Relativistic excited state binding energies and RMS radii of Λ-hypernuclei
NASA Astrophysics Data System (ADS)
Nejad, S. Mohammad Moosavi; Armat, A.
2018-02-01
Using an analytical solution for the relativistic equation of single Λ-hypernuclei in the presence of Woods-Saxon (WS) potential we present, for the first time, an analytical form for the excited state binding energies of 1p, 1d, 1f and 1g shells of a number of hypernuclei. Based on phenomenological analysis of the Λ binding energies in a set of Λ-hypernuclei, the WS potential parameters are obtained phenomenologically for the set of Λ-hypernuclei. Systematic study of the energy levels of single Λ-hypernuclei enables us to extract more detailed information about the Λ-nucleon interaction. We also study the root mean square (RMS) radii of the Λ orbits in the hypernuclear ground states. Our results are presented for several hypernuclei and it is shown that our results for the binding energies are in good agreement with experimental data.
The magnetic field of the equatorial magnetotail from 10 to 40 earth radii
NASA Technical Reports Server (NTRS)
Fairfield, D. H.
1986-01-01
A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.
Radii of neutron drops probed via the neutron skin thickness of nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, P. W.; Gandolfi, S.
Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less
Radii of neutron drops probed via the neutron skin thickness of nuclei
Zhao, P. W.; Gandolfi, S.
2016-10-10
Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Acuna, M. H.; Zanetti, L. J.; Potemra, T. A.
1987-01-01
The MPTE/CCE magnetic field experiment has been used to obtain a quantitative evaluation of the frequency and extent of magnetic field distortion in the near-tail region at less than 8.8 earth radii. The variation of this distortion with Kp, radial distance, longitude, and near-equatorial latitude is reported. It has been found that taillike distortions from the dipole field direction may reach 80 deg near the MPTE/CE apogee of 8.8 earth radii. The Bz field component in dipole coordinates was always positive within 0.5 earth radii of the equatorial current sheet, indicating the neutral lines were never seen inside of 8.8 earth radii. Fields were most taillike near midnight and during times of high Kp. At 8.5 earth radii the equatorial field magnitude depressions were roughly half the dipole field strength of 51 nT. These depressions are larger at lesser distances, reaching -40 nT at 3.4 earth radii for Kp of 2- or less and -80 nT and Kp of 3+ and greater.
Interaction cross sections and matter radii of oxygen isotopes using the Glauber model
NASA Astrophysics Data System (ADS)
Ahmad, Suhel; Usmani, A. A.; Ahmad, Shakeb; Khan, Z. A.
2017-05-01
Using the Coulomb modified correlation expansion for the Glauber model S matrix, we calculate the interaction cross sections of oxygen isotopes (O-2616) on 12C at 1.0 GeV/nucleon. The densities of O-2616 are obtained using (i) the Slater determinants consisting of the harmonic oscillator single-particle wave functions (SDHO) and (ii) the relativistic mean-field approach (RMF). Retaining up to the two-body density term in the correlation expansion, the calculations are performed employing the free as well as the in-medium nucleon-nucleon (N N ) scattering amplitude. The in-medium N N amplitude considers the effects arising due to phase variation, higher momentum transfer components, and Pauli blocking. Our main focus in this work is to reveal how could one make the best use of SDHO densities with reference to the RMF one. The results demonstrate that the SDHO densities, along with the in-medium N N amplitude, are able to provide satisfactory explanation of the experimental data. It is found that, except for O,2423, the predicted SDHO matter rms radii of oxygen isotopes closely agree with those obtained using the RMF densities. However, for O,2423, our results require reasonably larger SDHO matter rms radii than the RMF values, thereby predicting thicker neutron skins in 23O and 24O as compared to RMF ones. In conclusion, the results of the present analysis establish the utility of SDHO densities in predicting fairly reliable estimates of the matter rms radii of neutron-rich nuclei.
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.
1983-01-01
Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.
Proton Radii of 4,6,8He Isotopes from High-Precision Nucleon-Nucleon Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caurier, E; Navratil, P
2005-11-16
Recently, precision laser spectroscopy on {sup 6}He atoms determined accurately the isotope shift between {sup 4}He and {sup 6}He and, consequently, the charge radius of {sup 6}He. A similar experiment for {sup 8}He is under way. We have performed large-scale ab initio calculations for {sup 4,6,8}He isotopes using high-precision nucleon-nucleon (NN) interactions within the no-core shell model (NCSM) approach. With the CD-Bonn 2000 NN potential we found point-proton root-mean-square (rms) radii of {sup 4}He and {sup 6}He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment and predict the {sup 8}He point proton rms radius to be 1.88(6) fm. Atmore » the same time, our calculations show that the recently developed nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates the charge radii.« less
Branching in Pea (Action of Genes Rms3 and Rms4).
Beveridge, C. A.; Ross, J. J.; Murfet, I. C.
1996-01-01
The nonallelic ramosus mutations rms3-2 and rms4 of pea (Pisum sativum L.) cause extensive release of vegetative axillary buds and lateral growth in comparison with wild-type (cv Torsdag) plants, in which axillary buds are not normally released under the conditions utilized. Grafting studies showed that the expression of the rms4 mutation in the shoot is independent of the genotype of the root-stock. In contrast, the length of the branches at certain nodes of rms3-2 plants was reduced by grafting to wild-type stocks, indicating that the wild-type Rms3 gene may control the level of a mobile substance produced in the root. This substance also appears to be produced in the shoot because Rms3 shoots did not branch when grafted to mutant rms3-2 rootstocks. However, the end product of the Rms3 gene appears to differ from that of the Rms2 gene (C.A. Beveridge, J.J. Ross, and I.C. Murfet [1994] Plant Physiol 104: 953-959) because reciprocal grafts between rms3-2 and rms2 seedlings produced mature shoots with apical dominance similar to that of rms3-2 and rms2 shoots grafted to wild-type stocks. Indole-3-acetic acid levels were not reduced in apical or nodal portions of rms4 plants and were actually elevated (up to 2-fold) in rms3-2 plants. It is suggested that further studies with these branching mutants may enable significant progress in understanding the normal control of apical dominance and the related communication between the root and shoot. PMID:12226224
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
Attempt to probe nuclear charge radii by cluster and proton emissions
NASA Astrophysics Data System (ADS)
Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong
2013-05-01
We deduce the rms nuclear charge radii for ground states of light and medium-mass nuclei from experimental data of cluster radioactivity and proton emission in a unified framework. On the basis of the density-dependent cluster model, the calculated decay half-lives are obtained within the modified two-potential approach. The charge distribution of emitted clusters in the cluster decay and that of daughter nuclei in the proton emission are determined to correspondingly reproduce the experimental half-lives within the folding model. The obtained charge distribution is then employed to give the rms charge radius of the studied nuclei. Satisfactory agreement between theory and experiment is achieved for available experimental data, and the present results are found to be consistent with theoretical estimations. This study is expected to be helpful in the future detection of nuclear sizes, especially for these exotic nuclei near the proton dripline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douici, M.; Allal, N. H.; Fellah, M.
The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.
NASA Astrophysics Data System (ADS)
Matthews, Benjamin D.; LaVan, David A.; Overby, Darryl R.; Karavitis, John; Ingber, Donald E.
2004-10-01
We describe the design and fabrication of a temperature-controlled electromagnetic microneedle (EMN) to generate custom magnetic field gradients for biomedical and biophysical applications. An electropolishing technique was developed to sharpen the EMN pole tip to any desired radius between 100 nm and 20 μm. The EMN can be used to apply strong static or dynamic forces (>50nN) to micrometer- or nanometer-sized magnetic beads without producing significant heating or needle movement. Large tip radii (20 μm) allow magnetic force application to multiple magnetic beads over a large area, while small radii (0.1-6 μm) can be used to selectively pull or capture single magnetic beads from within a large population of similar particles. The customizable EMN is thus well suited for micro- and nanomanipulation of magnetic particles linked to biomolecules or living cells.
RMS active damping augmentation
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.
1992-01-01
The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.
The inflated radii of M dwarfs in the Pleiades
NASA Astrophysics Data System (ADS)
Jackson, R. J.; Deliyannis, Constantine P.; Jeffries, R. D.
2018-05-01
Rotation periods obtained with the Kepler satellite have been combined with precise measurements of projected rotation velocity from the WIYN 3.5-m telescope to determine the distribution of projected radii for several hundred low-mass (0.1 ≤ M/M⊙ ≤ 0.8), fast-rotating members of the Pleiades cluster. A maximum likelihood modelling technique, that takes account of observational uncertainties, selection effects and censored data, and considers the effects of differential rotation and unresolved binarity, has been used to find that the average radius of these stars is 14 ± 2 per cent larger at a given luminosity than predicted by current evolutionary models of Dotter et al. and Baraffe et al. The same models are a reasonable match to the interferometric radii of older, magnetically inactive field M dwarfs, suggesting that the over-radius may be associated with the young, magnetically active nature of the Pleiades objects. No evidence is found for any change in this over-radius above and below the boundary marking the transition to full convection. Published evolutionary models that incorporate either the effects of magnetic inhibition of convection or the blocking of flux by dark star-spots do not individually explain the radius inflation, but a combination of the two effects might. The distribution of projected radii is consistent with the adopted hypothesis of a random spatial orientation of spin axes; strong alignments of the spin vectors into cones with an opening semi-angle <30° can be ruled out. Any plausible but weaker alignment would increase the inferred over-radius.
The effect of starspots on the radii of low-mass pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Jackson, R. J.; Jeffries, R. D.
2014-07-01
A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.
2009-09-23
ISS020-E-042237 (23 Sept. 2009) --- NASA astronaut Nicole Stott and European Space Agency astronaut Frank De Winne, both Expedition 20 flight engineers, work the controls of the JEM Robotic Manipulator System (JEM-RMS) in the Kibo laboratory of the International Space Station. De Winne and Stott used the JEM-RMS to grapple the Exposed Pallet (EP) from the station’s Canadarm2 and berth it to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).
2009-09-23
ISS020-E-042225 (23 Sept. 2009) --- NASA astronaut Nicole Stott and European Space Agency astronaut Frank De Winne, both Expedition 20 flight engineers, work the controls of the JEM Robotic Manipulator System (JEM-RMS) in the Kibo laboratory of the International Space Station. De Winne and Stott used the JEM-RMS to grapple the Exposed Pallet (EP) from the station’s Canadarm2 and berth it to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).
NASA Astrophysics Data System (ADS)
Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg
2018-06-01
Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 < M < 0.4 M Sun), the discrepancy is only about 6% and comparable to results from interferometry and eclipsing binaries. At the lowest masses (0.08 < M < 0.18 M Sun), we find that the discrepancy between observations and theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.
2005-08-02
ISS011-E-11416 (2 August 2005) --- A line of thunderstorms form the backdrop for this view of the extended Space Shuttle Discovery;s remote manipulator system (RMS) robotic arm while docked to the International Space Station during the STS-114 mission.
The two radii of a charged particle.
Michov, B M
1989-01-01
The existence of two radii of each charged particle-a geometric and electrokinetic radii, is supposed. The mathematical relationship between them in the four possible combinations of an ion and its counterion is analyzed: (i) at equal geometric radii and, in absolute values, equal valencies; (ii) at equal geometric radii and, in absolute values, different valencies; (iii) at different geometric radii and, in absolute values, equal valencies; (iv) at different geometric radii and, in absolute values, different valencies. One of the equations worked out can be used to define the relationship between the geometric and electrokinetic radii of a polyion. All the equations are used in working out precise calculations.
NASA Astrophysics Data System (ADS)
Gibbs, G. V.; Ross, N. L.; Cox, D. F.
2017-09-01
The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.
Financing development stage biotechnology companies: RMs vs. IPOs.
Ahn, Mark J; Couch, Robert B; Wu, Wei
2011-01-01
We examine reverse mergers (RMs) in the biotechnology industry and find that, when compared to initial public offerings (IPOs), RMs are smaller, have significantly lower market valuations relative to size, and generally invest less. We also find that RMs exhibit positive abnormal returns on the announcement date and throughout the first year after the RM event. In looking at liquidity measures, we find that RMs tend to be less liquid than IPOs and that illiquidity is greater during the six-month lock-up period following the RM event. Thus, RMs may be an appropriate alternative financing vehicle in capital intensive, high-risk biotechnology companies which require accessing deeper and larger pools of investors in public capital markets across multiple milestone periods in a "pay for progress" environment.
Predictions of nuclear charge radii
NASA Astrophysics Data System (ADS)
Bao, M.; Lu, Y.; Zhao, Y. M.; Arima, A.
2016-12-01
The nuclear charge radius is a fundamental property of an atomic nucleus. In this article we study the predictive power of empirical relations for experimental nuclear charge radii of neighboring nuclei and predict the unknown charge radii of 1085 nuclei based on the experimental CR2013 database within an uncertainty of 0.03 fm.
2005-07-30
S114-E-6077 (30 July 2005) --- The blackness of space and Earths horizon form the backdrop for this view while Space Shuttle Discovery was docked to the International Space Station during the STS-114 mission. A portion of Discoverys remote manipulator system (RMS) robotic arm is visible at lower right and a section of the Stations truss is visible top frame.
NASA Astrophysics Data System (ADS)
Dexter, Jason; McKinney, Jonathan C.; Markoff, Sera; Tchekhovskoy, Alexander
2014-05-01
Magnetically arrested accretion discs (MADs), where the magnetic pressure in the inner disc is dynamically important, provide an alternative mechanism for regulating accretion to what is commonly assumed in black hole systems. We show that a global magnetic field inversion in the MAD state can destroy the jet, significantly increase the accretion rate, and move the effective inner disc edge in to the marginally stable orbit. Reconnection of the MAD field in the inner radii launches a new type of transient outflow containing hot plasma generated by magnetic dissipation. This transient outflow can be as powerful as the steady magnetically dominated Blandford-Znajek jet in the MAD state. The field inversion qualitatively describes many of the observational features associated with the high-luminosity hard-to-soft state transition in black hole X-ray binaries: the jet line, the transient ballistic jet, and the drop in rms variability. These results demonstrate that the magnetic field configuration can influence the accretion state directly, and hence the magnetic field structure is an important second parameter in explaining observations of accreting black holes across the mass and luminosity scales.
Atomic and Ionic Radii of Elements 1-96.
Rahm, Martin; Hoffmann, Roald; Ashcroft, N W
2016-10-04
Atomic and cationic radii have been calculated for the first 96 elements, together with selected anionic radii. The metric adopted is the average distance from the nucleus where the electron density falls to 0.001 electrons per bohr(3) , following earlier work by Boyd. Our radii are derived using relativistic all-electron density functional theory calculations, close to the basis set limit. They offer a systematic quantitative measure of the sizes of non-interacting atoms, commonly invoked in the rationalization of chemical bonding, structure, and different properties. Remarkably, the atomic radii as defined in this way correlate well with van der Waals radii derived from crystal structures. A rationalization for trends and exceptions in those correlations is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
View of the Columbia's remote manipulator system (RMS)
1982-11-13
STS002-13-226 (13 Nov. 1981) --- Backdropped against Earth's horizon and the darkness of space, the space shuttle Columbia's remote manipulator system (RMS) gets its first workout in zero-gravity during the STS-2 mission. A television camera is mounted near the elbow and another is partially visible near the wrist of the RMS. Photo credit: NASA
Consistent van der Waals radii for the whole main group.
Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G
2009-05-14
Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.
Consistent van der Waals Radii for the Whole Main Group
Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G.
2013-01-01
Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and noble gas crystals are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present article we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi’s scale. The method chosen is a set of two-parameter correlations of Bondi’s radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in Å) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.50; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83. PMID:19382751
Maximum-valence radii of transition metals
Pauling, Linus
1975-01-01
In many of their compounds the transition metals have covalence 9, forming nine bonds with use of nine hybrid spd bond orbitals. A set of maximum-valence single-bond radii is formulated for use in these compounds. These radii are in reasonably good agreement with observed bond lengths. Quadruple bonds between two transition metal atoms are about 50 pm (iron-group atoms) or 55 pm (palladium and platinum-group atoms) shorter than single bonds. This amount of shortening corresponds to four bent single bonds with the best set of bond angles, 79.24° and 128.8°. PMID:16578730
De Winne and Stott at JEM-RMS controls
2009-09-23
ISS020-E-041828 (23 Sept. 2009) --- European Space Agency astronaut Frank De Winne and NASA astronaut Nicole Stott, both Expedition 20 flight engineers, work the controls of the JEM Robotic Manipulator System (JEM-RMS) in the Kibo laboratory of the International Space Station. De Winne and Stott used the JEM-RMS to grapple the Exposed Pallet (EP) from the station’s Canadarm2 and berth it to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).
Incorporating Skew into RMS Surface Roughness Probability Distribution
NASA Technical Reports Server (NTRS)
Stahl, Mark T.; Stahl, H. Philip.
2013-01-01
The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.
Remote Minehunting System (RMS)
2015-12-01
1449.4 1449.4 744.6 Confidence Level Confidence Level of cost estimate for current APB: 50% The Independent Cost Estimate to support the RMS Nunn...which the Derpartment has been successful. It is difficult to calculate mathematically the precise confidence levels associated with life-cycle cost...Baseline (TY $M) Initial PAUC Production Estimate Changes PAUC Development Estimate Econ Qty Sch Eng Est Oth Spt Total 12.957 -0.752 3.262 2.950 0.454
End effector on orbiter's RMS arm
2001-03-13
STS102-E-5201 (13 March 2001) --- A view of the interior of the end effector apparatus on the end of the Canadian-built remote manipulator system (RMS) arm. The photograph was taken with a digital still camera.
Modeling hardwood crown radii using circular data analysis
Paul F. Doruska; Hal O. Liechty; Douglas J. Marshall
2003-01-01
Cylindrical data are bivariate data composed of a linear and an angular component. One can use uniform, first-order (one maximum and one minimum) or second-order (two maxima and two minima) models to relate the linear component to the angular component. Crown radii can be treated as cylindrical data when the azimuths at which the radii are measured are also recorded....
The Galactic Magnetic Field as Viewed from the VLA
NASA Astrophysics Data System (ADS)
van Eck, Cameron; Brown, Jo-Anne
2009-05-01
Interstellar magnetic fields play critical roles in many astrophysical processes. Yet despite their importance, our knowledge about magnetic fields in our Galaxy remains limited. For the field within the Milky Way much of what we do know comes from radio astronomy, through observations of polarization and Faraday rotation measures (RMs) of extragalactic sources and pulsars. A high angular density of RM measurements in several critical areas of the Galaxy is needed to clarify the Galactic magnetic field structure. Understanding the overall structure of the magnetic field will subsequently help us determine the origin and evolution of the field. In an effort to determine the overall structure of the field, Sun et al. (2008) produced 3 models of the Galactic magnetic field based on RM measurements available at the time. These models made distinct predictions for RMs in a region of the inner Galaxy at low Galactic latitude. Using observations made with the Very Large Array (VLA), we have determined RMs for sources in this critical region. In this talk we will present the results of our study and show how the RMs strongly support the ASS+RING model.
RMS arm extended over Earth view
2005-08-02
ISS011-E-11414 (2 August 2005) --- A line of thunderstorms form the backdrop for this view of the extended Space Shuttle Discoverys remote manipulator system (RMS) robotic arm while docked to the International Space Station during the STS-114 mission.
Nuclear charge radii: density functional theory meets Bayesian neural networks
NASA Astrophysics Data System (ADS)
Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
2016-11-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.
Nuclear States with Abnormally Large Radii (size Isomers)
NASA Astrophysics Data System (ADS)
Ogloblin, A. A.; Demyanova, A. S.; Danilov, A. N.; Belyaeva, T. L.; Goncharov, S. A.
2015-06-01
Application of the methods of measuring the radii of the short-lived excited states (Modified diffraction model MDM, Inelastic nuclear rainbow scattering method INRS, Asymptotic normalization coefficients method ANC) to the analysis of some nuclear reactions provide evidence of existing in 9Be, 11B, 12C, 13C the excited states whose radii exceed those of the corresponding ground states by ~ 30%. Two types of structure of these "size isomers" were identified: neutron halo an α-clusters.
[Effect of Radii barrier sleeves on cure depth of composite resin].
Wang, Binping; DU, Yongxiu
2009-01-01
To explore the effect of Radii barrier sleeves on the cure depth of composite resin. Cylinder mold was prepared, and the resin was filled strictly into the mold. The surface was flattened and then cured with plastic engraver's knife.The depth of composite resin which was cured by QHL75TM with or without Radii barrier sleeves was compared. The cure depth of composite resin which were cured by QHL75TM with or without Radii barrier sleeves of photo-curing machine was 4.38 mm and 4.27 mm respectively,with no statistical difference. The cure depth of composite resin is not influenced by Radii barrier sleeves under the same light condition.
The Observational and Theoretical Tidal Radii of Globular Clusters in M87
NASA Astrophysics Data System (ADS)
Webb, Jeremy J.; Sills, Alison; Harris, William E.
2012-02-01
Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.
Astronaut Terry J. Hart in training session RMS for STS-2 bldg 29
NASA Technical Reports Server (NTRS)
1981-01-01
Astronaut Terry J. Hart in training session with the Remote Manipulator System (RMS) for STS-2 bldg 29. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame while Astronaut Sally Ride waits on right for her time at the RMS.
Astronauts Sally Ride and Terry Hart prepare for RMS training for STS-2
1981-07-17
Astronauts Sally Ride and Terry Hart prepare for remote manipulator system (RMS) training for STS-2 in bldg 9A. Views include Ride, Hart and Robert R. Kain of the Flight Activites Branch reviewing procedures for RMS training (34262); Ride and Hart stand beside the RMS control center looking down at the payload bay mock-up (34263).
Mirror Charge Radii and the Neutron Equation of State
NASA Astrophysics Data System (ADS)
Brown, B. Alex
2017-09-01
The differences in the charge radii of mirror nuclei are shown to be proportional to the derivative of the neutron equation of state and the symmetry energy at nuclear matter saturation density. This derivative is important for constraining the neutron equation of state for use in astrophysics. The charge radii of several neutron-rich nuclei are already measured to the accuracy of about 0.005 fm. Experiments at isotope-separator and radioactive-beam facilities are needed to measure the charge radii of the corresponding proton-rich mirror nuclei to a similar accuracy. It is also shown that neutron skins of nuclei with N =Z depend upon the value of the symmetry energy at a density of 0.10 nucleons /fm3 .
NASA Technical Reports Server (NTRS)
Davis, T. N.; Stanley, G. M.; Boyd, J. S.
1973-01-01
The geophysical disturbance environment was quiet during the NASA/MPE barium release at 5 earth radii on September 21, 1971. At the time of the release, the magnetosphere was in the late recovery phase of a principal magnetic storm, the provisional Dst value was -13 gammas, and the local horizontal disturbance at Great Whale River was near zero. Riometer and other observations indicated low-level widespread precipitation of high-energy electrons at Great Whale River before, during, and after the release. Cloudy sky at this station prevented optical observation of aurora. No magnetic or ionospheric effects attributable to the barium release were detected at Great Whale River.
Magsat - A new satellite to survey the earth's magnetic field
NASA Technical Reports Server (NTRS)
Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.
1980-01-01
The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.
RMS upper boom framed by aft flight deck viewing window W10
NASA Technical Reports Server (NTRS)
1983-01-01
Remote Manipulator System (RMS) upper arm boom (tear in multilayer beta cloth) deployed during dynamic interaction test using Payload Flight Test Article (PFTA) is visible outside aft viewing window W10. RMS 'Canada' insignia or logo appears on boom.
The measurement of dynamic radii for passenger car tyre
NASA Astrophysics Data System (ADS)
Anghelache, G.; Moisescu, R.
2017-10-01
The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.
Testing asteroseismic radii of dwarfs and subgiants with Kepler and Gaia
NASA Astrophysics Data System (ADS)
Sahlholdt, C. L.; Silva Aguirre, V.; Casagrande, L.; Mosumgaard, J. R.; Bojsen-Hansen, M.
2018-05-01
We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models for a subset of the sample, and test the impact of using effective temperatures from either spectroscopy or the infrared flux method. An offset of 3 per cent, showing no dependency on any stellar parameters, is found between seismic parallaxes derived from frequency modelling and those from Gaia. For parallaxes based on radii from the scaling relations, a smaller offset is found on average; however, the offset becomes temperature dependent which we interpret as problems with the scaling relations at high stellar temperatures. Using the hotter infrared flux method temperature scale, there is no indication that radii from the scaling relations are inaccurate by more than about 5 per cent. Taking the radii and masses from the modelling of individual frequencies as reference values, we seek to correct the scaling relations for the observed temperature trend. This analysis indicates that the scaling relations systematically overestimate radii and masses at high temperatures, and that they are accurate to within 5 per cent in radius and 13 per cent in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars.
Astronaut Richard H. Truly in training session RMS for STS-2 bldg 9A
NASA Technical Reports Server (NTRS)
1981-01-01
Astronaut Richard H. Truly in training session with the Remote Manipulator System (RMS) for STS-2 bldg 9A. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame (34314); view from behind Truly as he trains at the RMS console (34315).
1983-06-14
S83-33925 (14 June 1983) --- Astronaut Ronald E. McNair, one of NASA?s three 41-B mission specialists, participates in a training session in the Shuttle one-g trainer in the Johnson Space Center?s mockup and integrating laboratory. He stands at the aft flight deck, where controls for the remote manipulator system (RMS) arm are located. Dr. McNair and the remainder of the five-man astronaut crew are scheduled to lift into space aboard the Challenger on February 3, 1984.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabir, Al Amin
2015-12-01
Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreementmore » using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q 2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.« less
MS Currie at RMS controls on aft flight deck
2002-03-07
STS109-E-5685 (7 March 2002) --- Astronaut Nancy J. Currie, mission specialist, works the controls for Columbia's Remote Manipulator System (RMS) on the crew cabin's aft flight deck. On a week with one lengthy space walk per day, Currie has had her hands full with RMS duties to support the space walks of four crewmates. Astronauts James H. Newman and Michael J. Massimino had just begin EVA-4, during which the duo required the services of Currie to control the robotic arm to maneuver them around the various workstations on the Hubble Space Telescope (HST). The image was recorded with a digital still camera.
Checkout activity on the Remote Manipulator System (RMS) arm
1997-02-12
S82-E-5016 (12 Feb. 1997) --- Astronaut Steven A. Hawley, STS-82 mission specialist, controls Discovery's Remote Manipulation System (RMS), from the aft flight deck. Hawley and his crew mates are preparing for a scheduled Extravehicular Activity (EVA) with the Hubble Space Telescope (HST), which will be pulled into the Space Shuttle Discovery's cargo bay with the aid of the Remote Manipulator System (RMS). A series of EVA's will be required to properly service the giant telescope. Hawley served as a mission specialist on NASA's 1990 mission which was responsible for placing HST in Earth-orbit. This view was taken with an Electronic Still Camera (ESC).
Cross-tail magnetic flux ropes as observed by the GEOTAIL spacecraft
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Fairfield, D. H.; Jones, J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; Yamamoto, T.
1995-01-01
Ten transient magnetic structures in Earth's magnetotail, as observed in GEOTAIL measurements, selected for early 1993 (at (-) X(sub GSM) = 90 - 130 Earth radii), are shown to have helical magnetic field configurations similar to those of interplanetary magnetic clouds at 1 AU but smaller in size by a factor of approximately = 700. Such structures are shown to be well approximated by a comprehensive magnetic force-free flux-rope model. For this limited set of 10 events the rope axes are seen to be typically aligned with the Y(sub GSM) axis and the average diameter of these structures is approximately = 15 Earth radii.
STS-39 SPAS-II IBSS is grappled by remote manipulator system (RMS)
1991-05-06
STS039-19-015 (28 April- 6 May 1991) --- This STS-39 35mm scene shows the Strategic Defense Initiative Organization (SDIO) Shuttle Pallet Satellite (SPAS-II) on the end of the remote manipulator system (RMS) end effector. During the eight-day flight, SPAS collected data in both a free-flying mode and while attached to the RMS.
Charge radii of neutron-deficient Ca isotopes
NASA Astrophysics Data System (ADS)
Miller, A. J.; Minamisono, K.; Klose, A.; Everett, N.; Kalman, C.; Powel, R. C.; Watkins, J.; Garand, D.; Sumithrarachchi, C.; Krämer, J.; Maa, B.; Nörtershäuser, W.; Rossi, D. M.; Kujawa, C.; Pineda, S.; Lantis, J.; Liu, Y.; Mantica, P. F.; Pearson, M. R.
2017-09-01
Nucleon shell closures are generally associated with a local minimum in mean-square charge radii, 〈r2 〉 , along an isotopic chain. The 〈r2 〉 of 18Ar and 19K isotopes, however, do not show this signature at the N = 20 neutron shell closure. To gain a microscopic understanding of this abnormal behavior, measurements of 〈r2 〉 of neutron-deficient Ca isotopes below N = 20 have been proposed at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU. Preliminary results will be presented and the deduced charge radii will be compared to theoretical calculations and the trends in the nearby isotopic chains. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft through Grant SFB 1245.
Benchmarking of measurement and simulation of transverse rms-emittance growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Dong-O
2008-01-01
Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriated tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the measured 100%-rmsemittances behind themore » DTL exceed the simulated values. Comparing measured 90%-rms-emittances to the simulated 95%-rms-emittances gives fair to good agreement instead. The sum of horizontal and vertical emittances is even described well by the codes as long as experimental 90%-rmsemittances are compared to simulated 95%-rms-emittances. Finally, the successful reduction of transverse emittance growth by systematic beam matching is reported.« less
NASA Technical Reports Server (NTRS)
Demeo, Martha E.
1990-01-01
The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).
LDEF grappled by remote manipulator system (RMS) during STS-32 retrieval
1990-01-20
This view taken through overhead window W7 on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck shows the Long Duration Exposure Facility (LDEF) in the grasp of the remote manipulator system (RMS) during STS-32 retrieval activities. Other cameras at eye level were documenting the bus-sized spacecraft at various angles as the RMS manipulated LDEF for a lengthy photo survey. The glaring celestial body in the upper left is the sun with the Earth's surface visible below.
A differential equation for the Generalized Born radii.
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2013-06-28
The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.
Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.
2013-02-21
The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 Å, assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematicallymore » from 1.40 Å (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 Å (Bragg’s atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 Å larger than the ri(M) and rc(M) values, respectively, particularly for the
Luo, Jake; Apperson-Hansen, Carolyn; Pelfrey, Clara M; Zhang, Guo-Qiang
2014-11-30
Cross-institutional cross-disciplinary collaboration has become a trend as researchers move toward building more productive and innovative teams for scientific research. Research collaboration is significantly changing the organizational structure and strategies used in the clinical and translational science domain. However, due to the obstacles of diverse administrative structures, differences in area of expertise, and communication barriers, establishing and managing a cross-institutional research project is still a challenging task. We address these challenges by creating an integrated informatics platform to reduce the barriers to biomedical research collaboration. The Request Management System (RMS) is an informatics infrastructure designed to transform a patchwork of expertise and resources into an integrated support network. The RMS facilitates investigators' initiation of new collaborative projects and supports the management of the collaboration process. In RMS, experts and their knowledge areas are categorized and managed structurally to provide consistent service. A role-based collaborative workflow is tightly integrated with domain experts and services to streamline and monitor the life-cycle of a research project. The RMS has so far tracked over 1,500 investigators with over 4,800 tasks. The research network based on the data collected in RMS illustrated that the investigators' collaborative projects increased close to 3 times from 2009 to 2012. Our experience with RMS indicates that the platform reduces barriers for cross-institutional collaboration of biomedical research projects. Building a new generation of infrastructure to enhance cross-disciplinary and multi-institutional collaboration has become an important yet challenging task. In this paper, we share the experience of developing and utilizing a collaborative project management system. The results of this study demonstrate that a web-based integrated informatics platform can facilitate and
Hall Determination of Atomic Radii of Alkali Metals
ERIC Educational Resources Information Center
Houari, Ahmed
2008-01-01
I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)
View of the shuttle orbiter Discovery's payload bay during RMS checkout
1997-02-12
S82-E-5014 (12 Feb. 1997) --- Space Shuttle Discovery's Remote Manipulator System (RMS) gets a preliminary workout in preparation for a busy work load later in the week. The crewmembers are preparing for a scheduled Extravehicular Activity (EVA) with the Hubble Space Telescope (HST), which will be pulled into the Space Shuttle Discovery's cargo bay with the aid of the Remote Manipulator System (RMS). A series of EVA's will be required to properly service the giant telescope. This view was taken with an Electronic Still Camera (ESC).
Formula for the rms blur circle radius of Wolter telescope based on aberration theory
NASA Technical Reports Server (NTRS)
Shealy, David L.; Saha, Timo T.
1990-01-01
A formula for the rms blur circle for Wolter telescopes has been derived using the transverse ray aberration expressions of Saha (1985), Saha (1984), and Saha (1986). The resulting formula for the rms blur circle radius over an image plane and a formula for the surface of best focus based on third-, fifth-, and seventh-order aberration theory predict results in good agreement with exact ray tracing. It has also been shown that one of the two terms in the empirical formula of VanSpeybroeck and Chase (1972), for the rms blur circle radius of a Wolter I telescope can be justified by the aberration theory results. Numerical results are given comparing the rms blur radius and the surface of best focus vs the half-field angle computed by skew ray tracing and from analytical formulas for grazing incidence Wolter I-II telescopes and a normal incidence Cassegrain telescope.
AmeriFlux US-Rms RCEW Mountain Big Sagebrush
Flerchinger, Gerald [USDA Agricultural Research Service
2017-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Rms RCEW Mountain Big Sagebrush. Site Description - The site is located on the USDA-ARS's Reynolds Creek Experimental Watershed. It is dominated by mountain big sagebrush on land managed by USDI Bureau of Land Management.
MS Currie at RMS controls during EVA 2
2002-03-05
STS109-E-5625 (5 March 2002) --- Astronaut Nancy J. Currie, mission specialist, controls the Remote Manipulator System (RMS) robotic arm of the Space Shuttle Columbia as two astronauts perform work on the Hubble Space Telescope (HST), temporarily hosted in the shuttle's cargo bay. The image was recorded with a digital still camera.
Sources of magnetic fields in recurrent interplanetary streams
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.
1977-01-01
The sources of magnetic fields in recurrent streams were examined. Most fields and plasmas at 1 AU were related to coronal holes, and the magnetic field lines were open in those holes. Some of the magnetic fields and plasmas were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines are more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes ranged from 2G to 18G. Average measured photospheric magnetic fields along the footprints of the corresponding unipolar fields on circular equatorial arcs at 2.5 solar radii had a similar range and average, but in two cases the intensities were approximately three times higher than the projected intensities. The coronal footprints of the sector boundaries on the source surface at 2.5 solar radii, meandered between -45 deg and +45 deg latitude, and their inclination ranged from near zero to near ninety degrees.
RMS/OBSS inspection of shuttle thermal tile system
2011-02-25
S133-E-006073 (25 Feb. 2011) --- Controlled by the STS-133 astronauts inside Discovery's cabin, the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) equipped with special cameras, begins to conduct thorough inspections of the shuttle’s thermal tile system on flight day 2. Photo credit: NASA or National Aeronautics and Space Administration
Repetitive magnetic stimulation improves retinal function in a rat model of retinal dystrophy
NASA Astrophysics Data System (ADS)
Rotenstreich, Ygal; Tzameret, Adi; Levi, Nir; Kalish, Sapir; Sher, Ifat; Zangen, Avraham; Belkin, Michael
2014-02-01
Vision incapacitation and blindness associated with retinal dystrophies affect millions of people worldwide. Retinal degeneration is characterized by photoreceptor cell death and concomitant remodeling of remaining retinal cells. Repetitive Magnetic Stimulation (RMS) is a non-invasive technique that creates alternating magnetic fields by brief electric currents transmitted through an insulated coil. These magnetic field generate action potentials in neurons, and modulate the expression of neurotransmitter receptors, growth factors and transcription factors which mediate plasticity. This technology has been proven effective and safe in various psychiatric disorders. Here we determined the effect of RMS on retinal function in Royal College of Surgeons (RCS) rats, a model for retinal dystrophy. Four week-old RCS and control Spargue Dawley (SD) rats received sham or RMS treatment over the right eye (12 sessions on 4 weeks). RMS treatment at intensity of at 40% of the maximal output of a Rapid2 stimulator significantly increased the electroretinogram (ERG) b-wave responses by up to 6- or 10-fold in the left and right eye respectively, 3-5 weeks following end of treatment. RMS treatment at intensity of 25% of the maximal output did not significant effect b-wave responses following end of treatment with no adverse effect on ERG response or retinal structure of SD rats. Our findings suggest that RMS treatment induces delayed improvement of retinal functions and may induce plasticity in the retinal tissue. Furthermore, this non-invasive treatment may possibly be used in the future as a primary or adjuvant treatment for retinal dystrophy.
SPARTAN satellite on RMS arm prior to release
1997-11-21
STS087-706-020 (19 November 5 December 1997) --- The Spartan 201 satellite, held in the grasp of the Space Shuttle Columbia's Remote Manipulator System (RMS) arm, is backdropped over white clouds and blue waters of the Pacific Ocean. Long Island, off the coast of Papua New Guinea, is barely visible in the lower left corner.
The RMS survey: galactic distribution of massive star formation
NASA Astrophysics Data System (ADS)
Urquhart, J. S.; Figura, C. C.; Moore, T. J. T.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Oudmaijer, R. D.
2014-01-01
We have used the well-selected sample of ˜1750 embedded, young, massive stars identified by the Red MSX Source (RMS) survey to investigate the Galactic distribution of recent massive star formation. We present molecular line observations for ˜800 sources without existing radial velocities. We describe the various methods used to assign distances extracted from the literature and solve the distance ambiguities towards approximately 200 sources located within the solar circle using archival H I data. These distances are used to calculate bolometric luminosities and estimate the survey completeness (˜2 × 104 L⊙). In total, we calculate the distance and luminosity of ˜1650 sources, one third of which are above the survey's completeness threshold. Examination of the sample's longitude, latitude, radial velocities and mid-infrared images has identified ˜120 small groups of sources, many of which are associated with well-known star formation complexes, such as G305, G333, W31, W43, W49 and W51. We compare the positional distribution of the sample with the expected locations of the spiral arms, assuming a model of the Galaxy consisting of four gaseous arms. The distribution of young massive stars in the Milky Way is spatially correlated with the spiral arms, with strong peaks in the source position and luminosity distributions at the arms' Galactocentric radii. The overall source and luminosity surface densities are both well correlated with the surface density of the molecular gas, which suggests that the massive star formation rate per unit molecular mass is approximately constant across the Galaxy. A comparison of the distribution of molecular gas and the young massive stars to that in other nearby spiral galaxies shows similar radial dependences. We estimate the total luminosity of the embedded massive star population to be ˜0.76 × 108 L⊙, 30 per cent of which is associated with the 10 most active star-forming complexes. We measure the scaleheight as a
Hybrid excited claw pole generator with skewed and non-skewed permanent magnets
NASA Astrophysics Data System (ADS)
Wardach, Marcin
2017-12-01
This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.
What shapes stellar metallicity gradients of massive galaxies at large radii?
NASA Astrophysics Data System (ADS)
Hirschmann, Michaela
2017-03-01
We investigate the differential impact of physical mechanisms, mergers and internal energetic phenomena, on the evolution of stellar metallicity gradients in massive, present-day galaxies employing sets of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic, stellar-driven winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity gradients in agreement with observations. In contrast, the gradients of the models without winds are inconsistent with observations. Moreover, we discuss the impact of additional AGN feedback. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (e.g. MaNGA, CALIFA).
The magnetic field in the disk of our Galaxy
NASA Astrophysics Data System (ADS)
Han, J. L.; Qiao, G. J.
1994-08-01
The magnetic field in the disk of our Galaxy is investigated by using the Rotation Measures (RMs) of pulsars and Extragalactic Radio Sources (ERSes). Through analyses of the RMs of carefully selected pulsar samples, it is found that the Galaxy has a global field of BiSymmetric Spiral (BSS) configuration, rather than a concentric ring or an AxiSymmetric Spiral (ASS) configuration. The Galactic magnetic field of BSS structure is supposed to be of primordial origin. The pitch angle of the BSS structure is -8.2deg+/-0.5deg. The field geometry shows that the field goes along the Carina-Sagittarius arm, which is delineated by Giant Molecular Clouds (GMCs). The amplitude of the BSS field is 1.8+/-0.3μG. The first field strength maximum is at r_0_=11.9+/-0.15 kpc in the direction of l=180deg. The field is strong in the interarm regions and it reverses in the arm regions. In the vicinity of the Sun, it has a strength of ~1.4μG and reverses at 0.2-0.3kpc in the direction of l=0deg. Because of the unknown electron distribution of the Galaxy and other difficulties, it is impossible to derive the galactic field from the RMs of ERSes very quantitatively. Nevertheless, the RMs of ERSes located in the region of the two galactic poles are used to estimate the vertical component of the local galactic field, which is found to have a strength of 0.2-0.3μG and is directed from the south galactic pole to the north galactic pole. The scale height of the magnetic disk of the Galaxy is estimated from the RMs of all-sky distributed ERSes, being about 1.2+/-0.4pc. The regular magnetic field of our Galaxy, which is probably similar to that of M81, extends far from the optical disk.
Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.
1998-10-01
A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.
Lux, Robert L.; Sower, Christopher Todd; Allen, Nancy; Etheridge, Susan P.; Tristani-Firouzi, Martin; Saarel, Elizabeth V.
2014-01-01
Background Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS). Methods RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II. Results All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3. Conclusion These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements. PMID:24454918
Lux, Robert L; Sower, Christopher Todd; Allen, Nancy; Etheridge, Susan P; Tristani-Firouzi, Martin; Saarel, Elizabeth V
2014-01-01
Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS). RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II. All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3. These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements.
NASA Astrophysics Data System (ADS)
Loreto, R. P.; Moura-Melo, W. A.; Pereira, A. R.; Zhang, X.; Zhou, Y.; Ezawa, M.; de Araujo, C. I. L.
2018-06-01
With the recent proposition of skyrmion utilization in racetrack memories at room temperature, skyrmionics has become a very attractive field. However, for the stability of skyrmions, it is essential to incorporate the Dzyaloshinskii-Moriya interaction (DMI) and the out-of-plane magnetic field into the system. In this work, we explore a system without these interactions. First, we propose a controlled way for the creation of magnetic skyrmions and skyrmioniums imprinted on a ferromagnetic nanotrack via a nanopatterned nanodisk with the magnetic vortex state. Then we investigate the detachment of the imprinted spin textures from the underneath of the nanodisk, as well as its transport by the spin-transfer torque imposed by spin-polarized current pulses applied in the nanotrack. A prominent feature of the moving imprinted spin texture is that its topological number Q is oscillating around the averaged value of Q = 0 as if it is a resonant state between the skyrmions with Q = ± 1 and the bubble with Q = 0 . We may call it a resonant magnetic soliton (RMS). A RMS moves along a straight line since it is free from the skyrmion Hall effect. In our studied device, the same electrodes are employed to realize the imprinted spin texture detachment and its transport. In addition, we have investigated the interaction between the RMS and a magnetic tunnel junction sensor, where the passing of the RMS in the nanotrack can be well detected. Our results would be useful for the development of novel spintronic devices based on moveable spin textures.
Charge radii and electromagnetic moments of At-211195
NASA Astrophysics Data System (ADS)
Cubiss, J. G.; Barzakh, A. E.; Seliverstov, M. D.; Andreyev, A. N.; Andel, B.; Antalic, S.; Ascher, P.; Atanasov, D.; Beck, D.; Bieroń, J.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Derkx, X.; De Witte, H.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Fritzsche, S.; Gaffney, L. P.; George, S.; Ghys, L.; Heßberger, F. P.; Huyse, M.; Imai, N.; Kalaninová, Z.; Kisler, D.; Köster, U.; Kowalska, M.; Kreim, S.; Lane, J. F. W.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Marsh, B. A.; Mitsuoka, S.; Molkanov, P. L.; Nagame, Y.; Neidherr, D.; Nishio, K.; Ota, S.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Revill, J. P.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Sandhu, K.; Schweikhard, L.; Sels, S.; Truesdale, V. L.; Van Beveren, C.; Van den Bergh, P.; Wakabayashi, Y.; Van Duppen, P.; Wendt, K. D. A.; Wienholtz, F.; Whitmore, B. W.; Wilson, G. L.; Wolf, R. N.; Zuber, K.
2018-05-01
Hyperfine-structure parameters and isotope shifts of At-211195 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α -decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in At,199197, for which a significant difference in the charge radii for ground (9 /2- ) and isomeric (1 /2+ ) states has been observed.
Update on matter radii of O-2417
NASA Astrophysics Data System (ADS)
Fortune, H. T.
2018-05-01
The appearance of new theoretical papers concerning matter radii of neutron-rich oxygen nuclei has prompted a return to this problem. New results provide no better agreement with experimental values than did previous calculations with a simple model. I maintain that there is no reason to adjust the 22O core in the 24O nucleus, and the case of 24O should be reexamined experimentally.
Integration of the Shuttle RMS/CBM Positioning Virtual Environment Simulation
NASA Technical Reports Server (NTRS)
Dumas, Joseph D.
