnetic resonance imaging.

    PubMed

    Eising, Ernst G; Hughes, Justin; Nolte, Frank; Jentzen, Walter; Bockisch, Andreas

    2010-01-01

    Nuclear magnetic resonance imaging has become a standard diagnostic procedure in clinical medicine and is well known to have hazards for patients with pacemaker or metallic foreign bodies. Compared to CT, the frequency of MRI examinations is increasing due to the missing exposure of the patients by X-rays. Furthermore, high-field magnetic resonance tomograph (MRT) with 3 T has entered clinical practice, and 7-T systems are installed in multiple scientific institutions. On the other hand, the possibility of burn injuries has been reported only in very few cases. Based on a clinical finding of a burn injury in a 31-year-old male patient during a routine MRI of the lumbar spine with standard protocol, the MR scanner was checked and the examination was simulated in an animal model. The patient received a third-degree burn injury of the skin of the right hand and pelvis in a small region of skin contact. The subsequent control of the MRI scanner indicated no abnormal values for radiofrequency (RF) and power. In the subsequent animal experiment, comparable injuries could only be obtained by high RF power in a microwave stove. It is concluded that 'tissue loops' resulting from a contact between hand and pelvis must be avoided. With regard to forensic aspects, the need to inform patients of such a minimal risk can be avoided if the patients are adequately positioned using an isolating material between the hands and pelvis. These facts must be emphasized more in the future, if high-field MRI with stronger RF gradients is available in routine imaging. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Magnetic Resonance Studies of Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Vazquez Reina, Rafael

    In today's society there is high demand to have access to energy for portable devices in different forms. Capacitors with high performance in small package to achieve high charge/discharge rates, and batteries with their ability to store electricity and make energy mobile are part of this demand. The types of internal dielectric material strongly affect the characteristics of a capacitor, and its applications. In a battery, the choice of the electrolyte plays an important role in the Solid Electrolyte Interphase (SEI) formation, and the cathode material for high output voltage. Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopy are research techniques that exploit the magnetic properties of the electron and certain atomic nuclei to determine physical and chemical properties of the atoms or molecules in which they are contained. Both EPR and NMR spectroscopy technique can yield meaningful structural and dynamic information. Three different projects are discussed in this dissertation. First, High energy density capacitors where EPR measurements described herein provide an insight into structural and chemical differences in the dielectric material of a capacitor. Next, as the second project, Electrolyte solutions where an oxygen-17 NMR study has been employed to assess the degree of preferential solvation of Li+ ions in binary mixtures of EC (ethylene carbonate) and DMC (dimethyl carbonate) containing LiPF6 (lithium hexafluo-rophosphate) which may be ultimately related to the SEI formation mechanism. The third project was to study Bismuth fluoride as cathode material for rechargeable batteries. The objective was to study 19F and 7Li MAS NMR of some nanocomposite cathode materials as a conversion reaction occurring during lithiation and delithation of the BiF3/C nanocomposite.

  8. Could magnetic resonance provide in vivo histology?

    PubMed

    Dominietto, Marco; Rudin, Markus

    2014-01-13

    THE DIAGNOSIS OF A SUSPECTED TUMOR LESION FACES TWO BASIC PROBLEMS: detection and identification of the specific type of tumor. Radiological techniques are commonly used for the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced contrast between normal and neoplastic tissue. Identification of the tumor type is still based on histological analysis. The result depends critically on the sampling sites, which given the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo imaging might overcome this limitation providing comprehensive three-dimensional morphological, physiological, and metabolic information as well as the possibility for longitudinal studies. In this context, magnetic resonance based techniques are quite attractive since offer at the same time high spatial resolution, unique soft tissue contrast, good temporal resolution to study dynamic processes and high chemical specificity. The goal of this paper is to review the role of magnetic resonance techniques in characterizing tumor tissue in vivo both at morphological and physiological levels. The first part of this review covers methods, which provide information on specific aspects of tumor phenotypes, considered as indicators of malignancy. These comprise measurements of the inflammatory status, neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue morphology. Even if the spatial resolution is not sufficient to characterize the tumor phenotype at a cellular level, this multiparametric information might potentially be used for classification of tumors. The second part discusses mathematical tools, which allow characterizing tissue based on the acquired three-dimensional data set. In particular, methods addressing tumor heterogeneity will be highlighted. Finally, we address the potential and limitation of using MRI as a tool to provide in vivo tissue characterization.

  9. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    SciTech Connect

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  10. Computed tomography and magnetic resonance findings in lipoid pneumonia.

    PubMed Central

    Bréchot, J M; Buy, J N; Laaban, J P; Rochemaure, J

    1991-01-01

    A case of exogenous lipoid pneumonia was documented by computed tomography and magnetic resonance imaging. Although strongly suggesting the presence of fat on T1 weighted images, magnetic resonance does not produce images specific for this condition. Computed tomography is the best imaging modality for its diagnosis. Images PMID:1750024

  11. Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images

    DTIC Science & Technology

    2009-04-01

    GEOMETRIC COMPUTATION OF HUMAN GYRIFICATION INDEXES FROM MAGNETIC RESONANCE IMAGES By Shu Su Tonya White Marcus Schmidt Chiu-Yen Kao and Guillermo...00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images 5a. CONTRACT NUMBER... Geometric Computation of Gyrification Indexes Chiu-Yen Kao 1 Geometric Computation of Human Gyrification

  12. Magnetic resonance advection imaging of cerebrovascular pulse dynamics.

    PubMed

    Voss, Henning U; Dyke, Jonathan P; Tabelow, Karsten; Schiff, Nicholas D; Ballon, Douglas J

    2017-04-01

    We analyze the pulsatile signal component of dynamic echo planar imaging data from the brain by modeling the dependence between local temporal and spatial signal variability. The resulting magnetic resonance advection imaging maps depict the location of major arteries. Color direction maps allow for visualization of the direction of blood vessels. The potential significance of magnetic resonance advection imaging maps is demonstrated on a functional magnetic resonance imaging data set of 19 healthy subjects. A comparison with the here introduced pulse coherence maps, in which the echo planar imaging signal is correlated with a cardiac pulse signal, shows that the magnetic resonance advection imaging approach results in a better spatial definition without the need for a pulse reference. In addition, it is shown that magnetic resonance advection imaging velocities can be estimates of pulse wave velocities if certain requirements are met, which are specified. Although for this application magnetic resonance advection imaging velocities are not quantitative estimates of pulse wave velocities, they clearly depict local pulsatile dynamics. Magnetic resonance advection imaging can be applied to existing dynamic echo planar imaging data sets with sufficient spatiotemporal resolution. It is discussed whether magnetic resonance advection imaging might have the potential to evolve into a biomarker for the health of the cerebrovascular system.

  13. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    SciTech Connect

    Nishimura, Seiya

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  14. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  15. Compact electrically detected magnetic resonance setup

    NASA Astrophysics Data System (ADS)

    Eckardt, Michael; Behrends, Jan; Münter, Detlef; Harneit, Wolfgang

    2015-04-01

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a "large-scale" state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  16. Compact electrically detected magnetic resonance setup

    SciTech Connect

    Eckardt, Michael Harneit, Wolfgang; Behrends, Jan; Münter, Detlef

    2015-04-15

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a “large-scale” state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  17. Magnetic resonance characterization of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Fanciulli, Marco; Belli, Matteo; Vellei, Antonio; Canevali, Carmen; Rotta, Davide; Paleari, Stefano; Basini, Martina

    2012-02-01

    Silicon nanowires (SiNWs) have been extensively investigated in the last decades. The interest in these nanostructures stems from both fundamental and applied research motivations. The functional properties of one- and zero-dimensional silicon structures are significantly different, at least below a certain critical dimension, from those well known in the bulk. The key and peculiar functional properties of SiNWs find applications in nanoelectronics, classical and quantum information processing and storage, optoelectronics, photovoltaics, thermoelectric, battery technology, nano-biotechnology, and neuroelectronics. We report our work on the characterization by continuous wave (CW) and pulse electron spin resonance (CW, FT-EPR) and electrically detected magnetic resonance (EDMR) measurements of silicon nanowires (SiNWs) produced by different top-down processes. SiNWs were fabricated starting from SOI wafers using standard e-beam lithography and anisotropic wet etching or by metal-assisted chemical etching. Further oxidation was used to reduce the wire cross section. Different EDMR implementations were used to address the electronic wave function of donors (P, As) and to characterize point defects at the SiNWs/SiO2 interface.

  18. Magnetic tuning of electrically resonant metamaterial with inclusion of ferrite

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Zhao, Qian; Zhao, Hongjie; Zhou, Ji

    2008-10-01

    We experimentally demonstrate a magnetic tuning of electrically resonant metamaterial (EMM) at microwave frequencies by introducing microwave ferrite rods into the periodic array of electrically resonant element. Different from those based on controlling the capacitance of equivalent LC circuit, this tunability arises from a mechanism of magnetically tuning the inductance of resonant element via the active ambient effective permeability. For magnetic fields from 0 to 5000 Oe, resonance frequency of the EMM can be continuously and reversibly tuned in a range of about 800 MHz. The active effective permittivity has also been investigated through the simulated scattering parameters.

  19. Rotational resonance of nonaxisymmetric magnetic braking in the KSTAR tokamak.

    PubMed

    Park, J-K; Jeon, Y M; Menard, J E; Ko, W H; Lee, S G; Bae, Y S; Joung, M; You, K-I; Lee, K-D; Logan, N; Kim, K; Ko, J S; Yoon, S W; Hahn, S H; Kim, J H; Kim, W C; Oh, Y-K; Kwak, J-G

    2013-08-30

    One of the important rotational resonances in nonaxisymmetric neoclassical transport has been experimentally validated in the KSTAR tokamak by applying highly nonresonant n=1 magnetic perturbations to rapidly rotating plasmas. These so-called bounce-harmonic resonances are expected to occur in the presence of magnetic braking perturbations when the toroidal rotation is fast enough to resonate with periodic parallel motions of trapped particles. The predicted and observed resonant peak along with the toroidal rotation implies that the toroidal rotation in tokamaks can be controlled naturally in favorable conditions to stability, using nonaxisymmetric magnetic perturbations.

  20. The electrically detected magnetic resonance microscope: Combining conductive atomic force microscopy with electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Klein, Konrad; Hauer, Benedikt; Stoib, Benedikt; Trautwein, Markus; Matich, Sonja; Huebl, Hans; Astakhov, Oleksandr; Finger, Friedhelm; Bittl, Robert; Stutzmann, Martin; Brandt, Martin S.

    2013-10-01

    We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8 × 10^6spins/sqrtHz at room temperature.

  1. The electrically detected magnetic resonance microscope: combining conductive atomic force microscopy with electrically detected magnetic resonance.

    PubMed

    Klein, Konrad; Hauer, Benedikt; Stoib, Benedikt; Trautwein, Markus; Matich, Sonja; Huebl, Hans; Astakhov, Oleksandr; Finger, Friedhelm; Bittl, Robert; Stutzmann, Martin; Brandt, Martin S

    2013-10-01

    We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8×10(6)spins/√Hz at room temperature.

  2. [The benefit of magnetic resonance for diagnosing cardiomyopathy and myocarditis].

    PubMed

    Fikrle, Michal; Kuchynka, Petr; Mašek, Martin; Podzimková, Jana; Kuchař, Jan; Linhart, Aleš; Paleček, Tomáš

    Magnetic resonance is becoming an increasingly used examination in cardiology, since it greatly improves the accuracy of diagnosing of many heart diseases. At present magnetic resonance is the gold standard in assessing the volumes of the heart chambers and the systolic function of both ventricles. The possibility of detecting tissue characteristics to refine the diagnostics of different types of myocardial pathology is of essential importance. The authors summarize in the article the present knowledge about the use of magnetic resonance of the heart in the field of myocardial disease, i.e. cardiomyopathy and myocarditis. The first part of the review gives a general introduction into the topic of magnetic resonance examination of myocardial diseases, which is followed by a detailed descrip-tion of the benefits of this imaging method in dilated cardiomyopathy and myocarditis,in hypertrophic cardio-myopathy, and arrhythmogenic right ventricular cardiomyopathy.Key words: fibrosis - cardiomyopathy - magnetic resonance - myocarditis - late contrast agent saturation.

