Sample records for magnetic sector instrument

  1. The sun's magnetic sector structure

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Wilcox, J. M.; Scherrer, P. H.; Howard, R.

    1975-01-01

    The synoptic appearance of solar magnetic sectors is studied using 454 sector boundaries observed at earth during 1959-1973. The sectors are clearly visible in the photospheric magnetic field. Sector boundaries can be clearly identified as north-south running demarcation lines between regions of persistent magnetic polarity imbalances. These regions extend up to about 35 deg of latitude on both sides of the equator. They generally do not extend into the polar caps. The polar cap boundary can be identified as an east-west demarcation line marking the poleward limit of the sectors. The typical flux imbalance for a magnetic sector is about 4 x 10 to the 21st power Maxwells.

  2. Temperature compensation for miniaturized magnetic sector

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    2002-01-01

    Temperature compensation for a magnetic sector used in mass spectrometry. A high temperature dependant magnetic sector is used. This magnetic sector is compensated by a magnetic shunt that has opposite temperature characteristics to those of the magnet.

  3. Characterization of a turbomolecular-pumped magnetic sector mass spectrometer

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder K.

    1988-01-01

    A Perkin Elmer MGA-1200, turbomolecular-pumped, magnetic sector, multiple gas analyzer mass spectrometer with modified inlet for fast response was characterized for the analysis of hydrogen, helium, oxygen and argon in nitrogen and helium background gases. This instrument was specially modified for the Vanderberg AFB SLC-6 Hydrogen Disposal Test Program, as a part of the Hydrogen Sampling System (H2S2). Linearity, precision, drift, detection limits and accuracy among other analytical parameters for each of the background gas were studied to evaluate the performance of the instrument. The result demonstrates that H2S2 mass spectrometer is a stable instrument and can be utilized for the quantitative analytical determination of hydrogen, helium, oxygen and argon in nitrogen and helium background gases.

  4. Is the Magnetic Field in the Heliosheath Sector Region and in the Outer Heliosheath Laminar?

    NASA Astrophysics Data System (ADS)

    Opher, M.; Drake, J. F.; Swisdak, M. M.; Toth, G.

    2010-12-01

    All the current global models of the heliosphere are based on the assumption that the magnetic field in the outer heliosheath close to the heliopause is laminar. We argue that in the outer heliosheath the heliospheric magnetic field is not laminar but instead consists of nested magnetic islands. Recently, we proposed (Drake et al. 2009) that the annihilation of the ``sectored'' magnetic field within the heliosheath as it is compressed on its approach to the heliopause produces the anomalous cosmic rays (ACRs) and also energetic electrons. As a product of the annihilation of the sectored magnetic field, densly-packed magnetic islands are produced. These magnetic islands will be convected with the ambient flows as the sector boundary is carried to higher latitudes filling the outer heliosheath. We further argue that the magnetic islands will develop upstream (but still within the heliosheath) where collisionless reconnection is unfavorable -- large perturbations of the sector structure near the heliopause will cause compressions of the current sheet upstream, triggering reconnection. As a result, the magnetic field in the heliosheath sector region will be disordered well upstream of the heliopause. We present a 3D MHD simulation with unprecedent numerical resolution that captures the sector boundary. We show that due to the high pressure of the interstellar magnetic field the disordered sectored region fills a large portion of the northern part of the heliosphere with a smaller extension in the southern hemisphere. We test these ideas with observations of energetic electrons, which because of their high velocity are most sensitive to the structure of the magnetic field. We suggest that within our scenario we can explain two significant anomalies in the observations of energetic electrons in the outer heliosphere: the sudden decrease in the intensity of low energy electrons (0.02-1.5MeV) from the LECP instrument on Voyager 2 in 2008 (Decker 2010); and the dramatic

  5. Mass spectrometer with magnetic pole pieces providing the magnetic fields for both the magnetic sector and an ion-type vacuum pump

    NASA Technical Reports Server (NTRS)

    Sieradski, L. M.; Giffin, C. E.; Nier, A. O. (Inventor)

    1976-01-01

    A mass spectrometer (MS) with unique magnetic pole pieces which provide a homogenous magnetic field across the gap of the MS magnetic sector as well as the magnetic field across an ion-type vacuum pump is disclosed. The pole pieces form the top and bottom sides of a housing. The housing is positioned so that portions of the pole pieces form part of the magnetic sector with the space between them defining the gap region of the magnetic sector, through which an ion beam passes. The pole pieces extend beyond the magnetic sector with the space between them being large enough to accommodate the electrical parts of an ion-type vacuum pump. The pole pieces which provide the magnetic field for the pump, together with the housing form the vacuum pump enclosure or housing.

  6. The interplanetary and solar magnetic field sector structures, 1962 - 1968

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1972-01-01

    The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.

  7. Portable mass spectrometer with one or more mechanically adjustable electrostatic sectors and a mechanically adjustable magnetic sector all mounted in a vacuum chamber

    DOEpatents

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Martin, W.H.; Myers, D.W.; Keville, R.F.

    1992-10-06

    A portable mass spectrometer is described having one or more electrostatic focusing sectors and a magnetic focusing sector, all of which are positioned inside a vacuum chamber, and all of which may be adjusted via adjustment means accessible from outside the vacuum chamber. Mounting of the magnetic sector entirely within the vacuum chamber permits smaller magnets to be used, thus permitting reductions in both weight and bulk. 13 figs.

  8. The instrument for investigating magnetic fields of isochronous cyclotrons

    NASA Astrophysics Data System (ADS)

    Avreline, N. V.

    2017-12-01

    A new instrument was designed and implemented in order to increase the measurement accuracy of magnetic field maps for isochronous Cyclotrons manufactured by Advanced Cyclotron Systems Inc. This instrument uses the Hall Probe (HP) from New Zealand manufacturer Group3. The specific probe used is MPT-141 HP and can measure magnetic field in the range from 2G to 21kG. Use of a fast ADC NI9239 module and error reduction algorithms, based on a polynomial regression method, allowed to reduce the noise to 0.2G. The design of this instrument allows to measure high gradient magnetic fields, as the resolution of the HP arm angle is within 0.0005° and the radial position resolution is within 25μm. A set of National Instrument interfaces connected to a desktop computer through a network are used as base control and data acquisition systems.

  9. New methods of magnet-based instrumentation for NOTES.

    PubMed

    Magdeburg, Richard; Hauth, Daniel; Kaehler, Georg

    2013-12-01

    Laparoscopic surgery has displaced open surgery as the standard of care for many clinical conditions. NOTES has been described as the next surgical frontier with the objective of incision-free abdominal surgery. The principal challenge of NOTES procedures is the loss of triangulation and instrument rigidity, which is one of the fundamental concepts of laparoscopic surgery. To overcome these problems necessitates the development of new instrumentation. material and methods: We aimed to assess the use of a very simple combination of internal and external magnets that might allow the vigorous multiaxial traction/counter-traction required in NOTES procedures. The magnet retraction system consisted of an external magnetic assembly and either small internal magnets attached by endoscopic clips to the designated tissue (magnet-clip-approach) or an endoscopic grasping forceps in a magnetic deflector roll (magnet-trocar-approach). We compared both methods regarding precision, time and efficacy by performing transgastric partial uterus resections with better results for the magnet-trocar-approach. This proof-of-principle animal study showed that the combination of external and internal magnets generates sufficient coupling forces at clinically relevant abdominal wall thicknesses, making them suitable for use and evaluation in NOTES procedures, and provides the vigorous multiaxial traction/counter-traction required by the lack of additional abdominal trocars.

  10. The heliospheric sector boundary as a distented magnetic cloud

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Intriligator, D. S.

    1995-01-01

    A magnetic cloud was detected both near Earth and by Pioneer 11 located 43 deg east of Earth at 4.8 AU. The magnetic field within the cloud rotated smoothly from toward to away polarity, marking sector boundary passage. Interpreted as a flux rope, the cloud had a vertical axis, implying that its cylindrical cross-section in the ecliptic plane was distended along the sector boundary by at least 43, forming an extensive occlusion in the heliospheric current sheet. At 1 AU the cloud had plasma signatures typical of a fast coronal mass ejection with low temperature and a leading shock. In contrast, at 4.8 AU, only the cloud signature remained. Its radial dimension was the same at both locations, consistent with little expansion beyond 1 AU. Energetic particle data at 4.8 AU show high fluxes preceding the cloud but not extending forward to the corotating shock that marked entry into the interaction region containing the cloud. The streaming direction was antisunward, consistent with possible acceleration in a low-beta region of field line draping around the cloud's western (upstream) end. The fluxes dropped upon entry into the cloud and became essentially isotropic one third of the way through it. On the basis of sector boundary characteristics published in the past, we suggest that distended clouds may be common heliospheric current sheet occlusions.

  11. A Unidimensional Instrument for Measuring Internal Marketing Concept in the Higher Education Sector: IM-11 Scale

    ERIC Educational Resources Information Center

    Yildiz, Suleyman Murat; Kara, Ali

    2017-01-01

    Purpose: Although the existing internal marketing (IM) scales include various scale items to measure employee motivation, they fall short of incorporating the needs and expectations of service sector employees. Hence, the purpose of this study is to present a practical instrument designed to measure the IM construct in the higher education sector.…

  12. Sector magnets or transverse electromagnetic fields in cylindrical coordinates

    DOE PAGES

    Zolkin, T.

    2017-04-10

    Laplace’s equation is considered for scalar and vector potentials describing electric or magnetic fields in cylindrical coordinates, with invariance along the azimuthal coordinate. In a series, we found special functions which, when expanded to lowest order in power series in radial and vertical coordinates, replicate harmonic polynomials in two variables. These functions are based on radial harmonics found by Edwin M. McMillan forty years ago. In addition to McMillan’s harmonics, a second family of radial harmonics is introduced to provide a symmetric description between electric and magnetic fields and to describe fields and potentials in terms of the same functions.more » Formulas are provided which relate any transverse fields specified by the coefficients in the power series expansion in radial or vertical planes in cylindrical coordinates with the set of new functions. Our result is important for potential theory and for theoretical study, design and proper modeling of sector dipoles, combined function dipoles and any general sector element for accelerator physics. All results are presented in connection with these problems.« less

  13. Sector magnets or transverse electromagnetic fields in cylindrical coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolkin, T.

    Laplace’s equation is considered for scalar and vector potentials describing electric or magnetic fields in cylindrical coordinates, with invariance along the azimuthal coordinate. In a series, we found special functions which, when expanded to lowest order in power series in radial and vertical coordinates, replicate harmonic polynomials in two variables. These functions are based on radial harmonics found by Edwin M. McMillan forty years ago. In addition to McMillan’s harmonics, a second family of radial harmonics is introduced to provide a symmetric description between electric and magnetic fields and to describe fields and potentials in terms of the same functions.more » Formulas are provided which relate any transverse fields specified by the coefficients in the power series expansion in radial or vertical planes in cylindrical coordinates with the set of new functions. Our result is important for potential theory and for theoretical study, design and proper modeling of sector dipoles, combined function dipoles and any general sector element for accelerator physics. All results are presented in connection with these problems.« less

  14. Health-Related Resource-Use Measurement Instruments for Intersectoral Costs and Benefits in the Education and Criminal Justice Sectors.

    PubMed

    Mayer, Susanne; Paulus, Aggie T G; Łaszewska, Agata; Simon, Judit; Drost, Ruben M W A; Ruwaard, Dirk; Evers, Silvia M A A

    2017-09-01

    Intersectoral costs and benefits (ICBs), i.e. costs and benefits of healthcare interventions outside the healthcare sector, can be a crucial component in economic evaluations from the societal perspective. Pivotal to their estimation is the existence of sound resource-use measurement (RUM) instruments; however, RUM instruments for ICBs in the education or criminal justice sectors have not yet been systematically collated or their psychometric quality assessed. This review aims to fill this gap. To identify relevant instruments, the Database of Instruments for Resource Use Measurement (DIRUM) was searched. Additionally, a systematic literature review was conducted in seven electronic databases to detect instruments containing ICB items used in economic evaluations. Finally, studies evaluating the psychometric quality of these instruments were searched. Twenty-six unique instruments were included. Most frequently, ICB items measured school absenteeism, tutoring, classroom assistance or contacts with legal representatives, police custody/prison detainment and court appearances, with the highest number of items listed in the Client Service Receipt Inventory/Client Sociodemographic and Service Receipt Inventory/Client Service Receipt Inventory-Children's Version (CSRI/CSSRI/CSRI-C), Studying the Scope of Parental Expenditures (SCOPE) and Self-Harm Intervention, Family Therapy (SHIFT) instruments. ICBs in the education sector were especially relevant for age-related developmental disorders and chronic diseases, while criminal justice resource use seems more important in mental health, including alcohol-related disorders or substance abuse. Evidence on the validity or reliability of ICB items was published for two instruments only. With a heterogeneous variety of ICBs found to be relevant for several disease areas but many ICB instruments applied in one study only (21/26 instruments), setting-up an international task force to, for example, develop an internationally

  15. Structure of the photospheric magnetic field during sector crossings of the heliospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Getachew, Tibebu; Virtanen, Ilpo; Mursula, Kalevi

    2017-04-01

    The photospheric magnetic field is the source of the coronal and heliospheric magnetic fields (HMF), but their mutual correspondence is non-trivial and depends on the phase of the solar cycle. The photospheric field during the HMF sector crossings observed at 1 AU has been found to contain enhanced field intensities and definite polarity ordering, forming regions called Hale boundaries. Here we study the structure of the photospheric field during the HMF sector crossings during solar cycles 21-24, separately for the four phases of each solar cycle. We use a refined version of Svalgaard's list of major HMF sector crossings, mapped to the Sun using the solar wind speed observed at the Earth, and the daily level-3 magnetograms of the photospheric field measured at the Wilcox Solar Observatory in 1976-2014. We find that the structure of the photospheric field corresponding to the HMF sector crossings, and the existence and properties of the corresponding Hale bipolar regions varies significantly with solar cycle and with solar cycle phase. We find evidence for Hale boundaries in many, but not all ascending, maximum and declining phases of solar cycles but no minimum phase. The most clear Hale boundaries are found during the (+,-) HMF crossings in the northern hemisphere of odd cycles 21 and 23, but less systematically during the (+,-) crossings in the southern hemisphere of even cycles 22 and 24. We also find that the Hale structure of cycles 23 and 24 is more systematic than during cycles 21 and 22. This may be due to the weakening activity, which reduces the complexity of the photospheric field and clarifies the Hale pattern. The photospheric field distribution also depicts a larger area for the field of the northern hemisphere during the declining and minimum phases, in a good agreement with the bashful ballerina phenomenon. The HMF sector crossings observed at 1AU have only a partial correspondence to Hale boundaries in the photosphere, indicating that the two HMF

  16. Structure of the Photospheric Magnetic Field During Sector Crossings of the Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Getachew, Tibebu; Virtanen, Ilpo; Mursula, Kalevi

    2017-11-01

    The photospheric magnetic field is the source of the coronal and heliospheric magnetic fields (HMF), but their mutual correspondence is non-trivial and depends on the phase of the solar cycle. The photospheric field during the HMF sector crossings observed at 1 AU has been found to contain enhanced field intensities and definite polarity ordering, forming regions called Hale boundaries. Here we separately study the structure of the photospheric field during the HMF sector crossings during Solar Cycles 21 - 24 for the four phases of each solar cycle. We use a refined version of Svalgaard's list of major HMF sector crossings, mapped to the Sun using the solar wind speed observed at Earth, and the daily level-3 magnetograms of the photospheric field measured at the Wilcox Solar Observatory in 1976 - 2016. We find that the structure of the photospheric field corresponding to the HMF sector crossings and the existence and properties of the corresponding Hale bipolar regions varies significantly with solar cycle, solar cycle phase, and hemisphere. The Hale boundaries in more than half of the ascending, maximum, and declining phases are clear and statistically significant. The clearest Hale boundaries are found during the (+,-) HMF crossings in the northern hemisphere of odd Cycles 21 and 23, but less systematical during the (+,-) crossings in the southern hemisphere of even Cycles 22 and 24. No similar difference between odd and even cycles is found for the (-,+) crossings. This shows that the northern hemisphere has a more organized Hale pattern overall. The photospheric field distribution also depicts a larger area for the field of the northern hemisphere during the declining and minimum phases, in a good agreement with the bashful ballerina phenomenon.

  17. Managed Behavioral Health Care: An Instrument to Characterize Critical Elements of Public Sector Programs

    PubMed Central

    Ridgely, M Susan; Giard, Julienne; Shern, David; Mulkern, Virginia; Burnam, M Audrey

    2002-01-01

    Objective To develop an instrument to characterize public sector managed behavioral health care arrangements to capture key differences between managed and “unmanaged” care and among managed care arrangements. Study Design The instrument was developed by a multi-institutional group of collaborators with participation of an expert panel. Included are six domains predicted to have an impact on access, service utilization, costs, and quality. The domains are: characteristics of the managed care plan, enrolled population, benefit design, payment and risk arrangements, composition of provider networks, and accountability. Data are collected at three levels: managed care organization, subcontractor, and network of service providers. Data Collection Methods Data are collected through contract abstraction and key informant interviews. A multilevel coding scheme is used to organize the data into a matrix along key domains, which is then reviewed and verified by the key informants. Principal Findings This instrument can usefully differentiate between and among Medicaid fee-for-service programs and Medicaid managed care plans along key domains of interest. Beyond documenting basic features of the plans and providing contextual information, these data will support the refinement and testing of hypotheses about the impact of public sector managed care on access, quality, costs, and outcomes of care. Conclusions If managed behavioral health care research is to advance beyond simple case study comparisons, a well-conceptualized set of instruments is necessary. PMID:12236386

  18. VOYAGER OBSERVATIONS OF MAGNETIC SECTORS AND HELIOSPHERIC CURRENT SHEET CROSSINGS IN THE OUTER HELIOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J. D.; Burlaga, L. F.; Drake, J. F.

    Voyager 1 ( V1 ) has passed through the heliosheath and is in the local interstellar medium. Voyager 2 ( V2 ) has been in the heliosheath since 2007. The role of reconnection in the heliosheath is under debate; compression of the heliospheric current sheets (HCS) in the heliosheath could lead to rapid reconnection and a reconfiguration of the magnetic field topology. This paper compares the expected and actual amounts of time the Voyager spacecraft observe each magnetic sector and the number of HCS crossings. The predicted and observed values generally agree well. One exception is at Voyager 1 inmore » 2008 and 2009, where the distribution of sectors is more equal than expected and the number of HCS crossings is small. Two other exceptions are at V1 in 2011–2012 and at V2 in 2012, when the spacecraft are in the opposite magnetic sector less than expected and see fewer HCS crossings than expected. These features are consistent with those predicted for reconnection, and consequently searches for other reconnection signatures should focus on these times.« less

  19. Transition from the Sector Zone to the Unipolar Zone in the Heliosheath: Voyager 2 Magnetic Field Observations

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    2011-01-01

    The magnetic polarity pattern observed by Voyager 2 (V2) evolved with time from a nearly equal mixture of positive and negative polarity sectors in the sector zone from 2007.00 to 2007.67 to nearly uniform positive polarity (magnetic fields directed away from the Sun) in the unipolar zone from 2009.6 to 2010.3. This change was caused by the decreasing latitudinal extent of the sector zone, when the minimum extent of the heliospheric current sheet moved northward toward the solar equator as the solar activity associated with solar cycle 23 decreased a minimum in 2010. In the heliosheath, the distribution of daily averages of the magnetic field strength B was lognormal in the sector zone from 2008.83 to 2009.57 and Gaussian in the unipolar zone from 2009.57 to 2010.27. The distribution of daily increments of B was a Tsallis distribution (q-Gaussian distribution) with q = 1.66 +/- 0.010 in the sector zone and . Gaussian (q = 1.01+/-0.29) in the unipolar zone. The unipolar region appears to be in a relatively undisturbed equilibrium state.

  20. Controlling the Topological Sector of Magnetic Solitons in Exfoliated Cr 1 / 3 NbS 2 Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lin; Chepiga, N.; Ki, D. -K.

    Here, we investigate manifestations of topological order in monoaxial helimagnet Cr 1/3NbS 2 by performing transport measurements on ultrathin crystals. Upon sweeping the magnetic field perpendicularly to the helical axis, crystals thicker than one helix pitch (48 nm) but much thinner than the magnetic domain size (similar to 1 mu m) are found to exhibit sharp and hysteretic resistance jumps. We also show that these phenomena originate from transitions between topological sectors with a different number of magnetic solitons. This is confirmed by measurements on crystals thinner than 48 nm-in which the topological sector cannot change-that do not exhibit anymore » jump or hysteresis. These results show the ability to deterministically control the topological sector of finite-size Cr 1/3NbS 2 and to detect intersector transitions by transport measurements.« less

  1. Controlling the Topological Sector of Magnetic Solitons in Exfoliated Cr 1 / 3 NbS 2 Crystals

    DOE PAGES

    Wang, Lin; Chepiga, N.; Ki, D. -K.; ...

    2017-06-23

    Here, we investigate manifestations of topological order in monoaxial helimagnet Cr 1/3NbS 2 by performing transport measurements on ultrathin crystals. Upon sweeping the magnetic field perpendicularly to the helical axis, crystals thicker than one helix pitch (48 nm) but much thinner than the magnetic domain size (similar to 1 mu m) are found to exhibit sharp and hysteretic resistance jumps. We also show that these phenomena originate from transitions between topological sectors with a different number of magnetic solitons. This is confirmed by measurements on crystals thinner than 48 nm-in which the topological sector cannot change-that do not exhibit anymore » jump or hysteresis. These results show the ability to deterministically control the topological sector of finite-size Cr 1/3NbS 2 and to detect intersector transitions by transport measurements.« less

  2. [Development of new magnetic bead separation and purification instrument].

    PubMed

    Xu, Yingyuan; Chen, Yi

    2014-05-01

    The article describes the development of new magnetic bead separation and purification instrument. The main application of the instrument is to capture tubercle bacillus from sputum. It is a pretreatment instrument and provides a new platform to help doctors to diagnose bacillary phthisis. Not only could it be used for tubercle bacillus capturing, but also for gene, protein and cell separating and purification. Because the controller of the instrument is 16-bit single chip microcomputer, the cost could be greatly reduced and it will be widely used in China.

  3. Variation with interplanetary sector of the total magnetic field measured at the OGO 2, 4, and 6 satellites

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1973-01-01

    Variations in the scalar magnetic field (delta B) from the polar orbiting OGO 2, 4, and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the sun and for times when the interplanetary magnetic field away from the sun. This morphology is basically the same as that found when all data, irrespective of interplanetary magnetic sector, are averaged together. Differences in delta B occur, both between sectors and between seasons, which are similar in nature to variations in the surface delta Z found by Langel (1973c). The altitude variation of delta B at sunlit local times, together with delta Z at the earth's surface, demonstrates that the delta Z and delta B which varies with sector has an ionospheric source. Langel (1973b) showed that the positive delta B region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source(s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of delta B.

  4. The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part II: The Instrumentation

    PubMed Central

    Bluck, Les; Volmer, Dietrich A.

    2013-01-01

    In the second instalment of this tutorial, the authors explain the instrumentation for measuring naturally occurring stable isotopes, specifically the magnetic sector mass spectrometer. This type of instrument remains unrivalled in its performance for isotope ratio mass spectrometry (IRMS) and the reader is reminded of its operation and its technical advantages for isotope measurements. PMID:23772101

  5. Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.

    1979-01-01

    Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.

  6. Using sustainability as a collaboration magnet to encourage multi-sector collaborations for health.

    PubMed

    Khayatzadeh-Mahani, Akram; Labonté, Ronald; Ruckert, Arne; de Leeuw, Evelyne

    2017-03-01

    The World Health Organization Commission on Social Determinants of Health (SDH) places great emphasis on the role of multi-sector collaboration in addressing SDH. Despite this emphasis on this need, there is surprisingly little evidence for this to advance health equity goals. One way to encourage more successful multi-sector collaborations is anchoring SDH discourse around 'sustainability', subordinating within it the ethical and empirical importance of 'levelling up'. Sustainability, in contrast to health equity, has recently proved to be an effective collaboration magnet. The recent adoption of the Sustainable Development Goals (SDGs) provides an opportunity for novel ways of ideationally re-framing SDH discussions through the notion of sustainability. The 2030 Agenda for the SDGs calls for greater policy coherence across sectors to advance on the goals and targets. The expectation is that diverse sectors are more likely and willing to collaborate with each other around the SDGs, the core idea of which is 'sustainability'.

  7. Digital signal processing by virtual instrumentation of a MEMS magnetic field sensor for biomedical applications.

    PubMed

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M; Manjarrez, Elías; Tapia, Jesús A; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A; Herrera-May, Agustín L

    2013-11-05

    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG).

  8. A New Instrument for Magnetic Imaging of Rock Slabs at the Hand-Sample Scale

    NASA Astrophysics Data System (ADS)

    Brown, L. L.; Webber, J. R.; Williams, M. L.; Sweeney, J.

    2015-12-01

    Magnetic imaging techniques have provided a wealth of detailed information typically at two disparate spatial scales including the regional (e.g. satellite, airborne, and marine) and grain scales (e.g. Bitter colloid and magnetic force microscopy). However, there is a general lack of imaging techniques at the hand sample scale. We present a new instrument, procedure, and processing routine that automatically maps the magnetic flux density vector field above a slab of rock at a sub-millimeter resolution, which bridges the gap between the traditional magnetic mapping scales. This low-cost instrument consists of two linear axes that position and raster a stylus across the surface of a sample. Attached to the stylus is a MAG3110 triple axis magnetometer, which has an optimal spatial resolution of approximately 1 mm2. This technique has been particularly informative for metamorphic studies concerning the equilibria of ferrimagnetic minerals such as magnetite. For example, magnetic images have revealed complex anomalies within mafic granulites that indicate the heterogeneous production and removal of magnetite. Some mafic dikes display magnetic anomalies that are associated with partial retrograde metamorphism and hydration. Magnetic images of a sample of banded iron formation have documented sedimentary layering, as well as positive anomalies associated with the occurrence of leucosome. This association may provide key implications for anatectic redox reactions. Specimens extracted from various locations on slabs characterized by heterogeneous magnetic anomalies can be used to document disparate magnetic properties such as magnetic susceptibility, NRM, hysteresis, and coercivity distributions. As such, this technique may provide a context for targeted rock magnetic studies. The instrument provides a direct link for petrologic studies to magnetism that may be used as a small scale analog for regional and planetary magnetic anomalies.

  9. Digital Signal Processing by Virtual Instrumentation of a MEMS Magnetic Field Sensor for Biomedical Applications

    PubMed Central

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M.; Manjarrez, Elías; Tapia, Jesús A.; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L.

    2013-01-01

    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG). PMID:24196434

  10. Inter-instrument calibration using magnetic field data from Flux Gate Magnetometer (FGM) and Electron Drift Instrument (EDI) onboard Cluster

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2013-07-01

    We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  11. Scanning instrumentation for measuring magnetic field trapping in high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.; Helton, A. J.

    1993-01-01

    Computerized scanning instrumentation measures and displays trapped magnetic fields across the surface of high Tc superconductors at 77 K. Data are acquired in the form of a raster scan image utilizing stepping motor stages for positioning and a cryogenic Hall probe for magnetic field readout. Flat areas up to 45 mm in diameter are scanned with 0.5-mm resolution and displayed as false color images.

  12. Maximizing coupling strength of magnetically anchored surgical instruments: how thick can we go?

    PubMed

    Best, Sara L; Bergs, Richard; Gedeon, Makram; Paramo, Juan; Fernandez, Raul; Cadeddu, Jeffrey A; Scott, Daniel J

    2011-01-01

    The Magnetic Anchoring and Guidance System (MAGS) includes an external magnet that controls intra-abdominal surgical instruments via magnetic attraction forces. We have performed NOTES (Natural Orifice Transluminal Endoscopic Surgery) and LESS (Laparoendoscopic Single Site) procedures using MAGS instruments in porcine models with up to 2.5-cm-thick abdominal walls, but this distance may not be sufficient in some humans. The purpose of this study was to determine the maximal abdominal wall thickness for which the current MAGS platform is suitable. Successive iterations of prototype instruments were developed; those evaluated in this study include external (134-583 g, 38-61 mm diameter) and internal (8-39 g, 10-22 mm diameter) components using various grades, diameters, thicknesses, and stacking/shielding/focusing configurations of permanent Neodymium-iron-boron (NdFeB) magnets. Nine configurations were tested for coupling strength across distances of 0.1-10 cm. The force-distance tests across an air medium were conducted at 0.5-mm increments using a robotic arm fitted with a force sensor. A minimum theoretical instrument drop-off (decoupling) threshold was defined as the separation distance at which force decreased below the weight of the heaviest internal component (39 g). Magnetic attraction forces decreased exponentially over distance. For the nine configurations tested, the average forces were 3,334 ± 1,239 gf at 0.1 cm, 158 ± 98 gf at 2.5 cm, and 8.7 ± 12 gf at 5 cm; the drop-off threshold was 3.64 ± 0.8 cm. The larger stacking configurations and magnets yielded up to a 592% increase in attraction force at 2.5 cm and extended the drop-off threshold distance by up to 107% over single-stack anchors. For the strongest configuration, coupling force ranged from 5,337 gf at 0.1 cm to 0 gf at 6.95 cm and yielded a drop-off threshold distance of 4.78 cm. This study suggests that the strongest configuration of currently available MAGS instruments is suitable for

  13. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  14. First Results on Interstellar Magnetic Fields from the HAWC+ Instrument for SOFIA

    NASA Astrophysics Data System (ADS)

    Dowell, C. Darren; HAWC+ Instrument Team; HAWC+ Science Team

    2018-06-01

    HAWC+, a second-generation SOFIA instrument designed to map far-infrared intensity and polarization, was commissioned in late 2016 and made first science observations in SOFIA Cycles 4 and 5. We describe basic characteristics of the instrument, report on the commissioning flights and data analysis pipeline, and show some example science products resulting from Guaranteed-Time Observations (GTO). HAWC+ and SOFIA provide unique access to the far-infrared (50 - 250 micron) spectral range for polarimetry. Far-IR polarization arises from dust grains aligned with respect to the magnetic field, as well as synchrotron radiation, and the GTO program focuses primarily on the magnetic field structure of nearby molecular clouds and the Galactic center, and the physical characteristics of dust.

  15. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  16. The Process of Developing a Multi-Cell KEMS Instrument

    NASA Technical Reports Server (NTRS)

    Copland, E. H.; Auping, J. V.; Jacobson, N. S.

    2012-01-01

    Multi-cell KEMS offers many advantages over single cell instruments in regard to in-situ temperature calibration and studies on high temperature alloys and oxides of interest to NASA. The instrument at NASA Glenn is a 90 deg magnetic sector instrument originally designed for single cell operation. The conversion of this instrument to a multi-cell instrument with restricted collimation is discussed. For restricted collimation, the 'field aperture' is in the copper plate separating the Knudsen Cell region and the ionizer and the 'source aperture' is adjacent to the ionizer box. A computer controlled x-y table allows positioning of one of the three cells into the sampling region. Heating is accomplished via a Ta sheet element and temperature is measured via an automatic pyrometer from the bottom of the cells. The computer control and data system have been custom developed for this instrument and are discussed. Future improvements are also discussed.

  17. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Schou, J.; Scherrer, P. H.; Bush, R. I.; Wachter, R.; Couvidat, S.; Rabello-Soares, M. C.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; hide

    2012-01-01

    The Helioseismic and Magnetic Imager (HMI) investigation will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 Fe I absorption line. The instrument consists of a front-window filter, a telescope, a set of wave plates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 4096(exo 2) pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

  18. A comparative assessment of economic-incentive and command-and-control instruments for air pollution and CO2 control in China's iron and steel sector.

    PubMed

    Liu, Zhaoyang; Mao, Xianqiang; Tu, Jianjun; Jaccard, Mark

    2014-11-01

    China's iron and steel sector is faced with increasing pressure to control both local air pollutants and CO2 simultaneously. Additional policy instruments are needed to co-control these emissions in this sector. This study quantitatively evaluates and compares two categories of emission reduction instruments, namely the economic-incentive (EI) instrument of a carbon tax, and the command-and-control (CAC) instrument of mandatory application of end-of-pipe emission control measures for CO2, SO2 and NOx. The comparative evaluation tool is an integrated assessment model, which combines a top-down computable general equilibrium sub-model and a bottom-up technology-based sub-model through a soft-linkage. The simulation results indicate that the carbon tax can co-control multiple pollutants, but the emission reduction rates are limited under the tax rates examined in this study. In comparison, the CAC instruments are found to have excellent effects on controlling different pollutants separately, but not jointly. Such results indicate that no single EI or CAC instrument is overwhelmingly superior. The environmental and economic effectiveness of an instrument highly depends on its specific attributes, and cannot be predicted by the general policy category. These findings highlight the necessity of clearer identification of policy target priorities, and detail-oriented and integrated policy-making among different governmental departments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Advances in Neutron Spectroscopy and High Magnetic Field Instrumentation for studies of Correlated Electron Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granroth, Garrett E

    2011-01-01

    Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes ofmore » $Q$ and $$\\omega$$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$$_4$$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.« less

  20. Development and Testing of UCLA's Electron Losses and Fields Investigation (ELFIN) Instrument Payload

    NASA Astrophysics Data System (ADS)

    Wilkins, C.; Bingley, L.; Angelopoulos, V.; Caron, R.; Cruce, P. R.; Chung, M.; Rowe, K.; Runov, A.; Liu, J.; Tsai, E.

    2017-12-01

    UCLA's Electron Losses and Fields Investigation (ELFIN) is a 3U+ CubeSat mission designed to study relativistic particle precipitation in Earth's polar regions from Low Earth Orbit. Upon its 2018 launch, ELFIN will aim to address an important open question in Space Physics: Are Electromagnetic Ion-Cyclotron (EMIC) waves the dominant source of pitch-angle scattering of high-energy radiation belt charged particles into Earth's atmosphere during storms and substorms? Previous studies have indicated these scattering events occur frequently during storms and substorms, and ELFIN will be the first mission to study this process in-situ.Paramount to ELFIN's success is its instrument suite consisting of an Energetic Particle Detector (EPD) and a Fluxgate Magnetometer (FGM). The EPD is comprised of two collimated solid-state detector stacks which will measure the incident flux of energetic electrons from 50 keV to 4 MeV and ions from 50 keV to 300 keV. The FGM is a 3-axis magnetic field sensor which will capture the local magnetic field and its variations at frequencies up to 5 Hz. The ELFIN spacecraft spins perpendicular to the geomagnetic field to provide 16 pitch-angle particle data sectors per revolution. Together these factors provide the capability to address the nature of radiation belt particle precipitation by pitch-angle scattering during storms and substorms.ELFIN's instrument development has progressed into the late Engineering Model (EM) phase and will soon enter Flight Model (FM) development. The instrument suite is currently being tested and calibrated at UCLA using a variety of methods including the use of radioactive sources and applied magnetics to simulate orbit conditions during spin sectoring. We present the methods and test results from instrument calibration and performance validation.

  1. Solar wind composition from sector boundary crossings and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Coplan, M. A.; Geiss, J.

    1992-01-01

    Using the Ion Composition Instrument (ICI) on board the ISEE-3/ICE spacecraft, average abundances of He-4, He-3, O, Ne, Si, and Fe have been determined over extended periods. In this paper the abundances of He-4, O, Ne, Si, and Mg obtained by the ICI in the region of sector boundary crossings (SBCs), magnetic clouds and bidirectional streaming events (BDSs) are compared with the average abundances. Both magnetic clouds and BDSs are associated with coronal mass ejections (CMEs). No variation of abundance is seen to occur at SBCs except for helium, as has already been observed. In CME-related material, the abundance of neon appears to be high and variable, in agreement with recent analysis of spectroscopic observations of active regions. We find that our observations can be correlated with the magnetic topology in the corona.

  2. The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Case, Anthony W.; Grey, Matthew P.; Kim, Cindy K.; Battista, Corina C.; Rymer, Abigail; Paty, Carol S.; Jia, Xianzhe; Stevens, Michael L.; Khurana, Krishan; Kivelson, Margaret G.; Slavin, James A.; Korth, Haje H.; Smith, Howard T.; Krupp, Norbert; Roussos, Elias; Saur, Joachim

    2016-10-01

    The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa.Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by

  3. The Plasma Instrument for Magnetic Sounding (PIMS) onboard the Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Rymer, Abigail; Case, Anthony; Battista, Corina; Cochrane, Corey; Coren, David; Crew, Alexander; Grey, Matthew; Jia, Xianzhe; Khurana, Krishan; Kim, Cindy; Kivelson, Margaret G.; Korth, Haje; Krupp, Norbert; Paty, Carol; Roussos, Elias; Stevens, Michael; Slavin, James A.; Smith, Howard T.; Saur, Joachim

    2017-10-01

    Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa’s ionosphere affecting the magnetic induction signal. Plasma from Io’s temporally varying torus diffuses outward and mixes with the charged particles in Europa’s own torus producing highly variable plasma conditions. Onboard the Europa Clipper spacecraft the Plasma Instrument for Magnetic Sounding (PIMS) works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa’s subsurface ocean. This investigation exploits currents induced in Europa’s interior by the moon’s exposure to variable magnetic fields in the Jovian system to infer properties of Europa’s subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa’s global liquid ocean by accounting for contributions to the magnetic field from plasma currents.The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. PIMS on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter’s magnetosphere and Europa’s ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa’s magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa’s surface into the atmosphere and

  4. The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Westlake, J. H.; McNutt, R. L., Jr.; Kasper, J. C.; Battista, C.; Case, A. W.; Cochrane, C.; Grey, M.; Jia, X.; Kivelson, M.; Kim, C.; Korth, H.; Khurana, K. K.; Krupp, N.; Paty, C. S.; Roussos, E.; Rymer, A. M.; Stevens, M. L.; Slavin, J. A.; Smith, H. T.; Saur, J.; Coren, D.

    2017-12-01

    The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa. Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by

  5. The Formation of a Sunspot Penumbra Sector in Active Region NOAA 12574

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Yan, Xiaoli; Wang, Jincheng; Kong, DeFang; Xue, Zhike; Yang, Liheng; Cao, Wenda

    2018-04-01

    We present a particular case of the formation of a penumbra sector around a developing sunspot in the active region NOAA 12574 on 2016 August 11 by using the high-resolution data observed by the New Solar Telescope at the Big Bear Solar Observatory and the data acquired by the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory satellite. Before the new penumbra sector formed, the developing sunspot already had two umbrae with some penumbral filaments. The penumbra sector gradually formed at the junction of two umbrae. We found that the formation of the penumbra sector can be divided into two stages. First, during the initial stage of penumbral formation, the region where the penumbra sector formed always appeared blueshifted in a Dopplergram. The area, mean transverse magnetic field strength, and total magnetic flux of the umbra and penumbra sector all increased with time. The initial penumbral formation was associated with magnetic emergence. Second, when the penumbra sector appeared, the magnetic flux and area of the penumbra sector increased after the umbra’s magnetic flux and area decreased. These results indicate that the umbra provided magnetic flux for penumbral development after the penumbra sector appeared. We also found that the newly formed penumbra sector was associated with sunspot rotation. Based on these findings, we suggest that the penumbra sector was the result of the emerging flux that was trapped in the photosphere at the initial stage of penumbral formation, and when the rudimentary penumbra formed, the penumbra sector developed at the cost of the umbra.