1996-01-01
Constructing the International Space Station, or other structures, in space presents a number of problems. In particular, payload restrictions for the Space Shuttle and other launch mechanisms prohibit assembly of large space-based structures on Earth. Instead, a number of smaller modules must be boosted into orbit separately and then assembled to form the final structure. The assembly process is difficult, as docking interfaces such as Common Berthing Mechanisms (CBMS) must be precisely positioned relative to each other to be within the "capture envelope" (approximately +/- 1 inch and +/- 0.3 degrees from the nominal position) and attach properly. In the case of the Space Station, the docking mechanisms are to be positioned robotically by an astronaut using the 55-foot-long Remote Manipulator System (RMS) robot arm. Unfortunately, direct visual or video observation of the placement process is difficult or impossible in many scenarios. One method that has been tested for aligning the CBMs uses a boresighted camera mounted on one CBM to view a standard target on the opposing CBM. While this method might be sufficient to achieve proper positioning with considerable effort, it does not provide a high level of confidence that the mechanisms have been placed within capture range of each other. It also does nothing to address the risk of inadvertent contact between the CBMS, which could result in RMS control software errors. In general, constraining the operator to a single viewpoint with few, if any, depth cues makes the task much more difficult than it would be if the target could be viewed in three-dimensional space from various viewpoints. The actual work area could be viewed by an astronaut during EVA; however, it would be extremely impractical to have an astronaut control the RMS while spacewalking. On the other hand, a view of the RMS and CBMs to be positioned in a virtual environment aboard the Space Shuttle orbiter or Space Station could provide similar benefits
Proton Distribution Radii of 12-19C Illuminate Features of Neutron Halos
Kanungo, R.; Horiuchi, W.; Hagen, Gaute; ...
2016-09-02
We report proton radii of 12-19C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target. A thick neutron surface evolves from ~0.5 fm in 15C to ~1 fm in 19C. Also, the halo radius in 19C is found to be 6.4±0.7 fm as large as 11Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.
Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doose, C.; Dejus, R.; Jaski, M.
2017-06-01
Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces tomore » gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.« less
Precise Masses & Radii of the Planets Orbiting K2-3 and GJ3470
NASA Astrophysics Data System (ADS)
Kosiarek, Molly; Crossfield, Ian; Hardegree-Ullman, Kevin; Livingston, John; Howard, Andrew; Fulton, Benjamin; Hirsch, Lea; Isaacson, Howard; Petigura, Erik; Sinukoff, Evan; Weiss, Lauren; Knutson, Heather; Bonfils, Xavier; Benneke, Björn; Beichman, Charles; Dressing, Courtney
2018-01-01
We report improved masses, radii, and densities for two planetary systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Both stars are nearby, early M dwarfs. K2-3 hosts three super-Earth planets between 1.5 and 2 Earth-radii at orbital periods between 10 and 45 days, while GJ 3470 hosts one 4 Earth-radii planet with a period of 3.3 days. Furthermore, we confirmed GJ3470's rotation period through multi-year ground-based photometry; RV analysis must account for this rotation signature. Due to the planets' low densities (all < 4.2 g/cm3) and bright host stars, they are among the best candidates for transmission spectroscopy with JWST and HST in order to characterize their atmospheric compositions.
A high-performance magnetic shield with large length-to-diameter ratio.
Dickerson, Susannah; Hogan, Jason M; Johnson, David M S; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-wey; Kasevich, Mark A
2012-06-01
We have demonstrated a 100-fold improvement in the magnetic field uniformity on the axis of a large aspect ratio, cylindrical, mumetal magnetic shield by reducing discontinuities in the material of the shield through the welding and re-annealing of a segmented shield. The three-layer shield reduces Earth's magnetic field along an 8 m region to 420 μG (rms) in the axial direction, and 460 and 730 μG (rms) in the two transverse directions. Each cylindrical shield is a continuous welded tube which has been annealed after manufacture and degaussed in the apparatus. We present both experiments and finite element analysis that show the importance of uniform shield material for large aspect ratio shields, favoring a welded design over a segmented design. In addition, we present finite element results demonstrating the smoothing of spatial variations in the applied magnetic field by cylindrical magnetic shields. Such homogenization is a potentially useful feature for precision atom interferometric measurements.
Mercury's Lithospheric Magnetization
NASA Astrophysics Data System (ADS)
Johnson, C.; Phillips, R. J.; Philpott, L. C.; Al Asad, M.; Plattner, A.; Mast, S.; Kinczyk, M. J.; Prockter, L. M.
2017-12-01
Magnetic field data obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have been used to demonstrate the presence of lithospheric magnetization on Mercury. Larger amplitude fields resulting from the core dynamo and the strongly time-varying magnetospheric current systems are first estimated and subtracted from the magnetic field data to isolate lithospheric signals with wavelengths less than 500 km. These signals (hereafter referred to as data) are only observed at spacecraft altitudes less than 120 km, and are typically a few to 10 nT in amplitude. We present and compare equivalent source dipole magnetization models for latitudes 35°N to 75°N obtained from two distinct approaches to constrain the distribution and origin of lithospheric magnetization. First, models that fit either the data or the surface field predicted from a regional spherical harmonic representation of the data (see Plattner & Johnson abstract) and that minimize the root mean square (RMS) value of the magnetization are derived. Second, models in which the spatial distribution of magnetization required to fit the data is minimized are derived using the approach of Parker (1991). As seen previously, the largest amplitudes of lithospheric magnetization are concentrated around the Caloris basin. With this exception, across the northern hemisphere there are no overall correlations of magnetization with surface geology, although higher magnetizations are found in regions with darker surfaces. Similarly, there is no systematic correlation of magnetization signatures with crater materials, although there are specific instances of craters with interiors or ejecta that have magnetizations distinct from the surrounding region. For the latter case, we observe no correlation of the occurrence of these signatures with crater degradation state (a proxy for age). At the lowest spacecraft altitudes (< 10 km), signals with wavelengths shorter than 40 km are not
Wilson, Richard H
2015-04-01
In 1940, a cooperative effort by the radio networks and Bell Telephone produced the volume unit (vu) meter that has been the mainstay instrument for monitoring the level of speech signals in commercial broadcasting and research laboratories. With the use of computers, today the amplitude of signals can be quantified easily using the root mean square (rms) algorithm. Researchers had previously reported that amplitude estimates of sentences and running speech were 4.8 dB higher when measured with a vu meter than when calculated with rms. This study addresses the vu-rms relation as applied to the carrier phrase and target word paradigm used to assess word-recognition abilities, the premise being that by definition the word-recognition paradigm is a special and different case from that described previously. The purpose was to evaluate the vu and rms amplitude relations for the carrier phrases and target words commonly used to assess word-recognition abilities. In addition, the relations with the target words between rms level and recognition performance were examined. Descriptive and correlational. Two recoded versions of the Northwestern University Auditory Test No. 6 were evaluated, the Auditec of St. Louis (Auditec) male speaker and the Department of Veterans Affairs (VA) female speaker. Using both visual and auditory cues from a waveform editor, the temporal onsets and offsets were defined for each carrier phrase and each target word. The rms amplitudes for those segments then were computed and expressed in decibels with reference to the maximum digitization range. The data were maintained for each of the four Northwestern University Auditory Test No. 6 word lists. Descriptive analyses were used with linear regressions used to evaluate the reliability of the measurement technique and the relation between the rms levels of the target words and recognition performances. Although there was a 1.3 dB difference between the calibration tones, the mean levels of the
OV-104's RMS releases Gamma Ray Observatory (GRO) during STS-37 deployment
1991-04-07
Atlantis', Orbiter Vehicle (OV) 104's, remote manipulator system (RMS) releases Gamma Ray Observatory (GRO) during STS-37 deployment. Visible on the GRO as it drifts away from the RMS end effector are the four complement instruments: the Energetic Gamma Ray Experiment (bottom); Imaging Compton Telescope (COMPTEL) (center); Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (at four corners). GRO's solar array (SA) panels are extended and are in orbit configuration. View was taken through aft flight deck window which reflects some of the crew compartment interior.
Changes in the mean square charge radii and electromagnetic moments of neutron-deficient Bi isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzakh, A. E., E-mail: barzakh@mail.ru; Batist, L. Kh.; Fedorov, D. V.
In-source laser spectroscopy experiments for neutron deficient bismuth isotopes at the 306.77 nm atomic transition were carried out at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility of Petersburg Nuclear Physics Institute (PNPI). New data on isotope shifts and hyperfine structure for {sup 189–198,} {sup 211}Bi isotopes and isomers were obtained. The changes in the mean-square charge radii and the magnetic moment values were deduced. Marked deviation from the nearly spherical behavior for ground states of bismuth isotopes at N < 109 is demonstrated, in contrast to the lead and thallium isotopic chains. The big isomer shift between Imore » = 1/2 (intruder) and I = 9/2 (normal) states for odd Bi isotopes (A = 193, 195, 197) was found.« less
Magnetic Design Guidelines for Electronic Power Supplies.
1986-09-30
henries ",= peak flux density in gauss d = wire (conductor) dia in mils CM = d2 = circular mi’s Irms = RMS current in amperes Idc = DC current in...component lac = RMS ac current in the inductor f = minimum frequency in hertz L = inductance in henries Then Eac 2 16.83 x 2, x 760 x .05 10 Eac 1 168.3 x 2...duty cycle x 1/f L inductance in henries *permeability in gauss/oersted H magnetizing force in oersteds ’. i g length of air gap in cm ic length of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanungo, R.; Perro, C.; Prochazka, A.
The interaction cross sections of {sup 32-35}Mg at 900A MeV have been measured using the fragment separator at GSI. The deviation from the r{sub 0}A{sup 1/3} trend is slightly larger for {sup 35}Mg, signaling the possible formation of a longer tail in the neutron distribution for {sup 35}Mg. The radii extracted from a Glauber model analysis with Fermi densities are consistent with models predicting the development of neutron skins.
Noninvasive microwave ablation zone radii estimation using x-ray CT image analysis.
Weiss, Noam; Goldberg, S Nahum; Nissenbaum, Yitzhak; Sosna, Jacob; Azhari, Haim
2016-08-01
The aims of this study were to noninvasively and automatically estimate both the radius of the ablated liver tissue and the radius encircling the treated zone, which also defines where the tissue is definitely untreated during a microwave (MW) thermal ablation procedure. Fourteen ex vivo bovine fresh liver specimens were ablated at 40 W using a 14 G microwave antenna, for durations of 3, 6, 8, and 10 min. The tissues were scanned every 5 s during the ablation using an x-ray CT scanner. In order to estimate the radius of the ablation zone, the acquired images were transformed into a polar presentation by displaying the Hounsfield units (HU) as a function of angle and radius. From this polar presentation, the average HU radial profile was analyzed at each time point and the ablation zone radius was estimated. In addition, textural analysis was applied to the original CT images. The proposed algorithm identified high entropy regions and estimated the treated zone radius per time. The estimated ablated zone radii as a function of treatment durations were compared, by means of correlation coefficient and root mean square error (RMSE) to gross pathology measurements taken immediately post-treatment from similarly ablated tissue. Both the estimated ablation radii and the treated zone radii demonstrated strong correlation with the measured gross pathology values (R(2) ≥ 0.89 and R(2) ≥ 0.86, respectively). The automated ablation radii estimation had an average discrepancy of less than 1 mm (RMSE = 0.65 mm) from the gross pathology measured values, while the treated zone radii showed a slight overestimation of approximately 1.5 mm (RMSE = 1.6 mm). Noninvasive monitoring of MW ablation using x-ray CT and image analysis is feasible. Automatic estimations of the ablation zone radius and the radius encompassing the treated zone that highly correlate with actual ablation measured values can be obtained. This technique can therefore potentially be used to obtain real time
ERIC Educational Resources Information Center
Muhlisin, Ahmad; Susilo, Herawati; Amin, Mohamad; Rohman, Fatchur
2016-01-01
The purposes of this study were to: 1) Examine the effect of RMS learning model towards critical thinking skills. 2) Examine the effect of different academic abilities against critical thinking skills. 3) Examine the effect of the interaction between RMS learning model and different academic abilities against critical thinking skills. The research…
Ligerot, Yasmine; de Saint Germain, Alexandre; Troadec, Christelle; Citerne, Sylvie; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Estelle, Mark; Debellé, Frédéric
2017-01-01
Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner. PMID:29220348
Ligerot, Yasmine; de Saint Germain, Alexandre; Waldie, Tanya; Troadec, Christelle; Citerne, Sylvie; Kadakia, Nikita; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Leyser, Ottoline; Estelle, Mark; Debellé, Frédéric; Rameau, Catherine
2017-12-01
Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner.
Absolute Calibration of Si iRMs used for Si Paleo-nutrient proxies
NASA Astrophysics Data System (ADS)
Vocke, Robert; Rabb, Savelas
2016-04-01
The Avogadro Project is an ongoing international effort, coordinated by the International Bureau of Weights and Measures (BIPM) and the International Avogadro Coordination (IAC) to redefine the SI unit mole in terms of the Avogadro constant and the SI unit kg in terms of the Planck constant. One of the outgrowths of this effort has been the development of a novel, precise and highly accurate method to measure calibrated (absolute) isotopic ratios that are traceable to the SI (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach has also been able to produce absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement. Silicon isotope variations (reported as delta(Si30)and delta(Si29)) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The utility and comparability of such measurements however depends on calibration with artifact isotopic Reference Materials (iRMs). We will be reporting new measurements on the iRMs NBS-28 (RM 8546 - Silica Sand), Diatomite, Big Batch and SRM 990 using the Avogadro measurement approach, comparing them with prior assessments of these iRMs.
A historical study to understand students’ current difficulties about RMS values
NASA Astrophysics Data System (ADS)
Khantine-Langlois, Françoise; Munier, Valérie
2016-07-01
Several studies show that students experience more and more difficulties managing the measurements of electrical values in alternating current and that they have trouble making links between theory and practice. They find it difficult to give meaning to root mean square (RMS; or effective) values, which are not understood as average values and are confused with instantaneous values. This shows that students do not clearly differentiate variable and direct currents. In this paper we try, with a historical study and a study of teaching the concept of RMS values, to understand students’ difficulties with this concept. In the first part we present an epistemological analysis of the concept of RMS values, showing that it is multifaceted and can be approached from different points of view. In the second part we analyse the evolution of French secondary school curricula and textbooks from the explicit introduction of variable currents to today, questioning the links between the evolution of the curricula and the evolution of the place of science and technology in our societies. We point out that the evolution of the curricula is linked to the social context and to the connections between science, technology and society, and also to the relationship with mathematics curricula. We show that alternating current is introduced earlier in the curriculum but has gradually lost all phenomenological description. This study allows us to better understand students’ difficulties and to discuss some implications for teaching.
Azimuthal Angle Dependence of HBT Radii in Au+Au Collisions at RHIC-PHENIX
NASA Astrophysics Data System (ADS)
Niida, Takafumi
Measurement of Hanbury-Brown and Twiss (HBT) interferometry with respect to the event plane have been performed in Au+Au collisions at √{sNN} = 200 GeV at PHENIX, which is a unique tool to study the spatial extent of the created matter at final state in heavy ion collisions and the detailed picture of the space-time evolution from the initial state to the final state. The Gaussian source radii was measured for charged pions and kaons with respect to 2nd-order event plane. There was a difference in final eccentricity between both species, which may imply the different freeze-out mechanism by the particle species. The pion source radii was also measured relative to 3rd-order event plane, and the azimuthal angle dependence of the radii was observed, which qualitatively agrees with the recent hydrodynamic calculation and the oscillation may be driven from the triangular flow.
Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models
NASA Astrophysics Data System (ADS)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-01
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.
Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-15
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simplemore » Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.« less
Astronaut Anna Fisher practices control of the RMS in a trainer
NASA Technical Reports Server (NTRS)
1984-01-01
Astronaut Anna Lee Fisher, mission specialist for 51-A, practices control of the remote manipulator system (RMS) at a special trainer at JSC. Dr. Fisher is pictured in the manipulator development facility (MDF) of JSC's Shuttle mockup and integration laboratory.
STS-57 MS2 Sherlock operates RMS THC on OV-105's aft flight deck
NASA Technical Reports Server (NTRS)
1993-01-01
STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock operates the remote manipulator system (RMS) translation hand control (THC) while observing extravehicular activity (EVA) outside viewing window W10 on the aft flight deck of Endeavour, Orbiter Vehicle (OV) 105. Positioned at the onorbit station, Sherlock moved EVA astronauts in the payload bay (PLB). Payload Commander (PLC) G. David Low with his feet anchored to a special restraint device on the end of the RMS arm held MS3 Peter J.K. Wisoff during the RMS maneuvers. The activity represented an evaluation of techniques which might be used on planned future missions -- a 1993 servicing visit to the Hubble Space Telescope (HST) and later space station work -- which will require astronauts to frequently lift objects of similar sized bulk. Note: Just below Sherlock's left hand a 'GUMBY' toy watches the actvity.
Berni, Kelly Cristina dos Santos; Dibai-Filho, Almir Vieira; Pires, Paulo Fernandes; Rodrigues-Bigaton, Delaine
2015-08-01
Due to the multifactor etiology of temporomandibular disorder (TMD), the precise diagnosis remains a matter of debate and validated diagnostic tools are needed. The aim was to determine the accuracy of surface electromyography (sEMG) activity, assessed in the amplitude domain by the root mean square (RMS), in the diagnosis of TMD. One hundred twenty-three volunteers were evaluated using the Research Diagnostic Criteria for Temporomandibular Disorders and distributed into two groups: women with myogenous TMD (n=80) and women without TMD (n=43). The volunteers were then submitted to sEMG evaluation of the anterior temporalis, masseter and suprahyoid muscles at rest and during maximum voluntary teeth clenching (MVC) on parafilm. The accuracy, sensitivity and specificity of the muscle activity were analyzed. Differences between groups were found in all muscles analyzed at rest as well as in the masseter and suprahyoid muscles during MVC on parafilm. Moderate accuracy (AUC: 0.74-0.84) of the RMS sEMG was found in all muscles regarding the diagnosis of TMD at rest and in the suprahyoid muscles during MVC on parafilm. Moreover, sensitivity ranging from 71.3% to 80% and specificity from 60.5% to 76.6%. In contrast, RMS sEMG did not exhibit acceptable degrees of accuracy in the other masticatory muscles during MVC on parafilm. It was concluded that the RMS sEMG is a complementary tool for clinical diagnosis of the myogenous TMD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Application of RMS for damage detection by guided elastic waves
NASA Astrophysics Data System (ADS)
Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.
2011-07-01
This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.
Surface Magnetic Field Strengths: New Tests of Magnetoconvective Models of M Dwarfs
NASA Astrophysics Data System (ADS)
MacDonald, James; Mullan, D. J.
2014-05-01
Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.
STS-39 SPAS-II/IBSS spacecraft is released by RMS above the Earth's surface
1991-05-06
STS039-17-017 (3 May 1990) --- This STS-39 35mm scene shows the Strategic Defense Initiative Organization (SDIO) Shuttle Pallet Satellite (SPAS-II) as it approaches the remote manipulator system (RMS) end effector following a period of free-flight and data collection. During the eight-day flight, SPAS collected data in both a free-flying mode and while attached to the RMS. A huge blanket of white clouds obscures identifiable points on Earth, nearly 300 statute miles away. The target grappling apparatus on SPAS is clearly seen near bottom center of frame.
Correlating hydrodynamic radii with that of two-dimensional nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Yuan; Kan, Yuwei; Clearfield, Abraham
2015-12-21
Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correctingmore » factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.« less
Unexpectedly large charge radii of neutron-rich calcium isotopes
Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.; ...
2016-02-08
Here, despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results aremore » complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.« less
The Lamb-shift experiment in Muonic helium
NASA Astrophysics Data System (ADS)
Nebel, T.; Amaro, F. D.; Antognini, A.; Biraben, F.; Cardoso, J. M. R.; Covita, D. S.; Dax, A.; Fernandes, L. M. P.; Gouvea, A. L.; Graf, T.; Hänsch, T. W.; Hildebrandt, M.; Indelicato, P.; Julien, L.; Kirch, K.; Kottmann, F.; Liu, Y.-W.; Monteiro, C. M. B.; Nez, F.; Santos, J. M. F. dos; Schuhmann, K.; Taqqu, D.; Veloso, J. F. C. A.; Voss, A.; Pohl, R.
2012-12-01
We propose to measure several transition frequencies between the 2 S and the 2 P states (Lamb shift) in muonic helium ions ( μ 4He + and μ 3He + ) by means of laser spectroscopy, in order to determine the alpha-particle and helion root-mean-square (rms) charge radius. In addition, the fine and hyperfine structure components will be revealed, and the magnetic moment distribution radius will be determined. The contribution of the finite size effect to the Lamb shift (2 S - 2 P energy difference) in μHe + is as high as 20 %. Therefore a measurement of the transition frequencies with a moderate (for laser spectroscopy) precision of 50 ppm (corresponding to 1/20 of the linewidth) will lead to a determination of the nuclear rms charge radii with a relative accuracy of 3 ×10 - 4 (equivalent to 0.0005 fm). The limiting factor for the extraction of the radii from the Lamb shift measurements is given by the uncertainty of the nuclear polarizability contribution. Combined with an ongoing experiment at MPQ aiming to measure the 1 S - 2 S transition frequency in the helium ion, the Lamb shift measurement in μHe + will lead to a sensitive test of problematic and challenging bound-state QED terms. This measurement will also help to clarify the discrepancy found in our previous μ p experiment. Additionally, a precise knowledge of the absolute nuclear radii of the He isotopes and the hyperfine splitting of μ 3He + provide a relevant test of few-nucleon theories.
The Lamb-shift experiment in Muonic helium
NASA Astrophysics Data System (ADS)
Nebel, T.; Amaro, F. D.; Antognini, A.; Biraben, F.; Cardoso, J. M. R.; Covita, D. S.; Dax, A.; Fernandes, L. M. P.; Gouvea, A. L.; Graf, T.; Hänsch, T. W.; Hildebrandt, M.; Indelicato, P.; Julien, L.; Kirch, K.; Kottmann, F.; Liu, Y.-W.; Monteiro, C. M. B.; Nez, F.; Santos, J. M. F. dos; Schuhmann, K.; Taqqu, D.; Veloso, J. F. C. A.; Voss, A.; Pohl, R.
We propose to measure several transition frequencies between the 2S and the 2P states (Lamb shift) in muonic helium ions (μ 4He + and μ 3He + ) by means of laser spectroscopy, in order to determine the alpha-particle and helion root-mean-square (rms) charge radius. In addition, the fine and hyperfine structure components will be revealed, and the magnetic moment distribution radius will be determined. The contribution of the finite size effect to the Lamb shift (2S - 2P energy difference) in μHe + is as high as 20 %. Therefore a measurement of the transition frequencies with a moderate (for laser spectroscopy) precision of 50 ppm (corresponding to 1/20 of the linewidth) will lead to a determination of the nuclear rms charge radii with a relative accuracy of 3 ×10 - 4 (equivalent to 0.0005 fm). The limiting factor for the extraction of the radii from the Lamb shift measurements is given by the uncertainty of the nuclear polarizability contribution. Combined with an ongoing experiment at MPQ aiming to measure the 1S - 2S transition frequency in the helium ion, the Lamb shift measurement in μHe + will lead to a sensitive test of problematic and challenging bound-state QED terms. This measurement will also help to clarify the discrepancy found in our previous μ p experiment. Additionally, a precise knowledge of the absolute nuclear radii of the He isotopes and the hyperfine splitting of μ 3He + provide a relevant test of few-nucleon theories.
NASA Astrophysics Data System (ADS)
Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev
2016-07-01
The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.
Surface magnetic field strengths: New tests of magnetoconvective models of M dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, James; Mullan, D. J., E-mail: jimmacd@udel.edu, E-mail: mullan@udel.edu
2014-05-20
Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Goughmore » and Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.« less
NASA Astrophysics Data System (ADS)
Rajkumar, K. V.; Vaidyanathan, S.; Kumar, Anish; Jayakumar, T.; Raj, Baldev; Ray, K. K.
2007-05-01
The best combinations of mechanical properties (yield stress and fracture toughness) of M250 maraging steel is obtained through short-term thermal aging (3-10 h) at 755 K. This is attributed to the microstructure containing precipitation of intermetallic phases in austenite-free low-carbon martensite matrix. Over-aged microstructure, containing reverted austenite degrades the mechanical properties drastically. Hence, it necessitates identification of a suitable non-destructive evaluation (NDE) technique for detecting any reverted austenite unambiguously during aging. The influence of aging on microstructure, room temperature hardness and non-destructive magnetic parameters such as coercivity ( Hc), saturation magnetization ( Ms) and magnetic Barkhausen emission (MBE) RMS peak voltage is studied in order to derive correlations between these parameters in aged M250 maraging steel. Hardness was found to increase with precipitation of intermetallics during initial aging and decrease at longer durations due to austenite reversion. Among the different magnetic parameters studied, MBE RMS peak voltage was found to be very sensitive to austenite reversion (non-magnetic phase) as they decreased drastically up on initiation of austenite reversion. Hence, this parameter can be effectively utilized to detect and quantify the reverted austenite in maraging steel specimen. The present study clearly indicates that the combination of MBE RMS peak voltage and hardness can be used for unambiguous characterization of microstructural features of technological and practical importance (3-10 h of aging duration at 755 K) in M250 grade maraging steel.
Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies
NASA Astrophysics Data System (ADS)
Vocke, R. D., Jr.; Rabb, S. A.
2016-12-01
Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta
SPARTAN-201 satellite lined up with RMS arm for recapture
1994-09-15
STS064-76-035 (15 Sept. 1994) --- Backdropped against the darkness of space, the Shuttle Pointed Autonomous Research Tool for Astronomy 201 (SPARTAN-201) satellite is lined up with the space shuttle Discovery's Remote Manipulator System (RMS) arm for re-capture. The free-flying spacecraft had remained some 40 miles away from Discovery for over two days. Photo credit: NASA or National Aeronautics and Space Administration
Centrality dependence of pion freeze-out radii in Pb-Pb collisions at √{sN N}=2.76 TeV
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration
2016-02-01
We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √{sNN}=2.76 TeV as a function of collision centrality and the average transverse momentum of the pair kT. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with kT, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with
NASA Astrophysics Data System (ADS)
Aliotta, M. A.; Cassisi, C.; Prestifilippo, M.; Cannata, A.; Montalto, P.; Patanè, D.
2014-12-01
During the last years, volcanic activity at Mt. Etna was often characterized by cyclic occurrences of fountains. In the period between January 2011 and June 2013, 38 episodes of lava fountains has been observed. Automatic recognition of the volcano's states related to lava fountain episodes (Quiet, Pre-Fountaining, Fountaining, Post-Fountaining) is very useful for monitoring purposes. We discovered that such states are strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded in the summit area. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we tried to model the system generating its sampled values (assuming to be a Markov process and assuming that RMS time series is a stochastic process), by using Hidden Markov models (HMMs), that are a powerful tool for modeling any time-varying series. HMMs analysis seeks to discover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by SAX (Symbolic Aggregate approXimation) technique. SAX is able to map RMS time series values with discrete literal emissions. Our experiments showed how to predict volcano states by means of SAX and HMMs.
SEP events and wake region lunar dust charging with grain radii
NASA Astrophysics Data System (ADS)
Chandran, S. B. Rakesh; Rajesh, S. R.; Abraham, A.; Renuka, G.; Venugopal, Chandu
2017-01-01
Our lunar surface is exposed to all kinds of radiations from the Sun, since it lacks a global magnetic field. Like lunar surface, dust particles are also exposed to plasmas and UV radiation and, consequently they carry electrostatic charges. During Solar Energetic Particle events (SEPs) secondary electron emission plays a vital role in charging of lunar dusts. To study the lunar dust charging during SEPs on lunar wake region, we derived an expression for lunar dust potential and analysed how it varies with different electron temperatures and grain radii. Because of high energetic solar fluxes, secondary yield (δ) values reach up to 2.3 for 0.5 μm dust grain. We got maximum yield at an energy of 550 eV which is in well agreement with lunar sample experimental observation (Anderegg et al., 1972). It is observed that yield value increases with electron energy, reaches to a maximum value and then decreases. During SEPs heavier dust grains show larger yield values because of the geometry of the grains. On the wake region, the dust potential reaches up to -497 V for 0.5 μm dust grain. The electric field of these grains could present a significant threat to manned and unmanned missions to the Moon.
Coordination radii in diamond, zinc blende, and CaF2 structures
NASA Astrophysics Data System (ADS)
Hall, George L.
1982-07-01
The radii of all ''shells'' of atoms about any lattice point are given for these three structures, and for the zinc blende (AB) and CaF2 (AB2) structures it is shown that all shells about an A origin and all shells about a B origin are of pure type, i.e., contain only A's or only B's. The initial sequence (small radii) of shell types does not continue indefinitely and is broken according to rules completely specified. These results are analogous to those reported by Hall and Christy earlier for the NaCl and CsCl structures in which the ABABABṡṡṡ sequence for NaCl and the ABAABAABAAṡṡṡ for CsCl, both taken about an A origin, do not continue indefinitely. It is shown that Ferris-Prabhu's results for diamond violate theorem 1 of Hall and Christy.
Radii and Orbits of Hot Jupiters
NASA Astrophysics Data System (ADS)
Wu, Yanqin
2011-09-01
Hot jupiters suffer extreme external (stellar) and internal (tidal, Ohmic and wind-power) heating. These lead to peculiar thermal evolution, which is potentially self-destrutive. For instance, the amount of energy deposited during tidal dissipation far exceeds the planets' binding energy. If this energy is mostly deposited in shallow layers, it does little damage to the planet. However, the presence of stellar insolation changes the picture, and Ohmic/wind-power heating further modifies the subsequent evolution of these jupiters. A diversity of planetary sizes results. We tie these thermodynamical processes together with the migration history of hot jupiters to explain the orbital distribution and physical radii of hot jupiters. Moreover, we constrain the location of tidal heating inside the planet.
Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin
NASA Astrophysics Data System (ADS)
Yang, Junjie; Piekarewicz, J.
2018-01-01
It has recently been suggested that differences in the charge radii of mirror nuclei are proportional to the neutron-skin thickness of neutron-rich nuclei and to the slope of the symmetry energy L [Brown, Phys. Rev. Lett. 102, 122502 (2009), 10.1103/PhysRevLett.102.122502]. The determination of the neutron skin has important implications for nuclear physics and astrophysics. Although the use of electroweak probes provides a largely model-independent determination of the neutron skin, the experimental challenges are enormous. Thus, the possibility that differences in the charge radii of mirror nuclei may be used as a surrogate for the neutron skin is a welcome alternative. To test the validity of this assumption we perform calculations based on a set of relativistic energy density functionals that span a wide region of values of L . Our results confirm that the difference in charge radii between various neutron-deficient nickel isotopes and their corresponding mirror nuclei is indeed strongly correlated to both the neutron-skin thickness and L . Moreover, given that various neutron-star properties are also sensitive to L , a data-to-data relation emerges between the difference in charge radii of mirror nuclei and the radius of low-mass neutron stars.
The mean coronal magnetic field determined from Helios Faraday rotation measurements
NASA Technical Reports Server (NTRS)
Patzold, M.; Bird, M. K.; Volland, H.; Levy, G. S.; Seidel, B. L.; Stelzried, C. T.
1987-01-01
Coronal Faraday rotation of the linearly polarized carrier signals of the Helios spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3-10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975-1976 was found to decrease with radial distance according to r exp-alpha, where alpha = 2.7 + or - 0.2. The mean field magnitude was 1.0 + or - 0.5 x 10 to the -5th tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.
A Historical Study to Understand Students' Current Difficulties about RMS Values
ERIC Educational Resources Information Center
Khantine-Langlois, Françoise; Munier, Valérie
2016-01-01
Several studies show that students experience more and more difficulties managing the measurements of electrical values in alternating current and that they have trouble making links between theory and practice. They find it difficult to give meaning to root mean square (RMS; or effective) values, which are not understood as average values and are…
Estimating the Turn-around Radii of Six Isolated Galaxy Groups in the Local Universe
NASA Astrophysics Data System (ADS)
Lee, Jounghun
2018-03-01
Estimates of the turn-around radii of six isolated galaxy groups in the nearby universe are presented. From the Tenth Data Release of the Sloan Digital Sky Survey, we first select those isolated galaxy groups at redshifts z ≤ 0.05 in the mass range [0.3–1] × {10}14 {h}-1 {M}ȯ whose nearest-neighbor groups are located at distances larger than 15 times their virial radii. Then, we search for a gravitationally interacting web-like structure around each isolated group, which appears as an inclined streak pattern in the anisotropic spatial distribution of the neighboring field galaxies. Out of 59 isolated groups, only seven are found to possess such web-like structures in their neighbor zones, but one of them turns out to be NGC 5353/4, whose turn-around radius was already measured in a previous work and was thus excluded from our analysis. Applying the Turn-around Radius Estimator algorithm devised by Lee et al. to the identified web-like structures of the remaining six target groups, we determine their turn-around radii and show that three out of the six targets have larger turn-around radii than the spherical bound limit predicted by Planck cosmology. We discuss possible sources of the apparent violations of the three groups, including the underestimated spherical bound limit due to the approximation of the turn-around mass by the virial mass.
NASA Astrophysics Data System (ADS)
Zheng, Ping; Tong, Chengde; Zhao, Jing; Yu, Bin; Li, Lin; Bai, Jingang; Zhang, Lu
2012-04-01
This paper investigates a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free piston Stirling engines (FPSEs). Taking the advantages of Halbach array, a 1 kW prototype alternator is designed. Considering the rms value of electromotive force (EMF) and harmonic distortion, the optimal length ratio of the axial- and radial-magnetized permanent magnets and thicknesses of the permanent magnets are optimized by 2D finite element method. The alternator detent force, which is an important factor for smooth operation of FPSEs, is studied by optimizing slot tip and end tooth. The load and thermal performances of the final design are simulated. A prototype alternator was designed, built and tested. Experimental data indicated satisfactory design.
Astronaut Jerry Ross on RMS holds on to ACCESS device
1985-12-01
61B-102-022 (1 Dec 1985) --- Astronaut Jerry L. Ross, anchored to the foot restraint on the remote manipulator system (RMS), holds onto the tower-like Assembly Concept for Construction of Erectable Space Structures (ACCESS) device, as the Atlantis flies over white clouds and blue ocean waters. The frame was exposed with a negative-equipped camera held by Astronaut Sherwood C. Spring, who was also on the EVA-task.
Olson, Gordon Lee
2016-12-06
Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Gordon Lee
Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less
Geometry induced phase transitions in magnetic spherical shell
NASA Astrophysics Data System (ADS)
Sloika, Mykola I.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Pylypovskyi, Oleksandr V.; Gaididei, Yuri
2017-12-01
Equilibrium magnetization states in spherical shells of a magnetically soft ferromagnet form two out-of-surface vortices with codirectionally magnetized vortex cores at the sphere poles: (i) a whirligig state with the in-surface magnetization oriented along parallels is typical for thick shells; (ii) a three dimensional onion state with the in-surface meridional direction of the magnetization is realized in thin shells. The geometry of spherical shell prohibits an existence of spatially homogeneous magnetization distribution, even in the case of small sample radii. By varying geometrical parameters a continuous phase transition between the whirligig and onion states takes place. The detailed analytical description of the phase diagram is well confirmed by micromagnetic simulations.
STS-37 Gamma Ray Observatory (GRO) grappled by RMS
1991-04-07
Backdropped against the Earth's surface, the Gamma Ray Observatory (GRO) with its solar array (SA) panels deployed is grappled by the remote manipulator system (RMS) during STS-37 systems checkout. GRO's four complement instruments are visible: the Energetic Gamma Ray Experiment Telescope (EGRET) (at the bottom); the Imaging Compton Telescope (COMPTEL) (center); the Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (on four corners). The view was taken by STS-37 crew through an aft flight deck overhead window.
Astronaut Sherwood Spring on RMS checks joints on the ACCESS device
1985-11-27
Astronaut Sherwood C. Spring, anchored to the foot restraint on the remote manipulator system (RMS) arm, checks joints on the tower-like Assembly Concept for Construction of Erectable Space Structures (ACCESS) device extending from the payload bay as the Atlantis flies over white clouds and blue ocean waters. The Gulf of Mexico waters form the backdrop for the scene.
Centrality dependence of pion freeze-out radii in Pb-Pb collisions at s N N = 2.76 TeV
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2016-02-04
Here, we report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √s NN = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair k T. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with k T, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with < dN ch/d η > 1/3. We compare this behavior to world data onmore » femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller √s NN, a decrease in the ratio R out/R side is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. Furthermore, these results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider.« less
NASA Technical Reports Server (NTRS)
Negulesco, J. A.; Kossler, T.
1978-01-01
Histological measurements of radii from chickens exposed to estrone and hypergravity are reported. Female chicks at two weeks post-hatch were maintained for two weeks at earth gravity or 2 G with daily injections of 0.2 or 0.4 mg estrone. Animals were sacrificed after the last injection, and the radii were processed by described histological techniques. The results suggest that proximal and distal epiphyses of developing radii show different morphological responses to estrone and hypergravity.
Magnetic field and particle pressure in the plasma sheet of Jupiter
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Maclennan, C. G.; Broughton, J. N.; Venkatesan, D.; Lepping, R. P.
1987-01-01
The results of an analysis of the energetic particle and magnetic field data acquired by the Voyager 2 spacecraft at distances of about 40-70 Jupiter radii on the nightside of the planet are reported. As in a previous study of similar data at distances of greater than about 80 Jupiter radii, the energy densities of ions (primarily protons) is found to be sufficient to provide the diamagnetic depressions measured in the magnetic field intensity as the spacecraft made successive encounters with the nightside plasma sheet. There is some evidence that the percent contribution of the protons to the energy balance decreases with increasing distance from the planet over this radial interval, although this conclusion is dependent upon the assumption that the proton and heavier ion (oxygen) energy spectra are similar.
Bouchet, Philippe; Boxshall, Geoff; Fauchald, Kristian; Gordon, Dennis; Hoeksema, Bert W.; Poore, Gary C. B.; van Soest, Rob W. M.; Stöhr, Sabine; Walter, T. Chad; Vanhoorne, Bart; Decock, Wim
2013-01-01
The World Register of Marine Species is an over 90% complete open-access inventory of all marine species names. Here we illustrate the scale of the problems with species names, synonyms, and their classification, and describe how WoRMS publishes online quality assured information on marine species. Within WoRMS, over 100 global, 12 regional and 4 thematic species databases are integrated with a common taxonomy. Over 240 editors from 133 institutions and 31 countries manage the content. To avoid duplication of effort, content is exchanged with 10 external databases. At present WoRMS contains 460,000 taxonomic names (from Kingdom to subspecies), 368,000 species level combinations of which 215,000 are currently accepted marine species names, and 26,000 related but non-marine species. Associated information includes 150,000 literature sources, 20,000 images, and locations of 44,000 specimens. Usage has grown linearly since its launch in 2007, with about 600,000 unique visitors to the website in 2011, and at least 90 organisations from 12 countries using WoRMS for their data management. By providing easy access to expert-validated content, WoRMS improves quality control in the use of species names, with consequent benefits to taxonomy, ecology, conservation and marine biodiversity research and management. The service manages information on species names that would otherwise be overly costly for individuals, and thus minimises errors in the application of nomenclature standards. WoRMS' content is expanding to include host-parasite relationships, additional literature sources, locations of specimens, images, distribution range, ecological, and biological data. Species are being categorised as introduced (alien, invasive), of conservation importance, and on other attributes. These developments have a multiplier effect on its potential as a resource for biodiversity research and management. As a consequence of WoRMS, we are witnessing improved communication within the
Costello, Mark J; Bouchet, Philippe; Boxshall, Geoff; Fauchald, Kristian; Gordon, Dennis; Hoeksema, Bert W; Poore, Gary C B; van Soest, Rob W M; Stöhr, Sabine; Walter, T Chad; Vanhoorne, Bart; Decock, Wim; Appeltans, Ward
2013-01-01
The World Register of Marine Species is an over 90% complete open-access inventory of all marine species names. Here we illustrate the scale of the problems with species names, synonyms, and their classification, and describe how WoRMS publishes online quality assured information on marine species. Within WoRMS, over 100 global, 12 regional and 4 thematic species databases are integrated with a common taxonomy. Over 240 editors from 133 institutions and 31 countries manage the content. To avoid duplication of effort, content is exchanged with 10 external databases. At present WoRMS contains 460,000 taxonomic names (from Kingdom to subspecies), 368,000 species level combinations of which 215,000 are currently accepted marine species names, and 26,000 related but non-marine species. Associated information includes 150,000 literature sources, 20,000 images, and locations of 44,000 specimens. Usage has grown linearly since its launch in 2007, with about 600,000 unique visitors to the website in 2011, and at least 90 organisations from 12 countries using WoRMS for their data management. By providing easy access to expert-validated content, WoRMS improves quality control in the use of species names, with consequent benefits to taxonomy, ecology, conservation and marine biodiversity research and management. The service manages information on species names that would otherwise be overly costly for individuals, and thus minimises errors in the application of nomenclature standards. WoRMS' content is expanding to include host-parasite relationships, additional literature sources, locations of specimens, images, distribution range, ecological, and biological data. Species are being categorised as introduced (alien, invasive), of conservation importance, and on other attributes. These developments have a multiplier effect on its potential as a resource for biodiversity research and management. As a consequence of WoRMS, we are witnessing improved communication within the
Hardware interface unit for control of shuttle RMS vibrations
NASA Technical Reports Server (NTRS)
Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran
1994-01-01
Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.
Fast torsional waves and strong magnetic field within the Earth's core.
Gillet, Nicolas; Jault, Dominique; Canet, Elisabeth; Fournier, Alexandre
2010-05-06
The magnetic field inside the Earth's fluid and electrically conducting outer core cannot be directly probed. The root-mean-squared (r.m.s.) intensity for the resolved part of the radial magnetic field at the core-mantle boundary is 0.3 mT, but further assumptions are needed to infer the strength of the field inside the core. Recent diagnostics obtained from numerical geodynamo models indicate that the magnitude of the dipole field at the surface of a fluid dynamo is about ten times weaker than the r.m.s. field strength in its interior, which would yield an intensity of the order of several millitesla within the Earth's core. However, a 60-year signal found in the variation in the length of day has long been associated with magneto-hydrodynamic torsional waves carried by a much weaker internal field. According to these studies, the r.m.s. strength of the field in the cylindrical radial direction (calculated for all length scales) is only 0.2 mT, a figure even smaller than the r.m.s. strength of the large-scale (spherical harmonic degree n
NASA Technical Reports Server (NTRS)
Katow, S. M.
1979-01-01
The computer analysis of the 34-m HA-DEC antenna by the IDEAS program provided the rms distortions of the surface panels support points for full gravity loadings in the three directions of the basic coordinate system of the computer model. The rms distortions for the gravity vector not in line with any of the three basic directions were solved and contour plotted starting from three surface panels setting declination angle. By inspections of the plots, it was concluded that the setting or rigging angle of -15 degrees declination minimized the rms distortions for sky coverage of plus or minus 22 declination angles to 10 degrees of ground mask.
Astronauts Griggs and Hoffman try to fasten devices on end of RMS
NASA Technical Reports Server (NTRS)
1985-01-01
Astronauts S. David Griggs, left, and Jeffrey A. Hoffman join efforts to fasten one of two snag type devices on the end of the Canadian-built remote manipulator system (RMS) arm of the Shuttle Discovery. A partial view of the Earth's horizon can be seen behind the shuttle.
Astronaut Jeffrey Hoffman on RMS during third of five HST EVAs
1993-12-07
STS061-105-026 (7 Dec. 1993) --- Astronaut Jeffrey A. Hoffman signals directions to European Space Agency (ESA) astronaut Claude Nicollier, as the latter controls the Remote Manipulator System (RMS) arm during the third of five Extravehicular Activities (EVA) on the Hubble Space Telescope (HST) servicing mission. Astronauts Hoffman and F. Story Musgrave earlier changed out the Wide Field\\Planetary Camera (WF\\PC).
New Technique of AC drive in Tokamak using Permanent Magnets
NASA Astrophysics Data System (ADS)
Matteucci, Jackson; Zolfaghari, Ali
2013-10-01
This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.
STS-57 MS2 Sherlock operates RMS THC on OV-105's aft flight deck
1993-06-25
STS057-31-030 (25 June 1993) --- Astronaut Nancy J. Sherlock operates Endeavour's remote manipulator system (RMS) during the June 25 extravehicular activity of two crewmates. At one point, astronaut G. David Low, while his feet were anchored to a special restraint device on the end of the RMS arm, moved about, with Sherlock's aid, while holding astronaut Peter J. K. (Jeff) Wisoff. The activity represented an evaluation of techniques which might be used on planned future missions -- a 1993 servicing visit to the Hubble Space Telescope and later space station work -- which will require astronauts to frequently lift objects of similar sized bulk.
Low-degree Structure in Mercury's Planetary Magnetic Field
NASA Technical Reports Server (NTRS)
Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.
2012-01-01
The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.
The Case of the Disappearing Magnetic Dipole
ERIC Educational Resources Information Center
Gough, W.
2008-01-01
The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…
Global geodesy using GPS without fiducial sites
NASA Technical Reports Server (NTRS)
Heflin, Michael; Bertiger, Willy; Blewitt, Geoff; Freedman, Adam; Hurst, Ken; Lichten, Steve; Lindqwister, Ulf; Vigue, Yvonne; Webb, Frank; Yunck, Tom
1992-01-01
Baseline lengths and geocentric radii have been determined from GPS data without the use of fiducial sites. Data from the first GPS experiment for the IERS and Geodynamics (GIG '91) have been analyzed with a no-fiducial strategy. A baseline length daily repeatability of 2 mm + 4 parts per billion was obtained for baselines in the Northern Hemisphere. Comparison of baseline lengths from GPS and the global VLBI solution GLB659 (Caprette et al. 1990) show rms agreement of 2.1 parts per billion. The geocentric radius mean daily repeatability for all sites was 15 cm. Comparison of geocentric radii from GPS and SV5 (Murray et al. 1990) show rms agreement of 3.8 cm. Given n globally distributed stations, the n(n - 1)/2 baseline lengths and n geocentric radii uniquely define a rigid closed polyhedron with a well-defined center of mass. Geodetic information can be obtained by examining the structure of the polyhedron and its change with time.