  3. Torque-mixing magnetic resonance spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan T.; Diao, Zhu; Belov, Miro; Burgess, Jacob A.; Compton, Shawn R.; Hiebert, Wayne K.; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory E.; Thomson, Douglas J.; Freeman, Mark R.

    2016-10-01

    An optomechanical platform for magnetic resonance spectroscopy will be presented. The method relies on frequency mixing of orthogonal RF fields to yield a torque amplitude (arising from the transverse component of a precessing dipole moment, in analogy to magnetic resonance detection by electromagnetic induction) on a miniaturized resonant mechanical torsion sensor. In contrast to induction, the method is fully broadband and allows for simultaneous observation of the equilibrium net magnetic moment alongside the associated magnetization dynamics. To illustrate the method, comprehensive electron spin resonance spectra of a mesoscopic, single-crystal YIG disk at room temperature will be presented, along with situations where torque spectroscopy can offer complimentary information to existing magnetic resonance detection techniques. The authors are very grateful for support from NSERC, CRC, AITF, and NINT. Reference: Science 350, 798 (2015).

  4. Nuclear magnetic resonance techniques in medicine.

    PubMed

    Bradbury, E M; Radda, G K; Allen, P S

    1983-04-01

    Nuclear magnetic resonance (NMR) techniques are now finding exciting new noninvasive applications in medicine. There are two major approaches. The first is as an analytical technique using 31P NMR spectroscopy for the identification and quantitation of the more abundant phosphate metabolites in various tissues. Changes in the levels of these metabolites and in intracellular cytoplasmic pH can be followed in various ischemic and hypoxic conditions to monitor metabolic response to stress situations and to diagnose inborn errors of metabolism. The second major approach is an entirely different application of NMR techniques and uses 1H, the nucleus most abundant in biological tissues, largely in water and fats, to produce NMR images of any section of the body. By applying non-uniform magnetic fields across a section of the body, hydrogen nuclei in different elemental volumes in the section are tagged with different frequencies and their signals can be processed to give an image of the section. In contrast to computed tomographic scanning, NMR has particularly powerful application in the imaging of soft tissues.

  5. Safety planning for intraoperative magnetic resonance imaging.

    PubMed

    Hemingway, Maureen; Kilfoyle, Marguerite

    2013-11-01

    An intraoperative magnetic resonance imaging (MRI) suite (ie, a type of hybrid OR) is a high-risk zone that requires well-defined safety procedures to avoid adverse events related to magnetic forces. At one facility, the opening of an MRI suite necessitated the creation of a safety plan to establish guidelines, procedures, education, and nursing care specific to the use of MRI technology in the operative environment. Formation of a steering committee enabled a multidisciplinary approach to planning and implementation. The addition of two new perioperative nursing roles (ie, MRI control room monitor, MRI safety nurse) addressed staffing challenges related to strictly enforcing MRI safety procedures and delineating duties different from those of the RN circulator. Benefits of a safe approach to an MRI-integrated operative setting included the elimination of an entire surgical experience for patients who underwent additional resection of the tumor during their initial surgical procedure instead of postoperatively or during a subsequent return to the OR. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  6. Overhauser-enhanced magnetic resonance elastography.

    PubMed

    Salameh, Najat; Sarracanie, Mathieu; Armstrong, Brandon D; Rosen, Matthew S; Comment, Arnaud

    2016-05-01

    Magnetic resonance elastography (MRE) is a powerful technique to assess the mechanical properties of living tissue. However, it suffers from reduced sensitivity in regions with short T2 and T2 * such as in tissue with high concentrations of paramagnetic iron, or in regions surrounding implanted devices. In this work, we exploit the longer T2 * attainable at ultra-low magnetic fields in combination with Overhauser dynamic nuclear polarization (DNP) to enable rapid MRE at 0.0065 T. A 3D balanced steady-state free precession based MRE sequence with undersampling and fractional encoding was implemented on a 0.0065 T MRI scanner. A custom-built RF coil for DNP and a programmable vibration system for elastography were developed. Displacement fields and stiffness maps were reconstructed from data recorded in a polyvinyl alcohol gel phantom loaded with stable nitroxide radicals. A DNP enhancement of 25 was achieved during the MRE sequence, allowing the acquisition of 3D Overhauser-enhanced MRE (OMRE) images with (1.5 × 2.7 × 9) mm(3) resolution over eight temporal steps and 11 slices in 6 minutes. In conclusion, OMRE at ultra-low magnetic field can be used to detect mechanical waves over short acquisition times. This new modality shows promise to broaden the scope of conventional MRE applications, and may extend the utility of low-cost, portable MRI systems to detect elasticity changes in patients with implanted devices or iron overload. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Quantitative Magnetic Resonance Imaging and Phantom Development

    NASA Astrophysics Data System (ADS)

    Keenan, Kathryn

    2014-03-01

    Magnetic Resonance Imaging (MRI) uses strong magnetic fields and radiofrequency pulses to produce images of proton locations and properties. Image contrast reflects relative density of excited water protons, differences in relaxation times of water protons due to surrounding structure, and the sequence of RF pulses used to excite the water protons. MRI can be used to quantitatively measure longitudinal (T1) and transverse (T2) spin relaxation times, measure tissue volumes, track motion of water molecules (flow/diffusion), measure temperature, assess susceptibility differences, create maps of tissue electrical properties, etc. This talk will focus on quantitative measurement of relaxation times, diffusion and electrical properties. Diffusion MRI varies the homogeneous magnetic field using an initial gradient, followed by a refocusing gradient with the same magnitude with opposite direction: protons begin to precess at different rates, depending on the applied gradient, and will disperse. The refocusing gradient cannot refocus spins that have moved between gradient pulses, and the apparent proton diffusion can be calculated from the signal attenuation. Typically, gradient pulses are applied in three orthogonal directions to calculate a bulk diffusion coefficient. Tissue electrical properties can be mapped by measuring the complex RF transmit and receive fields (B1 +, B1-). New methods estimate local electrical conductivity from in vivo B1 + phase measurements based on the homogeneous Helmholtz equation. Quantitative relaxation measurements, diffusion and electrical properties can distinguish healthy tissue from malignant tumor from benign tumor or identify the time of a particular event, e.g. a stroke. In this talk, I will describe how the NIST system, diffusion, and breast phantoms help validate these important measurements.

  8. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    PubMed

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  9. Using Novel Pulse Sequences for Magnetic Resonance Imaging of 31Phosphorus in Hard and Soft Solids

    NASA Astrophysics Data System (ADS)

    Frey, Merideth A.

    Since its invention in 1973, magnetic resonance imaging (MRI) has become an invaluable tool for clinical medicine, fundamental biomedical research, the physical sciences, and engineering. The vast majority of all MRI studies, in medicine and beyond, detect only the signal from a single nuclear isotope, 1H, in liquid water. Extending the reach of MRI to the study of other elements, and to hard or soft solids, opens new frontiers of discovery. In practice, however, the slower motion of the nuclei in solid environments compared to 1H in water results in much broader magnetic resonance (MR) spectra, limiting both the attainable spatial resolution and the signal-to-noise. Our lab recently discovered a novel nuclear magnetic resonance (NMR) pulse sequence while doing fundamental research related to the 'spins in semiconductors' approach to quantum computing. This sequence can greatly narrow the MR linewidth of solids, and it opens a new path to do high-resolution MRI of various nuclei in solids. In this thesis work, I use our quadratic echo line-narrowing pulse sequence to take the highest resolution MR images of 31P in hard and soft solids using a conventional animal MRI system. I also discuss strategies to accelerate the imaging speed by making use of sparse MRI techniques as well as a new algorithm developed in our lab to do fast and accurate image reconstruction from sparse data. For future work, I propose ways to enhance spatial resolution and speed up imaging as well as discuss the potential applications of this work to a wider range of scientific problems.

  10. Chiral discrimination in nuclear magnetic resonance spectroscopy.

    PubMed

    Lazzeretti, Paolo

    2017-08-08

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is in general favoured (e.g., L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry), because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ``blind'' to chirality, i.e., %%In fact, spectrometers presently used in NMR are unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants, are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between {\\em true} and {\\em false} chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e., the trace of a second-rank tensor, the mixed electric dipole/mag\\-net\\-ic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality

  11. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-25

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  12. Quantifying Mixing using Magnetic Resonance Imaging

    PubMed Central

    Tozzi, Emilio J.; McCarthy, Kathryn L.; Bacca, Lori A.; Hartt, William H.; McCarthy, Michael J.

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media 1, 2. The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile 1H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  13. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  14. Experimental analysis of emission linewidth narrowing in a pulsed KGd(WO ₄) ₂ Raman laser.

    PubMed

    Savitski, Vasili G

    2014-09-08

    The linewidth of a KGd(WO ₄) ₂ (KGW) intracavity pumped Raman laser is analyzed experimentally for different configurations of the Raman and pump laser resonators: with narrow and broadband pump emission profiles, with and without linewidth narrowing elements in the Raman laser resonator, with and without injection seeding into the Raman cavity. The benefits of a narrow linewidth pump source in combination with linewidth narrowing elements in the Raman laser cavity for the efficient linewidth narrowing of the Raman laser emission are explained. 20 kW peak-power pulses at 1156 nm with 0.43 cm⁻¹ emission linewidth are demonstrated from an injection seeded KGW Raman laser.

  15. Magnetic resonance imaging of oscillating electrical currents

    PubMed Central

    Halpern-Manners, Nicholas W.; Bajaj, Vikram S.; Teisseyre, Thomas Z.; Pines, Alexander

    2010-01-01

    Functional MRI has become an important tool of researchers and clinicians who seek to understand patterns of neuronal activation that accompany sensory and cognitive processes. However, the interpretation of fMRI images rests on assumptions about the relationship between neuronal firing and hemodynamic response that are not firmly grounded in rigorous theory or experimental evidence. Further, the blood-oxygen-level-dependent effect, which correlates an MRI observable to neuronal firing, evolves over a period that is 2 orders of magnitude longer than the underlying processes that are thought to cause it. Here, we instead demonstrate experiments to directly image oscillating currents by MRI. The approach rests on a resonant interaction between an applied rf field and an oscillating magnetic field in the sample and, as such, permits quantitative, frequency-selective measurements of current density without spatial or temporal cancellation. We apply this method in a current loop phantom, mapping its magnetic field and achieving a detection sensitivity near the threshold required for the detection of neuronal currents. Because the contrast mechanism is under spectroscopic control, we are able to demonstrate how ramped and phase-modulated spin-lock radiation can enhance the sensitivity and robustness of the experiment. We further demonstrate the combination of these methods with remote detection, a technique in which the encoding and detection of an MRI experiment are separated by sample flow or translation. We illustrate that remotely detected MRI permits the measurement of currents in small volumes of flowing water with high sensitivity and spatial resolution. PMID:20421504

  16. Nuclear magnetic resonance for cultural heritage.

    PubMed

    Brai, Maria; Camaiti, Mara; Casieri, Cinzia; De Luca, Francesco; Fantazzini, Paola

    2007-05-01

    Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T(1) and T(2) relaxation data of fully water-saturated samples to get "pore size" distributions, but the use of T(2) requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time tau is used in Carr-Purcell-Meiboom-Gill experiments. When a portable single-sided NMR apparatus is used, large field gradients due to the instrument, at the scale of the sample, are thought to be the dominant dephasing cause. In this paper, T(1) and T(2) (at different tau values) distributions were measured in natural (Lecce stone) and artificial (brick samples coming from the Greek-Roman Theatre of Taormina) porous media of interest for cultural heritage by a standard laboratory instrument and a portable device. While T(1) distributions do not show any appreciable effect from inhomogeneous fields, T(2) distributions can show strong effects, and a procedure is presented based on the dependence of 1/T(2) on tau to separate pore-scale gradient effects from sample-scale gradient effects. Unexpectedly, the gradient at the pore scale can be, in some cases, strong enough to make negligible the effects of gradients at the sample scale of the single-sided device.