  6. Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darve, C.; /Fermilab; Balle, C.

    2011-05-01

    The low-{beta} magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10{sup 34}cm{sup -2}s{sup -1}. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-{beta} magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due tomore » the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.« less

  7. Proving instruments credible in the early nineteenth century: The British Magnetic Survey and site-specific experimentation

    PubMed Central

    Goodman, Matthew

    2016-01-01

    For several decades now, many histories of science have sought to emphasize the important role of instruments and other material objects in the operation of science. Many, too, have been attentive to ideas of space and place and the different geographies which are visible in the historical practice of science. This paper draws on both traditions in its interpretation of a heretofore neglected aspect of Britain's nineteenth-century geomagnetic story: that of the British Magnetic Survey, 1833–38. Far from being a footnote to the more expansive geomagnetic projects then taking place in mainland Europe or to the later British worldwide magnetic scheme, this paper argues that the British Magnetic Survey represents an important instance in which magnetic instruments, their users and their makers, were tested, developed and ultimately proved credible.

  8. Spatial measurement in rotating magnetic field plasma acceleration method by using two-dimensional scanning instrument and thrust stand

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takizawa, K.; Yano, K.; Kuwahara, D.; Shinohara, S.

    2018-04-01

    A two-dimensional scanning probe instrument has been developed to survey spatial plasma characteristics in our electrodeless plasma acceleration schemes. In particular, diagnostics of plasma parameters, e.g., plasma density, temperature, velocity, and excited magnetic field, are essential for elucidating physical phenomena since we have been concentrating on next generation plasma propulsion methods, e.g., Rotating Magnetic Field plasma acceleration method, by characterizing the plasma performance. Moreover, in order to estimate the thrust performance in our experimental scheme, we have also mounted a thrust stand, which has a target type, on this movable instrument, and scanned the axial profile of the thrust performance in the presence of the external magnetic field generated by using permanent magnets, so as to investigate the plasma captured in a stand area, considering the divergent field lines in the downstream region of a generation antenna. In this paper, we will introduce the novel measurement instrument and describe how to measure these parameters.

  9. Recurrent active regions related to metric radio continuum emissions and the interplanetary magnetic sector structure

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Active heliographic longitudes at the sun are investigated by using the observational data for long-lived metric continuum noise sources. It is shown that, for the period from 1963 to 1969, the number of such longitudes was four in general and these longitudes were very stable for this radio activity since 1963. A discussion is given on the relationship between those longitudes and the sector structure of the interplanetary magnetic field.

  10. Sector structure of the interplanetary magnetic field in the second half of the 19th century inferred from ground-based magnetometers

    NASA Astrophysics Data System (ADS)

    Vokhmyanin, M.; Ponyavin, D. I.

    2012-12-01

    Interplanetary magnetic field (IMF) polarities can be inferred in the pre-satellite era using Svalgaard-Mansurov effect, according to which different IMF directions lead to different geomagnetic variations at polar stations. Basing on this effect we propose a method to derive a sector structure of the IMF when only ground based data are available. Details of the method and results have been presented in our recent paper: Vokhmyanin, M. V., and D. I. Ponyavin (2012), Inferring interplanetary magnetic field polarities from geomagnetic variations, J. Geophys. Res., 117, A06102, doi:10.1029/2011JA017060. Using data from eight stations: Sitka, Sodankyla, Godhavn, Lerwick, Thule, Baker Lake, Vostok and Mirny, we reconstructed sector structure back to 1905. The quality of inferring from 1965 to 2005 ranges between 78% and 90% depending on the used set of stations. Our results show both high success rate and good agreement with the well-known Russell-McPherron and Rosenberg-Coleman effects. In the current study we applied the technique to historical data of Helsinki observatory where digital versions of hourly geomagnetic components are available from 1844 to 1897. Helsinki station stopped operates at the beginning of 20th century. Thus, to create a model describing the local Svalgaard-Mansurov effect we analyzed data from Nurmijarvi station located near the same region. The success rate of reconstruction from 1965 to 2005 is around 82%. So we assume that the IMF polarities obtained for the period 1869-1889 have sufficient quality. Inferred sector structure at this time consists of two sectors typically for all declining phases of solar activity cycle. Catalogue of IMF proxies seem to be important in analyzing structure and dynamics of solar magnetic fields in the past.; Left: Bartels diagram of IMF sector structure inferred from Helsinki data. Right: sunspot number indicating solar cycles.

  11. Survey of minor-to-moderate magnetic storm effects on ionosphere: American sector

    NASA Astrophysics Data System (ADS)

    Buresova, Dalia; Lastovicka, Jan; Chum, Jaroslav; Pezzopane, Michael; Staciarini Batista, Inez; Gularte, Erika; Novotna, Dagmar

    2014-05-01

    The paper is focused on ionospheric reaction to occasional minor-to-moderate magnetic storms above selected ionospheric stations located across the Northern and Southern America. Most of the storms analysed occurred under extremely low solar activity conditions of 2007-2009. We analysed variability of the F2 layer critical frequency foF2 and the F2 layer peak height hmF2 obtained for different latitudinal and longitudinal sectors of both hemispheres for the entire period of selected magnetic storms. Observations were compared with the effects of strong magnetic storms and with the IRI2000 outputs when STORM model option is activated. We analysed ionospheric reaction during each storm phase with main emphasis paid on the recovery phase. In general, storm recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. Magnetospheric substorms, typical for the main phase, as a rule cease during the storm recovery phase. However, observations of stormy ionosphere show significant departures from the climatology also within this phase, which are comparable with those usually observed during the storm main phase. Both positive and negative deviations of foF2 and hmF2 have been observed independent on season and location.

  12. The magnetic toroidal sector: a broad-band electron-positron pair spectrometer

    NASA Astrophysics Data System (ADS)

    Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Litvinov, Yuri; Spillmann, Uwe

    2016-05-01

    At the future relativistic storage-ring HESR at FAIR the study of electron-positron pairs from non-nuclear, atomic processes will be one of the goals of the experimental program with kinematically complete experiments focusing on momentum spectroscopy of coincident emission of electrons and positrons from free-free pairs and corresponding recoil ions. The underlying production mechanisms belong to central topics of QED in strong fields. We present first results on the electron-optical properties of a magnetic toroidal sector configuration enabling coincident detection of free-free electron-positron pairs; this spectrometer is suitable for implementation into a storage ring with a supersonic jet target and covering a wide range of lepton emission into the forward hemisphere. The simulation calculations are performed using the OPERA code.

  13. Magnetization and magnetoresistance of common alloy wires used in cryogenic instrumentation.

    PubMed

    Abrecht, M; Adare, A; Ekin, J W

    2007-04-01

    We present magnetization and magnetoresistance data at liquid-helium and liquid-nitrogen temperatures for wire materials commonly used for instrumentation wiring of specimens, sensors, and heaters in cryogenic probes. The magnetic susceptibilities in Systeme International units at 4.2 K were found to be: Manganin 1.25x10(-2), Nichrome 5.6x10(-3), and phosphor bronze -3.3x10(-5), indicating that phosphor bronze is the most suitable for high-field applications. We also show the ferromagnetic hysteresis loop of Constantan wire at liquid-helium temperature. The magnetoresistance of these four wires was relatively small: the changes in resistance at 4 K due to a 10 T transverse magnetic field are -2.56% for Constantan, -2.83% for Manganin, +0.69% for Nichrome, and +4.5% for phosphor bronze, compared to about +188% for a typical copper wire under the same conditions.

  14. Magnetization and magnetoresistance of common alloy wires used in cryogenic instrumentation

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Adare, A.; Ekin, J. W.

    2007-04-01

    We present magnetization and magnetoresistance data at liquid-helium and liquid-nitrogen temperatures for wire materials commonly used for instrumentation wiring of specimens, sensors, and heaters in cryogenic probes. The magnetic susceptibilities in Systeme International units at 4.2 K were found to be: Manganin 1.25×10-2, Nichrome 5.6×10-3, and phosphor bronze -3.3×10-5, indicating that phosphor bronze is the most suitable for high-field applications. We also show the ferromagnetic hysteresis loop of Constantan wire at liquid-helium temperature. The magnetoresistance of these four wires was relatively small: the changes in resistance at 4 K due to a 10 T transverse magnetic field are -2.56% for Constantan, -2.83% for Manganin, +0.69% for Nichrome, and +4.5% for phosphor bronze, compared to about +188% for a typical copper wire under the same conditions.

  15. Gas-phase ion chemistry and organic chemistry-the story of a hybrid six sector mass spectrometer--the "AutoSpec 6F".

    PubMed

    Gerbaux, Pascal; Lamote, Luc; Van Haverbeke, Yves; Flammang, Robert; Brown, Jeffrey M

    2012-01-01

    The AutoSpec 6F mass spectrometer is a large, floor standing instrument comprising a pair of commercial EBE geometry (AutoSpec) mass spectrometers coupled in series to provide an hybrid EBE-EBE configuration, (E and B being respectively electrostatic and magnetic sectors.) It was designed in close collaboration between Professor R. Flammang and VG Analytical in Manchester, UK. It was equipped with five collision cells and allowed the recording of high energy CID (collision induced dissociation), MIKES (mass analyzed ion kinetic energy spectrometry) and NRMS (neutralization re-ionization mass spectrometry) data as well as consecutive MSn analyses. The field-free regions between sectors allowed the study of unimolecular decomposition products from long-lived metastable ions. The mass spectrometer became even more versatile when an RF-only quadrupole collision cell was installed between the second and the third electric sector. This allowed the study of associative ion/molecule reactions in the low kinetic energy regime. Bimolecular chemical reactions were performed inside the quadrupole cell when a neutral reagent was introduced and the reaction products were analyzed by high energy CID in the downstream sectors. This paper tells the history and summarizes the capabilities of this versatile instrument.

  16. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  17. Cost-effectiveness analysis of policy instruments for greenhouse gas emission mitigation in the agricultural sector.

    PubMed

    Bakam, Innocent; Balana, Bedru Babulo; Matthews, Robin

    2012-12-15

    Market-based policy instruments to reduce greenhouse gas (GHG) emissions are generally considered more appropriate than command and control tools. However, the omission of transaction costs from policy evaluations and decision-making processes may result in inefficiency in public resource allocation and sub-optimal policy choices and outcomes. This paper aims to assess the relative cost-effectiveness of market-based GHG mitigation policy instruments in the agricultural sector by incorporating transaction costs. Assuming that farmers' responses to mitigation policies are economically rationale, an individual-based model is developed to study the relative performances of an emission tax, a nitrogen fertilizer tax, and a carbon trading scheme using farm data from the Scottish farm account survey (FAS) and emissions and transaction cost data from literature metadata survey. Model simulations show that none of the three schemes could be considered the most cost effective in all circumstances. The cost effectiveness depends both on the tax rate and the amount of free permits allocated to farmers. However, the emissions trading scheme appears to outperform both other policies in realistic scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1994-01-01

    A superconductive load bearing support without a mechanical contact and vibration damping for cryogenic instruments in space is presented. The levitation support and vibration damping is accomplished by the use of superconducting magnets and the 'Meissner' effect. The assembly allows for transfer of vibration energy away from the cryogenic instrument which then can be damped by the use of either an electronic circuit or conventional vibration damping mean.

  19. Wave disturbances induced by crustal earthquakes: Case study of two strong earthquakes in the Caucasian-Anatolian sector of the Alpine Mediterranean mobile belt

    NASA Astrophysics Data System (ADS)

    Rogozhin, E. A.; Sobisevich, L. E.

    2014-03-01

    The display conditions of strong earthquakes in the Caucasian-Anatolian sector of the Mediterranean mobile belt are analyzed with allowance for the instrumental observations by titlmeters and magnetic variometers at the North Caucasian geophysical observatory of Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (NCGO IPE RAS) (Elbrus volcanic region) and at the magnetic stations operated by the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN). It is demonstrated that the geophysical information obtained during the preparatory stages of the earthquakes on March 8, 2010 and January 19, 2011 in Turkey and the North Caucasus, respectively, reflect the fine structure of the anomalous wave processes of the preparation and evolution of the crustal earthquakes. The results provide a general idea of the geomagnetic activity and some characteristic features of the induced anomalous disturbances in the Caucasian-Anatolian sector of the Alpine Mediterranean mobile belt, which precede and accompany strong seismic events.

  20. Leasing instruments of high-rise construction financing

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga; Ivleva, Elena; Sukhacheva, Viktoria; Rumyantseva, Anna

    2018-03-01

    The leasing sector of the business economics is expanding. Leasing instruments for high-rise construction financing allow to determine the best business behaviour in the leasing economy sector, not only in the sphere of transactions with equipment and vehicles. Investments in high-rise construction have a multiplicative effect. It initiates an active search and leasing instruments use in the economic behaviour of construction organizations. The study of the high-rise construction sector in the structure of the leasing market participants significantly expands the leasing system framework. The scheme of internal and external leasing process factors influence on the result formation in the leasing sector of economy is offered.

  1. Developing and testing an instrument for identifying performance incentives in the Greek health care sector.

    PubMed

    Paleologou, Victoria; Kontodimopoulos, Nick; Stamouli, Aggeliki; Aletras, Vassilis; Niakas, Dimitris

    2006-09-13

    In the era of cost containment, managers are constantly pursuing increased organizational performance and productivity by aiming at the obvious target, i.e. the workforce. The health care sector, in which production processes are more complicated compared to other industries, is not an exception. In light of recent legislation in Greece in which efficiency improvement and achievement of specific performance targets are identified as undisputable health system goals, the purpose of this study was to develop a reliable and valid instrument for investigating the attitudes of Greek physicians, nurses and administrative personnel towards job-related aspects, and the extent to which these motivate them to improve performance and increase productivity. A methodological exploratory design was employed in three phases: a) content development and assessment, which resulted in a 28-item instrument, b) pilot testing (N = 74) and c) field testing (N = 353). Internal consistency reliability was tested via Cronbach's alpha coefficient and factor analysis was used to identify the underlying constructs. Tests of scaling assumptions, according to the Multitrait-Multimethod Matrix, were used to confirm the hypothesized component structure. Four components, referring to intrinsic individual needs and external job-related aspects, were revealed and explain 59.61% of the variability. They were subsequently labeled: job attributes, remuneration, co-workers and achievement. Nine items not meeting item-scale criteria were removed, resulting in a 19-item instrument. Scale reliability ranged from 0.782 to 0.901 and internal item consistency and discriminant validity criteria were satisfied. Overall, the instrument appears to be a promising tool for hospital administrations in their attempt to identify job-related factors, which motivate their employees. The psychometric properties were good and warrant administration to a larger sample of employees in the Greek healthcare system.

  2. Developing and testing an instrument for identifying performance incentives in the Greek health care sector

    PubMed Central

    Paleologou, Victoria; Kontodimopoulos, Nick; Stamouli, Aggeliki; Aletras, Vassilis; Niakas, Dimitris

    2006-01-01

    Background In the era of cost containment, managers are constantly pursuing increased organizational performance and productivity by aiming at the obvious target, i.e. the workforce. The health care sector, in which production processes are more complicated compared to other industries, is not an exception. In light of recent legislation in Greece in which efficiency improvement and achievement of specific performance targets are identified as undisputable health system goals, the purpose of this study was to develop a reliable and valid instrument for investigating the attitudes of Greek physicians, nurses and administrative personnel towards job-related aspects, and the extent to which these motivate them to improve performance and increase productivity. Methods A methodological exploratory design was employed in three phases: a) content development and assessment, which resulted in a 28-item instrument, b) pilot testing (N = 74) and c) field testing (N = 353). Internal consistency reliability was tested via Cronbach's alpha coefficient and factor analysis was used to identify the underlying constructs. Tests of scaling assumptions, according to the Multitrait-Multimethod Matrix, were used to confirm the hypothesized component structure. Results Four components, referring to intrinsic individual needs and external job-related aspects, were revealed and explain 59.61% of the variability. They were subsequently labeled: job attributes, remuneration, co-workers and achievement. Nine items not meeting item-scale criteria were removed, resulting in a 19-item instrument. Scale reliability ranged from 0.782 to 0.901 and internal item consistency and discriminant validity criteria were satisfied. Conclusion Overall, the instrument appears to be a promising tool for hospital administrations in their attempt to identify job-related factors, which motivate their employees. The psychometric properties were good and warrant administration to a larger sample of employees in

  3. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  4. Improved instrumentation for intensity-, wavelength-, temperature-, and magnetic field-resolved photoconductivity spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottingham, Patrick, E-mail: pcotting@usc.edu; Morey, Jennifer R.; Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218

    2016-10-15

    We report instrumentation for photovoltage and photocurrent spectroscopy over a larger continuous range of wavelengths, temperatures, and applied magnetic fields than other instruments described in the literature: 350 nm≤λ≤1700 nm, 1.8 K≤T≤300 K, and B≤9 T. This instrument uses a modulated monochromated incoherent light source with total power<30 μW in combination with an LED in order to probe selected regions of non-linear responses while maintaining low temperatures and avoiding thermal artifacts. The instrument may also be used to measure a related property, the photomagnetoresistance. We demonstrate the importance of normalizing measured responses for variations in light power and describe amore » rigorous process for performing these normalizations. We discuss several circuits suited to measuring different types of samples and provide analysis for converting measured values into physically relevant properties. Uniform approaches to measurement of these photoproperties are essential for reliable quantitative comparisons between emerging new materials with energy applications. - Highlights: • A novel instrument for measuring photoconductivity and photocurrents of materials and devices. • Continuous parameter space: 350 nm≤λ≤1700, 1.8 K≤T≤300 K, and B≤9 T. • Methodology for treating non-linear responses and variable lamp intensity. • Mathematical detail for extracting properties of materials from measured values is provided.« less

  5. Contemporary instrumentation and application of charge exchange neutral particle diagnostics in magnetic fusion energy experiments.

    PubMed

    Medley, S S; Donné, A J H; Kaita, R; Kislyakov, A I; Petrov, M P; Roquemore, A L

    2008-01-01

    An overview of the developments postcirca 1980s in the instrumentation and application of charge exchange neutral particle diagnostics on magnetic fusion energy experiments is presented. First, spectrometers that employ only electric fields and hence provide ion energy resolution but not mass resolution are discussed. Next, spectrometers that use various geometrical combinations of both electric and magnetic fields to provide both energy and mass resolutions are reviewed. Finally, neutral particle diagnostics based on utilization of time-of-flight techniques are presented.

  6. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet.

    PubMed

    Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  7. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yin, D. C.; Liu, Y. M.; Shi, J. Z.; Lu, H. M.; Shi, Z. H.; Qian, A. R.; Shang, P.

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  8. Investigation of linearity of the ITER outer vessel steady-state magnetic field sensors at high temperature

    NASA Astrophysics Data System (ADS)

    Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.

    2017-07-01

    Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.

  9. Optics of a Double Focussing Magnetic Sector by Fringe Effect; OPTIQUE D'UN SECTEUR MAGNETIQUE A DOUBLE FOCALISATION PAR EFFET DE FRANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krafft, J.

    1960-01-01

    A general study is made of the optical elements of a double-fccusing magnetic sector by the fringe effect, with a view to its application to the monochromation of the proton, deuteron, or triton beam of the 1.4 Mev accelerator. (auth)

  10. Magnetic storm inflation in the evening sector.

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.

    1973-01-01

    Analysis of the different behavior of a double magnetic disturbance in November 1971, as observed by Explorer 45, and in December 1971, as shown by ground level magnetic observations. The time sequence of magnetic storm inflation in the evening quadrant of the magnetosphere, as determined by both series of observations, is used as the criterion of the analysis. Particular attention is given to the various phases of proton penetration into the evening quadrant of the magnetosphere during the magnetic disturbance.

  11. Dawnside Variability of Magnetic Field in High Latitude Regions of Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Davies, E. H.; Masters, A.; Dougherty, M. K.; Sergis, N.

    2017-12-01

    Magnetic field lines at high latitudes in Saturn's post dawn sector tend to exhibit a swept-back configuration with respect to the direction of planetary rotation. This is a result of equatorial mass loading (mostly from the moon Enceladus) and the inability of planet to accelerate this plasma to co-rotation velocities, owing to plasma sinks in the system and the finite conductivity of the ionosphere. Results of a survey of high latitude magnetic field measurements within the dawn-noon sector from the Magnetometer Instrument (MAG) on the Cassini Spacecraft are presented. Data from 2004 to 2016 are used, representing almost the entire duration of the mission. 39 examples of field lines deviating in the direction of planetary rotation from their default configuration of sweep-back are found. These deviations represent the field sweeping forward towards a co-rotating (or occasionally super co-rotating) configuration, and occur transiently, on a timescale of hours. An analysis of these events, using data from the Magnetospheric Imaging Instrument (MIMI) is carried out. Several of the perturbed field events are found to correspond with the detection of high energy (on the order of 100 keV) electrons local to the spacecraft. It is suggested that these events are examples of return flow from magnetotail reconnection.

  12. A systematic review of clinician-rated instruments to assess adults' levels of functioning in specialised public sector mental health services.

    PubMed

    Burgess, Philip M; Harris, Meredith G; Coombs, Tim; Pirkis, Jane E

    2017-04-01

    Functioning is one of the key domains emphasised in the routine assessment of outcomes that has been occurring in specialised public sector mental health services across Australia since 2002, via the National Outcomes and Casemix Collection. For adult consumers (aged 18-64), the 16-item Life Skills Profile (LSP-16) has been the instrument of choice to measure functioning. However, review of the National Outcomes and Casemix Collection protocol has highlighted some limitations to the current approach to measuring functioning. A systematic review was conducted to identify, against a set of pre-determined criteria, the most suitable existing clinician-rated instruments for the routine measurement of functioning for adult consumers. We used two existing reviews of functioning measures as our starting point and conducted a search of MEDLINE and PsycINFO to identify articles relating to additional clinician-rated instruments. We evaluated identified instruments using a hierarchical, criterion-based approach. The criteria were as follows: (1) is brief (<50 items) and simple to score, (2) is not made redundant by more recent instruments, (3) relevant version has been scientifically scrutinised, (4) considers functioning in a contemporary way and (5) demonstrates sound psychometric properties. We identified 20 relevant instruments, 5 of which met our criteria: the LSP-16, the Health of the Nation Outcome Scales, the Illness Management and Recovery Scale-Clinician Version, the Multnomah Community Ability Scale and the Personal and Social Performance Scale. Further work is required to determine which, if any, of these instruments satisfy further criteria relating to their appropriateness for assessing functioning within relevant service contexts, acceptability to clinicians and consumers, and feasibility in routine practice. This should involve seeking stakeholders' opinions (e.g. about the specific domains of functioning covered by each instrument and the language used in

  13. Performance evaluation of a miniature magnetic sector mass spectrometer onboard a satellite in space.

    PubMed

    Guo, Meiru; Li, Detian; Cheng, Yongjun; Wang, Yongjun; Sun, Wenjun; Pei, Xiaoqiang; Dong, Meng; Sheng, Xuemin; Zhao, Lan; Li, Yanwu

    2018-04-01

    With the rapid development of space technology in China, it is urgent to use mass spectrometer to detect the space environment. In this work, a space miniature magnetic sector mass spectrometer is evaluated, which consists of three subsystems: (1) physical unit, (2) electric control unit, (3) and high voltage power. It has 90° magnetic sector-field analyzer with double trajectory, in which a trajectory measurement range is from 1 to 12 amu, the other range is from 6 to 90 amu.The mass spectrometer has two work models, one is used to measure space neutral gas when the filament of mass spectrometer ion source turned on, the other is used to measure space charged ions when the filament turned off. The absolute resolution of this device is less than 1 amu, the minimum detectable ion current is about 10 -13  A, and the sensitivity is 10 -6  A/Pa (N 2 ). Its overall size is 170 mm × 165 mm × 170 mm, its weight is 4.5 kg, and its power consumption is 18 W. A series of environmental adaptability tests, including high and low temperature cycle, shock, vibration, thermal vacuum cycle, were carried out on the ground before launching, and sensitivity and peak position were also calibrated on the ground. In November 2012, the mass spectrometer was carried by an experimental satellite to 499 km sun synchronization and is still working right now. It successfully detected the atmosphere compositions both in the satellite orbit and gas-emitted from satellite, including O, He, 12 CO 2 , 13 CO 2 , H 2 , N 2 , O 2 , H 2 O, and so on.

  14. Detection of the pedogenic magnetic fraction in volcanic soils developed on basalts using frequency-dependent magnetic susceptibility: comparison of two instruments

    NASA Astrophysics Data System (ADS)

    Grison, Hana; Petrovsky, Eduard; Kapicka, Ales; Hanzlikova, Hana

    2017-05-01

    In studies of the magnetic properties of soils, the frequency-dependent magnetic susceptibility percentage (χFD%) is often used for the identification of ultrafine magnetically superparamagnetic/stable single-domain (SP/SSD) particles. This parameter is commonly used as an indicator for increased pedogenesis. In strongly magnetic soils, the SP/SSD magnetic signal (mostly bio-pedogenic) may be masked by lithological signals; making pedogenesis hard to detect. In this study, we compare results for the detection of ultrafine SP/SSD magnetic particles in andic soils using two instruments: a Bartington MS2B dual-frequency meter and an AGICO Kappabridge MFK1-FA. In particular, the study focuses on the effect of pedogenesis by investigating the relationship between specific soil magnetic and chemical properties (soil organic carbon and pHH2O). The values of χFD% obtained with the MS2B varied from 2.4 to 5.9 per cent, and mass-specific magnetic susceptibility (χLF) from 283 to 1688 × 10-8 m3 kg-1, while values of χFD% and χLF obtained with the MFK1-FA varied from 2.7 to 8.2 per cent and from 299 to 1859 × 10-8 m3 kg-1, respectively. Our results suggest that the detection of the SP/SSD magnetic fraction can be accomplished by comparing relative trends of χFD% along the soil profile. Moreover, the discrimination between bio-pedogenic and lithogenic magnetic contributions in the SP/SSD fraction is possible by comparing the χFD% and χLF data determined in the fine earth (<2 mm) and the coarse fraction (4-10 mm) samples down the soil profile.

  15. Interinstrument calibration using magnetic field data from the flux-gate magnetometer (FGM) and electron drift instrument (EDI) onboard Cluster

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2014-01-01

    We compare the magnetic field data obtained from the flux-gate magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the electron drift instrument (EDI) onboard Cluster to determine the spin-axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July and October 2003. Using multipoint multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  16. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  17. Implications for Crustal Structures and Heat Fluxes from Depth-to-the-Bottom of the Magnetic Source Estimates in West Antarctica, Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Dziadek, R.; Ferraccioli, F.; Gohl, K.; Spiegel, C.; Kaul, N. E.

    2017-12-01

    The West Antarctic Rift System is one of the least understood rift systems on earth, but displays a unique coupled relationship between tectonic processes and ice sheet dynamics. Geothermal heat flux (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal heat flux for (paleo) ice sheet stability. Young, continental rift systems are regions with significantly elevated geothermal heat flux (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 Ma to reach long-term thermal equilibrium. We discuss airborne, high-resolution magnetic anomaly data from the Amundsen Sea Sector, to provide additional insight into deeper crustal structures related to the West Antarctic Rift System in the Amundsen/Bellingshausen sector. With the depth-to-the-bottom of the magnetic source (DBMS) estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM thermal models in 2D and 3D.

  18. 14 CFR 25.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... indicator (nonstabilized magnetic compass). (b) The following flight and navigation instruments must be... (gyroscopically stabilized, magnetic or nonmagnetic). (c) The following flight and navigation instruments are... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight and navigation instruments. 25.1303...

  19. 14 CFR 25.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... indicator (nonstabilized magnetic compass). (b) The following flight and navigation instruments must be... (gyroscopically stabilized, magnetic or nonmagnetic). (c) The following flight and navigation instruments are... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight and navigation instruments. 25.1303...

  20. Cryogenic instrumentation for ITER magnets

    NASA Astrophysics Data System (ADS)

    Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.

    2017-02-01

    Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.

  1. Magnetic and electric bulge-test instrument for the determination of coupling mechanical properties of functional free-standing films and flexible electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zejun; Li, Faxin; Pei, Yongmao, E-mail: peiym@pku.edu.cn, E-mail: fangdn@pku.edu.cn

    2014-06-15

    For the first time a novel multi-field bulge-test instrument which enables measurements of the biaxial mechanical properties and electro-magnetic-mechanical coupling effect of free-standing films in external magnetic/electric fields was proposed. The oil pressure was designed with two ranges, 0–1 MPa for elastic small deformation and 0–7 MPa for plastic/damage large deformation. A magnetic field that was horizontal and uniform in the film plane was supplied by a hollow cylindrical magnet. The magnitude could be changed from 0 to 10 000 Oe by adjusting the position of the testing film. Meanwhile, an electric field applied on the film was provided by amore » voltage source (Maximum voltage: 1000 V; Maximum current: 1 A). Various signals related to deformation, mechanical loading, magnetic field, and electric field could be measured simultaneously without mutual interference, which was confirmed by the coincidence of the measured P-H curves for titanium (Ti)/nickel (Ni) specimens with/without external fields. A hardening phenomenon under magnetic/electric fields was observed for Ni and lead zirconate titanate specimens. The multi-field bulge-test instrument will provide a powerful research tool to study the deformation mechanism of functional films and flexible electronics in the coupling field.« less

  2. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector.

    PubMed

    Amsden, Jason J; Herr, Philip J; Landry, David M W; Kim, William; Vyas, Raul; Parker, Charles B; Kirley, Matthew P; Keil, Adam D; Gilchrist, Kristin H; Radauscher, Erich J; Hall, Stephen D; Carlson, James B; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T; Russell, Zachary E; Grego, Sonia; Edwards, Steven J; Sperline, Roger P; Denton, M Bonner; Stoner, Brian R; Gehm, Michael E; Glass, Jeffrey T

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified. Graphical Abstract ᅟ.

  3. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector

    NASA Astrophysics Data System (ADS)

    Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.

  4. Triple quadrupole tandem mass spectrometry: A real alternative to high resolution magnetic sector instrument for the analysis of polychlorinated dibenzo-p-dioxins, furans and dioxin-like polychlorinated biphenyls.

    PubMed

    García-Bermejo, Ángel; Ábalos, Manuela; Sauló, Jordi; Abad, Esteban; González, María José; Gómara, Belén

    2015-08-19

    This paper reports on the optimisation, characterisation, validation and applicability of gas chromatography coupled to triple quadrupole mass spectrometry in its tandem operation mode (GC-QqQ(MS/MS) for the quantification of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs, dioxins) and dioxin-like polychlorinated biphenyls (DL-PCBs) in environmental and food matrices. MS/MS parameters were selected to achieve the high sensitivity and selectivity required for the analysis of this type of compounds and samples. Good repeatability for areas (RSD = 1-10%, for PCDD/Fs and DL-PCBs) and for ion transition ratios (RSD = 0.3-10%, for PCDD/Fs, and 0.2-15%, for DL-PCBs) and low instrumental limits of detection, 0.07-0.75 pg μL(-1) (for dioxins) and 0.05-0.63 pg μL(-1) (for DL-PCBs), were obtained. A comparative study of the congener specific determination using both GC-QqQ(MS/MS) and gas chromatography-high resolution mass spectrometry (GC-HRMS) was also performed by analysing several fortified samples and certified reference materials (CRMs) with low (feed and foodstuffs), median (sewage sludge) and high (fly ash) toxic equivalency (TEQ) concentration levels, i.e. 0.60, 1.83, 72.9 and 3609 pg WHO-TEQ(PCDD/Fs) g(-1). The agreement between the results obtained for the total TEQs (dioxins) on GC-QqQ(MS/MS) and GC-HRMS in all the investigated samples were within the range of ±4%, and that of DL-PCBs at concentration levels of 0.84 pg WHO-TEQs (DL-PCBs) g(-1), in the case of feedstuffs, was 0.11%. Both instrumental methods have similar and comparable linearity, precision and accuracy. The GC-QqQ(MS/MS) sensitivity, lower than that of GC-HRMS, is good enough (iLODs in the down to low pg levels) to detect the normal concentrations of these compounds in food and environmental samples. These results make GC-QqQ(MS/MS) suitable for the quantitative analysis of dioxins and DL-PCBs and a real alternative tool to the reference sector HRMS instruments. Copyright © 2015 Elsevier

  5. Small Magnetic Sensors for Space Applications

    PubMed Central

    Díaz-Michelena, Marina

    2009-01-01

    Small magnetic sensors are widely used integrated in vehicles, mobile phones, medical devices, etc for navigation, speed, position and angular sensing. These magnetic sensors are potential candidates for space sector applications in which mass, volume and power savings are important issues. This work covers the magnetic technologies available in the marketplace and the steps towards their implementation in space applications, the actual trend of miniaturization the front-end technologies, and the convergence of the mature and miniaturized magnetic sensor to the space sector through the small satellite concept. PMID:22574012

  6. Commissioning the cryogenic system of the first LHC sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millet, F.; Claudet, S.; Ferlin, G.

    2007-12-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less

  7. Instrumentation of the variable-angle magneto-optic ellipsometer and its application to M-O media and other non-magnetic films

    NASA Technical Reports Server (NTRS)

    Zhou, Andy F.; Erwin, J. Kevin; Mansuripur, M.

    1992-01-01

    A new and comprehensive dielectric tensor characterization instrument is presented for characterization of magneto-optical recording media and non-magnetic thin films. Random and systematic errors of the system are studied. A series of TbFe, TbFeCo, and Co/Pt samples with different composition and thicknesses are characterized for their optical and magneto-optical properties. The optical properties of several non-magnetic films are also measured.

  8. Is There a Magnet-School Effect? A Multisite Study of MSAP-Funded Magnet Schools

    ERIC Educational Resources Information Center

    Wang, Jia; Schweig, Jonathan D.; Herman, Joan L.

    2017-01-01

    Magnet schools are one of the largest sectors of choice schools in the United States. In this study, we explored the heterogeneity in magnet-school effects on student achievement by examining 24 magnet schools, funded under the Magnet Schools Assistance Program (MSAP), in 5 school districts across 4 states. The magnet effects were synthesized…

  9. The Polar Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.

    1995-01-01

    The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).

  10. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  11. Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; de Paula, E. R.; Batista, I. S.; Reinisch, B. W.; Matsuoka, M. T.; Camargo, P. O.; Veliz, O.; Denardini, C. M.; Sobral, J. H. A.; Kherani, E. A.; de Siqueira, P. M.

    2008-07-01

    Equatorial F region vertical plasma drifts, spread F and anomaly responses, in the south American longitude sector during the superstorm of 30 October 2003, are analyzed using data from an array of instruments consisting of Digisondes, a VHF radar, GPS TEC and scintillation receivers in Brazil, and a Digisonde and a magnetometer in Jicamarca, Peru. Prompt penetrating eastward electric field of abnormally large intensity drove the F layer plasma up at a velocity ˜1200 ms-1 during post dusk hours in the eastern sector over Brazil. The equatorial anomaly was intensified and expanded poleward while the development of spread F/plasma bubble irregularities and GPS signal scintillations were weaker than their quiet time intensity. Significantly weaker F region response over Jicamarca presented a striking difference in the intensity of prompt penetration electric field between Peru and eastern longitudes of Brazil. The enhanced post dusk sector vertical drift over Brazil is attributed to electro-dynamics effects arising energetic particle precipitation in the South Atlantic Magnetic Anomaly (SAMA). These extraordinary results and their longitudinal differences are presented and discussed in this paper.

  12. DESIGN AND INSTRUMENTATION OF A POUND-WATKINS NUCLEAR MAGNETIC-RESONANCE SPECTROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, F.E. Jr.

    Problems of instrumentation of a Pound-Watkins nuclear magnetic- resonance spectrometer were investigated. Experimertal data were collected for the sensitivity of the os cillator to a signal from a Watkins calibrator as a function of modulation frequencies from 30 cps to 5 kc and rf tank voltsges from 0.05 to 0.7v/sub rms/. The results confirm Watkins" oscillator theory. An expression was derived for the amount of frequency modulation of the rf oscillator by the Watkins calibrator. For representative values of rf circuit components, this frequency modulation is roughly 0.5 cps at 10 Mc. The rf sample probes constructed for this projectmore » are almost free of modulation pickup in modulation fields as high as 23.5 oersteds (280 cps) and a steady field of 7000 oersteds. (auth)« less

  13. Influence of interplanetary solar wind sector polarity on the ionosphere

    NASA Astrophysics Data System (ADS)

    liu, jing

    2014-05-01

    Knowledge of solar sector polarity effects on the ionosphere may provide some clues in understanding of the ionospheric day-to-day variability. A solar-terrestrial connection ranging from solar sector boundary (SB) crossings, geomagnetic disturbance and ionospheric perturbations has been demonstrated. The increases in interplanetary solar wind speed within three days are seen after SB crossings, while the decreases in solar wind dynamic pressure and magnetic field intensity immediately after SB crossings are confirmed by the superposed epoch analysis results. Furthermore, the interplanetary magnetic field (IMF) Bz component turns from northward to southward in March equinox and June solstice as the Earth passes from a solar sector of outward to inward directed magnetic fields, whereas the reverse situation occurs for the transition from toward to away sectors. The F2 region critical frequency (foF2) covering about four solar cycles and total electron content (TEC) during 1998-2011 are utilized to extract the related information, revealing that they are not modified significantly and vary within the range of 15% on average. The responses of the ionospheric TEC to SB crossings exhibit complex temporal and spatial variations and have strong dependencies on season, latitude, and solar cycle. This effect is more appreciable in equinoctial months than in solstitial months, which is mainly caused by larger southward Bz components in equinox. In September equinox, latitudinal profile of relative variations of foF2 at noon is featured by depressions at high latitudes and enhancements in low-equatorial latitudes during IMF away sectors. The negative phase of foF2 is delayed at solar minimum relative to it during other parts of solar cycle, which might be associated with the difference in longevity of major interplanetary solar wind drivers perturbing the Earth's environment in different phases of solar cycle.

  14. Line drawing Scientific Instrument Module and lunar orbital science package

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A line drawing of the Scientific Instrument Module (SIM) with its lunar orbital science package. The SIM will be mounted in a previously vacant sector of the Apollo Service Module. It will carry specialized cameras and instrumentation for gathering lunar orbit scientific data.

  15. Improved detection limits for electrospray ionization on a magnetic sector mass spectrometer by using an array detector.