OBSS and RMS arm during a survey of the TPS during STS-115
2006-09-09
S115-E-05307 (10 Sept. 2006) --- As in the case of the previous two shuttle missions, a tandem of the orbiter boom sensor system (OBSS) and the remote manipulator system (RMS) arm conducts a survey of the thermal protection system on the Space Shuttle Atlantis.
THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Jeremy J.; Harris, William E.; Sills, Alison
2013-02-20
We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a clustermore » recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.« less
KCa3.1 Modulates Neuroblast Migration Along the Rostral Migratory Stream (RMS) In Vivo
Turner, Kathryn L.; Sontheimer, Harald
2014-01-01
From the subventricular zone (SVZ), neuronal precursor cells (NPCs), called neuroblasts, migrate through the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). Ion channels regulate neuronal migration during development, yet their role in migration through the adult RMS is unknown. To address this question, we utilized Nestin-CreERT2/R26R-YFP mice to fluorescently label neuroblasts in the adult. Patch-clamp recordings from neuroblasts reveal K+ currents that are sensitive to intracellular Ca2+ levels and blocked by clotrimazole and TRAM-34, inhibitors of intermediate conductance Ca2+-activated K+ (KCa3.1) channels. Immunolabeling and electrophysiology show KCa3.1 expression restricted to neuroblasts in the SVZ and RMS, but absent in OB neurons. Time-lapse confocal microscopy in situ showed inhibiting KCa3.1 prolonged the stationary phase of neuroblasts' saltatory migration, reducing migration speed by over 50%. Both migration and KCa3.1 currents could also be inhibited by blocking Ca2+ influx via transient receptor potential (TRP) channels, which, together with positive immunostaining for transient receptor potential canonical 1 (TRPC1), suggest that TRP channels are an important Ca2+ source modulating KCa3.1 activity. Finally, injecting TRAM-34 into Nestin-CreERT2/R26R-YFP mice significantly reduced the number of neuroblasts that reached the OB, suggesting an important role for KCa3.1 in vivo. These studies describe a previously unrecognized protein in migration of adult NPCs. PMID:23585521
NASA Technical Reports Server (NTRS)
Lin, N.; Walker, R. J.; Mcpherron, R. L.; Kivelson, M. G.
1990-01-01
During the 1054 UT CDAW 6 substorm event, two ISEE spacecraft observed dynamic changes in the magnetic field and in the flux of energetic particles in the near-earth plasma sheet. In the substorm growth phase, the magnetic field at both ISEE spacecraft became tail-like. Following expansion phase onset, two small scale magnetic islands were observed moving tailward at a velocity of about 580 km/s. The passage of these two magnetic islands was coincident with bursts of tailward streaming energetic particles. The length of the magnetic loops was estimated to have been about 2 to 3 earth radii while the height of the loops was less than 0.5 earth radii. The magnetic islands were produced by multipoint reconnection processes in the near tail plasma sheet which may have been associated with the formation of the near-earth neutral line and the subsequent formation of a large scale plasmoid. The near-earth neutral line retreated tailward later in the expansion phase, as suggested by the reversal of the streaming of energetic particles.
Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds.
Berenov, A; Le Goupil, F; Alford, N
2016-06-21
A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua
2014-06-10
Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less
Multiple Product Qualities in Monopoly: Sailing the RMS "Titanic" into the Economics Classroom
ERIC Educational Resources Information Center
Asarta, Carlos J.; Mixon, Franklin G.; Upadhyaya, Kamal P.
2018-01-01
In this pedagogical contribution the authors extend the traditional three-class tariff employed in the French passenger railway system with the more resonant story of the service quality variations associated with the three passenger classes of the ill-fated RMS "Titanic." In doing so, they provide economics instructors with an…
Evaluation of Stress Distribution in Magnetic Materials Using a Magnetic Imaging System
NASA Astrophysics Data System (ADS)
Lo, C. C. H.; Paulsen, J. A.; Jiles, D. C.
2004-02-01
The feasibility of detecting stress distribution in magnetic materials by magnetic hysteresis and Barkhausen effect measurements has been evaluated using a newly developed magnetic imaging system. The system measured hysteresis loops and Barkhausen effect signals with the use of a surface sensor that was scanned over the material. The data were converted into a two-dimensional image showing spatial variations of the magnetic properties from which mechanical conditions of the materials can be inferred. In this study a nickel plate machined into a shear-beam load cell configuration was used. By applying a stress along the neutral axis, various stress patterns such as shear stress and stress concentration could be produced in different regions of the sample. The scanned images of magnetic properties such as coercivity and rms value of Barkhausen effect signal exhibited patterns similar to the stress distribution calculated using finite element model (FEM), in particular in the regions where a high stress level and a high stress gradient existed. For direct comparison, images of magnetic properties were simulated based on the results of FEM stress calculation and experimental calibration of the magnetomechanical effect. The simulated images were found to closely resemble the scanned images, indicating the possibility of measuring stress distribution by mapping magnetic properties using the magnetic imaging system.
Determination of mechanical properties of excised dog radii from lateral vibration experiments
NASA Technical Reports Server (NTRS)
Thompson, G. A.; Anliker, M.; Young, D. R.
1973-01-01
Experimental data which can be used as a guideline in developing a mathematical model for lateral vibrations of whole bone are reported. The study used wet and dry dog radii mounted in a cantilever configuration. Data are also given on the mechanical, geometric, and viscoelastic properties of bones.
The relationship between RMS electromyography and thickness change in the skeletal muscles.
Kian-Bostanabad, Sharareh; Azghani, Mahmood-Reza
2017-05-01
The knowledge of muscle function may affect prescribing medications and physical treatments. Recently, ultrasound and electromyography (EMG) have been used to assess the skeletal muscles activity. The relationship between these methods has been reported in numerous articles qualitatively. In this paper, the relationship between EMG root-mean-square (RMS) and ultrasound data of muscle thickness has been investigated using Response Surface Methodology in the muscles separately and together and predictive models reported. Results show that to assess the relationship between the changes of thickness and activity (EMG) in muscles, we can use quadratic model for the rectus femoris, tibialis anterior, transverse abdominal, biceps brachii and brachialis muscles (R 2 =0.624-0.891) and linear model for the internal and external oblique abdominal, lumbar multifidus and deep cervical flexor muscles (R 2 =0.348-0.767). Due to the high correlation coefficient for the equations in the bulky muscles, it seems that the correlation between EMG RMS and ultrasound data of muscle thickness on the bulky muscles is higher than the flat muscles. This relationship may depend more on the type of activity than the type of muscle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Shi-bin; Wang, Zhen-guo; Barakos, George N.; Huang, Wei; Steijl, Rene
2016-10-01
Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged Navier-Stokes(RANS) equation and the two equation SST k-ω turbulence model have been utilized to obtain the flow field properties. The numerical method has been validated against the available experimental data in the open literature. The obtained results show that the L/D will drop 7-8% when R changes from 2 to 8. The lift coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can improve 4-5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt waverider can get the better aerodynamic performance.
Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii
NASA Technical Reports Server (NTRS)
Lehmer, O. R.; Catling, D. C.
2017-01-01
In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by
VizieR Online Data Catalog: California-Kepler Survey (CKS). III. Planet radii (Fulton+, 2017)
NASA Astrophysics Data System (ADS)
Fulton, B. J.; Petigura, E. A.; Howard, A. W.; Isaacson, H.; Marcy, G. W.; Cargile, P. A.; Hebb, L.; Weiss, L. M.; Johnson, J. A.; Morton, T. D.; Sinukoff, E.; Crossfield, I. J. M.; Hirsch, L. A.
2017-11-01
We adopt the stellar sample and the measured stellar parameters from the California-Kepler Survey (CKS) program (Petigura et al. 2017, Cat. J/AJ/154/107; Paper I). The measured values of Teff, logg, and [Fe/H] are based on a detailed spectroscopic characterization of Kepler Object of Interest (KOI) host stars using observations from Keck/HIRES. In Johnson et al. 2017 (Cat J/AJ/154/108; Paper II), we associated those stellar parameters from Paper I to Dartmouth isochrones (Dotter et al. 2008ApJS..178...89D) to derive improved stellar radii and masses, allowing us to recalculate planetary radii using the light-curve parameters from Mullally et al. 2015 (Cat. J/ApJS/217/31). (1 data file).
ODS and RMS arm in position to grapple Node 1/Unity module
1998-12-05
STS088-361-021 (4-15 Dec. 1998) --- The Canadian-built Remote Manipulator System (RMS) arm is about to grapple the Node 1 or Unity Module for mating to the Space Shuttle Endeavour. The move marked the first of many steps that allowed the United States-built Unity Module to be docked with the Russian-built FGB or Zarya Module later in the mission.
RMS Titanic and the emergence of new concepts on consortial nature of microbial events.
Cullimore, D Roy; Pellegrino, Charles; Johnston, Lori
2002-01-01
The RMS Titanic sank in 1912 and created a historical event that still ripples through time. Stories were told and lessons learned but the science has only just begun. Today the fading remains of the ship resemble the hanging gardens of Babylon except that it is not plants that drape the walls but complex microbial growths called rusticles. These organisms have been found to be not a species, like plants and animals, but to be structures created by complex communities of bacterial species. Like the discovery of tube worms in the mid-oceanic vents, the nature of these rusticles presents another biological discovery of a fundamental nature. Essentially these microbial consortia on the RMS Titanic have generated structures of a mass that would rival whales and elephants while gradually extracting the iron from the steel. Rusticle-like consortia appear to play many roles within the environment, and it is perhaps the RMS Titanic that is showing that there is a new way to understand the form, function, and nature of microorganisms. This understanding would develop by considering the bacteria not as individual species functioning independently but as consortia of species functioning in community structures within a common habitat. This concept, if adopted, would change dramatically the manner in which a microbial ecologist and any scientist or engineer would view the occurrence of a slime, encrustation, biocolloid, rust flake, iron pan, salt deposit, and perhaps even some of the diseases that remain unexplained as a disease of unknown cause.
Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Sánchez, Tania; Gómez-Lázaro, Emilio; Muljadi, Edward
Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors' approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simplemore » but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1998-05-01
In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear chargemore » density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union« less
Astronaut Susan Helms on aft flight deck with RMS controls
1994-09-12
STS064-05-028 (9-20 Sept. 1994) --- On the space shuttle Discovery's aft flight deck, astronaut Susan J. Helms handles controls for the Remote Manipulator System (RMS). The robot arm operated by Helms, who remained inside the cabin, was used to support several tasks performed by the crew during the almost 11-day mission. Those tasks included the release and retrieval of the free-flying Shuttle Pointed Autonomous Research Tool For Astronomy 201 (SPARTAN 201), a six-hour spacewalk and the Shuttle Plume Impingement Flight Experiment (SPIFEX). Photo credit: NASA or National Aeronautics and Space Administration
Charge distribution of the neven sulphur isotopes from elastic electron scattering
NASA Astrophysics Data System (ADS)
Rychel, D.; Emrich, H. J.; Miska, H.; Gyufko, R.; Wiedner, C. A.
1983-10-01
Elastic electron scattering experiments on the isotopes 32,34,36S were performed covering a range in momentum transfer q = 0.5-2.6 fm -. The cross sections were analysed with the Fourier-Bessel method yielding model-independent charge distributions and their differences. The extracted rms radii follow approximately the systematics of even-even nuclei; this also holds for the gross features as expressed in dms radii and skin thicknesses.
A new model for the (geo)magnetic power spectrum, with application to planetary dynamo radii
NASA Astrophysics Data System (ADS)
Langlais, Benoit; Amit, Hagay; Larnier, Hugo; Thébault, Erwan; Mocquet, Antoine
2014-09-01
We propose two new analytical expressions to fit the Mauersberger-Lowes geomagnetic field spectrum at the core-mantle boundary. These can be used to estimate the radius of the outer liquid core where the geodynamo operates, or more generally the radius of the planetary dynamo regions. We show that two sub-families of the geomagnetic field are independent of spherical harmonics degree n at the core-mantle boundary and exhibit flat spectra. The first is the non-zonal field, i.e., for spherical harmonics order m different from zero. The second is the quadrupole family, i.e., n+m even. The flatness of their spectra is motivated by the nearly axisymmetric time-average paleomagnetic field (for the non-zonal field) and the dominance of rotational effects in core dynamics (for the quadrupole family). We test our two expressions with two approaches using the reference case of the Earth. First we estimate at the seismic core radius the agreement between the actual spectrum and the theoretical one. Second we estimate the magnetic core radius, where the spectrum flattens. We show that both sub-families offer a better agreement with the actual spectrum compared with previously proposed analytical expressions, and predict a magnetic core radius within less than 10 km of the Earth's seismic core radius. These new expressions supersede previous ones to infer the core radius from geomagnetic field information because the low degree terms are not ignored. Our formalism is then applied to infer the radius of the dynamo regions on Jupiter, Saturn, Uranus and Neptune. The axisymmetric nature of the magnetic field of Saturn prevents the use of the non-zonal expression. For the three other planets both expressions converge and offer independent constraints on the internal structure of these planets. These non-zonal and quadrupole family expressions may be implemented to extrapolate the geomagnetic field spectrum beyond observable degrees, or to further regularize magnetic field models
Computing the nucleon charge and axial radii directly at Q2=0 in lattice QCD
NASA Astrophysics Data System (ADS)
Hasan, Nesreen; Green, Jeremy; Meinel, Stefan; Engelhardt, Michael; Krieg, Stefan; Negele, John; Pochinsky, Andrew; Syritsyn, Sergey
2018-02-01
We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at Q2=0 . This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at Q2=0 and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. GEv(Q2) and GMv(Q2) for the case of the vector current and GPv(Q2) and GAv(Q2) for the axial current, at multiple Q2 values followed by z -expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.
Dependence of Fusion Barrier Heights on the Difference of Proton and Neutron Radii
NASA Astrophysics Data System (ADS)
Dobrowolski, A.; Pomorski, K.; Bartel, J.
2005-04-01
Using the Skyrme effective nucleon--nucleon interaction together with the semiclassical Extended Thomas--Fermi approach (ETF) we investigate the relative change of the fusion barrier heights for the reaction 16O+208Pb as function of the nuclear proton or neutron radii of the colliding nuclei.
View of the RMS end effector touching the SIR-B antenna during STS 41-G
1984-10-05
41G-03-008 (5-13 Oct. 1984) --- The end effector of the space shuttle Challenger's remote manipulator system (RMS) taps against the shuttle imaging radar's (SIR-B) antenna to secure it during NASA's 41-G mission. Photo credit: NASA
Radii and albedos of four Trojan asteroids and Jovian satellites 6 and 7
NASA Technical Reports Server (NTRS)
Cruikshank, D. P.
1977-01-01
Results are reported for radiometric measurements of broadband 20-micron fluxes from the Trojan asteroids 617 Patroclus, 624 Hektor (for which the broadband 10-micron flux was also measured), 1172 Aeneas, and 1173 Anchises as well as from the outer Jovian satellites Himalia (J6) and Elara (J7). Geometric albedos and radii for the six objects are derived from the corrected monochromatic fluxes and visual magnitudes. It is found that all the objects have exceedingly low geometric albedos, indicating that the Trojans and possibly the outer Jovian satellites constitute a distinct class of small solar-system bodies. The composition of the Trojan asteroids is considered on the basis of available sizes, albedos, and shapes. Revised tables of the albedos and radii of all the Jovian satellites are presented. It is concluded that the Trojans are not composed primarily of ice and that an asteroidal origin for the comets of the Jupiter group is unlikely.
Calibration of a fluxgate magnetometer array and its application in magnetic object localization
NASA Astrophysics Data System (ADS)
Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu
2013-07-01
The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are -0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions.
Kim, Mingue; Eom, Youngsub; Lee, Hwa; Suh, Young-Woo; Song, Jong Suk; Kim, Hyo Myung
2018-02-01
To evaluate the accuracy of IOL power calculation using adjusted corneal power according to the posterior/anterior corneal curvature radii ratio. Nine hundred twenty-eight eyes from 928 reference subjects and 158 eyes from 158 cataract patients who underwent phacoemulsification surgery were enrolled. Adjusted corneal power of cataract patients was calculated using the fictitious refractive index that was obtained from the geometric mean posterior/anterior corneal curvature radii ratio of reference subjects and adjusted anterior and predicted posterior corneal curvature radii from conventional keratometry (K) using the posterior/anterior corneal curvature radii ratio. The median absolute error (MedAE) based on the adjusted corneal power was compared with that based on conventional K in the Haigis and SRK/T formulae. The geometric mean posterior/anterior corneal curvature radii ratio was 0.808, and the fictitious refractive index of the cornea for a single Scheimpflug camera was 1.3275. The mean difference between adjusted corneal power and conventional K was 0.05 diopter (D). The MedAE based on adjusted corneal power (0.31 D in the Haigis formula and 0.32 D in the SRK/T formula) was significantly smaller than that based on conventional K (0.41 D and 0.40 D, respectively; P < 0.001 and P < 0.001, respectively). The percentage of eyes with refractive prediction error within ± 0.50 D calculated using adjusted corneal power (74.7%) was significantly greater than that obtained using conventional K (62.7%) in the Haigis formula (P = 0.029). IOL power calculation using adjusted corneal power according to the posterior/anterior corneal curvature radii ratio provided more accurate refractive outcomes than calculation using conventional K.
View of the Columbia's open payload bay and the Canadian RMS
1981-11-13
STS002-12-833 (13 Nov. 1981) --- Clouds over Earth and black sky form the background for this unique photograph from the space shuttle Columbia in Earth orbit. The photograph was shot through the aft flight deck windows viewing the cargo bay. Part of the scientific payload of the Office of Space and Terrestrial Applications (OSTA-1) is visible in the open cargo bay. The astronauts inside Columbia's cabin were remotely operating the Canadian-built remote manipulator system (RMS). Note television cameras on its elbow and wrist pieces. Photo credit: NASA
Resistance of equine tibiae and radii to side impact loads.
Piskoty, G; Jäggin, S; Michel, S A; Weisse, B; Terrasi, G P; Fürst, A
2012-11-01
There are no detailed studies describing the resistance of equine tibiae and radii to side impact loads, such as a horse kick and a better understanding of the general long bone impact behavioural model is required. To quantify the typical impact energy required to fracture or fissure an equine long bone, as well as to determine the range and time course of the impact force under conditions similar to that of a horse kick. Seventy-two equine tibiae and radii were investigated using a drop impact tester. The prepared bones were preloaded with an axial force of 2.5 kN and were then hit in the middle of the medial side. The impact velocity of the metal impactor, weighting 2 kg, was varied within the range of 6-11 m/s. The impact process was captured with a high-speed camera from the craniomedial side of the bone. The videos were used both for slow-motion observation of the process and for quantifying physical parameters, such as peak force via offline video tracking and subsequent numerical derivation of the 'position vs. time' function for the impactor. The macroscopic appearance of the resultant bone injuries was found to be similar to those produced by authentic horse kicks, indicating a successful simulation of the real load case. The impact behaviours of tibiae and radii do not differ considerably in terms of the investigated general characteristics. Peak force occurred between 0.15-0.30 ms after the start of the impact. The maximum contact force correlated with the 1.45-power of the impact velocity if no fracture occurred (F(max) ≈ 0.926 · v(i) (1.45) ). Peak force scatter was considerably larger within the fractured sub-group compared with fissured bones. The peak force for fracture tended to lie below the aforementioned function, within the range of F(max) = 11-23 kN ('fracture load'). The impact energy required to fracture a bone varied from 40-90 J. The video-based measuring method allowed quantifying of the most relevant physical parameters, such as
Faraday rotation fluctutation spectra observed during solar occultation of the Helios spacecraft
NASA Technical Reports Server (NTRS)
Andreev, V.; Efimov, A. I.; Samoznaev, L.; Bird, M. K.
1995-01-01
Faraday rotation (FR) measurements using linearly polarized radio signals from the two Helios spacecraft were carried out during the period from 1975 to 1984. This paper presents the results of a spectral analysis of the Helios S-band FR fluctuations observed at heliocentric distances from 2.6 to 15 solar radii during the superior conjunctions 1975-1983. The mean intensity of the FR fluctuations does not exceed the noise level for solar offsets greater than ca. 15 solar radii. The rms FR fluctuation amplitude increases rapidly as the radio ray path approaches the Sun, varying according to a power law (exponent: 2.85 +/- 0.15) at solar distances 4-12 solar radii. At distances inside 4 solar radii the increase is even steeper (exponent: 5.6 +/- 0.2). The equivalent two-dimensional FR fluctuation spectrum is well modeled by a single power-law over the frequency range from 5 to 50 mHz. For heliocentric distances larger than 4 solar radii the spectral index varies between 1.1 and 1.6 with a mean value of 1.4 +/- 0.2, corresponding to a 3-D spectral index p = 2.4. FR fluctuations thus display a somwhat lower spectral index compared with phase and amplitude fluctuations. Surprisingly high values of the spectral index were found for measurements inside 4 solar radii (p = 2.9 +/- 0.2). This may arise from the increasingly dominant effect of the magnetic field on radio wave propagation at small solar offsets. Finally, a quasiperiodic component, believed to be associated with Alfven waves, was discovered in some (but not all!) fluctuation spectra observed simultaneously at two ground stations. Characteristic periods and bulk velocities of this component were 240 +/- 30 sec and 300 +/- 60 km/s, respectively.
Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L
2015-06-01
Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT R M 3 , where R M is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5 R M ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.
Tsyganenko, Nikolai A.; Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Al Asad, Manar M.; Solomon, Sean C.; McNutt, Ralph L.
2015-01-01
Abstract Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause. PMID:27656335
Efficiency of Magnetic to Kinetic Energy Conversion in a Monopole Magnetosphere
NASA Astrophysics Data System (ADS)
Tchekhovskoy, Alexander; McKinney, Jonathan C.; Narayan, Ramesh
2009-07-01
Unconfined relativistic outflows from rotating, magnetized compact objects are often well modeled by assuming that the field geometry is approximately a split-monopole at large radii. Earlier work has indicated that such an unconfined flow has an inefficient conversion of magnetic energy to kinetic energy. This has led to the conclusion that ideal magnetohydrodynamical (MHD) processes fail to explain observations of, e.g., the Crab pulsar wind at large radii where energy conversion appears efficient. In addition, as a model for astrophysical jets, the monopole field geometry has been abandoned in favor of externally confined jets since the latter appeared to be generically more efficient jet accelerators. We perform time-dependent axisymmetric relativistic MHD simulations in order to find steady-state solutions for a wind from a compact object endowed with a monopole field geometry. Our simulations follow the outflow for 10 orders of magnitude in distance from the compact object, which is large enough to study both the initial "acceleration zone" of the magnetized wind as well as the asymptotic "coasting zone." We obtain the surprising result that acceleration is actually efficient in the polar region, which develops a jet despite not being confined by an external medium. Our models contain jets that have sufficient energy to account for moderately energetic long and short gamma-ray burst (GRB) events (~1051-1052 erg), collimate into narrow opening angles (opening half-angle θ j ≈ 0.03 rad), become matter-dominated at large radii (electromagnetic energy flux per unit matter energy flux σ < 1), and move at ultrarelativistic Lorentz factors (γ j ~ 200 for our fiducial model). The simulated jets have γ j θ j ~ 5-15, so they are in principle capable of generating "achromatic jet breaks" in GRB afterglow light curves. By defining a "causality surface" beyond which the jet cannot communicate with a generalized "magnetic nozzle" near the axis of rotation, we obtain
Mass Dependence of the HBT Radii Observed in e+e- Annihilation
NASA Astrophysics Data System (ADS)
Bialas, A.; Zalewski, K.
1999-02-01
It is shown that the recently established strong mass-dependence of the radii of the hadron sources, as observed in HBT analyses of the e+e- annihilation, can be explained by assuming a generalized inside--outside cascade, i.e. that (i) the four-momenta and the space-time position four-vectors of the produced particles are approximately proportional to each other and (ii) the ``freeze-out'' times are distributed along the hyperbola t2-z2= τ02.
EURECA orbits above the Earth's surface prior to STS-57 OV-105 RMS capture
NASA Technical Reports Server (NTRS)
1993-01-01
Backdropped against open ocean waters, the European Retrievable Carrier (EURECA) spacecraft, with solar array (SA) panels folded flat against its sides, approaches Endeavour, Orbiter Vehicle (OV) 105, on flight day five. Later, the remote manipulator system (RMS) end effector was used to 'capture' the spacecraft. After ten days in Earth orbit, the crew returned to Earth, bringing EURECA home.
VizieR Online Data Catalog: RMS survey: NIR spectroscopy of massive YSOs (Cooper+, 2013)
NASA Astrophysics Data System (ADS)
Cooper, H. D. B.; Lumsden, S. L.; Oudmaijer, R. D.; Hoare, M. G.; Clarke, A. J.; Urquhart, J. S.; Mottram, J. C.; Moore, T. J. T.; Davies, B.
2014-04-01
Spectroscopic observations of the YSO candidates were made using the UIST instrument at the United Kingdom Infra-Red Telescope (UKIRT) observatory from 2002 to 2008. 247 objects were successfully observed over 84 nights. Sources were selected from the ~2000 candidate MYSOs found using the MSX catalogue in the preceding stages of the RMS survey. (6 data files).
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.
1992-01-01
A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.
1991-01-01
The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm.
Magnetic Pair Creation Transparency in Pulsars
NASA Astrophysics Data System (ADS)
Story, Sarah; Baring, M. G.
2013-04-01
The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.
STS-31 Hubble Space Telescope (HST) (SA & HGA deployed) is grappled by RMS
1990-04-24
STS031-76-026 (25 April 1990) --- Most of the giant Hubble Space Telescope (HST) can be seen as it is suspended in space by Discovery's Remote Manipulator System (RMS) following the deployment of part of its solar panels and antennae. The photo was taken with a handheld Hasselblad camera. This was among the first photos NASA released on April 30, 1990, from the five-day STS 31 mission.
Motterlini, Roberto; Sawle, Philip; Hammad, Jehad; Mann, Brian E; Johnson, Tony R; Green, Colin J; Foresti, Roberta
2013-02-01
Carbon monoxide-releasing molecules (CO-RMs) are a class of organometallo carbonyl complexes capable of delivering controlled quantities of CO gas to cells and tissues thus exerting a broad spectrum of pharmacological effects. Here we report on the chemical synthesis, CO releasing properties, cytotoxicity profile and pharmacological activities of four novel structurally related iron-allyl carbonyls. The major difference among the new CO-RMs tested was that three compounds (CORM-307, CORM-308 and CORM-314) were soluble in dimethylsulfoxide (DMSO), whereas a fourth one (CORM-319) was rendered water-soluble by reacting the iron-carbonyl with hydrogen tetrafluoroborate. We found that despite the fact all compounds liberated CO, CO-RMs soluble in DMSO caused a more pronounced toxic effect both in vascular and inflammatory cells as well as in isolated vessels. More specifically, iron carbonyls soluble in DMSO released CO with a fast kinetic and displayed a marked cytotoxic effect in smooth muscle cells and RAW 247.6 macrophages despite exerting a rapid and pronounced vasorelaxation ex vivo. In contrast, CORM-319 that is soluble in water and liberated CO with a slower rate, preserved smooth muscle cell viability, relaxed aortic tissue and exerted a significant anti-inflammatory effect in macrophages challenged with endotoxin. These data suggest that iron carbonyls can be used as scaffolds for the design and synthesis of pharmacologically active CO-RMs and indicate that increasing water solubility and controlling the rate of CO release are important parameters for limiting their potential toxic effects. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, L.; Qi, B.; Lawton, T. G.; Mefford, O. T.; Rinaldi, C.; Garzon, S.; Crawford, T. M.
2013-03-01
Using the enormous magnetic field gradients (100 MT/m @ z =20 nm) present near the surface of magnetic recording media, we demonstrate the fabrication of diffraction gratings with lines consisting entirely of magnetic nanoparticles assembled from a colloidal fluid onto a disk drive medium, followed by transfer to a flexible and transparent polymer thin film. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. The diffracted intensity increases non-monotonically with the length of time the colloidal fluid remains on the disk surface. In addition to comparing longitudinal and perpendicular magnetic recording, a combination of spectral diffraction efficiency measurements, magnetometry, scanning electron microscopy and inductively coupled plasma atomic emmission spectroscopy of these gratings are employed to understand colloidal nanoparticle dynamics in this extreme gradient limit. Such experiments are necessary to optimize nanoparticle assembly and obtain uniform patterned features. This low-cost and sustainable approach to nanomanufacturing could enable low-cost, high-quality diffraction gratings as well as more complex polymer nanocomposite materials assembled with single-nanometer precision.
Nemeth, Gabor; Szalai, Eszter; Hassan, Ziad; Lipecz, Agnes; Flasko, Zsuzsa; Modis, Laszlo
2017-01-01
AIM To analyze the correlations between ocular biomechanical and biometric data of the eye, measured by Scheimpflug-based devices on healthy subjects. METHODS Three consecutive measurements were carried out using the corneal visualization Scheimpflug technology (CorVis ST) device on healthy eyes and the 10 device-specific parameters were recorded. Pentacam HR-derived parameters (corneal curvature radii on the anterior and posterior surfaces; apical pachymetry; corneal volume; corneal aberration data; depth, volume and angle of the anterior chamber) and axial length (AL) from IOLMaster were correlated with the 10 specific CorVis ST parameters. RESULTS Measurements were conducted in 43 eyes of 43 volunteers (age 61.24±15.72y). The 10 specific CorVis ST data showed significant relationships with corneal curvature radii both on the anterior and posterior surface, pachymetric data, root mean square (RMS) data of lower-order aberrations, and posterior RMS of higher-order aberrations and spherical aberration of the posterior cornea. Anterior chamber depth showed a significant relationship, but there were no significant correlations between corneal volume, anterior chamber volume, mean chamber angle or AL and the 10 specific CorVis ST parameters. CONCLUSIONS CorVis ST-generated parameters are influenced by corneal curvature radii, some corneal RMS data, but corneal volume, anterior chamber volume, chamber angle and AL have no correlation with the biomechanical parameters. The parameters measured by CorVis ST seem to refer mostly to corneal properties of the eye. PMID:28251079
Nemeth, Gabor; Szalai, Eszter; Hassan, Ziad; Lipecz, Agnes; Flasko, Zsuzsa; Modis, Laszlo
2017-01-01
To analyze the correlations between ocular biomechanical and biometric data of the eye, measured by Scheimpflug-based devices on healthy subjects. Three consecutive measurements were carried out using the corneal visualization Scheimpflug technology (CorVis ST) device on healthy eyes and the 10 device-specific parameters were recorded. Pentacam HR-derived parameters (corneal curvature radii on the anterior and posterior surfaces; apical pachymetry; corneal volume; corneal aberration data; depth, volume and angle of the anterior chamber) and axial length (AL) from IOLMaster were correlated with the 10 specific CorVis ST parameters. Measurements were conducted in 43 eyes of 43 volunteers (age 61.24±15.72y). The 10 specific CorVis ST data showed significant relationships with corneal curvature radii both on the anterior and posterior surface, pachymetric data, root mean square (RMS) data of lower-order aberrations, and posterior RMS of higher-order aberrations and spherical aberration of the posterior cornea. Anterior chamber depth showed a significant relationship, but there were no significant correlations between corneal volume, anterior chamber volume, mean chamber angle or AL and the 10 specific CorVis ST parameters. CorVis ST-generated parameters are influenced by corneal curvature radii, some corneal RMS data, but corneal volume, anterior chamber volume, chamber angle and AL have no correlation with the biomechanical parameters. The parameters measured by CorVis ST seem to refer mostly to corneal properties of the eye.
Using low-frequency pulsar observations to study the 3-D structure of the Galactic magnetic field
NASA Astrophysics Data System (ADS)
Sobey, C.; LOFAR Collaboration; MWA Collaboration
2018-05-01
The Galactic magnetic field (GMF) plays a role in many astrophysical processes and is a significant foreground to cosmological signals, such as the Epoch of Reionization (EoR), but is not yet well understood. Dispersion and Faraday rotation measurements (DMs and RMs, respectively) towards a large number of pulsars provide an efficient method to probe the three-dimensional structure of the GMF. Low-frequency polarisation observations with large fractional bandwidth can be used to measure precise DMs and RMs. This is demonstrated by a catalogue of RMs (corrected for ionospheric Faraday rotation) from the Low Frequency Array (LOFAR), with a growing complementary catalogue in the southern hemisphere from the Murchison Widefield Array (MWA). These data further our knowledge of the three-dimensional GMF, particularly towards the Galactic halo. Recently constructed or upgraded pathfinder and precursor telescopes, such as LOFAR and the MWA, have reinvigorated low-frequency science and represent progress towards the construction of the Square Kilometre Array (SKA), which will make significant advancements in studies of astrophysical magnetic fields in the future. A key science driver for the SKA-Low is to study the EoR, for which pulsar and polarisation data can provide valuable insights in terms of Galactic foreground conditions.
Large N[sub c], constituent quarks, and N, [Delta] charge radii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfons J. Buchmann; Richard F. Lebed.
2000-03-01
The authors show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N[sub c] limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N[sub c] baryon observables; here they apply it to the case of charge radii of the N and [Delta] states. For example, one finds the relation r[sub p][sup 2] [minus] r[sub [Delta][sup +
Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.
Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos
2012-04-27
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.
NASA Technical Reports Server (NTRS)
Okada, M.; Tsurutani, B. T.; Goldstein, G. E.; Matsumoto, H.; Brinca, A. L.; Kellogg, P. J.
1995-01-01
The proposed Small Solar Probe mission features a close approach to the sun with a perihelion of 4 radii. Carbon molecules emitted from the spacecraft's heat shield will become ionized by electron impact and photoionization. The newly created ions and electrons may generate electromagnetic and electrostatic plasma waves which are possible sources of interference with in-situ plasma measurements.
Determination of the pairing-strength constants in the isovector plus isoscalar pairing case
NASA Astrophysics Data System (ADS)
Mokhtari, D.; Fellah, M.; Allal, N. H.
2016-05-01
A method for the determination of the pairing-strength constants, in the neutron-proton (n-p) isovector plus isoscalar pairing case, is proposed in the framework of the BCS theory. It is based on the fitting of these constants to reproduce the experimentally known pairing gap parameters as well as the root-mean-squared (r.m.s) charge radii values. The method is applied to some proton-rich even-even nuclei. The single-particle energies used are those of a deformed Woods-Saxon mean field. It is shown that the obtained value of the ratio GnpT=0/G npT=1 is of the same order as the ones, arbitrary chosen, of some previous works. The effect of the inclusion of the isoscalar n-p pairing in the r.m.s matter radii is then numerically studied for the same nuclei.
Hawley controls the RMS arm from the flight deck during EVA on Flight Day 6
1997-02-16
S82-E-5568 (16 Feb. 1997) --- Astronaut Steven A. Hawley, at controls for Remote Manipulator System (RMS), during third Extravehicular Activity (EVA). Hawley had been a mission specialist for the NASA mission which deployed the giant HST in 1990. This view was taken with an Electronic Still Camera (ESC).
NASA Astrophysics Data System (ADS)
Udhayakumar, M.; Prabakaran, K.; Rajesh, K. B.; Jaroszewicz, Z.; Belafhal, Abdelmajid; Velauthapillai, Dhayalan
2018-06-01
Based on vector diffraction theory and inverse Faraday effect (IFE), the light induced magnetization distribution of a tightly focused azimuthally polarized doughnut Gaussian beam superimposed with a helical phase and modulated by an optimized multi belt complex phase filter (MBCPF) is analysed numerically. It is noted that by adjusting the radii of different rings of the complex phase filter, one can achieve many novel magnetization focal distribution such as sub wavelength scale (0.29λ) and super long (52.2λ) longitudinal magnetic probe suitable for all optical magnetic recording and the formation of multiple magnetization chain with four, six and eight sub-wavelength spherical magnetization spots suitable for multiple trapping of magnetic particles are achieved.
During STS-57, EURECA is grappled by OV-105's RMS end effector
1993-06-24
STS057-93-052 (24 June 1993) --- The European Retrievable Carrier (EURECA) is held in the grasp of the Space Shuttle Endeavour's Remote Manipulator System (RMS). The photo was taken after EURECA's "capture" from Earth-orbit but prior to its berthing in the Shuttle's cargo bay. The southern two-thirds of the state of Florida, part of the Gulf of Mexico and clouds over the Atlantic form the backdrop for the 70mm image.
Demonstration of current drive by a rotating magnetic dipole field
NASA Astrophysics Data System (ADS)
Giersch, L.; Slough, J. T.; Winglee, R.
2007-04-01
Abstract.A dipole-like rotating magnetic field was produced by a pair of circular, orthogonal coils inside a metal vacuum chamber. When these coils were immersed in plasma, large currents were driven outside the coils: the currents in the plasma were generated and sustained by the rotating magnetic dipole (RMD) field. The peak RMD-driven current was at roughly two RMD coil radii, and this current (60 kA m-) was sufficient to reverse the ambient magnetic field (33 G). Plasma density, electron temperature, magnetic field and current probes indicated that plasma formed inside the coils, then expanded outward until the plasma reached equilibrium. This equilibrium configuration was adequately described by single-fluid magnetohydrodynamic equilibrium, wherein the cross product of the driven current and magnetic filed was approximately equal to the pressure gradient. The ratio of plasma pressure to magnetic field pressure, β, was locally greater than unity.
Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P
2017-06-13
We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.
NASA Astrophysics Data System (ADS)
Si Abdallah, F.; Chérif, S. M.; Bouamama, Kh.; Roussigné, Y.; Hsu, J.-H.
2018-03-01
Morphological, magnetic and elastic properties of 5 nm-thick Co49Pt51 films, sputtered on glass substrates, with 20 nm-thick Ta (seed) and Pt (buffer) layers were studied as function of the deposition temperature Td ranging between room temperature and 350° C. Atomic and magnetic force microscopy, vibrating sample magnetometer and Brillouin light scattering techniques were used to investigate the root mean square (RMS) roughness, the magnetic domain configuration, the coercive field (Hc), the perpendicular magnetic anisotropy (PMA), and the dynamic magnetic and elastic properties of the films with Td. The results show that surface uniformity was enhanced since the RMS roughness decreases with Td while magnetic domains typical of films with high PMA are observed. Hc and PMA are found to sensibly increase with Td. The dynamic magnetization behavior is characterized by magnetic modes related with the co-existence of hard and soft magnetic areas within the samples. The elastic properties of the stack were first analyzed by means of a model describing the main variation of the elastic wave frequencies within the frame of weighted average thickness, density, Young's modulus and Poisson coefficient of all the layers constituting the stacks. However, while Hc and PMA keep increasing with Td, a more precise experimental analysis of the mechanical behavior shows that the group velocity starts increasing and finally decreases with Td, suggesting that knowledge of the influence of Td on the mechanical properties of each individual layer composing the stack is required to obtain a more accurate analysis.
Relations among Five Radii of Circles in a Triangle, Its Sides and Other Segments
ERIC Educational Resources Information Center
Sigler, Avi; Stupel, Moshe; Flores, Alfinio
2017-01-01
Students use GeoGebra to explore the mathematical relations among different radii of circles in a triangle (circumcircle, incircle, excircles) and the sides and other segments in the triangle. The more formal mathematical development of the relations that follows the explorations is based on known geometrical properties, different formulas…
Boundary-value problem for plasma centrifuge at arbitrary magnetic Reynolds numbers
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Hong, S. H.
1977-01-01
We solve in closed form the boundary-value problem for the partial differential equations which describe the (azimuthal) rotation velocity and induced magnetic fields in a cylindrical plasma centrifuge with ring electrodes of different radii and an external, axial magnetic field. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number H and the magnetic Reynolds number R. For small Hall coefficients, the induced magnetic field does not affect the plasma rotation. As a result of the Lorentz forces, the plasma rotates with speeds as high as 100,000 cm/sec around its axis of symmetry at typical conditions, so that the lighter (heavier) ion and atom components are enriched at (off) the center of the discharge cylinder.
Viking S-band Doppler RMS phase fluctuations used to calibrate the mean 1976 equatorial corona
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.
1977-01-01
Viking S-band Doppler RMS phase fluctuations (noise) and comparisons of Viking Doppler noise to Viking differenced S-X range measurements are used to construct a mean equatorial electron density model for 1976. Using Pioneer Doppler noise results (at high heliographic latitudes, also from 1976), an equivalent nonequatorial electron density model is approximated.
Astronaut Anna Fisher practices control of the RMS in a trainer
1984-08-21
S84-40162 (21 Aug. 1984) --- Astronaut Anna L. Fisher controls the Remote Manipulator System (RMS) arm from inside the "orbiter" as part of her training program in the Johnson Space Center's Shuttle Mock-up and Integration Laboratory. Dr. Fisher, one of three mission specialists for mission 51-A, is inside the cabin portion of a trainer called the Manipulatory Development Facility (MDF). She is able to operate the arm in conjunction with an air bearing floor and to log a great deal of rehearsal time for her flight, on which the retrieval of a low-orbiting communications satellite is planned. Photo credit: NASA
Rms-flux relation and fast optical variability simulations of the nova-like system MV Lyr
NASA Astrophysics Data System (ADS)
Dobrotka, A.; Mineshige, S.; Ness, J.-U.
2015-03-01
The stochastic variability (flickering) of the nova-like system (subclass of cataclysmic variable) MV Lyr yields a complicated power density spectrum with four break frequencies. Scaringi et al. analysed high-cadence Kepler data of MV Lyr, taken almost continuously over 600 d, giving the unique opportunity to study multicomponent Power Density Spectra (PDS) over a wide frequency range. We modelled this variability with our statistical model based on disc angular momentum transport via discrete turbulent bodies with an exponential distribution of the dimension scale. Two different models were used, a full disc (developed from the white dwarf to the outer radius of ˜1010 cm) and a radially thin disc (a ring at a distance of ˜1010 cm from the white dwarf) that imitates an outer disc rim. We succeed in explaining the two lowest observed break frequencies assuming typical values for a disc radius of 0.5 and 0.9 times the primary Roche lobe and an α parameter of 0.1-0.4. The highest observed break frequency was also modelled, but with a rather small accretion disc with a radius of 0.3 times the primary Roche lobe and a high α value of 0.9 consistent with previous findings by Scaringi. Furthermore, the simulated light curves exhibit the typical linear rms-flux proportionality linear relation and the typical log-normal flux distribution. As the turbulent process is generating fluctuations in mass accretion that propagate through the disc, this confirms the general knowledge that the typical rms-flux relation is mainly generated by these fluctuations. In general, a higher rms is generated by a larger amount of superposed flares which is compatible with a higher mass accretion rate expressed by a larger flux.
NASA Astrophysics Data System (ADS)
Hussein, Z. A.; Boekelheide, Z.
In magnetic nanoparticle hyperthermia in an alternating magnetic field for cancer therapy, it is important to monitor the temperature in situ. This can be done optically or electrically, but electronic measurements can be problematic because conducting parts heat up in a changing magnetic field. Microfabricated thin film sensors may be advantageous because eddy current heating is a function of size, and are promising for further miniaturization of sensors and fabrication of arrays of sensors. Thin films could also be used for in situ magnetic field sensors or for strain sensors. For a proof of concept, we fabricated a metallic thin film resistive thermometer by photolithographically patterning a 500Å Au/100Å Cr thin film on a glass substrate. Measurements were taken in a solenoidal coil supplying 0.04 T (rms) at 235 kHz with the sensor parallel and perpendicular to the magnetic field. In the parallel orientation, the resistive thermometer mirrored the background heating from the coil, while in the perpendicular orientation self-heating was observed due to eddy current heating of the conducting elements by Faraday's law. This suggests that metallic thin film sensors can be used in an alternating magnetic field, parallel to the field, with no significant self-heating.
Currie at RMS controls on the aft flight deck
1998-12-05
S88-E-5010 (12-05-98) --- Operating at a control panel on Endeavour's aft flight deck, astronaut Nancy J. Currie works with the robot arm prior to mating the 12.8-ton Unity connecting module to Endeavour's docking system. The mating took place on late afternoon of Dec. 5. A nearby monitor provides a view of the remote manipulator system's (RMS) movements in the cargo bay. The feat marked an important step in assembling the new International Space Station. Manipulating the shuttle's 50-foot-long robot arm, Currie placed Unity just inches above the extended outer ring on Endeavour's docking mechanism, enabling Robert D. Cabana, mission commander to fire downward maneuvering jets, locking the shuttle's docking system to one of two Pressurized Mating Adapters (PMA) attached to Unity. The mating occurred at 5:45 p.m. Central time, as Endeavour sailed over eastern China.
Commissioning of a new photon detection system for charge radii measurements of neutron-deficient Ca
NASA Astrophysics Data System (ADS)
Watkins, J.; Garand, D.; Miller, A. J.; Minamisono, K.; Everett, N.; Powel, R. C.; Maaß, B.; Nörtershäuser, W.; Kalman, C.; Lantis, J.; Kujawa, C.; Mantica, P.
2017-09-01
Calcium is unique for its possession of two stable isotopes of ``doubly magic'' nuclei at proton and neutron numbers (Z , N) = (20 , 20) and (20 , 28) . Recent charge radii measurements of neutron-rich calcium isotopes yielded an upward trend beyond current theoretical predictions. At the BECOLA facility at NSCL/MSU, Ca charge radii measurements will be extended to the neutron-deficient regime using collinear laser spectroscopy. A new photon detection system with an ellipsoidal reflector and a compound parabolic concentrator has been commissioned for the experiment. The system increases the signal-to-noise ratio by reducing background, which is critical for the low production rates of the Ca experiment. Details of the system and results of the characterization tests will be discussed. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft Grant SFB 1245.