  17. Magnetic resonance imaging in cardiac amyloidosis

    SciTech Connect

    O'Donnell, J.K.; Go, R.T.; Bott-Silverman, C.; Feiglin, D.H.; Salcedo, E.; MacIntyre, W.J.

    1984-01-01

    Primary amyloidosis (AL) involves the myocardium in 90% of cases and may present as apparent ischemia, vascular disease, or congestive heart failure. Two-dimensional echocardiography (echo) has proven useful in the diagnosis, particularly in differentiating AL from constrictive pericarditis. The findings of thickened RV and LV myocardium, normal LV cavity dimension, and a diffuse hyperrefractile ''granular sparkling'' appearance are virtually diagnostic. Magnetic resonance (MR) imaging may improve the resolution of anatomic changes seen in cardiac AL and has the potential to provide more specific information based on biochemical tissue alterations. In this preliminary study, the authors obtained both MR and echo images in six patients with AL and biopsy-proven myocardial involvement. 5/6 patients also had Tc-99 PYP myocardial studies including emission tomography (SPECT). MR studies utilized a 0.6 Tesla superconductive magnet. End diastolic gated images were obtained with TE=30msec and TR=R-R interval on the ECG. 6/6 pts. showed LV wall thickening which was concentric and included the septum. Papillary muscles were identified in all and were enlarged in 3/6. 4/6 pts. showed RV wall thickening but to a lesser degree than LV. Pericardial effusions were present in 4 cases. These findings correlated well with the results of echo although MR gave better RV free wall resolution. PYP scans were positive in 3 pts. but there was no correlation with degree of LV thickening. The authors conclude that there are no identifiable MR findings in patients with cardiac AL which encourage further attempts to characterize myocardial involvement by measurement of MR relaxation times in vivo.

  18. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  19. CARRIER-LATTICE RELAXATION FOR BROADENING EPR LINEWIDTH IN Nd0.55Sr0.45MnO3

    NASA Astrophysics Data System (ADS)

    Fan, Jiyu; Zhang, Xiyuan; Tong, Wei; Zhang, Lei; Zhang, Weichun; Zhu, Yan; Shi, Yangguang; Hu, Dazhi; Hong, Bo; Ying, Yao; Ling, Langsheng; Pi, Li; Zhang, Yuheng

    2013-12-01

    In this paper, we report the electron paramagnetic resonance (EPR) study of perovskite manganite Nd0.55Sr0.45MnO3. Experimental data reveal that the EPR linewidth broadens with a quasilinear manner up to 480 K. The broadening of the EPR linewidth can be understood in terms of the shortening of carrier-lattice relaxation time due to the occurrence of strong carrier-phonon interactions. Two same activation energies obtained respectively from the temperature dependence of EPR intensity and resistivity indicate that the linewidth variation is correlated to the small polaron hopping. Therefore, the carrier-lattice coupling play a major role for deciding its magnetism in the present system.

  20. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Suefke, Martin; Lehmkuhl, Sören; Liebisch, Alexander; Blümich, Bernhard; Appelt, Stephan

    2017-06-01

    The precision of nuclear magnetic resonance spectroscopy (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.

  1. Semiconductor laser with the subhertz linewidth

    NASA Astrophysics Data System (ADS)

    Matveev, A. N.; Kolachevsky, N. N.; Alnis, J.; Hänsch, T. W.

    2008-10-01

    A semiconductor laser emitting at 972 nm is stabilised with respect to a vibrationally and thermally compensated reference Fabry—Perot resonator with the vertical axis. The supporting points lie in the horizontal symmetry plane of the resonator, the influence of vibrations in the vertical direction being substantially suppressed in this case. This configuration provides a low sensitivity of the laser emission frequency to vertical accelerations of the reference resonator. To reduce the influence of temperature fluctuations, the resonator is made of an ULE (ultra-low-expansion) glass and is kept at temperature at which the expansion coefficient of this glass is close to zero. The laser linewidth is smaller than 0.5 Hz and the frequency drift is ≈0.1 Hz s-1. The minimum of the Allan deviation achieved for 3 s is 2×10-15. The laser was used to record the spectra of the 1S—2S transition in atomic hydrogen.

  2. Magnetic resonance imaging of benign prostatic hyperplasia.

    PubMed

    Guneyli, Serkan; Ward, Emily; Thomas, Stephen; Yousuf, Ambereen Nehal; Trilisky, Igor; Peng, Yahui; Antic, Tatjana; Oto, Aytekin

    2016-01-01

    Benign prostatic hyperplasia (BPH) is a common condition in middle-aged and older men and negatively affects the quality of life. An ultrasound classification for BPH based on a previous pathologic classification was reported, and the types of BPH were classified according to different enlargement locations in the prostate. Afterwards, this classification was demonstrated using magnetic resonance imaging (MRI). The classification of BPH is important, as patients with different types of BPH can have different symptoms and treatment options. BPH types on MRI are as follows: type 0, an equal to or less than 25 cm3 prostate showing little or no zonal enlargements; type 1, bilateral transition zone (TZ) enlargement; type 2, retrourethral enlargement; type 3, bilateral TZ and retrourethral enlargement; type 4, pedunculated enlargement; type 5, pedunculated with bilateral TZ and/or retrourethral enlargement; type 6, subtrigonal or ectopic enlargement; type 7, other combinations of enlargements. We retrospectively evaluated MRI images of BPH patients who were histologically diagnosed and presented the different types of BPH on MRI. MRI, with its advantage of multiplanar imaging and superior soft tissue contrast resolution, can be used in BPH patients for differentiation of BPH from prostate cancer, estimation of zonal and entire prostatic volumes, determination of the stromal/glandular ratio, detection of the enlargement locations, and classification of BPH types which may be potentially helpful in choosing the optimal treatment.

  3. Magnetic resonance imaging of benign prostatic hyperplasia

    PubMed Central

    Guneyli, Serkan; Ward, Emily; Thomas, Stephen; Yousuf, Ambereen Nehal; Trilisky, Igor; Peng, Yahui; Antic, Tatjana; Oto, Aytekin

    2016-01-01

    Benign prostatic hyperplasia (BPH) is a common condition in middle-aged and older men and negatively affects the quality of life. An ultrasound classification for BPH based on a previous pathologic classification was reported, and the types of BPH were classified according to different enlargement locations in the prostate. Afterwards, this classification was demonstrated using magnetic resonance imaging (MRI). The classification of BPH is important, as patients with different types of BPH can have different symptoms and treatment options. BPH types on MRI are as follows: type 0, an equal to or less than 25 cm3 prostate showing little or no zonal enlargements; type 1, bilateral transition zone (TZ) enlargement; type 2, retrourethral enlargement; type 3, bilateral TZ and retrourethral enlargement; type 4, pedunculated enlargement; type 5, pedunculated with bilateral TZ and/or retrourethral enlargement; type 6, subtrigonal or ectopic enlargement; type 7, other combinations of enlargements. We retrospectively evaluated MRI images of BPH patients who were histologically diagnosed and presented the different types of BPH on MRI. MRI, with its advantage of multiplanar imaging and superior soft tissue contrast resolution, can be used in BPH patients for differentiation of BPH from prostate cancer, estimation of zonal and entire prostatic volumes, determination of the stromal/glandular ratio, detection of the enlargement locations, and classification of BPH types which may be potentially helpful in choosing the optimal treatment. PMID:27015442

  4. Progesterone-Targeted Magnetic Resonance Imaging Probes

    PubMed Central

    2015-01-01

    Determination of progesterone receptor (PR) status in hormone-dependent diseases is essential in ascertaining disease prognosis and monitoring treatment response. The development of a noninvasive means of monitoring these processes would have significant impact on early detection, cost, repeated measurements, and personalized treatment options. Magnetic resonance imaging (MRI) is widely recognized as a technique that can produce longitudinal studies, and PR-targeted MR probes may address a clinical problem by providing contrast enhancement that reports on PR status without biopsy. Commercially available MR contrast agents are typically delivered via intravenous injection, whereas steroids are administered subcutaneously. Whether the route of delivery is important for tissue accumulation of steroid-modified MRI contrast agents to PR-rich tissues is not known. To address this question, modification of the chemistry linking progesterone with the gadolinium chelate led to MR probes with increased water solubility and lower cellular toxicity and enabled administration through the blood. This attribute came at a cost through lower affinity for PR and decreased ability to cross the cell membrane, and ultimately it did not improve delivery of the PR-targeted MR probe to PR-rich tissues or tumors in vivo. Overall, these studies are important, as they demonstrate that targeted contrast agents require optimization of delivery and receptor binding of the steroid and the gadolinium chelate for optimal translation in vivo. PMID:25019183

  5. Magnetic resonance imaging of pelvic endometriosis.

    PubMed

    Méndez Fernández, R; Barrera Ortega, J

    Endometriosis is common in women of reproductive age; it can cause pelvic pain and infertility. It is important to diagnose endometriosis and to thoroughly evaluate its extension, especially when surgical treatment is being considered. Magnetic resonance imaging (MRI) with careful examination technique and interpretation enables more accurate and complete diagnosis and staging than ultrasonography, especially in cases of deep pelvic endometriosis. Furthermore, MRI can identify implants in sites that can be difficult to access in endoscopic or laparoscopic explorations. In this article, we describe the appropriate MRI protocol for the study of pelvic endometriosis and the MRI signs of pelvic organ involvement. It is necessary to know the subtle findings and to look for them so we can ensure that they are not overlooked. We describe clinical grading systems for endometriosis and review the diagnostic efficacy of MRI in comparison with other imaging techniques and surgery. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  7. Magnetic resonance imaging findings of musculoskeletal brucellosis.

    PubMed

    Bozgeyik, Zulkif; Aglamis, Serpil; Bozdag, Pinar Gundogan; Denk, Affan

    2014-01-01

    The aim of this retrospective study was to determine the magnetic resonance imaging (MRI) findings of patients with musculoskeletal brucellosis. Sixty-eight among 304 patients with musculoskeletal brucellosis, aged 12-82 years (average, 50.2 years), were included in the study. Patients were diagnosed based on clinical findings, Brucella agglutination tests, and MRI findings. MRI was performed to all of the patients with sacroiliitis, spondylitis-spondylodiscitis, and peripheral arthritis. Brucella serum agglutination test was >1/160 in all cases and blood cultures were positive in twelve cases. The most commonly affected site was the spine (57.3%), wherein lumbar vertebrae were found to be most commonly affected. The second most common affected site was sacroiliac joint (26.4%), whereas peripheral joints were affected in 11 cases (16.1%). Brucellosis may affect various sites in musculoskeletal system. The spine was the most frequently affected site in our study. Sacroiliac joints and the other peripheral joints were less commonly involved sites. Brucellosis should be included in the differential diagnosis of a patient with arthralgia or symptoms of musculoskeletal system disorders especially in endemic areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Musculoskeletal magnetic resonance imaging: importance of radiography.