    PubMed

    Cody, R B; Tamura, J; Finch, J W; Musselman, B D

    1994-03-01

    Array detection was compared with point detection for solutions of hen egg-white lysozyme, equine myoglobin, and ubiquitin analyzed by electrospray ionization with a magnetic sector mass spectrometer. The detection limits for samples analyzed by using the array detector system were at least 10 times lower than could be achieved by using a point detector on the same mass spectrometer. The minimum detectable quantity of protein corresponded to a signal-to-background ratio of approximately 2∶1 for a 500 amol/μL solution of hen egg-white lysozyme. However, the ultimate practical sample concentrations appeared to be in the 10-100 fmol/μL range for the analysis of dilute solutions of relatively pure proteins or simple mixtures.

  16. The Electron Drift Instrument for MMS

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Vaith, H.; Granoff, M.; Widholm, M.; Gaidos, J. A.; Briggs, B. H.; Dors, I. G.; Chutter, M. W.; Macri, J.; Argall, M.; Bodet, D.; Needell, J.; Steller, M. B.; Baumjohann, W.; Nakamura, R.; Plaschke, F.; Ottacher, H.; Hasiba, J.; Hofmann, K.; Kletzing, C. A.; Bounds, S. R.; Dvorsky, R. T.; Sigsbee, K.; Kooi, V.

    2016-03-01

    The Electron Drift Instrument (EDI) on the Magnetospheric Multiscale (MMS) mission measures the in-situ electric and magnetic fields using the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and, to a lesser extent, the gradient in the magnetic field. Although these two quantities can be determined separately by use of different electron energies, for MMS regions of interest the magnetic field gradient contribution is negligible. As a by-product of the drift determination, the magnetic field strength and constraints on its direction are also determined. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument on MMS.

  17. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  18. The FIELDS Instrument Suite for Solar Probe Plus Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  19. The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.

    PubMed

    Bale, S D; Goetz, K; Harvey, P R; Turin, P; Bonnell, J W; de Wit, T Dudok; Ergun, R E; MacDowall, R J; Pulupa, M; Andre, M; Bolton, M; Bougeret, J-L; Bowen, T A; Burgess, D; Cattell, C A; Chandran, B D G; Chaston, C C; Chen, C H K; Choi, M K; Connerney, J E; Cranmer, S; Diaz-Aguado, M; Donakowski, W; Drake, J F; Farrell, W M; Fergeau, P; Fermin, J; Fischer, J; Fox, N; Glaser, D; Goldstein, M; Gordon, D; Hanson, E; Harris, S E; Hayes, L M; Hinze, J J; Hollweg, J V; Horbury, T S; Howard, R A; Hoxie, V; Jannet, G; Karlsson, M; Kasper, J C; Kellogg, P J; Kien, M; Klimchuk, J A; Krasnoselskikh, V V; Krucker, S; Lynch, J J; Maksimovic, M; Malaspina, D M; Marker, S; Martin, P; Martinez-Oliveros, J; McCauley, J; McComas, D J; McDonald, T; Meyer-Vernet, N; Moncuquet, M; Monson, S J; Mozer, F S; Murphy, S D; Odom, J; Oliverson, R; Olson, J; Parker, E N; Pankow, D; Phan, T; Quataert, E; Quinn, T; Ruplin, S W; Salem, C; Seitz, D; Sheppard, D A; Siy, A; Stevens, K; Summers, D; Szabo, A; Timofeeva, M; Vaivads, A; Velli, M; Yehle, A; Werthimer, D; Wygant, J R

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  20. The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  1. Occupations in the Hotel Tourist Sector within the European Community. A Comparative Analysis.

    ERIC Educational Resources Information Center

    Peroni, Giovanni; Guerra, Duccio

    This report contains a directory of job profiles in the tourist/hotel sector that is based on seven national monographs. It provides an instrument for comparing factors that characterize practitioners working in the sector in Germany, Spain, France, Greece, Italy, Portugal, and the United Kingdom. A methodological note discusses study objectives,…

  2. The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J. F.; Swisdak, M.; Opher, M.

    The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant fluxmore » survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.« less

  3. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  4. View of Scientific Instrument Module to be flown on Apollo 15

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 mission. Mounted in a previously vacant sector of the Apollo Service Module, the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data.

  5. 14 CFR 27.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight and navigation instruments. 27.1303... navigation instruments. The following are the required flight and navigation instruments: (a) An airspeed indicator. (b) An altimeter. (c) A magnetic direction indicator. ...

  6. 14 CFR 27.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight and navigation instruments. 27.1303... navigation instruments. The following are the required flight and navigation instruments: (a) An airspeed indicator. (b) An altimeter. (c) A magnetic direction indicator. ...

  7. The Electron Drift Instrument for Cluster

    NASA Technical Reports Server (NTRS)

    Paschmann, G.; Melzner, F.; Frenzel, R.; Vaith, H.; Parigger, P.; Pagel, U.; Bauer, O. H.; Haerendel, G.; Baumjohann, W.; Scopke, N.

    1997-01-01

    The Electron Drift Instrument (EDI) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by use of different electron energies, be determined separately. As a by-product, the magnetic field strength is also measured. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument.

  8. 14 CFR 23.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... navigation instruments. (c) A magnetic direction indicator. ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight and navigation instruments. 23.1303... General § 23.1303 Flight and navigation instruments. Link to an amendment published at 76 FR 75760...

  9. The crucial role of the private sector.

    PubMed

    Barberis, M; Paxman, J M

    1986-12-01

    Private support for the development of family planning programs continues to grow and now includes industries that provide family planning services, commercial outlets that distribute contraceptives, community groups that help to build demand, private medical practitioners who include contraception as a part of health care, organizations that provide technical and financial assistance to developing country programs, pharmaceutical firms, and foundations that underwrite contraceptive research. Although the mix of private and public programs differs from country to country, these 2 family planning programs complement each other and often work in close partnership. The private sector has the advantages of being able to pioneer innovative programs the public sector is unwilling or unable to pursue, to bring foreign financial and technical assistance to developing countries without political implications, and to achieve financially self-sustaining family planning efforts that are linked to other development efforts. In many countries, the private sector has been instrumental in developing a national family planning program and in eliminating barriers to family planning in countries with restrictive laws and policies. The private sector has been especially important in pioneering grassroots programs that improve the status of women through education, health care, training, and economic opportunity.

  10. Conjugate Magnetic Observations in the Polar Environments by PRIMO and AUTUMNX

    NASA Astrophysics Data System (ADS)

    Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Raymond, C. A.; Connors, M. G.; Wilson, T. J.; Boteler, D. H.; Rowe, K.; Schofield, I.

    2014-12-01

    While magnetically conjugate observations by ground-based magnetometers are available at both high and low magnetic latitudes, few have been established at auroral latitudes to monitor the hemispheric asymmetry of auroral electric currents and its impact to geospace dynamics. Due to the limitations of global land areas, the only regions where conjugate ground-based magnetic observations can cover the full range of auroral latitudes are between Quebec, Canada and West Antarctica. Funded by the Canadian Space Agency, the AUTUMNX project is currently emplacing 10 ground-based magnetometers in Quebec, Canada, and will provide the magnetic field observations in the Northern Hemisphere. The proposed U.S. Polar Region Interhemispheric Magnetic Observatories (PRIMO) project plans to establish six new ground-based magnetometers in West Antarctica at L-values between 3.9 and 10.1. The instrument is based on the new low-power fluxgate magnetometer system recently developed at UCLA for operation in the polar environments. The PRIMO magnetometers will operate on the power and communications platform well proven by the POLENET project, and the six PRIMO systems will co-locate with existing ANET stations in the region for synergy in logistic support. Focusing on the American longitudinal sector and leveraging infrastructure through international collaborations, PRIMO and AUTUMNX can monitor the intensity and location of auroral electrojets in both hemispheres simultaneously, enabling the first systematic interhemispheric magnetic observations at auroral latitudes.

  11. Studies of the mass spectrometer of the PALOMA instrument dedicated to Mars atmosphere analysis from a landed platform

    NASA Astrophysics Data System (ADS)

    Goulpeau, G.; Berthelier, J.-J.; Covinhes, J.; Chassefière, E.; Jambon, A.; Agrinier, P.; Sarda, Ph.

    2003-04-01

    An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (PAyload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe), stable isotopes (C, H, O, N) and trace constituents of astrobiological interest, like CH4, H2CO, N2O, H2S, will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. Isotopic ratios have to be measured with an accuracy of about 1‰, or better, in order to provide a clear diagnostic of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns, finally to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. In order to reach these high sensitivity levels, two spectrometers of complitely different conceptions have been developed. The first one is constituted of conscutive electrostatic and magnetic sectors. It’s an application of E. G. Johnson and A. O. Nier’s previous work in that domain. Theirs parameters have been calculated in a way both angular and energetic optical aberrations from the two fields compensate each other to the second order. Simulated flights of ions in the resulting electromagnetic optic forshadow the effectiveness of the instrument. The second spectrometer is of the time of flight type. Its developpement, as a possible alternative to the magnetic system, shows the TOF spectrometer as an instrument allying great sensitivity and reduiced weight and dimensions.

  12. 14 CFR 29.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight and navigation instruments. 29.1303... navigation instruments. The following are required flight and navigational instruments: (a) An airspeed... sensitive altimeter. (c) A magnetic direction indicator. (d) A clock displaying hours, minutes, and seconds...

  13. Study of Individual Characteristic Abdominal Wall Thickness Based on Magnetic Anchored Surgical Instruments

    PubMed Central

    Dong, Ding-Hui; Liu, Wen-Yan; Feng, Hai-Bo; Fu, Yi-Li; Huang, Shi; Xiang, Jun-Xi; Lyu, Yi

    2015-01-01

    Background: Magnetic anchored surgical instruments (MASI), relying on magnetic force, can break through the limitations of the single port approach in dexterity. Individual characteristic abdominal wall thickness (ICAWT) deeply influences magnetic force that determines the safety of MASI. The purpose of this study was to research the abdominal wall characteristics in MASI applied environment to find ICAWT, and then construct an artful method to predict ICAWT, resulting in better safety and feasibility for MASI. Methods: For MASI, ICAWT is referred to the thickness of thickest point in the applied environment. We determined ICAWT through finding the thickest point in computed tomography scans. We also investigated the traits of abdominal wall thickness to discover the factor that can be used to predict ICAWT. Results: Abdominal wall at C point in the middle third lumbar vertebra plane (L3) is the thickest during chosen points. Fat layer thickness plays a more important role in abdominal wall thickness than muscle layer thickness. “BMI-ICAWT” curve was obtained based on abdominal wall thickness of C point in L3 plane, and the expression was as follow: f(x) = P1 × x2 + P2 × x + P3, where P1 = 0.03916 (0.01776, 0.06056), P2 = 1.098 (0.03197, 2.164), P3 = −18.52 (−31.64, −5.412), R-square: 0.99. Conclusions: Abdominal wall thickness of C point at L3 could be regarded as ICAWT. BMI could be a reliable predictor of ICAWT. In the light of “BMI-ICAWT” curve, we may conveniently predict ICAWT by BMI, resulting a better safety and feasibility for MASI. PMID:26228215

  14. Magnetically inferred basement structure in central Saudi Arabia

    USGS Publications Warehouse

    Johnson, P.R.; Stewart, I.C.F.

    1995-01-01

    A compilation of magnetic data acquired during the past three decades for a region in central Saudi Arabia where Precambrian basement is partly exposed on the Arabian shield and partly concealed by overlying Phanerozoic strata, shows a central sector of conspicuous N-S-trending anomalies, a heterogeneous western sector of short-wavelength, high-intensity anomalies, and an eastern sector of low- to moderate-intensity broad-wavelength anomalies. Anomalies in the western and central sectors correlate with Neoproterozoic metavolcanic, metasedimentary, and intrusive rocks of the Arabian shield and are interpreted as delineating extensions of shield-type rocks down-dip beneath Phanerozoic cover. These rocks constitute terranes making up part of a Neoproterozoic orogenic belt that underlies Northeast Africa and western Arabia and it is proposed that their magnetically indicated easternmost extent marks the concealed eastern edge of the orogenic belt in central Arabia. The flat magnetic signature of the eastern sector, not entirely accounted for as an effect of deep burial, may reflect the presence of a crustal block different in character to the terranes of the orogenic belt and, speculatively, may outline a continental block that, according to some tectonic models of the region, collided with the Neoproterozoic terranes and thereby caused their deformation and tectonic accretion.

  15. Energy saver A-sector power test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.; Flora, R.; Tool, G.

    1982-09-15

    The superconducting magnets and associated cryogenic components in A-sector represent the initial phase of installation of the Fermilab superconducting accelerator, designed to accelerate proton beams to energies of 1 TeV. Installation of the magnets, comprising one-eighth of the ring, was completed in December, 1981. Cooldown and power tests took place in the first half of 1982, concurrent with main ring use for 400 GeV high energy physics. The tests described in this paper involved 151 cryogenic components in the tunnel: 94 dipoles, 24 quadrupoles, 25 spool pieces, 3 feed cans, 4 turn-around boxes and 1 bypass. Refrigeration was supplied bymore » three satellite refrigerators, the Central Helium Liquefier, and two compressor buildings. The magnets were powered by a single power supply.« less

  16. Social profit in the context of the activities at Fluids Measurement Sector in Legal Metrology Department - Inmetro

    NASA Astrophysics Data System (ADS)

    Cinelli, L. R.; Silva, L. G.; Junior, E. A.; Almeida, R. O.

    2018-03-01

    This article was prepared in the context of the work of the Fluids Measurement Sector (Seflu) of the Legal Metrology Department of Inmetro (Dimel) in order to try to answer the following question: What is the magnitude of Social Profit generated for brazilian society from the existence of legal control of measuring instruments within the scope of this sector? In this sense, some examples of a case study containing the main measurement instruments related to the evaluation process of models performed at the Seflu are presented.

  17. Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory

    ERIC Educational Resources Information Center

    Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel

    2015-01-01

    Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…

  18. Home and Community Care Sector Accountability

    PubMed Central

    Gray, Carolyn Steele; Berta, Whitney; Deber, Raisa B.; Lum, Janet

    2014-01-01

    This paper focuses on accountability for the home and community care (HCC) sector in Ontario. The many different service delivery approaches, funding methods and types of organizations delivering HCC services make this sector highly heterogeneous. Findings from a document analysis and environmental scan suggest that organizations delivering HCC services face multiple accountability requirements from a wide array of stakeholders. Government stakeholders tend to rely on regulatory and expenditure instruments to hold organizations to account for service delivery. Semi-structured key informant interview respondents reported that the expenditure-based accountability tools being used carried a number of unintended consequences, both positive and negative. These include an increased organizational focus on quality, shifting care time away from clients (particularly problematic for small agencies), dissuading innovation, and reliance on performance indicators that do not adequately support the delivery of high-quality care. PMID:25305389

  19. Electron Pitch Angle Variations Recorded at the High Magnetic Latitude Boundary Layer by the NUADU Instrument on the TC-2 Spacecraft

    NASA Astrophysics Data System (ADS)

    Lu, L.; McKenna-Lawlor, S.; Barabash, S.; Liu, Z.; Balaz, J.; Brinkfeldt, K.; Strhansky, I.; Shen, C.; Shi, J.; Cao, J.; Pu, Z.; Fu, S.; Gunell, H.; Kudela, K.; Roelof, E. C.; Brandt, P. C.; Dandouras, I.; Zhang, T.; Carr, C.; Fazakerley, A.

    2005-12-01

    During the first on orbit commission, with the deflection high voltage zero, the NUADU (NeUtral Atom Detector Unit) instrument aboard TC-2, with its high temporal-spatial resolution recorded 4d solid angle images of energetic particles spiraling around the geomagnetic field lines with different configuration at high northern magnetic latitude L>10. The ambient magnetic field and particles in different energy spectrum were simultaneously measured by the magnetometer experiment (FGM), the plasma electron and current experiment (PEACE), the low energy ion detector (LEID), and the high energy electron detector (HEED). The up-flowing electron beams made the pitch angle distribution (PAD) ring like configuration, and even concentrated toward the field lines to form a dumbbell-type PAD. In integration of the variations of ambient magnetic field and particles in different energy spectrums, a temporal string magnetic bottle model was proposed which might be formed by the disturbance of the magnetic pulse. Changes in the particle pitch angle diffusion may be associated with electron acceleration along the geomagnetic field lines.

  20. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  1. A Magnetic Nanoparticle Based Nucleic Acid Isolation and Purification Instrument for DNA Extraction of Escherichia Coli O157: H7.

    PubMed

    Chen, Yahui; Lin, Jianhan; Jiang, Qin; Chen, Qi; Zhang, Shengjun; Li, Li

    2016-03-01

    The objective of this study was to evaluate the performance of a nucleic acid isolation and purification instrument using Escherichia coli O157:H7 as the model. The instrument was developed with magnetic nanoparticles for efficiently capturing nucleic acids and an intelligent mechanical unit for automatically performing the whole nucleic acid extraction process. A commercial DNA extraction kit from Huier Nano Company was used as reference. Nucleic acids in 1 ml of E. coli O157: H7 at a concentration of 5 x 10(8) CFU/mL were extracted by using this instrument and the kit in parallel and then detected by an ultraviolet spectrophotometer to obtain A260 values and A260/A280 values for the determination of the extracted DNA's quantity and purity, respectively. The A260 values for the instrument and the kit were 0.78 and 0.61, respectively, and the A260/A280 values were 1.98 and 1.93. The coefficient of variations of these parallel tests ranged from 10.5% to 16.7%. The results indicated that this nucleic acid isolation and purification instrument could extract a comparable level of nucleic acid within 50 min compared to the commercial DNA extraction kit.

  2. Magnetic Recording.

    ERIC Educational Resources Information Center

    Lowman, Charles E.

    A guide to the technology of magnetic recorders used in such fields as audio recording, broadcast and closed-circuit television, instrumentation recording, and computer data systems is presented. Included are discussions of applications, advantages, and limitations of magnetic recording, its basic principles and theory of operation, and its…

  3. Home and community care sector accountability.

    PubMed

    Steele Gray, Carolyn; Berta, Whitney; Deber, Raisa B; Lum, Janet

    2014-09-01

    This paper focuses on accountability for the home and community care (HCC) sector in Ontario. The many different service delivery approaches, funding methods and types of organizations delivering HCC services make this sector highly heterogeneous. Findings from a document analysis and environmental scan suggest that organizations delivering HCC services face multiple accountability requirements from a wide array of stakeholders. Government stakeholders tend to rely on regulatory and expenditure instruments to hold organizations to account for service delivery. Semi-structured key informant interview respondents reported that the expenditure-based accountability tools being used carried a number of unintended consequences, both positive and negative. These include an increased organizational focus on quality, shifting care time away from clients (particularly problematic for small agencies), dissuading innovation, and reliance on performance indicators that do not adequately support the delivery of high-quality care. Copyright © 2014 Longwoods Publishing.

  4. Is There a Magnet School Effect? Using Meta-Analysis to Explore Variation in Magnet School Success. CRESST Report 843

    ERIC Educational Resources Information Center

    Wang, Jia; Schweig, Jonathan D.; Herman, Joan L.

    2014-01-01

    Magnet schools are one of the largest sectors of choice schools in the United States. In this study, we explored whether there is heterogeneity in magnet school effects on student achievement by examining the effectiveness of 24 recently funded magnet schools in 5 school districts across 4 states. We used a two-step analysis: First, separate…

  5. Modular Approach to Instrumental Analysis.

    ERIC Educational Resources Information Center

    Deming, Richard L.; And Others

    1982-01-01

    To remedy certain deficiencies, an instrument analysis course was reorganized into six one-unit modules: optical spectroscopy, magnetic resonance, separations, electrochemistry, radiochemistry, and computers and interfacing. Selected aspects of the course are discussed. (SK)

  6. Specific feature of magnetooptical images of stray fields of magnets of various geometrical shapes

    NASA Astrophysics Data System (ADS)

    Ivanov, V. E.; Koveshnikov, A. V.; Andreev, S. V.

    2017-08-01

    Specific features of magnetooptical images (MOIs) of stray fields near the faces of prismatic hard magnetic elements have been studied. Attention has primarily been focused on MOIs of fields near faces oriented perpendicular to the magnetic moment of hard magnetic elements. With regard to the polar sensitivity, MOIs have practically uniform brightness and geometrically they coincide with the figures of the bases of the elements. With regard to longitudinal sensitivity, MOIs consist of several sectors, the number of which is determined by the number of angles of the image. Each angle is divided by the bisectrix into two sectors of different brightnesses; therefore, the MOI of a triangular magnet consists of three sectors. A rectangle consists of four sectors separated by the bisectrices of the interior angles. In all types of figures, these lines converge at the center of the figure and form a singular point of the source or sink type.

  7. View of model of Scientific Instrument Module to be flown on Apollo 15

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Close-up view of a scale model of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 mission. Mounted in a previously vacant sector of the Apollo service module, the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data.

  8. Photovoltaic remote instrument applications: Assessment of the near-term market

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Scudder, L. R.; Poley, W. A.; Bifano, W. J.

    1977-01-01

    A preliminary assessment of the near term market for photovoltaic remote instrument applications is presented. Among the potential users, two market sectors are considered: government and private. However, the majority of the remote systems studied are operated by or for the federal, state, or local governments. Environmental monitoring and surveillance remote instrument systems are discussed. Based on information obtained in this preliminary market survey, a domestic, civilian market of at least 1.3 MW sub pk is forecast for remote instrument systems. This estimate is exclusive of several potentially large scale markets for remote instruments which are identified but for which no hard data is available.

  9. 14 CFR 23.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... navigation instruments: (a) An airspeed indicator. (b) An altimeter. (c) A magnetic direction indicator. (d... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight and navigation instruments. 23.1303... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment...

  10. Qualitative analysis of the magnetic data collected by the Embrace MagNet in comparison to absolute measurements made by Intermagnet in Vassouras-RJ

    NASA Astrophysics Data System (ADS)

    Chen, Sony Su; Moro, Juliano; Araujo Resende, Laysa Cristina; Denardini, Clezio Marcos

    2016-07-01

    The Embrace Magnetometer Network (Embrace MagNet) is a network of three-axis fluxgate magnetometers using single bars with high level of magnetic saturation, covered with two copper coils, one for the excitation and the second for sensing the external field. It is planned to cover most of the Easter Southern American longitudinal sector in order to fulfill the gap for magnetic measurement available on-line. The availability of fast internet, reliable energy supply and easy access were the key point for deciding the location of the magnetometer stations of the network. Up to now, the main characteristic of this network is the severe sensibility matching process among all the magnetometers composing it. Now, in order to validate the magnetic data collected by the elements of the Embrace MagNet in comparison to absolute measurements, we performed a study about the correlation between the data collected by the fluxgate magnetometer provided by Embrace MagNet and an absolute magnetometer installed by Intermagnet in the same observatory. For this study, we have used data collected in Vassouras-RJ, in Brazil, covering the period from June to December 2015. The analysis consist of: (a) selecting the 5 quietest days and the 5 most disturbed days of each month based on the Kp index; (b) deducing the local midnight value from the data collected by both instruments; (c) correlating the data collected by the variometer with the absolute measurement day-by-day; (d) grouping the results as Winter (June, July, and August), Equinox (September and October) and Summer (November and December); (e) obtaining the linear correlations factor for each group. The averaged correlation factors and the daily variations of the magnetic data are presented and discussed in terms of the magnetic activity and the season variation.

  11. Magnetic suspension and pointing system

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1978-01-01

    An apparatus is reported for accurate pointing of instruments on a carrier vehicle and for isolation of the instruments from the vehicle's motion disturbances. The apparatus includes two assemblies with connecting interfaces. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plase which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides attitude fine pointing and roll positioning of the instruments as well as six degree-of-freedom isolation from carrier motion disturbances.

  12. The problems and prospects of the public-private partnership in the Russian fuel and energy sector

    NASA Astrophysics Data System (ADS)

    Nikitenko, SM; Goosen, EV

    2017-02-01

    This article highlights some opportunities for shifting the paradigm for the development of natural resources in the Russian fuel and energy sector using public-private partnership instruments. It shows three main directions for developing public-private partnerships in the area of subsoil use and emphasizes the role of innovations in implementing the most promising projects in the fuel and energy sector of Russia.

  13. Three Dimensional Sector Design with Optimal Number of Sectors

    NASA Technical Reports Server (NTRS)

    Xue, Min

    2010-01-01

    In the national airspace system, sectors get overloaded due to high traffic demand and inefficient airspace designs. Overloads can be eliminated in some cases by redesigning sector boundaries. This paper extends the Voronoi-based sector design method by automatically selecting the number of sectors, allowing three-dimensional partitions, and enforcing traffic pattern conformance. The method was used to design sectors at Fort-Worth and Indianapolis centers for current traffic scenarios. Results show that new designs can eliminate overloaded sectors, although not in all cases, reduce the number of necessary sectors, and conform to major traffic patterns. Overall, the new methodology produces enhanced and efficient sector designs.

  14. Ground-based Instrumentations in Africa and its Scientific and Societal Benefits to the region

    NASA Astrophysics Data System (ADS)

    Yizengaw, Endawoke

    2012-07-01

    Much of what we know about equatorial physics is based on Jicamarca Incoherent Scattering Radar (ISR) observations. However, Jicamarca is in the American sector where the geomagnetic equator dips with a fairly large excursion between the geomagnetic and geodetic equator. On the other hand, in the African sector the geomagnetic equator is fairly well aligned with the geodetic equator. Satellites (e.g. ROCSAT, DMSP, C/NOFS) observations have also indicated that the equatorial ionosphere in the African sector responds differently than other sectors. However, these satellite observations have not been confirmed, validated or studied in detail by observations from the ground due to lack of suitable ground-based instrumentation in the region. Thus, the question of what causes or drives these unique density irregularities in the region is still not yet fully understood, leading the investigation of the physics behind each effect into speculative dead ends. During the past couple of years very few (compared to the land-mass that Africa covers) small instruments, like GPS receivers, magnetometers, VHF, and VLF have been either deployed in the region or in process. However, to understand the most dynamic region in terms of ionospheric irregularities, those few instruments are far from enough. Recently, significant progress has been emerging in securing more ground-based instrument into the region, and thus three ionosondes are either deployed or in process. In this paper, results from AMBER magnetometer network, ionosonde, and GPS receivers will be presented. By combining the multi instrument independent observations, this paper will show a cause and effect of space weather impact in the region for the first time. While the magnetometer network, such as those operated under the umbrella of AMBER project, estimates the fundamental electrodynamics that governs equatorial ionospheric motion, the GPS receivers will track the structure and dynamics of the ionosphere. In addition

  15. Soho and Cluster - The scientific instruments

    NASA Technical Reports Server (NTRS)

    Domingo, V.; Schmidt, R.; Poland, A. I.; Goldstein, M. L.

    1988-01-01

    The mission goals and instrumentation of the Soho and cluster spacecraft to be launched in 1995 as part of the international Solar-Terrestrial Science Program are discussed. Instruments such as normal-incidence, grazing-incidence, and EUV coronal spectrometers aboard the Soho spacecraft will study the origin of the solar wind and the physical properties of the solar atmosphere. The four Cluster spacecraft will measure electric and magnetic fields, plasmas, and energetic particles using instruments including a wide-band receiver system, a relaxation sounder, and a search coil magnetometer.

  16. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    NASA Astrophysics Data System (ADS)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  17. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25... may be accomplished automatically or by manual means. (3) If an instrument presenting navigation data... gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier and...

  18. Course on Instruments Updates Teachers.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Describes a course in chemical instrumentation for high school chemistry teachers, paid for by Union Carbide. Teachers used spectrophotometer, nuclear magnetic resonance spectrometer, atomic absorption spectrograph, gas chromatograph, liquid chromatograph and infrared spectrophotometer. Also describes other teacher education seminars. (JM)

  19. Applications of aerospace technology in the public sector

    NASA Technical Reports Server (NTRS)

    Anuskiewicz, T.; Johnston, J.; Zimmerman, R. R.

    1971-01-01

    Current activities of the program to accelerate specific applications of space related technology in major public sector problem areas are summarized for the period 1 June 1971 through 30 November 1971. An overview of NASA technology, technology applications, and supporting activities are presented. Specific technology applications in biomedicine are reported including cancer detection, treatment and research; cardiovascular diseases, diagnosis, and treatment; medical instrumentation; kidney function disorders, treatment, and research; and rehabilitation medicine.

  20. MSc degree in color technology for the automotive sector

    NASA Astrophysics Data System (ADS)

    Martinez-Verdu, F.; Perales, E.; Chorro, E.; Viqueira, V.; Gilabert, E.

    2014-07-01

    Nowadays, the measurement and management of color quality of the gonio-apparent materials is complex, but highly demanded in many industrial sectors, as automotive, cosmetics, plastics for consumer electronics, printing inks, architectural coatings, etc. It is necessary to control complex instrumentation and to do visual assessments of texture and color differences to get, for instance, a visual harmony in car bodies; and a profound knowledge of physics and chemistry of special-effect pigments for their optical formulation to obtain attractive visual effects in coatings, plastics, etc, combining among them and with solid pigments. From University of Alicante, for the academic year 2013-14, we are organizing the first MSc degree in Color Technology for the Automotive Sector, with a design of contents embracing CIE colorimetry and visual perception, included the AUDI2000 color difference formula, instrumentation and color management software, fundamentals of coatings and plastics in the automotive sector, and, optical formulation of pigments. The MSc syllabus, with 60 ECTS, is designed to be taught in two semesters: from September to February with on classroom theoretical and practical activities, and, from March to June at virtual level, with internships of training in some companies. Therefore, the MSc Thesis would be the performance report during the internship in companies or research institutions. Some multinational companies, both as car makers and coatings and plastics providers, from European and non-European countries have already shown their support and interest in welcoming students for specific training, even some job offers when the first MSc edition finishes.

  1. Transition from the Unipolar Region to the Sector Zone: Voyager 2, 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Ness, N. F.; Richardson, J. D.

    2017-05-01

    We discuss magnetic field and plasma observations of the heliosheath made by Voyager 2 (V2) during 2013 and 2014 near solar maximum. A transition from a unipolar region to a sector zone was observed in the azimuthal angle λ between ˜2012.45 and 2013.82. The distribution of λ was strongly singly peaked at 270^\\circ in the unipolar region and double peaked in the sector zone. The δ-distribution was strongly peaked in the unipolar region and very broad in the sector zone. The distribution of daily averages of the magnetic field strength B was Gaussian in the unipolar region and lognormal in the sector zone. The correlation function of B was exponential with an e-folding time of ˜5 days in both regions. The distribution of hourly increments of B was a Tsallis distribution with nonextensivity parameter q = 1.7 ± 0.04 in the unipolar region and q = 1.44 ± 0.12 in the sector zone. The CR-B relationship qualitatively describes the 2013 observations, but not the 2014 observations. A 40 km s-1 increase in the bulk speed associated with an increase in B near 2013.5 might have been produced by the merging of streams. A “D sheet” (a broad depression in B containing a current sheet moved past V2 from days 320 to 345, 2013. The R- and N-components of the plasma velocity changed across the current sheet.

  2. Design of a frequency domain instrument for simultaneous optical tomography and magnetic resonance imaging of small animals

    NASA Astrophysics Data System (ADS)

    Masciotti, James M.; Rahim, Shaheed; Grover, Jarrett; Hielscher, Andreas H.

    2007-02-01

    We present a design for frequency domain instrument that allows for simultaneous gathering of magnetic resonance and diffuse optical tomographic imaging data. This small animal imaging system combines the high anatomical resolution of magnetic resonance imaging (MRI) with the high temporal resolution and physiological information provided by diffuse optical tomography (DOT). The DOT hardware comprises laser diodes and an intensified CCD camera, which are modulated up to 1 GHz by radio frequency (RF) signal generators. An optical imaging head is designed to fit inside the 4 cm inner diameter of a 9.4 T MRI system. Graded index fibers are used to transfer light between the optical hardware and the imaging head within the RF coil. Fiducial markers are integrated into the imaging head to allow the determination of the positions of the source and detector fibers on the MR images and to permit co-registration of MR and optical tomographic images. Detector fibers are arranged compactly and focused through a camera lens onto the photocathode of the intensified CCD camera.

  3. The FIELDS Instrument Suite for Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  4. The FIELDS Instrument Suite for Solar Probe Plus

    PubMed Central

    Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.

    2018-01-01

    NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144

  5. The dynamics of total outputs of Indonesian industrial sectors: A further study

    NASA Astrophysics Data System (ADS)

    Zuhdi, Ubaidillah

    2017-03-01

    The purpose of the current study is to extend the previous studies which analyze the impacts of final demands modifications on the total outputs of industrial sectors of a particular country. More specifically, the study conducts the analysis regarding the impacts on the total outputs of Indonesian industrial sectors. The study employs a demand-pull Input-Output (IO) quantity model, one of the calculation instruments in the IO analysis. The study focuses on seventeen industries. There are two scenarios used in this study, namely other final demands and import modifications. The “whole sector change” condition is implemented in the calculations. An initial period in this study is 2010. The results show that the positive impacts on the total outputs of focused sectors are distributed by scenario 1, the change of other final demands. On the contrary, the negative impacts are delivered by scenario 2, the modification of imports. The suggestions for improving the total outputs of discussed industries are based on the results.

  6. Increased Inhibition in Non-Primary Motor Areas of String-Instrument Players: A Preliminary Study with Paired-Pulse Transcranial Magnetic Stimulation

    PubMed Central

    Vaalto, Selja; Julkunen, Petro; Säïsänen, Laura; Könönen, Mervi; Määttä, Sara; Karhu, Jari

    2016-01-01

    Background: The muscle representations in non-primary motor area (NPMA) are located in the dorsal premotor area (PMd) and in the border region between the premotor area and the supplementary motor area (SMA). Objective: We characterized the plasticity of intracortical inhibitory and excitatory circuits in muscle representations in primary motor cortex (M1) and in NPMA related to acquired fine motor skills. We compared local cortical inhibition and facilitation balance in M1 and in NPMA between control subjects (n = 6) and right-handed string-instrument players (n = 5). Methods: Navigated transcranial magnetic stimulation (TMS) was used to compare motor thresholds (MTs), motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in non-dominant hand muscle representations in M1 and NPMA. Results: String-instrument players showed reduced SICI in M1 in the actively used left hand abductor digiti minimi (ADM) muscle representation at 3 ms inter-stimulus interval (ISI) with a conditioning stimulus (CS) intensity of 80% of MT and increased SICI in NPMA in ADM representation at 2 ms ISI and CS intensity of 50% of MT in comparison with controls. No differences between string-instrument players and controls were found for the SICI in the left hand opponens pollicis (OP) muscle representation, which is a muscle not intensively trained in string-instrument players. Conclusions: These preliminary results indicate that the stronger inhibition in motor representations outside M1 in string-instrument players may be crucial when accurate movements of single muscles must be performed. In contrast, weaker inhibition in M1 in string-instrument players may benefit the performance of fast finger movements. PMID:29765844

  7. The Ionospheric Impact of an ICME-Driven Sheath Region Over Indian and American Sectors in the Absence of a Typical Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John

    2018-05-01

    On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.

  8. Using analog instruments in Tracker video-based experiments to understand the phenomena of electricity and magnetism in physics education

    NASA Astrophysics Data System (ADS)

    Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo

    2018-05-01

    Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.

  9. NEWTON - NEW portable multi-sensor scienTific instrument for non-invasive ON-site characterization of rock from planetary surface and sub-surfaces

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.

    2017-09-01

    In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.

  10. Paleomagnetic and AMS studies of the El Castillo ignimbrite, central-east Mexico: Source and rock magnetic nature

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Agarwal, A.; Caballero-Miranda, C.; García-Amador, B. I.; Morales-Barrera, W.; Rodríguez-Elizarraráz, S.; Rodríguez-Trejo, A.

    2017-04-01

    Lithological, petromagnetic, paleomagnetic and magnetic fabric studies are employed to determine the flow direction and the location of the source of the, 2.44 to 2.21 Ma, El Castillo ignimbrite in the central-east Mexico. Based on the increasing matrix to pumice ratio and decreasing pumice size, the ignimbrite field is divided into the northwestern, central and south-southeastern sectors. Lithological comparisons among the three sectors reveal that the ignimbrite had flowed from NW to SE, and the source is in the NW part of the study area. Thermomagnetic results concur with the increasing matrix proportions from the proximal to the distal sector. The coercivity and magnetization ratios of the hysteresis parameters are lower in the SE sector than in the NW and central sectors. The dominant flow direction inferred through magnetic fabrics, at most sites, is NW to SE, which coincides with the direction inferred from lithological comparisons. However, at some sites magnetic fabrics demonstrate flow towards ENE or other various directions. The paleomagnetic analysis and field observations reveal that these anomalous directions are a consequence of anticlockwise block rotation and tilting due to normal and lateral faulting in the region.

  11. Instrument interface description for NOAA 2000 instruments with European morning spacecraft and/or NOAA-OPQ spacecraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose is to describe at a high level the common interface provisions and constraints placed on the NOAA-2000 instruments and the interfacing spacecraft elements in the following areas: electrical interface, mechanical interface, thermal interface, magnetic interface, electromagnetic compatibility, structural/mechanical environmental interface, contamination control, and the ionizing radiation environment. The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  12. Review of high field superconducting magnet development at Oxford Instruments

    NASA Astrophysics Data System (ADS)

    Brown, F. J.; Kerley, N. W.; Knox, R. B.; Timms, K. W.

    1996-02-01

    Present commercial development activity for high field superconducting magnets is focused clearly in three directions. The development of solenoid magnets with flux densities in excess of 20 T, the production of highly homogeneous fields at 20 T, and development of large split pair magnets in excess of 12 T. Recent developments in split pair technology allows us to build magnets with useful access, transverse to the field, up to 15 T. Compact solenoid magnets to 20 T have been available commercially for over 3 yr now with a progressive increment in bore size, providing associated engineering challenges. A 20 T solenoid with a clear bore of 52 mm and a homogeneity of 0.1% is now a standard production item. Improving the homogeneity to the 1 ppm level involves re-assessment of critical design parameters and choice of materials. Our development over the last twelve months has culminated in a 20 T solenoid with base homogeneity of 5 ppm over a 10 mm sphere. In order to realise persistent fields in excess of 20 T, requires the priority on development to be switched from engineering and manufacturing towards material development and enhancement. We present the findings and conclusions of our high field development program over the last 3 yr, together with an outline of our requirements and activities in materials and engineering leading to the next step in high field magnet manufacture, using conventional low Tc conductors.

  13. The effect of environmental regulation on firms' competitive performance: the case of the building & construction sector in some EU regions.