A multifunctional energy-saving magnetic field generator.
Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua
2018-03-01
To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.
A multifunctional energy-saving magnetic field generator
NASA Astrophysics Data System (ADS)
Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua
2018-03-01
To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.
Zonal harmonic model of Saturn's magnetic field from Voyager 1 and 2 observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Ness, N. F.; Acuna, M. H.
1982-01-01
An analysis of the magnetic field of Saturn is presented which takes into account both the Voyager 1 and 2 vector magnetic field observations. The analysis is based on the traditional spherical harmonic expansion of a scale potential to derive the magnetic field within 8 Saturn radii. A third-order zonal harmonic model fitted to Voyager 1 and 2 observations is found to be capable of predicting the magnetic field characteristics at one encounter based on those observed at another, unlike models including dipole and quadrupole terms only. The third-order model is noted to lead to significantly enhanced polar surface field intensities with respect to dipole models, and probably represents the axisymmetric part of a complex dynamo field.
STS-52 CANEX-2 Canadian Target Assembly (CTA) held by RMS over OV-102's PLB
1992-11-01
STS052-71-057 (22 Oct-1 Nov 1992) --- This 70mm frame, photographed with a handheld Hasselblad camera aimed through Columbia's aft flight deck windows, captures the operation of the Space Vision System (SVS) experiment above the cargo bay. Target dots have been placed on the Canadian Target Assembly (CTA), a small satellite, in the grasp of the Canadian-built remote manipulator system (RMS) arm. SVS utilized a Shuttle TV camera to monitor the dots strategically arranged on the satellite, to be tracked. As the satellite moved via the arm, the SVS computer measured the changing position of the dots and provided real-time television display of the location and orientation of the CTA. This type of displayed information is expected to help an operator guide the RMS or the Mobile Servicing System (MSS) of the future when berthing or deploying satellites. Also visible in the frame is the U.S. Microgravity Payload (USMP-01).
Hubble Space Telescope (HST) grappled by OV-103's RMS during STS-31 checkout
1990-04-25
The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is held in a pre-deployment position. During STS-31 checkout procedures, the solar array (SA) panels and the high gain antennae (HGA) will be deployed. The starboard SA (center) and the two HGA are stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.
MS Mastracchio operates the RMS on the flight deck of Atlantis during STS-106
2000-09-11
STS106-E-5099 (11 September 2000) --- Astronaut Richard A. Mastracchio, mission specialist, stands near viewing windows, video monitors and the controls for the remote manipulator system (RMS) arm (out of frame at left) on the flight deck of the Earth-orbiting Space Shuttle Atlantis during Flight Day 3 activity. Atlantis was docked with the International Space Station (ISS) when this photo was recorded with an electronic still camera (ESC).
Astronauts Gardner and Allen on the RMS after recapture of Westar VI
1984-11-14
51A-39-063 (14 Nov 1984) --- A 70mm frame of WESTAR VI post-retrieval activity. Astronaut Dale A. Gardner (left), STS-51A mission specialist, holds a "For Sale" sign, making light reference to the status of the re-captured communications spacecraft, which has been stranded since its initial deployment. Astronaut Joseph P. Allen IV stands on the Mobile Foot Restraint (MFR), which in tandem with the Remote Manipulator System (RMS) arm, controlled by Dr. Anna L. Fisher inside the space shuttle Discovery's cabin, served as a cherry-picker for capture efforts. Photo credit: NASA
ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii
NASA Astrophysics Data System (ADS)
Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.
2018-05-01
We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
Resolved magnetic-field structure and variability near the event horizon of Sagittarius A.
Johnson, Michael D; Fish, Vincent L; Doeleman, Sheperd S; Marrone, Daniel P; Plambeck, Richard L; Wardle, John F C; Akiyama, Kazunori; Asada, Keiichi; Beaudoin, Christopher; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C; Brinkerink, Christiaan; Broderick, Avery E; Cappallo, Roger; Chael, Andrew A; Crew, Geoffrey B; Dexter, Jason; Dexter, Matt; Freund, Robert; Friberg, Per; Gold, Roman; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Kosowsky, Michael; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lu, Ru-Sen; MacMahon, David; McKinney, Jonathan C; Moran, James M; Narayan, Ramesh; Primiani, Rurik A; Psaltis, Dimitrios; Rogers, Alan E E; Rosenfeld, Katherine; SooHoo, Jason; Tilanus, Remo P J; Titus, Michael; Vertatschitsch, Laura; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Zensus, J Anton; Ziurys, Lucy M
2015-12-04
Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields. Copyright © 2015, American Association for the Advancement of Science.
OAST-Flyer is deployed by the Remote Manipulator System (RMS) as viewed from the flight deck
1996-01-14
STS072-320-014 (17 Jan. 1996) --- The end effect of the Space Shuttle Endeavour's Remote Manipulator System (RMS) is about to grapple the Office of Aeronautics and Space Technology's (OAST) -- Flyer satellite. The view was recorded with a 35mm camera aimed through one of Endeavour's overheard windows on the aft flight deck.
STS-57 MS & PLC Low, in EMU and atop the RMS, is maneuvered in OV-105's PLB
1993-06-25
The darkness of space forms the backdrop for this extravehicular activity (EVA) scene captured by one of the STS-57 crewmembers in Endeavour's, Orbiter Vehicle (OV) 105's, crew cabin. Pictured near the recently "captured" European Retrievable Carrier (EURECA) at frame center is Mission Specialist (MS) and Payload Commander (PLC) G. David Low. Suited in an extravehicular mobility unit (EMU), Low, anchored to the remote manipulator system (RMS) via a portable foot restraint (PFR) (manipulator foot restraint (MFR)), is conducting Detailed Test Objective (DTO) 1210 procedures. Specifically, this activity will assist in refining several procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. The PFR is attached to the RMS end effector via a PFR attachment device (PAD). Partially visible in the foreground is the Superfluid Helium Onorbit Transfer (SHOOT) payload.
Kicks of magnetized strange quark stars induced by anisotropic emission of neutrinos
NASA Astrophysics Data System (ADS)
Ayala, Alejandro; Manreza Paret, D.; Pérez Martínez, A.; Piccinelli, Gabriella; Sánchez, Angel; Ruíz Montaño, Jorge S.
2018-05-01
We study the anisotropic neutrino emission from the core of neutron stars induced by the star's magnetic field. We model the core as made out of a magnetized ideal gas of strange quark matter and implement the conditions for stellar equilibrium in this environment. The calculation is performed without resorting to analytical simplifications and for temperature, density, and magnetic field values corresponding to typical conditions for a neutron star's evolution. The anisotropic neutrino emission produces a rocket effect that contributes to the star's kick velocity. We find that the computed values for the kick velocity lie within the range of the observed values, reaching velocities of the order of ˜1000 km s-1 for magnetic fields between 1015-1018 G and radii of 20 to 5 km, respectively.
View of the Columbia's RMS arm and end effector grasping IECM
1982-06-27
STS004-37-670 (27 June-4 July 1982) --- The North Atlantic Ocean southeast of the Bahamas serves as backdrop for this 70mm scene of the Columbia?s remote manipulator system (RMS) arm and hand-like device (called and end effector) grasping a multi-instrument monitor for detecting contaminants. The experiments is called the induced environment contaminant monitor (IECM). The small box contains 11 instruments for checking the contaminants in and around the orbiter?s cargo bay which might adversely affect delicate experiments carried onboard. Astronauts Thomas K. Mattingly II and Henry W. Hartsfield Jr. manned the Columbia for seven days and one hour. The Columbia?s vertical tail and orbital maneuvering system (OMS) pods are at left foreground. Photo credit: NASA
Wu, P; Zeng, Y Z; Wang, C M
2004-03-01
Lattice constants (LCs) of all possible 96 apatite compounds, A(5)(BO(4))(3)C, constituted by A[double bond]Ba(2+), Ca(2+), Cd(2+), Pb(2+), Sr(2+), Mn(2+); B[double bond]As(5+), Cr(5+), P(5+), V(5+); and C[double bond]F(1-), Cl(1-), Br(1-), OH(1-), are predicted from their elemental ionic radii, using pattern recognition (PR) and artificial neural networks (ANN) techniques. In particular, by a PR study it is demonstrated that ionic radii predominantly govern the LCs of apatites. Furthermore, by using ANN techniques, prediction models of LCs a and c are developed, which reproduce well the measured LCs (R(2)=0.98). All the literature reported on 30 pure and 22 mixed apatite compounds are collected and used in the present work. LCs of all possible 66 new apatites (assuming they exist) are estimated by the developed ANN models. These proposed new apatites may be of interest to biomedical research especially in the design of new apatite biomaterials for bone remodeling. Similarly these techniques may also be applied in the study of interface growth behaviors involving other biomaterials.
Magnetic pumping of particles in the outer Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1980-01-01
The mechanism of magnetic pumping consists of two processes, the adiabatic motion of charged particles in a time varying magnetic field and their pitch-angle diffusion. The result is a systematic increase in the energy of charged particles trapped in mirror (and particularly, magnetospheric) magnetic fields. A numerical model of the mechanism is constructed, compared with analytic theory where possible, and, through elementary exercises, is used to predict the consequences of the process for cases that are not tractable by analytical means. For energy dependent pitch angle diffusion rates, characteristic 'two temperature' distributions are produced. Application of the model to the outer Jovian magnetosphere shows that beyond 20 Jupiter radii in the outer magnetosphere, particles may be magnetically pumped to energies of the order of 1 - 2 MeV. Two temperature distribution functions with "break points" at 1 - 4 KeV for electrons and 8 - 35 KeV for ions are predicted.
Neutron star radii, universal relations, and the role of prior distributions
Steiner, Andrew W.; Lattimer, James M.; Brown, Edward F.
2016-02-02
We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. Inmore » the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 solar mass neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. Furthermore, we also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.« less
Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina
NASA Astrophysics Data System (ADS)
Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya
Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.
NASA Astrophysics Data System (ADS)
Vidotto, A. A.; Jardine, M.; Morin, J.; Donati, J. F.; Opher, M.; Gombosi, T. I.
2014-02-01
We perform three-dimensional numerical simulations of stellar winds of early-M-dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an important role in the angular momentum evolution of the star, possibly explaining the large distribution of periods in field dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial plane carries most of the stellar angular momentum, but there is no preferred colatitude contributing to mass-loss, as the mass flux is maximum at different colatitudes for different stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass fluxes and wind total pressures ptot (defined as the sum of thermal, magnetic and ram pressures). Because planetary magnetospheric sizes are set by pressure equilibrium between the planet's magnetic field and ptot, variations of up to a factor of 3 in ptot (as found in the case of a planet orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii of about 20 per cent along the planetary orbital path. In analogy to the flux of cosmic rays that impact the Earth, which is inversely modulated with the non-axisymmetric component of the total open solar magnetic flux, we conclude that planets orbiting M-dwarf stars like DT Vir, DS Leo and GJ 182, which have significant non-axisymmetric field components, should be the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective thick atmosphere/large magnetosphere of their own.
NASA Technical Reports Server (NTRS)
Low, B.-C.
1972-01-01
The generation of a magnetic field by statistically homogeneous, stationary velocity turbulence is considered. The generation of rms magnetic fluctuation is explicitly demonstrated in the limit of short turbulence correlation time. It is shown that the fluctuation associated with a growing or stationary mean field grows with time such that the ratio of the fluctuation and the square of the mean field tends to a steady value, which is a monotonically decreasing function of the growth rate of the mean field.
Astronaut James van Hoften on RMS tracking Syncom IV-3 after deployment
1985-09-01
51I-41-086 (1 September 1985) --- Astronaut James D. van Hoften, mission specialist, flexes his muscles in celebration of a triumphant extravehicular task. Clouds over the ocean form the backdrop for this 70mm scene, toward the end of a two-day effort to capture, repair and release the previously errant Syncom IV-3 communications satellite. Van Hoften, anchored to a special foot restraint device on the end of Discovery's Remote Manipulator System (RMS), had just performed the final "shove" that started the relative separation of the Shuttle and the Syncom, which is not far out of frame. He had been joined by astronaut William F. Fisher for the busy two days of EVA.
A white-light /Fe X/H-alpha coronal transient observation to 10 solar radii
NASA Technical Reports Server (NTRS)
Wagner, W. J.; Illing, R. M. E.; Sawyer, C. B.; House, L. L.; Sheeley, N. R., Jr.; Howard, R. A.; Koomen, M. J.; Michels, D. J.; Smartt, R. N.; Dryer, M.
1983-01-01
Multitelescope observations of the coronal transient of April 15-16, 1980 provide simultaneous data from the Solar Maximum Mission Coronagraph/Polarimeter, the Solwind Coronagraph, and the new Emission line Coronagraph of the Sacramento Peak Observatory. An eruptive prominence-associated white light transient is for the first time seen as an unusual wave or brightening in Fe X 6374 A (but not in Fe XIV 5303 A). Several interpretations of this fleeting enhancement are offered. The prominence shows a slowly increasing acceleration which peaks at the time of the Fe event. The white light loop transient surrounding the prominence expands at a well-documented constant speed to solar radii, with an extrapolated start time at zero height coincident with the surface activity. This loop transient exemplifies those seen above 1.7 solar radii, in that leading the disturbance is a bright N(e)-enhanced) loop rather than a dark one. This is consistent with a report of the behavior of another eruptive event observed by Fisher and Poland (1981) which began as a density depletion in the lower corona, with a bright loop forming at greater altitudes. The top of the bright loop ultimately fades in the outer corona while slow radial growth continues in the legs.
NASA Astrophysics Data System (ADS)
Wessels, Philipp; Ewald, Johannes; Wieland, Marek; Nisius, Thomas; Vogel, Andreas; Viefhaus, Jens; Meier, Guido; Wilhein, Thomas; Drescher, Markus
2014-11-01
The destruction and formation of equilibrium multidomain patterns in permalloy (Ni80Fe20 ) microsquares has been captured using pump-probe x-ray magnetic circular dichroism (XMCD) spectromicroscopy at a new full-field magnetic transmission soft x-ray microscopy endstation with subnanosecond time resolution. The movie sequences show the dynamic magnetization response to intense Oersted field pulses of approximately 200-ps root mean square (rms) duration and the magnetization reorganization to the ground-state domain configuration. The measurements display how a vortex flux-closure magnetization distribution emerges out of a nonequilibrium uniform single-domain state. During the destruction of the initial vortex pattern, we have traced the motion of the central vortex core that is ejected out of the microsquare at high velocities exceeding 1 km/s. A reproducible recovery into a defined final vortex state with stable chirality and polarity could be achieved. Using an additional external bias field, the transient reversal of the square magnetization direction could be monitored and consistently reproduced by micromagnetic simulations.
Magnetically driven jets and winds
NASA Technical Reports Server (NTRS)
Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.
1991-01-01
Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.
Large N{sub c}, constituent quarks, and N, {Delta} charge radii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchmann, Alfons J.; Lebed, Richard F.
2000-11-01
We show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N{sub c} limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N{sub c} baryon observables; here we apply it to the case of charge radii of the N and {Delta} states, using minimal dynamical assumptions. For example, one finds the relation r{sub p}{sup 2}-r{sub {Delta}{sup +}}{sup 2}=r{sub n}{sup 2}-r{sub {Delta}{sup 0}}{sup 2} to be broken only by three-body, O(1/N{sub c}{sup 2}) effects for any N{sub c}.
Bridge-in-a-Backpack(TM). Task 2.1 and 2.2 : investigate alternative shapes with varying radii.
DOT National Transportation Integrated Search
2015-02-01
This report includes fulfillment of Tasks 2.1 and 2.2 of a multi-task contract to further enhance concrete filled FRP : tubes, or the Bridge in a Backpack. Task 2 is an investigation of alternative shapes for the FRP tubes with varying : radii. Task ...
Galactic magnetic deflections and Centaurus A as a UHECR source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Glennys R.; Jansson, Ronnie; Feain, Ilana J.
2013-01-01
We evaluate the validity of leading models of the Galactic magnetic field for predicting UHECR deflections from Cen A. The Jansson-Farrar 2012 GMF model (JF12), which includes striated and random components as well as an out-of-plane contribution to the regular field not considered in other models, gives by far the best fit globally to all-sky data including the WMAP7 22 GHz synchrotron emission maps for Q, U and I and ≈ 40,000 extragalactic Rotation Measures (RMs). Here we test the models specifically in the Cen A region, using 160 well-measured RMs and the Polarized Intensity from WMAP, nearby but outsidemore » the Cen A radio lobes. The JF12 model predictions are in excellent agreement with the observations, justifying confidence in its predictions for deflections of UHECRs from Cen A. We find that up to six of the 69 Auger events above 55 EeV are consistent with originating in Cen A and being deflected ≤ 18°; in this case three are protons and three have Z = 2−4. Others of the 13 events within 18° must have another origin. In order for a random extragalactic magnetic field between Cen A and the Milky Way to appreciably alter these conclusions, its strength would have to be ∼>80 nG — far larger than normally imagined.« less
Particle Demagnetization in Collisionless Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Hesse, Michael
2006-01-01
The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.
NASA Astrophysics Data System (ADS)
Abo-Ezz, E. R.; Essa, K. S.
2016-04-01
A new linear least-squares approach is proposed to interpret magnetic anomalies of the buried structures by using a new magnetic anomaly formula. This approach depends on solving different sets of algebraic linear equations in order to invert the depth ( z), amplitude coefficient ( K), and magnetization angle ( θ) of buried structures using magnetic data. The utility and validity of the new proposed approach has been demonstrated through various reliable synthetic data sets with and without noise. In addition, the method has been applied to field data sets from USA and India. The best-fitted anomaly has been delineated by estimating the root-mean squared (rms). Judging satisfaction of this approach is done by comparing the obtained results with other available geological or geophysical information.
NASA Astrophysics Data System (ADS)
Mishra, Sudheer K.; Singh, Talwinder; Kayshap, P.; Srivastava, A. K.
2018-03-01
We analyze the observations from Solar TErrestrial RElations Observatory (STEREO)-A and B/COR-1 of an eruptive prominence in the intermediate corona on 2011 June 7 at 08:45 UT, which consists of magnetic Rayleigh–Taylor (MRT) unstable plasma segments. Its upper-northward segment shows spatio-temporal evolution of MRT instability in form of finger structures up to the outer corona and low interplanetary space. Using the method of Dolei et al., It is estimated that the density in each bright finger is greater than the corresponding dark region lying below it in the surrounding intermediate corona. The instability is evolved due to wave perturbations that are parallel to the magnetic field at the density interface. We conjecture that the prominence plasma is supported by tension component of the magnetic field against gravity. Through the use of linear stability theory, the magnetic field is estimated as 21–40 mG to suppress growth of MRT instability in the observed finger structures. In the southward plasma segment, a horn-like structure is observed at 11:55 UT in the intermediate corona that also indicates MRT instability. Falling blobs are also observed in both of the plasma segments. In the outer corona, up to 6–13 solar radii, the mushroom-like plasma structures have been identified in the upper-northward MRT unstable plasma segment using STEREO-A/COR-2. These structures most likely grew due to the breaking and twisting of fingers at large spatial scales in weaker magnetic fields. In the lower interplanetary space up to 20 solar radii, these structures are fragmented into various small-scale localized plasma spikes, most likely due to turbulent mixing.
Radii in the sd shell and the 1s 1/2 “halo” orbit: A game changer
NASA Astrophysics Data System (ADS)
Bonnard, J.; Zuker, A. P.
2018-05-01
A new microscopic parametrisation of nuclear radii as a functional of single-particle occupation numbers is presented. Its form is inspired by the Duflo-Zuker phenomenological fit which contains a “correlation” term that recently made it possible to understand the isotope shifts of several species as due to unexpectedly large 1s 1/2 and 1p orbits [Bonnard J, Lenzi S M and Zuker A P 2016 Phys. Rev. Lett. 116 212501]. It will be shown that the calculated radii for sd-shell nuclei reproduce the experimental data better than the most accurate existing fits. These results reveal a very peculiar behaviour of the 1s 1/2 orbit: It is huge (about 1.6 fm bigger than its d counterparts of about 3.5 fm) up to N, Z = 14, then drops abruptly but remains some 0.6 fm larger than the d orbits. An intriguing mechanism bound to challenge our understanding of shell formation.
Radially Magnetized Protoplanetary Disk: Vertical Profile
NASA Astrophysics Data System (ADS)
Russo, Matthew; Thompson, Christopher
2015-11-01
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.
NASA Astrophysics Data System (ADS)
Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent
2016-08-01
Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.
Constantin, Dragoş E; Fahrig, Rebecca; Keall, Paul J
2011-07-01
.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Dragos E.; Fahrig, Rebecca; Keall, Paul J.
the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29{pi}-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72{pi} and 2.01{pi}-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34{pi} and 0.35{pi}-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.« less
Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.
2011-01-01
beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29π-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72π and 2.01π-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34π and 0.35π-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field. PMID:21859019
On the Radii of Close-in Giant Planets.
Burrows; Guillot; Hubbard; Marley; Saumon; Lunine; Sudarsky
2000-05-01
The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.
Magnetization reversal in circular vortex dots of small radius.
Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A
2017-08-10
We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.
Khromova, Irina; Kužel, Petr; Brener, Igal; ...
2016-06-27
Monocrystalline titanium dioxide (TiO 2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO 2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO 2 micro-resonators can be used to enhance the interplay of magneticmore » and electric dipole resonances in the emerging THz all-dielectric metamaterial technology.« less
Effect of word familiarity on visually evoked magnetic fields.
Harada, N; Iwaki, S; Nakagawa, S; Yamaguchi, M; Tonoike, M
2004-11-30
This study investigated the effect of word familiarity of visual stimuli on the word recognizing function of the human brain. Word familiarity is an index of the relative ease of word perception, and is characterized by facilitation and accuracy on word recognition. We studied the effect of word familiarity, using "Hiragana" (phonetic characters in Japanese orthography) characters as visual stimuli, on the elicitation of visually evoked magnetic fields with a word-naming task. The words were selected from a database of lexical properties of Japanese. The four "Hiragana" characters used were grouped and presented in 4 classes of degree of familiarity. The three components were observed in averaged waveforms of the root mean square (RMS) value on latencies at about 100 ms, 150 ms and 220 ms. The RMS value of the 220 ms component showed a significant positive correlation (F=(3/36); 5.501; p=0.035) with the value of familiarity. ECDs of the 220 ms component were observed in the intraparietal sulcus (IPS). Increments in the RMS value of the 220 ms component, which might reflect ideographical word recognition, retrieving "as a whole" were enhanced with increments of the value of familiarity. The interaction of characters, which increased with the value of familiarity, might function "as a large symbol"; and enhance a "pop-out" function with an escaping character inhibiting other characters and enhancing the segmentation of the character (as a figure) from the ground.
Spherical, rolling magnet generators for passive energy harvesting from human motion
NASA Astrophysics Data System (ADS)
Bowers, Benjamin J.; Arnold, David P.
2009-09-01
In this work, non-resonant, vibrational energy harvester architectures intended for human-motion energy scavenging are researched. The basic design employs a spherical, unidirectionally magnetized permanent magnet (NdFeB) ball that is allowed to move arbitrarily in a spherical cavity wrapped with copper coil windings. As the ball rotates and translates within the cage, the time-varying magnetic flux induces a voltage in the coil according to Faraday's Law. Devices ranging from 1.5 cm3 to 4 cm3 in size were tested under human activity scenarios—held in the user's hand or placed in the user's pocket while walking (4 km h-1) and running (14.5 km h-1). These harvesters have demonstrated rms voltages ranging from ~80 mV to 700 mV and time-averaged power densities up to 0.5 mW cm-3.
Efficiency of super-Eddington magnetically-arrested accretion
NASA Astrophysics Data System (ADS)
McKinney, Jonathan C.; Dai, Lixin; Avara, Mark J.
2015-11-01
The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested discs, where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodynamic (GRRMHD) simulation of a spinning BH (spin a/M = 0.8) accreting at ˜50 times Eddington shows a total efficiency ˜50 per cent when time-averaged and total efficiency ≳ 100 per cent in moments. Magnetic compression by the magnetic flux near the rotating BH leads to a thin disc, whose radiation escapes via advection by a magnetized wind and via transport through a low-density channel created by a Blandford-Znajek (BZ) jet. The BZ efficiency is sub-optimal due to inertial loading of field lines by optically thick radiation, leading to BZ efficiency ˜40 per cent on the horizon and BZ efficiency ˜5 per cent by r ˜ 400rg (gravitational radii) via absorption by the wind. Importantly, radiation escapes at r ˜ 400rg with efficiency η ≈ 15 per cent (luminosity L ˜ 50LEdd), similar to η ≈ 12 per cent for a Novikov-Thorne thin disc and beyond η ≲ 1 per cent seen in prior GRRMHD simulations or slim disc theory. Our simulations show how BH spin, magnetic field, and jet mass-loading affect these radiative and jet efficiencies.
Choukourov, A; Kylián, O; Petr, M; Vaidulych, M; Nikitin, D; Hanuš, J; Artemenko, A; Shelemin, A; Gordeev, I; Kolská, Z; Solař, P; Khalakhan, I; Ryabov, A; Májek, J; Slavínská, D; Biederman, H
2017-02-16
A layer of 14 nm-sized Ag nanoparticles undergoes complex transformation when overcoated by thin films of a fluorocarbon plasma polymer. Two regimes of surface evolution are identified, both with invariable RMS roughness. In the early regime, the plasma polymer penetrates between and beneath the nanoparticles, raising them above the substrate and maintaining the multivalued character of the surface roughness. The growth (β) and the dynamic (1/z) exponents are close to zero and the interface bears the features of self-affinity. The presence of inter-particle voids leads to heterogeneous wetting with an apparent water contact angle θ a = 135°. The multivalued nanotopography results in two possible positions for the water droplet meniscus, yet strong water adhesion indicates that the meniscus is located at the lower part of the spherical nanofeatures. In the late regime, the inter-particle voids become filled and the interface acquires a single valued character. The plasma polymer proceeds to grow on the thus-roughened surface whereas the nanoparticles keep emerging away from the substrate. The RMS roughness remains invariable and lateral correlations propagate with 1/z = 0.27. The surface features multiaffinity which is given by different evolution of length scales associated with the nanoparticles and with the plasma polymer. The wettability turns to the homogeneous wetting state.
Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M
1986-07-04
The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.
The effects of the structure characteristics on Magnetic Barkhausen noise in commercial steels
NASA Astrophysics Data System (ADS)
Deng, Yu; Li, Zhe; Chen, Juan; Qi, Xin
2018-04-01
This study has been done by separately measuring Magnetic Barkhausen noise (MBN) under different structure characteristics, namely the carbon content, hardness, roughness, and elastic modulus in commercial steels. The result of the experiments shows a strong dependence of MBN parameters (peak height, Root mean square (RMS), and average value) on structure characteristics. These effects, according to this study, can be explained by two kinds of source mechanisms of the MBN, domain wall nucleation and wall propagation. The discovery obtained in this paper can provide basic knowledge to understand the existing surface condition problem of Magnetic Barkhausen noise as a non-destructive evaluation technique and bring MBN into wider application.
Fabrication and metrology of km-scale radii on surfaces of master tooling
NASA Astrophysics Data System (ADS)
Leistner, Achim J.; Oreb, Bozenko F.; Seckold, Jeffrey A.; Walsh, Christopher J.
1999-08-01
The Laser Interferometer Gravitational-wave Observatory (LIGO) core optical components have been manufactured by CSIRO. These optical substrates are optically polished on a lap surface that is made of Teflon coated onto a thick rigid faceted Zerodur base. To produce the km-scale radii (> 10 km) on these substrates the lap surface is shaped by abrading it with a fine ground silica plate whose radius of curvature corresponds to the one specified for the LIGO component. The plates are measured by a commercial phase stepping interferometer which is used in a grazing incidence arrangement. We describe the process of shaping and measuring the conditioning plates and laps.
Development of a Split Bitter-type Magnet System for Dusty Plasma Experiments
NASA Astrophysics Data System (ADS)
Bates, Evan; Romero-Talamas, Carlos A.; Birmingham, William J.; Rivera, William F.
2014-10-01
A 10 Tesla Bitter-type magnetic system is under development at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County (UMBC). We present here an optimization technique that uses differential evolution to minimize the omhic heating produced by the coils, while constraining the magnetic field in the experimental volume. The code gives us the optimal dimensions for the coil system including: coil length, turn thickness, disks radii, resistance, and total current required for a constant magnetic field. Finite element parametric optimization is then used to establish the optimal design for water cooling holes. Placement of the cooling holes will also take into consideration the magnetic forces acting on the copper alloy disks to ensure the material strength is not compromised during operation. The proposed power and cooling water delivery subsystems for the coils are also presented. Upon completion and testing of the magnet system, planned experiments include the propagation of magnetized waves in dusty plasma crystals under various boundary conditions, and viscosity in rotational shear flow, among others.
Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation
NASA Technical Reports Server (NTRS)
Takahashi, K.; Mcentire, R. W.; Lui, A. T. Y.; Potemra, T. A.
1990-01-01
The AMPTE CCE spacecraft observed a transverse Pc 5 magnetic pulsation (period of about 200 s) at 2155-2310 UT on November 20, 1985, at a radial distance of 5.7 - 7.0 earth radii, at a magnetic latitude of 1.2 - 19 deg, and near 1300 magnetic local time. The magnetic pulsation exhibits properties consistent with a standing Alfven wave with a second-harmonic standing structure along the ambient magnetic field. The amplitude and the phase of the flux pulsation are found to be a function of the particle detector look direction and the particle energy. The observed energy dependence of the shift is interpreted as the result of a drift-bounce resonance of the ions with the wave. From this interpretation it follows that the wave propagated westward with an azimuthal wave number of approximately 100. Thus the study demonstrates that particle data can be useful for determining the spatial structure of some types of ULF waves.
OV-104's RMS grapples EURECA-1L and holds it in deployment position above PLB
1992-08-08
STS046-102-021 (1 Aug 1992) --- The European Space Agency's (ESA) EURECA satellite remains in the grasp of the Space Shuttle Atlantis' Remote Manipulator System (RMS) as the Space Shuttle passes over the Persian Gulf. Most of the theater of the recent war is visible in the frame. Parts of Kuwait, Iraq, Iran and Saudi Arabia can be delineated. The Tethered Satellite System (TSS) remains stowed in the aft cargo bay of Atlantis.
Peculiarities of Spacecraft Photoelectron Shield Formation in Magnetic Field
NASA Astrophysics Data System (ADS)
Veselov, Mikhail; Chugunin, Dmitriy
Traditionally, the current balance equations for a spacecraft in space plasma rely on the electric field of positively charged spacecraft. Equilibrium potential V is derived from currents outward and toward the spacecraft body. The currents are in turn functions of V. However, in reality photoelectrons move in both the electric field of the spacecraft and the Earth or the interplanetary magnetic field. This causes an anisotropic distribution of photoelectrons along a magnetic field line with the characteristic size of the order of several photoelectron gyro-radii. As a result, confinement of photoelectrons in the spacecraft-related electric field is much longer. Thus, a fraction of returned photoelectrons in the electron current toward the spacecraft can be rather great and may even dominate several times over the ambient electrons’ fraction. Modeled ph-electron trajectories as well as general photoelectron shield distribution around spacecraft are represented, and comparison of experimental data on the electron density with the magnetic flux tube model is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Eunkyu; Muirhead, Philip S.; Swift, Jonathan J.
Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius ofmore » the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.« less
NASA Astrophysics Data System (ADS)
Erdemchimeg, B.; Artukh, A. G.; Klygin, S. A.; Kononenko, G. A.; Kyslukha, D. A.; Sereda, Yu. M.; Vorontzov, A. N.; Lukyanov, S. M.; Penionzhkevich, Yu. E.; Davaa, S.; Khuukhenkhuu, G.; Borcea, C.; Rotaru, F.; Stanoiu, M.; Martina, L.; Saillant, F.; Raine, B.
2015-06-01
The total nuclear reaction cross sections (σR) measurements have long been of interest since they tell us about the radii and transparency of these nuclei and give clues to understanding of their structure. For studies of unstable nuclei, in particular the physical properties of halo nuclei and the neutron skin thickness, it is valuable to know not only the root-mean-square radii (rms) but it is important to know the details of nucleusnucleus potentials. Our goal was to study total reaction cross sections (σR) by a direct measurement technique (the so-called beam attenuation or transmission method) which allows to extract model independent information. The interaction radii for 6He, 8,9Li were extracted, which are in agreement with the previous measurement at the similar energies (about a few tens of AMeV) Our results show a tendency of increasing radii as function of mass of the secondary targets.
Review: Rusticle Formation on the RMS Titanic and the Potential Influence of Oceanography
NASA Astrophysics Data System (ADS)
Salazar, Maxsimo; Little, Brenda
2017-04-01
Meter length iron-rich rusticles on the RMS Titanic contain bacteria that reportedly mobilize iron from the ship structure at a rate that will reduce the wreck to rust in decades. Other sunken ships, such as the World War II shipwrecks in the Gulf of Mexico (GOM) are also similarly covered. However, at the GOM sites, rusticles are only centimeters in length. Minimal differences in water temperature (a few °C) between the two sites and comparable exposure times from wreckage to discovery cannot rationalize the extreme differences in rusticle length. One possible explanation for the observed difference in rusticle size is the differing amounts of dissolved or colloidal iron at the two locations.
Automatic differentiation for Fourier series and the radii polynomial approach
NASA Astrophysics Data System (ADS)
Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian
2016-11-01
In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).
On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field
NASA Technical Reports Server (NTRS)
Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.
2016-01-01
Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Krimigis, S. M.; Armstrong, T. P.
1982-01-01
The association between energetic protons (0.29-0.50 MeV) and simultaneous local fluctuations of magnetic field at 35 to 45 earth radii in the magnetotail is examined statistically with data from APL/JHU particle telescopes aboard IMP 7 and IMP 8. About four satellite years of 5.5 min averaged measurements are used in this study. In addition to confirming that the level of magnetic field fluctuations generally increases with the presence of energetic protons and their streaming anisotropy, it is found that increases in occurrence frequency of streaming of energetic protons are ordered far better by magnetic field fluctuations than by proximity to the neutral sheet. However, the presence of large magnetic field fluctuations (delta B greater than 5 nT or delta B/B greater than 50%) is neither a necessary nor a sufficient condition for the detection of large streaming in energetic protons.
Bending effects on magnetic properties of nearly zeromagnetostrictive Co-rich amorphous ribbons
NASA Astrophysics Data System (ADS)
Buttino, G.; Cecchetti, A.; Poppi, M.; Zini, G.
1991-06-01
In as received nearly zeromagnetostriction Co-based Metglas, magnetic properties in low magnetic field are anomalously affected by bending stresses. The behavior of Co-based alloys, in particular 2714A Metglas, is here compared with that of Fe-rich Metglas for which λ s ranges between 10 × 10 -6 and 35 × 10 -6. The specimens here analyzed are in the form of flat ribbons and tape-wound toroids with different radii. In 2714A Metglas, the bending effects on the ac initial permeability are unexpectedly large and depend on the way of winding the ribbons. These results emphasize a significant and different role of the two ribbon sides in determining the magnetomechanical properties of Co-based alloys.
Main magnetic field of Jupiter and its implications for future orbiter missions
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1975-01-01
A very strong planetary magnetic field and an enormous magnetosphere with extremely intense radiation belts exist at Jupiter. Pioneer 10 and 11 fly-bys confirmed and extended the earlier ground based estimates of many of these characteristics but left unanswered or added to the list of several important and poorly understood features: the source mechanism and location of decametric emissions, and the absorption effects by the natural satellites Amalthea, Io, Europa and Ganymede. High inclination orbits (exceeding 60 deg) with low periapses (less than 2 Jupiter radii) are required to map the radiation belts and main magnetic field of Jupiter accurately so as to permit full investigation of these and associated phenomena.
Molecular single-bond covalent radii for elements 1-118.
Pyykkö, Pekka; Atsumi, Michiko
2009-01-01
A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118. The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same fit. Both E-E, E-H, and E-CH(3) data are incorporated for most elements, E. Many E-E' data inside the same group are included. For the late main groups, the system is close to that of Pauling. For other elements it is close to the methyl-based one of Suresh and Koga [J. Phys. Chem. A 2001, 105, 5940] and its predecessors. For the diatomic alkalis MM' and halides XX', separate fits give a very high accuracy. These primary data are then absorbed with the rest. The most notable exclusion are the transition-metal halides and chalcogenides which are regarded as partial multiple bonds. Other anomalies include H(2) and F(2). The standard deviation for the 410 included data points is 2.8 pm.
Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes
NASA Astrophysics Data System (ADS)
Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David
2014-06-01
We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.
NASA Astrophysics Data System (ADS)
Breitkopf, Sven; Lilienfein, Nikolai; Achtnich, Timon; Zwyssig, Christof; Tünnermann, Andreas; Pupeza, Ioachim; Limpert, Jens
2018-06-01
Compact, ultra-high-speed self-bearing permanent-magnet motors enable a wide scope of applications including an increasing number of optical ones. For implementation in an optical setup, the rotors have to satisfy high demands regarding their velocity and pointing errors. Only a restricted number of measurements of these parameters exist and only at relatively low velocities. This manuscript presents the measurement of the velocity and pointing errors at rotation frequencies up to 5 kHz. The acquired data allow us to identify the rotor drive as the main source of velocity variations with fast fluctuations of up to 3.4 ns (RMS) and slow drifts of 23 ns (RMS) over ˜120 revolutions at 5 kHz in vacuum. At the same rotation frequency, the pointing fluctuated by 12 μrad (RMS) and 33 μrad (peak-to-peak) over ˜10 000 round trips. To our best knowledge, this states the first measurement of velocity and pointing errors at multi-kHz rotation frequencies and will allow potential adopters to evaluate the feasibility of such rotor drives for their application.
NASA Astrophysics Data System (ADS)
Zhao, Xian-Feng; Liu, Yuan
2006-06-01
In this paper we present the dependence of the maximum levitation force (FzMax) of a high-Tc superconductor on the surface magnetic field (Bs) of a cylindrical permanent magnet, based on the Bean critical state model and Ampère's law. A transition point of Bs is found at which the relation between FzMax and Bs changes: while the surface magnetic field is less than the transition point the dependence is subjected to a nonlinear function, otherwise it is a linear one. The two different relations are estimated to correspond to partial penetration of the shielding currents in the interior of the superconductor below the transition point and complete penetration above it, respectively. Furthermore, the influence of the geometrical properties of superconductors on the transition point of Bs is discussed, which shows a quadratic polynomial function between the transition points and the radii and the thickness of superconductors. Some optimum contours of the transition point of Bs are presented in order to achieve large levitation forces.
RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, Matthew; Thompson, Christopher
2015-11-10
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiencesmore » the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.« less
Electronic and magnetic properties in Sr{sub 1-x}La{sub x}RuO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Renu; Pramanik, A. K., E-mail: akpramanik@mail.jnu.ac.in
2016-05-23
Here we report the structural, magnetic and transport properties in La doped SrRuO{sub 3}. The doping of La{sup 3+} modifies the ionic state of Ru by converting Ru{sup 4+} to Ru{sup +3}. However, there is modification in lattice parameters as La{sup 3+} has smaller ionic radii than that of Sr{sup 2+}. We find La doping weakens the ferromagnetic state in SrRuO{sub 3} in terms of lowering T{sub c} and decreasing the magnetic moment. The electrical resistivity shows metallic behavior in whole temperature range, however, resistivity increases with doping of La.
Double Compton and Cyclo-Synchrotron in Super-Eddington Discs, Magnetized Coronae, and Jets
NASA Astrophysics Data System (ADS)
McKinney, Jonathan C.; Chluba, Jens; Wielgus, Maciek; Narayan, Ramesh; Sadowski, Aleksander
2017-05-01
Black hole accretion discs accreting near the Eddington rate are dominated by bremsstrahlung cooling, but above the Eddington rate, the double Compton process can dominate in radiation-dominated regions, while the cyclo-synchrotron can dominate in strongly magnetized regions like a corona or a jet. We present an extension to the general relativistic radiation magnetohydrodynamic code harmrad to account for emission and absorption by thermal cyclo-synchrotron, double Compton, bremsstrahlung, low-temperature opal opacities, as well as Thomson and Compton scattering. The harmrad code and associated analysis and visualization codes have been made open-source and are publicly available at the github repository website. We approximate the radiation field as a Bose-Einstein distribution and evolve it using the radiation number-energy-momentum conservation equations in order to track photon hardening. We perform various simulations to study how these extensions affect the radiative properties of magnetically arrested discs accreting at Eddington to super-Eddington rates. We find that double Compton dominates bremsstrahlung in the disc within a radius of r ˜ 15rg (gravitational radii) at hundred times the Eddington accretion rate, and within smaller radii at lower accretion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures in the corona, while cyclo-synchrotron regulates temperatures in the jet. Interestingly, as the accretion rate drops to Eddington, an optically thin corona develops whose gas temperature of T ˜ 109K is ˜100 times higher than the disc's blackbody temperature. Our results show the importance of double Compton and synchrotron in super-Eddington discs, magnetized coronae and jets.
Searching for cluster magnetic fields in the cooling flows of 0745-191, A2029, and A4059
NASA Technical Reports Server (NTRS)
Taylor, Gregory B.; Barton, Elizabeth J.; Ge, Jingping
1994-01-01
We have performed sensitive polarimetric radio observations with the Very Large Array (VLA) of three galaxies: PKS 0745-191, PKS 1508+059, and PKS 2354-350, embedded in x-ray cooling flow clusters. High sensitivity, multifrequency maps of all three, along with spectral index and Faraday rotation measure (RM) maps of PKS 1508+059 and PKS 2354-350 are presented. For PKS 1508+059 and PKS 2354-350 models of the electron density of the intracluster medium (ICM) have been used to set lower limits of 0.1 and 2.7 microG, respectively, on the magnetic field in the ICM based on the observed RMs. In an x-ray selected sample of cooling flow clusters with an associated radio source, 57% (8/14) are found to have absolute RMs in excess of 800 radians/sq m. This sample includes the three sources of this study and all the other high RM sources found to date at zeta less than 0.4. These facts are consistent with the high RM phenomenon being produced by magnetic fields associated with the relatively dense, hot x-ray gas in cooling flow clusters.
Magnetic field experiment for Voyagers 1 and 2
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Aluna, M. H.; Burlaga, L. F.; Lepping, R. P.; Ness, N. F.; Neubauer, F. M.
1977-01-01
The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of plus or minus 0.5G for the LFM's and plus or minus 20G for the HFM's, low quantization uncertainty of plus or minus 0.002 gamma in the most sensitive (plus or minus 8 gamma) LFM range, low sensor RMS noise level of 0.006 gamma, and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic field are studied. The interstellar field may also be measured.
Rodeberg, David A.; Stoner, Julie A.; Garcia-Henriquez, Norbert; Randall, R. Lor; Spunt, Sheri L.; Arndt, Carola A.; Kao, Simon; Paidas, Charles N.; Million, Lynn; Hawkins, Douglas S.
2010-01-01
Background To compare tumor volume and patient weight vs. traditional factors of tumor diameter and patient age, to determine which parameters best discriminates outcome among intermediate risk RMS patients. Methods Complete patient information for non-metastatic RMS patients enrolled in the Children’s Oncology Group (COG) intermediate risk study D9803 (1999–2005) was available for 370 patients. The Kaplan-Meier method was used to estimate survival distributions. A recursive partitioning model was used to identify prognostic factors associated with event-free survival (EFS). Cox-proportional hazards regression models were used to estimate the association between patient characteristics and the risk of failure or death. Results For all intermediate risk patients with RMS, a recursive partitioning algorithm for EFS suggests that prognostic groups should optimally be defined by tumor volume (transition point 20 cm3), weight (transition point 50 kg), and embryonal histology. Tumor volume and patient weight added significant outcome information to the standard prognostic factors including tumor diameter and age (p=0.02). The ability to resect the tumor completely was not significantly associated with the size of the patient, and patient weight did not significantly modify the association between tumor volume and EFS after adjustment for standard risk factors (p=0.2). Conclusion The factors most strongly associated with EFS were tumor volume, patient weight, and histology. Based on regression modeling, volume and weight are superior predictors of outcome compared to tumor diameter and patient age in children with intermediate risk RMS. Prognostic performance of tumor volume and patient weight should be assessed in an independent prospective study. PMID:24048802
Estimating the Magnetic Field Strength in Hot Jupiters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Thorngren, Daniel P., E-mail: rakesh_yadav@fas.harvard.edu
A large fraction of known Jupiter-like exoplanets are inflated as compared to Jupiter. These “hot” Jupiters orbit close to their parent star and are bombarded with intense starlight. Many theories have been proposed to explain their radius inflation and several suggest that a small fraction of the incident starlight is injected into the planetary interior, which helps to puff up the planet. How will such energy injection affect the planetary dynamo? In this Letter, we estimate the surface magnetic field strength of hot Jupiters using scaling arguments that relate energy available in planetary interiors to the dynamo-generated magnetic fields. Wemore » find that if we take into account the energy injected in the planetary interior that is sufficient to inflate hot Jupiters to observed radii, then the resulting dynamo should be able generate magnetic fields that are more than an order of magnitude stronger than the Jovian values. Our analysis highlights the potential fundamental role of the stellar light in setting the field strength in hot Jupiters.« less
Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
End effector of the Discovery's RMS with tools moves toward Syncom-IV
1985-04-17
51D-44-046 (17 April 1985) --- The Space Shuttle Discovery's Remote Manipulator System (RMS) arm and two specially designed extensions move toward the troubled Syncom-IV (LEASAT) communications satellite during a station keeping mode of the two spacecraft in Earth orbit. Inside the Shuttle's cabin, astronaut Rhea Seddon, 51D mission specialist, controlled the Canadian-built arm in an attempt to move an external lever on the satellite. Crewmembers learned of the satellite's problems shortly after it was deployed from the cargo bay on April 13, 1985. The arm achieved physical contact with the lever as planned. However, the satellite did not respond to the contact as hoped. A 70mm handheld Hassellblad camera, aimed through Discovery's windows, recorded this frame -- one of the first to be released to news media following return of the seven-member crew on April 17, 1985.