    PubMed

    Taljanovic, Mihra S; Hunter, Tim B; Fitzpatrick, Kimberly A; Krupinski, Elizabeth A; Pope, Thomas L

    2003-07-01

    To determine the usefulness of radiography for interpretation of musculoskeletal (MSK) magnetic resonance imaging (MRI) studies. DESIGNS AND PATIENTS: In a 1-year period, 1,030 MSK MRI studies were performed in 1,002 patients in our institution. For each study, the interpreting radiologist completed a questionnaire regarding the availability and utility of radiographs, radiological reports and clinical information for the interpretation of the MRI study. Radiographs were essential, very important or added information in 61-75% of all MSK MRI cases. Radiographs were judged as essential for reading of MRI studies more often for trauma, infection/inflammation and tumors than for degenerative and miscellaneous/normal diagnoses (chi(2)=60.95, df=16, P<0.0001). The clinical information was rated as "essential" or "useful" significantly more often than not (chi(2)=93.07, df=16, P<0.0001). The clinical and MRI diagnoses were the same or partially concordant significantly more often for tumors than for trauma, infection/inflammation and degenerative conditions, while in the miscellaneous/normal group they were different in 64% of cases. When the diagnoses were different, there were more instances in which radiographs were not available. Radiographs are an important, and sometimes essential, initial complementary study for reading of MSK MRI examinations. It is highly recommended that radiographs are available when MSK MRI studies are interpreted.

  9. Adaptive fuzzy segmentation of magnetic resonance images.

    PubMed

    Pham, D L; Prince, J L

    1999-09-01

    An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomogeneities as a gain field that causes image intensities to smoothly and slowly vary through the image space. It iteratively adapts to the intensity inhomogeneities and is completely automated. In this paper, we fully generalize 2-D AFCM to three-dimensional (3-D) multispectral images. Because of the potential size of 3-D image data, we also describe a new faster multigrid-based algorithm for its implementation. We show, using simulated MR data, that 3-D AFCM yields lower error rates than both the standard fuzzy C-means (FCM) algorithm and two other competing methods, when segmenting corrupted images. Its efficacy is further demonstrated using real 3-D scalar and multispectral MR brain images.

  10. Magnetic resonance imaging of skeletal muscle disease.

    PubMed

    Damon, Bruce M; Li, Ke; Bryant, Nathan D

    2016-01-01

    Neuromuscular diseases often exhibit a temporally varying, spatially heterogeneous, and multifaceted pathology. The goals of this chapter are to describe and evaluate the use of quantitative magnetic resonance imaging (MRI) methods to characterize muscle pathology. The following criteria are used for this evaluation: objective measurement of continuously distributed variables; clear and well-understood relationship to the pathology of interest; sensitivity to improvement or worsening of clinical status; and the measurement properties of accuracy and precision. Two major classes of MRI methods meet all of these criteria: (1) MRI methods for measuring muscle contractile volume or cross-sectional area by combining structural MRI and quantitative fat-water MRI; and (2) an MRI method for characterizing the edema caused by inflammation, the measurement of the transverse relaxation time constant (T2). These methods are evaluated with respect to the four criteria listed above and examples from neuromuscular disorders are provided. Finally, these methods are summarized and synthesized and recommendations for additional quantitative MRI developments are made.

  11. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  12. Vibration safety limits for magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Ehman, E. C.; Rossman, P. J.; Kruse, S. A.; Sahakian, A. V.; Glaser, K. J.

    2008-02-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  13. Magnetic resonance imaging structured reporting in infertility.

    PubMed

    Montoliu-Fornas, Guillermina; Martí-Bonmatí, Luis

    2016-06-01

    Our objective was to define and propose a standardized magnetic resonance (MR) imaging structured report in patients with infertility to have clinical completeness on possible diagnosis and severity. Patients should be studied preferable on 3T equipment with a surface coil. Standard MR protocol should include high-resolution fast spin-echo T2-weighted, diffusion-weighted images and gradient-echo T1-weighted fat suppression images. The report should include ovaries (polycystic, endometrioma, tumor), oviduct (hydrosalpinx, hematosalpinx, pyosalpinx, peritubal anomalies), uterus (agenesia, hypoplasia, unicornuate, uterus didelphys, bicornuate, septate uterus), myometrium (leiomyomas, adenomyosis), endometrium (polyps, synechia, atrophy, neoplasia), cervix and vagina (isthmoceles, mucosal-parietal irregularity, stenosis, neoplasia), peritoneum (deep endometriosis), and urinary system-associated abnormalities. To be clinically useful, radiology reports must be structured, use standardized terminology, and convey actionable information. The structured report must comprise complete, comprehensive, and accurate information, allowing radiologists to continuously interact with patients and referring physicians to confirm that the information is used properly to affect the decision making process.

  14. Magnetic resonance imaging of the normal placenta.

    PubMed

    Blaicher, Wibke; Brugger, Peter C; Mittermayer, Christoph; Schwindt, Jens; Deutinger, Josef; Bernaschek, Gerhard; Prayer, Daniela

    2006-02-01

    The goal of this study was to provide a representative description of the normal placenta with contrast medium-free magnetic resonance imaging (MRI) in order to determine a standard of reference. One hundred consecutive singleton pregnancies were investigated by MRI without application of a contrast medium. The mean gestational age (GA) at the time of investigation was 29.5 weeks (range 19-40). Patients with suspected utero-placental insufficiency (UPI) or placental anomalies were excluded. Signal intensities were assessed and correlated with the respective GA. Antenatal MRI without contrast medium was able to depict placental status and morphological changes during gestation. A regular homogeneous structure was found in weeks 19-23. Subsequently, sporadic, slightly marked lobules appeared, which increased in number and markedness with ongoing gestation. Stratification of the lobules was observed after 36 weeks. The ratio of placental and amniotic fluid signal intensities decreased significantly with higher GA and with placental grading. MRI is well suited as an imaging method for the placenta. Our data may be used as a reference in the assessment of the placenta on MRI, and may have further clinical impact with respect to the determination of UPI.

  15. Magnetic resonance imaging in glenohumeral instability

    PubMed Central

    Jana, Manisha; Gamanagatti, Shivanand

    2011-01-01

    The glenohumeral joint is the most commonly dislocated joint of the body and anterior instability is the most common type of shoulder instability. Magnetic resonance (MR) imaging, and more recently, MR arthrography, have become the essential investigation modalities of glenohumeral instability, especially for pre-procedure evaluation before arthroscopic surgery. Injuries associated with glenohumeral instability are variable, and can involve the bones, the labor-ligamentous components, or the rotator cuff. Anterior instability is associated with injuries of the anterior labrum and the anterior band of the inferior glenohumeral ligament, in the form of Bankart lesion and its variants; whereas posterior instability is associated with reverse Bankart and reverse Hill-Sachs lesion. Multidirectional instability often has no labral pathology on imaging but shows specific osseous changes such as increased chondrolabral retroversion. This article reviews the relevant anatomy in brief, the MR imaging technique and the arthrographic technique, and describes the MR findings in each type of instability as well as common imaging pitfalls. PMID:22007285

  16. Wernicke encephalopathy with atypical magnetic resonance imaging.

    PubMed

    Liou, Kuang-Chung; Kuo, Shu-Fan; Chen, Lu-An

    2012-11-01

    Wernicke encephalopathy (WE) is a medical emergency caused by thiamine (vitamin B1) deficiency. Typical clinical manifestations are mental change, ataxia, and ocular abnormalities. Wernicke encephalopathy is an important differential diagnosis in all patients with acute mental change. However, the disorder is greatly underdiagnosed. Clinical suspicion, detailed history taking, and neurologic evaluations are important for early diagnosis. Magnetic resonance imaging (MRI) is currently considered the diagnostic method of choice. Typical MRI findings of WE are symmetrical involvement of medial thalamus, mammillary body, and periaqueductal gray matter. Prompt thiamine supplement is important in avoiding unfavorable outcomes. Here, we report a case of alcoholic WE with typical clinical presentation but with atypical MRI. Axial fluid-attenuated inversion recovery images showing symmetrical hyperintensity lesions in dentate nuclei of cerebellum, olivary bodies, and dorsal pons. Although atypical MRI findings are more common in nonalcoholic WE, it can also occur in alcoholic WE. This article is aimed to highlight the potential pitfalls in diagnosing acute mental change, the importance of clinical suspicion, and early treatment in WE.

  17. Meralgia paresthetica: 3-Tesla magnetic resonance neurography.

    PubMed

    Chhabra, Avneesh; Del Grande, Filippo; Soldatos, Theodoros; Chalian, Majid; Belzberg, Allan J; Williams, Eric H; Jalali, Farahani S; Thawait, Gaurav K; Eng, John; Carrino, John A

    2013-06-01

    To assess the diagnostic accuracy and observer performance of 3-Tesla magnetic resonance neurography (MRN) in the evaluation of meralgia paresthetica (MP). Two independent readers were blinded to the clinical diagnosis and evaluated the MRN studies of the pelvis of 11 patients with MP and 28 control participants. In each study, the lateral femoral cutaneous nerves were assessed for signal alteration and/or neuroma formation, indicating lateral femoral cutaneous neuropathy, at various levels along their course. Intra- and inter-observer reliability was evaluated. Both readers exhibited substantial intraobserver agreement in detecting signal alterations and neuroma formation of the lateral femoral cutaneous nerve (LFCN). The readers demonstrated moderate interobserver agreement in detecting signal alteration of the LFCN and poor interobserver agreement in diagnosing neuroma formation. Sensitivity, specificity, positive predictive value, and negative predictive value of LFCN neuropathy diagnosis were ≥ 71 % and ≥ 94 % for both readers respectively. The diagnostic test accuracy was ≥ 90 % for both readers. 3-Tesla MRN provides reliable and accurate diagnostic evaluation of meralgia paresthetica.

  18. Magnetic resonance imaging at ultrahigh fields.

    PubMed

    Ugurbil, Kamil

    2014-05-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.

  19. Magnetic Resonance Imaging at Ultrahigh Fields

    PubMed Central

    Uğurbil, Kamil

    2014-01-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229

  20. TOPICAL REVIEW: Endovascular interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bartels, L. W.; Bakker, C. J. G.

    2003-07-01

    Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.

  1. Cardiovascular magnetic resonance in pericardial diseases

    PubMed Central

    Bogaert, Jan; Francone, Marco

    2009-01-01

    The pericardium and pericardial diseases in particular have received, in contrast to other topics in the field of cardiology, relatively limited interest. Today, despite improved knowledge of pathophysiology of pericardial diseases and the availability of a wide spectrum of diagnostic tools, the diagnostic challenge remains. Not only the clinical presentation may be atypical, mimicking other cardiac, pulmonary or pleural diseases; in developed countries a shift for instance in the epidemiology of constrictive pericarditis has been noted. Accurate decision making is crucial taking into account the significant morbidity and mortality caused by complicated pericardial diseases, and the potential benefit of therapeutic interventions. Imaging herein has an important role, and cardiovascular magnetic resonance (CMR) is definitely one of the most versatile modalities to study the pericardium. It fuses excellent anatomic detail and tissue characterization with accurate evaluation of cardiac function and assessment of the haemodynamic consequences of pericardial constraint on cardiac filling. This review focuses on the current state of knowledge how CMR can be used to study the most common pericardial diseases. PMID:19413898

  2. Cardiovascular magnetic resonance in wet beriberi.

    PubMed

    Essa, Essa; Velez, Michael R; Smith, Sakima; Giri, Shivraman; Raman, Subha V; Gumina, Richard J

    2011-08-12

    The clinical presentation of beriberi can be quite varied. In the extreme form, profound cardiovascular involvement leads to circulatory collapse and death. This case report is of a 72 year-old male who was admitted to the Neurology inpatient ward with progressive bilateral lower extremity weakness and parasthesia. He subsequently developed pulmonary edema and high output cardiac failure requiring intubation and blood pressure support. With the constellation of peripheral neuropathy, encephalopathy, ophthalmoplegia, unexplained heart failure, and lactic acidosis, thiamine deficiency was suspected. He was empirically initiated on thiamine replacement therapy and his thiamine level pre-therapy was found to be 23 nmol/L (Normal: 80-150 nmol/L), consistent with the diagnosis of beriberi. Cardiovascular magnetic resonance (CMR) showed severe left ventricular systolic dysfunction, markedly increased myocardial T2, and minimal late gadolinium enhancement (LGE). After 5 days of daily 100 mg IV thiamine and supportive care, the hypotension resolved and the patient was extubated and was released from the hospital 3 weeks later. Our case shows via CMR profound myocardial edema associated with wet beriberi.