    PubMed

    Testa, Francesco; Iraldo, Fabio; Frey, Marco

    2011-09-01

    There is a considerable debate on the effects of environmental regulation on competitive performance. Based on survey data, this paper analyzes the two main research questions, derived from literature, on the links between environmental regulation and competitiveness, by focusing on firms operating in the building and construction sector, i.e.: 1) whether environmental policy stringency affects the competitive performance of firms in the building and construction sector 2) and how a specific form of environmental regulation (direct regulation, economic instruments and soft instruments) affects this performance? By applying a regression analysis, we find that a more stringent environmental regulation, measured by inspection frequency, provides a positive impulse for increasing investments in advanced technological equipment and innovative products and on business performance. Moreover, a well-designed "direct regulation" appears to be the most effective policy instrument for prompting the positive impact of environmental policies on innovation and intangible performance while economic instruments do negatively affect business performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  15. Antennas and Electromagnetics Instrumentation for Research and Education

    DTIC Science & Technology

    2016-06-01

    Antennas and Electromagnetics Instrumentation for Research and Education The objective of this proposal is to enhance the instrumentation of FIU’s... ElectroMagnetics Lab (EMLab) directed by Dr. Georgakopoulos and create a state-of-the art lab that will support the following: (a) Dr. Georgakopoulos...funded research on reconfigurable antennas and wireless power transfer, (b) other research on advanced electromagnetic technologies that support

  16. An analysis of the characteristics of Indonesian industrial sectors: 2005-2010

    NASA Astrophysics Data System (ADS)

    Zuhdi, Ubaidillah

    2017-10-01

    The purpose of the current study is to analyze the characteristics of Indonesian industrial sectors from 2005 through 2010. The study employs the analysis instruments from the Input-Output (IO) analysis, namely the indices of the power of dispersion, and the sensitivity of dispersion. For 2005 and 2010, the study focuses on nine and seventeen industries, respectively. The results show that industry 3, manufacturing, placed the quadrant I on the analysis period. The fact shows that, from 2005 through 2010, the industry had a strong influence on the Indonesian economic activities, and received high impacts from the external aspects. In other words, the industry has great potency for the Indonesian economy. From the results one can also see that sector 4, electricity and gas, included in the quadrant I in 2010. This fact explains that the sector has also great potency for the economic activities of Indonesia. Thus, the Indonesian government should prioritize the industries development.

  17. Short Summary European Reports on Retail Sector, Motor Vehicle Repair and Sales Sector, Food and Beverages Sector.

    ERIC Educational Resources Information Center

    European Centre for the Development of Vocational Training, Berlin (Germany).

    This document is composed of European synthesis reports on retail trade, the agro-food sector, and the motor vehicle sales and repair sector. They are based on the most important findings of the European report and the 12 national reports for each sector. Section 1, "Retail Sector," deals in part 1 with the structure of retailing in the…

  18. Parallel Electric Field on Auroral Magnetic Field Lines.

    NASA Astrophysics Data System (ADS)

    Yeh, Huey-Ching Betty

    1982-03-01

    The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field

  19. Single-crystal diffraction instrument TriCS at SINQ

    NASA Astrophysics Data System (ADS)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  20. The magnetic field investigation on Cluster

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  1. Principles of Space Plasma Wave Instrument Design

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1998-01-01

    Space plasma waves span the frequency range from somewhat below the ion cyclotron frequency to well above the electron cyclotron frequency and plasma frequency. Because of the large frequency range involved, the design of space plasma wave instrumentation presents many interesting challenges. This chapter discusses the principles of space plasma wave instrument design. The topics covered include: performance requirements, electric antennas, magnetic antennas, and signal processing. Where appropriate, comments are made on the likely direction of future developments.

  2. The shape and location of the sector boundary surface in the inner solar system. [Helios observations

    NASA Technical Reports Server (NTRS)

    Villante, U.; Bruno, R.; Mariani, F.; Burlaga, L. F.; Ness, N. F.

    1979-01-01

    Simultaneous observations by Helios-1 and Helios-2 over four solar rotations were used to determine the latitudinal dependence of the polarity of the interplanetary magnetic field within plus or minus 7.23 deg of the solar equator and within 1 AU. The longitudinal and latitudinal positions of the sector boundary crossing are consistent with a warped sector boundary which extended from the sun to 1 AU and was inclined approximately 10 deg with respect to the heliographic equator. This is consistent with simultaneous Pioneer 11 observations, which showed unipolar fields at latitude approximately 16 deg at heliocentric distances greater than 3.5 AU. Two sectors were observed at southern latitudes; however, four sectors were observed at northern latitudes on two rotations, indicating a distortion from planarity of the sectory boundary surface.

  3. Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Glazebrook, R. T.

    2016-10-01

    1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.

  4. Holographic vortices in the presence of dark matter sector

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wysokinski, Karol I.

    2015-12-01

    The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.

  5. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  6. Method and system for controlling start of a permanent magnet machine

    DOEpatents

    Walters, James E.; Krefta, Ronald John

    2003-10-28

    Method and system for controlling a permanent magnet machine are provided. The method provides a sensor assembly for sensing rotor sector position relative to a plurality of angular sectors. The method further provides a sensor for sensing angular increments in rotor position. The method allows starting the machine in a brushless direct current mode of operation using a calculated initial rotor position based on an initial angular sector position information from the sensor assembly. Upon determining a transition from the initial angular sector to the next angular sector, the method allows switching to a sinusoidal mode of operation using rotor position based on rotor position information from the incremental sensor.

  7. The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T

    2015-02-01

    Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.

  8. Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) for remote high latitude geospace data collection

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.

    2014-06-01

    We present the development considerations and design for ground based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space weather related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as dual-frequency gps receiver and an HF radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.

  9. Advance on solar instrumentation in China

    NASA Astrophysics Data System (ADS)

    Yan, Yihua

    2015-08-01

    The solar observing facilities in China are introduced with the emphasis on the development in recent years and future plans for both ground and space-based solar instrumentations. The recent solar instruments are as follows: A new generation Chinese Spectral Radioreliograph (CSRH) has been constructed at Mingantu Observing Station in Zhengxiangbaiqi, inner Mongolia of China since 2013 and is in test observations now. CSRH has two arrays with 40 × 4.5 m and 60 × 2 m parabolic antennas covering 0.4-2 GHz and 2-15 GHz frequency range. CSRH is renamed as MUSER (Mingantu Ultrawide Spectral Radiheliograph) after its accomplishment. A new 1 m vacuum solar telescope (NVST) has been installed in 2010 at Fuxian lake, 60 km away from Kunming, Yunana. At present it is the best seeing place in China. A new telescope called ONSET (Optical and NIR Solar Eruption Tracer) has been established at the same site as NVST in 2011. ONSET has been put into operation since 2013. For future ground-based plans, Chinese Giant Solar Telescope (CGST) with spatial resolution equivalent to 8m and effective area of 5m full-aperture telescope has been proposed and was formally listed into the National Plans of Major Science & Technology Infrastructures in China. The pre-study and site survey for CGST have been pursued. A 1-meter mid-infrared telescope for precise measurement of the solar magnetic field has been funded by NSFC in 2014 as a national major scientific instrument development project. This project will develop the first mid-infrared solar magnetic observation instrument in the world aiming at increasing the precision of the transverse magnetic field measurement by one order of magnitude. For future ground-based plans, we promote the Deep-space Solar Observatory (DSO) with 1-m aperture telescope to be formally funded. The ASO-S (an Advanced Space-based Solar Observatory) has been supported in background phase by Space Science Program as a small mission. Other related space solar

  10. 14 CFR 23.1327 - Magnetic direction indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Magnetic direction indicator. 23.1327... Instruments: Installation § 23.1327 Magnetic direction indicator. (a) Except as provided in paragraph (b) of this section— (1) Each magnetic direction indicator must be installed so that its accuracy is not...

  11. [Topic identification for cross-sectoral quality assurance in stroke and TIA treatment].

    PubMed

    Meyer, Sven; Willms, Gerald; Broge, Björn; Szecsenyi, Joachim

    2016-10-01

    The development of cross-sectoral quality assurance programs usually requires extensive topic identification. Illustrated by the complex processes of care for stroke and transient ischemic attacks (TIAs), a method for comprehensive topic identification is presented. The first step involves a thorough literature search in terms of systematic reviews, health technology assessments, guidelines, studies into healthcare delivery and the use of specific instruments. Routine data as well as epidemiologic studies are used to analyze the reality of service provision. In addition, experts are consulted to gain expertise concerning deficits of care, approaches to quality assurance and experience with existing quality assurance programs. Furthermore individual patient experiences are collected to add the patients' perceptions of care. Because of the limitation on the regulatory scope of Book V of the German Social Code, which, in this case, was necessary, another source of information was the legal framework and its impact on rescue chain, acute treatment and rehabilitation. Existent quality management systems, accreditations and quality assurance programs in prevention, acute treatment and rehabilitation have been searched in order to avoid any overlap with existing measures. After identifying a total of 71 quality targets according to deficits of care, recommendations for care and expert opinions in primary and secondary prevention, rescue chain, acute treatment, rehabilitation and supply of assistive equipment and therapies, respectively, the usability of instruments was tested. These instruments included case documentation, patient surveys and routine data. 14 quality targets proved to be reproducible by these instruments and were included in the recommendations for a cross-sectoral quality assurance program for stroke and TIA. Copyright © 2016. Published by Elsevier GmbH.

  12. A systematic review of instruments for measuring outcomes in economic evaluation within aged care.

    PubMed

    Bulamu, Norma B; Kaambwa, Billingsley; Ratcliffe, Julie

    2015-11-09

    This paper describes the methods and results of a systematic review to identify instruments used to measure quality of life outcomes in older people. The primary focus of the review was to identify instruments suitable for application with older people within economic evaluations conducted in the aged care sector. Online databases searched were PubMed, Medline, Scopus, and Web of Science, PsycInfo, CINAHL, Embase and Informit. Studies that met the following criteria were included: 1) study population exclusively above 65 years of age 2) measured health status, health related quality of life or quality of life outcomes more broadly through use of an instrument developed for this purpose, 3) used a generic preference based instrument or an older person specific preference based or non-preference based instrument or both, and 4) published in journals in the English language after 2000. The most commonly applied generic preference based instrument in both the community and residential aged care context was the EuroQol - 5 Dimensions (EQ-5D), followed by the Adult Social Care Outcomes Toolkit (ASCOT) and the Health Utilities Index (HUI2/3). The most widely applied older person specific instrument was the ICEpop CAPability measure for Older people (ICECAP-O) in both community and residential aged care. In the absence of an ideal instrument for incorporating into economic evaluations in the aged care sector, this review recommends the use of a generic preference based measure of health related quality of life such as the EQ-5D to obtain quality adjusted life years, in combination with an instrument that has a broader quality of life focus like the ASCOT, which was designed specifically for evaluating interventions in social care or the ICECAP-O, a capability measure for older people.

  13. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, A.T.; Clark, D.J.; Kunkel, W.B.

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show thatmore » it has a uniformity on the order of 2 parts in 10{sup 4}.« less

  14. Magnetometer instrument team studies for the definition phase of the outer planets grand tour

    NASA Technical Reports Server (NTRS)

    Coleman, P. J., Jr.

    1972-01-01

    The objectives of magnetic field investigations on missions to the outer planets were defined as well as an instrumentation system, a program of studies and instrument development tasks was proposed for the mission definition phase of the Outer Planets Grand Tour project. A report on the status of this program is given. Requirements were also established for the spacecraft and the mission which would insure their compatibility with the magnetic field investigation proposed for the outer planets missions and developed figures of merit for encounter trajectories. The spacecraft-instrumentation interface and the on-board data handling system were defined in various reports by the Project Team and in the reports by the Science Steering Group. The defining program for exploring the outer planets within the more restrictive constraints of the Mariner Jupiter-Saturn project included defining a limited magnetic field investigation.

  15. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  16. Sq field characteristics at Phu Thuy, Vietnam, during solar cycle 23: comparisons with Sq field in other longitude sectors

    NASA Astrophysics Data System (ADS)

    Pham Thi Thu, H.; Amory-Mazaudier, C.; Le Huy, M.

    2011-01-01

    Quiet days variations in the Earth's magnetic field (the Sq current system) are compared and contrasted for the Asian, African and American sectors using a new dataset from Vietnam. This is the first presentation of the variation of the Earth's magnetic field (Sq), during the solar cycle 23, at Phu Thuy, Vietnam (geographic latitudes 21.03° N and longitude: 105.95° E). Phu Thuy observatory is located below the crest of the equatorial fountain in the Asian longitude sector of the Northern Hemisphere. The morphology of the Sq daily variation is presented as a function of solar cycle and seasons. The diurnal variation of Phu Thuy is compared to those obtained in different magnetic observatories over the world to highlight the characteristics of the Phu Thuy observations. In other longitude sectors we find different patterns. At Phu Thuy the solar cycle variation of the amplitude of the daily variation of the X component is correlated to the F.10.7 cm solar radiation (~0.74). This correlation factor is greater than the correlation factor obtained in two observatories located at the same magnetic latitudes in other longitude sectors: at Tamanrasset in the African sector (~0.42, geographic latitude ~22.79) and San Juan in the American sector (~0.03, geographic latitude ~18.38). At Phu Thuy, the Sq field exhibits an equinoctial and a diurnal asymmetry: - The seasonal variation of the monthly mean of X component exhibits the well known semiannual pattern with 2 equinox maxima, but the X component is larger in spring than in autumn. Depending of the phase of the sunspot cycle, the maximum amplitude of the X component varies in spring from 30 nT to 75 nT and in autumn from 20 nT to 60 nT. The maximum amplitude of the X component exhibits roughly the same variation in both solstices, varying from about ~20 nT to 50 nT, depending on the position into the solar cycle. - In all seasons, the mean equinoctial diurnal Y component has a morning maximum Larger than the afternoon

  17. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... may be accomplished automatically or by manual means. (3) If an instrument presenting navigation data... gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier and...

  18. Measuring the Earth's Magnetic Field in a Laboratory

    ERIC Educational Resources Information Center

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  19. An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.

    2014-10-01

    We present the development considerations and design for ground-based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space-weather-related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as a dual-frequency GPS receiver and a high-frequency (HF) radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.

  20. Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu, Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren, Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Mizutani, K.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu, Zhou, X. X.; Tibet AS γ Collaboration

    2018-01-01

    We analyze the Sun's shadow observed with the Tibet-III air shower array and find that the shadow's center deviates northward (southward) from the optical solar disk center in the "away" ("toward") interplanetary magnetic field (IMF) sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the away (toward) sector is 1.54 ±0.21stat±0.20syst (1.62 ±0.15stat±0.22syst ) times larger than the model prediction. These demonstrate that the observed Sun's shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.

  1. Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun.

    PubMed

    Amenomori, M; Bi, X J; Chen, D; Chen, T L; Chen, W Y; Cui, S W; Danzengluobu; Ding, L K; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gou, Q B; Guo, Y Q; He, H H; He, Z T; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Kozai, M; Labaciren; Le, G M; Li, A F; Li, H J; Li, W J; Liu, C; Liu, J S; Liu, M Y; Lu, H; Meng, X R; Miyazaki, T; Mizutani, K; Munakata, K; Nakajima, T; Nakamura, Y; Nanjo, H; Nishizawa, M; Niwa, T; Ohnishi, M; Ohta, I; Ozawa, S; Qian, X L; Qu, X B; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shao, J; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, H; Wu, H R; Xue, L; Yamamoto, Y; Yamauchi, K; Yang, Z; Yuan, A F; Yuda, T; Zhai, L M; Zhang, H M; Zhang, J L; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X X

    2018-01-19

    We analyze the Sun's shadow observed with the Tibet-III air shower array and find that the shadow's center deviates northward (southward) from the optical solar disk center in the "away" ("toward") interplanetary magnetic field (IMF) sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the away (toward) sector is 1.54±0.21_{stat}±0.20_{syst} (1.62±0.15_{stat}±0.22_{syst}) times larger than the model prediction. These demonstrate that the observed Sun's shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.

  2. INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER (CENTER) ON WHICH WAS WAS MOUNTED MAGNETIC MEASURING INSTRUMENTS FOR TESTING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  3. Magnetization behavior of RE123 bulk magnets bearing twin seed-crystals in pulsed field magnetization processes

    NASA Astrophysics Data System (ADS)

    Oka, T.; Miyazaki, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.

    2016-02-01

    Melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were fabricated by the cold seeding method with using single or twin-seed crystals composed of Nd-Ba-Cu-O thin films on MgO substrates. The behavior of the magnetic flux penetration into anisotropic-grown bulk magnets thus fabricated was precisely evaluated during and after the pulsed field magnetization operated at 35 K. These seed crystals were put on the top surfaces of the precursors to grow large grains during the melt-processes. Although we know the magnetic flux motion is restricted by the enhanced pinning effect in temperature ranges lower than 77 K, we observed that flux invasion occurred at applied fields of 3.3 T when the twin seeds were used. This is definitely lower than those of 3.7 T when the single-seeds were employed. This means that the magnetic fluxes are capable of invading into twin-seeded bulk magnets more easily than single-seeded ones. The twin seeds form the different grain growth regions, the narrow-GSR (growth sector region) and wide-GSR, according to the different grain growth directions which are parallel and normal to the rows of seed crystals, respectively. The invading flux measurements revealed that the magnetic flux invades the sample from the wide-GSR prior to the narrow-GSR. It suggests that such anisotropic grain growth leads to different distributions of pinning centers, variations of J c values, and the formation of preferential paths for the invading magnetic fluxes. Using lower applied fields definitely contributed to lowering the heat generation during the PFM process, which, in turn, led to enhanced trapped magnetic fluxes.

  4. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  5. Mild cognitive impairment: Profile of a cohort from a private sector memory clinic.

    PubMed

    Srinivasan, Srikanth

    2014-07-01

    Private hospital memory clinics might see a different clientele than university or academic institutes due to referral biases. To characterize the profile of patients with mild cognitive impairment (MCI) from a private sector memory clinic. MCI was diagnosed according to revised clinical criteria of Petersen et al. For a subset of patients with MCI medial temporal atrophy and cerebral small vessel disease (white matter lesions and lacunes) were rated on magnetic resonance imaging (MRI) scans and analyzed for their contribution towards cognitive impairment. Subjects with MCI formed one-third (113/371) of this memory clinic sample from a private hospital. MCI could be effectively diagnosed and subtyped using a brief cognitive scale (Concise Cognitive Test (CONCOG)). The amnestic MCI (single and multiple domains) subtype comprised the majority of cases with MCI. In a subsample of 33 patients, lacunar infarcts were more common than white matter lesions and hippocampal atrophy and were inversely associated with verbal fluency. MCI may be more commonly encountered in private hospital settings probably due to early referrals. It is possible to diagnose and subtype MCI using a brief cognitive instrument such as the CONCOG. In this sample, lacunar infarcts were more commonly encountered than medial temporal atrophy in such patients.

  6. An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Lopez, R. E.; McEntire, R. W.; Zanetti, L. J.; Kistler, L. M.; Ipavich, F. M.

    1987-12-01

    This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.

  7. Modular magnetic tweezers for single-molecule characterizations of helicases.

    PubMed

    Kemmerich, Felix E; Kasaciunaite, Kristina; Seidel, Ralf

    2016-10-01

    Magnetic tweezers provide a versatile toolkit supporting the mechanistic investigation of helicases. In the present article, we show that custom magnetic tweezers setups are straightforward to construct and can easily be extended to provide adaptable platforms, capable of addressing a multitude of enquiries regarding the functions of these fascinating molecular machines. We first address the fundamental components of a basic magnetic tweezers scheme and review some previous results to demonstrate the versatility of this instrument. We then elaborate on several extensions to the basic magnetic tweezers scheme, and demonstrate their applications with data from ongoing research. As our methodological overview illustrates, magnetic tweezers are an extremely useful tool for the characterization of helicases and a custom built instrument can be specifically tailored to suit the experimenter's needs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Induction of cell death by magnetic particles in response to a gradient magnetic field inside a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Amaya-Jaramillo, Carlos David; Pérez-Portilla, Adriana Patricia; Serrano-Olmedo, José Javier; Ramos-Gómez, Milagros

    2017-10-01

    A new instrument based on a magnetic force produced by an alternating magnetic field gradient, which is obtained through Maxwell coils, inside a constant field magnet has been designed and used to produce cell death. We have determined the interaction of microparticles and cells under different conditions such as incubation time with microparticles, particle size, magnetic field exposition time, and different current waveforms at different frequencies to produce a magnetic field gradient. We determined that the highest rate of cell death occurs at a frequency of 1 Hz with a square waveform and 1 h of irradiation. This method could be of great interest to remove cancer cells due mainly to the alterations in stiffness observed in the membranes of the tumor cells. Cancer cells can be eliminated in response to the forces caused by the movement of magnetic nanoparticles of the appropriate size under the application of a specific magnetic field. [Figure not available: see fulltext.

  9. The topology of intrasector reversals of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  10. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  11. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  12. Agriculture Sectors

    EPA Pesticide Factsheets

    The Agriculture sectors comprise establishments primarily engaged in growing crops, raising animals, and harvesting fish and other animals. Find information on compliance, enforcement and guidance on EPA laws and regulations on the NAICS 111 & 112 sectors.

  13. Cyclical absenteeism among private sector, public sector and self-employed workers.

    PubMed

    Pfeifer, Christian

    2013-03-01

    This research note analyzes differences in the number of absent working days and doctor visits and in their cyclicality between private sector, public sector and self-employed workers. For this purpose, I used large-scale German survey data for the years 1995 to 2007 to estimate random effects negative binomial (count data) models. The main findings are as follows. (i) Public sector workers have on average more absent working days than private sector and self-employed workers. Self-employed workers have fewer absent working days and doctor visits than dependent employed workers. (ii) The regional unemployment rate is on average negatively correlated with the number of absent working days among private and public sector workers as well as among self-employed men. The correlations between regional unemployment rate and doctor visits are only significantly negative among private sector workers. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Project MAGNET High-level Vector Survey Data Reduction

    NASA Technical Reports Server (NTRS)

    Coleman, Rachel J.

    1992-01-01

    Since 1951, the U.S. Navy, under its Project MAGNET program, has been continuously collecting vector aeromagnetic survey data to support the U.S. Defense Mapping Agency's world magnetic and charting program. During this forty-year period, a variety of survey platforms and instrumentation configurations have been used. The current Project MAGNET survey platform is a Navy Orion RP-3D aircraft which has been specially modified and specially equipped with a redundant suite of navigational positioning, attitude, and magnetic sensors. A review of the survey data collection procedures and calibration and editing techniques applied to the data generated by this suite of instrumentation will be presented. Among the topics covered will be the determination of its parameters from the low-level calibration maneuvers flown over geomagnetic observatories.

  15. On the use of Godhavn H-component as an indicator of the interplanetary sector polarity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1974-01-01

    An objective method of inferring the polarity of the interplanetary magnetic field using the H-component at Godhavn is presented. The objectively inferred polarities are compared with a subjective index inferred earlier. It is concluded that no significant difference exists between the two methods. The inferred polarities derived from Godhavn H is biased by the (slp) sub q signature in the sense that during summer prolonged intervals of geomagnetic calm will result in inferred Away polarity regardless of the actual sector polarity. This bias does not significantly alter the large scale structure of the inferred sector structure.

  16. Magnetic suspension and pointing system. [on a carrier vehicle

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1979-01-01

    Apparatus for providing accurate pointing of instruments on a carrier vehicle and for providing isolation of the instruments from the vehicle's motion disturbances is presented. The apparatus includes two assemblies, with connecting interfaces, each assembly having a separate function. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing of the instruments by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plate around which a continuous annular rim is attached which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides six degree-of-freedom isolation from carrier motion disturbances.

  17. Ion composition of the bulk ring current during a magnetic storm - Observations with the CHEM-instrument on AMPTE-CCE

    NASA Technical Reports Server (NTRS)

    Stuedemann, W.; Wilken, B.; Kremser, G.; Gloeckler, G.; Ipavich, F. M.

    1986-01-01

    Ion composition measurements in the entire energy range of the ring current population, obtained with the Charge-, Energy-, Mass-spectrometer instrument on the Charge Composition Explorer in September 1984, are reported. From the energy spectra obtained for all major constituents during the main phase of a magnetic storm, the number densities, energy densities, and mean energies are calculated and displayed as radial profiles. The mean energies of He(2+) are found to be about twice that of H(+) and He(+) throughout this storm, and the time profiles for the mean energies of all major ions are seen to bunch together (when normalizing mean energies by the ionic charge), with the largest variations of the energy densities and mean energies occurring for O(+) ions.

  18. Measurements Verifying the Optics of the Electron Drift Instrument

    NASA Astrophysics Data System (ADS)

    Kooi, Vanessa; Kletzing, Craig; Bounds, Scott; Sigsbee, Kristine M.

    2015-04-01

    Magnetic reconnection is the process of breaking and reconnecting of opposing magnetic field lines, and is often associated with tremendous energy transfer. The energy transferred by reconnection directly affects people through its influence on geospace weather and technological systems - such as telecommunication networks, GPS, and power grids. However, the mechanisms that cause magnetic reconnection are not well understood. The Magnetospheric Multi-Scale Mission (MMS) will use four spacecraft in a pyramid formation to make three-dimensional measurements of the structures in magnetic reconnection occurring in the Earth's magnetosphere.The spacecraft will repeatedly sample these regions for a prolonged period of time to gather data in more detail than has been previously possible. MMS is scheduled to be launched in March of 2015. The Electron Drift Instrument (EDI) will be used on MMS to measure the electric fields associated with magnetic reconnection. The EDI is a device used on spacecraft to measure electric fields by emitting an electron beam and measuring the E x B drift of the returning electrons after one gyration. This paper concentrates on measurements of the EDI’s optics system. The testing process includes measuring the optics response to a uni-directional electron beam. These measurements are used to verify the response of the EDI's optics and to allow for the optimization of the desired optics state. The measurements agree well with simulations and we are confident in the performance of the EDI instrument.

  19. The mean magnetic field of the sun - Method of observation and relation to the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.; Kotov, V.; Severnyi, A. B.; Howard, R.

    1977-01-01

    The mean solar magnetic field as measured in integrated light has been observed since 1968. Since 1970 it has been observed both at Hale Observatories and at the Crimean Astrophysical Observatory. The observing procedures at both observatories and their implications for mean field measurements are discussed. A comparison of the two sets of daily observations shows that similar results are obtained at both observatories. A comparison of the mean field with the interplanetary magnetic polarity shows that the IMF sector structure has the same pattern as the mean field polarity.

  20. The Importance of Reconnection at Sector Boundaries: Another Space Weather Hazard?

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Lai, H.; Russell, C. T.

    2017-12-01

    Sector Boundaries are interfaces between nearly oppositely directed magnetic flux in the solar wind. When the leading solar wind stream is moving more slowly than the following stream a high-pressure ridge appears at the interface, that compresses the plasma sometimes leading to a forward and reverse shock pair that slows the fast stream and accelerate the slow stream. If reconnection at the interface between the streams occurs part of the magnetic flux will be annihilated but the plasma once associated with that magnetic flux remains near the interface causing a sometimes significant short-lived dynamic pressure increase. The declining phase of solar cycle 24 exhibits several examples of the phenomenon with densities reaching over 80 protons cm-3 at speed of about 400 km sec-1. We examine the solar wind context of the phenomenon and the consequences at the magnetosphere using space-based and ground-based observations and comment on their possible generation of geomagnetically-induced currents.

  1. Development of instrumentation with application to sounding rocket electric and magnetic field measurements above thunderstorms

    NASA Astrophysics Data System (ADS)

    Baker, Steven D.

    1999-06-01

    The thunderstorm campaigns led by Cornell University in 1981 and 1988 both measured large-amplitude (10 to 40 mV/m), long duration (1 ms) electric-field pulses parallel to the earth's magnetic field. To investigate the mechanism responsible for these pulses, the instrumentation bandwidth was increased from the VLF range to MF frequencies. The design for a Helmholtz coil developed to calibrate magnetometers from DC to 10 MHz is given in Chapter 3. This coil generates a spatially uniform field with for frequencies up to at least 10 MHz with amplitudes of up to 1.1 mA/m. Coincident with the need for higher bandwidth sensors, a burst-memory data acquisition system was developed to intelligently select the 1.25% of the available data to send to the telemetry encoder. This system uses the optical flash of the lightning as a trigger and has a back-up mode to ensure data is transmitted in the event no triggers occur. The higher-frequency instruments allowed the first rocket-borne measurement of nose- whistlers caused by the plasma frequency resonance (as opposed to the more common electron cyclotron frequency resonance), and what may have been the first observation of a TIPP at MF frequencies. Triggered emission from the second campaign, Thunderstorm-II, are identified as lower hybrid emissions. These emissions enhanced the whistler by several decibels in the lower hybrid frequency band and in bands above the emission. No emissions seen above the lower hybrid frequency. The Thunderstorm-III payloads also measured triggered emissions and long-duration pulses. The former were found in several altitude-independent frequency bands for which the source could not be identified. The long duration pulses, while of interest, have not been studied in sufficient depth for inclusion in this work.

  2. Application of biomolecular recognition via magnetic nanoparticle in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Shen, Wei-Zheng; Cetinel, Sibel; Montemagno, Carlo

    2018-05-01

    The marriage of biomolecular recognition and magnetic nanoparticle creates tremendous opportunities in the development of advanced technology both in academic research and in industrial sectors. In this paper, we review current progress on the magnetic nanoparticle-biomolecule hybrid systems, particularly employing the recognition pairs of DNA-DNA, DNA-protein, protein-protein, and protein-inorganics in several nanobiotechnology application areas, including molecular biology, diagnostics, medical treatment, industrial biocatalysts, and environmental separations.

  3. Magnetic Gauge Instrumentation on the LANL Gas-Driven Two-Stage Gun

    NASA Astrophysics Data System (ADS)

    Alcon, R. R.; Sheffield, S. A.; Martinez, A. R.; Gustavsen, R. L.

    1997-07-01

    Our gas-driven two-stage gun was designed and built to do initiation studies on insensitive high explosives as well as other equation of state experiments on inert materials. Our preferred method of measuring initiation phenomena involves the use of in-situ magnetic particle velocity gauges. In order to provide the 1-D experimental area to accommodate this type of gauging in our two-stage gun, it has a 50-mm-diameter launch tube. We have used magnetic gauging on our 72-mm bore diameter single-stage gun for over 15 years and it has proven a very effective technique for all types of shock wave experiments, including those on high explosives. This technique has now been installed on our two-stage gun. We describe the experimental method, as well as some of the difficulties that arose during the installation. Several magnetic gauge experiments have been completed on plastic and high explosive materials. Waveforms obtained in some of the experiments will be discussed. Up to 10 in-situ particle velocity measurements can be made in a single experiment. This new technique is now working quite well, as is evidenced by the data. To our knowledge, this is the first time magnetic gauging has been used on a two-stage gun.

  4. Magnetic gauge instrumentation on the LANL gas-driven two-stage gun

    NASA Astrophysics Data System (ADS)

    Alcon, R. R.; Sheffield, S. A.; Martinez, A. R.; Gustavsen, R. L.

    1998-07-01

    The LANL gas-driven two-stage gun was designed and built to do initiation studies on insensitive high explosives as well as equation of state and reaction experiments on other materials. The preferred method of measuring reaction phenomena involves the use of in-situ magnetic particle velocity gauges. In order to accommodate this type of gauging in our two-stage gun, it has a 50-mm-diameter launch tube. We have used magnetic gauging on our 72-mm bore diameter single-stage gun for over 15 years and it has proven a very effective technique for all types of shock wave experiments, including those on high explosives. This technique has now been installed on our gas-driven two-stage gun. We describe the method used, as well as some of the difficulties that arose during the installation. Several magnetic gauge experiments have been completed on plastic materials. Waveforms obtained in some of the experiments will be discussed. Up to 10 in-situ particle velocity measurements can be made in a single experiment. This new technique is now working quite well, as is evidenced by the data. To our knowledge, this is the first time magnetic gauging has been used on a two-stage gun.

  5. A participatory approach to health promotion for informal sector workers in Thailand

    PubMed Central

    Manothum, Aniruth; Rukijkanpanich, Jittra

    2010-01-01

    Abstract: Background: This study aims to promote occupational health in the informal sector in Thailand by using a participatory approach. The success of the intervention is based on an evaluation of the informal sector workers, a) knowledge, attitudes, and behaviors in occupational health and safety, b) work practice improvement, and c) working condition improvement. Methods: This study applies the Participatory Action Research (PAR) method. The participants of the study consisted of four local occupations in different regions of Thailand, including a ceramic making group in the North, a plastic weaving group in the Central region, a blanket making group in the Northeast, and a pandanus weaving group in the South. Data was collected using both qualitative and quantitative methods through questionnaires, industrial hygiene instruments, and group discussions. Results: The results showed that the working conditions of the informal sector were improved to meet necessary standards after completing the participatory process. Also, the post-test average scores on 1) the occupational health and safety knowledge, attitudes and behaviors measures and 2) the work practice improvement measures were significantly higher than the pre-test average scores (P less than 0.05). Conclusions: The results demonstrate that the participatory approach is an effective tool to use when promoting the health safety of the informal sector and when encouraging the workers to voluntarily improve the quality of their own lives. PMID:21483207

  6. [Neodymium magnet injury causing nasal fracture: a case report].

    PubMed

    Aykan, Andaç; Güzey, Serbülent; Avşar, Sedat; Öztürk, Serdar

    2015-05-01

    In parallel with technological developments, small size but strong magnets are commonly used in modern devices. In terms of foreign body injuries, magnet injuries are quite rare. However, due to their unique characteristics, there are some difficulties in their management. The magnetic field generated by the magnet affects the surgical instruments and make treatment difficult. In this case report, a nasal injury due to neodymium magnet and our alternative approach for its management was reported.

  7. Challenge '89: Interfacing of Chemical Instruments to Computers.

    ERIC Educational Resources Information Center

    Lyons, Jim; Lamarre, Colin

    This project involved interfacing of microcomputers with three chemical instruments--Nuclear Magnetic Resonance (NMR), Infrared Spectroscopy (IR), and the spectrophotometer. A Pascal program called "Spectrum" allows data from the NMR to be read and graphed, a specific area of the graph zoomed, ratios of specified areas of the graph…

  8. A rapid and accurate method for the determination of plutonium in food using magnetic sector ICP-MS with an ultra-sonic nebuliser and ion chromatography.

    PubMed

    Evans, P; Elahi, S; Lee, K; Fairman, B

    2003-02-01

    In the event of a nuclear incident it is essential that analytical information on the distribution and level of contamination is available. An ICP-MS method is described which can provide data on plutonium contamination in food within 3 h of sample receipt without compromising detection limits or accuracy relative to traditional counting methods. The method can also provide simultaneous determinations of americium and neptunium. Samples were prepared by HNO3 closed-vessel microwave digestion, evaporated to dryness and diluted into a mobile phase comprising 1.5 M HNO3 and 0.1 mM 2,6-pyridinedicarboxylic acid. A commercially available polystyrene-divinylbenzene ion chromatography column provides on-line separation of 239Pu and 238U reducing the impact of the 238U1H interference. Oxidation of the sample using H2O2 ensures all Pu is in the Pu(+4) state. The oxidation also displaces Np away from the solvent front by changing the oxidation state from Np(+3) to Np(+4) and produces the insoluble Am(+4) ion. Simultaneous Pu, Am and Np analyses therefore require omission of the oxidation stage and some loss of Pu data quality. Analyses were performed using a magnetic sector ICP-MS (Finnigan MAT Element). The sample is introduced to the plasma via an ultrasonic nebuliser-desolvation unit (Cetac USN 6000AT+). This combination achieves an instrumental sensitivity of 238U > 2 x 10(7) cps/ppb and removes hydrogen from the sample gas, which also inhibits the formation of 238U1H. The net effect of the improved sample introduction conditions is to achieve detection levels for Pu of 0.020 pg g(-1) (4.6 x 10(-2) Bq kg(-1)) which is significantly below 1/10th of the most stringent EU (European Union) legislation, currently 0.436 pg g(-1) (1 Bq kg(-1)) set for baby food. The new method was evaluated with a range of biological samples ranging from cabbage to milk and meat. Recovery of Pu agrees with published values (100% +/- 20%).

  9. The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Bonnell, J. W.; Goetz, K.; Ergun, R. E.; Mozer, F. S.; Bale, S. D.; Ludlam, M.; Turin, P.; Harvey, P. R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malsapina, D. M.; Bolton, M. K.; Hudson, M.; Strangeway, R. J.; Baker, D. N.; Li, X.; Albert, J.; Foster, J. C.; Chaston, C. C.; Mann, I.; Donovan, E.; Cully, C. M.; Cattell, C. A.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A.; Tao, J. B.

    2013-11-01

    The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ˜15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency

  10. Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review

    PubMed Central

    Grimes, Craig A.; Roy, Somnath C.; Rani, Sanju; Cai, Qingyun

    2011-01-01

    Thick-film magnetoelastic sensors vibrate mechanically in response to a time varying magnetic excitation field. The mechanical vibrations of the magnetostrictive magnetoelastic material launch, in turn, a magnetic field by which the sensor can be monitored. Magnetic field telemetry enables contact-less, remote-query operation that has enabled many practical uses of the sensor platform. This paper builds upon a review paper we published in Sensors in 2002 (Grimes, C.A.; et al. Sensors 2002, 2, 294–313), presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology. PMID:22163768

  11. High energy collisions on tandem time-of-flight mass spectrometers†

    PubMed Central

    Cotter, Robert J.

    2013-01-01

    Long before the introduction of matrix-assisted laser desorption (MALDI), electrospray ionization (ESI), Orbitraps and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were nonetheless some clear advantages for sectors over their low collision energy counterparts. Time-of-flight mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective we recount our own journey to produce high performance time-of-flights and tandems, describing the basic theory, problems and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging and the characterization of microorganisms. PMID:23519928

  12. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation (abstract)

    NASA Astrophysics Data System (ADS)

    Sutton, S.; Eng., P. J.; Jaski, Y. R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M.

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P≳360 GPa and T˜6000 K with the diamond anvil cell and P˜25 GPa and T˜2500 °C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers.

  13. Photospheric magnetic fields in six magnetographs

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2016-10-01

    Photospheric magnetic field has been routinely observed since 1950s, but calibrated digital data exist only since 1970s. The longest uniform data set is measured at the Wilcox Solar Observatory (WSO), covering 40 years from 1976 onwards. However, the WSO instrument operates in very low spatial resolution and suffers from saturation of strong fields. Other, higher resolution instruments like those at NSO Kitt Peak (KP) offer a more detailed view of the solar magnetic field, but several instrument updates make the data less uniform. While the different observatories show a similar large scale structure of the photospheric field, the measured magnetic field intensities differ significantly between the observatories. In this work we study the photospheric magnetic fields and, especially, the scaling of the magnetic field intensity between six independent data sets. We use synoptic maps constructed from the measurements of the photospheric magnetic field at Wilcox Solar Observatory, Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI and SDO/HMI. We calculate the harmonic expansion of the magnetic field from all six data sets and investigate the scaling of harmonic coefficients between the observations. We investigate how scaling depends on latitude and field strength, as well as on the solar cycle phase, and what is the effect of polar field filling in KP, SOLIS and MDI. We find that scaling factors based on harmonic coefficients are in general smaller than scaling factors based on pixel-by-pixel comparison or histogram techniques. This indicates that a significant amount of total flux is contained in the high harmonics of the higher resolution observations that are beyond the resolution of WSO. We note that only scaling factors based on harmonic coefficients should be used when using the PFSS-model, since the other methods tend to lead to overestimated values of the magnetic flux. The scaling of the low order harmonic coefficients is typically different

  14. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  15. Low loss pole configuration for multi-pole homopolar magnetic bearings

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)

    2001-01-01

    A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.