The effects of magnetic fields on the growth of thermal instabilities in cooling flows
NASA Technical Reports Server (NTRS)
David, Laurence P.; Bregman, Joel N.
1989-01-01
The effects of heat conduction and magnetic fields on the growth of thermal instabilities in cooling flows are examined using a time-dependent hydrodynamics code. It is found that, for magnetic field strengths of roughly 1 micro-Gauss, magnetic pressure forces can completely suppress shocks from forming in thermally unstable entropy perturbations with initial length scales as large as 20 kpc, even for initial amplitudes as great as 60 percent. Perturbations with initial amplitudes of 50 percent and initial magnetic field strengths of 1 micro-Gauss cool to 10,000 K on a time scale which is only 22 percent of the initial instantaneous cooling time. Nonlinear perturbations can thus condense out of cooling flows on a time scale substantially less than the time required for linear perturbations and produce significant mass deposition of cold gas while the accreting intracluster gas is still at large radii.
NASA Technical Reports Server (NTRS)
Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.
1975-01-01
An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.
Magnetic Pair Creation Transparency in Gamma-Ray Pulsars
NASA Astrophysics Data System (ADS)
Story, Sarah A.; Baring, Matthew G.
2014-07-01
Magnetic pair creation, γ → e + e -, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the putative detection
Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M
1989-12-15
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes
Nanofabrication and ion milling introduced effects on magnetic properties in magnetic recording
NASA Astrophysics Data System (ADS)
Sun, Zhenzhong
also shows the highest RMS by AFM measurement. The geometric peaks at the top surface may have shape anisotropy and serve as the pinning sites. These magnetic pinning sites can prevent the nucleation center forming at the top surface during the switching process and lead to a high Mr in the top surface region.
Dynamic analysis of Space Shuttle/RMS configuration using continuum approach
NASA Technical Reports Server (NTRS)
Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.
1994-01-01
The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.
Model of a fluxtube with a twisted magnetic field in the stratified solar atmosphere
NASA Astrophysics Data System (ADS)
Sen, S.; Mangalam, A.
2018-01-01
We build a single vertical straight magnetic fluxtube spanning the solar photosphere and the transition region which does not expand with height. We assume that the fluxtube containing twisted magnetic fields is in magnetohydrostatic equilibrium within a realistic stratified atmosphere subject to solar gravity. Incorporating specific forms of current density and gas pressure in the Grad-Shafranov equation, we solve the magnetic flux function, and find it to be separable with a Coulomb wave function in radial direction while the vertical part of the solution decreases exponentially. We employ improved fluxtube boundary conditions and take a realistic ambient external pressure for the photosphere to transition region, to derive a family of solutions for reasonable values of the fluxtube radius and magnetic field strength at the base of the axis that are the free parameters in our model. We find that our model estimates are consistent with the magnetic field strength and the radii of Magnetic bright points (MBPs) as estimated from observations. We also derive thermodynamic quantities inside the fluxtube.
STS-39 SPAS-II IBSS is grappled by RMS over OV-103's payload bay (PLB)
1991-05-06
STS039-15-017 (3 May 1990) --- This STS-39 35mm scene shows the Strategic Defense Initiative Organization (SDIO) Shuttle Pallet Satellite (SPAS-II) during its berthing following a period of data collection. During the eight-day flight, SPAS collected data in both a free-flying mode and while attached to the end effector of Discovery's remote manipulator system (RMS). Additional cargo, elements of the Air Force Program (AFP) 675 package, is seen near Discovery's aft bulkhead in the 60-ft. long payload bay.
Blankenstein, Felix H; Asbach, Patrick; Beuer, Florian; Glienke, Johannes; Mayer, Stefan; Zachriat, Christine
2017-01-01
Artefacts caused by orthodontic attachments limit the diagnostic value and lead to removal of these appliances before magnetic resonance imaging. Magnetic permeability can predict the artefact size. There is no standardised approach to determine the permeability of such attachments. The aim was to establish a reliable approach to determine artefact size caused by orthodontic attachments at 1.5 T MRI. Artefact radii of 21 attachments were determined applying two prevalent sequences of the head and neck region (turbo spin echo and gradient echo). The instrument Ferromaster (Stefan Mayer Instruments, Dinslaken) is approved for permeability measurements of objects with a minimum size (d = 20 mm, h = 5 mm). Eleven small test specimens of known permeability between 1.003 and 1.431 were produced. They are slightly larger than the orthodontic attachments. Their artefacts were measured and cross tabulated against the permeability. The resulting curve was used to compare the orthodontic attachments with the test bodies. Steel caused a wide range of artefact size of 10-74 mm subject to their permeability. Titanium, cobalt-chromium and ceramic materials produced artefact radii up to 20 mm. Measurement of artefacts of the test bodies revealed an interrelationship according to a root function. The artefact size of all brackets was below that root function. The permeability can be reliably assessed by conventional measurement devices and the artefact size can be predicted. The radiologist is able to decide whether or not the orthodontic attachments should be removed. This study clarifies whether an orthodontic appliance must be removed before taking an MRI.
North-South Asymmetry in the Magnetic Deflection of Polar Coronal Jets
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe; Zimbardo, Gaetano; Bothmer, Volker; Patsourakos, Spiros
Solar jets observed with the Extreme Ultra-Violet Imager (EUVI) and CORonagraphs (COR) instruments aboard the STEREO mission provide a tool to probe and understand the magnetic structure of the corona. Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure, the magnetic field controls the dynamics of plasma and, on average, jets during their propagation trace the magnetic field lines. We discuss the North-South asymmetry of the magnetic field of the Sun as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. We measured the position angle at 1 and at 2 solar radii for the 79 jets of the catalogue of Nisticò et al. (2009), based on the STEREO ultraviolet and visible observations, and we found that the propagation is not radial. The average jet deflection is studied both in the plane perpendicular to the line of sight, and, for a reduced number of jets in the three dimensional (3D) space. We find that the magnetic deflection of jets is larger in the North than in the South, with an asymmetry which is consistent with the N-S asymmetry of the heliospheric magnetic field inferred from the Ulysses in situ measurements, and gives clues to the study of the large scale solar magnetic field.
Hasbrouck, W.P.
1983-01-01
Processing of data taken with the U.S. Geological Survey's coal-seismic system is done with a desktop, stand-alone computer. Programs for this computer are written in the extended BASIC language utilized by the Tektronix 4051 Graphic System. This report presents computer programs used to develop rms velocity functions and apply mute and normal moveout to a 12-trace seismogram.
Theory of using magnetic deflections to combine charged particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steckbeck, Mackenzie K.; Doyle, Barney Lee
2014-09-01
Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these twomore » magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: B s= 1/2(r c/r s) B c, where B s and B c are the magnetic fields in the steering and bending magnet and r c/r s is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Catrin F., E-mail: williamscf@cardiff.ac.uk; School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales; Geroni, Gilles M.
Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separatedmore » electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.« less
NASA Astrophysics Data System (ADS)
Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lloyd, David; Lees, Jonathan; Porch, Adrian
2016-08-01
Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the "internet of things" is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.
Wiggler magnetic field assisted third harmonic generation in expanding clusters
NASA Astrophysics Data System (ADS)
Vij, Shivani
2018-04-01
A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.
Beam based alignment and its relevance in Indus-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.
2015-09-15
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers thatmore » the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.« less
Beam based alignment and its relevance in Indus-2.
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M L; Agrawal, R K; Yadav, S; Ghodke, A D
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
Beam based alignment and its relevance in Indus-2
NASA Astrophysics Data System (ADS)
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.; Agrawal, R. K.; Yadav, S.; Ghodke, A. D.
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
Comparison of Magnetic Properties in a Magnetic Cloud and Its Solar Source on 2013 April 11-14
NASA Astrophysics Data System (ADS)
Vemareddy, P.; Möstl, C.; Amerstorfer, T.; Mishra, W.; Farrugia, C.; Leitner, M.
2016-09-01
In the context of the Sun-Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14-15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory. The MCs magnetic structure is reconstructed from the Grad-Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10-7-10-6 m-1) at the sigmoid leg matches the range of twist number in the MC of 1-2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold-Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.
Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite
NASA Astrophysics Data System (ADS)
Anjum, Safia; Sehar, Fatima; Awan, M. S.; Zia, Rehana
2016-04-01
Bismuth-doped cobalt ferrite CoBi x Fe(2- x)O4 with x = 0, 0.1,0.2, 0.3, 0.4, 0.5 have been prepared using powder metallurgy route. The structural, morphological, elemental, magnetic and optical properties have been investigated using X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-rays, vibrating sample magnetometer and ultraviolet-visible spectrometer, respectively. X-ray diffractometer analysis confirms the formation of single-phase cubic spinel structure. As the substitution of larger ionic radii Bi3+ ions increases in cobalt ferrite which is responsible to increase the lattice parameters and decrease the crystallite size. SEM micrographs revealed the spherical shape of the particles with the nonuniform grain boundaries. The saturation magnetization decreases and bandgap energy increases as the concentration of non-magnetic Bi3+ ions increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, P.; Dhillon, V. S.; Durant, M.
2010-07-15
In a fast multi-wavelength timing study of black hole X-ray binaries (BHBs), we have discovered correlated optical and X-ray variability in the low/hard state of two sources: GX 339-4 and SWIFT J1753.5-0127. After XTE J1118+480, these are the only BHBs currently known to show rapid (sub-second) aperiodic optical flickering. Our simultaneous VLT/Ultracam and RXTE data reveal intriguing patterns with characteristic peaks, dips and lags down to very short timescales. Simple linear reprocessing models can be ruled out as the origin of the rapid, aperiodic optical power in both sources. A magnetic energy release model with fast interactions between the disk,more » jet and corona can explain the complex correlation patterns. We also show that in both the optical and X-ray light curves, the absolute source variability r.m.s. amplitude linearly increases with flux, and that the flares have a log-normal distribution. The implication is that variability at both wavelengths is not due to local fluctuations alone, but rather arises as a result of coupling of perturbations over a wide range of radii and timescales. These 'optical and X-ray rms-flux relations' thus provide new constraints to connect the outer and inner parts of the accretion flow, and the jet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenerani, Anna; Velli, Marco; DeForest, Craig, E-mail: annatenerani@epss.ucla.edu
DeForest et al. used synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft to identify inbound wave motions in the outer corona beyond 7 solar radii and inferred, from the observation, that the Alfvén surface separating the magnetically dominated corona from the flow dominated wind must be located beyond at least 12 solar radii from the Sun over polar coronal holes and beyond 15 solar radii in the streamer belt. Here, we attempt identification of the observed inward signal by theoretically reconstructing height-speed diagrams and comparing them to the observed profiles. Interpretation in terms of Alfvénmore » waves or Alfvénic turbulence appears to be ruled out by the fact that the observed signal shows a deceleration of inward motion when approaching the Sun. Fast magnetoacoustic waves are not directly ruled out in this way, as it is possible for inward waves observed in quadrature, but not propagating exactly radially, to suffer total reflection as the Alfvén speed rises close to the Sun. However, the reconstructed signal in the height-speed diagram has the wrong concavity. A final possibility is decelerating reconnection jets, most probably from component reconnection, in the accelerating wind: the profile in this case appears to match the observations very well. This interpretation does not alter the conclusion that the Alfvén surface must be at least 12 solar radii from the photosphere. Further observations should help constrain this process, never identified previously in this way, in the distance range from 7 to 12 solar radii.« less
System and method for non-destructive evaluation of surface characteristics of a magnetic material
Jiles, David C.; Sipahi, Levent B.
1994-05-17
A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Yashiro, Seiji
2011-01-01
We determine the coronal magnetic field strength in the heliocentric distance range 6-23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection imaged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfven Mach number, and hence the Alfven speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from approximately 48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances.
Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary
NASA Astrophysics Data System (ADS)
Anugu, N.; Garcia, P.
2016-04-01
Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.; Yao, C. G.; Meng, J. L.
The crystal structures, magnetic, and dielectric properties for the ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd) have been investigated. The crystal structure has been solved by Rietveld refinements of X-ray diffraction data in the monoclinic space group P2{sub 1}/n (No. 14). The Co{sup 2+} and Sb{sup 5+} ions are almost fully ordered over the B-site, and the octahedral framework displays significant tilting distortion according to the Glazer's tilt system a{sup –}a{sup –}c{sup +}. As the result of lanthanide contraction from La{sup 3+} to Nd{sup 3+}, the B-site sublattice distortions become stronger accompanying with the reduction of themore » tolerance factor and coordination number. The magnetization measurements show an antiferromagnetic ordering with large effective magnetic moments (μ{sub eff}) suggesting that the orbital component is significant. The maximum values of isothermal magnetization increase with the decrease in radii of rare earth ions, which is attributed to the weakening of antiferromagnetic interaction via Co{sup 2+}–O–Sb{sup 5+}–O–Co{sup 2+} paths. The dielectric constants present frequency dependence and monotonically decrease with the ionic radii reduction from La{sup 3+} to Nd{sup 3+} due to the suppression of electron transfer. These results indicate that the magnetic and dielectric properties can be tuned by controlling the degree of lattice distortion, which is realized by introducing different Ln{sup 3+} ions at the A-site.« less
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Dunham, E.; Wasserman, L. H.; Millis, R. L.; Churms, J.
1978-01-01
All available timing data for the occultations of SAO 158687 on March 10, 1977, by the cited rings of Uranus are analyzed. Least-squares fits to the data are performed using a model which postulates that rings alpha, beta, gamma, and delta are circular and coplanar. A solution obtained under the assumption that the ring plane coincides with the plane of the satellite orbits is adopted which yields radii of 44,844 km for ring alpha, 45,799 km for ring beta, 47,746 km for ring gamma, and 48,423 km for ring delta. The uncertainties in these values are discussed along with the apparent shapes and inclinations of these main rings. The mean radii estimated for the other rings are: 47,323 km for ring eta, 42,663 km for ring 4, 42,360 km for ring 5, and 41,980 km for ring 6.
Magnetic pair creation transparency in gamma-ray pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Story, Sarah A.; Baring, Matthew G., E-mail: ss16@rice.edu, E-mail: baring@rice.edu
2014-07-20
Magnetic pair creation, γ → e {sup +} e {sup –}, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in themore » strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with
NASA Astrophysics Data System (ADS)
Bukhan'ko, F. N.; Bukhan'ko, A. F.
2017-12-01
The evolution of the ground state of the manganese spin ensemble in the (Sm1- y Gd y )0.55Sr0.45MnO3 in the case of isovalent substitution of rare-earth samarium ions with large radii with gadolinium ions with significantly smaller radii is studied. The measured temperature dependences of the ac magnetic susceptibility and the field dependences of the dc magnetizations are analyzed using the Heisenberg-Kitaev model describing the transition from the ordered spin state with classical isotropic AFM exchange to the frustrated spin state with quantum highly anisotropic FM exchange. A continuous transition from the 3D ferromagnetic state of manganese spins in the initial sample with y = 0 to zigzag AFM ordering of CE-type spins in ab planes for y = 0.5, coexisting in samples with y = 0.5, 0.6, and 0.7 at temperatures below T N ≅ 48.5 K with a disordered phase such as a quantum Griffiths phase is identified. As the gadolinium concentration further increases, the CE-type zigzag AFM structure is molten, which leads to the appearance of an unusual phase in Gd0.55Sr0.45MnO3 in the temperature range close to the absolute zero. This phase has characteristic features of a gapless Z 2 quantum spin liquid in zero external magnetic field. The step changes in the magnetization isotherms measured at 4.2 K in the field range of ±75 kOe are explained by quantum phase transitions of the Z 2 spin liquid to a phase with topological order in weak magnetic fields and a polarized phase in strong fields. The significant difference between critical fields and magnetization jumps in isotherms indicates the existence of hysteretic phenomena in quantum spin liquid magnetization-demagnetization processes caused by the difference between localization-delocalization of 2D vortex pairs induced by a magnetic field in a quantum spin liquid with disorder.
Gap-mode-assisted light-induced switching of sub-wavelength magnetic domains
NASA Astrophysics Data System (ADS)
Scheunert, G.; McCarron, R.; Kullock, R.; Cohen, S. R.; Rechav, K.; Kaplan-Ashiri, I.; Bitton, O.; Hecht, B.; Oron, D.
2018-04-01
Creating sub-micron hotspots for applications such as heat-assisted magnetic recording (HAMR) is a challenging task. The most common approach relies on a surface-plasmon resonator (SPR), whose design dictates the size of the hotspot to always be larger than its critical dimension. Here, we present an approach which circumvents known geometrical restrictions by resorting to electric field confinement via excitation of a gap-mode (GM) between a comparatively large Gold (Au) nano-sphere (radius of 100 nm) and the magnetic medium in a grazing-incidence configuration. Operating a λ=785 nm laser, sub-200 nm hot spots have been generated and successfully used for GM-assisted magnetic switching on commercial CoCrPt perpendicular magnetic recording media at laser powers and pulse durations comparable to SPR-based HAMR. Lumerical electric field modelling confirmed that operating in the near-infrared regime presents a suitable working point where most of the light's energy is deposited in the magnetic layer, rather than in the nano-particle. Further, modelling is used for predicting the limits of our method which, in theory, can yield sub-30 nm hotspots for Au nano-sphere radii of 25-50 nm for efficient heating of FePt recording media with a gap of 5 nm.
Blast-wave model description of the Hanbury-Brown-Twiss radii in pp collisions at LHC energies
NASA Astrophysics Data System (ADS)
Bialas, Andrzej; Florkowski, Wojciech; Zalewski, Kacper
2015-04-01
The blast wave model is applied to the recent data on Hanbury-Brown-Twiss radii in pp collisions, measured by the ALICE Collaboration. A reasonable description of data is obtained for a rather low temperature of the kinetic freeze-out, T≃ 100 MeV, and the transverse profile corresponding to the emission from a shell of a fairly small width 2δ ˜ 1.5 fm. The size and the life-time of the produced system are determined for various multiplicities of the produced particles.
The Role of Magnetic Field Dissipation in the Black Hole Candidate Sagittarius A*
NASA Astrophysics Data System (ADS)
Coker, Robert F.; Melia, Fulvio
2000-05-01
The compact, nonthermal radio source Sgr A* at the Galactic center appears to be coincident with a ~2.6×106 Msolar pointlike object. Its energy source may be the release of gravitational energy as gas from the interstellar medium descends into its deep potential well. However, simple attempts at calculating the radiative spectrum and flux based on this picture have come tantalizingly close to the observations, yet have had difficulty in accounting for the unusually low efficiency in this source. Regardless of whether the radiating particles in the accretion flow are thermal or nonthermal, there now appear to be two principal reasons for this low conversion rate of dissipated energy into radiation: (1) the plasma separates into two temperatures, with the protons attaining a significantly higher temperature than that of the radiating electrons; and (2) the magnetic field B is subequipartition, which reduces the magnetic bremsstrahlung emissivity, and therefore the overall power of Sgr A*. In this paper, we investigate the latter with a considerable improvement over what has been attempted before. In particular, rather than calculating B based on some presumed model (e.g., equipartition with the thermal energy of the gas), we instead infer its distribution with radius empirically with the requirement that the resulting spectrum matches the observations. Our assumed Ansatz for B(r) is motivated in part by earlier calculations of the expected magnetic dissipation rate due to reconnection in a compressed flow. We find reasonable agreement with the observed spectrum of Sgr A* as long as its distribution consists of three primary components: an outer equipartition field, a roughly constant field at intermediate radii (~103 Schwarzschild radii), and an inner dynamo (more or less within the last stable orbit for a nonrotating black hole), which increases B to about 100 G. The latter component accounts very well for the observed submillimiter hump in this source.
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.; Chernov, S. V.
2018-05-01
A detailed study of the conditions for the realization of the phenomena of magnetic and gravity capture (MGC) of nanoparticles (NP) injected into the near-Earth space in circular orbits with altitudes and inclinations characteristic for orbits of satellites of navigation systems (GLONASS, GPS, etc.) is carried out. Spherical aluminum oxide particles with radii from 4 to 100 nm were considered as injected particles. It was assumed that injection of NP is performed at various points of circular orbits with a height of 19130 km, an inclination angle to the equatorial plane equal to 64.8 degrees and a longitude of the ascending node of 0, 120 and 240 degrees. Calculations of the motion of nanoparticles in near-Earth space were performed for conditions of low level solar and geomagnetic activity. The results of numerical experiments show that for all the considered spatial orientations of the orbit of the parent body (PB) of the NP motion in the magnetic and gravitational capture mode with extremely long orbital existence times (more than two years) can be realized only for nanoparticles with radii in the narrow gap from 8.6 to 10.2 nm.
STS-57 MS3 Wisoff, in EMU and atop the RMS, is maneuvered in OV-105's PLB
1993-06-25
STS057-89-067 (25 June 1993) --- Backdropped against the blackness of space, astronaut Peter J. K. (Jeff) Wisoff, stands on a mobile foot restraint on the end of the Space Shuttle Endeavour's Remote Manipulator System (RMS). Astronauts Wisoff and G. David Low participated in a lengthy session of extravehicular activity (EVA) on the mission's fifth day in Earth-orbit. This view was recorded on 70mm film with a handheld Hasselblad camera inside the Space Shuttle Endeavour's crew cabin.
Uniformity of cylindrical imploding underwater shockwaves at very small radii
NASA Astrophysics Data System (ADS)
Yanuka, D.; Rososhek, A.; Bland, S. N.; Krasik, Ya. E.
2017-11-01
We compare the convergent shockwaves generated from underwater, cylindrical arrays of copper wire exploded by multiple kilo-ampere current pulses on nanosecond and microsecond scales. In both cases, the pulsed power devices used for the experiments had the same stored energy (˜500 J) and the wire mass was adjusted to optimize energy transfer to the shockwave. Laser backlit framing images of the shock front were achieved down to the radius of 30 μm. It was found that even in the case of initial azimuthal non-symmetry, the shock wave self-repairs in the final stages of its motion, leading to a highly uniform implosion. In both these and previous experiments, interference fringes have been observed in streak and framing images as the shockwave approached the axis. We have been able to accurately model the origin of the fringes, which is due to the propagation of the laser beam diffracting off the uniform converging shock front. The dynamics of the shockwave and its uniformity at small radii indicate that even with only 500 J stored energies, this technique should produce pressures above 1010 Pa on the axis, with temperatures and densities ideal for warm dense matter research.
NASA Astrophysics Data System (ADS)
Joner, Michael D.; Laney, C. D.
2012-05-01
We have used 41 galactic Cepheids for which parallax or cluster/association distances are available, and for which pulsation parallaxes can be calculated, to calibrate the p-factor to be used in K-band Baade-Wesselink radius calculations. Our sample includes the 10 Cepheids from Benedict et al. (2007), and three additional Cepheids with Hipparcos parallaxes derived from van Leeuwen et al. (2007). Turner and Burke (2002) list cluster distances for 33 Cepheids for which radii have been or (in a few cases) can be calculated. Revised cluster distances from Turner (2010), Turner and Majaess (2008, 2012), and Majaess and Turner (2011, 2012a, 2012b) have been used where possible. Radii have been calculated using the methods described in Laney and Stobie (1995) and converted to K-band absolute magnitudes using the methods described in van Leeuwen et al. (2007), Feast et al. (2008), and Laney and Joner (2009). The resulting pulsation parallaxes have been used to estimate the p-factor for each Cepheid. These new results stand in contradiction to those derived by Storm et al. (2011), but are in good agreement with theoretical predictions by Nardetto et al. (2009) and with interferometric estimates of the p-factor, as summarized in Groenewegen (2007). We acknowledge the Brigham Young University College of Physical and Mathematical Sciences for continued support of research done using the facilities and personnel at the West Mountain Observatory. This support is connected with NSF/AST grant #0618209.
Repeated sharp flux dropouts observed at 6.6 earth radii during a geomagnetic storm
NASA Technical Reports Server (NTRS)
Su, S.-Y.; Fritz, T. A.; Konradi, A.
1976-01-01
A number of repeated rapid flux dropouts have been observed at 6.6 earth radii by the low-energy proton detectors on board the ATS 6 satellite during the July 4-6, 1974, geomagnetic storm period. These rapid flux changes are caused by the fact that the outer boundary of the trapped radiation region moves back and forth past the satellite. Although a tilting field line configuration can cause the boundary to pass the satellite, as has frequently been reported in the literature, the boundary is shown to be distorted by a large surface wave traveling eastward around the earth. The maximum velocity of the wave was observed to be about 40 km/s.
Mass and Magnetic Field Dependence of Electrostatic Particle Transport and Turbulence in LAPD-U
NASA Astrophysics Data System (ADS)
Crocker, N. A.; Gilmore, M.; Peebles, W. A.; Will, S.; Nguyen, X. V.; Carter, T. A.
2003-10-01
The scaling of particle transport with ion mass and magnetic field strength remains an open question in plasma research. Direct comparison of experiment with theory is often complicated by inability to significantly vary critical parameters such as ion mass, pressure gradient, ion gyro-radius, etc. The LAPD-U magnetized, linear plasma at UCLA provides the ideal platform for such studies, allowing large parameter variation. The magnetic field in LAPD-U can be varied over a range of 500 - 1500 G, while ion species can be varied to change mass by a factor of at least 10. In addition, ion gyro-radii are small compared to the plasma diameter ( 1 m). Cross-field transport in LAPD-U is thought to be caused by electrostatic turbulence, also a leading candidate for transport in fusion plasmas. It is planned, therefore, to investigate turbulence and transport characteristics as a function of parameter space. In particular, measurement of the mass and magnetic field dependence of electrostatic particle transport and turbulence characteristics in LAPD-U will be presented.
MAGNETIC SCALING LAWS FOR THE ATMOSPHERES OF HOT GIANT EXOPLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menou, Kristen
2012-02-01
We present scaling laws for advection, radiation, magnetic drag, and ohmic dissipation in the atmospheres of hot giant exoplanets. In the limit of weak thermal ionization, ohmic dissipation increases with the planetary equilibrium temperature (T{sub eq} {approx}> 1000 K) faster than the insolation power does, eventually reaching values {approx}> 1% of the insolation power, which may be sufficient to inflate the radii of hot Jupiters. At higher T{sub eq} values still magnetic drag rapidly brakes the atmospheric winds, which reduces the associated ohmic dissipation power. For example, for a planetary field strength B = 10 G, the fiducial scaling lawsmore » indicate that ohmic dissipation exceeds 1% of the insolation power over the equilibrium temperature range T{sub eq} {approx} 1300-2000 K, with a peak contribution at T{sub eq} {approx} 1600 K. Evidence for magnetically dragged winds at the planetary thermal photosphere could emerge in the form of reduced longitudinal offsets for the dayside infrared hotspot. This suggests the possibility of an anticorrelation between the amount of hotspot offset and the degree of radius inflation, linking the atmospheric and interior properties of hot giant exoplanets in an observationally testable way. While providing a useful framework to explore the magnetic scenario, the scaling laws also reveal strong parameter dependencies, in particular with respect to the unknown planetary magnetic field strength.« less
Micro structural analysis and magnetic characteristics of rare earth substituted cobalt ferrite
NASA Astrophysics Data System (ADS)
Tapdiya, Swati; Singh, Sarika; Kulshrestha, Shobha; Shrivastava, A. K.
2018-05-01
A series of ultrafine nanoparticles of Gd3+ doped Co-ferrites CoGdxFe2-xO4 (x=0.0, 0.05 and 0.10) were prepared by wet chemical co-precipitation method using nitrates of respective metal ions. Structural and morphology studies were performed using XRD, SEM and EDAX. Indexed XRD patterns confirm the formation of cubic spinel phase. Average crystallite sizes found to be decreases with trivalent rare earth ion substitution. Lattice constant (a) and lattice strain increases with increase in Gd3+ concentration due to large ionic radii (0.94nm) of Gd3+ replacing Fe3+ (0.64nm). SEM images show the spherical morphology and uniform growth of nanoparticles. Magnetic studies show that magnetization (Ms), decreases with increase in Gd3+ concentration from 50.16 emu/gm to 31.26 emu/gm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing
2015-02-15
In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observedmore » that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.« less
3D ion flow measurements and simulations near a boundary at oblique incidence to a magnetic field
NASA Astrophysics Data System (ADS)
Thompson, Derek S.; Keniley, Shane; Khaziev, Rinat; Curreli, Davide; Good, Timothy N.; Henriquez, Miguel; McIlvain, Julianne; Siddiqui, M. Umair; Scime, Earl E.
2016-10-01
Boundaries at oblique incidence to magnetic fields are abundant in magnetic confinement plasmas. The ion dynamics near these boundaries has implications for applications such as tokamak divertor wall loading and Hall thruster channel erosion. We present 3D, non-perturbative measurements of ion velocity distribution functions (IVDFs), providing ion temperatures and flows upstream of a grounded stainless steel limiter plate immersed in an argon plasma, oriented obliquely to the background axial magnetic field (ψ = 74°). The spatial resolution of the measurements is sufficient to probe the kinetic details of magnetic presheath structures, which span several ion Larmor radii ( 1 cm). Furthermore, we report probe measurements of electron density and temperature, and of local electric potential. To complement these measurements, results from particle-in-cell and Boltzmann models of the same region are presented. These models allow for point-to-point comparison of simulated and measured electrostatic structures and IVDFs at high spatial resolution. NSF Award PHYS-1360278.
NASA Astrophysics Data System (ADS)
Wang, X.; Robertson, S. H.; Horanyi, M.; NASA Lunar Science Institute: Colorado CenterLunar Dust; Atmospheric Studies
2011-12-01
The Moon does not have a global magnetic field, unlike the Earth, rather it has strong crustal magnetic anomalies. Data from Lunar Prospector and SELENE (Kaguya) observed strong interactions between the solar wind and these localized magnetic fields. In the laboratory, a configuration of a horseshoe permanent magnet below an insulating surface is used as an analogue of lunar crustal magnetic anomalies. Plasmas are created above the surface by a hot filament discharge. Potential distributions are measured with an emissive probe and show complex spatial structures. In our experiments, electrons are magnetized with gyro-radii r smaller than the distance from the surface d (r < d) and ions are un-magnetized with r > d. Unlike negative charging on surfaces with no magnetic fields, the surface potential at the center of the magnetic dipole is found close to the plasma bulk potential. The surface charging is dominated by the cold unmagnetized ions, while the electrons are shielded away. A potential minimum is formed between the center of the surface and the bulk plasma, most likely caused by the trapped electrons between the two magnetic mirrors at the cusps. The value of the potential minimum with respect to the bulk plasma potential decreases with increasing plasma density and neutral pressure, indicating that the mirror-trapped electrons are scattered by electron-electron and electron-neutral collisions. The potential at the two cusps are found to be more negative due to the electrons following the magnetic field lines onto the surface.
ERIC Educational Resources Information Center
Schumm, Walter R.; Webb, Farrell J.; Castelo, Carlos S.; Akagi, Cynthia G.; Jensen, Erick J.; Ditto, Rose M.; Spencer Carver, Elaine; Brown, Beverlyn F.
2002-01-01
Discusses the use of historical events as examples for teaching college level statistics courses. Focuses on examples of the space shuttle Challenger, Pearl Harbor (Hawaii), and the RMS Titanic. Finds real life examples can bridge a link to short term experiential learning and provide a means for long term understanding of statistics. (KDR)
NASA Astrophysics Data System (ADS)
Harrigan, Robert L.; Plassard, Andrew J.; Mawn, Louise A.; Galloway, Robert L.; Smith, Seth A.; Landman, Bennett A.
2015-03-01
Optic neuritis is a sudden inflammation of the optic nerve (ON) and is marked by pain on eye movement, and visual symptoms such as a decrease in visual acuity, color vision, contrast and visual field defects. The ON is closely linked with multiple sclerosis (MS) and patients have a 50% chance of developing MS within 15 years. Recent advances in multi-atlas segmentation methods have omitted volumetric assessment. In the past, measuring the size of the ON has been done by hand. We utilize a new method of automatically segmenting the ON to measure the radii of both the ON and surrounding cerebrospinal fluid (CSF) sheath to develop a normative distribution of healthy young adults. We examine this distribution for any trends and find that ON and CSF sheath radii do not vary between 20-35 years of age and between sexes. We evaluate how six patients suffering from optic neuropathy compare to this distribution of controls. We find that of these six patients, five of them qualitatively differ from the normative distribution which suggests this technique could be used in the future to distinguish between optic neuritis patients and healthy controls
Magnetic Field Transport in Accretion Disks
NASA Astrophysics Data System (ADS)
Jafari, Amir; Vishniac, Ethan T.
2018-02-01
The leading models for launching astrophysical jets rely on strong poloidal magnetic fields threading the central parts of their host accretion disks. Numerical simulations of magneto-rotationally turbulent disks suggest that such fields are actually advected from the environment by the accreting matter rather than generated by internal dynamos. This is puzzling from a theoretical point of view, since the reconnection of the radial field across the midplane should cause an outward drift on timescales much shorter than the accretion time. We suggest that a combination of effects are responsible for reducing the radial field near the midplane, causing efficient inward advection of the poloidal field. Magnetic buoyancy in subsonic turbulence pushes the field lines away from the midplane, decreasing the large-scale radial field in the main body of the disk. In magneto-rotationally driven turbulence, magnetic buoyancy dominates over the effects of turbulent pumping, which works against it, and turbulent diamagnetism, which works with it, in determining the vertical drift of the magnetic field. Balancing buoyancy with diffusion implies that the bending angle of the large-scale poloidal field can be very large near the surface, as required for outflows, but vanishes near the midplane, which impedes turbulent reconnection and outward diffusion. This effect becomes less efficient as the poloidal flux increases. This suggests that accretion disks are less likely to form jets if they have a modest ratio of outer to inner radii or if the ambient field is very weak. The former effect is probably responsible for the scarcity of jets in cataclysmic variable systems.
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.; Smith, E. J.; Frandsen, A. M. A.; Serbu, G. P.
1972-01-01
On May 15, 1969, Ogo 5 crossed the plasmapause during a major storm that produced severe geomagnetic disturbances (Kp up to 8-), large and rapid variations in ring-current intensity (as measured by Dst), intense low-latitude aurora, and persistent SAR arcs. Near the highly structured plasmasphere boundary, the electric- and magnetic-field sensors on Ogo 5 detected lower-hybrid-resonance noise bursts, whistlers, ELF hiss, and other discrete signals or emissions. Some LHR noise bursts were associated with whistlers, and these high-altitude phenomena resembled the corresponding ionospheric ones. This report contains a description of the VLF observations. We also show that intense ULF magnetic signals were present near the plasmapause, and we attempt to relate these observations to the predictions of various theories of proton ring-current decay and SAR-arc formation.
NASA Astrophysics Data System (ADS)
Fortkamp, F. P.; Lozano, J. A.; Barbosa, J. R.
2017-12-01
This work presents a parametric analysis of the performance of nested permanent magnet Halbach cylinders intended for applications in magnetic refrigeration and heat pumping. An analytical model for the magnetic field generated by the cylinders is used to systematically investigate the influence of their geometric parameters. The proposed configuration generates two poles in the air gap between the cylinders, where active magnetic regenerators are positioned for conversion of magnetic work into cooling capacity or heat power. A sample geometry based on previous designs of magnetic refrigerators is investigated, and the results show that the magnetic field in the air gap oscillates between 0 to approximately 1 T, forming a rectified cosine profile along the circumference of the gap. Calculations of the energy density of the magnets indicate the need to operate at a low energy (particular the inner cylinder) in order to generate a magnetic profile suitable for a magnetic cooler. In practice, these low-energy regions of the magnet can be potentially replaced by soft ferromagnetic material. A parametric analysis of the air gap height has been performed, showing that there are optimal values which maximize the magnet efficiency parameter Λcool . Some combinations of cylinder radii resulted in magnetic field changes that were too small for practical purposes. No demagnetization of the cylinders has been found for the range of parameters considered.
Design, implementation and control of a magnetic levitation device
NASA Astrophysics Data System (ADS)
Shameli, Ehsan
levitation system, the feedback linearization controller has the shortest settling time and is capable of reducing the positioning error to RMS value of 11.56mum. The force model was also utilized in the design of a model reference adaptive feedback linearization (MRAFL) controller for the z direction. For this case, the levitated object is a small microrobot equipped with a remote controlled gripper weighting approximately 28(gr). Experimental results showed that the MRAFL controller enables the micro-robot to pick up and transport a payload as heavy as 30% of its own weight without a considerable effect on its positioning accuracy. In the presence of the payload, the MRAFL controller resulted in a RMS positioning error of 8microm compared with 27.9mum of the regular feedback linearization controller. For the horizontal position control of the system, a mathematical formula for distributing the electric currents to the multiple electromagnets of the system was proposed and a PID control approach was implemented to control the position of the levitated object in the xy-plane. The control system was experimentally tested in tracking circular and spiral trajectories with overall positioning accuracy of 60mum. Also, a new mathematical approach is presented for the prediction of magnetic field distribution in the horizontal direction. The proposed approach is named the pivot point method and is capable of predicting the two dimensional position of the levitated object in a given vertical plane for an arbitrary current distribution in the electromagnets of the levitation system. Experimental results showed that the proposed method is capable of predicting the location of the levitated object with less than 10% error.
Pauling, Linus; Kamb, Barclay
1986-01-01
An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698
Proteus mirabilis RMS 203 as a new representative of the O13 Proteus serogroup.
Palusiak, Agata; Siwińska, Małgorzata; Zabłotni, Agnieszka
2015-01-01
The unique feature of some Proteus O-polysaccharides is occurrence of an amide of galacturonic acid with N(ε)-[(S/R)-1-Carboxyethyl]-L-lysine, GalA6(2S,8S/R-AlaLys). The results of the serological studies presented here, with reference to known O-antigens structures suggest that GalA6(2S,8S/R-AlaLys) or 2S,8R-AlaLys contribute to cross-reactions of O13 Proteus antisera, and Proteeae LPSs. It was also revealed that the Proteus mirabilis RMS 203 strain can be classified into the O13 serogroup, represented so far by two strains: Proteus mirabilis 26/57 and Proteus vulgaris 8344. The O13 LPS is a serologically important antigen with a fragment common to LPSs of different species in the Proteeae tribe.
COMPARISON OF MAGNETIC PROPERTIES IN A MAGNETIC CLOUD AND ITS SOLAR SOURCE ON 2013 APRIL 11–14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P.; Möstl, C.; Amerstorfer, T.
2016-09-01
In the context of the Sun–Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14–15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory . The MCs magnetic structure is reconstructed from the Grad–Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect tomore » the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10{sup −7}–10{sup −6} m{sup −1}) at the sigmoid leg matches the range of twist number in the MC of 1–2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold–Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.« less
On the structure and stability of magnetic tower jets
Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; ...
2012-09-05
Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales <~ 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models,more » the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Here, unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.« less
Magnetically Controlled Spasmodic Accretion during Star Formation. II. Results
NASA Astrophysics Data System (ADS)
Tassis, Konstantinos; Mouschovias, Telemachos Ch.
2005-01-01
The problem of the late accretion phase of the evolution of an axisymmetric, isothermal magnetic disk surrounding a forming star has been formulated in a companion paper. The ``central sink approximation'' is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 1011 cm-3 and radii smaller than a few AU. Only the electrons are assumed to be attached to the magnetic field lines, and the effects of both negatively and positively charged grains are accounted for. After a mass of 0.1 Msolar accumulates in the central cell (forming star), a series of magnetically driven outflows and associated outward-propagating shocks form in a quasi-periodic fashion. As a result, mass accretion onto the protostar occurs in magnetically controlled bursts. We refer to this process as spasmodic accretion. The shocks propagate outward with supermagnetosonic speeds. The period of dissipation and revival of the outflow decreases in time, as the mass accumulated in the central sink increases. We evaluate the contribution of ambipolar diffusion to the resolution of the magnetic flux problem of star formation during the accretion phase, and we find it to be very significant albeit not sufficient to resolve the entire problem yet. Ohmic dissipation is completely negligible in the disk during this phase of the evolution. The protostellar disk is found to be stable against interchange-like instabilities, despite the fact that the mass-to-flux ratio has temporary local maxima.
Reconstruction of the static magnetic field of a magnetron
NASA Astrophysics Data System (ADS)
Krüger, Dennis; Köhn, Kevin; Gallian, Sara; Brinkmann, Ralf Peter
2018-06-01
The simulation of magnetron discharges requires a quantitatively correct mathematical model of the magnetic field structure. This study presents a method to construct such a model on the basis of a spatially restricted set of experimental data and a plausible a priori assumption on the magnetic field configuration. The example in focus is that of a planar circular magnetron. The experimental data are Hall probe measurements of the magnetic flux density in an accessible region above the magnetron plane [P. D. Machura et al., Plasma Sources Sci. Technol. 23, 065043 (2014)]. The a priori assumption reflects the actual design of the device, and it takes the magnetic field emerging from a center magnet of strength m C and vertical position d C and a ring magnet of strength m R , vertical position d R , and radius R. An analytical representation of the assumed field configuration can be formulated in terms of generalized hypergeometric functions. Fitting the ansatz to the experimental data with a least square method results in a fully specified analytical field model that agrees well with the data inside the accessible region and, moreover, is physically plausible in the regions outside of it. The outcome proves superior to the result of an alternative approach which starts from a multimode solution of the vacuum field problem formulated in terms of polar Bessel functions and vertical exponentials. As a first application of the obtained field model, typical electron and ion Larmor radii and the gradient and curvature drift velocities of the electron guiding center are calculated.
A polarized neutron study of the magnetization distribution in Co₂FeSi.
Brown, P J; Kainuma, R; Kanomata, T; Neumann, K-U; Okubo, A; Umetsu, R Y; Ziebeck, K R A
2013-05-22
The magnetization distribution in Co2FeSi which has the largest moment per formula unit ∼6 μB of all Heusler alloys, has been determined using polarized neutron diffraction. The experimentally determined magnetization has been integrated over spheres centred on the three sites of the L12 structure giving μ Fe = 3.10(3) μB and μ Co = 1.43(2) μB, results which are slightly lower than the moments in atomic spheres of similar radii obtained in recent LDA + U band structure calculations (Li et al 2010 Chin. Phys. B 19 097102). Approximately 50% of the magnetic carriers at the Fe sites were found to be in orbitals with eg symmetry. This was higher, ≃65%, at the Co sites. Both Fe and Co were found to have orbital moments that are larger than those predicted. Comparison with similar results obtained for related alloys suggests that there must be a finite density of states in both spin bands at the Fermi energy indicating that Co2FeSi is not a perfect half-metallic ferromagnet.
Quality control of the RMS US flood model
NASA Astrophysics Data System (ADS)
Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal
2016-04-01
The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.
NASA Astrophysics Data System (ADS)
Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore
2018-03-01
Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.
Three-dimensional OCT based guinea pig eye model: relating morphology and optics.
Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Martinez-Enriquez, Eduardo; Revuelta, Luis; McFadden, Sally A; Marcos, Susana
2017-04-01
Custom Spectral Optical Coherence Tomography (SOCT) provided with automatic quantification and distortion correction algorithms was used to measure the 3-D morphology in guinea pig eyes (n = 8, 30 days; n = 5, 40 days). Animals were measured awake in vivo under cyclopegia. Measurements showed low intraocular variability (<4% in corneal and anterior lens radii and <8% in the posterior lens radii, <1% interocular distances). The repeatability of the surface elevation was less than 2 µm. Surface astigmatism was the individual dominant term in all surfaces. Higher-order RMS surface elevation was largest in the posterior lens. Individual surface elevation Zernike terms correlated significantly across corneal and anterior lens surfaces. Higher-order-aberrations (except spherical aberration) were comparable with those predicted by OCT-based eye models.
Magnetic field studies at jupiter by voyager 2: preliminary results.
Ness, N F; Acuna, M H; Lepping, R P; Burlaga, L F; Behannon, K W; Neubauer, F M
1979-11-23
Data from the Goddard Space Flight Center magnetometers on Voyager 2 have yielded on inbound trajectory observations of multiple crossings of the bow shock and magnetosphere near the Jupiter-sun line at radial distances of 99 to 66 Jupiter radii (RJ) and 72 to 62 RJ, respectively. While outbound at a local hour angle of 0300, these distances increase appreciably so that at the time of writing only the magnetopause has been observed between 160 and 185 RJ. These results and the magnetic field geometry confirm the earlier conclusion from Voyager I studies that Jupiter has an enormous magnetic tail, approximately 300 to 400 RJ in diameter, trailing behind the planet with respect to the supersonic flow of the solar wind. Addi- tional observations of the distortion of the inner magnetosphere by a concentrated plasma show a spatial merging of the equatorial magnetodisk current with the cur- rent sheet in the magnetic tail. The spacecraft passed within 62,000 kilometers of Ganymede (radius = 2,635 kilometers) and observed characteristic fluctuations in- terpreted tentatively as being due to disturbances arising from the interaction of the Jovian magnetosphere with Ganymede.
Energy buildup in coronal magnetic flux tubes
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.; Tajima, T.