  3. Magnetic resonance imaging of fetal developmental anomalies.

    PubMed

    Girard, Nadine J

    2011-02-01

    Fetal developmental anomalies consist of central nervous system malformations, brain injury, and tumors. Overlap is often seen especially between malformation and injury because malformation may be genetically determined or related to external causative agent, whereas brain injury may be, on one hand, caused by malformation as with intracranial vascular malformation and, on another, can cause brain malformation when cerebral insult occurs during organogenesis and histogenesis. The goal of this review was not to describe by magnetic resonance imaging (MRI) all fetal developmental anomalies encountered in utero; it is most likely to focus on fetal brain anomalies that either are most commonly seen in fetal tertiary care facility or are extremely challenging for MRI. Consequently, the potential of advanced MR techniques such as proton MR spectroscopy and diffusion tensor imaging is also described especially when a challenge is highlighted. This review is therefore organized in subchapters as follows. The first section gives the place of MRI in prenatal development and cites the standard protocol and the advanced techniques. The rules of fetal brain MRI, the challenge and pitfalls, and the selection of MRI cases follow as 3 subchapters. Also, abnormalities are described as 3 separate subchapters entitled ventriculomegalies (hydrocephalus), malformations, and brain injury.

  4. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  5. Quantitative cardiovascular magnetic resonance for molecular imaging.

    PubMed

    Winter, Patrick M; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2010-11-03

    Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or oxygenation. In this review, examples will be presented that utilize a number of different molecular imaging quantification techniques, including measuring signal changes, calculating the area of contrast enhancement, mapping relaxation time changes or direct detection of contrast agents through multi-nuclear imaging or spectroscopy. The clinical application of CMR molecular imaging could offer far reaching benefits to patient populations, including early detection of therapeutic response, localizing ruptured atherosclerotic plaques, stratifying patients based on biochemical disease markers, tissue-specific drug delivery, confirmation and quantification of end-organ drug uptake, and noninvasive monitoring of disease recurrence. Eventually, such agents may play a leading role in reducing the human burden of cardiovascular disease, by providing early diagnosis, noninvasive monitoring and effective therapy with reduced side effects.

  6. Magnetic resonance urography in pediatric urology.

    PubMed

    Cerwinka, Wolfgang H; Kirsch, Andrew J

    2010-07-01

    Magnetic resonance urography (MRU) has evolved into an effective imaging tool for the evaluation of the urinary tract in children. The goal of this article is to describe current techniques and applications of MRU and to review recent advances. MRU is most commonly applied to the evaluation of hydronephrosis and provides valuable insight into a wide range of obstructive uropathies. MRU was shown to be superior to renal scintigraphy for the diagnosis of pyelonephritis and renal scarring. The use of MRU for the assessment of urolithiasis, vesicoureteral reflux, renal trauma, and fetal urinary tract abnormalities is limited and technical refinements are required. Judicious use of gadolinium-based contrast agents in patients at risk for nephrogenic systemic fibrosis was recently shown to avoid new occurrences. Potential future applications include virtual endoscopy and MRU-guided procedures. MRU has the potential to revolutionize imaging of the urinary tract in children. It integrates exquisite anatomical information with a variety of functional data and avoids ionizing radiation. MRU is increasingly employed as a problem solver when conventional imaging studies remain inconclusive and its growing application will likely improve availability and cost in the future.

  7. Magnetic resonance urography in pediatric urology.

    PubMed

    Cerwinka, Wolfgang H; Damien Grattan-Smith, J; Kirsch, Andrew J

    2008-02-01

    Magnetic resonance urography (MRU) has emerged as a powerful diagnostic tool in the evaluation of the pediatric genitourinary tract. The purpose of this review is to familiarize the reader with the basic techniques, strengths and limitations, as well as the current and potential future applications of MRU in pediatric urology. MRU can provide detailed anatomical information and assess renal function and drainage in a single study. MRU does not employ ionizing radiation and may be utilized in patients with iodine-based contrast allergy or impaired renal function. MRU has been most often applied to the evaluation of hydronephrosis and provides valuable insight into a wide range of obstructive uropathies. MRU was shown to be superior to renal scintigraphy for the diagnosis of pyelonephritis and renal scarring. The use of MRU for the assessment of urolithiasis and vesicoureteral reflux is limited and technical refinements are required. Potential future applications include fetal MRU, virtual endoscopy, and MRU-guided procedures. The development of new contrast agents and new image-processing software will further enhance the diagnostic potential of MRU in pediatric urology. MRU is currently thought of as a problem-solving tool to define anatomy and function when conventional methods fall short. This technique is likely to emerge as the imaging modality of choice for children with complex genitourinary pathology.

  8. Magnetic resonance urography in pediatric urology.

    PubMed

    Wille, Sebastian; von Knobloch, Rolf; Klose, Klaus Jochen; Heidenreich, Axel; Hofmann, Rainer

    2003-01-01

    To evaluate the efficiency of magnetic resonance urography (MRU) in pediatric urology. We report retrospectively on 12 children who underwent MRU between January 1999 and November 2001. MRU was performed to accurately evaluate the entire urinary tract because of megaureter, ectopic ureter, vesicoureteral reflux, Y-inverted duplication and hydronephrosis because of pyeloureteral stenosis. T1- and T2-weighted images were obtained in the coronal, sagittal and axial planes. The mean age of the children (8 females, 4 males) investigated was 36 months (range 2-140 months). An accurate anatomical picture of the entire urinary tract could be obtained in all children. The obstructive nature of megaureter could be differentiated. The distal orifice of ectopic ureter could be identified in the vagina. Vesicoureteral reflux into the blind-ending ureteral bud of a duplicated system was accurately identified. Hydronephrosis was demonstrated to be the result of pyeloureteral stenosis. The location of stenoses was easily identified in the sagittal and coronal planes. MRU is an excellent imaging modality for accurately depicting the urinary tract. MRU is superior to conventional intravenous urography because it does not use ionizing radiation, the gadolinium contrast medium used is not nephrotoxic and the imaging quality is excellent, reproducible and not interfered with by gas superposition. Considering the high costs and diagnostic benefit of MRU compared to intravenous urography, MRU should be performed in patients with impaired renal function, in those with an allergy to contrast medium and if anatomic relationships are not clear prior to reconstructive surgery.

  9. Magnetic resonance imaging of navicular bursa adhesions.

    PubMed

    Holowinski, Maureen E; Solano, Mauricio; Maranda, Louise; García-López, José M

    2012-01-01

    Adhesions occur in the navicular bursa between the deep digital flexor tendon (DDFT) and other structures. Our objectives were to describe the appearance of navicular bursa adhesions on high-field magnetic resonance (MR) images, to compare these findings to findings at navicular bursoscopy, and to determine the prevalence of lesions in the remainder of the podotrochlear apparatus. Sixteen forelimbs from 14 horses that underwent MR imaging and navicular bursoscopy were evaluated. Adhesions were considered type 1 when characterized by a discontinuity in the navicular bursa fluid signal between two structures, type 2 when the navicular bursa fluid signal was disrupted and ill-defined tissue was present between two structures, and type 3 when the fluid signal was disrupted and well-defined tissue was present between two structures. Twenty-six adhesions were suspected on MR images and nineteen were visualized at surgery. The positive predictive value was 50% for type 1 adhesions, 67% for type 2 adhesions, and 100% for type 3 adhesions. Additional lesions were detected in the navicular bursa in 15 limbs, the DDFT in 13, the navicular bone in 15, the collateral sesamoidean ligaments in 9, and the distal sesamoidean impar ligament in 8. A discontinuity in the navicular bursa fluid signal with well-defined tissue between two structures detected on high-field MR images is diagnostic for a navicular bursa adhesion. Additional lesions in the podotrochlear apparatus are common in horses with navicular bursa adhesions. © 2012 Veterinary Radiology & Ultrasound.

  10. Magnetic Resonance Elastography: Inversions in Bounded Media

    PubMed Central

    Kolipaka, Arunark; McGee, Kiaran P.; Manduca, Armando; Romano, Anthony J.; Glaser, Kevin J.; Araoz, Philip A.; Ehman, Richard L.

    2009-01-01

    Magnetic resonance elastography (MRE) is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, MRE inversions generally assume that the measured tissue motion consists primarily of shear waves propagating in a uniform, infinite medium. This assumption is not valid in organs such as the heart, eye, bladder, skin, fascia, bone and spinal cord in which the shear wavelength approaches the geometric dimensions of the object. The aim of this study was to develop and test mathematical inversion algorithms capable of resolving shear stiffness from displacement maps of flexural waves propagating in bounded media such as beams, plates and spherical shells using geometry-specific equations of motion. MRE and finite element modeling (FEM) of beam, plate, and spherical shell phantoms of various geometries were performed. Mechanical testing of the phantoms agreed with the stiffness values obtained from FEM and MRE data and a linear correlation of r2 ≥ 0.99 was observed between the stiffness values obtained using MRE and FEM data. In conclusion, we have demonstrated new inversion methods for calculating shear stiffness that may be more appropriate for waves propagating in bounded media. PMID:19780146

  11. Intra voxel analysis in magnetic resonance imaging.

    PubMed

    Ambrosanio, Michele; Baselice, Fabio; Ferraioli, Giampaolo; Lenti, Flavia; Pascazio, Vito

    2017-04-01

    A technique for analyzing the composition of each voxel, in the magnetic resonance imaging (MRI) framework, is presented. By combining different acquisitions, a novel methodology, called intra voxel analysis (IVA), for the detection of multiple tissues and the estimation of their spin-spin relaxation times is proposed. The methodology exploits the sparse Bayesian learning (SBL) approach in order to solve a highly underdetermined problem imposing the solution sparsity. IVA, developed for spin echo imaging sequence, can be easily extended to any acquisition scheme. For validating the approach, simulated and real data sets are considered. Monte Carlo simulations have been implemented for evaluating the performances of IVA compared to methods existing in literature. Two clinical datasets acquired with a 3T scanner have been considered for validating the approach. With respect to other approaches presented in literature, IVA has proved to be more effective in the voxel composition analysis, in particular in the case of few acquired images. Results are interesting and very promising: IVA is expected to have a remarkable impact on the research community and on the diagnostic field. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Magnetic resonance imaging for characterizing myocardial diseases.

    PubMed

    Saeed, Maythem; Liu, Hui; Liang, Chang-Hong; Wilson, Mark W

    2017-03-31

    The National Institute of Health defined cardiomyopathy as diseases of the heart muscle. These myocardial diseases have different etiology, structure and treatment. This review highlights the key imaging features of different myocardial diseases. It provides information on myocardial structure/orientation, perfusion, function and viability in diseases related to cardiomyopathy. The standard cardiac magnetic resonance imaging (MRI) sequences can reveal insight on left ventricular (LV) mass, volumes and regional contractile function in all types of cardiomyopathy diseases. Contrast enhanced MRI sequences allow visualization of different infarct patterns and sizes. Enhancement of myocardial inflammation and infarct (location, transmurality and pattern) on contrast enhanced MRI have been used to highlight the key differences in myocardial diseases, predict recovery of function and healing. The common feature in many forms of cardiomyopathy is the presence of diffuse-fibrosis. Currently, imaging sequences generating the most interest in cardiomyopathy include myocardial strain analysis, tissue mapping (T1, T2, T2*) and extracellular volume (ECV) estimation techniques. MRI sequences have the potential to decode the etiology by showing various patterns of infarct and diffuse fibrosis in myocarditis, amyloidosis, sarcoidosis, hypertrophic cardiomyopathy due to aortic stenosis, restrictive cardiomyopathy, arrythmogenic right ventricular dysplasia and hypertension. Integrated PET/MRI system may add in the future more information for the diagnosis and progression of cardiomyopathy diseases. With the promise of high spatial/temporal resolution and 3D coverage, MRI will be an indispensible tool in diagnosis and monitoring the benefits of new therapies designed to treat myocardial diseases.