  16. Full-Vector, Low-Temperature Magnetic Measurements of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Feinberg, J.; Sølheid, P.; Bowles, J. A.; Jackson, M. J.; Moskowitz, B. M.

    2010-12-01

    The magnetic properties of geologic materials offer insights into an enormous range of important geophysical phenomena ranging from core dynamics to paleoclimate. Low-temperature (<300 K) magnetic behavior can indicate the dominant magnetic mineral phases in a sample, determine the grain size distribution of the constituent magnetic minerals, and even reveal evidence of biogenic iron minerals. Low-temperature cycling across the magnetite Verwey transition is sometimes used to remove remanence associated with multi-domain grains, which is undesirable for paleointensity and other paleomagnetic experiments. Despite the utility of low-temperature magnetic data, probing these low-temperature phenomena from the perspective of understanding the underlying physical behavior has been hampered by instrumental limitations. Until now, nearly all measurements of low-temperature magnetization have been single-axis and are rarely done in true zero-field environments. Low-temperature remanence measurements at the Institute for Rock Magnetism (IRM) have been carried out almost exclusively on the Quantum Designs Magnetic Properties Measurement System (MPMS) where magnetization is measured only in the vertical direction, and “zero-fields” of up to 1 μT are common. The IRM - with funding from the Instrumentation and Facilities Program of the National Science Foundation, Earth Science Division, and in conjunction with ColdEdge Technologies (Allentown, Pennsylvania) - is developing a low-cost, cryogenic insert designed to work with a standard, horizontal-loading, 2G Enterprises magnetometer. Full three-axis measurements may now be made in ultra-low-field environments (nT) from ~17 K to room temperature. The design is compatible with both the large (7.6 cm) and small (4.2 cm) bore magnetometers, as well as many standard pulse magnetizers. Used in conjunction with the in-line degausser on the IRM’s pass-through magnetometer, it will ultimately be possible to acquire anhysteretic

  17. 75 FR 37384 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ..., semiconducting and magnetic nanosized materials and their assembled structures. Justification for Duty-Free Entry... California, Davis, One Shields Ave., Davis, CA 95616. Instrument: Electron Microscope. Manufacturer: Elionix...

  18. The Top-of-Instrument corrections for nuclei with AMS on the Space Station

    NASA Astrophysics Data System (ADS)

    Ferris, N. G.; Heil, M.

    2018-05-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance, high precision magnetic spectrometer on the International Space Station (ISS). The top-of-instrument correction for nuclei flux measurements with AMS accounts for backgrounds due to the fragmentation of nuclei with higher charge. Upon entry in the detector, nuclei may interact with AMS materials and split into fragments of lower charge based on their cross-section. The redundancy of charge measurements along the particle trajectory with AMS allows for the determination of inelastic interactions and for the selection of high purity nuclei samples with small uncertainties. The top-of-instrument corrections for nuclei with 2 < Z ≤ 6 are presented.

  19. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.

    PubMed

    Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  20. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device

    NASA Astrophysics Data System (ADS)

    Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  1. Sources of magnetic fields in recurrent interplanetary streams

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.

    1978-01-01

    The paper examines sources of magnetic fields in recurrent streams observed by the Imp 8 and Heos spacecraft at 1 AU and by Mariner 10 en route to Mercury between October 31, 1973 and February 9, 1974, during Carrington rotations 1607-1610. Although most fields and plasmas at 1 AU were related to coronal holes and the magnetic field lines were open in those holes, some of the magnetic fields and plasmas at 1 AU were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines may be more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes, certain photospheric magnetic fields, and the coronal footprints of the sector boundaries on the source surface are characterized.

  2. Development and validation of a questionnaire evaluating patient anxiety during Magnetic Resonance Imaging: the Magnetic Resonance Imaging-Anxiety Questionnaire (MRI-AQ).

    PubMed

    Ahlander, Britt-Marie; Årestedt, Kristofer; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2016-06-01

    To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging- Anxiety Questionnaire. Questionnaires measuring patients' anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients' experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Psychometric cross-sectional study with test-retest design. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbach's alpha. Criterion-related validity, known-group validity and test-retest was calculated. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbach's alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  3. Flux-Feedback Magnetic-Suspension Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1990-01-01

    Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.

  4. Practical SQUID Instrument for Nondestructive Testing

    NASA Technical Reports Server (NTRS)

    Tralshawala, N.; Claycomb, J. R.; Miller, John H., Jr.

    1997-01-01

    We report on the development of a scanning eddy-current imaging system designed to detect deep subsurface flaws in conducting materials. A high transition temperature (high-T c) superconducting quantum interference device (SQUID) magnetometer is employed to provide the required sensitivity at low frequencies, while a combination of small cylindrical high-Tc superconducting and A-metal shields enable the instrument to be scanned in a magnetically noisy environment, rather than the object under test. The shields are arranged to prevent unwanted excitation and ambient noise fields from reaching the SQUID, and to enhance spatial resolution and minimize undesirable edge effects. Thus far, the instrument has successfully detected cracks and pits through 10 layers of aluminum, with a combined thickness of 5 cm at room temperature.

  5. Multi-sectoral action for child safety-a European study exploring implicated sectors.

    PubMed

    Scholtes, Beatrice; Schröder-Bäck, Peter; Förster, Katharina; MacKay, Morag; Vincenten, Joanne; Brand, Helmut

    2017-06-01

    Injury to children in Europe, resulting in both death and disability, constitutes a significant burden on individuals, families and society. Inequalities between high and low-income countries are growing. The World Health Organisation Health 2020 strategy calls for inter-sectoral collaboration to address injury in Europe and advocates the whole of government and whole of society approaches to wicked problems. In this study we explore which sectors (e.g. health, transport, education) are relevant for four domains of child safety (intentional injury, water, road and home safety). We used the organigraph methodology, originally developed to demonstrate how organizations work, to describe the governance of child safety interventions. Members of the European Child Safety Alliance, working in the field of child safety in 24 European countries, drew organigraphs of evidence-based interventions. They included the different actors involved and the processes between them. We analyzed the organigraphs by counting the actors presented and categorizing them into sectors using a pre-defined analysis framework. We received 44 organigraphs from participants in 24 countries. Twenty-seven sectors were identified across the four domains. Nine of the 27 identified sectors were classified as 'core sectors' (education, health, home affairs, justice, media, recreation, research, social/welfare services and consumers). This study reveals the multi-sectoral nature of child safety in practice. It provides information for stakeholders working in child safety to help them implement inter-sectoral child safety interventions taking a whole-of-government and whole-of-society approach to health governance. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  6. How do countries regulate the health sector? Evidence from Tanzania and Zimbabwe.

    PubMed

    Kumaranayake, L; Mujinja, P; Hongoro, C; Mpembeni, R

    2000-12-01

    The health sectors in many low- and middle-income countries have been characterized in recent years by extensive private sector activity. This has been complemented by increasing public-private linkages, such as the contracting-out of selected services or facilities, development of new purchasing arrangements, franchising and the introduction of vouchers. Increasingly, however, experience with the private sector has indicated a number of problems with the quality, price and distribution of private health services, and thus led to a growing focus on the role of government in regulation. This paper presents the existing network of regulations governing private activity in the health sectors of Tanzania and Zimbabwe, and their appropriateness in the context of emerging market realities. It draws on a comparative mapping exercise reviewing the complexity of the variables currently being regulated, the level of the health system at which they apply, and the specific instruments being used. Findings indicate that much of the existing regulation occurs through legislation. There is still very much a focus on the 'social' rather than 'economic' aspects of regulation within the health sector. Recent changes have attempted to address aspects of private health provision, but some very key gaps remain. In particular, current regulations in Tanzania and Zimbabwe: (1) focus on individual inputs rather than health system organizations; (2) aim to control entry and quality rather than explicitly quantity, price or distribution; and (3) fail to address the market-level problems of anti-competitive practices and lack of patient rights. This highlights the need for additional measures to promote consumer protection and address the development of new private markets such as for health insurance or laboratory and other ancillary services.

  7. Relations between morning sector Pi 1 pulsation activity and particle and field characteristics observed by the DE 2 satellite

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Winningham, J. D.; Rosenberg, T. J.; Arnoldy, R. L.; Maynard, N. C.; Sugiura, M.

    1986-01-01

    Ground-based magnetometer, photometer, and riometer data are combined with low-altitude particle and electric and magnetic field data from the DE-2 spacecraft to provide a more complete characterization of the magnetospheric and tropospheric environment in which morning sector asymmetric Pi 1 pulsations are observed. The results of the study are in agreement with recent conclusions that morning sector asymmetric Pi 1 pulsations are physically related to pulsating aurorae. Precipitation of energetic electrons (E greater than 35 keV) coincides in every instance with the occurrence of these pulsations.

  8. Magnetic helicity in emerging solar active regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Hoeksema, J. T.; Bobra, M.

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferredmore » in a sample of 23 emerging ARs with a bipolar magnetic field configuration.« less

  9. Latitudinal features of Total Electron Content over the African and European longitude sector following the St. Patrick's day storm of 2015

    NASA Astrophysics Data System (ADS)

    Paul, A.; Kascheyev, A.; Rodriguez-Bouza, M.; Pathak, K.; Ferreira, A. A.; Shetti, D.; Yao, J. N.

    2018-04-01

    GNSS TEC values have been obtained from 18 stations distributed from the magnetic equator to nearly 80°N magnetic dip in the African and west-European longitude sector corresponding to the March 17-18, 2015 geomagnetic storm. Significantly depleted ionosphere have been observed at stations north of 50°N geographic on March 18, 2015 following the above storm over a longitude swath 11.9°-21°E covering the Eastern Africa and Western European longitude sector. High ROTI values were noted on March 17th at locations around 80°N magnetic dip. Two prominent peaks in PCN were noted around 09:00 UT and 14:00 UT on March 17, 2015 and around 15:00 UT on March 18, 2015. Daytime thermospheric (O/N2) ratio was markedly less on March 18th at latitudes above 60°N geographic which is suggested to be the major driver behind depleted high latitude ionosphere during the recovery phase of the storm on March 18, 2015.

  10. Creating conditions for the success of the French industrial advanced therapy sector.

    PubMed

    Lirsac, Pierre Noel; Blin, Olivier; Magalon, Jérémy; Angot, Pierre; de Barbeyrac, Estelle; Bilbault, Pascal; Bourg, Elisabeth; Damour, Odile; Faure, Patrick; Ferry, Nicolas; Garbil, Bénédicte; Larghero, Jérôme; Nguon, Marina; Pattou, François; Thumelin, Stéphane; Yates, Frank

    2015-01-01

    Although the European Union merely followed the initiatives of the United States and Japan by introducing special regimes for orphan medicinal products, it has introduced a special status for a new category of biological medicinal products, advanced therapy medicinal products (ATMPs), adopting specific associated regulations. European Regulation (which constitutes the highest legal instrument in the hierarchy of European law texts) [EC] No. 1394/2007, published in 2007, uses this term to define somatic cell therapy medicinal products, tissue-engineered products, and gene therapy medicinal products, possibly combined with medical devices. The stated objective was two-fold: both to promote their industrialization and market access, while guaranteeing a high level of health protection for patients. Since publication of the regulation, few marketing authorizations have been granted in Europe, and these have not been accompanied by commercial success. However, certain recent studies show that this is a growing sector and that France remains the leading European nation in terms of clinical trials. This round table brought together a panel of representatives of French public and private protagonists from the advanced therapy sector. The discussions focused on the conditions to ensure the success of translational research and, more generally, the French advanced therapy sector. These enabled a number of obstacles to be identified, which once lifted, by means of recommendations, would facilitate the development and success of this sector. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  11. An observational search for large-scale organization of five-minute oscillations on the sun. [coronal holes or sector structure relationships

    NASA Technical Reports Server (NTRS)

    Dittmer, P. H.; Scherrer, P. H.; Wilcox, J. M.

    1978-01-01

    The large-scale solar velocity field has been measured over an aperture of radius 0.8 solar radii on 121 days between April and September, 1976. Measurements are made in the line Fe I 5123.730 A, employing a velocity subtraction technique similar to that of Severny et al. (1976). Comparisons of the amplitude and frequency of the five-minute resonant oscillation with the geomagnetic C9 index and magnetic sector boundaries show no evidence of any relationship between the oscillations and coronal holes or sector structure.

  12. Late Miocene remagnetization within the internal sector of the Northern Apennines, Italy

    USGS Publications Warehouse

    Aiello, I.W.; Hagstrum, J.T.; Principi, G.

    2004-01-01

    Paleomagnetic and geologic evidence indicates that Upper Jurassic radiolarian cherts of both the Tuscan Cherts Formation (continental margin, Tuscan Units) and the Monte Alpe Cherts Formation (oceanic crust, Ligurian Units) were remagnetized during Miocene orogenesis of the Northern Apennines of Italy. Characteristic overprint magnetizations with reversed polarities have been found over a large area within the internal sector of the Northern Apennines, including eastern Liguria, Elba Island and the Thyrrenian margin, and west of the Middle Tuscan Ridge. The reversed-polarity overprint (average direction: D=177??, I=-52??, ??95=15??) was most likely acquired during Late Miocene uplift and denudation of the orogenic chain, and thermochemical remagnetization was a probable consequence of increased circulation of orogenic fluids. Similarly, mostly reversed-polarity directions of magnetization have been found by other workers in overlying post-orogenic Messinian sediments (D=177??, I=-57??, ??95=3??), which show little counterclockwise (CCW) vertical-axis rotation with respect to stable Europe (-8??5??). The Monte Alpe Cherts sampled at sites in the external sector of the Northern Apennines, close to major tectonic features, have normal- polarity overprint directions with in situ W-SW declinations. Since the overlying post-orogenic Messinian sediments have not been substantially rotated about vertical axes, the evidence points to an earlier,pre-Late Miocene remagnetization in the external parts of the orogenic chain. ?? 2004 Elsevier B.V. All rights reserved.

  13. Impact analysis of leading sub sector on basic sector to regional income in Siak Regency, Riau Province

    NASA Astrophysics Data System (ADS)

    Astuti, P.; Nugraha, I.; Abdillah, F.

    2018-02-01

    During this time Siak regency only known as oil producing regency in Riau province, but based on the vision of spatial planning Siak’s regency in 2031 there was a shift from petroleum towards to other sectors such as agribusiness, agroindustry and tourism. The purpose of this study was to identify the sector base, the leading subsectors and shift with their characteristics and to identify the leading subsectors development priority. The method used in this research consisted of the method of Location Quotient (LQ, Shift Share, and Overlay method). The research results were used Location Quotient (LQ) to identify sector’s base in Siak regency based on the document of PDRB. The sector’s refers to the constant prices year of 2000 were mining and quarrying sector (2.25). The sector’s base using document of PDRB at constant prices 2000 without oil and gas sector was the agricultural sector with a value of LQ was 2,45. The leading sub sector in the Siak regency with mining and quarrying sector was oil and gas (1.02) and leading sub sector without oil and gas sector was the plantation sector (1.48) and forestry sector (1.73). Overlay analysis results shown that agriculture sector as a sector base and plantation and forestry as a leading sub sector has positive value and categorize as progressive and competitiveness. Because of that, this leading sub sector gets high priority to developing.

  14. Magnetic Gradient Horizontal Operator (MHGO) useful for detecting objects buried at shallow depth: cultural heritage (Villa degli Antonini, Rota Rio)

    NASA Astrophysics Data System (ADS)

    Di Filippo, Michele; Di Nezza, Maria

    2016-04-01

    Several factors were taken into consideration in order to appropriately tailor the geophysical explorations at the cultural heritage. Given the fact that each site has been neglected for a long time and in recent times used as an illegal dumping area, we thoroughly evaluated for this investigation the advantages and limitations of each specific technique, and the general conditions and history of the site. We took into account the extension of the areas to be investigated and the need for rapid data acquisition and processing. Furthermore, the survey required instrumentation with sensitivity to small background contrasts and as little as possible affected by background noise sources. In order to ascertain the existence and location of underground buried walls, a magnetic gradiometer survey (MAG) was planned. The map of the magnetic anomalies is not computed to reduction at the pole (RTP), but with a magnetic horizontal gradient operator (MHGO). The magnetic horizontal gradient operator (MHGO) generates from a grid of vertical gradient a grid of steepest slopes (i.e. the magnitude of the gradient) at any point on the surface. The MHGO is reported as a number (rise over run) rather than degrees, and the direction is opposite to that of the slope. The MHGO is zero for a horizontal surface, and approaches infinity as the slope approaches the vertical. The gradient data are especially useful for detecting objects buried at shallow depth. The map reveals some details of the anomalies of the geomagnetic field. Magnetic anomalies due to walls are more evident than in the total intensity map, whereas anomalies due to concentrations of debris are very weak. In this work we describe the results of an investigation obtained with magnetometry investigation for two archaeological sites: "Villa degli Antonini" (Genzano, Rome) and Rota Ria (Mugnano in Teverina, Viterbo). Since the main goal of the investigation was to understand the nature of magnetic anomalies with cost

  15. Assessing the Impact of Privatization Policy on Telecommunications Sector Effectiveness and Economic Activity in Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Ngwa, Oneurine B.

    2012-01-01

    In recent years, privatization has been a growing phenomenon in Sub-Saharan Africa. It is viewed as an instrument used by the public sector to reduce the role of the state in the economies while enhancing the scope of private ownership and participation of goods and services (Akram et al, 2011). Researchers have noted that the telecommunication…

  16. Long-time variation in magnetic structure of CeIr 3Si 2: Observation of a nucleation-and-growth process of magnetic domains

    DOE PAGES

    Motoya, Kiyoichiro; Hagihala, Masato; Takabatake, Toshiro; ...

    2016-02-29

    CeIr 3Si 2 is the first three-dimensional uniform magnet in which the long-time variation in magnetic structure was observed. To clarify the microscopic mechanism of this magnetic structural change, time-resolved neutron scattering measurements have been reinvestigated. Clear time variations in the line widths as well as the amplitudes of magnetic Bragg diffractions have been observed in this improved instrumentation. On the notion of this observation, a nucleation-and-growth model of magnetic structural change has been presented. The numerical calculation with this model reproduces well the observation.

  17. Long-time variation in magnetic structure of CeIr 3Si 2: Observation of a nucleation-and-growth process of magnetic domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motoya, Kiyoichiro; Hagihala, Masato; Takabatake, Toshiro

    CeIr 3Si 2 is the first three-dimensional uniform magnet in which the long-time variation in magnetic structure was observed. To clarify the microscopic mechanism of this magnetic structural change, time-resolved neutron scattering measurements have been reinvestigated. Clear time variations in the line widths as well as the amplitudes of magnetic Bragg diffractions have been observed in this improved instrumentation. On the notion of this observation, a nucleation-and-growth model of magnetic structural change has been presented. The numerical calculation with this model reproduces well the observation.

  18. A 10 Kelvin Magnet for Space-Flight ADRs

    NASA Technical Reports Server (NTRS)

    Tuttle, James; Pourrahimi, Shahin; Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Riall, Sara

    2003-01-01

    Future NASA missions will include detectors cooled by adiabatic demagnetization refrigerators (ADRs) coupled with mechanical cryocoolers. A lightweight, low-current 10 Kelvin magnet would allow the interface between these devices to be at temperatures as high as 10 Kelvin, adding flexibility to the instrument design. We report on the testing of a standard-technology Nb3Sn magnet and the development of a lightweight, low-current 10 Kelvin magnet. We also discuss the outlook for flying a 10 Kelvin magnet as part of an ADR system.

  19. GENERAL VIEW, LOOKING SOUTHEAST, OF STANDARDIZING MAGNETIC OBSERVATORY (SMO) WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING SOUTHEAST, OF STANDARDIZING MAGNETIC OBSERVATORY (SMO) WHICH IS TO THE RIGHT. THE BUILDING TO THE LEFT IS 'STATION 'A'', ALSO A NON-MAGNETIC STRUCTURE, ONCE USED FOR COMPARISONS OF MAGNETIC INSTRUMENTS WITH THE SMO. THE BUILDING IN THE CENTER CONTAINED A SEARCH-LIGHT USED IN CONJUNCTION WITH MEASUREMENTS OF THE EARTH'S ATMOSPHERE. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  20. A single-solenoid pulsed-magnet system for single-crystal scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Capatina, Dana; Ruff, Jacob P. C.; Das, Ritesh K.; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Welp, Ulrich; Canfield, Paul C.

    2012-03-01

    We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to ˜30 T with a zero-to-peak-field rise time of ˜2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (˜23.6°) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  1. Energetic ion observations in the magnetic cloud of 14-15 January 1988 and their implications for the magnetic field topology

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Farrugia, C. J.; Burlaga, L. F.

    1991-01-01

    On 14-15 January 1988, a magnetic cloud with a local field topology consistent with an east-west aligned cylindrical flux-rope and which formed the driver of an interplanetary shock passed the earth. Using 0.5-4 MeV/n ion data from the instrument on IMP 8, the paper addresses the question of whether or not magnetic field lines within the magnetic cloud were connected to the sun. An impulsive solar particle event was detected inside the magnetic cloud strongly suggesting that the field lines were rooted at the sun.

  2. Biomagnetic instrumentation and measurement

    NASA Technical Reports Server (NTRS)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  3. The Juno Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  4. The Juno Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; hide

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through

  5. Industrial Preparedness Sector Study Guideline

    DOT National Transportation Integrated Search

    1990-03-01

    This guideline relates to special studies under the Army Industrial Preparedness Program where domestic industrial sectors or commodity sectors are evaluated for meeting Defense requirements. Modern sector study activities are described in a framewor...

  6. Statistical Investigations on Solar Wind Dynamic Pressure Pulses:Basic features and Their Impacts on Geosynchronous Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zuo, Pingbing; Feng, Xueshang

    2016-07-01

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure abruptly changes over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. Recently we have developed a novel procedure that is able to rapidly identify the DPPs from the plasma data stream, and simultaneously define the transition region and smartly select the upstream and downstream region for analysis. The plasma data with high time-resolution from 3DP instrument on board the WIND spacecraft are inspected with this automatic DPP-searching code, and a complete list of solar wind DPPs of historic WIND observations are built up. We perform a statistical survey on the properties of DPPs near 1 AU based on this event list. It is found that overwhelming majority of DPPs are associated with the solar wind disturbances including the CME-related flows, the corotating interaction regions, as well as the complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activities. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears no systematic investigations on the response of GMFs to negative DPPs. Here we also study the decompression/compression effects of very strong negative/positive DPPs on GMFs under northward IMFs. In response to the decompression of strong negative DPPs, GMFs on dayside, near the dawn and dusk on nightside are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of events when GOES is located at the midnight sector, GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that on certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Statistically, both the decompression effect of

  7. High Resolution Observations and Modeling of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, Thomas E.

    2001-01-01

    This research contract investigating the radiative transfer and dynamic physics of the smallest observable magnetic structures in the solar photosphere. Due to the lack of a high-resolution visible light satellite instrument for solar studies, all data were acquired using ground-based instrumentation. The primary goal of the investigation was to understand the formation and evolution of "G-band bright points" in relation to the associated magnetic elements. G-band bright points are small (on the order of 100 kin or less in diameter) bright signatures associated with magnetic flux elements in the photosphere. They are seen in the A2A-X2 4308 A molecular bandhead of the CH radical ill the solar spectrum and offer the highest spatial resolution and highest contrast "tracers" of small magnetic structure on the Sun.

  8. Agri-Environmental Policy Measures in Israel: The Potential of Using Market-Oriented Instruments

    NASA Astrophysics Data System (ADS)

    Amdur, Liron; Bertke, Elke; Freese, Jan; Marggraf, Rainer

    2011-05-01

    This paper examines the possibilities of developing agri-environmental policy measures in Israel, focusing on market-oriented instruments. A conceptual framework for developing agri-environmental policy measures is presented, first in very broad lines (mandatory regulations, economic instruments and advisory measures) and subsequently focusing on economic instruments, and specifically, on market-oriented ones. Two criteria of choice between the measures are suggested: their contribution to improving the effectiveness of the policy; and the feasibility of their implementation. This is the framework used for analyzing agri-environmental measures in Israel. Israel currently implements a mix of mandatory regulations, economic instruments and advisory measures to promote the agri-environment. The use of additional economic instruments may improve the effectiveness of the policy. When comparing the effectiveness of various economic measures, we found that the feasibility of implementation of market-oriented instruments is greater, due to the Israeli public's preference for strengthening market orientation in the agricultural sector. Four market-oriented instruments were practiced in a pilot project conducted in an Israeli rural area. We found that in this case study, the institutional feasibility and acceptance by stakeholders were the major parameters influencing the implementation of the market-oriented instruments, whereas the instruments' contribution to enhancing the ecological or economic effectiveness were hardly considered by the stakeholders as arguments in favor of their use.

  9. Agri-environmental policy measures in Israel: the potential of using market-oriented instruments.

    PubMed

    Amdur, Liron; Bertke, Elke; Freese, Jan; Marggraf, Rainer

    2011-05-01

    This paper examines the possibilities of developing agri-environmental policy measures in Israel, focusing on market-oriented instruments. A conceptual framework for developing agri-environmental policy measures is presented, first in very broad lines (mandatory regulations, economic instruments and advisory measures) and subsequently focusing on economic instruments, and specifically, on market-oriented ones. Two criteria of choice between the measures are suggested: their contribution to improving the effectiveness of the policy; and the feasibility of their implementation. This is the framework used for analyzing agri-environmental measures in Israel. Israel currently implements a mix of mandatory regulations, economic instruments and advisory measures to promote the agri-environment. The use of additional economic instruments may improve the effectiveness of the policy. When comparing the effectiveness of various economic measures, we found that the feasibility of implementation of market-oriented instruments is greater, due to the Israeli public's preference for strengthening market orientation in the agricultural sector. Four market-oriented instruments were practiced in a pilot project conducted in an Israeli rural area. We found that in this case study, the institutional feasibility and acceptance by stakeholders were the major parameters influencing the implementation of the market-oriented instruments, whereas the instruments' contribution to enhancing the ecological or economic effectiveness were hardly considered by the stakeholders as arguments in favor of their use.

  10. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  11. Right place of human resource management in the reform of health sector.

    PubMed

    Hassani, Seyed Abas; Mobaraki, Hossein; Bayat, Maboubeh; Mafimoradi, Shiva

    2013-01-01

    In this paper the real role and place of human resource (HR) in health system reform will be discussed and determined within the whole system through the comprehensive Human Resource Management (HRM) model. Delphi survey and a questionnaire were used to 1) collect HR manager ideas and comments and 2) identify the main challenges of HRM. Then the results were discussed in an expert panel after being analyzed by content analysis method. Also, a deep focus study of recorded documents related to Health Human Resource Management was done. Then based on all achieved results, a rich picture was drawn to illustrate the right place of HRM in health sector. Finally, the authors revitalize the missed function of HRM within the health sector by drawing a holistic conceptual model. The most percentage of frequency about HR belongs to "Lack of reliable HR information system" (91%) and the least percentage of frequency belongs to "Low responsibility of HR" (28%). The most percentage of frequency about HR manager belongs to "Inattention to HR managers as key managers and consider them in background" (80%) and the least percentage of frequency belongs to "Lack of coordination between universities' policies" (30%). According to the conceptual framework, human resources employed in health system are viewed from two comprehensive approaches: instrumental approach and institutional. Unlike the common belief that looks HRM through the supportive approach, it is discussed that HRM not only has an instrumental role, but also do have a driver role.

  12. Learn about Smart Sectors

    EPA Pesticide Factsheets

    about the Smart Sectors program including: Meaningful Collaboration with Regulated Sectors; Sensible Policies to Improve Environmental Outcomes; Better EPA Practices and Streamlined Operations; Historical Context

  13. Science Instrument Sensitivities to Radioisotope Power System Environment

    NASA Technical Reports Server (NTRS)

    Bairstow, Brian; Lee, Young; Smythe, William; Zakrajsek, June

    2016-01-01

    Radioisotope Power Systems (RPS) have been and will be enabling or significantly enhancing for many missions, including several concepts identified in the 2011 Planetary Science Decadal Survey. Some mission planners and science investigators might have concerns about possible impacts from RPS-induced conditions upon the scientific capabilities of their mission concepts. To alleviate these concerns, this paper looks at existing and potential future RPS designs, and examines their potential radiation, thermal, vibration, electromagnetic interference (EMI), and magnetic fields impacts on representative science instruments and science measurements. Radiation impacts from RPS on science instruments are of potential concern for instruments with optical detectors and instruments with high-voltage electronics. The two main areas of concern are noise effects on the instrument measurements, and long-term effects of instrument damage. While RPS by their nature will contribute to total radiation dose, their addition for most missions should be relatively small. For example, the gamma dose rate from one Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) would be an order of magnitude lower than the environmental dose rate at Mars, and would have a correspondingly lower contribution to instrument noise and to any permanent damage to payload sensors. Increasing the number of General Purpose Heat Source (GPHS) modules used in an RPS would be expected to increase the generated radiation proportionally; however, the effect of more GPHS modules is mitigated from a strictly linear relationship by self-shielding effects. The radiation field of an RPS is anisotropic due to the deviation of the modules from a point-source-geometry. For particularly sensitive instruments the total radiation dose could be mitigated with separation or application of spot shielding. Though a new, higher-power RPS could generate more heat per unit than current designs, thermal impact to the flight

  14. Automated tandem mass spectrometry by orthogonal acceleration TOF data acquisition and simultaneous magnet scanning for the characterization of petroleum mixtures.

    PubMed

    Roussis, S G

    2001-08-01

    The automated acquisition of the product ion spectra of all precursor ions in a selected mass range by using a magnetic sector/orthogonal acceleration time-of-flight (oa-TOF) tandem mass spectrometer for the characterization of complex petroleum mixtures is reported. Product ion spectra are obtained by rapid oa-TOF data acquisition and simultaneous scanning of the magnet. An analog signal generator is used for the scanning of the magnet. Slow magnet scanning rates permit the accurate profiling of precursor ion peaks and the acquisition of product ion spectra for all isobaric ion species. The ability of the instrument to perform both high- and low-energy collisional activation experiments provides access to a large number of dissociation pathways useful for the characterization of precursor ions. Examples are given that illustrate the capability of the method for the characterization of representative petroleum mixtures. The structural information obtained by the automated MS/MS experiment is used in combination with high-resolution accurate mass measurement results to characterize unknown components in a polar extract of a refinery product. The exhaustive mapping of all precursor ions in representative naphtha and middle-distillate fractions is presented. Sets of isobaric ion species are separated and their structures are identified by interpretation from first principles or by comparison with standard 70-eV EI libraries of spectra. The utility of the method increases with the complexity of the samples.

  15. The Radio & Plasma Wave Investigation (RPWI) for JUICE - Instrument Concept and Capabilities

    NASA Astrophysics Data System (ADS)

    Bergman, J. E. S.

    2013-09-01

    We present the concept and capabilities of the Radio & Plasma Waves Investigation (RPWI) instrument for the JUICE mission. The RPWI instrument provides measurements of plasma, electric- and magnetic field fluctuations from near DC up to 45 MHz. The RPWI sensors are four Langmuir probes for low temperature plasma diagnostics and electric field measurements, a three-axis searchcoil magnetometer for low-frequency magnetic field measurements, and a three-axial radio antenna, which operates from 80 kHz up to 45 MHz and thus gives RPWI remote sensing capabilities.. In addition, active mutual impedance measurements are used to diagnose the in situ plasma. The RPWI instrument is unique as it provides vector field measurements in the whole frequency range. This makes it possible to employ advanced diagnostics techniques, which are unavailable for scalar measurements. The RPWI instrument has thus outstanding new capabilities not previously available to outer planet missions, which and enables RPWI to address many fundamental planetary science objectives, such as the electrodynamic influence of the Jovian magnetosphere on the exospheres, surfaces and conducting oceans of Ganymede, Europa, and Callisto. RPWI will also be able to investigate the sources of radio emissions from auroral regions of Ganymede and Jupiter, in detail and with unprecedented sensitivity, and possibly also lightning. Moreover, RPWI can search for exhaust plumes from cracks on the icy moons, as well as μm-sized dust and related dust-plasmasurface interaction processes occurring near the icy moons of Jupiter. The top-level blockdiagram of the RPWI instrument is shown here. A detailed technical description of the RPWI instrument will be given.

  16. Regulatory Information By Sector

    EPA Pesticide Factsheets

    Find environmental regulatory, compliance, & enforcement information for various business, industry and government sectors, listed by NAICS code. Sectors include agriculture, automotive, petroleum manufacturing, oil & gas extraction & other manufacturing

  17. Polarimetry of the HI Lyman-alpha for coronal magnetic field diagnostics

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Hoover, Richard B.; Zukic, Muamer; Kim, Jongmin; Walker, Arthur B. C., Jr.; Baker, Phillip, C.

    1993-01-01

    We discuss and analyze the possible sources of observational and instrumental uncertainty that can be encountered in measuring magnetic fields of the solar corona through polarimetric observations of the Hanle effect of the coronal Ly-alpha line. The Hanle effect is the modification of the linear polarization of a resonantly scattered line, due to the presence of a magnetic field. Simulated observations are used to examine how polarimetric measurements of this effect are affected by the line-of-sight integration, the electron collisions, and the Ly-alpha geocorona. We plan to implement the coronal magnetic field diagnostics via the Ly-alpha Hanle effect using an all-reflecting Ly-alpha coronagraph/polarimeter (Ly-alphaCoPo) which employs reflecting multilayer mirrors, polarizers, and filters. We discuss here the requirements for such an instrument, and analyze the sources of instrumental uncertainty for polarimetric observations of the coronal Ly-alpha Hanle effect. We conclude that the anticipated polarization signal from the corona and the expected performance of the Ly-alphaCoPo instrument are such that the Ly-alpha Hanle effect method for coronal field diagnostics is feasible.

  18. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan; Fordham, Edmund J.

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  19. Sources of magnetic fields in recurrent interplanetary streams

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.

    1977-01-01

    The sources of magnetic fields in recurrent streams were examined. Most fields and plasmas at 1 AU were related to coronal holes, and the magnetic field lines were open in those holes. Some of the magnetic fields and plasmas were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines are more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes ranged from 2G to 18G. Average measured photospheric magnetic fields along the footprints of the corresponding unipolar fields on circular equatorial arcs at 2.5 solar radii had a similar range and average, but in two cases the intensities were approximately three times higher than the projected intensities. The coronal footprints of the sector boundaries on the source surface at 2.5 solar radii, meandered between -45 deg and +45 deg latitude, and their inclination ranged from near zero to near ninety degrees.

  20. Instrument Design Optimization With Computational Methods

    NASA Astrophysics Data System (ADS)

    Moore, Michael H.

    Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density fluctuations from the liquid hydrogen (LH2) target used in the Qweak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentum Spectrometer (SHMS) is presented with a focus on primary electron beam deflection downstream of the target. The SHMS consists of a superconducting horizontal bending magnet (HB) and three superconducting quadrupole magnets. The HB allows particles scattered at an angle of 5.5° to the beam line to be steered into the quadrupole magnets which make up the optics of the spectrometer. Without mitigation, remnant fields from the SHMS may steer the unscattered beam outside of the acceptable envelope on the beam dump and limit beam operations at small scattering angles. A solution is proposed using optimal placement of a minimal amount of shielding iron around the beam line.

  1. On-orbit Performance and Calibration of the HMI Instrument

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. Todd; Bush, Rock; HMI Calibration Team

    2016-10-01

    The Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) has observed the Sun almost continuously since the completion of commissioning in May 2010, returning more than 100,000,000 filtergrams from geosynchronous orbit. Diligent and exhaustive monitoring of the instrument's performance ensures that HMI functions properly and allows proper calibration of the full-disk images and processing of the HMI observables. We constantly monitor trends in temperature, pointing, mechanism behavior, and software errors. Cosmic ray contamination is detected and bad pixels are removed from each image. Routine calibration sequences and occasional special observing programs are used to measure the instrument focus, distortion, scattered light, filter profiles, throughput, and detector characteristics. That information is used to optimize instrument performance and adjust calibration of filtergrams and observables.

  2. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads.

    PubMed

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm(2), a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  3. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    NASA Astrophysics Data System (ADS)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm2, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  4. Environment, health, and sustainable development: the role of economic instruments and policies.

    PubMed Central

    Warford, J. J.

    1995-01-01

    Recent years have seen considerable progress in integrating environmental concerns into the mainstream of development policy and planning. Economic instruments designed explicitly for environmental purposes may help to achieve cost-effective solutions, and generate public revenues. Macroeconomic and sectoral policies may impact heavily upon the environment, and there is much scope for policy reforms that are justified in both economic and environmental terms. Progress in this area has been much more rapid than in the case of health objectives, even though the rationale for environmental improvement is often ultimately related to human health and well-being. It is proposed that lessons from recent experience in the use of economic instruments and policies to achieve environmental objectives are highly relevant for the health sector, which should seek and encourage support for measures that requires consumer and producers of environmentally degrading products to pay for the economic and social costs of the damage resulting from their use. Policy reform at the macroeconomic or sectoral level may yield cost-effective solutions to some health problems, and may even bring about improvements in health status that involve no net cost at all. The countrywide impact of such policies indicate that health agencies, including WHO, should develop the capacity to understand how economic policies and the adjustment process impact upon human health, not only direct through the effect on incomes, but also indirectly, via changes in the natural environment. Ability to conduct rigorous health impact assessment of economic policy reform, which requires a multidisciplinary effort, is a necessary condition if health ministries are to maximize their effectiveness in influencing overall government economic policy. PMID:7614671

  5. The Impact of Sexuality in Contemporary Culture: An Interpretive Study of Perceptions and Choices in Private Sector Dance Education

    ERIC Educational Resources Information Center

    Risner, Doug; Godfrey, Heidi; Simmons, Linda C.

    2004-01-01

    The ways in which seven private sector dance professionals in the United States perceive the impact of sexuality in contemporary culture and the choices that they make for their own schools of dance because of these perceptions are explored. This study was conducted through in-depth interviews and a survey instrument. The participants' narratives…

  6. Community care: the independent sector.

    PubMed Central

    Barodawala, S.