1987-01-01
A time-dependent two-dimensional MHD simulation is used to study the response of the magnetic field in coronal loops to photospheric motion. From an initially uniform field, circular sections of the ends of the loop are slowly rotated to represent the photospheric motion. The evolution of the field and flow is characterized by three phases: (1) a phase of negligible kinetic energy where the current and field are predominantly parallel; (2) a phase where the field twist increases, the axial field at and near the axis increases, and the axial field decreases in two cylindrical regions away from the axis; and (3) a phase in which a significant portion of the field makes several rotations at large radii, with a corresponding reducton in the axial field to a few percent of the initial value.
Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii
NASA Technical Reports Server (NTRS)
Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.
2007-01-01
Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.
Kremoser, Claus; Albers, Michael; Burris, Thomas P; Deuschle, Ulrich; Koegl, Manfred
2007-10-01
Drugs that target nuclear receptors are clinically, as well as commercially, successful. Their widespread use, however, is limited by an inherent propensity of nuclear receptors to trigger beneficial, as well as adverse, pharmacological effects upon drug activation. Hence, selective drugs that display reduced adverse effects, such as the selective estrogen receptor modulator (SERM) Raloxifene, have been developed by guidance through classical cell culture assays and animal trials. Full agonist and selective modulator nuclear receptor drugs, in general, differ by their ability to recruit certain cofactors to the receptor protein. Hence, systematic cofactor profiling is advancing into an approach for the rationally guided identification of selective NR modulators (SNuRMs) with improved therapeutic ratio.
MEASURING NEUTRON STAR RADII VIA PULSE PROFILE MODELING WITH NICER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özel, Feryal; Psaltis, Dimitrios; Bauböck, Michi
2016-11-20
The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station . Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgroundsmore » need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.« less
NASA Astrophysics Data System (ADS)
Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.
2018-04-01
Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.
The direct cooling tail method for X-ray burst analysis to constrain neutron star masses and radii
NASA Astrophysics Data System (ADS)
Suleimanov, Valery F.; Poutanen, Juri; Nättilä, Joonas; Kajava, Jari J. E.; Revnivtsev, Mikhail G.; Werner, Klaus
2017-04-01
Determining neutron star (NS) radii and masses can help to understand the properties of matter at supra-nuclear densities. Thermal emission during thermonuclear X-ray bursts from NSs in low-mass X-ray binaries provides a unique opportunity to study NS parameters, because of the high fluxes, large luminosity variations and the related changes in the spectral properties. The standard cooling tail method uses hot NS atmosphere models to convert the observed spectral evolution during cooling stages of X-ray bursts to the Eddington flux FEdd and the stellar angular size Ω. These are then translated to the constraints on the NS mass M and radius R. Here we present the improved, direct cooling tail method that generalizes the standard approach. First, we adjust the cooling tail method to account for the bolometric correction to the flux. Then, we fit the observed dependence of the blackbody normalization on flux with a theoretical model directly on the M-R plane by interpolating theoretical dependences to a given gravity, hence ensuring only weakly informative priors for M and R instead of FEdd and Ω. The direct cooling method is demonstrated using a photospheric radius expansion burst from SAX J1810.8-2609, which has happened when the system was in the hard state. Comparing to the standard cooling tail method, the confidence regions are shifted by 1σ towards larger radii, giving R = 11.5-13.0 km at M = 1.3-1.8 M⊙ for this NS.
2012-01-01
Background The Poisson-Boltzmann (PB) equation and its linear approximation have been widely used to describe biomolecular electrostatics. Generalized Born (GB) models offer a convenient computational approximation for the more fundamental approach based on the Poisson-Boltzmann equation, and allows estimation of pairwise contributions to electrostatic effects in the molecular context. Results We have implemented in a single program most common analyses of the electrostatic properties of proteins. The program first computes generalized Born radii, via a surface integral and then it uses generalized Born radii (using a finite radius test particle) to perform electrostic analyses. In particular the ouput of the program entails, depending on user's requirement: 1) the generalized Born radius of each atom; 2) the electrostatic solvation free energy; 3) the electrostatic forces on each atom (currently in a dvelopmental stage); 4) the pH-dependent properties (total charge and pH-dependent free energy of folding in the pH range -2 to 18; 5) the pKa of all ionizable groups; 6) the electrostatic potential at the surface of the molecule; 7) the electrostatic potential in a volume surrounding the molecule; Conclusions Although at the expense of limited flexibility the program provides most common analyses with requirement of a single input file in PQR format. The results obtained are comparable to those obtained using state-of-the-art Poisson-Boltzmann solvers. A Linux executable with example input and output files is provided as supplementary material. PMID:22536964
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2014-01-01
At end of the 2012 hurricane season the National Hurricane Center retired the original HURDAT dataset and replaced it with the newer version HURDAT2, which reformatted the original data and included additional information, in particular, estimates of the 34-, 50, and 64-kt wind radii for the interval 2004-2013. During the brief 10-year interval, some 164 tropical cyclones are noted to have formed in the North Atlantic basin, with 77 becoming hurricanes. Hurricane Sandy (2012) stands out as being the largest individual storm that occurred in the North Atlantic basin during the 2004 -2013 timeframe, both in terms of its 34- and 64-kt wind radii and wind areas, having maximum 34- and 64-kt wind radii, maximum wind areas, and average wind areas each more than 2 standard deviations larger than the corresponding means. In terms of the largest yearly total 34-kt wind area (i.e., the sum of all individual storm 34-kt wind areas during the year), the year 2010 stands out as being the largest (about 423 × 10(exp 6) nmi(exp 2)), compared to the mean of about 174 × 10(exp 6) nmi(exp 2)), surpassing the year 2005 (353 x 10(exp 6) nmi(exp 2)) that had the largest number of individual storms (28). However, in terms of the largest yearly total 64-kt wind area, the year 2005 was the largest (about 9 × 10(exp 6) nmi(exp 2)), compared to the mean of about 3 × 106 nmi(exp 2)). Interesting is that the ratio of total 64-kt wind area to total 34-kt wind area has decreased over time, from 0.034 in 2004 to 0.008 in 2013.
Magnetic field evolution and reversals in spiral galaxies
NASA Astrophysics Data System (ADS)
Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.
2016-10-01
We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.
The WFCAM Transit Survey: A Search for Rocky Planets Around Cool Stars
NASA Astrophysics Data System (ADS)
Birkby, J.; Hodgkin, S.; Pinfield, D.; WTS Consortium
2011-12-01
We report on the WFCAM Transit Survey which is a near-infrared photometric monitoring campaign designed primarily to test the predictions of planet formation theory. We monitor a statisically significant sample of ˜6,000 M-dwarfs (M<0.6M⊙) across 6 sq. deg of the sky, by taking advantage of the highly-efficient queue-scheduled operational mode of the 3.8m United Kingdom Infrared Telescope. Our light curves have RMS < 1% between 13 < J < 16 magnitudes and preliminary simulations indicate the survey is sensitive to at least Jupiter-like transits of M-dwarfs. The survey is approximately 25% complete and within this dataset we find i) no planet-like transit events, despite thorough and extensive follow-up this summer and ii) 32 new M-dwarf eclipsing binaries. We do not speculate on the planet fraction of M-dwarfs at this incomplete stage of our survey, but once we achieve 1,000 epochs of observation on our entire M-dwarf sample, we will have a significant observational constraint to place on occurrence of planets around M-dwarfs. We report masses and radii for three of our newly discovered eclipsing binary, with errors of 3-7%, which all show inflated radii when compared to stellar evolution models (e.g. Baraffe et al. (1998)). Our results support the growing body of observations with inflated M-dwarf radii, which may be caused by increased magnetic activity inhibiting the convection efficiency or increased star spot coverage (e.g. Chabrier et al. (2007); Jackson et al. (2009)). Finally, we present preliminary mass and radius estimates of a fourth new eclipsing binary, which is one of the lowest mass binary systems ever discovered and will provide a calibrating point in the desert of observations between 0.1-0.2M⊙.
NASA Astrophysics Data System (ADS)
Bright, Jane; Torres, Guillermo
2018-01-01
We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.
Group galaxy number density profiles far out: Is the `one-halo' term NFW out to >10 virial radii?
NASA Astrophysics Data System (ADS)
Trevisan, M.; Mamon, G. A.; Stalder, D. H.
2017-10-01
While the density profiles (DPs) of Lambda cold dark matter haloes obey the Navarro, Frenk & White (NFW) law out to roughly one virial radius, rvir, the structure of their outer parts is still poorly understood, because the one-halo term describing the halo itself is dominated by the two-halo term representing the other haloes picked up. Using a semi-analytical model, we measure the real-space one-halo number DP of groups out to 20rvir by assigning each galaxy to its nearest group above mass Ma, in units of the group rvir. If Ma is small (large), the outer DP of groups falls rapidly (slowly). We find that there is an optimal Ma for which the stacked DP resembles the NFW model to 0.1 dex accuracy out to 13 virial radii. We find similar long-range NFW surface DPs (out to 10rvir) in the Sloan Digital Sky Survey observations using a galaxy assignment scheme that combines the non-linear virialized regions of groups with their linear outer parts. The optimal Ma scales as the minimum mass of the groups that are stacked to a power 0.25-0.3. The NFW model thus does not solely originate from violent relaxation. Moreover, populating haloes with galaxies using halo occupation distribution models must proceed out to much larger radii than usually done.
AN ORDERED MAGNETIC FIELD IN THE PROTOPLANETARY DISK OF AB Aur REVEALED BY MID-INFRARED POLARIMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dan; Pantin, Eric; Telesco, Charles M.
2016-11-20
Magnetic fields ( B -fields) play a key role in the formation and evolution of protoplanetary disks, but their properties are poorly understood due to the lack of observational constraints. Using CanariCam at the 10.4 m Gran Telescopio Canarias, we have mapped out the mid-infrared polarization of the protoplanetary disk around the Herbig Ae star AB Aur. We detect ∼0.44% polarization at 10.3 μ m from AB Aur's inner disk ( r < 80 au), rising to ∼1.4% at larger radii. Our simulations imply that the mid-infrared polarization of the inner disk arises from dichroic emission of elongated particles aligned inmore » a disk B -field. The field is well ordered on a spatial scale, commensurate with our resolution (∼50 au), and we infer a poloidal shape tilted from the rotational axis of the disk. The disk of AB Aur is optically thick at 10.3 μ m, so polarimetry at this wavelength is probing the B -field near the disk surface. Our observations therefore confirm that this layer, favored by some theoretical studies for developing magneto-rotational instability and its resultant viscosity, is indeed very likely to be magnetized. At radii beyond ∼80 au, the mid-infrared polarization results primarily from scattering by dust grains with sizes up to ∼1 μ m, a size indicating both grain growth and, probably, turbulent lofting of the particles from the disk mid-plane.« less
SAXS analysis of single- and multi-core iron oxide magnetic nanoparticles
Szczerba, Wojciech; Costo, Rocio; Morales, Maria del Puerto; Thünemann, Andreas F.
2017-01-01
This article reports on the characterization of four superparamagnetic iron oxide nanoparticles stabilized with dimercaptosuccinic acid, which are suitable candidates for reference materials for magnetic properties. Particles p1 and p2 are single-core particles, while p3 and p4 are multi-core particles. Small-angle X-ray scattering analysis reveals a lognormal type of size distribution for the iron oxide cores of the particles. Their mean radii are 6.9 nm (p1), 10.6 nm (p2), 5.5 nm (p3) and 4.1 nm (p4), with narrow relative distribution widths of 0.08, 0.13, 0.08 and 0.12. The cores are arranged as a clustered network in the form of dense mass fractals with a fractal dimension of 2.9 in the multi-core particles p3 and p4, but the cores are well separated from each other by a protecting organic shell. The radii of gyration of the mass fractals are 48 and 44 nm, and each network contains 117 and 186 primary particles, respectively. The radius distributions of the primary particle were confirmed with transmission electron microscopy. All particles contain purely maghemite, as shown by X-ray absorption fine structure spectroscopy. PMID:28381973
NASA Astrophysics Data System (ADS)
Lubin, Jack B.; Rodriguez, Joseph E.; Zhou, George; Conroy, Kyle E.; Stassun, Keivan G.; Collins, Karen; Stevens, Daniel J.; Labadie-Bartz, Jonathan; Stockdale, Christopher; Myers, Gordon; Colón, Knicole D.; Bento, Joao; Kehusmaa, Petri; Petrucci, Romina; Jofré, Emiliano; Quinn, Samuel N.; Lund, Michael B.; Kuhn, Rudolf B.; Siverd, Robert J.; Beatty, Thomas G.; Harlingten, Caisey; Pepper, Joshua; Gaudi, B. Scott; James, David; Jensen, Eric L. N.; Reichart, Daniel; Kedziora-Chudczer, Lucyna; Bailey, Jeremy; Melville, Graeme
2017-08-01
We report the discovery of KELT J041621-620046, a moderately bright (J ˜ 10.2) M-dwarf eclipsing binary system at a distance of 39 ± 3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extremely Little Telescope (KELT) survey. The system has a short orbital period of ˜1.11 days and consists of components with {M}1={0.447}+0.052-0.047 {M}⊙ and {M}2={0.399}+0.046-0.042 {M}⊙ in nearly circular orbits. The radii of the two stars are {R}1={0.540}+0.034-0.032 {R}⊙ and {\\text{}}{R}2=0.453+/- 0.017 {R}⊙ . Full system and orbital properties were determined (to ˜10% error) by conducting an EBOP (Eclipsing Binary Orbit Program) global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17%-28% and cooler by 4%-10% than predicted by standard (non-magnetic) stellar models. Strong Hα emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity.
Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; ...
2015-01-01
Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr 2Co 11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr 16Co 84-xMo x( x = 0 , 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content ( x ≤ 1.5 ). he maximum energy product ( B H ) max increases with increasing x from 0.5 MGOe for x = 0 to a maximum value of 4.2 MGOe for x = 1.5 . he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shift Φ rms value of 0.66° are observed for the x = 1.5 . he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Lanping; Jin, Yunlong; Zhang, Wenyong
Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr 2Co 11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr 16Co 84-xMo x( x = 0 , 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content ( x ≤ 1.5 ). he maximum energy product ( B H ) max increases with increasing x from 0.5 MGOe for x = 0 to a maximum value of 4.2 MGOe for x = 1.5 . he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shift Φ rms value of 0.66° are observed for the x = 1.5 . he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less
Observations of EMIC Triggered Emissions off the Magnetic Equatorial Plane
NASA Astrophysics Data System (ADS)
Grison, B.; Breuillard, H.; Santolik, O.; Cornilleau-Wehrlin, N.
2016-12-01
On 19/08/2005 Cluster spacecraft had their perigee close to the dayside of the Earth magnetic equatorial plane, at about 14 hours Magnetic Local Time. The spacecraft crossed the equator from the southern hemisphere toward the northern hemisphere. In the Southern hemisphere, at about -23° magnetic latitude (MLAT) and at distance of 5.25 Earth Radii from Earth, Cluster 3 observes an EMIC triggered emission between the He+ and the proton local gyrofrequencies. The magnetic waveform (STAFF instrument data) is transformed into the Fourier space for a study based on single value decomposition (SVD) analysis. The emission lasts about 30s. The emission frequency rises from 1Hz up to 1.9Hz. The emission polarization is left-hand, its coherence value is high and the propagation angle is field aligned (lower than 30º). The Poynting flux orientation could not be established. Based on previous study results, these properties are indicative of an observation in vicinity of the source region of the triggered emission. From our knowledge this is the first time that EMIC triggered emission are observed off the magnetic equator. In order to identify the source region we study two possibilities: a source region at higher latitudes than the observations (and particles orbiting in "Shabansky" orbits) and a source region close to the magnetic equatorial plane, as reported in previous studies. We propose to identify the source region from ray tracing analysis and to compare the observed propagation angle in several frequency ranges to the ray tracing results.
Charge Radii of Neutron Deficient Fe,5352 Produced by Projectile Fragmentation
NASA Astrophysics Data System (ADS)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Miller, A. J.; Müller, P.; Nazarewicz, W.; Nörtershäuser, W.; Olsen, E.; Pearson, M. R.; Reinhard, P.-G.; Saperstein, E. E.; Sumithrarachchi, C.; Tolokonnikov, S. V.
2016-12-01
Bunched-beam collinear laser spectroscopy is performed on neutron deficient Fe,5352 prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ ⟨r2⟩ of Fe,5352 are determined relative to stable 56Fe as δ ⟨r2⟩56 ,52=-0.034 (13 ) fm2 and δ ⟨r2⟩56 ,53=-0.218 (13 ) fm2 , respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ ⟨r2⟩. The values of δ ⟨r2⟩ exhibit a minimum at the N =28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δ ⟨r2⟩ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ ⟨r2⟩ of closed-shell Ca isotopes.
RMs1: qualification results of the rotary miniature Stirling cryocooler at Thales Cryogenics
NASA Astrophysics Data System (ADS)
Martin, Jean-Yves; Seguineau, Cédric; Van-Acker, Sébastien; Sacau, Mikel; Le Bordays, Julien; Etchanchu, Thierry; Vasse, Christophe; Abadie, Christian; Laplagne, Gilles; Benschop, Tonny
2017-05-01
The trend for miniaturized Integrated Dewar and Cooler Assemblies (IDCA) has been confirmed over the past few years with several mentions of a new generation of IR detector working at High Operating Temperature (HOT). This key technology enables the use of cryocooler with reduced needs of cryogenics power. As a consequence, miniaturized IDCA are the combination of a HOT IR detector coupled with a low-size, low-weight and low-power (SWaP) cryocooler. Thales Cryogenics has developed his own line of SWaP products. Qualification results on linear solution where shown last year. The current paper focuses on the latest results obtained on RMs1 prototypes, the new rotary SWaP cryocooler from Thales Cryogenics. Cryogenic performances and induced vibrations are presented. In a second part, progress is discussed on compactness and weight on one side, and on power consumption on the other side. It shows how the trade-off made between weight and power consumption could lead to an optimized solution at system level. At least, an update is made on the qualification status.
Kuechler, Erich R; Giese, Timothy J; York, Darrin M
2016-04-28
To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.
Simulation study of depositing the carbon film on nanoparticles in the magnetized methane plasma
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Hosein; Pourali, Nima; Ebadi, Zahra
2018-03-01
Plasma coating of nanoparticles in low-temperature magnetized methane plasma is studied by a simulation approach. To this end, by using the global model, the electron temperature and concentration of different species considered in this plasma are determined in the center of a capacitively coupled discharge. Then, the plasma-wall transition region in the presence of an oblique magnetic field is simulated by the multi-component fluid description. Nanoparticles with different radii are injected into the transition region and surface deposition and heating models, as well as dynamics and charging models, are employed to examine the coating process. The results of the simulation show that the non-spherical growth of nanoparticles is affected by the presence of the magnetic field, as with passing time, an oscillating increase is seen in the thickness of the film deposited on nanoparticles. Also, it is shown that the uniformity of the deposited film is dependent on the rotation velocity of nanoparticles. Generally, the obtained results imply that the sphericity of nanoparticles and uniformity of the film coated on them are controllable by the magnitude and orientation of the magnetic field.
NASA Astrophysics Data System (ADS)
Kahrobaee, Saeed; Kashefi, Mehrdad
2015-03-01
Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.
High-Temperature, High-Load-Capacity Radial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben
2005-01-01
A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Chen, Y. S.
1986-01-01
The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.
NASA Astrophysics Data System (ADS)
Lu, Ru-Sen; Krichbaum, Thomas P.; Roy, Alan L.; Fish, Vincent L.; Doeleman, Sheperd S.; Johnson, Michael D.; Akiyama, Kazunori; Psaltis, Dimitrios; Alef, Walter; Asada, Keiichi; Beaudoin, Christopher; Bertarini, Alessandra; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C.; Brinkerink, Christiaan; Broderick, Avery E.; Cappallo, Roger; Crew, Geoffrey B.; Dexter, Jason; Dexter, Matt; Falcke, Heino; Freund, Robert; Friberg, Per; Greer, Christopher H.; Gurwell, Mark A.; Ho, Paul T. P.; Honma, Mareki; Inoue, Makoto; Kim, Junhan; Lamb, James; Lindqvist, Michael; Macmahon, David; Marrone, Daniel P.; Martí-Vidal, Ivan; Menten, Karl M.; Moran, James M.; Nagar, Neil M.; Plambeck, Richard L.; Primiani, Rurik A.; Rogers, Alan E. E.; Ros, Eduardo; Rottmann, Helge; SooHoo, Jason; Spilker, Justin; Stone, Jordan; Strittmatter, Peter; Tilanus, Remo P. J.; Titus, Michael; Vertatschitsch, Laura; Wagner, Jan; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H.; Zensus, J. Anton; Ziurys, Lucy M.
2018-05-01
We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional uv coverage in the N–S direction, and leads to a spatial resolution of ∼30 μas (∼3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of ∼4%–13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of ∼3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.
Magnetic pair creation transparency in gamma-ray pulsars
NASA Astrophysics Data System (ADS)
Story, Sarah A.
Magnetic pair creation, gamma → e+e- , is a key component in polar cap models of gamma-ray pulsars, and has informed assumptions about the still poorly understood radio emission. The Fermi Gamma-Ray Space Telescope has now detected more than 100 gamma-ray pulsars, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Fermi observations have established that the high-energy spectra of most of these pulsars have exponential turnovers in the 1--10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide a physically motivated lower bound to the typical altitude of GeV band emission. This work computes pair creation opacities for photon propagation in neutron star magnetospheres. It explores the constraints that can be placed on the emission location of Fermi gamma-rays due to single-photon pair creation transparency below the turnover energy, as well as the limitations of this technique. These altitude bounds are typically in the range of 2--6 neutron star radii for the Fermi pulsar sample, and provide one of the few possible constraints on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles.
NASA Astrophysics Data System (ADS)
Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo
2015-05-01
This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.
NASA Astrophysics Data System (ADS)
Thompson, Derek S.; Keniley, Shane; Curreli, Davide; Henriquez, Miguel F.; Caron, David D.; Jemiolo, Andrew J.; McLaughlin, Jacob W.; Dufor, Mikal T.; Neal, Luke A.; Scime, Earl E.; Siddiqui, M. Umair
2017-10-01
We present progress toward the first paired 3D laser induced fluorescence measurements of ion and neutral velocity distribution functions (I/NVDFs) in a magnetized plasma boundary. These measurements are performed in the presheath region of an absorbing boundary immersed in a background magnetic field that is obliquely incident to the boundary surface (ψ =74°). Parallel and perpendicular flow measurements demonstrate that cross-field ion flows occur and that ions within several gyro-radii of the surface are accelerated in the E-> × B-> direction. We present electrostatic probe measurements of electron temperature, plasma density, and electric potential in the same region. Ion, neutral and electron measurements are compared to Boltzmann simulations, allowing direct comparison between measured and theoretical distribution functions in the boundary region. NSF PHYS 1360278.
Magnetic Field Observations at Purcell, Oklahoma Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, P. J.; Gibson, J. P.
The campaign “Magnetic Field Observations at Purcell, Oklahoma” installed a ground-based magnetometer at Purcell’s U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility boundary installation at the Kessler Atmospheric and Ecological Field Station, University of Oklahoma, to measure local magnetic field variations. It is a part of the nine stations of the Mid-continent MAgnetoseismic Chain (McMAC) placed as close to the 330° magnetic longitude as possible. This is the meridian in the world where land covers the greatest continuous range in magnetic latitude. Figure 1 shows the map of the magnetometer stations along the 330th magnetic meridian,more » including the Purcell (PCEL) station. The main scientific objective of the campaign is to detect the field line resonance (FLR) frequencies of the magnetic field line connected to the Purcell station. This magnetic field line extends from Purcell to the outer space at distances as far as 2 Earth radii (RE). To accurately identify FLR frequencies, however, simultaneous measurements at slightly different latitudes along the same meridian are necessary to allow the use of the cross-phase technique. This consideration explains the arrangement to operate magnetometers at the Americus (AMER) and Richardson (RICH) stations nearby. The measured resonant frequency can infer the plasma mass density along the field line through the method of normal-mode magnetoseismology. The magnetometer at the Purcell station can detect many other types of magnetic field fluctuations associated with the changes in the electric currents in the ionosphere and the magnetosphere, which by large are affected by the solar activity. In other words, the magnetic field data collected by this campaign are also useful for understanding space weather phenomena. The magnetometer was installed at Purcell’s ARM boundary facility in March 27, 2006. The construction of the triaxial fluxgate magnetometer used
Simulations of AGN jets: magnetic kink instability versus conical shocks
NASA Astrophysics Data System (ADS)
Barniol Duran, Rodolfo; Tchekhovskoy, Alexander; Giannios, Dimitrios
2017-08-01
Relativistic jets in active galactic nuclei (AGN) convert as much as half of their energy into radiation. To explore the poorly understood processes that are responsible for this conversion, we carry out fully 3D magnetohydrodynamic (MHD) simulations of relativistic magnetized jets. Unlike the standard approach of injecting the jets at large radii, our simulated jets self-consistently form at the source and propagate and accelerate outwards for several orders of magnitude in distance before they interact with the ambient medium. We find that this interaction can trigger strong energy dissipation of two kinds inside the jets, depending on the properties of the ambient medium. Those jets that form in a new outburst and drill a fresh hole through the ambient medium fall victim to a 3D magnetic kink instability and dissipate their energy primarily through magnetic reconnection in the current sheets formed by the instability. On the other hand, those jets that form during repeated cycles of AGN activity and escape through a pre-existing hole in the ambient medium maintain their stability and dissipate their energy primarily at MHD recollimation shocks. In both cases, the dissipation region can be associated with a change in the density profile of the ambient gas. The Bondi radius in AGN jets serves as such a location.
NASA Astrophysics Data System (ADS)
Gloos, Kurt; Tuuli, Elina
2012-12-01
We have investigated break junctions of normal non-magnetic metals as well as ferromagnets at low temperatures. The point contacts with radii 0.15—15 nm showed zero-bias anomalies which can be attributed to Kondo scattering at a single Kondo impurity at the contact or to the switching of a single conducting channel. The Kondo temperatures derived from the width of the anomalies varied between 10 and 1000 K. These results agree well with literature data on atomic-size contacts of the ferromagnets as well as with spear-anvil type contacts on a wide variety of metals.
NASA Astrophysics Data System (ADS)
Zitrin, Adi; Broadhurst, Tom; Barkana, Rennan; Rephaeli, Yoel; Benítez, Narciso
2011-01-01
We present the results of a strong-lensing analysis of a complete sample of 12 very luminous X-ray clusters at z > 0.5 using HST/ACS images. Our modelling technique has uncovered some of the largest known critical curves outlined by many accurately predicted sets of multiple images. The distribution of Einstein radii has a median value of ≃28 arcsec (for a source redshift of zs˜ 2), twice as large as other lower z samples, and extends to 55 arcsec for MACS J0717.5+3745, with an impressive enclosed Einstein mass of 7.4 × 1014 M⊙. We find that nine clusters cover a very large area (>2.5 arcmin2) of high magnification (μ > 10×) for a source redshift of zs˜ 8, providing primary targets for accessing the first stars and galaxies. We compare our results with theoretical predictions of the standard Λ cold dark matter (ΛCDM) model which we show systematically fall short of our measured Einstein radii by a factor of ≃1.4, after accounting for the effect of lensing projection. Nevertheless, a revised analysis, once arc redshifts become available, and similar analyses of larger samples, is needed in order to establish more precisely the level of discrepancy with ΛCDM predictions.
NASA Astrophysics Data System (ADS)
Kolikov, Kiril
2016-11-01
The Coulomb's formula for the force FC of electrostatic interaction between two point charges is well known. In reality, however, interactions occur not between point charges, but between charged bodies of certain geometric form, size and physical structure. This leads to deviation of the estimated force FC from the real force F of electrostatic interaction, thus imposing the task to evaluate the disparity. In the present paper the problem is being solved theoretically for two charged conductive spheres of equal radii and arbitrary electric charges. Assessment of the deviation is given as a function of the ratio of the distance R between the spheres centers to the sum of their radii. For the purpose, relations between FC and F derived in a preceding work of ours, are employed to generalize the Coulomb's interactions. At relatively short distances between the spheres, the Coulomb force FC, as estimated to be induced by charges situated at the centers of the spheres, differ significantly from the real force F of interaction between the spheres. In the case of zero and non-zero charge we prove that with increasing the distance between the two spheres, the force F decrease rapidly, virtually to zero values, i.e. it appears to be short-acting force.
Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.
Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H
2015-09-01
Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.
Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Lorenzo, Carlos; Gómez-Olivencia, Asier; Quam, Rolf; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luis
2016-01-01
Complete radii in the fossil record preceding recent humans and Neandertals are very scarce. Here we introduce the radial remains recovered from the Sima de los Huesos (SH) site in the Sierra de Atapuerca between 1976 and 2011 and which have been dated in excess of 430 ky (thousands of years) ago. The sample comprises 89 specimens, 49 of which are attributed to adults representing a minimum of seven individuals. All elements are described anatomically and metrically, and compared with other fossil hominins and recent humans in order to examine the phylogenetic polarity of certain radial features. Radial remains from SH have some traits that differentiate them from those of recent humans and make them more similar to Neandertals, including strongly curved shafts, anteroposterior expanded radial heads and both absolutely and relatively long necks. In contrast, the SH sample differs from Neandertals in showing a high overall gracility as well as a high frequency (80%) of an anteriorly oriented radial tuberosity. Thus, like the cranial and dental remains from the SH site, characteristic Neandertal radial morphology is not present fully in the SH radii. We also analyzed the cross-sectional properties of the SH radial sample at two different levels: mid-shaft and at the midpoint of the neck length. When standardized by shaft length, no difference in the mid-shaft cross-sectional properties were found between the SH hominins, Neandertals and recent humans. Nevertheless, due to their long neck length, the SH hominins show a higher lever efficiency than either Neandertals or recent humans. Functionally, the SH radial morphology is consistent with more efficient pronation-supination and flexion-extension movements. The particular trait composition in the SH sample and Neandertals resembles more closely morphology evident in recent human males. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study of structural and magnetic properties of melt spun Nd2Fe13.6Zr0.4B ingot and ribbon
NASA Astrophysics Data System (ADS)
Amin, Muhammad; Siddiqi, Saadat A.; Ashfaq, Ahmad; Saleem, Murtaza; Ramay, Shahid M.; Mahmood, Asif; Al-Zaghayer, Yousef S.
2015-12-01
Nd2Fe13.6Zr0.4B hard magnetic material were prepared using arc-melting technique on a water-cooled copper hearth kept under argon gas atmosphere. The prepared samples, Nd2Fe13.6Zr0.4B ingot and ribbon are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) for crystal structure determination and morphological studies, respectively. The magnetic properties of the samples have been explored using vibrating sample magnetometer (VSM). The lattice constants slightly increased due to the difference in the ionic radii of Fe and that of Zr. The bulk density decreased due to smaller molar weight and low density of Zr as compared to that of Fe. Ingot sample shows almost single crystalline phase with larger crystallite sizes whereas ribbon sample shows a mixture of amorphous and crystalline phases with smaller crystallite sizes. The crystallinity of the material was highly affected with high thermal treatments. Magnetic measurements show noticeable variation in magnetic behavior with the change in crystallite size. The sample prepared in ingot type shows soft while ribbon shows hard magnetic behavior.
NASA Technical Reports Server (NTRS)
Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.
1977-01-01
A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.
2017-01-01
When adjusting the contrast setting on a television set, we experience a perceptual change in the global image contrast. But how is that statistic computed? We addressed this using a contrast-matching task for checkerboard configurations of micro-patterns in which the contrasts and spatial spreads of two interdigitated components were controlled independently. When the patterns differed greatly in contrast, the higher contrast determined the perceived global contrast. Crucially, however, low contrast additions of one pattern to intermediate contrasts of the other caused a paradoxical reduction in the perceived global contrast. None of the following metrics/models predicted this: max, linear sum, average, energy, root mean squared (RMS), Legge and Foley. However, a nonlinear gain control model, derived from contrast detection and discrimination experiments, incorporating wide-field summation and suppression, did predict the results with no free parameters, but only when spatial filtering was removed. We conclude that our model describes fundamental processes in human contrast vision (the pattern of results was the same for expert and naive observers), but that above threshold—when contrast pedestals are clearly visible—vision's spatial filtering characteristics become transparent, tending towards those of a delta function prior to spatial summation. The global contrast statistic from our model is as easily derived as the RMS contrast of an image, and since it more closely relates to human perception, we suggest it be used as an image contrast metric in practical applications. PMID:28989735
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Szabo, A.; Farrell, W.; Slavin, J. A.; Lepping, R. P.; Fitzenreiter, R.; Thompson, B.; Hamilton, D. C.; Gloeckler, G.; Ho, G. C.
2000-01-01
Evidence is presented that the WIND spacecraft observed particle and field signatures on October 18-19, 1995 due to reconnection near the footpoints of a magnetic cloud (i.e., between 1 and 5 solar radii). These signatures include: (1) an internal shock traveling approximately along the axis of the magnetic cloud, (2) a simple compression of the magnetic field consistent with the footpoint magnetic fields being thrust outwards at speeds much greater than the solar wind speed, (3) an electron heat flux dropout occurring within minutes of the shock indicating a topological change resulting from disconnection from the solar surface, (4) a very cold 5 keV proton beam and (5) an associated monochromatic wave. We expect that, given observations of enough magnetic clouds, Wind and other spacecraft will see signatures similar to the ones reported here indicating reconnection. However, these observations require the spacecraft to be fortuitously positioned to observe the passing shock and other signatures and will therefore be associated with only a small fraction of magnetic clouds. Consistent with this, a few magnetic clouds observed by Wind have been found to possess internal shock waves.
LSPM J1314+1320: An Oversized Magnetic Star with Constraints on the Radio Emission Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, James; Mullan, D. J.
LSPM J1314+1320 (=NLTT 33370) is a binary star system consisting of two nearly identical pre-main-sequence stars of spectral type M7. The system is remarkable among ultracool dwarfs for being the most luminous radio emitter over the widest frequency range. Masses and luminosities are at first sight consistent with the system being coeval at age ∼80 Myr according to standard (nonmagnetic) evolutionary models. However, these models predict an average effective temperature of ∼2950 K, which is 180 K hotter than the empirical value. Thus, the empirical radii are oversized relative to the standard models by ≈13%. We demonstrate that magnetic stellarmore » models can quantitatively account for the oversizing. As a check on our models, we note that the radio emission limits the surface magnetic field strengths: the limits depend on identifying the radio emission mechanism. We find that the field strengths required by our magnetic models are too strong to be consistent with gyrosynchrotron emission but are consistent with electron cyclotron maser emission.« less
NASA Astrophysics Data System (ADS)
Texier, Christophe; Mitscherling, Johannes
2018-02-01
We study the nonlinear conductance G ˜∂2I /∂ V2|V =0 in coherent quasi-one-dimensional weakly disordered metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction. The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions: the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is the contribution to the local density of states of eigenstates incoming from one contact). These correlators are obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length L , we obtain rms (G )≃0.006 ETh-1 (and
Liu, Taoming; Poirot, Nate Lombard; Franson, Dominique; Seiberlich, Nicole; Griswold, Mark A.; Çavuşoğlu, M. Cenk
2016-01-01
Objective This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the magnetic resonance imaging (MRI) scanner. Methods This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic model of the catheter system is derived. Results The proposed models are validated by comparing the simulation results of the proposed model with the experimental results of a hardware prototype of the catheter design. The maximum tip deflection error is 4.70 mm and the maximum root-mean-square (RMS) error of the shape estimation is 3.48 mm. Conclusion The results demonstrate that the proposed model can successfully estimate the deflection motion of the catheter. Significance The presented three dimensional deflection model of the magnetically controlled catheter design paves the way to efficient control of the robotic catheter for treatment of atrial fibrillation. PMID:26731519
A proposed concept for the extraction of energy stored in magnetic or electric fields in space
NASA Technical Reports Server (NTRS)
Papailiou, D. D.
1976-01-01
It is known that enormous energy resources associated with electric, magnetic, gravitational, and other fields exist in space. It is also known that the major difficulty in 'tapping' this energy arises from the extremely low density level at which this energy exists. An analytical study has been made of a particular scheme that appears promising for an efficient utilization of some of these energy resources in propulsion. The principle involves the exchange of energy between a fluctuating magnetic field and a velocity field of electrically conducting fluid in turbulent motion located onboard a spacecraft. Under certain conditions the total energy of the turbulent flow field onboard the spacecraft can be increased and this increase appears in the form of Joulean heat. The utilization of the fluctuating part of the magnetic field, in the form of Joulean dissipation (because of its random character) does not introduce any drag on the spacecraft. The application appears promising for flights in the vicinity of Jupiter and other planets. The rate at which energy is gained by the conducting fluid is of the order of 100 watts when the rms value of the fluctuating magnetic field strength is about 1 gauss.
Designing and building a permanent magnet Zeeman slower for calcium atoms using a 3D printer
NASA Astrophysics Data System (ADS)
Parsagian, Alexandria; Kleinert, Michaela
2015-10-01
We present the design of a Zeeman slower for calcium atoms using permanent magnets instead of more traditional electromagnets and the novel technique of 3D printing to create a very robust and flexible structure for these magnets. Zeeman slowers are ideal tools to slow atoms from several hundreds of meters per second to just a few tens of meters per second. These slower atoms can then easily be trapped in a magneto-optical trap, making Zeeman slowers a very valuable tool in many cold atom labs. The use of permanent magnets and 3D printing results in a highly stable and robust slower that is suitable for undergraduate laboratories. In our design, we arranged 28 magnet pairs, 2.0 cm apart along the axis of the slower and at varying radial distances from the axis. We determined the radial position of the magnets by simulating the combined field of all magnet pairs using Mathematica and comparing it to the ideal theoretical field for a Zeeman slower. Finally, we designed a stable, robust, compact, and easy-to-align mounting structure for the magnets in Google Sketchup, which we then printed using a commercially available 3D printer by Solidoodle. The resulting magnetic field is well suited to slow calcium atoms from the 770 m/s rms velocity at a temperature of 950 K, down to the capture velocity of the magneto-optical trap.
NASA Astrophysics Data System (ADS)
Xiao, C.; Groening, L.; Gerhard, P.; Maier, M.; Mickat, S.; Vormann, H.
2016-06-01
Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Usually pepper-pots are used for measuring these beam parameters. However, for ions their application is limited to energies below 150 keV/u. This contribution is on measurements of the full transverse four-dimensional second-moments beam matrix of high intensity uranium ions at an energy of 11.4 MeV/u. The combination of skew quadrupoles with a slit/grid emittance measurement device has been successfully applied.
NASA Astrophysics Data System (ADS)
Goddi, C.; Greenhill, L.; Humphreys, E.; Matthews, L.; Chandler, C.
2010-11-01
Around high-mass Young Stellar Objects (YSOs), outflows are expected to be launched and collimated by accretion disks inside radii of 100 AU. Strong observational constraints on disk-mediated accretion in this context have been scarce, largely owing to difficulties in probing the circumstellar gas at scales 10-100 AU around high-mass YSOs, which are on average distant (>1 Kpc), form in clusters, and ignite quickly whilst still enshrouded in dusty envelopes. Radio Source I in Orion BN/KL is the nearest example of a high-mass YSO, and only one of three YSOs known to power SiO masers. Using VLA and VLBA observations of different SiO maser transitions, the KaLYPSO project (http://www.cfa.harvard.edu/kalypso/) aims to overcome past observational limitations by mapping the structure, 3-D velocity field, and dynamical evolution of the circumstellar gas within 1000 AU from Source I. Based on 19 epochs of VLBA observations of v=1,2 SiO masers over ~2 years, we produced a movie of bulk gas flow tracing the compact disk and the base of the protostellar wind at radii < 100 AU from Source I. In addition, we have used the VLA to map 7mm SiO v=0 emission and track proper motions over 10 years. We identify a narrowly collimated outflow with a mean motion of 18 km/s at radii 100-1000 AU, along a NE-SW axis perpendicular to that of the disk traced by the v=1,2 masers. The VLBA and VLA data exclude alternate models that place outflow from Source I along a NW-SE axis. The analysis of the complete (VLBA and VLA) dataset provides the most detailed evidence to date that high-mass star formation occurs via disk-mediated accretion.
A linear helicon plasma device with controllable magnetic field gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.
2012-06-15
Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well asmore » its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.« less
A linear helicon plasma device with controllable magnetic field gradient.
Barada, Kshitish K; Chattopadhyay, P K; Ghosh, J; Kumar, Sunil; Saxena, Y C
2012-06-01
Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.
DNA stretching on the wall surfaces in curved microchannels with different radii
NASA Astrophysics Data System (ADS)
Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju
2014-08-01
DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10-4 ≤ Re ≤ 10-3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.
A highly magnetized twin-jet base pinpoints a supermassive black hole
NASA Astrophysics Data System (ADS)
Baczko, A.-K.; Schulz, R.; Kadler, M.; Ros, E.; Perucho, M.; Krichbaum, T. P.; Böck, M.; Bremer, M.; Grossberger, C.; Lindqvist, M.; Lobanov, A. P.; Mannheim, K.; Martí-Vidal, I.; Müller, C.; Wilms, J.; Zensus, J. A.
2016-09-01
Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on (Blandford & Znajek 1977, MNRAS, 179, 433) extract the rotational energy from a Kerr black hole, which could be the case for NGC 1052, to launch these jets. This requires magnetic fields on the order of 103G to 104G. We imaged the vicinity of the SMBH of the AGN NGC 1052 with the Global Millimetre VLBI Array and found a bright and compact central feature that is smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and ~ 8.3 × 104 G consistent with Blandford & Znajek models. The VLBI images shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A47
Astronauts Hoffman and Musgrave install the Magnetic Sensing System on HST
1993-12-07
STS061-77-102 (7 Dec 1993) --- Astronauts Jeffrey A. Hoffman (left) and F. Story Musgrave are partially silhouetted against the Indian Ocean as they work to install the Magnetic Sensing System (MSS) on the Hubble Space Telescope (HST). Musgrave is anchored to the end of the Space Shuttle Endeavour's Remote Manipulator System (RMS) arm. The HST is positioned along the southern end of Madagascar, 325 nautical miles away. Visible on the western coast are the sediment laden Onilahy and Fiherenana Rivers which empty into Saint Augustin Bay. North of Fiherenana River is the Mangoky River. The circular feature on the southern end of Madagascar and to the right of HST is the L'ivakoany Mountains. The eastern coast is relatively straight compared to the western coast.
The Stereo Electron Spikes and the Interplanetary Magnetic Field
NASA Astrophysics Data System (ADS)
Jokipii, J. R.; Sheeley, N. R., Jr.; Wang, Y. M.; Giacalone, J.
2016-12-01
A recent paper (Klassen etal, 2015) discussed observations of a spike event of 55-65 keV electrons which occurred very nearly simultaneously at STEREO A and STEREO B, which at the time were separated in longitude by 38 degrees. The authors associated the spikes with a flare at the Sun near the footpoint of the nominal Archimedean spiral magnetic field line passing through STEREO A. The spike at STEREO A was delayed by 2.2 minutes from that at STEREOB. We discuss the observations in terms of a model in which the electrons, accelerated at the flare, propagate without significant scattering along magnetic field lines which separate or diverge as a function of radial distance from the Sun. The near simultaneity of the spikes at the two spacecraft is a natural consequence of this model. We interpret the divergence of the magnetic field lines as a consequence of field-line random walk and flux-tube expansion. We show that the field-line random walk in the absence of flux-tube expansion produces an rms spread of field lines significantly less than that which is required to produce to observed divergence. We find that observations of the solar wind and its source region at the time of the event can account for the observations in terms of propagation along interplanetary magnetic field-lines. Klassen, A., Dresing, N., Gomez-Herrero, R, and Heber, B., A&A 580, A115 (2015) Financial support for NS and YMW was provided by NASA and CNR.
Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations
NASA Astrophysics Data System (ADS)
Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.
2014-10-01
The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag < 75 μm, temperatures around 3 keV, and isotropic neutron yields up to YnDD = 2 ×1012 from imploded liners reaching peak velocities around 70 km/s over an implosion time of about 60 ns. We present comparisons between the experimental observables and post-shot degraded integrated simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Brik, Mikhail G; Suchocki, Andrzej; Kamińska, Agata
2014-05-19
A thorough consideration of the relation between the lattice parameters of 185 binary and ternary spinel compounds, on one side, and ionic radii and electronegativities of the constituting ions, on the other side, allowed for establishing a simple empirical model and finding its linear equation, which links together the above-mentioned quantities. The derived equation gives good agreement between the experimental and modeled values of the lattice parameters in the considered group of spinels, with an average relative error of about 1% only. The proposed model was improved further by separate consideration of several groups of spinels, depending on the nature of the anion (oxygen, sulfur, selenium/tellurium, nitrogen). The developed approach can be efficiently used for prediction of lattice constants for new isostructural materials. In particular, the lattice constants of new hypothetic spinels ZnRE2O4, CdRE2S4, CdRE2Se4 (RE = rare earth elements) are predicted in the present Article. In addition, the upper and lower limits for the variation of the ionic radii, electronegativities, and their certain combinations were established, which can be considered as stability criteria for the spinel compounds. The findings of the present Article offer a systematic overview of the structural properties of spinels and can serve as helpful guides for synthesis of new spinel compounds.