  13. INVITED TOPICAL REVIEW: Parallel magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Larkman, David J.; Nunes, Rita G.

    2007-04-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed.

  14. Vibration safety limits for magnetic resonance elastography

    PubMed Central

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2010-01-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure, and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast, and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values, and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans. PMID:18263949

  15. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  16. Magnetic resonance imaging of the kidneys

    SciTech Connect

    Leung, A.W.L.; Bydder, G.M.; Steinter, R.E.; Bryant, D.J.; Young, I.R.

    1984-12-01

    A study of the magnetic resonance imaging (MRI) appearance of the kidneys in six normal volunteers and 52 patients is reported. Corticomedullary differentiation was seen with the inversion-recovery (IR 1400/400) sequence in the normal volunteers and in patients with functioning transplanted kidneys and acute tubular necrosis. Partial or total loss of corticomedullary differentiation was seen in glomerulonephritis, acute and chronic renal failure, renal artery stenosis, and transplant rejection. The T1 of the kidneys was increased in glomerulonephritis with neuphrotic syndrome, but the T1 was within the normal range for renal medulla in glomerulonephritis without nephrotic syndrome, renal artery stenosis, and chronic renal failure. A large staghorn calculus was demonstrated with MRI, but small calculi were not seen. Fluid within the hydonephrosis, simple renal cysts, and polycystic kidneys displayed very low signal intensity and long T1 values. Tumors displayed varied appearances. Hypernephromas were shown to be hypo- or hyperintense with the renal medulla on the IR 1400/400 sequence. After intravenous injection of gadolinium-DTPA, there was marked decrease in the tumor T1.

  17. Magnetic Resonance Angiography of the Aorta

    PubMed Central

    Takehara, Yasuo; Yamashita, Shuhei; Sakahara, Harumi; Masui, Takayuki; Isoda, Haruo

    2011-01-01

    Magnetic resonance angiography (MRA) is capable of imaging arteries in the half to whole body by a single acquisition without a nephrotoxic contrast medium, and acquired images can be reconstructed into a specific cross-sectional view in an arbitrary directions. MRA is applicable for vessels non-reachable by a catheter approach, and collateral vessels can be fully visualized. Since MRA is minimally-invasive with no exposure to ionized radiation, it can be repeatedly applied for follow-up. However, there are also disadvantages: the temporal and spatial resolutions are inferior to those of X-ray angiography, and, at present, it cannot be used as a guide for intervention. Moreover, gadolinium administrations may cause NSF in patients who have lost renal function, as a new risk. Accordingly, strict consideration is required for an indication of its application. Development of non-contrast MRA and evaluation of the wall itself may draw more attention in the future. Plaque imaging is being routinely performed nowadays, and the measurement of vascular wall shear stress, which has a close association with arteriosclerosis, may become possible by utilizing the time-resolved phase-contrast method capable of measuring the time-resolved velocity vectors of blood flow throughout the body. (*English Translation of J Jpn Coll Angiol, 2009, 49: 503-516.) PMID:23555465

  18. Magnetic resonance urography in evaluation of duplicated renal collecting systems.

    PubMed

    Adeb, Melkamu; Darge, Kassa; Dillman, Jonathan R; Carr, Michael; Epelman, Monica

    2013-11-01

    Duplex renal collecting systems are common congenital anomalies of the upper urinary tract. In most cases they are incidental findings and not associated with additional pathologies. They demonstrate, however, higher incidences of hydroureteronephrosis, ureteroceles, and ectopic ureters. The most comprehensive morphologic and functional evaluation of duplex systems can be achieved using magnetic resonance urography. Functional magnetic resonance urography allows better separation of the renal poles, thus more accurate calculation of the differential renal functions compared with renal scintigraphy. Magnetic resonance urography is the study of choice when upper urinary tract anatomy is complex or when functional evaluation is needed.

  19. Correlation of Magnetic Resonance Imaging Tumor Volume with Histopathology

    PubMed Central

    Turkbey, Baris; Mani, Haresh; Aras, Omer; Rastinehad, Ardeshir R.; Shah, Vijay; Bernardo, Marcelino; Pohida, Thomas; Daar, Dagane; Benjamin, Compton; McKinney, Yolanda L.; Linehan, W. Marston; Wood, Bradford J.; Merino, Maria J.; Choyke, Peter L.; Pinto, Peter A.

    2017-01-01

    Purpose The biology of prostate cancer may be influenced by the index lesion. The definition of index lesion volume is important for appropriate decision making, especially for image guided focal treatment. We determined the accuracy of magnetic resonance imaging for determining index tumor volume compared with volumes derived from histopathology. Materials and Methods We evaluated 135 patients (mean age 59.3 years) with a mean prostate specific antigen of 6.74 ng/dl who underwent multiparametric 3T endorectal coil magnetic resonance imaging of the prostate and subsequent radical prostatectomy. Index tumor volume was determined prospectively and independently by magnetic resonance imaging and histopathology. The ellipsoid formula was applied to determine histopathology tumor volume, whereas manual tumor segmentation was used to determine magnetic resonance tumor volume. Histopathology tumor volume was correlated with age and prostate specific antigen whereas magnetic resonance tumor volume involved Pearson correlation and linear regression methods. In addition, the predictive power of magnetic resonance tumor volume, prostate specific antigen and age for estimating histopathology tumor volume (greater than 0.5 cm3) was assessed by ROC analysis. The same analysis was also conducted for the 1.15 shrinkage factor corrected histopathology data set. Results There was a positive correlation between histopathology tumor volume and magnetic resonance tumor volume (Pearson coefficient 0.633, p <0.0001), but a weak correlation between prostate specific antigen and histopathology tumor volume (Pearson coefficient 0.237, p=0.003). On linear regression analysis histopathology tumor volume and magnetic resonance tumor volume were correlated (r2=0.401, p <0.00001). On ROC analysis AUC values for magnetic resonance tumor volume, prostate specific antigen and age in estimating tumors larger than 0.5 cm3 at histopathology were 0.949 (p <0.0000001), 0.685 (p=0.001) and 0.627 (p=0

  20. Correlation of magnetic resonance imaging tumor volume with histopathology.

    PubMed

    Turkbey, Baris; Mani, Haresh; Aras, Omer; Rastinehad, Ardeshir R; Shah, Vijay; Bernardo, Marcelino; Pohida, Thomas; Daar, Dagane; Benjamin, Compton; McKinney, Yolanda L; Linehan, W Marston; Wood, Bradford J; Merino, Maria J; Choyke, Peter L; Pinto, Peter A

    2012-10-01

    The biology of prostate cancer may be influenced by the index lesion. The definition of index lesion volume is important for appropriate decision making, especially for image guided focal treatment. We determined the accuracy of magnetic resonance imaging for determining index tumor volume compared with volumes derived from histopathology. We evaluated 135 patients (mean age 59.3 years) with a mean prostate specific antigen of 6.74 ng/dl who underwent multiparametric 3T endorectal coil magnetic resonance imaging of the prostate and subsequent radical prostatectomy. Index tumor volume was determined prospectively and independently by magnetic resonance imaging and histopathology. The ellipsoid formula was applied to determine histopathology tumor volume, whereas manual tumor segmentation was used to determine magnetic resonance tumor volume. Histopathology tumor volume was correlated with age and prostate specific antigen whereas magnetic resonance tumor volume involved Pearson correlation and linear regression methods. In addition, the predictive power of magnetic resonance tumor volume, prostate specific antigen and age for estimating histopathology tumor volume (greater than 0.5 cm(3)) was assessed by ROC analysis. The same analysis was also conducted for the 1.15 shrinkage factor corrected histopathology data set. There was a positive correlation between histopathology tumor volume and magnetic resonance tumor volume (Pearson coefficient 0.633, p <0.0001), but a weak correlation between prostate specific antigen and histopathology tumor volume (Pearson coefficient 0.237, p = 0.003). On linear regression analysis histopathology tumor volume and magnetic resonance tumor volume were correlated (r(2) = 0.401, p <0.00001). On ROC analysis AUC values for magnetic resonance tumor volume, prostate specific antigen and age in estimating tumors larger than 0.5 cm(3) at histopathology were 0.949 (p <0.0000001), 0.685 (p = 0.001) and 0.627 (p = 0.02), respectively. Similar

  1. Accurate temperature imaging based on intermolecular coherences in magnetic resonance.

    PubMed

    Galiana, Gigi; Branca, Rosa T; Jenista, Elizabeth R; Warren, Warren S

    2008-10-17

    Conventional magnetic resonance methods that provide interior temperature profiles, which find use in clinical applications such as hyperthermic therapy, can develop inaccuracies caused by the inherently inhomogeneous magnetic field within tissues or by probe dynamics, and work poorly in important applications such as fatty tissues. We present a magnetic resonance method that is suitable for imaging temperature in a wide range of environments. It uses the inherently sharp resonances of intermolecular zero-quantum coherences, in this case flipping up a water spin while flipping down a nearby fat spin. We show that this method can rapidly and accurately assign temperatures in vivo on an absolute scale.

  2. Anaesthesia for magnetic resonance imaging/computed tomography.

    PubMed

    Funk, W; Taeger, K

    2000-08-01

    The need for general anaesthesia for magnetic resonance imaging/computed tomography investigations can be reduced by the implementation of structured sedation programmes supervised by anaesthetists. Despite its side-effects, chloral hydrate is still the drug most widely used. Rectal thiopental or intravenous propofol are suggested anaesthetic agents for pre-school children and uncooperative or claustrophobic individuals. Spiral computed tomography scans and ultrafast magnetic resonance imaging shorten immobilization times further. However, functional magnetic resonance imaging and intervention techniques in neuroradiology depend on a motionless patient. A useful strategy for testing anaesthesia equipment has been outlined.

  3. Magnetic resonance force microscopy with a permanent magnet on the cantilever

    SciTech Connect

    Zhang, Z.; Hammel, P.C.

    1997-02-01

    The magnetic resonance force microscope (MRFM) is a microscopic 3-D imaging instrument based on a recent proposal to detect magnetic resonance signals mechanically using a micro-mechanical resonator. MRFM has been successfully demonstrated in various magnetic resonance experiments including electron spin resonance, ferromagnetic resonances and nuclear magnetic resonance. In order to apply this ultra-high, 3-D spatial resolution technique to samples of arbitrary size and shape, the magnetic particle which generates the field gradient {del}{bold B}, (and, therefore, the force {bold F = (m {center_dot} {del}B)} between itself and the spin magnetization {bold m} of the sample) will need to be mounted on the mechanical resonator. Up to the present, all experiments have been performed with the sample mounted on the resonator. This is done, in part, to avoid the spurious response of the mechanical resonator which is generated by the variation of the magnetization of the magnetic particle as the external field is varied.

  4. Cardiac magnetic resonance imaging of a patient with an magnetic resonance imaging conditional permanent pacemaker

    PubMed Central

    Hogarth, Andrew J.; Artis, Nigel J.; Sivananthan, U. Mohan; Pepper, Chris B.

    2011-01-01

    Cardiac magnetic resonance imaging (MRI) is increasingly used as the optimum modality for cardiac imaging. An aging population and rising numbers of patients with permanent pacemakers means many such individuals may require cardiac MRI scanning in the future. Whilst the presence of a permanent pacemaker is historically regarded as a contra-indication to MRI scanning, pacemaker systems have been developed to limit any associated risks. No reports have been published regarding the use of such devices with cardiac MRI in a clinical setting. We present the safe, successful cardiac MRI scan of a patient with an MRI-conditional permanent pacing system. PMID:22355486

  5. Cavity resonator coil for high field magnetic resonance imaging.

    PubMed

    Solis, S E; Tomasi, D; Rodriguez, A O

    2007-01-01

    A variant coil of the high frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. This coil design is similar to the popular birdcage coil but it has the advantage that it can be easily built following the physical principles of the cavity resonators [1]. The equivalent circuit approach was used to compute the resonant frequency of this coil design, and compared the results with those frequency values obtained with theory. A transceiver coil composed of 4 cavities with a rod length of 4.5 cm, and a resonant frequency of 170.29 MHz was built. Phantom images were then acquired to test its viability using standard imaging sequences. The theory facilitates its development for high frequency MRI applications of animal models.