    1996-01-01

    The independent sector, which consists of the voluntary and private sectors, is a vital element in supporting older people in the community. The voluntary sector, coordinated by the Council for Voluntary Service and the National Council for Voluntary Organisations, provides a variety of services, including practical help, reassurance and companionship, and advice, information, campaigning, and advocacy. The private sector owns all of the nursing homes and most of the residential homes and is gradually becoming more involved with the provision of services to help support older people in their own homes. With this increase in size and importance of the independent sector over recent years, there is now a real need for greater communication between the private, voluntary, and statutory agencies in any one region. In some areas, forums made up of representatives of these various sectors meet to discuss relevant issues and construct local policies, thus allowing a more coordinated approach to the delivery of services. Images p740-a p742-a PMID:8819449

  7. Testing of a First Order AC Magnetic Susceptometer

    NASA Astrophysics Data System (ADS)

    Fukuda, Ryan; Sunny, Smitha; Ho, Pei-Chun

    2011-11-01

    A first-order AC magnetic susceptometer has been constructed and tested to find the magnetic response of strongly correlated electron materials. The instrument works by using a primary coil to apply a small AC magnetic field of .104 Oe to a sample with a cylindrical coil space of length .635 cm and diameter .355 cm. A lock-in amplifier is used to monitor the induced voltage from a set of secondary coils. By coupling a temperature-controlled system with this instrument, the change in the magnetic signal with respect to temperature is measured. Monitoring the signal changes may indicate the temperature that causes the material to transition to either a ferromagnetic, anti-ferromagnetic, or superconducting state. A 122.47 mg Gd polycrystal was used to test our susceptometer. The data qualitatively agrees with the previous results of magnetization vs. temperature of Gd single crystals by Nigh et al. [1]: there is a steep increase in the pick-up signal at 300 K where Gd becomes ferromagnetic and a peak at 210 K [1]. This susceptometer will be used for our future investigation of magnetic properties of rare earth compounds and nanoparticles in the temperature range of 10 K to 300 K. [4pt] [1] H. E. Nigh, S. Legvold, and F. H. Spedding, Physical Review 132, 1092 (1963)

  8. An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector. [Active Magnetospheric Particle Tracer Explorers

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcentire, R. W.; Zanetti, L. J.; Lopez, R. E.; Kistler, L. M.

    1987-01-01

    This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.

  9. Multiple critical endpoints in magnetized three flavor quark matter

    NASA Astrophysics Data System (ADS)

    Ferreira, Márcio; Costa, Pedro; Providência, Constança

    2018-01-01

    The magnetized phase diagram for three-flavor quark matter is studied within the Polyakov extended Nambu-Jona-Lasinio model. The order parameters are analyzed with special emphasis on the strange quark condensate. We show that the presence of an external magnetic field induces several critical endpoints (CEPs) in the strange sector, which arise due to the multiple phase transitions that the strange quark undergoes. The spinodal and binodal regions of the phase transitions are shown to increase with external magnetic field strength. The influence of strong magnetic fields on the isentropic trajectories around the several CEPs is analyzed. A focusing effect is observed on the region towards the CEPs that are related with the strange quark phase transitions. Compared to the chiral transitions, the deconfinement transition turns out to be less sensitive to the external magnetic field and the crossover nature is preserved over the whole phase diagram.

  10. Harnessing the private health sector by using prices as a policy instrument: Lessons learned from South Africa.

    PubMed

    Barber, Sarah L; Kumar, Ankit; Roubal, Tomas; Colombo, Francesca; Lorenzoni, Luca

    2018-05-01

    Governments frequently draw upon the private health care sector to promote sustainability, optimal use of resources, and increased choice. In doing so, policy-makers face the challenge of harnessing resources while grappling with the market failures and equity concerns associated with private financing of health care. The growth of the private health sector in South Africa has fundamentally changed the structure of health care delivery. A mutually reinforcing ecosystem of private health insurers, private hospitals and specialists has grown to account for almost half of the country's spending on health care, despite only serving 16% of the population with the capacity to pay. Following years of consolidation among private hospital groups and insurance schemes, and after successive failures at establishing credible price benchmarks, South Africa's private hospitals charge prices comparable with countries that are considerably richer. This compromises the affordability of a broad-based expansion in health care for the population. The South African example demonstrates that prices can be part of a structure that perpetuates inequalities in access to health care resources. The lesson for other countries is the importance of norms and institutions that uphold price schedules in high-income countries. Efforts to compromise or liberalize price setting should be undertaken with a healthy degree of caution. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Development of a micro nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Goloshevsky, Artem

    Application of Nuclear Magnetic Resonance (NMR) to on-line/in-line control of industrial processes is currently limited by equipment costs and requirements for installation. A superconducting magnet generating strong fields is the most expensive part of a typical NMR instrument. In industrial environments, fringe magnetic fields make accommodation of NMR instruments difficult. However, a portable, low-cost and low-field magnetic resonance system can be used in virtually any environment. Development of a number of hardware components for a portable, low-cost NMR instrument is reported in this dissertation. Chapter one provides a discussion on a miniaturized Helmholtz spiral radio-frequency (RF) coil (average diameter equal to 3.5 mm) and an NMR probe built around a capillary (outer diameter = 1.59 mm and inner diameter = 1.02 mm) for flow imaging. Experiments of NMR spectroscopy, static and dynamic (flow) imaging, conducted with the use of the miniaturized coil, are described. Chapter two presents a microfabricated package of two biaxial gradient coils and a Helmholtz RF coil. Planar configuration of discrete wires was used to create magnetic field gradients. Performance of the microfabricated gradient coils while imaging water flow compared well with a commercial gradient set of much larger size. Chapter three reports on flow imaging experiments with power law fluids (aqueous solutions of sodium salt of carboxymethyl cellulose (CMC)) of different viscosities, carried out in the NMR probe with the miniaturized RF coil and capillary. Viscosities of the CMC solutions were determined based on the curve fits of the velocity profiles and simultaneous measurements of the flow rates. The curve fits were carried out according to the power law model equations. The NMR viscosity measurements compared well with measurements of the same CMC samples, performed on a conventional rotational rheometer. A portable, home-built transceiver, designed for NMR applications utilizing a

  12. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrudan, R.; Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin; Brüssing, F.

    2015-06-15

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses tomore » excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.« less

  13. Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting

    PubMed Central

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-01-01

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496

  14. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In vivo nuclear magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leblanc, A.

    1986-05-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  16. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  17. Heliospheric Magnetic Field: The Bashful Ballerina dancing in Waltz Tempo

    NASA Astrophysics Data System (ADS)

    Mursula, K.

    The recent developments in the long-term observations of the heliospheric magnetic field HMF observed at 1 AU have shown that the HMF sector coming from the northern solar hemisphere systematically dominates in the late declining to minimum phase of the solar cycle This leads to a persistent southward shift or coning of the heliospheric current sheet at these times that can be picturesquely described by the concept of the Bashful Ballerina This result has recently been verified by direct measurements of the solar magnetic field The average field intensity is smaller and the corresponding area is larger in the northern hemisphere Also ground-based observations of the HMF sector structure extend these results to 1920s Moreover it has been shown that the global HMF has persistent active longitudes whose dominance depicts an oscillation with a period of about 3 2 years Accordingly the Bashful Ballerina takes three such steps per activity cycle thus dancing in waltz tempo We discuss the implications of this behaviour

  18. Health sector reform in Brazil: a case study of inequity.

    PubMed

    Almeida, C; Travassos, C; Porto, S; Labra, M E

    2000-01-01

    Health sector reform in Brazil built the Unified Health System according to a dense body of administrative instruments for organizing decentralized service networks and institutionalizing a complex decision-making arena. This article focuses on the equity in health care services. Equity is defined as a principle governing distributive functions designed to reduce or offset socially unjust inequalities, and it is applied to evaluate the distribution of financial resources and the use of health services. Even though in the Constitution the term "equity" refers to equal opportunity of access for equal needs, the implemented policies have not guaranteed these rights. Underfunding, fiscal stress, and lack of priorities for the sector have contributed to a progressive deterioration of health care services, with continuing regressive tax collection and unequal distribution of financial resources among regions. The data suggest that despite regulatory measures to increase efficiency and reduce inequalities, delivery of health care services remains extremely unequal across the country. People in lower income groups experience more difficulties in getting access to health services. Utilization rates vary greatly by type of service among income groups, positions in the labor market, and levels of education.

  19. EUV Solar Instrument Development at the Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Cirtain, J. W.; Davis, J. M.; West, E.; Golub, L.; Korreck, K. E.; Tsuneta, S.; Bando, T.

    2009-12-01

    The three sounding rocket instrument programs currently underway at the NASA Marshall Space Flight Center represent major advances in solar observations, made possible by improvements in EUV optics and detector technology. The Solar Ultraviolet Magnetograph Instrument (SUMI) is an EUV spectropolarimeter designed to measure the Zeeman splitting of two chromospheric EUV lines, the 280 nm MgII and 155 nm CIV lines. SUMI directly observes the magnetic field in the low-beta region where most energetic phenomena are though to originate. In conjunction with visible-light magnetographs, this observation allows us to track the evolution of the magnetic field as it evolves from the photosphere to the upper chromosphere. SUMI incorporates a normal incidence Cassegrain telescope, a MgF2 double-Wollaston polarizing beam splitter and two TVLS (toroidal varied line space) gratings, and is capable of observing two orthogonal polarizations in two wavelength bands simultaneously. SUMI has been fully assembled and tested, and currently scheduled for launch in summer of 2010. The High-resolution Coronal Imager is a normal-incidence EUV imaging telescope designed to achieve 0.2 arcsecond resolution, with a pixel size of 0.1 arcsecond. This is a factor of 25 improvement in aerial resolution over the Transition Region And Coronal Explorer (TRACE). Images obtained by TRACE indicate presence of unresolved structures; higher resolution images will reveal the scale and topology of structures that make up the corona. The telescope mirrors are currently being fabricated, and the instrument has been funded for flight. In addition, a Lyman alpha spectropolarimeter is under development in collaboration with the National Astronomical Observatory of Japan. This aims to detect the linear polarization in the chromosphere caused by the Hanle effect. Horizontal magnetic fields in the chromosphere are expected to be detectable as polarization near disk center, and off-limb observations will reveal the

  20. Responsible leader behavior in health sectors.

    PubMed

    Longest, Beaufort

    2017-02-06

    Purpose The purpose of this paper is to expand attention to responsible leader behavior in the world's health sectors by explaining how this concept applies to health sectors, considering why health sector leaders should behave responsibly, reviewing how they can do so, and asserting potential impact through an applied example. Design/methodology/approach This paper is a viewpoint, reflecting conceptualizations rooted in leadership literature which are then specifically applied to health sectors. A definition of responsible leader behavior is affirmed and applied specifically in health sectors. Conceptualizations and viewpoints about practice of responsible leader behavior in health sectors and potential consequences are then discussed and asserted. Findings Leadership failures and debacles found in health, but more so in other sectors, have led leadership researchers to offer insights, many of them empirical, into the challenges of leadership especially by more clearly delineating responsible leader behavior. Practical implications Much of what has been learned in the research about responsible leader behavior offers pathways for health sector leaders to more fully practice responsible leadership. Social implications This paper asserts and provides a supporting example that greater levels of responsible leader behavior in health sectors hold potentially important societal benefits. Originality/value This paper is the first to apply emerging conceptualizations and early empirical findings about responsible leader behavior specifically to leaders in health sectors.

  1. New instruments for solar research

    NASA Technical Reports Server (NTRS)

    Rust, David M.; O'Byrne, John W.; Sterner, Raymond E., II

    1990-01-01

    In fulfilment of its goal to develop early detection and warning of emerging solar magnetic fields, the Center for Applied Solar Physics (CASP) has designed and constructed a solar vector magnetograph (VMG) that will provide unique data on the sunspot regions where flares originate. The instrument is reportedly beginning to approach its goals of measuring all three components of the solar magnetic field with a sensitivity of 50 to 100 G and a spatial resolution on the sun of about 700 km (1 arcsec). Importance of new high-resolution capabilities is stressed and the interpretation of VMG measurements is discussed. The performance of the solar VMG, installed in a 6-m dome at the National Solar Observatory at Sacramento Peak in Sunspot, New Mexico, and its construction and environment are described; particular attention is given to the use and function of the filters. Initial results are examined, including a description and analysis of a magnetogram obtained after installation of an improved blocking filter.

  2. Local time dependence of turbulent magnetic fields in Saturn's magnetodisc

    NASA Astrophysics Data System (ADS)

    Kaminker, V.; Delamere, P. A.; Ng, C. S.; Dennis, T.; Otto, A.; Ma, X.

    2017-04-01

    Net plasma transport in magnetodiscs around giant planets is outward. Observations of plasma temperature have shown that the expanding plasma is heating nonadiabatically during this process. Turbulence has been suggested as a source of heating. However, the mechanism and distribution of magnetic fluctuations in giant magnetospheres are poorly understood. In this study we attempt to quantify the radial and local time dependence of fluctuating magnetic field signatures that are suggestive of turbulence, quantifying the fluctuations in terms of a plasma heating rate density. In addition, the inferred heating rate density is correlated with magnetic field configurations that include azimuthal bend forward/back and magnitude of the equatorial normal component of magnetic field relative to the dipole. We find a significant local time dependence in magnetic fluctuations that is consistent with flux transport triggered in the subsolar and dusk sectors due to magnetodisc reconnection.

  3. View of Scientific Instrument Module to be flown on Apollo 15

    NASA Image and Video Library

    1971-06-27

    S71-2250X (June 1971) --- A close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 lunar landing mission. Mounted in a previously vacant sector of the Apollo Service Module (SM), the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data. SIM equipment includes a laser altimeter for accurate measurement of height above the lunar surface; a large-format panoramic camera for mapping, correlated with a metric camera and the laser altimeter for surface mapping; a gamma ray spectrometer on a 25-feet extendible boom; a mass spectrometer on a 21-feet extendible boom; X-ray and alpha particle spectrometers; and a subsatellite which will be injected into lunar orbit carrying a particle and magnetometer, and the S-Band transponder.

  4. Taking stock of monitoring and evaluation systems in the health sector: findings from Rwanda and Uganda.

    PubMed

    Holvoet, Nathalie; Inberg, Liesbeth

    2014-07-01

    In the context of sector-wide approaches and the considerable funding being put into the health sectors of low-income countries, the need to invest in well-functioning national health sector monitoring and evaluation (M&E) systems is widely acknowledged. Regardless of the approach adopted, an important first step in any strategy for capacity development is to diagnose the quality of existing systems or arrangements, taking into account both the supply and demand sides of M&E. As no standardized M&E diagnostic instrument currently exists, we first invested in the development of an assessment tool for sector M&E systems. To counter the criticism that M&E is often narrowed down to a focus on technicalities, our diagnostic tool assesses the quality of M&E systems according to six dimensions: (i) policy; (ii) quality of indicators and data (collection) and methodology; (iii) organization (further divided into iiia: structure and iiib: linkages); (iv) capacity; (v) participation of non-government actors and (vi) M&E outputs: quality and use. We subsequently applied the assessment tool to the health sector M&E systems of Rwanda and Uganda, and this article provides a comparative overview of the main research findings. Our research may have important implications for policy, as both countries receive health sector (budget) support in relation to which M&E system diagnosis and improvement are expected to be high on the agenda. The findings of our assessments indicate that, thus far, the health sector M&E systems in Rwanda and Uganda can at best be diagnosed as 'fragmentary', with some stronger and weaker elements. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2013; all rights reserved.

  5. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  6. Measuring the magnetic fields of Jupiter and the outer solar system

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Connor, B. V.; Foster, G. T., Jr.

    1975-01-01

    The vector helium magnetometer, one of the Pioneer-Jupiter experiments, has measured the magnetic field of Jupiter and the interplanetary magnetic field in the outer solar system. The comprehensive scientific objectives of the investigations are explained and are then translated into the major instrument requirements. The principles of operation of the magnetometer, which involve the optical pumping of metastable helium, are discussed and the Pioneer instrument is described. The in-flight performance of the magnetometer is discussed and principal scientific results obtained thus far by the Pioneer investigation are summarized.

  7. Incorporating the catering sector in nutrition policies of WHO European Region: is there a good recipe?

    PubMed

    Lachat, Carl; Roberfroid, Dominique; Huybregts, Lieven; Van Camp, John; Kolsteren, Patrick

    2009-03-01

    To review how countries of the WHO European Region address issues related to the catering sector in their nutrition policy plans. Documentary analysis of national nutrition policy documents from the policy database of the WHO Regional Office for Europe by a multidisciplinary research team. Recurring themes were identified and related information extracted in an analysis matrix. Case studies were performed for realistic evaluation. Fifty-three member states of the WHO European Region in September 2007. The catering sector is a formally acknowledged stakeholder in national nutrition policies in about two-thirds of countries of the European region. Strategies developed for the catering sector are directed mainly towards labelling of foods and prepared meals, training of health and catering staff, and advertising. Half of the countries reviewed propose dialogue structures with the catering sector for the implementation of the policy. However, important policy fields remain poorly developed, such as strategies for stimulating and monitoring actual implementation of policies. Others are simply lacking, such as strategies to ensure affordability of healthy out-of-home eating or to enhance accountability of stakeholders. It is also striking that strategies for the private sector are rarely developed. Important policy issues are still embryonic. As evidence is accumulating on the impact of out-of-home eating on the increase of overweight, member states are advised to urgently develop operational frameworks and instruments for participatory planning and evaluation of stakeholders in public health nutrition policy.

  8. Fuel switching in the electricity sector under the EU ETS: Review and prospective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delarue, E.; Voorspools, K.; D'haeseleer, W.

    2008-06-15

    The European Union has implemented the European Union emission trading scheme (EU ETS) as an instrument to facilitate greenhouse gas (GHG) emission abatement stipulated in the Kyoto protocol. Empirical data show that in the early stages of the EU ETS, the value of a ton of CO{sub 2} has already led to emission abatement through switching from coal to gas in the European electric power sector. In the second part of this paper, an electricity generation simulation model is used to perform simulations on the switching behavior in both the first and the second trading periods of the EU ETS.more » In 2005, the reduction in GHG emissions in the electric power sector due to EU ETS is estimated close to 88 Mton. For the second trading period, a European Union allowance (EUA) price dependent GHG reduction curve has been determined. The obtained switching potential turns out to be significant, up to 300 Mton/year, at sufficiently high EUA prices.« less

  9. Bashful ballerina: Multi-instrument verification and recent behaviour

    NASA Astrophysics Data System (ADS)

    Mursula, Kalevi; Virtanen, Ilpo

    2016-07-01

    Heliospheric current sheet (HCS) is the continuation of the coronal magnetic equator into space, dividing the heliospheric magnetic field (HMF) into two sectors. Because of its wavy structure, the HCS is also called the ballerina skirt. Several recent studies have proven that the HCS is southward shifted during about three years in the solar declining to minimum phase. This persistent phenomenon, now called the Bashful ballerina, has been seen in geomagnetic indices since 1930s, OMNI data since 1960s, WSO data since mid-1970s and in Ulysses probe measurements during the fast latitude scans in 1994-1995 and 2007. Here we study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet since 1975 using synoptic maps from six observatories (WSO, MWO, Kitt Peak, SOLIS, SOHO/MDI and SDO/HMI). All data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, and agree on the southward shift of the heliospheric current sheet during all the five included cycles. We show that during solar cycles 20 -- 22, the southward shift of the HCS is due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is, again, due to the axial quadrupole, repeating the pattern of most previous cycles.

  10. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  11. MEMS-Based Micro Instruments for In-Situ Planetary Exploration

    NASA Technical Reports Server (NTRS)

    George, Thomas; Urgiles, Eduardo R; Toda, Risaku; Wilcox, Jaroslava Z.; Douglas, Susanne; Lee, C-S.; Son, Kyung-Ah; Miller, D.; Myung, N.; Madsen, L.; hide

    2005-01-01

    NASA's planetary exploration strategy is primarily targeted to the detection of extant or extinct signs of life. Thus, the agency is moving towards more in-situ landed missions as evidenced by the recent, successful demonstration of twin Mars Exploration Rovers. Also, future robotic exploration platforms are expected to evolve towards sophisticated analytical laboratories composed of multi-instrument suites. MEMS technology is very attractive for in-situ planetary exploration because of the promise of a diverse and capable set of advanced, low mass and low-power devices and instruments. At JPL, we are exploiting this diversity of MEMS for the development of a new class of miniaturized instruments for planetary exploration. In particular, two examples of this approach are the development of an Electron Luminescence X-ray Spectrometer (ELXS), and a Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer.

  12. Performance of the Magnetospheric Multiscale central instrument data handling

    NASA Astrophysics Data System (ADS)

    Klar, Robert A.; Miller, Scott A.; Brysch, Michael L.; Bertrand, Allison R.

    In order to study the fundamental physical processes of magnetic reconnection, particle acceleration and turbulence, the Magnetospheric Multiscale (MMS) mission employs a constellation of four identically configured observatories, each with a suite of complementary science instruments. Southwest Research Institute® (SwRI® ) developed the Central Instrument Data Processor (CIDP) to handle the large data volume associated with these instruments. The CIDP is an integrated access point between the instruments and the spacecraft. It provides synchronization pulses, relays telecommands, and gathers instrument housekeeping telemetry. It collects science data from the instruments and stores it to a mass memory for later playback to a ground station. This paper retrospectively examines the data handling performance realized by the CIDP implementation. It elaborates on some of the constraints on the hardware and software designs and the resulting effects on performance. For the hardware, it discusses the limitations of the front-end electronics input/output (I/O) architecture and associated mass memory buffering. For the software, it discusses the limitations of the Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP) implementation and the data structure choices for file management. It also describes design changes that improve data handling performance in newer designs.

  13. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  14. Technical Note: Error metrics for estimating the accuracy of needle/instrument placement during transperineal magnetic resonance/ultrasound-guided prostate interventions.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Villarini, Barbara; Rodell, Rachael; Martin, Paul; Han, Lianghao; Donaldson, Ian; Ahmed, Hashim U; Moore, Caroline M; Emberton, Mark; Barratt, Dean C

    2018-04-01

    Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult. A set of nine measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach. Using the SmartTarget fusion system, an MRI-US image alignment error was determined to be 2.0 ± 1.0 mm (mean ± SD), and an overall system instrument targeting error of 3.0 ± 1.2 mm. Three needle deployments for each target phantom lesion was found to result in a 100% lesion hit rate and a median predicted cancer core length of 5.2 mm. The application of a comprehensive, unbiased validation assessment for MR/US guided systems can provide useful information on system performance for quality assurance and system comparison. Furthermore, such an analysis can be helpful in identifying relationships between these errors, providing insight into the technical behavior of these systems. © 2018 American Association of Physicists in Medicine.

  15. Content validity of governing in Building Information Modelling (BIM) implementation assessment instrument

    NASA Astrophysics Data System (ADS)

    Hadzaman, N. A. H.; Takim, R.; Nawawi, A. H.; Mohamad Yusuwan, N.

    2018-04-01

    BIM governance assessment instrument is a process of analysing the importance in developing BIM governance solution to tackle the existing problems during team collaboration in BIM-based projects. Despite the deployment of integrative technologies in construction industry particularly BIM, it is still insufficient compare to other sectors. Several studies have been established the requirements of BIM implementation concerning all technical and non-technical BIM adoption issues. However, the data are regarded as inadequate to develop a BIM governance framework. Hence, the objective of the paper is to evaluate the content validity of the BIM governance instrument prior to the main data collection. Two methods were employed in the form of literature review and questionnaire survey. Based on the literature review, 273 items with six main constructs are suggested to be incorporated in the BIM governance instrument. The Content Validity Ratio (CVR) scores revealed that 202 out of 273 items are considered as the utmost critical by the content experts. The findings for Item Level Content Validity Index (I-CVI) and Modified Kappa Coefficient however revealed that 257 items in BIM governance instrument are appropriate and excellent. The instrument is highly reliable for future strategies and the development of BIM projects in Malaysia.

  16. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  17. Calculation and Analysis of magnetic gradient tensor components of global magnetic models

    NASA Astrophysics Data System (ADS)

    Schiffler, Markus; Queitsch, Matthias; Schneider, Michael; Stolz, Ronny; Krech, Wolfram; Meyer, Hans-Georg; Kukowski, Nina

    2014-05-01

    Magnetic mapping missions like SWARM and its predecessors, e.g. the CHAMP and MAGSAT programs, offer high resolution Earth's magnetic field data. These datasets are usually combined with magnetic observatory and survey data, and subject to harmonic analysis. The derived spherical harmonic coefficients enable magnetic field modelling using a potential series expansion. Recently, new instruments like the JeSSY STAR Full Tensor Magnetic Gradiometry system equipped with very high sensitive sensors can directly measure the magnetic field gradient tensor components. The full understanding of the quality of the measured data requires the extension of magnetic field models to gradient tensor components. In this study, we focus on the extension of the derivation of the magnetic field out of the potential series magnetic field gradient tensor components and apply the new theoretical framework to the International Geomagnetic Reference Field (IGRF) and the High Definition Magnetic Model (HDGM). The gradient tensor component maps for entire Earth's surface produced for the IGRF show low values and smooth variations reflecting the core and mantle contributions whereas those for the HDGM gives a novel tool to unravel crustal structure and deep-situated ore bodies. For example, the Thor Suture and the Sorgenfrei-Thornquist Zone in Europe are delineated by a strong northward gradient. Derived from Eigenvalue decomposition of the magnetic gradient tensor, the scaled magnetic moment, normalized source strength (NSS) and the bearing of the lithospheric sources are presented. The NSS serves as a tool for estimating the lithosphere-asthenosphere boundary as well as the depth of plutons and ore bodies. Furthermore changes in magnetization direction parallel to the mid-ocean ridges can be obtained from the scaled magnetic moment and the normalized source strength discriminates the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European

  18. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented amore » bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle’s position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.« less

  19. Patient-specific instrumentation in total knee arthroplasty: simpler, faster and more accurate than standard instrumentation-a randomized controlled trial.

    PubMed

    Vide, João; Freitas, Tânia Pinto; Ramos, Acácio; Cruz, Henrique; Sousa, João Paulo

    2017-08-01

    This randomized controlled trial was conducted to compare patient-specific instrumentation (PSI) to standard instrumentation regarding efficacy to achieve a good coronal alignment and differences in surgical time, blood loss and length of stay. Ninety-five of 100 randomized patients eligible for total knee arthroplasty were analysed. PSI with magnetic resonance and long-leg radiograph was performed in 47 patients, while 48 patients received standard instrumentation. Primary outcome measure was coronal alignment, evaluated with long-leg radiograph. Deviation >3° varus/valgus was considered an outlier. Surgical time was compared from skin to skin. Length of stay was a post hoc analysis. Blood loss was evaluated comparing the number of blood units spent, fall in haemoglobin and haematocrit levels. Standard instrumentation had a higher number of outliers in the coronal alignment with a relative risk of 3.015, compared to PSI. Surgical time was reduced by 18 min (24.8 %) with the PSI, as well as length of stay, with a half-day reduction. Number of blood units spent was significantly less in the PSI group. Relative risk of transfusion was 7.09 for patients in the standard instrumentation group. Difference in Hg and Htc levels were not significant. No patient had to abandon PSI. Minor changes to preoperative plan occurred in 14.9 % of the patient: cut review in 4.3 % and insert change in 10.6 %. Patient-specific instrumentation (PSI) is able to provide important advantages over standard instrumentation in total knee arthroplasty: it lowers the risk of outliers and transfusion, is a faster procedure and enables a shorter length of stay with a low rate of intraoperative adjustments. I.

  20. Setting research priorities across science, technology, and health sectors: the Tanzania experience.

    PubMed

    de Haan, Sylvia; Kingamkono, Rose; Tindamanyire, Neema; Mshinda, Hassan; Makandi, Harun; Tibazarwa, Flora; Kubata, Bruno; Montorzi, Gabriela

    2015-03-12

    Identifying research priorities is key to innovation and economic growth, since it informs decision makers on effectively targeting issues that have the greatest potential public benefit. As such, the process of setting research priorities is of pivotal importance for favouring the science, technology, and innovation (STI)-driven development of low- and middle-income countries. We report herein on a major cross-sectoral nationwide research priority setting effort recently carried out in Tanzania by the Tanzania Commission for Science and Technology (COSTECH) in partnership with the Council on Health Research for Development (COHRED) and the NEPAD Agency. The first of its type in the country, the process brought together stakeholders from 42 sub-sectors in science, technology, and health. The cross-sectoral research priority setting process consisted of a 'training-of-trainers' workshop, a demonstration workshop, and seven priority setting workshops delivered to representatives from public and private research and development institutions, universities, non-governmental organizations, and other agencies affiliated to COSTECH. The workshops resulted in ranked listings of research priorities for each sub-sector, totalling approximately 800 priorities. This large number was significantly reduced by an expert panel in order to build a manageable instrument aligned to national development plans that could be used to guide research investments. The Tanzania experience is an instructive example of the challenges and issues to be faced in when attempting to identify research priority areas and setting an STI research agenda in low- and middle-income countries. As countries increase their investment in research, it is essential to increase investment in research management and governance as well, a key and much needed capacity for countries to make proper use of research investments.

  1. Psyche Mission: Scientific Models and Instrument Selection

    NASA Astrophysics Data System (ADS)

    Polanskey, C. A.; Elkins-Tanton, L. T.; Bell, J. F., III; Lawrence, D. J.; Marchi, S.; Park, R. S.; Russell, C. T.; Weiss, B. P.

    2017-12-01

    NASA has chosen to explore (16) Psyche with their 14th Discovery-class mission. Psyche is a 226-km diameter metallic asteroid hypothesized to be the exposed core of a planetesimal that was stripped of its rocky mantle by multiple hit and run collisions in the early solar system. The spacecraft launch is planned for 2022 with arrival at the asteroid in 2026 for 21 months of operations. The Psyche investigation has five primary scientific objectives: A. Determine whether Psyche is a core, or if it is unmelted material. B. Determine the relative ages of regions of Psyche's surface. C. Determine whether small metal bodies incorporate the same light elements as are expected in the Earth's high-pressure core. D. Determine whether Psyche was formed under conditions more oxidizing or more reducing than Earth's core. E. Characterize Psyche's topography. The mission's task was to select the appropriate instruments to meet these objectives. However, exploring a metal world, rather than one made of ice, rock, or gas, requires development of new scientific models for Psyche to support the selection of the appropriate instruments for the payload. If Psyche is indeed a planetary core, we expect that it should have a detectable magnetic field. However, the strength of the magnetic field can vary by orders of magnitude depending on the formational history of Psyche. The implications of both the extreme low-end and the high-end predictions impact the magnetometer and mission design. For the imaging experiment, what can the team expect for the morphology of a heavily impacted metal body? Efforts are underway to further investigate the differences in crater morphology between high velocity impacts into metal and rock to be prepared to interpret the images of Psyche when they are returned. Finally, elemental composition measurements at Psyche using nuclear spectroscopy encompass a new and unexplored phase space of gamma-ray and neutron measurements. We will present some end

  2. A study of a sector spectrophotometer and auroral O+(2P-2D) emissions

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.

    1976-01-01

    The metastable O+(2P-2D) auroral emission was investigated. The neighboring OH contaminants and low intensity levels of the emission itself necessitated the evolution of an instrument capable of separating the emission from the contaminants and having a high sensitivity in the wavelength region of interest. A new type of scanning photometer was developed and its properties are discussed. The theoretical aspects of auroral electron interaction with atomic oxygen and the resultant O+(2P-2D) emissions were examined in conjunction with N2(+)1NEG emissions. Ground based measurements of O+(2P-2D) auroral emission intensities were made using the spatial scanning photometer (sector spectrophotometer). Simultaneous measurements of N2(+)1NEG sub 1,0 emission intensity were made in the same field of view using a tilting photometer. Time histories of the ratio of these two emissions made in the magnetic zenith during auroral breakup periods are given. Theories of I sub 7319/I sub 4278 of previous investigators were presented. A rocket measurement of N2(+)1NEG sub 0,0 and O+(2P-2D) emission in aurora was examined in detail and was found to agree with the ground based measurements. Theoretical examination resulted in the deduction of the electron impact efficiency generating O+(2P) and also suggests a large source of O+(2P) at low altitude. A possible source is charge exchange of N+(1S) with OI(3P).

  3. CrowdMag - Crowdsourcing magnetic data

    NASA Astrophysics Data System (ADS)

    Nair, M. C.; Boneh, N.; Chulliat, A.

    2014-12-01

    In the CrowdMag project, we explore whether digital magnetometers built in modern mobile phones can be used as scientific instruments to measure Earth's magnetic field. Most modern mobile phones have digital magnetometers to orient themselves. A phone's magnetometer measures three components of the local magnetic field with a typical sensitivity of about 150 to 600 nanotesla (nT). By combining data from vector magnetometers and accelerometers, phone's orientation is determined. Using phone's Internet connection, magnetic data and location are sent to a central server. At the server, we check quality of the magnetic data from all users and make the data available to the public as aggregate maps. We have two long-term goals. 1) Develop near-real-time models of Earth's time changing magnetic field by reducing man-made noise from crowdsourced data and combining it with geomagnetic data from other sources. 2) Improving accuracy of magnetic navigation by mapping magnetic noise sources (for e.g. power transformer and iron pipes). Key challenges to this endeavor are the low sensitivity of the phone's magnetometer and the noisy environment within and surrounding the phone. URL : http://www.ngdc.noaa.gov/geomag/crowdmag.shtml

  4. Environmental performance policy indicators for the public sector: the case of the defence sector.

    PubMed

    Ramos, Tomás B; Alves, Inês; Subtil, Rui; Joanaz de Melo, João

    2007-03-01

    The development of environmental performance policy indicators for public services, and in particular for the defence sector, is an emerging issue. Despite a number of recent initiatives there has been little work done in this area, since the other sectors usually focused on are agriculture, transport, industry, tourism and energy. This type of tool can be an important component for environmental performance evaluation at policy level, when integrated in the general performance assessment system of public missions and activities. The main objective of this research was to develop environmental performance policy indicators for the public sector, specifically applied to the defence sector. Previous research included an assessment of the environmental profile, through the evaluation of how environmental management practices have been adopted in this sector and an assessment of environmental aspects and impacts. This paper builds upon that previous research, developing an indicator framework--SEPI--supported by the selection and construction of environmental performance indicators. Another aim is to discuss how the current environmental indicator framework can be integrated into overall performance management. The Portuguese defence sector is presented and the usefulness of this methodology demonstrated. Feasibility and relevancy criteria are applied to evaluate the set of indicators proposed, allowing indicators to be scored and indicators for the policy level to be obtained.

  5. Instrument design optimization with computational methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Michael H.

    Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density uctuations from the liquid hydrogen (LH2) target used in the Q weak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentummore » Spectrometer (SHMS) is presented with a focus on primary electron beam deflection downstream of the target. The SHMS consists of a superconducting horizontal bending magnet (HB) and three superconducting quadrupole magnets. The HB allows particles scattered at an angle of 5:5 deg to the beam line to be steered into the quadrupole magnets which make up the optics of the spectrometer. Without mitigation, remnant fields from the SHMS may steer the unscattered beam outside of the acceptable envelope on the beam dump and limit beam operations at small scattering angles. A solution is proposed using optimal placement of a minimal amount of shielding iron around the beam line.« less

  6. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  7. In situ energetic particle observations at Comet Halley recorded by instrumentation aboard the Giotto and VEGA 1 missions

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Daly, P.; Kirsch, E.; Wilken, B.; O'Sullivan, D.; Thompson, A.; Kecskemety, K.; Somogyi, A.; Coates, A.

    1989-04-01

    Energetic particle data on quasi-periodic variations of cometary ion fluxes recorded by instrumentation aboard the Vega 1 and Giotto spacecraft during March 1986 are compared. It is suggested that the ion fluxes measured by the Giotto EPONA instrument were of the water group. Large fluxes of electrons and ions recorded by the EPONA instrument in the magnetic cavity appear to be cometary in origin.

  8. VLF and X-ray Instruments for Stratospheric Balloons: ABOVE2 and EPEx

    NASA Astrophysics Data System (ADS)

    Cully, C. M.; Galts, D.; Patrick, M.; Duffin, C.; Jang, A. C.; Pitzel, J.; Trumpour, T.; McCarthy, M.; Milling, D. K.

    2017-12-01

    The ABOVE2 (2016) and EPEx (2018) stratospheric balloon missions are designed to study energetic electrons precipitating from the radiation belts into the atmosphere. The payloads include instruments that measure Very Low Frequency (VLF) magnetic and electric fields, and bremsstrahlung X-rays. The ABOVE2 VLF instrument is an FPGA-based design with >200 kHz sampling rates, sub-microsecond timing accuracy and onboard spectral processing, designed in a Cubesat-friendly format. The EPEx X-ray instrument is a hard X-ray imaging system, also in a Cubesat-friendly format, incorporating a commercially-available Cadmium-Zinc-Telluride module. The imager is sufficiently lightweight that we can launch it on-demand with low-volume latex balloons. I will discuss the design and performance of both instruments, and present data from the ABOVE2 flights.

  9. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  10. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs atmore » different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.« less

  11. Dynamically Evolving Sectors for Convective Weather Impact

    NASA Technical Reports Server (NTRS)

    Drew, Michael C.

    2010-01-01

    A new strategy for altering existing sector boundaries in response to blocking convective weather is presented. This method seeks to improve the reduced capacity of sectors directly affected by weather by moving boundaries in a direction that offers the greatest capacity improvement. The boundary deformations are shared by neighboring sectors within the region in a manner that preserves their shapes and sizes as much as possible. This reduces the controller workload involved with learning new sector designs. The algorithm that produces the altered sectors is based on a force-deflection mesh model that needs only nominal traffic patterns and the shape of the blocking weather for input. It does not require weather-affected traffic patterns that would have to be predicted by simulation. When compared to an existing optimal sector design method, the sectors produced by the new algorithm are more similar to the original sector shapes, resulting in sectors that may be more suitable for operational use because the change is not as drastic. Also, preliminary results show that this method produces sectors that can equitably distribute the workload of rerouted weather-affected traffic throughout the region where inclement weather is present. This is demonstrated by sector aircraft count distributions of simulated traffic in weather-affected regions.

  12. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  13. Design and testing of piezo motors for non-magnetic and/or fine positioning applications

    NASA Astrophysics Data System (ADS)

    Six, M. F.; Le Letty, R.; Seiler, R.; Coste, P.

    2005-07-01

    cup configuration, in which the stator is placed in the inner diameter of a duplex ball bearing assembly. Despite the mass penalty of the rotor suspension, this configuration has been preferred for an easier wear debris confinement and higher support stiffness. Development testing examined two routes for the friction material (that should exhibit a low wear rate and a high friction coefficient, which should be similar in air and in vacuum): a polymer solution, already known and tested by CEDRAT TECHNOLOGIES, and a ceramic solution. Some potential applications have been identified both in the space sector (for instance magnetometer motorisation for the SWARM mission) and in other sectors, such as motorisation of equipment for Magnetic Resonant Imaging, taking benefit from the non-magnetic design option of the RPA. The second concept (RPMHPP) aims at providing very high pointing accuracy for future instruments such as the one foreseen for telescope pointing in the LISA constellation. In this concept, the piezo actuators operate in quasi-static mode and lead to a robust design, able to withstand a large non-operational temperature range (-140 to +140°C). Although the concept could allow for a full rotation, the prototype was implemented with an elastic guiding of the shaft: the angular stroke is +/-1° and the measured angular positioning accuray is in the range of 100 nrad.

  14. Applying OD to the Public Sector

    ERIC Educational Resources Information Center

    Warrick, D. D.