Scattering of magnetized electrons at the boundary of low temperature plasmas
NASA Astrophysics Data System (ADS)
Krüger, Dennis; Trieschmann, Jan; Brinkmann, Ralf Peter
2018-02-01
Magnetized technological plasmas with magnetic fields of 10-200 mT, plasma densities of 1017-1019 m-3, gas pressures of less than 1 Pa, and electron energies from a few to (at most) a few hundred electron volts are characterized by electron Larmor radii r L, that are small compared to all other length scales of the system, including the spatial scale L of the magnetic field and the collisional mean free path λ. In this regime, the classical drift approximation applies. In the boundary sheath of these discharges, however, that approximation breaks down: The sheath penetration depth of electrons (a few to some ten Debye length λ D; depending on the kinetic energy; typically much smaller than the sheath thickness of tens/hundreds of λ D) is even smaller than r L. For a model description of the electron dynamics, an appropriate boundary condition for the plasma/sheath interface is required. To develop such, the interaction of magnetized electrons with the boundary sheath is investigated using a 3D kinetic single electron model that sets the larger scales L and λ to infinity, i.e. neglects magnetic field gradients, the electric field in the bulk, and collisions. A detailed comparison of the interaction for a Bohm sheath (which assumes a finite Debye length) and a hard wall model (representing the limit {λ }{{D}}\\to 0; also called the specular reflection model) is conducted. Both models are found to be in remarkable agreement with respect to the sheath-induced drift. It is concluded that the assumption of specular reflection can be used as a valid boundary condition for more realistic kinetic models of magnetized technological plasmas.
VizieR Online Data Catalog: Tidal radii of 7 globular clusters (Lehmann+ 1997)
NASA Astrophysics Data System (ADS)
Lehmann, I.; Scholz, R.-D.
1998-02-01
We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962AJ.....67..471K) we derived the following structural parameters: tidal radius rt, core radius rc and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al., 1995AJ....109.2553G). (1 data file).
NASA Astrophysics Data System (ADS)
Hekmati, Arsalan; Aliahmadi, Mehdi
2016-12-01
High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.
NASA Technical Reports Server (NTRS)
Page, Dany
1995-01-01
We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new
NASA Astrophysics Data System (ADS)
Essa, Khalid S.; Elhussein, Mahmoud
2018-04-01
A new efficient approach to estimate parameters that controlled the source dimensions from magnetic anomaly profile data in light of PSO algorithm (particle swarm optimization) has been presented. The PSO algorithm has been connected in interpreting the magnetic anomaly profiles data onto a new formula for isolated sources embedded in the subsurface. The model parameters deciphered here are the depth of the body, the amplitude coefficient, the angle of effective magnetization, the shape factor and the horizontal coordinates of the source. The model parameters evaluated by the present technique, generally the depth of the covered structures were observed to be in astounding concurrence with the real parameters. The root mean square (RMS) error is considered as a criterion in estimating the misfit between the observed and computed anomalies. Inversion of noise-free synthetic data, noisy synthetic data which contains different levels of random noise (5, 10, 15 and 20%) as well as multiple structures and in additional two real-field data from USA and Egypt exhibits the viability of the approach. Thus, the final results of the different parameters are matched with those given in the published literature and from geologic results.
Image-based optimization of coronal magnetic field models for improved space weather forecasting
NASA Astrophysics Data System (ADS)
Uritsky, V. M.; Davila, J. M.; Jones, S. I.; MacNeice, P. J.
2017-12-01
The existing space weather forecasting frameworks show a significant dependence on the accuracy of the photospheric magnetograms and the extrapolation models used to reconstruct the magnetic filed in the solar corona. Minor uncertainties in the magnetic field magnitude and direction near the Sun, when propagated through the heliosphere, can lead to unacceptible prediction errors at 1 AU. We argue that ground based and satellite coronagraph images can provide valid geometric constraints that could be used for improving coronal magnetic field extrapolation results, enabling more reliable forecasts of extreme space weather events such as major CMEs. In contrast to the previously developed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions up to 1-2 solar radii above the photosphere. By applying the developed image processing techniques to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code developed S. Jones at al. (ApJ 2016, 2017). Our tracing results are shown to be in a good qualitative agreement with the large-scale configuration of the optical corona, and lead to a more consistent reconstruction of the large-scale coronal magnetic field geometry, and potentially more accurate global heliospheric simulation results. Several upcoming data products for the space weather forecasting community will be also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feiden, Gregory A.; Chaboyer, Brian, E-mail: gregory.a.feiden.gr@dartmouth.edu, E-mail: brian.chaboyer@dartmouth.edu
2013-12-20
Magnetic fields are hypothesized to inflate the radii of low-mass stars—defined as less massive than 0.8 M {sub ☉}—in detached eclipsing binaries (DEBs). We investigate this hypothesis using the recently introduced magnetic Dartmouth stellar evolution code. In particular, we focus on stars thought to have a radiative core and convective outer envelope by studying in detail three individual DEBs: UV Psc, YY Gem, and CU Cnc. Our results suggest that the stabilization of thermal convection by a magnetic field is a plausible explanation for the observed model-radius discrepancies. However, surface magnetic field strengths required by the models are significantly strongermore » than those estimated from observed coronal X-ray emission. Agreement between model predicted surface magnetic field strengths and those inferred from X-ray observations can be found by assuming that the magnetic field sources its energy from convection. This approach makes the transport of heat by convection less efficient and is akin to reduced convective mixing length methods used in other studies. Predictions for the metallicity and magnetic field strengths of the aforementioned systems are reported. We also develop an expression relating a reduction in the convective mixing length to a magnetic field strength in units of the equipartition value. Our results are compared with those from previous investigations to incorporate magnetic fields to explain the low-mass DEB radius inflation. Finally, we explore how the effects of magnetic fields might affect mass determinations using asteroseismic data and the implication of magnetic fields on exoplanet studies.« less
NASA Astrophysics Data System (ADS)
Khabarova, Olga
2015-04-01
The “magnetic flux excess” effect is exceeding of magnetic flux Fs=4π|Br|r2 measured by distant spacecraft over the values obtained through measurements at the Earth’s orbit (Owens et al., JGR, 2008). Theoretically, its conservation should take place at any heliocentric distance r further than 10 solar radii, which means that the difference between the flux measured at 1 AU and Fs observed in another point in the heliosphere should be zero. However, the difference is negative closer to the Sun and increasingly positive at larger heliocentric distances. Possible explanations of this effect are continuously discussed, but the consensus is yet not reached.It is shown that a possible source of this effect is the solar wind expansion not accordingly with the Parker solution at least at low heliolatitudes. The difference between the experimentally found (r-5/3) and commonly used (r-2) radial dependence of the radial component of the IMF Br may lead to mistakes in the IMF point-to-point recalculations (Khabarova & Obridko, ApJ, 2012; Khabarova, Astronomy Reports, 2013). Using the observed Br (r) dependence, it is easy to find the variation of difference between the magnetic flux Fs(r) at certain heliocentric distance r and Fs_1AU at 1 AU, which can be calculated as Fs(r)-Fs_1AU =4π·(B1AU /[1AU]-5/3) (r2-5/3 -[1AU]2-5/3) (Khabarova, Astronomy Reports, 2013).The possible influence of presence of the heliospheric current sheet near the ecliptic plane on the picture of magnetic field lines and consequent deviation from the Parker's model is discussed.- Khabarova Olga, and Obridko Vladimir, Puzzles of the Interplanetary Magnetic Field in the Inner Heliosphere, 2012, Astrophysical Journal, 761, 2, 82, doi:10.1088/0004-637X/761/2/82, http://arxiv.org/pdf/1204.6672v2.pdf- Olga V. Khabarova, The interplanetary magnetic field: radial and latitudinal dependences. Astronomy Reports, 2013, Vol. 57, No. 11, pp. 844-859, http://arxiv.org/ftp/arxiv/papers/1305/1305.1204.pdf
Magnetic field formation in the Milky Way like disc galaxies of the Auriga project
NASA Astrophysics Data System (ADS)
Pakmor, Rüdiger; Gómez, Facundo A.; Grand, Robert J. J.; Marinacci, Federico; Simpson, Christine M.; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.; Guillet, Thomas; Pfrommer, Christoph; White, Simon D. M.
2017-08-01
The magnetic fields observed in the Milky Way and nearby galaxies appear to be in equipartition with the turbulent, thermal and cosmic ray energy densities, and hence are expected to be dynamically important. However, the origin of these strong magnetic fields is still unclear, and most previous attempts to simulate galaxy formation from cosmological initial conditions have ignored them altogether. Here, we analyse the magnetic fields predicted by the simulations of the Auriga Project, a set of 30 high-resolution cosmological zoom simulations of Milky Way like galaxies, carried out with a moving-mesh magnetohydrodynamics code and a detailed galaxy formation physics model. We find that the magnetic fields grow exponentially at early times owing to a small-scale dynamo with an e-folding time of roughly 100 Myr in the centre of haloes until saturation occurs around z = 2-3, when the magnetic energy density reaches about 10 per cent of the turbulent energy density with a typical strength of 10-50 {μ G}. In the galactic centres, the ratio between magnetic and turbulent energies remains nearly constant until z = 0. At larger radii, differential rotation in the discs leads to linear amplification that typically saturates around z = 0.5-0. The final radial and vertical variations of the magnetic field strength can be well described by two joint exponential profiles, and are in good agreement with observational constraints. Overall, the magnetic fields have only little effect on the global evolution of the galaxies as it takes too long to reach equipartition. We also demonstrate that our results are well converged with numerical resolution.
The Effects of Magnetic-field Geometry on Longitudinal Oscillaitons of Solar Prominences
NASA Technical Reports Server (NTRS)
Luna, M.; Diaz, A. J.; Karpen, J.
2013-01-01
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side.We have found the normal modes of the system and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.
Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment
NASA Astrophysics Data System (ADS)
Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau
2017-10-01
Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.
Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment.
Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau
2017-10-01
Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.
Closed and open magnetic fields in stellar winds
NASA Technical Reports Server (NTRS)
Mullan, D. J.; Steinolfson, R. S.
1983-01-01
A numerical study of the interaction between a thermal wind and a global dipole field in the sun and in a giant star is reported. In order for closed field lines to persist near the equator (where a helmet-streamer-like configuration appears), the coronal temperature must be less than a critical value Tc, which scales as M/R. This condition is found to be equivalent to the following: for a static helmet streamer to persist, the sonic point above the helmet must not approach closer to the star than 2.2-2.6 stellar radii. Implications for rapid mass loss and X-ray emission from cool giants are pointed out. The results strengthen the case for identifying empirical dividing lines in the H-R diagram with a magnetic topology transition locus (MTTL). Support for the MTTL concept is also provided by considerations of the breakdown of magnetostatic equilibrium.
NASA Astrophysics Data System (ADS)
Fainshtein, Victor; Egorov, Yaroslav
2018-03-01
In recent years, information about the distance between the body of rapid coronal mass ejection (CME) and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R) applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun-Earth axis. For this purpose, using the "ice-cream cone" model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs) and for HCME-related shocks. With these data, we managed to obtain the B(R) distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME sites moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial) part actually moves in the slow wind.
The Return of Magnetic Flux to the Inner Saturnian Magnetosphere
NASA Astrophysics Data System (ADS)
Lai, Hairong; Russell, Christopher T.; Jia, Yingdong; Masters, Adam; Dougherty, Michele K.
2017-04-01
The addition of plasma to the rotating inner Saturnian magnetosphere drives the circulation of the magnetic flux. The magnetic flux is loaded with cold plasma originating from Enceladus and its plasma torus. It then convects outward to the tail region, is emptied of plasma during reconnection events, and returns buoyantly to the inner magnetosphere. Returning flux tubes carry hot and tenuous plasma that serves as a marker of this type of flux tube. The plasma inside the tubes drifts at different rates depending on energy in the curved and inhomogeneous magnetosphere when the tubes convect inward. This energy dispersion can be used to track the flux tube. With data from MAG and CAPS, we model the energy dispersion of the electrons to determine the age and the point of return of the 'empty' flux tubes. The results show that even the 'fresh' flux tubes are several hours old when seen and they start to return at 19 Saturn radii, near Titan's orbit. This supports the hypothesis that returning flux tubes generated by reconnection in the far-tail region are injected directly into the inner magnetosphere.
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
Few-Nucleon Charge Radii and a Precision Isotope Shift Measurement in Helium
NASA Astrophysics Data System (ADS)
Hassan Rezaeian, Nima; Shiner, David
2015-05-01
Precision atomic theory and experiment provide a valuable method to determine few nucleon charge radii, complementing the more direct scattering approaches, and providing sensitive tests of few-body nuclear theory. Some puzzles with respect to this method exist, particularly in the muonic and electronic measurements of the proton radius, and as well with respect to measurements of nuclear size in helium. We perform precision measurements of the isotope shift of the 23S -23P transitions in 3He and 4He. A tunable laser frequency discriminator and electro-optic modulation technique give precise frequency and intensity control. We select (ts <50 ms) and stabilize the intensity of the required sideband and eliminate the unused sidebands (<= 10¬5) . The technique uses a MEMS fiber switch (ts = 10 ms) and several temperature stabilized narrow band (3 GHz) fiber gratings. A fiber based optical circulator and amplifier provide the desired isolation and net gain for the selected frequency. A beam with both species of helium is achieved using a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates Doppler effects. Careful detection design and software control allows for unbiased data collection. Current results will be discussed. This work is supported by NSF PHY-1068868 and PHY-1404498.
DNA stretching on the wall surfaces in curved microchannels with different radii.
Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju
2014-01-01
DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10(-4) ≤ Re ≤ 10(-3) and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.
DNA stretching on the wall surfaces in curved microchannels with different radii
2014-01-01
DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10−4 ≤ Re ≤ 10−3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm. PMID:25147488
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; ...
2016-12-15
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
Local Heating of Discrete Droplets Using Magnetic Porous Silicon-Based Photonic Crystals
Park, Ji-Ho; Derfus, Austin M.; Segal, Ester; Vecchio, Kenneth S.; Bhatia, Sangeeta N.; Sailor, Michael J.
2012-01-01
This paper describes a method for local heating of discrete micro-liter scale liquid droplets. The droplets are covered with magnetic porous Si microparticles, and heating is achieved by application of an external alternating electromagnetic field. The magnetic porous Si microparticles consist of two layers: the top layer contains a photonic code and it is hydrophobic, with surface-grafted dodecyl moieties. The bottom layer consists of a hydrophilic Si oxide host layer that is infused with Fe3O4 nanoparticles. The amphiphilic microparticles spontaneously align at the interface of a water droplet immersed in mineral oil, allowing manipulation of the droplets by application of a magnetic field. Application of an oscillating magnetic field (338 kHz, 18A RMS current in a coil surrounding the experiment) generates heat in the superparamagnetic particles that can raise the temperature of the enclosed water droplet to >80 °C within 5 min. A simple microfluidics application is demonstrated: combining complementary DNA strands contained in separate droplets and then thermally inducing dehybridization of the conjugate. The complementary oligonucleotides were conjugated with the cyanine dye fluorophores Cy3 and Cy5 to quantify the melting/re-binding reaction by fluorescence resonance energy transfer (FRET). The magnetic porous Si microparticles were prepared as photonic crystals, containing spectral codes that allowed the identification of the droplets by reflectivity spectroscopy. The technique demonstrates the feasibility of tagging, manipulating, and heating small volumes of liquids without the use of conventional microfluidic channel and heating systems. PMID:16771508
HD 66051: the first eclipsing binary hosting an early-type magnetic star
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.
2018-05-01
Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.
Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement
NASA Astrophysics Data System (ADS)
Pałka, M.; Strzempek, P.; Korcyl, G.; Bednarski, T.; Niedźwiecki, Sz.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kajetanowicz, M.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohhamed, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.; Zgardzińska, B.; Moskal, P.
2017-08-01
In this article it is presented an FPGA based Multi-Voltage Threshold (MVT) system which allows of sampling fast signals (1-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 20 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of σ(TOF) ≈ 68 ps is by factor of two better with respect to the current TOF-PET systems.
NASA Astrophysics Data System (ADS)
Cheng, Yung-Chang; Lee, Cheng-Kang
2017-10-01
This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.
An Approach to the Quantitative Study of Sea Floor Topography.
1980-01-01
Basement in the Pacific Ocean MAGNETIC TOTAL RMS ANOMALY SPREADING RELIEF MEAN RMS RIDGE WINDOW RATE (cm/yr) (meters) RELIEF (meters) Nazca-Cocos 0-2’ 6 104...investigation. V. CONCLUSIONS The sea floor and the lithologic boundaries below it can generally be thought of as interfaces of acoustic impedance mismatch... Magnetic Anomalies , and Plate Tectonic History of the Mouth of the Gulf of California. Geol. Soc. Am. Bull., v. 83, p. 3345-3360. Luyendyk, B. P
Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.
Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E
2014-06-01
Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.
Magnetic braking in young late-type stars. The effect of polar spots
NASA Astrophysics Data System (ADS)
Aibéo, A.; Ferreira, J. M.; Lima, J. J. G.
2007-10-01
Context: The existence of rapidly rotating cool stars in young clusters implies a reduction of angular momentum loss rate for a certain period of the star's early life. Recently, the concentration of magnetic flux near the poles of these stars has been proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. Aims: In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. Methods: We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. Results: From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfvén radii and larger braking rates than a smoother field distribution. Conclusions: From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.
Relative role of different radii in the dynamics of 8B+58Ni reaction
NASA Astrophysics Data System (ADS)
Kaur, Amandeep; Sandhu, Kirandeep; Sharma, Manoj K.
2018-05-01
In the present work, we intend to analyze the significance of three different radius terms in the framework of dynamical cluster-decay model (DCM) based calculations. In the majority of DCM based calculations the impact of mass- dependent radius R(A) is extensively analyzed. The other two factors on which the radius term may depend are, the neutron- proton asymmetry and the charge of the decaying fragments. Hence, the asymmetry dependent radius term R(I) and charge dependent radius term R(Z) are incorporated in DCM based calculations to investigate their effect on the reaction dynamics involved. Here, we present an extension of an earlier work based on the decay of 66As* compound nucleus by including R(I) and R(Z) radii in addition to the R(A) term. The effect of replacement of R(A) with R(I) and R(Z) is analyzed via fragmentation structure, tunneling probabilities (P) and other barrier characteristics like barrier height (VB), barrier position (RB), barrier turning point Ra etc. The role of temperature, deformations and angular momentum is duly incorporated in the present calculations.
Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.
2012-01-01
We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429
The RMS survey: near-IR spectroscopy of massive young stellar objects
NASA Astrophysics Data System (ADS)
Cooper, H. D. B.; Lumsden, S. L.; Oudmaijer, R. D.; Hoare, M. G.; Clarke, A. J.; Urquhart, J. S.; Mottram, J. C.; Moore, T. J. T.; Davies, B.
2013-04-01
Near-infrared H- and K-band spectra are presented for 247 objects, selected from the Red MSX Source (RMS) survey as potential young stellar objects (YSOs). 195 (˜80 per cent) of the targets are YSOs, of which 131 are massive YSOs (LBOL > 5 × 103 L⊙, M > 8 M⊙). This is the largest spectroscopic study of massive YSOs to date, providing a valuable resource for the study of massive star formation. In this paper, we present our exploratory analysis of the data. The YSOs observed have a wide range of embeddedness (2.7 < AV < 114), demonstrating that this study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties. The most commonly detected lines are Brγ, H2, fluorescent Fe II, CO bandhead, [Fe II] and He I 2-1 1S-1P, in order of frequency of occurrence. In total, ˜40 per cent of the YSOs display either fluorescent Fe II 1.6878 μm or CO bandhead emission (or both), indicative of a circumstellar disc; however, no correlation of the strength of these lines with bolometric luminosity was found. We also find that ˜60 per cent of the sources exhibit [Fe II] or H2 emission, indicating the presence of an outflow. Three quarters of all sources have Brγ in emission. A good correlation with bolometric luminosity was observed for both the Brγ and H2 emission line strengths, covering 1 < LBOL < 3.5 × 105 L⊙. This suggests that the emission mechanism for these lines is the same for low-, intermediate- and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs.
Paraboloid magnetospheric magnetic field model and the status of the model as an ISO standard
NASA Astrophysics Data System (ADS)
Alexeev, I.
A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions It is a reason why the method of the paraboloid magnetospheric model construction based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters Such approach is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace equation for each of these large-scale current systems in the magnetosphere with a
NASA Technical Reports Server (NTRS)
Chen, Sheng-Hsien; Kivelson, Margaret G.; Gosling, Jack T.; Walker, Raymond J.; Lazarus, Allan J.
1993-01-01
On February 15, 1978, the orientation of the IMF remained steadily northward for more than 12 hours. Using plasma and magnetic field data from ISEE 1 and 2, IMP 8, and IMP 7, we show that (1) the magnetosheath flow speed on the flanks of the magnetotail steadily exceeded the solar wind speed by 20 percent, (2) surface waves of about 5-min period and very nonsinusoidal waveform were persistently present on the dawn magnetopause and waves of similar period were present in the dusk magnetosheath, and (3) the magnetotail ceased to flare at an antisunward distance of 15 earth radii. We propose that the acceleration of the magnetosheath flow is achieved by magnetic tension in the draped field configuration for northward IMP; the reduction of tail flaring is consistent with a decreased amount of open magnetic flux and a larger standoff distance of the subsolar magnetopause. Results of a 3D MHD simulation support this phenomenological model.
NASA Astrophysics Data System (ADS)
Jacobs, Bryan C.; Nelson, Carl V.
2001-08-01
A magnetic sensor system has been developed to measure the 3-D location and orientation of a rigid body relative to an array of magnetic dipole transmitters. A generalized solution to the measurement problem has been formulated, allowing the transmitter and receiver parameters (position, orientation, number, etc.) to be optimized for various applications. Additionally, the method of images has been used to mitigate the impact of metallic materials in close proximity to the sensor. The resulting system allows precise tracking of high-speed motion in confined metal environments. The sensor system was recently configured and tested as an abdomen displacement sensor for an automobile crash-test dummy. The test results indicate a positional accuracy of approximately 1 mm rms during 20 m/s motions. The dynamic test results also confirmed earlier covariance model predictions, which were used to optimize the sensor geometry. A covariance analysis was performed to evaluate the applicability of this magnetic position system for tracking a pilot's head motion inside an aircraft cockpit. Realistic design parameters indicate that a robust tracking system, consisting of lightweight pickup coils mounted on a pilot's helmet, and an array of transmitter coils distributed throughout a cockpit, is feasible. Recent test and covariance results are presented.
Intermittent bursts induced by double tearing mode reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Lai; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn
Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shearmore » configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.« less
Intermittent bursts induced by double tearing mode reconnection
NASA Astrophysics Data System (ADS)
Wei, Lai; Wang, Zheng-Xiong
2014-06-01
Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.
DESIGN AND INSTRUMENTATION OF A POUND-WATKINS NUCLEAR MAGNETIC-RESONANCE SPECTROMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, F.E. Jr.
Problems of instrumentation of a Pound-Watkins nuclear magnetic- resonance spectrometer were investigated. Experimertal data were collected for the sensitivity of the os cillator to a signal from a Watkins calibrator as a function of modulation frequencies from 30 cps to 5 kc and rf tank voltsges from 0.05 to 0.7v/sub rms/. The results confirm Watkins" oscillator theory. An expression was derived for the amount of frequency modulation of the rf oscillator by the Watkins calibrator. For representative values of rf circuit components, this frequency modulation is roughly 0.5 cps at 10 Mc. The rf sample probes constructed for this projectmore » are almost free of modulation pickup in modulation fields as high as 23.5 oersteds (280 cps) and a steady field of 7000 oersteds. (auth)« less
High-precision planar magnetic levitation
NASA Astrophysics Data System (ADS)
Kim, Won-Jong
1997-11-01
This thesis presents the design and implementation of a high-precision magnetically levitated stage with large planar motion capability. This stage is the first which is capable of providing all the motions required for photolithography in semiconductor manufacturing with only one moving part, namely the platen. The platen is driven in all six-degree-of-freedom motions with small adjustments for focusing and alignment and with large planar motions for positioning across the wafer surface. The underlying electromechanical modeling and analysis, mechanical and electrical design, and real-time control of such a high-precision planar magnetic levitator are presented. The platen is levitated without contact by four novel permanent-magnet linear motors that provide both suspension and drive forces. The linear motors consist of Halbach-type magnet arrays attached to the underside of the levitated platen, and coil sets attached to the fixed machine platform. Since all the motor coils are fixed, no wires need to be connected to the moving part. The platen mass of 5.6 kg is supported against gravity by the combined forces of the four motors. Each motor consumes about 5.4 W to lift the platen. Two of the motors drive the stage in the x-direction, and the two other motors drive in the y-direction. The motor forces are coordinated appropriately to control the remaining four degrees of freedom. The present design has a travel of 50 mm in x and y, a travel of 400 μm in z, and is capable of milliradian-scale rotations about each of these three axes. The stage position in the plane is measured with three laser interferometers with sub-nanometer resolution. The stage position out of the plane is measured by three capacitance probes with nanometer resolution. The stage operates with a position noise of 5 nm rms in x and y, and is demonstrating acceleration capabilities in excess of 10 m/s2 (1 g). The control bandwidth of the system is 50 Hz. This design can readily be scaled to
Empirically Calibrated Asteroseismic Masses and Radii for Red Giants in the Kepler Fields
NASA Astrophysics Data System (ADS)
Pinsonneault, Marc; Elsworth, Yvonne; Silva Aguirre, Victor; Chaplin, William J.; Garcia, Rafael A.; Hekker, Saskia; Holtzman, Jon; Huber, Daniel; Johnson, Jennifer; Kallinger, Thomas; Mosser, Benoit; Mathur, Savita; Serenelli, Aldo; Shetrone, Matthew; Stello, Dennis; Tayar, Jamie; Zinn, Joel; APOGEE Team, KASC Team, APOKASC Team
2018-01-01
We report on the joint asteroseismic and spectroscopic properties of a sample of 6048 evolved stars in the fields originally observed by the Kepler satellite. We use APOGEE spectroscopic data taken from Data Release 13 of the Sloan Digital Sky Survey, combined with asteroseismic data analyzed by members of the Kepler Asteroseismic Science Consortium. With high statistical significance, the different pipelines do not have relative zero points that are the same as the solar values, and red clump stars do not have the same empirical relative zero points as red giants. We employ theoretically motivated corrections to the scaling relation for the large frequency spacing, and adjust the zero point of the frequency of maximum power scaling relation to be consistent with masses and radii for members of star clusters. The scatter in calibrator masses is consistent with our error estimation. Systematic and random mass errors are explicitly separated and identified. The measurement scatter, and random uncertainties, are three times larger for red giants where one or more technique failed to return a value than for targets where all five methods could do so, and this is a substantial fraction of the sample (20% of red giants and 25% of red clump stars). Overall trends and future prospects are discussed.
On the Grain-modified Magnetic Diffusivities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Xu, Rui; Bai, Xue-Ning
2016-03-01
Weakly ionized protoplanetary disks (PPDs) are subject to nonideal magnetohydrodynamic (MHD) effects, including ohmic resistivity, the Hall effect, and ambipolar diffusion (AD), and the resulting magnetic diffusivities ({η }{{O}},{η }{{H}}, and {η }{{A}}) largely control the disk gas dynamics. The presence of grains not only strongly reduces the disk ionization fraction, but also modifies the scalings of {η }{{H}} and {η }{{A}} with magnetic field strength. We analytically derive asymptotic expressions of {η }{{H}} and {η }{{A}} in both the strong and weak field limits and show that toward a strong field, {η }{{H}} can change sign (at a threshold field strength {B}{{th}}), mimicking a flip of field polarity, and AD is substantially reduced. Applied to PPDs, we find that when small ˜0.1 (0.01)μm grains are sufficiently abundant (mass ratio ˜0.01 (10-4)), {η }{{H}} can change sign up to ˜2-3 scale heights above the midplane at a modest field strength (plasma β ˜ 100) over a wide range of disk radii. The reduction of AD is also substantial toward the AD-dominated outer disk and may activate the magnetorotational instability. We further perform local nonideal MHD simulations of the inner disk (within 10 au) and show that, with sufficiently abundant small grains, the magnetic field amplification due to the Hall-shear instability saturates at a very low level near the threshold field strength {B}{{th}}. Together with previous studies, we conclude by discussing the grain-abundance-dependent phenomenology of PPD gas dynamics.
Self-organization in magnetic flux ropes
NASA Astrophysics Data System (ADS)
Lukin, Vyacheslav S.
2014-06-01
This cross-disciplinary special issue on 'Self-organization in magnetic flux ropes' follows in the footsteps of another collection of manuscripts dedicated to the subject of magnetic flux ropes, a volume on 'Physics of magnetic flux ropes' published in the American Geophysical Union's Geophysical Monograph Series in 1990 [1]. Twenty-four years later, this special issue, composed of invited original contributions highlighting ongoing research on the physics of magnetic flux ropes in astrophysical, space and laboratory plasmas, can be considered an update on our state of understanding of this fundamental constituent of any magnetized plasma. Furthermore, by inviting contributions from research groups focused on the study of the origins and properties of magnetic flux ropes in a variety of different environments, we have attempted to underline both the diversity of and the commonalities among magnetic flux ropes throughout the solar system and, indeed, the universe. So, what is a magnetic flux rope? The answer will undoubtedly depend on whom you ask. A flux rope can be as narrow as a few Larmor radii and as wide as the Sun (see, e.g., the contributions by Heli Hietala et al and by Angelous Vourlidas). As described below by Ward Manchester IV et al , they can stretch from the Sun to the Earth in the form of interplanetary coronal mass ejections. Or, as in the Swarthmore Spheromak Experiment described by David Schaffner et al , they can fit into a meter-long laboratory device tended by college students. They can be helical and line-tied (see, e.g., Walter Gekelman et al or J Sears et al ), or toroidal and periodic (see, e.g., John O'Bryan et al or Philippa Browning et al ). They can form in the low plasma beta environment of the solar corona (Tibor Török et al ), the order unity beta plasmas of the solar wind (Stefan Eriksson et al ) and the plasma pressure dominated stellar convection zones (Nicholas Nelson and Mark Miesch). In this special issue, Setthivoine You
Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Ati, Ali A.; Othaman, Zulkafli; Samavati, Alireza
2013-11-01
Improving the magnetic response of nanocrystalline nickel ferrites is the key issue in high density recording media. A series of cobalt substituted nickel ferrite nanoparticles with composition Ni(1-x)CoxFe2O4, where 0.0 ⩽ x ⩽ 1.0, are synthesized using co-precipitation method. The XRD spectra revealed the single phase spinel structure and the average sizes of nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The lattice parameter and coercivity shows monotonic increment with the increase of Co contents ascribed to the larger ionic radii of the cobalt ion. The specific saturation magnetization (Ms), remanent magnetization (Mr) and the coercivity (Hc) of the spinel ferrites are further improved by the substitutions of Co+2 ions. The values of Ms for NiFe2O4 and CoFe2O4 are found to be 43.92 and 78.59 emu/g, respectively and Hc are in the range of 51-778 Oe. The FTIR spectra of the spinel phase calcinated at 600 °C exhibit two prominent fundamental absorption bands in the range of 350-600 cm-1 assigned to the intrinsic stretching vibrations of the metal at the tetrahedral and octahedral sites. The role played by the Co ions in improving the structural and magnetic properties are analyzed and understood. Our simple, economic and environmental friendly preparation method may contribute towards the controlled growth of high quality ferrite nanopowders, potential candidates for recording.
Rocky Worlds Limited to ∼1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmer, Owen R.; Catling, David C., E-mail: info@lehmer.us
Recent observations and analysis of low-mass (<10 M {sub ⊕}) exoplanets have found that rocky planets only have radii up to 1.5–2 R {sub ⊕}. Two general hypotheses exist for the cause of the dichotomy between rocky and gas-enveloped planets (or possible water worlds): either low-mass planets do not necessarily form thick atmospheres of a few wt.%, or the thick atmospheres on these planets easily escape, driven by X-ray and extreme ultraviolet (XUV) emissions from young parent stars. Here, we show that a cutoff between rocky and gas-enveloped planets due to hydrodynamic escape is most likely to occur at amore » mean radius of 1.76 ± 0.38 (2 σ ) R {sub ⊕} around Sun-like stars. We examine the limit in rocky planet radii predicted by hydrodynamic escape across a wide range of possible model inputs, using 10,000 parameter combinations drawn randomly from plausible parameter ranges. We find a cutoff between rocky and gas-enveloped planets that agrees with the observed cutoff. The large cross-section available for XUV absorption in the extremely distended primitive atmospheres of low-mass planets results in complete loss of atmospheres during the ∼100 Myr phase of stellar XUV saturation. In contrast, more-massive planets have less-distended atmospheres and less escape, and so retain thick atmospheres through XUV saturation—and then indefinitely as the XUV and escape fluxes drop over time. The agreement between our model and exoplanet data leads us to conclude that hydrodynamic escape plausibly explains the observed upper limit on rocky planet size and few planets (a “valley”, or “radius gap”) in the 1.5–2 R {sub ⊕} range.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hui; Wang, Jianhua; Liu, Zhiyuan, E-mail: liuzy@mail.xjtu.edu.cn
2016-06-15
The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density B{sub AMF} can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera wasmore » used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF–AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.« less
Observational Signatures of Magnetic Reconnection in the Extended Corona
NASA Technical Reports Server (NTRS)
Savage, Sabrina; West, Matthew J.; Seaton, Daniel B.; Kobelski, Adam
2016-01-01
Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-Arcade Downflows (SADs) and Supra-Arcade Downflowing Loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been faintly observed up to 18 hours beyond the passage of coronas mass ejections through the SOHO/LASCO field of view, but a recent event from 2014 October 14 associated with giant arches provides very clear observations of these downflows for days after the initial eruption. We report on this unique event and compare these findings with observational signatures of magnetic reconnection in the extended corona for more typical eruptions.
Observational Signatures of Magnetic Reconnection in the Extended Corona
NASA Technical Reports Server (NTRS)
Savage, Sabrina; West, Matthew J.; Seaton, Danial B.; Kobelski, Adam
2016-01-01
Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-Arcade Downflows (SADs) and Supra-Arcade Downflowing Loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been faintly observed up to 18 hours beyond the passage of corona mass ejections through the SOHO/LASCO field of view, but a recent event from 2014 October 14 associated with giant arches provides very clear observations of these downflows for days after the initial eruption. We report on this unique event and compare these findings with observational signatures of magnetic reconnection in the extended corona for more typical eruptions.
Observational Signatures of Magnetic Reconnection in the Extended Corona
NASA Technical Reports Server (NTRS)
Savage, Sabrina; West, Matthew J.; Seaton, Daniel B.; Kobelski, Adam
2017-01-01
Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-Arcade Downflows (SADs) and Supra-Arcade Downflowing Loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been faintly observed up to 18 hours beyond the passage of corona mass ejections through the SOHO/LASCO field of view, but a recent event from 2014 October 14 associated with giant arches provides very clear observations of these downflows for days after the initial eruption. We report on this unique event and compare these findings with observational signatures of magnetic reconnection in the extended corona for more typical eruptions.
NASA Astrophysics Data System (ADS)
Stevens, Daniel J.; Stassun, Keivan G.; Gaudi, B. Scott
2017-12-01
We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog, determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355,502 Tycho-2 stars in our sample whose Gaia DR1 parallaxes are precise to ≲ 10 % . For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with {T}{eff} ≲ 7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian; Chai, Ping; Diefenbach, Kariem
2014-03-03
Twelve new lanthanide copper heterobimetallic compounds, RE2Cu(TeO3)2(SO4)2 (RE = Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), with two different structural topologies, have been prepared by hydrothermal treatment. Both structure types crystallize in the triclinic space group, Pmore » $$\\bar{1}$$, but the unit cell parameters and structures are quite different. The earlier RE2Cu(TeO3)2(SO4)2 (RE = Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm) share a common structural motif consisting of edge-sharing LnO8 chains and [Cu(TeO3)2(SO4)2]6– units. The later lanthanide version (Yb and Lu) is composed of edge-sharing LnO7 dimers bridged by similar [Cu(TeO3)2(SO4)2]6– units. The change in the structure type can be attributed to the decreasing ionic radii of the lanthanides. The compounds containing RE3+ ions with diamagnetic ground states (Y3+ and Eu3+) exhibit antiferromagnetic ordering at 12.5 K and 15 K, respectively, owing to the magnetic exchange between Cu2+ moments. No magnetic phase transition was observed in all the other phases. The lack of magnetic ordering is attributed to the competing magnetic interactions caused by the presence of paramagnetic RE3+ ions. The magnetism data suggests that substantial 3d–4f coupling only occurs in the Yb analogue.« less
Boric acid flux synthesis, structure and magnetic property of MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dingfeng; Cong, Rihong; Gao, Wenliang, E-mail: gaowl@cqu.edu.cn
2013-05-01
Three new borates MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) have been synthesized by boric acid flux methods, which are isotypic to NiB₁₂O₁₄(OH)₁₀. Single-crystal XRD was performed to determine the crystal structures in detail. They all crystallize in the monoclinic space group P2₁/c. The size of MO{sub 6} (M=Mg, Mn, Fe, Co, Ni, Zn) octahedron shows a good agreement with the Shannon effective ionic radii of M²⁺. Magnetic measurements indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. The values of its magnetic superexchange constants were evaluated by DFT calculations, which explain the observed magnetic behavior. The UV–vis diffuse reflectancemore » spectrum of ZnB₁₂O₁₄(OH)₁₀ suggests a band gap ~4.6 eV. DFT calculations indicate it has a direct band gap 4.9 eV. The optical band gap is contributed by charge transfers from the occupied O 2p to the unoccupied Zn 4s states. - Graphical abstract: Experimental and theoretical studies indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering. DFT calculations show ZnB₁₂O₁₄(OH)₁₀ has a direct band gap of 4.9 eV. Highlights: • MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) are synthesized by two-step boric acid flux method. • Single-crystal XRD was performed to determine the crystal structures in detail. • Size of MO₆ (M=Mg, Mn, Fe, Co, Ni, Zn) agrees with the effective ionic radii. • MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. • DFT calculations indicate ZnB₁₂O₁₄(OH)₁₀ has a direct band gap 4.9 eV.« less
A statistical study of magnetic field magnitude changes during substorms in the near earth tail
NASA Technical Reports Server (NTRS)
Lopez, R. E.; Lui, A. T. Y.; Mcentire, R. W.; Potemra, T. A.; Krimigis, S. M.
1990-01-01
Using AMPTE/CCE data taken in 1985 and 1986 when the CCE apogee (8.8 earth radii) was within 4.5 hours of midnight, 167 injection events in the near-earth magnetotail have been cataloged. These events are exactly or nearly dispersionless on a 72-sec time scale from 25 keV to 285 keV. The changes in the field magnitude are found to be consistent with the expected effects of the diversion/disruption of the cross-tail current during a substorm, and the latitudinal position of the current sheet is highly variable within the orbit of CCE. The local time variation of the magnetic-field changes implies that the substorm current wedge is composed of longitudinally broad Birkeland currents.
NASA Astrophysics Data System (ADS)
Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.
2005-07-01
Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.
NASA Astrophysics Data System (ADS)
Zhuravlev, V. V.; Ivanov, P. B.
2011-08-01
In this paper we derive equations describing the dynamics and stationary configurations of a twisted fully relativistic thin accretion disc around a slowly rotating black hole. We assume that the inclination angle of the disc is small and that the standard relativistic generalization of the α model of accretion discs is valid when the disc is flat. We find that similar to the case of non-relativistic twisted discs the disc dynamics and stationary shapes can be determined by a pair of equations formulated for two complex variables describing the orientation of the disc rings and velocity perturbations induced by the twist. We analyse analytically and numerically the shapes of stationary twisted configurations of accretion discs having non-zero inclinations with respect to the black hole equatorial plane at large distances r from the black hole. It is shown that the stationary configurations depend on two parameters - the viscosity parameter α and the parameter ?, where δ* is the opening angle (δ*˜h/r, where h is the disc half-thickness and r is large) of a flat disc and a is the black hole rotational parameter. When a > 0 and ? the shapes depend drastically on the value of α. When α is small the disc inclination angle oscillates with radius with amplitude and radial frequency of the oscillations dramatically increasing towards the last stable orbit, Rms. When α has a moderately small value the oscillations do not take place but the disc does not align with the equatorial plane at small radii. The disc inclination angle either is increasing towards Rms or exhibits a non-monotonic dependence on the radial coordinate. Finally, when α is sufficiently large the disc aligns with the equatorial plane at small radii. When a < 0 the disc aligns with the equatorial plane for all values of α. The results reported here may have implications for determining the structure and variability of accretion discs close to Rms as well as for modelling of emission spectra coming
NASA Technical Reports Server (NTRS)
Swimm, Randall; Garrett, Henry B.; Jun, Insoo; Evans, Robin W.
2004-01-01
In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances between 8 and 51 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron fluxes with longitude.
Effect of cobalt substitution on magnetic properties of Ba4Ni2-xCoxFe36O60 hexaferrite
NASA Astrophysics Data System (ADS)
Jiang, Xiaona; Li, Songze; Yu, Zhong; Harris, Vincent G.; Su, Zhijuan; Sun, Ke; Wu, Chuanjian; Guo, Rongdi; Lan, Zhongwen
2018-05-01
Co-substituted U-type hexagonal ferrite bulks, with composition of Ba4Ni2-xCoxFe36O60 (x=0.2, 0.4, 0.6, 0.8), were prepared by a conventional ceramic method. Saturation magnetization (4πMs), coercivity (Hc), and Curie temperature (Tc) were investigated. Anisotropy constant (K1) was calculated by fitting the magnetization curve (M-H) according to the law of approach to saturation, and anisotropy field (Ha) was calculated accordingly. The results reveal that all the samples possess the U-type hexagonal crystallographic structure. With increasing cobalt substitution content (x), the lattice parameters (a and c) almost remain the same owing to the similar radii of Ni2+ (0.72 Å) Co2+ (0.74 Å) ions. 4πMs goes up, while Hc Hc shows an opposite trend. K1 and Ha monotonously decrease resulting from that cobalt substitution weakens the c-axis orientation. Additionally, Tc increases from 467 °C to 484 °C.
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Toghraie, Davood; Karimipour, Arash; Wongwises, Somchai
2017-05-01
Presets work aims to investigate the natural convection inside a cylindrical annulus mold containing molten gallium under a horizontal magnetic field in three-dimensional coordinates. The modeling system is a vertical cylindrical annulus which is made by two co-axial cylinders of internal and external radii. The internal and external walls are maintained isothermal but in different temperatures. The upper and lower sides of annulus are also considered adiabatic while it is filled by an electrical conducting fluid. Three dimensional cylindrical coordinates as (r , θ , z) are used to respond the velocity components as (u , v , w) . The governing equations are steady, laminar and Newtonian using the Boussinesq approximation. Equations are nonlinear and they must be corresponded by applying the finite volume approach; so that the hybrid-scheme is applied to discretize equations. The results imply that magnetic field existence leads to generate the Lorentz force in opposite direction of the buoyancy forces. Moreover the Lorentz force and its corresponded electric field are more significant in both Hartmann layer and Roberts layer, respectively. The strong magnetic field is required to achieve better quality products in the casting process of a liquid metal with a higher Prandtl number.
NASA Astrophysics Data System (ADS)
Chwastyk, Mateusz; Poma Bernaola, Adolfo; Cieplak, Marek
2015-07-01
We propose to improve and simplify protein refinement procedures through consideration of which pairs of amino acid residues should form native contacts. We first consider 11 330 proteins from the CATH database to determine statistical distributions of contacts associated with a given type of amino acid. The distributions are set across the distances between the α-C atoms that are in contact. Based on this data, we determine typical radii of effective spheres that can be placed on the α-C atoms in order to reconstruct the distribution of the contact lengths. This is done by checking for overlaps with enlarged van der Waals spheres associated with heavy atoms on other amino acids. The resulting contacts can be used to identify non-native contacts that may arise during the time evolution of structure-based models. Here, the radii are used to guide reconstruction of nine missing side chains in a type I cohesin domain with the Protein Data Bank code 1AOH. We first identify the likely missing contacts and then sculpt the corresponding side chains by standard refinement tools to achieve consistency with the expected contact map. One ambiguity in refinement is resolved by determining all-atom conformational energies.
NASA Astrophysics Data System (ADS)
Ireland, Lewis G.; Browning, Matthew K.
2018-04-01
Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.
Manukjan, Georgi; Bösing, Hendrik; Schmugge, Markus; Strauß, Gabriele; Schulze, Harald
2017-11-01
Thrombocytopenia absent radii (TAR) syndrome is clearly defined by the combination of radial aplasia and reduced platelet counts. The genetics of TAR syndrome has recently been resolved and comprises a microdeletion on Chromosome 1 including the RBM8A gene and a single nucleotide polymorphism (SNP) either at the 5' untranslated region (5'UTR) or within the first intron of RBM8A. Although phenotypically readily diagnosed after birth, the genetic determination of particular SNPs in TAR syndrome harbours valuable information to evaluate disease severity and treatment decisions. Here, we present clinical data in a cohort of 38 patients and observed that platelet counts in individuals with 5'UTR SNP are significantly lower compared to patients bearing the SNP in intron 1. Moreover, elevated haemoglobin values could only be assessed in patients with 5'UTR SNP whereas white blood cell count is unaffected, indicating that frequently observed anaemia in TAR patients could also be SNP-dependent whereas leucocytosis does not correlate with genetic background. However, this report on a large cohort provides an overview of important haematological characteristics in TAR patients, facilitating evaluation of the various traits in this disease and indicating the importance of genetic validation for TAR syndrome. © 2017 John Wiley & Sons Ltd.
Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations
NASA Technical Reports Server (NTRS)
Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.
2001-01-01
The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.