  6. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  7. Nuclear quadrupole resonance and nuclear magnetic resonance of copper in the high-T/sub c/ superconductor YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/

    SciTech Connect

    Furo, I.; Janossy, A.; Mihaly, L.; Banki, P.; Pocsik, I.; Bakonyi, I.; Heinmaa, I.; Joon, E.; Lippmaa, E.

    1987-10-01

    The /sup 65/Cu and /sup 63/Cu zero-field nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) at 4.7 and 8.5 T and the spin-lattice relaxation time T/sub 1/ at 8.5 T are measured in the superconducting oxide YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ between 80 and 300 K. No sign of magnetic order or localized moments are found. The NQR linewidth is strongly dependent on the oxygen content. We assign the /sup 63/Cu NQR line at 22 MHz to the Cu site with oxygen coordination 5. T/sub 1/ is dominated by the quadrupolar relaxation due to spin-phonon coupling.

  8. Magnetic resonance in ferromagnetic films, multilayers and nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia; Bates, Brittany; Greene, Nicole

    2014-03-01

    Incorporation of magnetic materials into metamaterial systems provides an opportunity to tune microwave permeability with external magnetic field. We studied magnetically dependent microwave properties of polymer composites with iron oxide nanoparticles, ferromagnetic films and ferromagnetic/dielectric multilayers. We show that the permeability of such systems can be magnetically tuned from positive to negative values in the range of ferromagnetic resonance, strongly affecting wave propagation. Strong changes in mu-metal permeability in low field range provides an additional possibility of tuning.

  9. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  10. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  11. Magnetism of gold nanorods probed using electron spin resonance

    NASA Astrophysics Data System (ADS)

    Inagaki, Y.; Yonemura, H.; Sakai, N.; Makihara, Y.; Kawae, T.; Yamada, S.

    2016-08-01

    Electron spin resonance (ESR) spectroscopy has been performed for gold nanorods (AuNRs) of four different sizes covered with a diamagnetic stabilizing component, cetyltrimethylammonium bromide. ESR signals were detected in AuNRs except the largest one. Two smallest AuNRs showed an abrupt change in the temperature dependence of resonance field and line width at around 60 K, indicating ferromagnetic phase transition. In medium-size AuNRs, the resonance with a large shift was observed below 100 K. The resonance field shifts at the lowest temperature exhibit systematic variation with the system size, which is explained by considering magnetic anisotropy for the ferromagnetic resonance.

  12. Magnetism of gold nanorods probed using electron spin resonance

    SciTech Connect

    Inagaki, Y. Kawae, T.; Yonemura, H.; Yamada, S.; Sakai, N.; Makihara, Y.

    2016-08-15

    Electron spin resonance (ESR) spectroscopy has been performed for gold nanorods (AuNRs) of four different sizes covered with a diamagnetic stabilizing component, cetyltrimethylammonium bromide. ESR signals were detected in AuNRs except the largest one. Two smallest AuNRs showed an abrupt change in the temperature dependence of resonance field and line width at around 60 K, indicating ferromagnetic phase transition. In medium-size AuNRs, the resonance with a large shift was observed below 100 K. The resonance field shifts at the lowest temperature exhibit systematic variation with the system size, which is explained by considering magnetic anisotropy for the ferromagnetic resonance.

  13. Broadband electrically detected magnetic resonance using adiabatic pulses.

    PubMed

    Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Broadband electrically detected magnetic resonance using adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Hrubesch, F. M.; Braunbeck, G.; Voss, A.; Stutzmann, M.; Brandt, M. S.

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

  15. Nuclear magnetic resonance data of C10H15

    NASA Astrophysics Data System (ADS)

    Kalinowski, H.-O.; Kumar, M.; Gupta, V.; Gupta, R.

    This document is part of Part 1 `Aliphatic Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  16. Magnetic Resonance Fiber Tracking in a Neonate with Hemimegalencephaly

    PubMed Central

    Re, Thomas J; Scarciolla, Laura; Takahashi, Emi; Specchio, Nicola; Bernardi, Bruno; Longo, Daniela

    2015-01-01

    A magnetic resonance diffusion fiber tracking study in neonate diagnosed with left hemisphere hemimegalencephaly is presented. Despite diffuse morphologic deformities identified in conventional imaging, all major pathways were identifiable bilaterally with minor aberrations in vicinity of morphologic lesions. PMID:25655045

  17. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance.

    PubMed

    Dinsfriend, William; Rao, Krishnasree; Matulevicius, Susan

    2016-06-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis.

  18. Nuclear magnetic resonance data of C9H20OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  19. Nuclear magnetic resonance data of C8H18OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  20. Normal perinatal and paediatric postmortem magnetic resonance imaging appearances.

    PubMed

    Arthurs, Owen J; Barber, Joy L; Taylor, Andrew M; Sebire, Neil J

    2015-04-01

    As postmortem imaging becomes more widely used following perinatal and paediatric deaths, the correct interpretation of images becomes imperative, particularly given the increased use of postmortem magnetic resonance imaging. Many pathological processes may have similar appearances in life and following death. A thorough knowledge of normal postmortem changes is therefore required within postmortem magnetic resonance imaging to ensure that these are not mistakenly interpreted as significant pathology. Similarly, some changes that are interpreted as pathological if they occur during life may be artefacts on postmortem magnetic resonance imaging that are of limited significance. This review serves to illustrate briefly those postmortem magnetic resonance imaging changes as part of the normal changes after death in fetuses and children, and highlight imaging findings that may confuse or mislead an observer to identifying pathology where none is present.

  1. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance

    PubMed Central

    Rao, Krishnasree; Matulevicius, Susan

    2016-01-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis. PMID:27303242

  2. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  3. Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields

    ERIC Educational Resources Information Center

    Reynolds, G. Fredric

    1977-01-01

    Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)

  4. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  5. Magnetic resonance imaging of sports injuries of the ankle.

    PubMed

    Morrison, William B

    2003-04-01

    Basic sports-related injuries of the ankle include ligament tear, tendon degeneration and tear, bone bruise, fracture, impingement, osteochondral defect, and plantar fasciitis. This article discusses the magnetic resonance imaging appearance of these injuries.

  6. Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields

    ERIC Educational Resources Information Center

    Reynolds, G. Fredric

    1977-01-01

    Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)

  7. Dispersive optical detection of magnetic Feshbach resonances in ultracold gases

    NASA Astrophysics Data System (ADS)

    Sawyer, Bianca J.; Horvath, Milena S. J.; Tiesinga, Eite; Deb, Amita B.; Kjærgaard, Niels

    2017-08-01

    Magnetically tunable Feshbach resonances in ultracold atomic systems are chiefly identified and characterized through time-consuming atom loss spectroscopy. We describe an off-resonant dispersive optical probing technique to rapidly locate Feshbach resonances and demonstrate the method by locating four resonances of 87Rb, between the |F =1 , mF=1 〉 and |F =2 , mF=0 〉 states. Despite the loss features being ≲0.1 G wide, we require only 21 experimental runs to explore a magnetic field range >18 G, where 1 G =10-4T . The resonances consist of two known s -wave features in the vicinity of 9 G and 18 G and two previously unreported p -wave features near 5 G and 10 G. We further utilize the dispersive approach to directly characterize the two-body loss dynamics for each Feshbach resonance.

  8. Magnetic resonance imaging of the saccular otolithic mass.

    PubMed Central

    Sbarbati, A; Leclercq, F; Antonakis, K; Osculati, F

    1992-01-01

    The frog's inner ear was studied in vivo by high spatial resolution magnetic resonance imaging at 7 Tesla. The vestibule, the internal acoustic meatus, and the auditory tube have been identified. The large otolithic mass contained in the vestibule showed a virtual absence of magnetic resonance signal probably due to its composition of closely packed otoconia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:1295875

  9. Nuclear magnetic resonance in environmental engineering: principles and applications.

    PubMed

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems.

  10. Magnetic resonance imaging diagnosis of disseminated necrotizing leukoencephalopathy

    SciTech Connect

    Atlas, S.W.; Grossman, R.I.; Packer, R.J.; Goldberg, H.I.; Hackney, D.B.; Zimmerman, R.A.; Bilaniuk, L.T.

    1987-01-01

    Disseminated necrotizing leukoencephalopathy is a rare syndrome of progressive neurologic deterioration seen most often in patients who have received central nervous system irradiation combined with intrathecal or systemic chemotherapy in the treatment or prophylaxis of various malignancies. Magnetic resonance imaging was more sensitive than computed tomography in detecting white matter abnormalities in the case of disseminated necrotizing leukoencephalopathy reported here. Magnetic resonance imaging may be useful in diagnosing incipient white matter changes in disseminated necrotizing leukoencephalopathy, thus permitting early, appropriate therapeutic modifications.

  11. Magnetic resonance imaging in the diagnosis of spinal cord diseases.

    PubMed Central

    Aichner, F; Poewe, W; Rogalsky, W; Wallnöfer, K; Willeit, J; Gerstenbrand, F

    1985-01-01

    Experience with magnetic resonance imaging in 22 patients with diseases of the spinal cord is reported. Important additional diagnostic information as compared to conventional neuroradiological techniques (myelography, spinal CT) was gained especially in cases of hydrosyringomyelia, intraspinal tumour and multiple sclerosis. It is suggested that magnetic resonance imaging may become the method of choice in the diagnosis of structural spinal cord diseases. Images PMID:3936900

  12. Magnetic resonance imaging of experimental testicular torsion.

    PubMed

    Kaipia, A; Ryymin, P; Mäkelä, E; Aaltonen, M; Kähärä, V; Kangasniemi, M

    2005-12-01

    We investigated the feasibility of contrast enhanced (CE)-dynamic magnetic resonance imaging (MRI) for the detection of testicular torsion induced hypoperfusion in an experimental rat model. Adult Sprague-Dawley rats were subjected to unilateral testicular torsion of 360 or 720 degrees. After 1 h, the tail veins of the anaesthetized rats were cannulated and T2 -, diffusion-weighted and T1-weighted CE-dynamic MRI were subsequently performed by a 1.5 T MRI scanner. On apparent diffusion coefficient (ADC) images, the region of interest values of the ischaemic and control testes was compared. From CE-dynamic MR images, the maximal slopes of contrast enhancement were calculated and compared. In testicular torsion of 360 degrees, the maximal slope of contrast enhancement was 0.072%/s vs. 0.47%/s in the contralateral control testis (p < 0.001). A torsion of 720 degrees diminished the slope of contrast enhancement to 0.046%/s vs. 0.37%/s in the contralateral testis (p < 0.001). Diminished blood flow during torsion also followed in decreased ADC values in both 360 degrees (12.4% decrease; p < 0.05) and 720 degrees (10.8% decrease; p < 0.001) of torsion. Torsion of the testis causes ipsilateral hypoperfusion and decreased gadolinium uptake in a rat model that can be easily detected and quantified by CE-dynamic MRI. In diffusion-weighted MRI images, acute hypoperfusion results in a slight decrease of ADC values. Our results suggest that CE-dynamic MRI in combination with diffusion-weighted MRI can be used to detect compromised blood flow due to acute testicular torsion.

  13. Magnetic Resonance Fingerprinting with short relaxation intervals.

    PubMed

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T1 and T2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially resolved

  14. Identification of cortex in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    VanMeter, John W.; Sandon, Peter A.