    1976-01-01

    Discusses special considerations affecting organizational development (OD) programs in public-sector organizations, presents guidelines for using OD procedures in the public sector, and offers conclusions about the applicability of OD in the public sector. (Author/JG)

  15. CP-violating phase on magnetized toroidal orbifolds

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Nishiwaki, Kenji; Tatsuta, Yoshiyuki

    2017-04-01

    We study the CP-violating phase of the quark sector on T 2 /Z N ( N = 2 , 3 , 4 , 6) with non-vanishing magnetic fluxes, where properties of possible origins of the CP violation are investigated minutely. In this system, a non-vanishing value is mandatory in the real part of the complex modulus parameter τ of the two-dimensional torus in order to explain the CP violation in the quark sector. On T 2 without orbifolding, underlying discrete flavor symmetries severely restrict the form of Yukawa couplings and it is very difficult to reproduce the observed pattern in the quark sector including the CP-violating phase δ CP. When multiple Higgs doublets emerge on T 2 /Z 2, the mass matrices of the zero-mode fermions can be written in the Gaussian textures by choosing appropriate configurations of vacuum expectation values of the Higgs fields. When such Gaussian textures of mass matrices are realized, we show that all of the quark profiles, which are mass hierarchies among the quarks, quark mixing angles, and δ CP can be simultaneously realized.

  16. Momentum Flux Measuring Instrument for Neutral and Charged Particle Flows

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Schafer, Charles F. (Technical Monitor)

    2002-01-01

    An instrument to measure the momentum flux (total pressure) of plasma and neutral particle jets onto a surface has been developed. While this instrument was developed for magnetized plasmas, the concept works for non-magnetized plasmas as well. We have measured forces as small as 10(exp -4) Newtons on a surface immersed in the plasma where small forces are due to ionic and neutral particles with kinetic energies on the order of a few eV impacting the surface. This instrument, a force sensor, uses a target plate (surface) that is immersed in the plasma and connected to one end of an alumina rod while the opposite end of the alumina rod is mechanically connected to a titanium beam on which four strain gauges are mounted. The force on the target generates torque causing strain in the beam. The resulting strain measurements can be correlated to a force on the target plate. The alumina rod electrically and thermally isolates the target plate from the strain gauge beam and allows the strain gauges to be located out of the plasma flow while also serving as a moment arm of several inches to increase the strain in the beam at the strain gauge location. These force measurements correspond directly to momentum flux and may be used with known plasma conditions to place boundaries on the kinetic energies of the plasma and neutral particles. The force measurements may also be used to infer thrust produced by a plasma propulsive device. Stainless steel, titanium, molybdenum, and aluminum flat target plates have been used. Momentum flux measurements of H2, D2, He, and Ar plasmas produced in a magnetized plasma device have been performed.

  17. Determination of Flux-Gate Magnetometer Spin Axis Offsets with the Electron Drift Instrument

    NASA Astrophysics Data System (ADS)

    Plaschke, Ferdinand; Nakamura, Rumi; Giner, Lukas; Teubenbacher, Robert; Chutter, Mark; Leinweber, Hannes K.; Magnes, Werner

    2014-05-01

    Spin-stabilization of spacecraft enormously supports the in-flight calibration of onboard flux-gate magnetometers (FGMs): eight out of twelve calibration parameters can be determined by minimization of spin tone and harmonics in the calibrated magnetic field measurements. From the remaining four parameters, the spin axis offset is usually obtained by analyzing observations of Alfvénic fluctuations in the solar wind. If solar wind measurements are unavailable, other methods for spin axis offset determination need to be used. We present two alternative methods that are based on the comparison of FGM and electron drift instrument (EDI) data: (1) EDI measures the gyration periods of instrument-emitted electrons in the ambient magnetic field. They are inversely proportional to the magnetic field strength. Differences between FGM and EDI measured field strengths can be attributed to inaccuracies in spin axis offset, if the other calibration parameters are accurately known. (2) For EDI electrons to return to the spacecraft, they have to be sent out in perpendicular direction to the ambient magnetic field. Minimization of the variance of electron beam directions with respect to the FGM-determined magnetic field direction also yields an estimate of the spin axis offset. Prior to spin axis offset determination, systematic inaccuracies in EDI gyration period measurements and in the transformation of EDI beam directions into the FGM spin-aligned reference coordinate system have to be corrected. We show how this can be done by FGM/EDI data comparison, as well.

  18. Air Traffic Sector Configuration Change Frequency

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Drew, Michael

    2010-01-01

    A Mixed Integer Linear Programming method is used for creating sectors in Fort Worth, Cleveland, and Los Angeles centers based on several days of good-weather traffic data. The performance of these sectors is studied when they are subjected to traffic data from different days. Additionally, the advantage of using different sector designs at different times of day with varying traffic loads is examined. Specifically, traffic data from 10 days are used for design, and 47 other days are played back to test if the traffic-counts stay below the design values used in creating the partitions. The primary findings of this study are as follows. Sectors created with traffic from good-weather days can be used on other good-weather days. Sector configurations created with two hours of traffic can be used for 6 to 12 hours without exceeding the peak-count requirement. Compared to using a single configuration for the entire day, most of the sector-hour reduction is achieved by using two sector configurations -one during daytime hours and one during nighttime hours.

  19. Binary stellar winds. [flow and magnetic field geometry

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.

  20. Binary stellar winds. [flow and magnetic field interactions

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.

  1. Magnetism in Medicine

    NASA Astrophysics Data System (ADS)

    Schenck, John

    2000-03-01

    For centuries physicians, scientists and others have postulated an important role, either as a cause of disease or as a mode of therapy, for magnetism in medicine. Although there is a straightforward role in the removal of magnetic foreign bodies, the majority of the proposed magnetic applications have been controversial and have often been attributed by mainstream practitioners to fraud, quackery or self-deception. Calculations indicate that many of the proposed methods of action, e.g., the field-induced alignment of water molecules or alterations in blood flow, are of negligible magnitude. Nonetheless, even at the present time, the use of small surface magnets (magnetotherapy) to treat arthritis and similar diseases is a widespread form of folk medicine and is said to involve sales of approximately one billion dollars per year. Another medical application of magnetism associated with Mesmer and others (eventually known as animal magnetism) has been discredited, but has had a culturally significant role in the development of hypnotism and as one of the sources of modern psychotherapy. Over the last two decades, in marked contrast to previous applications of magnetism to medicine, magnetic resonance imaging or MRI, has become firmly established as a clinical diagnostic tool. MRI permits the non-invasive study of subtle biological processes in intact, living organisms and approximately 150,000,000 diagnostic studies have been performed since its clinical introduction in the early 1980s. The dramatically swift and widespread acceptance of MRI was made possible by scientific and engineering advances - including nuclear magnetic resonance, computer technology and whole-body-sized, high field superconducting magnets - in the decades following World War Two. Although presently used much less than MRI, additional applications, including nerve and muscle stimulation by pulsed magnetic fields, the use of magnetic forces to guide surgical instruments, and imaging utilizing

  2. Magnetism, iron minerals, and life on Mars.

    PubMed

    Rochette, P; Gattacceca, J; Chevrier, V; Mathé, P E; Menvielle, M

    2006-06-01

    A short critical review is provided on two questions linking magnetism and possible early life on Mars: (1) Did Mars have an Earth-like internal magnetic field, and, if so, during which period and was it a requisite for life? (2) Is there a connection between iron minerals in the martian regolith and life? We also discuss the possible astrobiological implications of magnetic measurements at the surface of Mars using two proposed instruments. A magnetic remanence device based on magnetic field measurements can be used to identify Noachian age rocks and lightning impacts. A contact magnetic susceptibility probe can be used to investigate weathering rinds on martian rocks and identify meteorites among the small regolith rocks. Both materials are considered possible specific niches for microorganisms and, thus, potential astrobiological targets. Experimental results on analogues are presented to support the suitability of such in situ measurements.

  3. Brazilian healthcare in the context of austerity: private sector dominant, government sector failing.

    PubMed

    Costa, Nilson do Rosário

    2017-04-01

    This paper presents the arguments in favor of government intervention in financing and regulation of health in Brazil. It describes the organizational arrangement of the Brazilian health system, for the purpose of reflection on the austerity agenda proposed for the country. Based on the literature in health economics, it discusses the hypothesis that the health sector in Brazil functions under the dominance of the private sector. The categories employed for analysis are those of the national health spending figures. An international comparison of indicators of health expenses shows that Brazilian public spending is a low proportion of total spending on Brazilian health. Expenditure on individuals' health by out-of-pocket payments is high, and this works against equitability. The private health services sector plays a crucial role in provision, and financing. Contrary to the belief put forward by the austerity agenda, public expenditure cannot be constrained because the government has failed in adequate provision of services to the poor. This paper argues that, since the Constitution did not veto activity by the private sector segment of the market, those interests that have the greatest capacity to vocalize have been successful in imposing their preferences in the configuration of the sector.

  4. Solar Mean Magnetic Field Observed by GONG

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Petrie, G.; Clark, R.; GONG Team

    2009-05-01

    The average line-of-sight (LOS) magnetic field of the Sun has been observed for decades, either by measuring the circular polarization across a selected spectrum line using integrated sunlight or by averaging such measurements in spatially resolved images. The GONG instruments produce full-disk LOS magnetic images every minute, which can be averaged to yield the mean magnetic field nearly continuously. Such measurements are well correlated with the heliospheric magnetic field observed near Earth about 4 days later. They are also a measure of solar activity on long and short time scales. Averaging a GONG magnetogram, with nominal noise of 3 G per pixel, results in a noise level of about 4 mG. This is low enough that flare-related field changes have been seen in the mean field signal with time resolution of 1 minute. Longer time scales readily show variations associated with rotation of magnetic patterns across the solar disk. Annual changes due to the varying visibility of the polar magnetic fields may also be seen. Systematic effects associated with modulator non-uniformity require correction and limit the absolute accuracy of the GONG measurements. Comparison of the measurements with those from other instruments shows high correlation but suggest that GONG measurements of field strength are low by a factor of about two. The source of this discrepancy is not clear. Fourier analysis of 2007 and 2008 time series of the GONG mean field measurements shows strong signals at 27.75 and 26.84/2 day (synodic) periods with the later period showing more power. The heliospheric magnetic field near Earth shows the same periods but with reversed power dominance. The Global Oscillation Network Group (GONG) project is managed by NSO, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.

  5. Privacy Issues and the Private Sector,

    DTIC Science & Technology

    1976-07-01

    GUIDE represents a large portion of the private sector of this country; at the moment, of course, the recordkeeping processes of non-Federal...the Privacy Protection Study Commission to examine the private sector and non-Federal government. The Commission is to recommend to Congress and the...President first, what aspects of the 1974 Act should be applied to the private sector ; secondly, to recommend to Congress and the President what further legislative safeguards are indicated for the private sector .

  6. A Design for an Integrated Lunar Geophysics Instrument Package (L-GIP)

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2007-12-01

    The development of the Lunar Geophysics Instrument Package (L-GIP) is international collaborative investigation to record geophysical measurements on the surface of the Moon over several years (>6) and transmit the data back to Earth either directly, or via a surface or orbital relay asset. The L-GIP will include a seismometer, a heat flow probe, and a magnetometer. Each instrument that forms the L-GIP is relatively mature and was/is a payload on past, current or future planetary missions. However, the modifications to these (for integrating into one deployable unit), along with the required architecture, are needed. Significant trade studies include how to operate in an adverse thermal regime (transition between lunar night/day), long-lived power supply options, networking of different L-GIPs, defining the best design of heat flow probe to achieve the sciences goals (i.e., designs from Apollo, Lunar-A penetrator, and Rosetta missions), inclusion (or not) of a solar wind detector for the magnetic studies, and deployment strategies. The L-GIP instruments have been chosen because their individual data sets will address several unanswered scientific questions regarding the lunar interior and lunar evolution, as well as provide valuable data for exploration. The as yet unanswered science questions include: What is the composition and size of the lunar core? What is the internal structure of the whole Moon? What is the global thermal budget of the Moon and how has this impacted its evolution? Did the early Moon have a dynamo and if so, when did it start and when did it stop? Unanswered exploration questions include: What is the nature of ground movement in response to the large (body wave magnitude 5 or greater) Moonquakes that are known to occur? Do meteoroid impacts fall more in one area than another on the Moon? A global network of L-GIP instruments strategically placed around the Moon and operational for 6+ years will go a long way to answering such questions. The

  7. Comparison of instrumented anterior interbody fusion with instrumented circumferential lumbar fusion.

    PubMed

    Madan, S S; Boeree, N R

    2003-12-01

    Posterior lumbar interbody fusion (PLIF) restores disc height, the load bearing ability of anterior ligaments and muscles, root canal dimensions, and spinal balance. It immobilizes the painful degenerate spinal segment and decompresses the nerve roots. Anterior lumbar interbody fusion (ALIF) does the same, but could have complications of graft extrusion, compression and instability contributing to pseudarthrosis in the absence of instrumentation. The purpose of this study was to assess and compare the outcome of instrumented circumferential fusion through a posterior approach [PLIF and posterolateral fusion (PLF)] with instrumented ALIF using the Hartshill horseshoe cage, for comparable degrees of internal disc disruption and clinical disability. It was designed as a prospective study, comparing the outcome of two methods of instrumented interbody fusion for internal disc disruption. Between April 1994 and June 1998, the senior author (N.R.B.) performed 39 instrumented ALIF procedures and 35 instrumented circumferential fusion with PLIF procedures. The second author, an independent assessor (S.M.), performed the entire review. Preoperative radiographic assessment included plain radiographs, magnetic resonance imaging (MRI) and provocative discography in all the patients. The outcome in the two groups was compared in terms of radiological improvement and clinical improvement, measured on the basis of improvement of back pain and work capacity. Preoperatively, patients were asked to fill out a questionnaire giving their demographic details, maximum walking distance and current employment status in order to establish the comparability of the two groups. Patient assessment was with the Oswestry Disability Index, quality of life questionnaire (subjective), pain drawing, visual analogue scale, disability benefit, compensation status, and psychological profile. The results of the study showed a satisfactory outcome (score< or =30) on the subjective (quality of life

  8. North south asymmetry in the photospheric and coronal magnetic fields observed by different instruments

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2015-04-01

    Several recent studies have shown that the solar and heliospheric magnetic fields are north-south asymmetric. The southward shift of the Heliospheric current sheet (HCS) (the so-called bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. We study here the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field since the 1970s and the potential field source surface (PFSS) model.Multipole analysis of the photospheric magnetic field has shown that the bashful ballerina phenomenon is a consequence of g20 quadrupole term, which is oppositely signed to the dipole moment. We find that, at least during the four recent solar cycles, the g20 reflects the larger magnitude of the southern polar field during a few years in the declining phase of the cycle. Although the overall magnetic activity during the full solar cycle is not very different in the two hemispheres, the temporal distribution of activity is different, contributing to the asymmetry. The used data sets are in general in a good agreement with each other, but there are some significant deviations, especially in WSO data. Also, the data from Kitt Peak 512 channel magnetograph is known to suffer from zero level errors.We also note that the lowest harmonic coefficients do not scale with the overall magnitude in photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding difference in dipole strength is typically less than two. This is because the polar field has a dominant contribution to the dipole and quadrupole components. This should be noted, e.g., when using synoptic maps as input for coronal models.

  9. Attractiveness of employment sectors for physical therapists in Ontario, Canada (1999-2007): implication for the long term care sector

    PubMed Central

    2012-01-01

    Background Recruiting and retaining health professions remains a high priority for health system planners. Different employment sectors may vary in their appeal to providers. We used the concepts of inflow and stickiness to assess the relative attractiveness of sectors for physical therapists (PTs) in Ontario, Canada. Inflow was defined as the percentage of PTs working in a sector who were not there the previous year. Stickiness was defined as the transition probability that a physical therapist will remain in a given employment sector year-to-year. Methods A longitudinal dataset of registered PTs in Ontario (1999-2007) was created, and primary employment sector was categorized as ‘hospital’, ‘community’, ‘long term care’ (LTC) or ‘other.’ Inflow and stickiness values were then calculated for each sector, and trends were analyzed. Results There were 5003 PTs in 1999, which grew to 6064 by 2007, representing a 21.2% absolute growth. Inflow grew across all sectors, but the LTC sector had the highest inflow of 32.0%. PTs practicing in hospitals had the highest stickiness, with 87.4% of those who worked in this sector remaining year-to-year. The community and other employment sectors had stickiness values of 78.2% and 86.8% respectively, while the LTC sector had the lowest stickiness of 73.4%. Conclusion Among all employment sectors, LTC had highest inflow but lowest stickiness. Given expected increases in demand for services, understanding provider transitional probabilities and employment preferences may provide a useful policy and planning tool in developing a sustainable health human resource base across all employment sectors. PMID:22643111

  10. Paleomagnetism and magnetic fabric of the Triassic rocks from Spitsbergen

    NASA Astrophysics Data System (ADS)

    Dudzisz, K.; Szaniawski, R.; Michalski, K.; Manby, G.

    2017-12-01

    Understanding the origin and directions of the natural remanent magnetization and the tectonic deformation pattern reflected in magnetic fabric is of importance for investigation of the West Spitsbergen Fold and Thrust Belt (WSFTB) and its foreland. Previous research carried out on Triassic rocks from the study area concluded that these rocks record a composite magnetization of both, normal and reverse polarity, consisting of a primary Triassic remanence that is overlapped by a secondary post-folding component. Standard paleomagnetic procedures were conducted in order to determine the remanence components and a low-field AMS was applied to assess the degree and pattern of deformation. The AMS results from the WSFTB reveal a magnetic foliation that parallels the bedding planes and a dominantly NNW-SSE oriented magnetic lineation that is sub-parallel to the regional fold axial trend. These results imply a low to moderate degree of deformation and a maximum strain orientation parallel to that of the fold belt. These data are consistent with an orthogonal convergence model for the WSFTB formation. In turn, the magnetic fabric on the undeformed foreland displays a distinct NNE-SSW orientation that we attribute to the paleocurrent direction. Rock-magnetic analyses reveal that the dominant ferrimagnetic carriers are magnetite and titanomagnetite. The Triassic rocks are characterised by complicated NRM patterns often with overlapping unblocking temperature spectra of particular components. The dominant magnetisation is characterised, however, by a steep inclination of 70-80º. The derived paleomagnetic direction from the WSFTB falls on the Jurassic - recent sector of the apparent polar wander path (APWP) of Baltica after tectonic unfolding. These data imply that at least some of the identified secondary components could have originated before the Eurekan folding event (K/Pg), for example, in Early Cretaceous time which corresponds to the period of rifting events on Barents

  11. Carbon footprint as an instrument for enhancing food quality: overview of the wine, olive oil and cereals sectors.

    PubMed

    Pattara, Claudio; Russo, Carlo; Antrodicchia, Vittoria; Cichelli, Angelo

    2017-01-01

    The quantification of greenhouse gases (GHG) emissions represents a critical issue for the future development of agro-food produces. Consumers' behaviour could play an important role in requiring environmental performance as an essential element for food quality. Nowadays, the carbon footprint (CFP) is a tool used worldwide by agro-food industries to communicate environmental information. This paper aims to investigate the role that CFP could have in consumers' choices in three significant agro-food sectors in the Mediterranean area: wine, olive oil and cereals. A critical review about the use of CFP was carried out along the supply chain of these three sectors, in order to identify opportunities for enhancing food quality and environmental sustainability and highlighting how environmental information could influence consumers' preferences. The analysis of the state of the art shows a great variability of the results about GHG emissions referred to agricultural and industrial processes. In many cases, the main environmental criticisms are linked to the agricultural phase, but the other phases of the supply chain could also contribute to the increased CFP. However, despite the wide use of CFP by companies as a communication tool to help consumers' choices in agro-food products, some improvements are needed in order to provide clearer and more understandable information. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Scherrer, Philip Hanby; Schou, Jesper; Bush, R. I.; Kosovichev, A. G.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; Zhao, J.; Title, A. M.; hide

    2011-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

  13. Inferring interplanetary magnetic field polarities from geomagnetic variations

    NASA Astrophysics Data System (ADS)

    Vokhmyanin, M. V.; Ponyavin, D. I.

    2012-06-01

    In this paper, we propose a modified procedure to infer the interplanetary magnetic field (IMF) polarities from geomagnetic observations. It allows to identify the polarity back to 1905. As previous techniques it is based on the well-known Svalgaard-Mansurov effect. We have improved the quality and accuracy of polarity inference compared with the previous results of Svalgaard (1975) and Vennerstroem et al. (2001) by adding new geomagnetic stations and extracting carefully diurnal curve. The data demonstrates an excess of one of the two IMF sectors within equinoxes (Rosenberg-Coleman rule) evidencing polar field reversals at least for the last eight solar cycles. We also found a predominance of the two-sector structure in late of descending phase of solar cycle 16.

  14. Computerised tomography vs magnetic resonance imaging for modeling of patient-specific instrumentation in total knee arthroplasty.

    PubMed

    Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan

    2015-03-18

    To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery.

  15. Computerised tomography vs magnetic resonance imaging for modeling of patient-specific instrumentation in total knee arthroplasty

    PubMed Central

    Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan

    2015-01-01

    AIM: To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. METHODS: The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). RESULTS: Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. CONCLUSION: Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery. PMID:25793170

  16. Performance of new 400-MHz HTS power-driven magnet NMR technology on typical pharmaceutical API, cinacalcet HCl.

    PubMed

    Silva Elipe, Maria Victoria; Donovan, Neil; Krull, Robert; Pooke, Donald; Colson, Kimberly L

    2018-04-17

    After years towards higher field strength magnets, nuclear magnetic resonance (NMR) technology in commercial instruments in the past decade has expanded at low and high magnetic fields to take advantage of new opportunities. At lower field strengths, permanent magnets are well established, whereas for midrange and high field, developments utilize superconducting magnets cooled with cryogenic liquids. Recently, the desire to locate NMR spectrometers in nontypical NMR laboratories has created interest in the development of cryogen-free magnets. These magnets require no cryogenic maintenance, eliminating routine filling and large cryogen dewars in the facility. Risks of spontaneous quenches and safety concerns when working with cryogenic liquids are eliminated. The highest field commercially available cryogen-free NMR magnet previously reported was at 4.7 T in 2013. Here we tested a prototype cryogen-free 9.4-T power-driven high-temperature-superconducting (HTS) magnet mated to commercial NMR spectrometer electronics. We chose cinacalcet HCl, a typical active pharmaceutical ingredient, to evaluate its performance towards structure elucidation. Satisfactory standard 1D and 2D homonuclear and heteronuclear NMR results were obtained and compared with those from a standard 9.4-T cryogenically cooled superconducting NMR instrument. The results were similar between both systems with minor differences. Further comparison with different shims and probes in the HTS magnet system confirmed that the magnet homogeneity profile could be matched with commercially available NMR equipment for optimal results. We conclude that HTS magnet technology works well providing results comparable with those of standard instruments, leading us to investigate additional applications for this magnet technology outside a traditional NMR facility. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Job satisfaction and motivation of health workers in public and private sectors: cross-sectional analysis from two Indian states.

    PubMed

    Peters, David H; Chakraborty, Subrata; Mahapatra, Prasanta; Steinhardt, Laura

    2010-11-25

    Ensuring health worker job satisfaction and motivation are important if health workers are to be retained and effectively deliver health services in many developing countries, whether they work in the public or private sector. The objectives of the paper are to identify important aspects of health worker satisfaction and motivation in two Indian states working in public and private sectors. Cross-sectional surveys of 1916 public and private sector health workers in Andhra Pradesh and Uttar Pradesh, India, were conducted using a standardized instrument to identify health workers' satisfaction with key work factors related to motivation. Ratings were compared with how important health workers consider these factors. There was high variability in the ratings for areas of satisfaction and motivation across the different practice settings, but there were also commonalities. Four groups of factors were identified, with those relating to job content and work environment viewed as the most important characteristics of the ideal job, and rated higher than a good income. In both states, public sector health workers rated "good employment benefits" as significantly more important than private sector workers, as well as a "superior who recognizes work". There were large differences in whether these factors were considered present on the job, particularly between public and private sector health workers in Uttar Pradesh, where the public sector fared consistently lower (P < 0.01). Discordance between what motivational factors health workers considered important and their perceptions of actual presence of these factors were also highest in Uttar Pradesh in the public sector, where all 17 items had greater discordance for public sector workers than for workers in the private sector (P < 0.001). There are common areas of health worker motivation that should be considered by managers and policy makers, particularly the importance of non-financial motivators such as working

  18. Job satisfaction and motivation of health workers in public and private sectors: cross-sectional analysis from two Indian states

    PubMed Central

    2010-01-01

    Background Ensuring health worker job satisfaction and motivation are important if health workers are to be retained and effectively deliver health services in many developing countries, whether they work in the public or private sector. The objectives of the paper are to identify important aspects of health worker satisfaction and motivation in two Indian states working in public and private sectors. Methods Cross-sectional surveys of 1916 public and private sector health workers in Andhra Pradesh and Uttar Pradesh, India, were conducted using a standardized instrument to identify health workers' satisfaction with key work factors related to motivation. Ratings were compared with how important health workers consider these factors. Results There was high variability in the ratings for areas of satisfaction and motivation across the different practice settings, but there were also commonalities. Four groups of factors were identified, with those relating to job content and work environment viewed as the most important characteristics of the ideal job, and rated higher than a good income. In both states, public sector health workers rated "good employment benefits" as significantly more important than private sector workers, as well as a "superior who recognizes work". There were large differences in whether these factors were considered present on the job, particularly between public and private sector health workers in Uttar Pradesh, where the public sector fared consistently lower (P < 0.01). Discordance between what motivational factors health workers considered important and their perceptions of actual presence of these factors were also highest in Uttar Pradesh in the public sector, where all 17 items had greater discordance for public sector workers than for workers in the private sector (P < 0.001). Conclusion There are common areas of health worker motivation that should be considered by managers and policy makers, particularly the importance of non

  19. Electron Dynamics in a Subproton-Gyroscale Magnetic Hole

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Dorelli, John C.; Vinas, Adolfo F.; Avanov, Levon A.; Gliese, Ulrik B.; Barrie, Alexander C.; Coffey, Victoria; Chandler, Michael; Dickson, Charles; MacDonald, Elizabeth A.; hide

    2016-01-01

    Magnetic holes are ubiquitous in space plasmas, occurring in the solar wind, downstream of planetary bow shocks, and inside the magnetosphere. Recently, kinetic-scale magnetic holes have been observed near Earth's central plasma sheet. The Fast Plasma Investigation on NASA's Magnetospheric Multiscale (MMS) mission enables measurement of both ions and electrons with 2 orders of magnitude increased temporal resolution over previous magnetospheric instruments. Here we present data from MMS taken in Earth's nightside plasma sheet and use high-resolution particle and magnetometer data to characterize the structure of a subproton-scale magnetic hole. Electrons with gyroradii above the thermal gyroradius but below the current layer thickness carry a current sufficient to account for a 10-20 depression in magnetic field magnitude. These observations suggest that the size and magnetic depth of kinetic-scale magnetic holes is strongly dependent on the background plasma conditions.

  20. Reflections on science and the communication sector

    NASA Astrophysics Data System (ADS)

    Raes, Frank

    2015-04-01

    Reflections on science and the communication sector. In this contribution I will reflect about successes and failures in communicating climate change and air pollution sciences to the general public. These communication efforts included writing popular articles, giving public presentations, working with people from the social scientists and artists. Giving the fact that communication is a very important (economic) sector on its own, the question is to what extent scientists should enter that sector, whether scientists are at all accepted in that sector, whether they should use the expertise in that sector, or whether they should merely provide the knowledge to be used by that sector.

  1. Magnetic Black Hole Waves

    NASA Image and Video Library

    2015-07-09

    This cartoon shows how magnetic waves, called Alfvén S-waves, propagate outward from the base of black hole jets. The jet is a flow of charged particles, called a plasma, which is launched by a black hole. The jet has a helical magnetic field (yellow coil) permeating the plasma. The waves then travel along the jet, in the direction of the plasma flow, but at a velocity determined by both the jet's magnetic properties and the plasma flow speed. The BL Lac jet examined in a new study is several light-years long, and the wave speed is about 98 percent the speed of light. Fast-moving magnetic waves emanating from a distant supermassive black hole undulate like a whip whose handle is being shaken by a giant hand, according to a study using data from the National Radio Astronomy Observatory's Very Long Baseline Array. Scientists used this instrument to explore the galaxy/black hole system known as BL Lacertae (BL Lac) in high resolution. http://photojournal.jpl.nasa.gov/catalog/PIA19822

  2. Remote sensing of the magnetic moment of uranus: predictions for voyager.

    PubMed

    Hill, T W; Dessler, A J

    1985-03-22

    Power is supplied to a planet's magnetosphere from the kinetic energy of planetary spin and the energy flux of the impinging solar wind. A fraction of this power is available to drive numerous observable phenomena, such as polar auroras and planetary radio emissions. In this report our present understanding of these power transfer mechanisms is applied to Uranus to make specific predictions of the detectability of radio and auroral emissions by the planetary radio astronomy (PRA) and ultraviolet spectrometer (UVS) instruments aboard the Voyager spacecraft before its encounter with Uranus at the end of January 1986. The power available for these two phenomena is (among other factors) a function of the magnetic moment of Uranus. The date of earliest detectability also depends on whether the predominant power source for the magnetosphere is planetary spin or solar wind. The magnetic moment of Uranus is derived for each power source as a function of the date of first detection of radio emissions by the PRA instrument or auroral emissions by the UVS instrument. If we accept the interpretation of ultraviolet observations now available from the Earth-orbiting International Ultraviolet Explorer satellite, Uranus has a surface magnetic field of at least 0.6 gauss, and more probably several gauss, making it the largest or second-largest planetary magnetic field in the solar system.

  3. Impact of space-based instruments on magnetic star research: past and future

    NASA Astrophysics Data System (ADS)

    Weiss, WW.; Neiner, C.; Wade, G. A.

    2018-01-01

    Magnetic stars are observed at a large variety of spectral ranges, frequently with photometric and spectroscopic techniques and on time scales ranging from a 'snap shot' to years, sometimes using data sets which are continuous over many months. The outcome of such observations has been discussed during this conference and many examples have been presented, demonstrating the high scientific significance and gains in our knowledge that result from these observations. A key question that should be addressed is, what are the advantages and requirements of space based research of magnetic stars, particularly in relation to ground based observations? And what are the drawbacks? What are the hopes for the future? In the following, we intend to present an overview that addresses these questions.

  4. Time-resolved magnetic spectrometer measurements of the SABRE positive polarity magnetically insulated transmission line voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menge, P.R.; Cuneo, M.E.; Hanson, D.L.

    A magnetic spectrometer has been fielded on the coaxial magnetically insulated transmission line (MITL) of the SABRE ten-cavity inductive voltage adder operated in positive polarity (6 MV, 300 kA, 50 ns). Located 1 m upstream from an extraction ion diode, this diagnostic is capable of measuring the SABRE voltage pulse with a 2 ns resolution. Ions (protons and carbon) from either a flashover or plasma gun source are accelerated from the inner anode across the gap to the outer cathode and into a drift tube terminated by the magnetic spectrometer. The magnetically deflected ions are recorded on up to sixteenmore » PIN diodes (diameter = 1 mm, thickness = 35 {mu}). The voltage waveform is produced from the time-of-flight information. Results confirm previous observations of a vacuum wave precursor separated from the magnetically insulated wave. Verification of upstream precursor erosion techniques are possible with this instrument. Measurements of peak voltage show good agreement with other time-integrated voltage diagnostics. Comparisons with theoretical voltage predictions derived from a flow impedance model of MITL behavior will be presented.« less

  5. The Deep Space Network as an instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Renzetti, N. A.

    1993-01-01

    Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.

  6. The mean magnetic field of the sun: Observations at Stanford

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.; Svalgaard, L.; Duvall, T. L., Jr.; Dittmer, P. H.; Gustafson, E. K.

    1977-01-01

    A solar telescope was built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field were made daily since May 1975. The typical mean field magnitude is about 0.15 gauss with typical measurement error less than 0.05 gauss. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (seen near the earth with a 4 day lag). The differences in the observed structures can be understood in terms of a warped current sheet model.

  7. IS MAGNETIC RECONNECTION THE CAUSE OF SUPERSONIC UPFLOWS IN GRANULAR CELLS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borrero, J. M.; Schmidt, W.; Martinez Pillet, V.

    In a previous work, we reported on the discovery of supersonic magnetic upflows on granular cells in data from the SUNRISE/IMaX instrument. In the present work, we investigate the physical origin of these events employing data from the same instrument but with higher spectral sampling. By means of the inversion of Stokes profiles we are able to recover the physical parameters (temperature, magnetic field, line-of-sight velocity, etc.) present in the solar photosphere at the time of these events. The inversion is performed in a Monte-Carlo-like fashion, that is, repeating it many times with different initializations and retaining only the bestmore » result. We find that many of the events are characterized by a reversal in the polarity of the magnetic field along the vertical direction in the photosphere, accompanied by an enhancement in the temperature and by supersonic line-of-sight velocities. In about half of the studied events, large blueshifted and redshifted line-of-sight velocities coexist above/below each other. These features can be explained in terms of magnetic reconnection, where the energy stored in the magnetic field is released in the form of kinetic and thermal energy when magnetic field lines of opposite polarities coalesce. However, the agreement with magnetic reconnection is not perfect and, therefore, other possible physical mechanisms might also play a role.« less

  8. Third sector primary care for vulnerable populations.

    PubMed

    Crampton, P; Dowell, A; Woodward, A

    2001-12-01

    This paper aims to describe and explain the development of third sector primary care organisations in New Zealand. The third sector is the non-government, non-profit sector. International literature suggests that this sector fulfils an important role in democratic societies with market-based economies, providing services otherwise neglected by the government and private for-profit sectors. Third sector organisations provided a range of social services throughout New Zealand's colonial history. However, it was not until the 1980s that third sector organisations providing comprehensive primary medical and related services started having a significant presence in New Zealand. In 1994 a range of union health centres, tribally based Mäori health providers, and community-based primary care providers established a formal network -- Health Care Aotearoa. While not representing all third sector primary care providers in New Zealand, Health Care Aotearoa was the best-developed example of a grouping of third sector primary care organisations. Member organisations served populations that were largely non-European and lived in deprived areas, and tended to adopt population approaches to funding and provision of services. The development of Health Care Aotearoa has been consistent with international experience of third sector involvement -- there were perceived "failures" in government policies for funding primary care and private sector responses to these policies, resulting in lack of universal funding and provision of primary care and continuing patient co-payments. The principal policy implication concerns the role of the third sector in providing primary care services for vulnerable populations as a partial alternative to universal funding and provision of primary care. Such an alternative may be convenient for proponents of reduced state involvement in funding and provision of health care, but may not be desirable from the point of view of equity and social cohesion

  9. Determination of mean droplet sizes of water-in-oil emulsions using an Earth's field NMR instrument.

    PubMed

    Fridjonsson, Einar O; Flux, Louise S; Johns, Michael L

    2012-08-01

    The use of the Earth's magnetic field (EF) to conduct nuclear magnetic resonance (NMR) experiments has a long history with a growing list of applications (e.g. ground water detection, diffusion measurements of Antarctic sea ice). In this paper we explore whether EFNMR can be used to accurately and practically measure the mean droplet size () of water-in-oil emulsions (paraffin and crude oil). We use both pulsed field gradient (PFG) measurements of restricted self-diffusion and T₂ relaxometry, as appropriate. T₂ relaxometry allows the extension of droplet sizing ability below the limits set by the available magnetic field gradient strength of the EFNMR apparatus. A commercially available bench-top NMR spectrometer is used to verify the results obtained using the EFNMR instrument, with good agreement within experimental error, seen between the two instruments. These results open the potential for further investigation of the application of EFNMR for emulsion droplet sizing. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Francis bitter national magnet laboratory annual report, July 1991 through June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    ;Contents: Reports on Laboratory Research Programs--Magneto-Optics and Semiconductor Physics, Superconductivity and Magnetism, Solid State Nuclear Magnetic Resonance, Condensed Matter Chemistry, Biomagnetism, Magnet Technology, Instrumentation, Molecular Biophysics, Carbon Filters and Fullerenes; Reports of Visiting Scientists--Reports of Users of the High Magnetic Field Facility, Reports of the Users of the Pulsed Field Facility, Reports of the Users of the High Field NMR Facility; Appendices--Publications and Meeting Speeches, Organization, Summary of High Magnetic Field Facility Use--January 1, 1984 through June 30, 1992, Geographic Distribution of High Magnetic Field Facility Users (Excluding FBNML Staff), Summary of Educational Activities.

  11. Francis Bitter National Magnet Laboratory annual report, July 1990 through June 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The contents include: reports on laboratory research programs--magneto-optics and semiconductor physics, magnetism, superconductivity, solid state nuclear magnetic resonance, condensed matter chemistry, biomagnetism, magnet technology, instrumentation, molecular biophysics; reports of visiting scientists--reports of users of the high magnetic field facility, reports of users of the pulsed field facility, reports of users of the SQUID magnetometer and Mossbauer facility, reports of users of the high field NMR facility; appendices--publications and meeting speeches, organization, summary of high magnetic field facility use, user tables, geographic distribution of high magnetic field facility users, summary of educational activities.

  12. [Acupuncture combined with magnetic therapy for treatment of temple-jaw joint dysfunction].

    PubMed

    Wang, Xiao-Hui; Zhang, Wen

    2009-04-01

    To compare clinical therapeutic effects of acupuncture combined with magnetic therapy and simple magnetic therapy on temple-jaw joint dysfunction. Eighty-two cases were randomly divided into an observation group (n = 52) and a control group (n = 30). The observation group was treated with acupuncture at Xiaguan (ST 7), Jiache (ST 6), Hegu (LI 4), etc. and AL-2 low frequency electromagnetic comprehensive treatment instrument; the control group was treated with AL-2 low frequency electromagnetic comprehensive treatment instrument. The cured and markedly effective rate of 90.4% in the observation group was significantly better than 66.7% in the control group (P < 0.01), and the total effective rate of 98.1% in the observation group was significantly better than 86.7% in the control group (P < 0.05). The therapeutic effect of acupuncture combined with magnetic therapy is significantly better than that of the simple magnetic therapy on temple-jaw joint dysfunction.

  13. Sector-scanning echocardiography

    NASA Technical Reports Server (NTRS)

    Henry, W. L.; Griffith, J. M.

    1975-01-01

    The mechanical sector scanner is described in detail, and its clinical application is discussed. Cross sectional images of the heart are obtained in real time using this system. The sector scanner has three major components: (a) hand held scanner, (b) video display, and (c) video recorder. The system provides diagnostic information in a wide spectrum of cardiac diseases, and it quantitates the severity of mitral stenosis by measurement of the mitral valve orifice area in diagnosing infants, children and adults with cyanotic congenital heart disease.