Radtke, Jan Philipp; Wiesenfarth, Manuel; Kesch, Claudia; Freitag, Martin T; Alt, Celine D; Celik, Kamil; Distler, Florian; Roth, Wilfried; Wieczorek, Kathrin; Stock, Christian; Duensing, Stefan; Roethke, Matthias C; Teber, Dogu; Schlemmer, Heinz-Peter; Hohenfellner, Markus; Bonekamp, David; Hadaschik, Boris A
2017-12-01
Multiparametric magnetic resonance imaging (mpMRI) is gaining widespread acceptance in prostate cancer (PC) diagnosis and improves significant PC (sPC; Gleason score≥3+4) detection. Decision making based on European Randomised Study of Screening for PC (ERSPC) risk-calculator (RC) parameters may overcome prostate-specific antigen (PSA) limitations. We added pre-biopsy mpMRI to ERSPC-RC parameters and developed risk models (RMs) to predict individual sPC risk for biopsy-naïve men and men after previous biopsy. We retrospectively analyzed clinical parameters of 1159 men who underwent mpMRI prior to MRI/transrectal ultrasound fusion biopsy between 2012 and 2015. Multivariate regression analyses were used to determine significant sPC predictors for RM development. The prediction performance was compared with ERSPC-RCs, RCs refitted on our cohort, Prostate Imaging Reporting and Data System (PI-RADS) v1.0, and ERSPC-RC plus PI-RADSv1.0 using receiver-operating characteristics (ROCs). Discrimination and calibration of the RM, as well as net decision and reduction curve analyses were evaluated based on resampling methods. PSA, prostate volume, digital-rectal examination, and PI-RADS were significant sPC predictors and included in the RMs together with age. The ROC area under the curve of the RM for biopsy-naïve men was comparable with ERSPC-RC3 plus PI-RADSv1.0 (0.83 vs 0.84) but larger compared with ERSPC-RC3 (0.81), refitted RC3 (0.80), and PI-RADS (0.76). For postbiopsy men, the novel RM's discrimination (0.81) was higher, compared with PI-RADS (0.78), ERSPC-RC4 (0.66), refitted RC4 (0.76), and ERSPC-RC4 plus PI-RADSv1.0 (0.78). Both RM benefits exceeded those of ERSPC-RCs and PI-RADS in the decision regarding which patient to receive biopsy and enabled the highest reduction rate of unnecessary biopsies. Limitations include a monocentric design and a lack of PI-RADSv2.0. The novel RMs, incorporating clinical parameters and PI-RADS, performed significantly better
NASA Technical Reports Server (NTRS)
Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.
1982-01-01
Correlation variability between ISEE 1 and 3 IMF measurements is investigated, and factors governing the variability are discussed. About 200 two-hour periods when correlation was good, and 200 when correlation was poor, are examined, and both IMF variance and spacecraft separation distance in the plane perpendicular to the earth-sun line exert substantial control. The scale size of magnetic features is larger when variance is high, and abrupt changes in the correlation coefficient from poor to good or good to poor in adjacent two-hour intervals appear to be governed by the sense of change of IMF variance and vice versa. During periods of low variance, good correlations are most likely to occur when the distance between ISEE 1 and 3 perpendicular to the IMF is less than 20 earth radii.
Magnetic Pair Creation Attenuation Altitude Constraints in Gamma-Ray Pulsars
NASA Astrophysics Data System (ADS)
Baring, Matthew; Story, Sarah
The Fermi gamma-ray pulsar database now exceeds 150 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency at and below the turnover energy. Our updated computations span both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. The altitude bounds, typically in the range of 2-5 stellar radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. However, the exceptional case of the Crab pulsar provides an altitude bound of around 20% of the light cylinder radius if pair transparency persists out to 350 GeV, the maximum energy detected by MAGIC. This is an impressive new physics-based constraint on the Crab's gamma-ray emission locale.
NASA Technical Reports Server (NTRS)
Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans
2010-01-01
We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.
Blazar Variability from Turbulence in Jets Launched by Magnetically Arrested Accretion Flows
NASA Astrophysics Data System (ADS)
O' Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.
2017-07-01
Blazars show variability on timescales ranging from minutes to years, the former being comparable to and in some cases even shorter than the light-crossing time of the central black hole. The observed γ-ray light curves can be described by a power-law power density spectrum (PDS), with a similar index for both BL Lacs and flat-spectrum radio quasars. We show that this variability can be produced by turbulence in relativistic jets launched by magnetically arrested accretion flows (MADs). We perform radiative transport calculations on the turbulent, highly magnetized jet launching region of a MAD with a rapidly rotating supermassive black hole. The resulting synchrotron and synchrotron self-Compton emission, originating from close to the black hole horizon, is highly variable. This variability is characterized by PDS, which is remarkably similar to the observed power-law spectrum at frequencies less than a few per day. Furthermore, turbulence in the jet launching region naturally produces fluctuations in the plasma on scales much smaller than the horizon radius. We speculate that similar turbulent processes, operating in the jet at large radii (and therefore a high bulk Lorentz factor), are responsible for blazar variability over many decades in frequency, including on minute timescales.
Models, assumptions, and experimental tests of flows near boundaries in magnetized plasmas
NASA Astrophysics Data System (ADS)
Siddiqui, M. Umair; Thompson, Derek S.; Jackson, Cory D.; Kim, Justin F.; Hershkowitz, Noah; Scime, Earl E.
2016-05-01
We present the first measurements of ion flows in three dimensions (3Ds) using laser-induced fluorescence in the plasma boundary region. Measurements are performed upstream from a grounded stainless steel limiter plate at various angles ( ψ=16 ° to 80 ° ) to the background magnetic field in two argon helicon experiments (MARIA at the University of Wisconsin-Madison and HELIX at West Virginia University). The Chodura magnetic presheath model for collisionless plasmas [R. Chodura, Phys. Fluids 25, 1628 (1982)] is shown to be inaccurate for systems with sufficient ion-neutral collisions and ionization such as tokamak scrape off layers. A 3D ion fluid model that accounts for ionization and charge-exchange collisions is found to accurately describe the measured ion flows in regions where the ion flux tubes do not intersect the boundary. Ion acceleration in the E →×B → direction is observed within a few ion Larmor radii of the grounded plate for ψ=80 ° . We argue that fully 3D ion and neutral acceleration in the plasma boundary are uniquely caused by the long-range presheath electric fields, and that models that omit presheath effects under-predict observed wall erosion in tokamak divertors and Hall thruster channel walls.
Blazar Variability from Turbulence in Jets Launched by Magnetically Arrested Accretion Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riordan, Michael O’; Pe’er, Asaf; McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie
2017-07-10
Blazars show variability on timescales ranging from minutes to years, the former being comparable to and in some cases even shorter than the light-crossing time of the central black hole. The observed γ -ray light curves can be described by a power-law power density spectrum (PDS), with a similar index for both BL Lacs and flat-spectrum radio quasars. We show that this variability can be produced by turbulence in relativistic jets launched by magnetically arrested accretion flows (MADs). We perform radiative transport calculations on the turbulent, highly magnetized jet launching region of a MAD with a rapidly rotating supermassive blackmore » hole. The resulting synchrotron and synchrotron self-Compton emission, originating from close to the black hole horizon, is highly variable. This variability is characterized by PDS, which is remarkably similar to the observed power-law spectrum at frequencies less than a few per day. Furthermore, turbulence in the jet launching region naturally produces fluctuations in the plasma on scales much smaller than the horizon radius. We speculate that similar turbulent processes, operating in the jet at large radii (and therefore a high bulk Lorentz factor), are responsible for blazar variability over many decades in frequency, including on minute timescales.« less
NASA Astrophysics Data System (ADS)
Xu, Heqiucen; Shiokawa, Kazuo; Frühauff, Dennis
2017-10-01
We statistically analyzed severe magnetic fluctuations in the nightside near-Earth plasma sheet at 6-12 RE (Earth radii; 1 RE = 6371 km), because they are important for non-magnetohydrodynamics (non-MHD) effects in the magnetotail and are considered to be necessary for current disruption in the inside-out substorm model. We used magnetic field data from 2013 and 2014 obtained by the Time History of Events and Macroscale Interactions during Substorms E (THEMIS-E) satellite (sampling rate: 4 Hz). A total of 1283 severe magnetic fluctuation events were identified that satisfied the criteria σB/B > 0. 5, where σB and B are the standard deviation and the average value of magnetic field intensity during the time interval of the local proton gyroperiod, respectively. We found that the occurrence rates of severe fluctuation events are 0.00118, 0.00899, and 0.0238 % at 6-8, 8-10, and 10-12 RE, respectively, and most events last for no more than 15 s. From these occurrence rates, we estimated the possible scale sizes of current disruption by severe magnetic fluctuations as 3.83 RE3 by assuming that four substorms with 5 min intervals of current disruption occur every day. The fluctuation events occurred most frequently at the ZGSM (Z distance in the geocentric solar magnetospheric coordinate system) close to the model neutral sheet within 0.2 RE. Most events occur in association with sudden decreases in the auroral electrojet lower (AL) index and magnetic field dipolarization, indicating that they are related to substorms. Sixty-two percent of magnetic fluctuation events were accompanied by ion flow with velocity V > 100 km s-1, indicating that the violation of ion gyromotion tends to occur during high-speed flow in the near-Earth plasma sheet. The superposed epoch analysis also indicated that the flow speed increases before the severe magnetic fluctuations. We discuss how both the inside
A search for strong, ordered magnetic fields in Herbig Ae/Be stars
NASA Astrophysics Data System (ADS)
Wade, G. A.; Bagnulo, S.; Drouin, D.; Landstreet, J. D.; Monin, D.
2007-04-01
The origin of magnetic fields in intermediate- and high-mass stars is fundamentally a mystery. Clues towards solving this basic astrophysical problem can likely be found at the pre-main-sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in PMS Herbig Ae/Be (HAeBe) stars. We seek to determine whether strong, ordered magnetic fields, similar to those of main-sequence Ap/Bp stars, can be detected in these objects, and if so, to determine the intensities, geometrical characteristics, and statistical incidence of such fields. 68 observations of 50 HAeBe stars have been obtained in circularly polarized light using the FORS1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. Results for two additional stars, CPD-53 295 and HD 36112, are suggestive of the presence of magnetic fields, but no firm conclusions can be drawn based on the available data. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally ordered magnetic fields with surface intensities of order 1 kG. On the other hand, no magnetic field is detected in 4 other HAeBe stars in our sample in which magnetic fields had previously been confirmed. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limit of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. Taking into account the results of our survey and other published results, we find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12 per cent, in good agreement with that of magnetic main-sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically detected HAe
Mechanisms of combustion synthesis and magnetic response of high-surface-area hexaboride compounds.
Kanakala, Raghunath; Escudero, Roberto; Rojas-George, Gabriel; Ramisetty, Mohan; Graeve, Olivia A
2011-04-01
We present an analysis of the combustion synthesis mechanisms for the preparation of hexaboride materials using three compounds as model systems: EuB(6), YbB(6), and YB(6). These three hexaborides were chosen because of the differences in ionic radii between Eu(3+), Yb(3+), and Y(3+), which is a factor in their stability. The powders were prepared using metal nitrates, carbohydrazide, and two different boron precursor powders. The resulting materials were analyzed by X-ray diffraction, which showed that combustion synthesis is effective for the synthesis of EuB(6), since the Eu(3+) ion has an ionic radius greater than ∼1 Å. The synthesis of YbB(6) and YB(6) is not as effective because of the small size of the Yb(3+) and Y(3+) ions, making the hexaborides of these metals less stable and resulting in the synthesis of borates due to the presence of oxygen during the combustion process. Scanning electron microscopy and dynamic light scattering of the EuB(6) powders shows that the particle size of the hexaboride product is dependent on the particle size of the boron precursor. The magnetic susceptibility of our EuB(6) powders manifests irreversible behavior at low applied fields, which disappears at higher fields. This behavior can be attributed to the increase in size and number of magnetic polarons with increasing magnetic field. © 2011 American Chemical Society
Three-dimensional Hybrid Simulation Study of Anisotropic Turbulence in the Proton Kinetic Regime
NASA Astrophysics Data System (ADS)
Vasquez, Bernard J.; Markovskii, Sergei A.; Chandran, Benjamin D. G.
2014-06-01
Three-dimensional numerical hybrid simulations with particle protons and quasi-neutralizing fluid electrons are conducted for a freely decaying turbulence that is anisotropic with respect to the background magnetic field. The turbulence evolution is determined by both the combined root-mean-square (rms) amplitude for fluctuating proton bulk velocity and magnetic field and by the ratio of perpendicular to parallel wavenumbers. This kind of relationship had been considered in the past with regard to interplanetary turbulence. The fluctuations nonlinearly evolve to a turbulent phase whose net wave vector anisotropy is usually more perpendicular than the initial one, irrespective of the initial ratio of perpendicular to parallel wavenumbers. Self-similar anisotropy evolution is found as a function of the rms amplitude and parallel wavenumber. Proton heating rates in the turbulent phase vary strongly with the rms amplitude but only weakly with the initial wave vector anisotropy. Even in the limit where wave vectors are confined to the plane perpendicular to the background magnetic field, the heating rate remains close to the corresponding case with finite parallel wave vector components. Simulation results obtained as a function of proton plasma to background magnetic pressure ratio β p in the range 0.1-0.5 show that the wave vector anisotropy also weakly depends on β p .
Dotta, Blake T; Lafrenie, Robert M; Karbowski, Lukasz M; Persinger, Michael A
2014-01-01
If parameters for lateral diffusion of lipids within membranes are macroscopic metaphors of the angular magnetic moment of the Bohr magneton then the energy emission should be within the visible wavelength for applied ~1 µT magnetic fields. Single or paired digital photomultiplier tubes (PMTs) were placed near dishes of ~1 million B16 mouse melanoma cells that had been removed from incubation. In very dark conditions (10(-11) W/m(2)) different averaged (RMS) intensities between 5 nT and 3.5 µT were applied randomly in 4 min increments. Numbers of photons were recorded directly over or beside the cell dishes by PMTs placed in pairs within various planes. Spectral analyses were completed for photon power density. The peak photon emissions occurred around 1 µT as predicted by the equation. Spectra analyses showed reliable discrete peaks between 0.9 and 1.8 µT but not for lesser or greater intensities; these peak frequencies corresponded to the energy difference of the orbital-spin magnetic moment of the electron within the applied range of magnetic field intensities and the standard solution for Rydberg atoms. Numbers of photons from cooling cells can be modified by applying specific intensities of temporally patterned magnetic fields. There may be a type of "cellular" magnetic moment that, when stimulated by intensity-tuned magnetic fields, results in photon emissions whose peak frequencies reflect predicted energies for fundamental orbital/spin properties of the electron and atomic aggregates with large principal quantum numbers.
Ground-state energies and charge radii of medium-mass nuclei in the unitary-model-operator approach
NASA Astrophysics Data System (ADS)
Miyagi, Takayuki; Abe, Takashi; Okamoto, Ryoji; Otsuka, Takaharu
2014-09-01
In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the numerical results of ground-state energies and charge radii of 16O, 40Ca, and 56Ni in the UMOA, and discuss the saturation property by comparing our results with those in the other many-body methods and also experimental data. In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the
Masses, Radii, and Cloud Properties of the HR 8799 Planets
NASA Technical Reports Server (NTRS)
Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard
2012-01-01
The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color
NASA Astrophysics Data System (ADS)
Misra, Sushil K.; Li, Lin; Mukherjee, Sudip; Ghosh, Goutam
2015-12-01
Iron oxide nanoparticles (IONPs) have been synthesized by chemical co-precipitation method and coated with three citrates, namely, tri-lithium citrate (TLC), tri-sodium citrate (TSC), or tri-potassium citrate (TKC). In these `core-shell' structures, the `core' is a cluster of average 3 IONPs which is enveloped by a `shell' of citrate molecules and counterions, and thus called `core-shell' nano-clusters (CS-NCs), of average size 20 to 22 nm. The counterions in the three CS-NCs differ in ionic radii (r_{{ion}}), in the order of Li+ < Na+ < K+. Our aim was to investigate the effect of counterions on magnetic interactions between CS-NCs in different powder samples at 300 K, using vibrating sample magnetometer and electron magnetic resonance (EMR) techniques. The hysteresis loops showed negligible coercivity field ( H c) in all samples. The saturation magnetization ( M S) was the highest for TLC-coated CS-NCs. The blocking temperature ( T B), obtained from zero-field-cooled measurements, was >300 K for TLC-coated CS-NCs and <300 K for TSC- and TKC-coated CS-NCs. The EMR linewidth (∆ B PP), measured at 300 K, was also the broadest for TLC-coated CS-NCs. At low temperatures, Δ B PP was found to increase more significantly for TSC- and TKC-coated CS-NCs than for TLC-coated CS-NCs. These results indicate a significant anisotropic field effect; arising due to thermal motion of counterions at 300 K, on the magnetic interactions in TLC-coated CS-NCs. To our knowledge, this is the first report on the effect of counterions on magnetic interactions between CS-NCs.
New models of Saturn's magnetic field using Pioneer 11 Vector Helium Magnetometer data
NASA Technical Reports Server (NTRS)
Davis, L., Jr.; Smith, E. J.
1986-01-01
In a reanalysis of the Vector Helium Magnetometer data taken by Pioneer 11 during its Saturn encounter in 1979, using improvements in the data set and in the procedures, studies are made of a variety of models. The best is the P(11)84 model, an axisymmetric spherical harmonic model of Saturn's magnetic field within 8 Saturn radii of the planet. The appropriately weighted root mean square average of the difference between the observed and the modeled field is 1.13 percent. For the Voyager-based Z3 model of Connerney, Acuna, and Ness, this average difference from the Pioneer 11 data is 1.81 percent. The external source currents in the magnetopause, tail, bow shock, and perhaps ring currents vary with time and can only be crudely modeled. An algebraic formula is derived for calculating the L shells on which energetic charged particles drift in axisymmetric fields.
NASA Astrophysics Data System (ADS)
Russell, D. N.; Webb, S. J.
1981-09-01
Respiration of the insect larva, Danaüs archippus, and the yeast, Saccharomyces cerevisiae, in log phase has been monitored before and after an oscillatory magnetic insult of 0.005 Gauss rms amplitude and 40 50 min duration. Frequencies used were 10 16 Hz for the insect and 100 200 Hz for the yeast. Depression of as much as 30% in metabolic rate has been found to occur immediately after the field is both imposed and eliminated with a general recovery over the 30-min period thereafter both in and out of the imposed field, although complete recovery to original levels may take much longer. Evidence is given that the response may depend on the frequency pattern used. This data is used to formulate an hypothesis whereby changes in the geomagnetic field variability pattern may act as a biochronometric zeitgeber.
The Magnetospheric Multiscale Mission: New Data on Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Burch, James
2015-11-01
The Magnetospheric Multiscale (MMS) mission was launched on March 12, 2015 into its Phase 1 elliptical orbit with apogee at 12 Earth radii (RE) . The baseline science goal for MMS is to Understand the microphysics of magnetic reconnection by determining the kinetic processes occurring in the electron diffusion region that are responsible for collisionless magnetic reconnection, especially how reconnection is initiated.In priority order, MMS will address three specific objectives: (1) Determine the role played by electron inertial effects and turbulent dissipation in driving magnetic reconnection in the electron diffusion region; (2) Determine the rate of magnetic reconnection and the parameters that control it. (3) Determine the role played by ion inertial effects in the physics of magnetic reconnection. During the six months of commissioning following launch, all of the instruments on the four spacecraft were made fully operational. Beginning on September 1, 2015 the spacecraft began their first scan of the dayside magnetopause in a tetrahedral formation with separations of 160 km. During Phase 1 the separation will be reduced in steps to 10 km and then adjusted to the separation that is judged to be optimum for reconnection studies. A second scan of the dayside magnetopause will be conducted at this optimum separation. Then apogee will be raised to 25 RE for a scan of the magnetotail with separations variable from 30 km to 400 km. Throughout the mission the payload will be operated at its maximum data rate, which is sufficient to investigate reconnection down to approximately the electron diffusion length scale with full 3D plasma electron distributions obtained in 30 ms, ion distributions at 150 ms, and magnetic and electric fields at 1 ms resolution. 3D plasma and energetic ion composition an energetic electron measurements along with plasma waves will also be made. The spacecraft potential is maintained below +4V by an ion emitter. Because of the large amount
New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state
NASA Astrophysics Data System (ADS)
Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.
2013-06-01
A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.
Birotor dipole model for Saturn's inner magnetic field from CASSINI RPWS measurements and MAG data
NASA Astrophysics Data System (ADS)
Galopeau, Patrick H. M.
2016-10-01
The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR). These two periods were attributed to the northern and southern hemispheres respectively. The existence of a double period makes the study of the planetary magnetic field much more complicated and the building of a field model, based on the direct measurements of the MAG experiment from the magnetometers embarked on board Cassini, turns out to be uncertain. The first reason is the difficulty for defining a longitude system linked to the variable period, because the internal magnetic field measurements from MAG are not continuous. The second reason is the existence itself of two distinct periods which could imply the existence of a double rotation magnetic structure generated by Saturn's dynamo. However, the radio observations from the RPWS experiment allow a continuous and accurate follow-up of the rotation phase of the variable two periods, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz was performed in order to calculate the rotation phase of each Saturnian hemisphere. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to rotate around Saturn's axis at two different angular velocities; it is tilted and not centered. Then it is possible to fit the MAG data for each Cassini's revolution around the planet the periapsis of which is less than 5 Saturnian radii. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. Such a result can be used as a boundary condition for modelling and constraining the planetary dynamo.
Saturn's Magnetic Field Model: Birotor Dipole From Cassini RPWS and MAG Experiments
NASA Astrophysics Data System (ADS)
Galopeau, P. H. M.
2016-12-01
The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR) which were attributed to the northern and southern hemispheres respectively. We believe that the periodic time modulations present in the SKR are mainly due to the rotation of Saturn's inner magnetic field. The existence of a double period implies that the inner field is not only limited to a simple rotation dipole but displays more complex structures having the same time periodicities than the radio emission. In order to build a model of this complex magnetic field, it is absolutely necessary to know the accurate phases of rotation linked with the two periods. The radio observations from the RPWS experiment allow a continuous and accurate follow-up of these rotation phases, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz between July 2004 and June 2012 was performed in order to calculate in the same time the different periodicities and phases. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to have North and South poles rotating around Saturn's axis at two different angular velocities; this dipole is tilted and not centered. 57 Cassini's revolutions, the periapsis of which is less than 5 Saturnian radii, have been selected for this study. For each of these chosen orbits, it is possible to fit with high precision the measurements of the MAG data experiment given by the magnetometers embarked on board Cassini. A nonrotating external magnetic field completes the model. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. These results can be used as a boundary condition for modelling and constraining
NASA Astrophysics Data System (ADS)
Kim, Bogyeong; Lee, Jeongwoo; Yi, Yu; Oh, Suyeon
2015-01-01
In this study we compare the temporal variations of the solar, interplanetary, and geomagnetic (SIG) parameters with that of open solar magnetic flux from 1976 to 2012 (from Solar Cycle 21 to the early phase of Cycle 24) for a purpose of identifying their possible relationships. By the open flux, we mean the average magnetic field over the source surface (2.5 solar radii) times the source area as defined by the potential field source surface (PFSS) model of the Wilcox Solar Observatory (WSO). In our result, most SIG parameters except the solar wind dynamic pressure show rather poor correlations with the open solar magnetic field. Good correlations are recovered when the contributions from individual multipole components are counted separately. As expected, solar activity indices such as sunspot number, total solar irradiance, 10.7 cm radio flux, and solar flare occurrence are highly correlated with the flux of magnetic quadrupole component. The dynamic pressure of solar wind is strongly correlated with the dipole flux, which is in anti-phase with Solar Cycle (SC). The geomagnetic activity represented by the Ap index is correlated with higher order multipole components, which show relatively a slow time variation with SC. We also found that the unusually low geomagnetic activity during SC 23 is accompanied by the weak open solar fields compared with those in other SCs. It is argued that such dependences of the SIG parameters on the individual multipole components of the open solar magnetic flux may clarify why some SIG parameters vary in phase with SC and others show seemingly delayed responses to SC variation.
Faraday rotation signatures of fluctuation dynamos in young galaxies
NASA Astrophysics Data System (ADS)
Sur, Sharanya; Bhat, Pallavi; Subramanian, Kandaswamy
2018-03-01
Observations of Faraday rotation through high-redshift galaxies have revealed that they host coherent magnetic fields that are of comparable strengths to those observed in nearby galaxies. These fields could be generated by fluctuation dynamos. We use idealized numerical simulations of such dynamos in forced compressible turbulence up to rms Mach number of 2.4 to probe the resulting rotation measure (RM) and the degree of coherence of the magnetic field. We obtain rms values of RM at dynamo saturation of the order of 45-55 per cent of the value expected in a model where fields are assumed to be coherent on the forcing scale of turbulence. We show that the dominant contribution to the RM in subsonic and transonic cases comes from the general sea of volume filling fields, rather than from the rarer structures. However, in the supersonic case, strong field regions as well as moderately overdense regions contribute significantly. Our results can account for the observed RMs in young galaxies.
Improved definition of crustal magnetic anomalies for MAGSAT data
NASA Technical Reports Server (NTRS)
Brown, R. D.; Frawley, J. F.; Davis, W. M.; Ray, R. D.; Didwall, E.; Regan, R. D. (Principal Investigator)
1982-01-01
The routine correction of MAGSAT vector magnetometer data for external field effects such as the ring current and the daily variation by filtering long wavelength harmonics from the data is described. Separation of fields due to low altitude sources from those caused by high altitude sources is affected by means of dual harmonic expansions in the solution of Dirichlet's problem. This regression/harmonic filter procedure is applied on an orbit by orbit basis, and initial tests on MAGSAT data from orbit 1176 show reduction in external field residuals by 24.33 nT RMS in the horizontal component, and 10.95 nT RMS in the radial component.
Comparison of Vertical Drifts of ISR and Magnetometer Data Measurements at the Magnetic Equator
NASA Astrophysics Data System (ADS)
Condor P, P. J.
2014-12-01
We compare vertical drifts measured with the Jicamarca incoherent scatter radar (ISR) and drifts estimated from magnetometer data applying a Neural Network data processing technique. For the application of the Neural Network (NN) method, we use the magnitude of the horizontal (H) component of the magnetic field measured with magnetometers at Jicamarca and Piura (Peru). The data was collected between the years 2002 and 2013. In training the NN we use the difference between the magnitudes of the horizontal components (dH) measured at JRO (placed at the magnetic equator) and Piura (displaced 5° away). Additional parameters used are F10.7 and Ap indexes. The estimates obtained with the NN procedure are very good. We have an RMS error of 3.7 m/s using dH as an input of the NN while the error is 3.9 m/s when we use the component H of JRO as an input. The results are validated using the set of vertical drifts observations collected with the Jicamarca incoherent scatter radar. The estimated drifts can be accessed using the following website: http://jro.igp.gob.pe/driftnn. In the poster, we show the comparison of vertical drifts from 2002 to 2013 where we discuss the agreement between magnetometer and ISR data.
Magnetic field analysis of the bow and terminal shock of the SS 433 jet
NASA Astrophysics Data System (ADS)
Sakemi, Haruka; Machida, Mami; Akahori, Takuya; Nakanishi, Hiroyuki; Akamatsu, Hiroki; Kurahara, Kohei; Farnes, Jamie
2018-03-01
We report a polarization analysis of the eastern region of W 50, observed with the Australia Telescope Compact Array (ATCA) at 1.4-3.0 GHz. In order to study the physical structures in the region where the SS 433 jet and W 50 interact, we obtain an intrinsic magnetic field vector map of that region. We find that the orientation of the intrinsic magnetic field vectors are aligned along the total intensity structures, and that there are characteristic, separate structures related to the jet, the bow shock, and the terminal shock. The Faraday rotation measures (RMs), and the results of Faraday tomography suggest that a high-intensity, filamentary structure in the north-south direction of the eastern-edge region can be separated into at least two parts to the north and south. The results of Faraday tomography also show that there are multiple components along the line of sight and/or within the beam area. In addition, we analyze the X-ray ring-like structure observed with XMM-Newton. While the possibility still remains that this X-ray ring is "real", it seems that the structure is not ring-like at radio wavelengths. Finally, we suggest that the structure is a part of the helical structure that coils the eastern ear of W 50.
Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-frequency SiO Masers
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Humphreys, E. M. L.; Franco-Hernández, R.
2011-02-01
We present Submillimeter Array observations of high-frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J = 5-4, v = 128SiO and v = 029SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5% to 60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large-scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large-scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear polarization of masers around W Hya could not be determined. For both stars, we observed the 28SiO and 29SiO isotopologues and find that they have a markedly different distributions and that they appear to avoid each other. Additionally, emission from the SO 55-44 line was imaged for both sources. Around W Hya, we find a clear offset between the red- and blueshifted SO emission. This indicates that W Hya is likely host to a slow bipolar outflow or a rotating disk-like structure.
Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.
Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N
2013-05-03
We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.
Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic.
Sánchez-Porro, Cristina; Kaur, Bhavleen; Mann, Henrietta; Ventosa, Antonio
2010-12-01
A Gram-negative, heterotrophic, aerobic, non-endospore-forming, peritrichously flagellated and motile bacterial strain, designated BH1(T), was isolated from samples of rusticles, which are formed in part by a consortium of micro-organisms, collected from the RMS Titanic wreck site. The strain grew optimally at 30-37°C, pH 7.0-7.5 and in the presence of 2-8 % (w/v) NaCl. We carried out a polyphasic taxonomic study in order to characterize the strain in detail. Phylogenetic analyses based on 16S rRNA gene sequence comparison indicated that strain BH1(T) clustered within the branch consisting of species of Halomonas. The most closely related type strains were Halomonas neptunia (98.6 % 16S rRNA sequence similarity), Halomonas variabilis (98.4 %), Halomonas boliviensis (98.3 %) and Halomonas sulfidaeris (97.5 %). Other closely related species were Halomonas alkaliphila (96.5 % sequence similarity), Halomonas hydrothermalis (96.3 %), Halomonas gomseomensis (96.3 %), Halomonas venusta (96.3 %) and Halomonas meridiana (96.2 %). The major fatty acids of strain BH1(T) were C(18 : 1)ω7c (36.3 %), C(16 : 0) (18.4 %) and C(19 : 0) cyclo ω8c (17.9 %). The DNA G+C content was 60.0 mol% (T(m)). Ubiquinone 9 (Q-9) was the major lipoquinone. The phenotypic features, fatty acid profile and DNA G+C content further supported the placement of strain BH1(T) in the genus Halomonas. DNA-DNA hybridization values between strain BH1(T) and H. neptunia CECT 5815(T), H. variabilis DSM 3051(T), H. boliviensis DSM 15516(T) and H. sulfidaeris CECT 5817(T) were 19, 17, 30 and 29 %, respectively, supporting the differential taxonomic status of BH1(T). On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain BH1(T) is considered to represent a novel species, for which the name Halomonas titanicae sp. nov. is proposed. The type strain is BH1(T) (=ATCC BAA-1257(T) =CECT 7585(T) =JCM 16411(T) =LMG 25388(T)).
Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn
2014-11-20
We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and,more » beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.« less
Comparative study of generalized born models: Born radii and peptide folding.
Zhu, Jiang; Alexov, Emil; Honig, Barry
2005-02-24
In this study, we have implemented four analytical generalized Born (GB) models and investigated their performance in conjunction with the GROMOS96 force field. The four models include that of Still and co-workers, the HCT model of Cramer, Truhlar, and co-workers, a modified form of the AGB model of Levy and co-workers, and the GBMV2 model of Brooks and co-workers. The models were coded independently and implemented in the GROMOS software package and in TINKER. They were compared in terms of their ability to reproduce the results of Poisson-Boltzmann (PB) calculations and in their performance in the ab initio peptide folding of two peptides, one that forms a beta-hairpin in solution and one that forms an alpha-helix. In agreement with previous work, the GBMV2 model is most successful in reproducing PB results while the other models tend to underestimate the effective Born radii of buried atoms. In contrast, stochastic dynamics simulations on the folding of the two peptides, the C-terminus beta-hairpin of the B1 domain of protein G and the alanine-based alpha-helical peptide 3K(I), suggest that the simpler GB models are more effective in sampling conformational space. Indeed, the Still model used in conjunction with the GROMOS96 force field is able to fold the hairpin peptide to a native-like structure without the benefit of enhanced sampling techniques. This is due in part to the properties of the united-atom GROMOS96 force field which appears to be more flexible, and hence to sample more efficiently, than force fields such as OPLSAA. Our results suggest a general strategy which involves using different combinations of force fields and solvent models in different applications, for example, using GROMOS96 and a simple GB model in sampling and OPLSAA and a more accurate GB model in refinement. The fact that various methods have been implemented in a unified way should facilitate the testing and subsequent use of different methods to evaluate conformational free
Ion composition and energy distribution during 10 magnetic storms
NASA Technical Reports Server (NTRS)
Lennartsson, W.; Sharp, R. D.; Shelley, E. G.; Johnson, R. G.; Balsiger, H.
1981-01-01
Data from the plasma composition experiment of ISEE 1 are used to investigate the relative quantities and energy characteristics of H(+), He(++), He(+), and O(+) ions in the near-equatorial magnetosphere during magnetic storm conditions. The ions in the study had energies between 0.1 and 17 keV/e and pitch angles between 45 and 135 deg. The data were obtained during 10 storms, for the most part at or immediately following the peak Dst, covering all major local time sectors and geocentric distances between 2 and 15 earth radii. The ion fluxes are averaged over the spacecraft spin angle and over time for periods ranging from about 20 min close to the earth to more than an hour in most distant regions. The inferred 'isotropic' number densities are characterized by a large to dominant fraction of terrestrial ions throughout the energy range covered. The data are found to be consistent with a terrestrial origin for all of the O(+), most of the He(+), and a large but varying fraction of the H(+), whereas the He(++) and part of the H(+) appear to be of solar wind origin.
Feasibilty of a Multi-bit Cell Perpendicular Magnetic Tunnel Junction Device
NASA Astrophysics Data System (ADS)
Kim, Chang Soo
The ultimate objective of this research project was to explore the feasibility of making a multi-bit cell perpendicular magnetic tunnel junction (PMTJ) device to increase the storage density of spin-transfer-torque random access memory (STT-RAM). As a first step toward demonstrating a multi-bit cell device, this dissertation contributed a systematic and detailed study of developing a single cell PMTJ device using L10 FePt films. In the beginning of this research, 13 up-and-coming non-volatile memory (NVM) technologies were investigated and evaluated to see whether one of them might outperform NAND flash memories and even HDDs on a cost-per-TB basis in 2020. This evaluation showed that STT-RAM appears to potentially offer superior power efficiency, among other advantages. It is predicted that STTRAM's density could make it a promising candidate for replacing NAND flash memories and possibly HDDs if STTRAM could be improved to store multiple bits per cell. Ta/Mg0 under-layers were used first in order to develop (001) L1 0 ordering of FePt at a low temperature of below 400 °C. It was found that the tradeoff between surface roughness and (001) L10 ordering of FePt makes it difficult to achieve low surface roughness and good perpendicular magnetic properties simultaneously when Ta/Mg0 under-layers are used. It was, therefore, decided to investigate MgO/CrRu under-layers to simultaneously achieve smooth films with good ordering below 400°C. A well ordered 4 nm L10 FePt film with RMS surface roughness close to 0.4 nm, perpendicular coercivity of about 5 kOe, and perpendicular squareness near 1 was obtained at a deposition temperature of 390 °C on a thermally oxidized Si substrate when MgO/CrRu under-layers are used. A PMTJ device was developed by depositing a thin MgO tunnel barrier layer and a top L10 FePt film and then being postannealed at 450 °C for 30 minutes. It was found that the sputtering power needs to be minimized during the thin MgO tunnel barrier
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Hietzke, W. H.
1982-01-01
The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.
Jahreis, G P; Johnson, P G; Zhao, Y L; Hui, S W
1998-12-22
Our objective was to assess the reproducibility of the 60-Hz magnetic field-induced, time-dependent transcription changes of c-fos, c-jun and c-myc oncogenes in CEM-CM3 cells reported by Phillips et al. (Biochim. Biophys. Acta, 1132 (1992) 140-144). Cells were exposed to a 60-Hz magnetic field (MF) at 0.1 mT (rms), generated by a pair of Helmholtz coils energized in a reinforcing (MF) mode, or to a null magnetic field when the coils were energized in a bucking (sham) mode. After MF or sham exposure for 15, 30, 60 or 120 min, nuclei and cytoplasmic RNA were extracted. Transcription rates were measured by a nuclear run-on assay, and values were normalized against either their zero-time exposure values, or against those of the c-G3PDH (housekeeping) gene at the same time points. There was no significant difference, at P=0.05, detected between MF and either sham-exposed or control cells at any time point. Transcript levels of the oncogenes were measured by Northern analysis and normalized as above. No significant difference (P=0.05) in transcript levels between MF and either sham-exposed or control cells was detected.
NASA Astrophysics Data System (ADS)
Moraru, Ciprian G.
The ability to predict the onset of boundary-layer transition is critical for hypersonic flight vehicles. The development of prediction methods depends on a thorough comprehension of the mechanisms that cause transition. In order to improve the understanding of hypersonic boundary-layer transition, tests were conducted on a large 7° half-angle cone at Mach 10 in the Arnold Engineering Development Complex Wind Tunnel 9. Twenty-four runs were performed at varying unit Reynolds numbers and angles of attack for sharp and blunt nosetip configurations. Heat-transfer measurements were used to determine the start of transition on the cone. Increasing the unit Reynolds number caused a forward movement of transition on the sharp cone at zero angle of attack. Increasing nosetip radius delayed transition up to a radius of 12.7 mm. Larger nose radii caused the start of transition to move forward. At angles of attack up to 10°, transition was leeside forward for nose radii up to 12.7 mm and windside forward for nose radii of 25.4 mm and 50.8 mm. Second-mode instability waves were measured on the sharp cone and cones with small nose radii. At zero angle of attack, waves at a particular streamwise location on the sharp cone were in earlier stages of development as the unit Reynolds number was decreased. The same trend was observed as the nosetip radius was increased. No second-mode waves were apparent for the cones with large nosetip radii. As the angle of attack was increased, waves at a particular streamwise location on the sharp cone moved to earlier stages of growth on the windward ray and later stages of growth on the leeward ray. RMS amplitudes of second-mode waves were computed. Comparison between maximum second-mode amplitudes and edge Mach numbers showed good correlation for various nosetip radii and unit Reynolds numbers. Using the e N method, initial amplitudes were estimated and compared to freestream noise in the second-mode frequency band. Correlations indicate
Deep Convection, Magnetism and Solar Supergranulation
NASA Astrophysics Data System (ADS)
Lord, J. W.
(integral) scale). This model reproduces the MURaM results well and suggests that the low wavenumber power in the photosphere imprints from below. In particular, the amplitude of the driving (integral) scale mode at each depth determines how much power imprints on the surface flows. This is validated by MURaM simulations of varying depth that show that increasing depths contribute power at a particular scale (or range of scales) that is always at lower wavenumbers than shallower flows. The mechanism for this imprinting remains unclear but, given the importance of the balances in the continuity equation to determining the spectrum of the flows, we suggest that pressure perturbations in the convective upflows are the imprinting mechanism. By comparing the MURaM simulations to SDO/HMI observations (using the coherent structure tracking code to compute the inferred horizontal velocities on both data sets), we find that the simulations have significant excess power for scales larger than supergranulation. The only way to match observations is by using an artificial energy flux to transport the solar luminosity for all depths greater than 10 Mm below the photosphere (down to the bottom of the domain at 49 Mm depth). While magnetic fields from small-scale dynamo simulations help reduce the rms velocity required to transport the solar luminosity below the surface, this provides only a small reduction in low wavenumber power in the photosphere. The convective energy transport in the Sun is constrained by theoretical models and the solar radiative luminosity. The amplitude or scale of the convective flows that transport the energy, however, are not constrained. The strong low wavenumber flows found in these local simulations are also present in current generation global simulations. While local or global dynamo magnetic fields may help suppress these large-scale flows, the magnetic fields must be substantially stronger throughout the convection domains for these simulations to match
Magnetic configurations of the tilted current sheets in magnetotail
NASA Astrophysics Data System (ADS)
Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.
2008-11-01
In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of weak
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, James; Mullan, D. J.
KIC 7177553 is a quadruple system containing two binaries of orbital periods 16.5 and 18 days. All components have comparable masses and are slowly rotating with spectral types of ∼G2V. The longer period binary is eclipsing with component masses and radii M {sub 1} = 1.043 ± 0.014 M {sub ⊙}, R {sub 1} = 0.940 ± 0.005 R {sub ⊙} and M {sub 2} = 0.986 ± 0.015 M {sub ⊙}, R {sub 2} = 0.941 ± 0.005 R {sub ⊙}. The essentially equal radii measurements are inconsistent with the two stars being on the man sequence at themore » same age using standard nonmagnetic stellar evolution models. Instead a consistent scenario is found if the stars are in their pre-main-sequence phase of evolution and have an age of 32–36 Myr. We have also computed evolutionary models of magnetic stars, but we find that our nonmagnetic models fit the empirical radii and effective temperatures better than the magnetic models.« less
NASA Astrophysics Data System (ADS)
Anjum, Safia; Rafique, M. S.; Khaleeq-ur-Rahaman, M.; Siraj, K.; Usman, Arslan; Ahsan, A.; Naseem, S.; Khan, K.
2011-06-01
Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 and Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films with different concentrations of Mn and Zr have been deposited on single crystal n-Si (400) at room temperature (RT) by pulse laser deposition technique (PLD). The films have been deposited under two conditions: (i) with the applied external magnetic field across the propagation of the plume (ii) without applied external magnetic field ( B=0). XRD results show the films have spinel cubic structure when deposited in the presence of magnetic field. SEM and AFM observations clearly show the effect of external applied magnetic field on the growth of films in terms of small particle size, improved uniformity and lower r.m.s. roughness. Thin films deposited under the influence of external magnetic field exhibit higher magnetization as measured by the VSM. The optical band gap energy Eg, refractive index n, reflection, absorption and the thickness of the thin films were measured by spectroscopy ellipsometer. The reflection of Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films is higher than Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 thin films due to the greater concentration of Zr. The thicknesses of the thin films under the influence of external magnetic field are larger than the films grown without field for both samples. The optical band gap energy Eg decreases with increasing film thickness. The films with external magnetic field are found highly absorbing in nature due to the larger film thickness.
Acceleration mechanisms for energetic particles in the earth's magnetosphere
NASA Technical Reports Server (NTRS)
Schiferl, S.; Fan, C. Y.; Hsieh, K. C.; Erickson, K. N.; Gloeckler, G.
1982-01-01
By analyzing data on energetic particle fluxes measured simultaneously with detector systems on several earth satellites, signatures of different acceleration mechanisms for these particles were searched for. One of the samples is an event observed on ATS-6 and IMP-7. IMP-7 was in the dusk quarter at 38 earth radii while ATS-6 was located at local midnight at a distance of 6.6 earth radii. Although the flux variations as observed on the two spacecraft both showed 1.5 min periodicity, there was a 40-second time lag with IMP-7 behind. The results indicate that the particles are accelerated by magnetic field line annihilation, with the x-point located at about 10 earth radii.
40 CFR 205.54-2 - Sound data acquisition system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of 86 dB (rms) and the level indicated for an octave band of random noise of equal energy as the... Publication 179, Precision Sound Level Meters. (v) Magnetic tape recorders. No requirements are described in...) Calibrate tape recorders using the brand and type of magnetic tape used for actual data acquisition...
Feuerstein, Marco; Reichl, Tobias; Vogel, Jakob; Traub, Joerg; Navab, Nassir
2009-06-01
Electromagnetic tracking is currently one of the most promising means of localizing flexible endoscopic instruments such as flexible laparoscopic ultrasound transducers. However, electromagnetic tracking is also susceptible to interference from ferromagnetic material, which distorts the magnetic field and leads to tracking errors. This paper presents new methods for real-time online detection and reduction of dynamic electromagnetic tracking errors when localizing a flexible laparoscopic ultrasound transducer. We use a hybrid tracking setup to combine optical tracking of the transducer shaft and electromagnetic tracking of the flexible transducer tip. A novel approach of modeling the poses of the transducer tip in relation to the transducer shaft allows us to reliably detect and significantly reduce electromagnetic tracking errors. For detecting errors of more than 5 mm, we achieved a sensitivity and specificity of 91% and 93%, respectively. Initial 3-D rms error of 6.91 mm were reduced to 3.15 mm.
Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.
Chapman, Dail E; Steck, Jonathan K; Nerenberg, Paul S
2014-01-14
The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development.
Spectral analysis of unsteady surface pressure on a pusher propeller
NASA Technical Reports Server (NTRS)
Farokhi, Saeed
1992-01-01
A propeller of an advanced turboprop testbed aircraft in pusher configuration is instrumented with 22 miniature blade-mounted transducers (BMTs) at two radii. Upstream pylon wake interaction with the propeller is the source of a one-per-cycle excitation for the blades in flight. The time history of fluctuating pressure signals over 26 flight conditions is statistically analyzed in the frequency domain. The rms amplitude of fluctuating pressure signals measured by suction surface BMTs indicates a very strong presence of the fundamental frequency over most of the upper surface. The pylon wake pressure signature on the propeller trailing edge, i.e., x/c not less than 0.80, shows predominantly random turbulence; hence, the amplitude of the fundamental frequency wave is fairly small. The resurgence of a large amplitude fundamental harmonic with coherent pylon wake signature further downstream, say at 90 percent chord, is unexpected behavior. The appearance of a dominating second propeller shaft order in the spectra of the rms pressure in transonic flight conditions identifies the presence of a two-per-cycle excitation source in the azimuthal direction. This is due to the presence of a shock wave, as evidenced by the pressure-time history plots.