    1992-06-01

    The overall goal of the work described here is to make available to the neurosurgeon in the operating room an on-line, three-dimensional, anatomically labeled model of the patient brain, based on pre-operative magnetic resonance (MR) images. A stereotactic operating microscope is currently in experimental use, which allows structures that have been manually identified in MR images to be made available on-line. We have been working to enhance this system by combining image processing techniques applied to the MR data with an anatomically labeled 3-D brain model developed from the Talairach and Tournoux atlas. Here we describe the process of identifying cerebral cortex in the patient MR images. MR images of brain tissue are reasonably well described by material mixture models, which identify each pixel as corresponding to one of a small number of materials, or as being a composite of two materials. Our classification algorithm consists of three steps. First, we apply hierarchical, adaptive grayscale adjustments to correct for nonlinearities in the MR sensor. The goal of this preprocessing step, based on the material mixture model, is to make the grayscale distribution of each tissue type constant across the entire image. Next, we perform an initial classification of all tissue types according to gray level. We have used a sum of Gaussian's approximation of the histogram to perform this classification. Finally, we identify pixels corresponding to cortex, by taking into account the spatial patterns characteristic of this tissue. For this purpose, we use a set of matched filters to identify image locations having the appropriate configuration of gray matter (cortex), cerebrospinal fluid and white matter, as determined by the previous classification step.

  15. Fetal magnetic resonance imaging in obstetric practice.

    PubMed

    Köşüş, Aydın; Köşüş, Nermin; Usluoğulları, Betül; Duran, Müzeyyen; Turhan, Nilgün Öztürk; Tekşam, Mehmet

    2011-01-01

    Ultrasonography (USG) is the primary imaging method for prenatal diagnosis of fetal abnormalities since its discovery. Although it is the primary method of fetal imaging, it cannot provide sufficient information about the fetus in some conditions such as maternal obesity, oligohydramnios and engagement of the fetal head. At this stage, magnetic resonance imaging (MRI) facilitates examination by providing more specific information. The need and importance of fetal MRI applications further increased by the intrauterine surgery which is currently gaining popularity. Some advantages of fetal MRI over USG are the good texture of contrast, a greater study area and visualization of the lesion and neighbourhood relations, independence of the operators. Also it is not affected by maternal obesity and severe oligohydramnios. However, MRI is inadequate in detecting fetal limb and cardiac abnormalities when compared to USG. MRI is not used routinely in pregnancy. It is used in situations where nonionizing imaging methods are inadequate or ionizing radiation is required in pregnant women. It is not recommended during the first trimester. Contrast agent (Godalinium) is not used during pregnancy. It is believed that MRI is not harmful to the fetus, although the biological risk of MRI application is not known. MRI technique is superior to USG in the detection of corpus callosum dysgenesis, third-trimester evaluation of posterior fossa malformations, bilateral renal agenesis, diaphragmatic hernia and assessment of lung maturation. Especially, it is the method of choice for evaluation of central nervous system (CNS) abnormalities. Fetal MRI has a complementary role with USG. It provides important information for prenatal diagnosis, increases diagnostic accuracy, and in turn affects the prenatal treatment, prenatal interventions and birth plan.

  16. Magnetoliposomes as magnetic resonance imaging contrast agents.

    PubMed

    Soenen, Stefaan J; Vande Velde, Greetje; Ketkar-Atre, Ashwini; Himmelreich, Uwe; De Cuyper, Marcel

    2011-01-01

    Among the wide variety in iron oxide nanoparticles which are routinely used as magnetic resonance imaging (MRI) contrast agents, magnetoliposomes (MLs) take up a special place. In the present work, the two main types (large and small MLs) are defined and their specific features are commented. For both types of MLs, the flexibility of the lipid coating allows for efficient functionalization, enabling bimodal imaging (e.g., MRI and fluorescence) or the use of MLs as theranostics. These features are especially true for large MLs, where several magnetite cores are encapsulated within a single large liposome, which were found to be highly efficient theranostic agents. By carefully fine-tuning the number of magnetite cores and attaching Gd(3+) -complexes onto the liposomal surface, the large MLs can be efficiently optimized for dynamic MRI. A special type of MLs, biogenic MLs, can also be efficiently used in this regard, with potential applications in cancer treatment and imaging. Small MLs, where the lipid bilayer is immediately attached onto a solid magnetite core, give a very high r2 /r1 ratio. The flexibility of the lipid bilayer allows the incorporation of poly(ethylene glycol)-lipid conjugates to increase blood circulation times and be used as bone marrow contrast agents. Cationic lipids can also be incorporated, leading to high cell uptake and associated strong contrast generation in MRI of implanted cells. Unique for these small MLs is the high resistance the particles exhibit against intracellular degradation compared with dextran- or citrate-coated particles. Additionally, intracellular clustering of the iron oxide cores enhances negative contrast generation and enables longer tracking of labeled cells in time. Copyright © 2011 John Wiley & Sons, Inc.

  17. Magnetic Resonance Imaging in Postprostatectomy Radiotherapy Planning

    SciTech Connect

    Sefrova, Jana; Odrazka, Karel; Paluska, Petr; Belobradek, Zdenek; Brodak, Milos; Dolezel, Martin; Prosvic, Petr; Macingova, Zuzana; Vosmik, Milan; Hoffmann, Petr; Louda, Miroslav; Nejedla, Anna

    2012-02-01

    Purpose: To investigate whether the use of magnetic resonance imaging (MRI) in prostate bed treatment planning could influence definition of the clinical target volume (CTV) and organs at risk. Methods and Materials: A total of 21 consecutive patients referred for prostate bed radiotherapy were included in the present retrospective study. The CTV was delineated according to the European Organization for Research and Treatment of Cancer recommendations on computed tomography (CT) and T{sub 1}-weighted (T{sub 1}w) and T{sub 2}-weighted (T{sub 2}w) MRI. The CTV magnitude, agreement, and spatial differences were evaluated on the planning CT scan after registration with the MRI scans. Results: The CTV was significantly reduced on the T{sub 1}w and T{sub 2}w MRI scans (13% and 9%, respectively) compared with the CT scans. The urinary bladder was drawn smaller on the CT scans and the rectum was smaller on the MRI scans. On T{sub 1}w MRI, the rectum and urinary bladder were delineated larger than on T{sub 2}w MRI. Minimal agreement was observed between the CT and T{sub 2}w images. The main spatial differences were measured in the superior and superolateral directions in which the CTV on the MRI scans was 1.8-2.9 mm smaller. In the posterior and inferior border, no difference was seen between the CT and T{sub 1}w MRI scans. On the T{sub 2}w MRI scans, the CTV was larger in these directions (by 1.3 and 1.7 mm, respectively). Conclusions: The use of MRI in postprostatectomy radiotherapy planning resulted in a reduction of the CTV. The main differences were found in the superior part of the prostate bed. We believe T{sub 2}w MRI enables more precise definition of prostate bed CTV than conventional planning CT.

  18. Time to stroke magnetic resonance imaging.

    PubMed

    Burke, James F; Sussman, Jeremy B; Morgenstern, Lewis B; Kerber, Kevin A

    2013-08-01

    Recent guidelines on stroke neuroimaging from the American Academy of Neurology (AAN) recommend magnetic resonance imaging (MRI) over computed tomography (CT) for stroke diagnosis when patients present within 12 hours of onset. We sought to estimate the proportion of stroke MRI that is performed within 12 hours. Using the best available data, we estimated total time from symptom onset to MRI with a Monte Carlo simulation. We modeled 3 times to MRI: time to presentation, time to emergency department (ED) MRI, and time to inpatient MRI. Total time to MRI was estimated by summing these time components while varying model parameters around our base model. Sensitivity analyses assessed the relative importance of model parameters to overall MRI timing. In 2009, we estimate that 66% of stroke patients underwent MRI, 14% received an MRI in the ED, and 68% of all MRIs were obtained on hospital day 0 or 1. We estimate that 29% (95% confidence interval 24-33%) of stroke MRIs are obtained within 12 hours of onset. Sensitivity analyses revealed that even large clinical changes (eg, decreasing time to presentation) would only moderately influence this proportion. For example, if mean time to presentation were reduced to 30 minutes (from the base case estimate of 16 hours), the proportion of stroke MRI performed within 12 hours would only increase to 55.3%. Stroke guidelines favor the use of MRI over CT only during the first 12 hours from symptom onset, yet less than one-third of stroke MRIs are actually performed within this timeframe. Copyright © 2013 National Stroke Association. All rights reserved.

  19. Tools for cardiovascular magnetic resonance imaging

    PubMed Central

    Krishnamurthy, Ramkumar; Cheong, Benjamin

    2014-01-01

    In less than fifteen years, as a non-invasive imaging option, cardiovascular MR has grown from a being a mere curiosity to becoming a widely used clinical tool for evaluating cardiovascular disease. Cardiovascular magnetic resonance imaging (CMRI) is now routinely used to study myocardial structure, cardiac function, macro vascular blood flow, myocardial perfusion, and myocardial viability. For someone entering the field of cardiac MR, this rapid pace of development in the field of CMRI might make it difficult to identify a cohesive starting point. In this brief review, we have attempted to summarize the key cardiovascular imaging techniques that have found widespread clinical acceptance. In particular, we describe the essential cardiac and respiratory gating techniques that form the backbone of all cardiovascular imaging methods. It is followed by four sections that discuss: (I) the gradient echo techniques that are used to assess ventricular function; (II) black-blood turbo spin echo (SE) methods used for morphologic assessment of the heart; (III) phase-contrast based techniques for the assessment of blood flow; and (IV) CMR methods for the assessment of myocardial ischemia and viability. In each section, we briefly summarize technical considerations relevant to the clinical use of these techniques, followed by practical information for its clinical implementation. In each of those four areas, CMRI is considered either as the benchmark imaging modality against which the diagnostic performance of other imaging modalities are compared against, or provides a complementary capability to existing imaging techniques. We have deliberately avoided including cutting-edge CMR imaging techniques practiced at few academic centers, and restricted our discussion to methods that are widely used and are likely to be available in a clinical setting. Our hope is that this review would propel an interested reader toward more comprehensive reviews in the literature. PMID:24834409

  20. Magnetic Resonance Imaging of Normal Pressure Hydrocephalus.

    PubMed

    Bradley, William G

    2016-04-01

    Normal pressure hydrocephalus (NPH) is a syndrome found in the elderly, which is characterized by ventriculomegaly and deep white matter ischemia (DWMI) on magnetic resonance imaging (MRI) and the clinical triad of gait disturbance, dementia, and urinary incontinence. NPH has been estimated to account for up to 10% of cases of dementia and is significant because it is treatable by ventriculoperitoneal shunting. Patients with a known cause of chronic communicating hydrocephalus, that is, meningitis or hemorrhage, tend to respond better than patients with the so-called "idiopathic" form, most likely because of poor selection criteria in the past. Good response to shunting has been associated with hyperdynamic cerebrospinal fluid (CSF) flow through the aqueduct. In the early days of MRI, patients with a large CSF flow void extending from the foramen of Monro through the aqueduct to the fourth ventricle had an excellent chance of responding to ventriculoperitoneal shunting (P < 0.003). Today, we use phase-contrast MRI to measure the volume of CSF flowing through the aqueduct in either direction over a cardiac cycle. When this aqueductal CSF stroke volume is sufficiently elevated, there is an excellent chance of shunt responsiveness (100% positive predictive value in 1 study). Idiopathic NPH appears to be a "two-hit" disease-benign external hydrocephalus (BEH) in infancy followed by DWMI in late adulthood. As BEH occurs when the sutures are still open, these infants present with large heads, a finding also noted in patients with NPH. Although BEH has been attributed to immature arachnoidal granulations with decreased CSF resorptive capacity, this now appears to be permanent and may lead to a parallel pathway for CSF resorption via the extracellular space of the brain. With DWMI, the myelin lipid is lost, exposing the polar water molecules to myelin protein, increasing resistance to CSF outflow and leading to backing up of CSF and hydrocephalus.