  14. Francis Bitter National Magnet Laboratory annual report, July 1988 through June 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Contents include: reports on laboratory research programs--magneto-optics and semiconductor physics, magnetism, superconductivity, solid-state nuclear magnetic resonance, condensed-matter chemistry, biomagnetism, magnet technology, instrumentation for high-magnetic-field research, molecular biophysics; reports of visiting scientists--reports of users of the High Magnetic Field Facility, reports of users of the Pulsed Field Facility, reports of users of the SQUID Magnetometer and Moessbauer Facility, reports of users of the High-Field NMR Facility; Appendices--publications and meeting speeches, organization, summary of High-Field Magnet Facility use January 1, 1981 through December 31, 1988; geographic distribution of High-Field Magnet users (excluding laboratory staff); and summary of educational activities.

  15. 3D linear inversion of magnetic susceptibility data acquired by frequency domain EMI

    NASA Astrophysics Data System (ADS)

    Thiesson, J.; Tabbagh, A.; Simon, F.-X.; Dabas, M.

    2017-01-01

    Low induction number EMI instruments are able to simultaneously measure a soil's apparent magnetic susceptibility and electrical conductivity. This family of dual measurement instruments is highly useful for the analysis of soils and archeological sites. However, the electromagnetic properties of soils are found to vary over considerably different ranges: whereas their electrical conductivity varies from ≤ 0.1 to ≥ 100 mS/m, their relative magnetic permeability remains within a very small range, between 1.0001 and 1.01 SI. Consequently, although apparent conductivity measurements need to be inverted using non-linear processes, the variations of the apparent magnetic susceptibility can be approximated through the use of linear processes, as in the case of the magnetic prospection technique. Our proposed 3D inversion algorithm starts from apparent susceptibility data sets, acquired using different instruments over a given area. A reference vertical profile is defined by considering the mode of the vertical distributions of both the electrical resistivity and of the magnetic susceptibility. At each point of the mapped area, the reference vertical profile response is subtracted to obtain the apparent susceptibility variation dataset. A 2D horizontal Fourier transform is applied to these variation datasets and to the dipole (impulse) response of each instrument, a (vertical) 1D inversion is performed at each point in the spectral domain, and finally the resulting dataset is inverse transformed to restore the apparent 3D susceptibility variations. It has been shown that when applied to synthetic results, this method is able to correct the apparent deformations of a buried object resulting from the geometry of the instrument, and to restore reliable quantitative susceptibility contrasts. It also allows the thin layer solution, similar to that used in magnetic prospection, to be implemented. When applied to field data it initially delivers a level of contrast

  16. Macroergonomic study of food sector company distribution centres.

    PubMed

    García Acosta, Gabriel; Lange Morales, Karen

    2008-07-01

    This study focussed on the work system design to be used by a Colombian food sector company for distributing products. It considered the concept of participative ergonomics, where people from the commercial, logistics, operation, occupational health areas worked in conjunction with the industrial designers, ergonomists who methodologically led the project. As a whole, the project was conceived as having five phases: outline, diagnosis, modelling the process, scalability, instrumentation. The results of the project translate into procedures for selecting, projecting a new distribution centre, the operational process model, a description of ergonomic systems that will enable specific work stations to be designed, the procedure for adapting existing warehouses. Strategically, this work helped optimise the company's processes and ensure that knowledge would be transferred within it. In turn, it became a primary prevention strategy in the field of health, aimed at reducing occupational risks, improving the quality of life at work.

  17. Metals Sector

    EPA Pesticide Factsheets

    Find environmental regulatory information about the metals sector (NAICS 331 & 332), including NESHAPs for metal coatings, effluent guidelines for metal products, combustion compliance assistance, and information about foundry sand recycling.

  18. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agraz, Jose, E-mail: joseagraz@ucla.edu; Grunfeld, Alexander; Li, Debiao

    2014-04-15

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ({sup 13}C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B{sub o}), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures.more » Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of {sup 13}C based endogenous contrast agents used in molecular imaging.« less

  19. The Information Sector: Definition and Measurement.

    ERIC Educational Resources Information Center

    Porat, Marc U.

    In the last 20 years the U.S. economy had changed as a result of the increase in production, processing, and distribution of information goods and services. Three information sectors--the primary sector producing information goods and services, the private bureaucracy, and the public bureaucracy--are part of a six-sector economy. Today,…

  20. [The productive sector].

    PubMed

    Santolaria, Encarna; Fernández, Alberto; Daponte, Antonio; Aguilera, I

    2004-05-01

    In the last 25 years, the production sector in Spain has undergone important changes. Among these changes, the important growth of the services sector at the expense of the primary sector, the increasing flexibility of the labour market, and the rise in the female workforce could be considered as the most relevant ones. Spanish women have higher rates of unemployment, temporary jobs and part time contracts than Spanish men. Moreover, job access and work conditions are highly related to gender and social class. Because women are forced to compensate for the scarcity of social services for caring for young children and for dependent elderly, they become informal and socially unrecognised caregivers, preventing them from getting or holding a job, and significantly limiting their opportunities for professional development. These social conditions are closely related with the fact that work conditions for women involve higher temporality rates and shorter contracts than those of men, given the sectors and jobs in which they tend to work (due to segregation). Similarly, workers of the less privileged social classes have poorer work conditions. Thus, women of the lower income class are mainly suffering the worst job contracts and the poorest work conditions. More social services are needed to make it possible to attend to family needs and still be able to access and maintain a job contract. Policies tending to conciliate labour and family life are indispensable and should incorporate measures to equally distribute the house keeping activities between women and men.

  1. Magnetic moments of the lowest-lying singly heavy baryons

    NASA Astrophysics Data System (ADS)

    Yang, Ghil-Seok; Kim, Hyun-Chul

    2018-06-01

    A light baryon is viewed as Nc valence quarks bound by meson mean fields in the large Nc limit. In much the same way a singly heavy baryon is regarded as Nc - 1 valence quarks bound by the same mean fields, which makes it possible to use the properties of light baryons to investigate those of the heavy baryons. A heavy quark being regarded as a static color source in the limit of the infinitely heavy quark mass, the magnetic moments of the heavy baryon are determined entirely by the chiral soliton consisting of a light-quark pair. The magnetic moments of the baryon sextet are obtained by using the parameters fixed in the light-baryon sector. In this mean-field approach, the numerical results of the magnetic moments of the baryon sextet with spin 3/2 are just 3/2 larger than those with spin 1/2. The magnetic moments of the bottom baryons are the same as those of the corresponding charmed baryons.

  2. Investigating the effect of geomagnetic storm and equatorial electrojet on equatorial ionospheric irregularity over East African sector

    NASA Astrophysics Data System (ADS)

    Seba, Ephrem Beshir; Nigussie, Melessew

    2016-11-01

    The variability of the equatorial ionosphere is still a big challenge for ionospheric dependent radio wave technology users. To mitigate the effect of equatorial ionospheric irregularity on trans-ionospheric radio waves considerable efforts are being done to understand and model the equatorial electrodynamics and its connection to the creation of ionospheric irregularity. However, the effect of the East-African ionospheric electrodynamics on ionospheric irregularity is not yet well studied due to lack of multiple ground based instruments. But, as a result of International Heliophysical Year (IHY) initiative, which was launched in 2007, some facilities are being deployed in Africa since then. Therefore, recently deployed instruments, in the Ethiopian sector, such as SCINDA-GPS receiver (2.64°N dip angle) for TEC and amplitude scintillation index (S4) data and two magnetometers, which are deployed on and off the magnetic equator, data collected in the March equinoctial months of the years 2011, 2012, and 2015 have been used for this study in conjunction with geomagnetic storm data obtained from high resolution OMNI WEB data center. We have investigated the triggering and inhibition mechanisms for ionospheric irregularities using, scintillation index (S4), equatorial electrojet (EEJ), interplanetary electric field (IEFy), symH index, AE index and interplanetary magnetic field (IMF) Bz on five selected storm and two storm free days. We have found that when the eastward EEJ fluctuates in magnitude due to storm time induced electric fields at around noontime, the post-sunset scintillation is inhibited. All observed post-sunset scintillations in equinox season are resulted when the daytime EEJ is non fluctuating. The strength of noontime EEJ magnitude has shown direct relation with the strength of the post-sunset scintillations. This indicates that non-fluctuating EEJ stronger than 20 nT, can be precursor for the occurrence of the evening time ionospheric irregularities

  3. Smart Sectors

    EPA Pesticide Factsheets

    EPA is taking a sector based approach to environmental protection to improve environmental performance through better-informed rulemakings, reduced burden, and more efficient, effective, and consensus-based solutions to environmental problems.

  4. Assessing organizational implementation context in the education sector: confirmatory factor analysis of measures of implementation leadership, climate, and citizenship.

    PubMed

    Lyon, Aaron R; Cook, Clayton R; Brown, Eric C; Locke, Jill; Davis, Chayna; Ehrhart, Mark; Aarons, Gregory A

    2018-01-08

    A substantial literature has established the role of the inner organizational setting on the implementation of evidence-based practices in community contexts, but very little of this research has been extended to the education sector, one of the most common settings for the delivery of mental and behavioral health services to children and adolescents. The current study examined the factor structure, psychometric properties, and interrelations of an adapted set of pragmatic organizational instruments measuring key aspects of the organizational implementation context in schools: (1) strategic implementation leadership, (2) strategic implementation climate, and (3) implementation citizenship behavior. The Implementation Leadership Scale (ILS), Implementation Climate Scale (ICS), and Implementation Citizenship Behavior Scale (ICBS) were adapted by a research team that included the original scale authors and experts in the implementation of evidence-based practices in schools. These instruments were then administered to a geographically representative sample (n = 196) of school-based mental/behavioral health consultants to assess the reliability and structural validity via a series of confirmatory factor analyses. Overall, the original factor structures for the ILS, ICS, and ICBS were confirmed in the current sample. The one exception was poor functioning of the Rewards subscale of the ICS, which was removed in the final ICS model. Correlations among the revised measures, evaluated as part of an overarching model of the organizational implementation context, indicated both unique and shared variance. The current analyses suggest strong applicability of the revised instruments to implementation of evidence-based mental and behavioral practices in the education sector. The one poorly functioning subscale (Rewards on the ICS) was attributed to typical educational policies that do not allow for individual financial incentives to personnel. Potential directions for

  5. Lessons Learned from the Private Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, Robert J

    This session is focused on lessons learned from private sector energy projects that could be applied to the federal sector. This presentation tees up the subsequent presentations by outlining the differences between private and federal sectors in objectives, metrics for determining success, funding resources/mechanisms, payback and ROI evaluation, risk tolerance/aversion, new technology adoption perspectives, and contracting mechanisms.

  6. An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of Magnetic Disturbances

    PubMed Central

    Fan, Bingfei; Li, Qingguo; Wang, Chao; Liu, Tao

    2017-01-01

    Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm. PMID:28534858

  7. Role of the private sector in vaccination service delivery in India: evidence from private-sector vaccine sales data, 2009-12.

    PubMed

    Sharma, Abhishek; Kaplan, Warren A; Chokshi, Maulik; Zodpey, Sanjay P

    2016-09-01

    India's Universal Immunization Programme (UIP) provides basic vaccines free-of-cost in the public sector, yet national vaccination coverage is poor. The Government of India has urged an expanded role for the private sector to help achieve universal immunization coverage. We conducted a state-by-state analysis of the role of the private sector in vaccinating Indian children against each of the six primary childhood diseases covered under India's UIP. We analyzed IMS Health data on Indian private-sector vaccine sales, 2011 Indian Census data and national household surveys (DHS/NFHS 2005-06 and UNICEF CES 2009) to estimate the percentage of vaccinated children among the 2009-12 birth cohort who received a given vaccine in the private sector in 16 Indian states. We also analyzed the estimated private-sector vaccine shares as function of state-specific socio-economic status. Overall in 16 states, the private sector contributed 4.7% towards tuberculosis (Bacillus Calmette-Guérin (BCG)), 3.5% towards measles, 2.3% towards diphtheria-pertussis-tetanus (DPT3) and 7.6% towards polio (OPV3) overall (both public and private sectors) vaccination coverage. Certain low income states (Uttar Pradesh, Rajasthan, Madhya Pradesh, Orissa, Assam and Bihar) have low private as well as public sector vaccination coverage. The private sector's role has been limited primarily to the high income states as opposed to these low income states where the majority of Indian children live. Urban areas with good access to the private sector and the ability to pay increases the Indian population's willingness to access private-sector vaccination services. In India, the public sector offers vaccination services to the majority of the population but the private sector should not be neglected as it could potentially improve overall vaccination coverage. The government could train and incentivize a wider range of private-sector health professionals to help deliver the vaccines, especially in the low

  8. Regulating the for-profit private health sector: lessons from East and Southern Africa.

    PubMed

    Doherty, Jane E

    2015-03-01

    International evidence shows that, if poorly regulated, the private health sector may lead to distortions in the type, quantity, distribution, quality and price of health services, as well as anti-competitive behaviour. This article provides an overview of legislation governing the for-profit private health sector in East and Southern Africa. It identifies major implementation problems and suggests strategies Ministries of Health could adopt to regulate the private sector more effectively and in line with key public health objectives. This qualitative study was based on a document review of existing legislation in the region, and seven semi-structured interviews with individuals selected purposively on the basis of their experience in policymaking and legislation. Legislation was categorized according to its objectives and the level at which it operates. A thematic content analysis was conducted on interview transcripts. Most legislation focuses on controlling the entry of health professionals and organizations into the market. Most countries have not developed adequate legislation around behaviour following entry. Generally the type and quality of services provided by private practitioners and facilities are not well-regulated or monitored. Even where there is specific health insurance regulation, provisions seldom address open enrolment, community rating and comprehensive benefit packages (except in South Africa). There is minimal control of prices. Several countries are updating and improving legislation although, in most cases, this is without the benefit of an overarching policy on the private sector, or reference to wider public health objectives. Policymakers in the East and Southern African region need to embark on a programme of action to strengthen regulatory frameworks and instruments in relation to private health care provision and insurance. They should not underestimate the power of the private health sector to undermine efforts for increased

  9. Health sector reform and public sector health worker motivation: a conceptual framework.

    PubMed

    Franco, Lynne Miller; Bennett, Sara; Kanfer, Ruth

    2002-04-01

    Motivation in the work context can be defined as an individual's degree of willingness to exert and maintain an effort towards organizational goals. Health sector performance is critically dependent on worker motivation, with service quality, efficiency, and equity, all directly mediated by workers' willingness to apply themselves to their tasks. Resource availability and worker competence are essential but not sufficient to ensure desired worker performance. While financial incentives may be important determinants of worker motivation, they alone cannot and have not resolved all worker motivation problems. Worker motivation is a complex process and crosses many disciplinary boundaries, including economics, psychology, organizational development, human resource management, and sociology. This paper discusses the many layers of influences upon health worker motivation: the internal individual-level determinants, determinants that operate at organizational (work context) level, and determinants stemming from interactions with the broader societal culture. Worker motivation will be affected by health sector reforms which potentially affect organizational culture, reporting structures, human resource management, channels of accountability, types of interactions with clients and communities, etc. The conceptual model described in this paper clarifies ways in which worker motivation is influenced and how health sector reform can positively affect worker motivation. Among others, health sector policy makers can better facilitate goal congruence (between workers and the organizations they work for) and improved worker motivation by considering the following in their design and implementation of health sector reforms: addressing multiple channels for worker motivation, recognizing the importance of communication and leadership for reforms, identifying organizational and cultural values that might facilitate or impede implementation of reforms, and understanding that reforms

  10. Observational Signatures of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2014-01-01

    Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

  11. A review of instruments to measure interprofessional collaboration for chronic disease management for community-living older adults.

    PubMed

    Bookey-Bassett, Sue; Markle-Reid, Maureen; McKey, Colleen; Akhtar-Danesh, Noori

    2016-01-01

    It is acknowledged internationally that chronic disease management (CDM) for community-living older adults (CLOA) is an increasingly complex process. CDM for older adults, who are often living with multiple chronic conditions, requires coordination of various health and social services. Coordination is enabled through interprofessional collaboration (IPC) among individual providers, community organizations, and health sectors. Measuring IPC is complicated given there are multiple conceptualisations and measures of IPC. A literature review of several healthcare, psychological, and social science electronic databases was conducted to locate instruments that measure IPC at the team level and have published evidence of their reliability and validity. Five instruments met the criteria and were critically reviewed to determine their strengths and limitations as they relate to CDM for CLOA. A comparison of the characteristics, psychometric properties, and overall concordance of each instrument with salient attributes of IPC found the Collaborative Practice Assessment Tool to be the most appropriate instrument for measuring IPC for CDM in CLOA.

  12. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    PubMed

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  13. Standardisation of magnetic nanoparticles in liquid suspension

    NASA Astrophysics Data System (ADS)

    Wells, James; Kazakova, Olga; Posth, Oliver; Steinhoff, Uwe; Petronis, Sarunas; Bogart, Lara K.; Southern, Paul; Pankhurst, Quentin; Johansson, Christer

    2017-09-01

    Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way.

  14. Single-pass beam measurements for the verification of the LHC magnetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calaga, R.; Giovannozzi, M.; Redaelli, S.

    2010-05-23

    During the 2009 LHC injection tests, the polarities and effects of specific quadrupole and higher-order magnetic circuits were investigated. A set of magnet circuits had been selected for detailed investigation based on a number of criteria. On or off-momentum difference trajectories launched via appropriate orbit correctors for varying strength settings of the magnet circuits under study - e.g. main, trim and skew quadrupoles; sextupole families and spool piece correctors; skew sextupoles, octupoles - were compared with predictions from various optics models. These comparisons allowed confirming or updating the relative polarity conventions used in the optics model and the accelerator controlmore » system, as well as verifying the correct powering and assignment of magnet families. Results from measurements in several LHC sectors are presented.« less

  15. The determination of interplanetary magnetic field polarities around sector boundaries using E greater than 2 keV electrons

    NASA Technical Reports Server (NTRS)

    Kahler, S.; Lin, R. P.

    1994-01-01

    The determination of the polarities of interplanetary magnetic fields (whether the field direction is outward from or inward toward the sun) has been based on a comparison of observed field directions with the nominal Parker spiral angle. These polarities can be mapped back to the solar source field polarities. This technique fails when field directions deviate substantially from the Parker angle or when fields are substantially kinked. We introduce a simple new technique to determine the polarities of interplanetary fields using E greater than 2 keV interplanetary electrons which stream along field lines away from the sun. Those electrons usually show distinct unidirectional pitch-angle anisotropies either parallel or anti-parallel to the field. Since the electron flow direction is known to be outward from the sun, the anisotropies parallel to the field indicate outward-pointing, positive-polarity fields, and those anti-parallel indicate inward-pointing, negative-polarity fields. We use data from the UC Berkeley electron experiment on the International Sun Earth Explorer 3 (ISSE-3) spacecraft to compare the field polarities deduced from the electron data, Pe (outward or inward), with the polarities inferred from field directions, Pd, around two sector boundaries in 1979. We show examples of large (greater than 100 deg) changes in azimuthal field direction Phi over short (less than 1 hr) time scales, some with and some without reversals in Pe. The latter cases indicate that such large directional changes can occur in unipolar structures. On the other hand, we found an example of a change in Pe during which the rotation in Phi was less than 30 deg, indicating polarity changes in nearly unidirectional structures. The field directions are poor guides to the polarities in these cases.

  16. Crab Flares and Magnetic Reconnection in Pulsar Winds

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2012-01-01

    The striped winds of rotation-powered pulsars are ideal sites for magnetic reconnection. The magnetic fields of the wind near the current sheet outside the light cylinder alternate polarity every pulsar period and eventually encounter a termination shock. Magnetic reconnection in the wind has been proposed as a mechanism for transferring energy from electromagnetic fields to particles upstream of the shock (the "sigma" problem), but it is not clear if, where and how this occurs. Fermi and AGILE have recently observed powerful gamma-ray flares from the Crab nebula, which challenge traditional models of acceleration at the termination shock. New simulations are revealing that magnetic reconnection may be instrumental in understanding the Crab flares and in resolving the "sigma" problem in pulsar wind nebulae.

  17. Solar Magnetism eXplorer (Solme X)

    NASA Technical Reports Server (NTRS)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.; hide

    2011-01-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

  18. Electrodynamic parameters in the nighttime sector during auroral substorms

    NASA Technical Reports Server (NTRS)

    Fujii, R.; Hoffman, R. A.; Anderson, P. C.; Craven, J. D.; Sugiura, M.; Frank, L. A.; Maynard, N. C.

    1994-01-01

    precipitation and aurora appearing in this western and poleward protion of the bulge. The convection reversal is sharp in the west of bulge and surge horn sectors, and near the high-latitude boundary of the upward region 1, with a near stagnation region often extending over a large interval of latitude. In the eastern bulge and east of bulge sectors, the region 1 and 2 FACs are located in the sunward convection region, while a spikelike electric field occasionally appears poleward of the aurora but usually not associated with a pair of FAC sheets. In the eastern bulge, magnetic field data show complicated FAC distributions which correspond to current segments and filamentary currents.

  19. Instrumentation and control system for an F-15 stall/spin

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Holmes, D. C. E.; Zaepfel, K. P.

    1974-01-01

    An instrumentation and control system is described that was used for radio-controlled F-15 airplane model stall/spin research at the NASA-Langley Research Center. This stall/spin research technique, using scale model aircraft, provides information on the post-stall and spin-entry characteristics of full-scale aircraft. The instrumentation described provides measurements of flight parameters such as angle of attack and sideslip, airspeed, control-surface position, and three-axis rotation rates; these data are recorded on an onboard magnetic tape recorder. The proportional radio control system, which utilizes analog potentiometric signals generated from ground-based pilot inputs, and the ground-based system used in the flight operation are also described.

  20. The Distribution and Behaviour of Photospheric Magnetic Features

    NASA Astrophysics Data System (ADS)

    Parnell, C. E.; Lamb, D. A.; DeForest, C. E.

    2014-12-01

    Over the past two decades enormous amounts of data on the magnetic fields of the solar photosphere have been produced by both ground-based (Kitt Peak & SOLIS), as well as space-based instruments (MDI, Hinode & HMI). In order to study the behaviour and distribution of photospheric magnetic features, efficient automated detection routines need to be utilised to identify and track magnetic features. In this talk, I will discuss the pros and cons of different automated magnetic feature identification and tracking routines with a special focus on the requirements of these codes to deal with the large data sets produced by HMI. By patching together results from Hinode and MDI (high-res & full-disk), the fluxes of magnetic features were found to follow a power-law over 5 orders of magnitude. At the strong flux tail of this distribution, the power law was found to fall off at solar minimum, but was maintained over all fluxes during solar maximum. However, the point of deflection in the power-law distribution occurs at a patching point between instruments and so questions remain over the reasons for the deflection. The feature fluxes determined from the superb high-resolution HMI data covers almost all of the 5 orders of magnitude. Considering both solar mimimum and solar maximum HMI data sets, we investigate whether the power-law over 5 orders of magnitude in flux still holds. Furthermore, we investigate the behaviour of magnetic features in order to probe the nature of their origin. In particular, we analyse small-scale flux emergence events using HMI data to investigate the existence of a small-scale dynamo just below the solar photosphere.

  1. Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.

    2016-12-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (<12° at the equator) and optimized for characterization of the Jovian dynamo. Such close passages are sensitive to small spatial scale variations in the magnetic field and therefore many such passes are required to bring the magnetic field into focus. Nevertheless, after only 8 orbits, low-degree spherical harmonics can be extracted from a partial solution to a much more complicated representation (e.g., 20 degree/order), providing the first new information about Jupiter's magnetic field in decades. Juno is equipped with two magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.

  2. Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.

    2017-12-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (<12° at the equator) and optimized for characterization of the Jovian dynamo. Such close passages are sensitive to small spatial scale variations in the magnetic field and therefore many such passes are required to bring the magnetic field into focus. Nevertheless, after only 8 orbits, low-degree spherical harmonics can be extracted from a partial solution to a much more complicated representation (e.g., 20 degree/order), providing the first new information about Jupiter's magnetic field in decades. Juno is equipped with two magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.

  3. The fiscal crisis in the health sector: Patterns of cutback management across Europe.

    PubMed

    Ongaro, Edoardo; Ferré, Francesca; Fattore, Giovanni

    2015-07-01

    The article investigates trends in health sector cutback management strategies occurred during the ongoing financial and fiscal crisis across Europe. A European-wide survey to top public healthcare managers was conducted in ten different countries to understand their perception about public sector policy reactions to the financial and economic crisis; answers from 760 respondents from the healthcare sector (30.7% response rate) were analyzed. A multinomial logistic regression was used to assess the characteristics of respondents, countries' institutional healthcare models and the trend in public health resources availability during the crisis associated to the decision to introduce unselective cuts, targeted cuts or efficiency savings measures. Differentiated responses to the fiscal crisis that buffeted public finances were reported both across and within countries. Organizational position of respondents is significant in explaining the perceived cutback management approach introduced, where decentralized positions detect a higher use of linear cuts compared to their colleagues working in central level organizations. Compared to Bismark-like systems Beveridge-like ones favour the introduction of targeted cuts. Postponing the implementation of new programmes and containing expenses through instruments like pay freezes are some of the most popular responses adopted, while outright staff layoffs or reduction of frontline services have been more selectively employed. To cope with the effects of the fiscal crisis healthcare systems are undergoing important changes, possibly also affecting the scope of universal coverage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Use of Private Sector Temporaries.

    DTIC Science & Technology

    1995-01-01

    causing the reduction in personnel. My solution to this problem is to authorize and find the use of private sector temporaries to perform the workload...discuss cost factors, and describe the benefits Defense Finance and Accounting Service will receive by using private sector temporaries (AN)

  5. Neuronal current detection with low-field magnetic resonance: simulations and methods.

    PubMed

    Cassará, Antonino Mario; Maraviglia, Bruno; Hartwig, Stefan; Trahms, Lutz; Burghoff, Martin

    2009-10-01

    The noninvasive detection of neuronal currents in active brain networks [or direct neuronal imaging (DNI)] by means of nuclear magnetic resonance (NMR) remains a scientific challenge. Many different attempts using NMR scanners with magnetic fields >1 T (high-field NMR) have been made in the past years to detect phase shifts or magnitude changes in the NMR signals. However, the many physiological (i.e., the contemporarily BOLD effect, the weakness of the neuronal-induced magnetic field, etc.) and technical limitations (e.g., the spatial resolution) in observing the weak signals have led to some contradicting results. In contrast, only a few attempts have been made using low-field NMR techniques. As such, this paper was aimed at reviewing two recent developments in this front. The detection schemes discussed in this manuscript, the resonant mechanism (RM) and the DC method, are specific to NMR instrumentations with main fields below the earth magnetic field (50 microT), while some even below a few microteslas (ULF-NMR). However, the experimental validation for both techniques, with differentiating sensitivity to the various neuronal activities at specific temporal and spatial resolutions, is still in progress and requires carefully designed magnetic field sensor technology. Additional care should be taken to ensure a stringent magnetic shield from the ambient magnetic field fluctuations. In this review, we discuss the characteristics and prospect of these two methods in detecting neuronal currents, along with the technical requirements on the instrumentation.

  6. Research in Space Physics at the University of Iowa. [spaceborne experiments and instruments

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1981-01-01

    Currently active projects conducted to extend knowledge of the energetic particles and the electric, magnetic, and electromagnetic fields associated with Earth, other celestial bodies, and the interplanetary medium are summarized. These include investigations and/or instruments for Hawkeye 1; Pioneers 10 and 11; Voyagers 1 and 2; ISEE; IMP 8; Dynamics Explorer; Galileo; Spacelab and Orbital flight test missions; VLBI; and the International Solar Polar mission. Experiments and instruments proposed for the future international comet mission, the origin of plasmas in the Earth's environment mission, and the NASA active magnetospheric particle tracer experiment are mentioned.

  7. Improved magnetic properties and thermal stabilities of Pr-Nd-Fe-B sintered magnets by Hf addition

    NASA Astrophysics Data System (ADS)

    Jiang, Qingzheng; Lei, Weikai; Zeng, Qingwen; Quan, Qichen; Zhang, Lili; Liu, Renhui; Hu, Xianjun; He, Lunke; Qi, Zhiqi; Ju, Zhihua; Zhong, Minglong; Ma, Shengcan; Zhong, Zhenchen

    2018-05-01

    Nd2Fe14B-type permanent magnets have been widely applied in various fields such as wind power, voice coil motors, and medical instruments. The large temperature dependence of coercivity, however, limits their further applications. We have systematically investigated the magnetic properties, thermal stabilities and coercivity mechanisms of the (Pr0.2Nd0.8)13Fe81-xB6Hfx (x=0, 0.5) nanocrystalline magnets fabricated by a spark plasma sintering (SPS) technique. The results indicate that the influence of Hf addition is significant on magnetic properties and thermal stabilities of the (PrNd)2Fe14B-type sintered magnets. It is shown that the sample with x = 0.5 at 300 K has much higher coercivity and remanent magnetization than those counterparts without Hf. The temperature coefficients of remanence (α) and coercivity (β) of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets are improved significantly from -0.23 %/K, -0.57 %/K for the sample at x = 0 to -0.17 %/K, -0.49 %/K for the sample at x = 0.5 in the temperature range of 300-400 K. Furthermore, it is found out that the domain wall pinning mechanism is more likely responsible for enhancing the coercivity of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets.

  8. Public policies for managing urban growth and protecting open space: policy instruments and lessons learned in the United States

    Treesearch

    David N. Bengston; Jennifer O. Fletcher

    2003-01-01

    The public sector in the United States has responded to growing concern about the social and environmental costs of sprawling development patterns by creating a wide range of policy instruments designed to manage urban growth and protect open space. These techniques have been implemented at the local, regional, state and, to a limited extent, national levels. This...

  9. Instrumentation, metrology, and standards: key elements for the future of nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Lyons, Kevin

    2007-09-01

    Nanomanufacturing is the essential bridge between the discoveries of nanoscience and real world nanotech products and is the vehicle by which the Nation and the World will realize the promise of major technological innovation across a spectrum of products that will affect virtually every industrial sector. For nanotech products to achieve the broad impacts envisioned, they must be manufactured in market-appropriate quantities in a reliable, repeatable, economical and commercially viable manner. In addition, they must be manufactured so that environmental and human health concerns are met, worker safety issues are appropriately assessed and handled, and liability issues are addressed. Critical to this realization of robust nanomanufacturing is the development of the necessary instrumentation, metrology, and standards. Integration of the instruments, their interoperability, and appropriate information management are also critical elements that must be considered for viable nanomanufacturing. Advanced instrumentation, metrology and standards will allow the physical dimensions, properties, functionality, and purity of the materials, processes, tools, systems, products, and emissions that will constitute nanomanufacturing to be measured and characterized. This will in turn enable production to be scaleable, controllable, predictable, and repeatable to meet market needs. If a nano-product cannot be measured it cannot be manufactured; additionally if that product cannot be made safely it should not be manufactured. This presentation introduces the Instrumentation, Metrology, and Standards for Nanomanufacturing Conference at the 2007 SPIE Optics and Photonics. This conference will become the leading forum for the exchange of foundational information and discussion of instrumentation, metrology and standards which are key elements for the success of nanomanufacturing.

  10. Novel Developments in Instrumentation for PET Imaging

    NASA Astrophysics Data System (ADS)

    Karp, Joel

    2013-04-01

    Advances in medical imaging, in particular positron emission tomography (PET), have been based on technical developments in physics and instrumentation that have common foundations with detection systems used in other fields of physics. New detector materials are used in PET systems that maximize efficiency, timing characteristics and robustness, and which lead to improved image quality and quantitative accuracy for clinical imaging. Time of flight (TOF) techniques are now routinely used in commercial PET scanners that combine physiological imaging with anatomical imaging provided by x-ray computed tomography. Using new solid-state photo-sensors instead of traditional photo-multiplier tubes makes it possible to combine PET with magnetic resonance imaging which is a significant technical challenge, but one that is creating new opportunities for both research and clinical applications. An overview of recent advances in instrumentation, such as TOF and PET/MR will be presented, along with examples of imaging studies to demonstrate the impact on patient care and basic research of diseases.

  11. Vacuum status-display and sector-conditioning programs

    NASA Astrophysics Data System (ADS)

    Skelly, J.; Yen, S.

    1990-08-01

    Two programs have been developed for observation and control of the AGS vacuum system, which include the following notable features: (1) they incorporate a graphical user interface and (2) they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The status-display program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks and posts a graphical display of their status. The sector-conditioning program likewise invites sector selection, produces the same status display and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending several hours. As additional devices are installed in the vacuum system, the devices are added to the relational database; these programs then automatically include the new devices.

  12. Multidataset Refinement Resonant Diffraction, and Magnetic Structures

    PubMed Central

    Attfield, J. Paul

    2004-01-01

    The scope of Rietveld and other powder diffraction refinements continues to expand, driven by improvements in instrumentation, methodology and software. This will be illustrated by examples from our research in recent years. Multidataset refinement is now commonplace; the datasets may be from different detectors, e.g., in a time-of-flight experiment, or from separate experiments, such as at several x-ray energies giving resonant information. The complementary use of x rays and neutrons is exemplified by a recent combined refinement of the monoclinic superstructure of magnetite, Fe3O4, below the 122 K Verwey transition, which reveals evidence for Fe2+/Fe3+ charge ordering. Powder neutron diffraction data continue to be used for the solution and Rietveld refinement of magnetic structures. Time-of-flight instruments on cold neutron sources can produce data that have a high intensity and good resolution at high d-spacings. Such profiles have been used to study incommensurate magnetic structures such as FeAsO4 and β–CrPO4. A multiphase, multidataset refinement of the phase-separated perovskite (Pr0.35Y0.07Th0.04Ca0.04Sr0.5)MnO3 has been used to fit three components with different crystal and magnetic structures at low temperatures. PMID:27366599

  13. Two Instruments for Measuring Distributions of Low-Energy Charged Particles in Space

    NASA Technical Reports Server (NTRS)

    Bader, Michel; Fryer, Thomas B.; Witteborn, Fred C.

    1961-01-01

    Current estimates indicate that the bulk of interplanetary gas consists of protons with energies between 0 and 20 kev and concentrations of 1 to 105 particles/cu cm. Methods and instrumentation for measuring the energy and density distribution of such a gas are considered from the standpoint of suitability for space vehicle payloads. It is concluded that electrostatic analysis of the energy distribution can provide sufficient information in initial experiments. Both magnetic and electrostatic analyzers should eventually be used. Several instruments designed and constructed at the Ames Research Center for space plasma measurements, and the methods of calibration and data reduction are described. In particular, the instrument designed for operation on solar cell power has the following characteristics: weight, 1.1 pounds; size, 2 by 3 by 4 inches; and power consumption, 145 mw. The instrument is designed to yield information on the concentration, energy distribution, and the anisotropy of ion trajectories in the 0.2 to 20 kev range.

  14. Diffusion weighted magnetic resonance imaging and its recent trend—a survey

    PubMed Central

    Chilla, Geetha Soujanya; Tan, Cher Heng

    2015-01-01

    Since its inception in 1985, diffusion weighted magnetic resonance imaging has been evolving and is becoming instrumental in diagnosis and investigation of tissue functions in various organs including brain, cartilage, and liver. Even though brain related pathology and/or investigation remains as the main application, diffusion weighted magnetic resonance imaging (DWI) is becoming a standard in oncology and in several other applications. This review article provides a brief introduction of diffusion weighted magnetic resonance imaging, challenges involved and recent advancements. PMID:26029644

  15. Health-care sector and complementary medicine: practitioners' experiences of delivering acupuncture in the public and private sectors.

    PubMed

    Bishop, Felicity L; Amos, Nicola; Yu, He; Lewith, George T

    2012-07-01

    The aim was to identify similarities and differences between private practice and the National Health Service (NHS) in practitioners' experiences of delivering acupuncture to treat pain. We wished to identify differences that could affect patients' experiences and inform our understanding of how trials conducted in private clinics relate to NHS clinical practice. Acupuncture is commonly used in primary care for lower back pain and is recommended in the National Institute for Health and Clinical Excellence's guidelines. Previous studies have identified differences in patients' accounts of receiving acupuncture in the NHS and in the private sector. The major recent UK trial of acupuncture for back pain was conducted in the private sector. Semi-structured qualitative interviews were conducted with 16 acupuncturists who had experience of working in the private sector (n = 7), in the NHS (n =3), and in both the sectors (n = 6). The interviews lasted between 24 and 77 min (median=49 min) and explored acupuncturists' experiences of treating patients in pain. Inductive thematic analysis was used to identify similarities and differences across private practice and the NHS. The perceived effectiveness of acupuncture was described consistently and participants felt they did (or would) deliver acupuncture similarly in NHS and in private practice. In both the sectors, patients sought acupuncture as a last resort and acupuncturist-patient relationships were deemed important. Acupuncture availability differed across sectors: in the NHS it was constrained by Trust policies and in the private sector by patients' financial resources. There were greater opportunities for autonomous practice in the private sector and regulation was important for different reasons in each sector. In general, NHS practitioners had Western-focussed training and also used conventional medical techniques, whereas private practitioners were more likely to have Traditional Chinese training and to practise

  16. [The Hospital, patients, health and territories Act and the recentralisation of the social and long term care sector].

    PubMed

    Jourdain, Alain; Muñoz, Jorge; Hudebine, Hervé

    2017-07-10

    Hypothesis: The 2009 Hospital, Patients, Health and Territories Act crystallises a central government attempt to regain control over the social and long term care sector, which involves the utilisation of policy instruments borrowed from the hospital sector: capped budgets, agreements on targets and resources, competitive tendering or quasi-market mechanisms involving hospitals and services, etc. This paper is therefore based on the hypothesis of a recentralisation and healthicization of the social and long term care sector, with a key role for the regional health authorities. Method and data: 27 semi-structured interviews were conducted with actors operating within and outside the regional health agencies and thereafter analysed using Alceste. The aim was to describe and to analyse the positioning of the RHAs in relation to key actors of the social and long-term care sector in 2 regions in 2011. Results: Key issues for public organisations include the style of planning and knowhow transfer, while the professionals were chiefly concerned with the intensity of the ambulatory turn and needs analysis methodology. The compromises forged were related to types of democratic legitimacy, namely representative or participatory democracy. Conclusion: There is little evidence to support the initial hypothesis, namely the existence of a link between the creation of RHAs and a recentralisation of health policy between 2009 and 2013. One may rather suggest that a reconfiguration of the activities and resources of the actors operating at the centre (RHAs and conseils départementaux) and at the periphery (territorial units of the RHAs and third sector umbrella organisations) has occurred.

  17. Is the public healthcare sector a more strenuous working environment than the private sector for a physician?

    PubMed

    Heponiemi, Tarja; Kouvonen, Anne; Sinervo, Timo; Elovainio, Marko

    2013-02-01

    The present study examined the differences between physicians working in public and private health care in strenuous working environments (presence of occupational hazards, physical violence, and presenteeism) and health behaviours (alcohol consumption, body mass index, and physical activity). In addition, we examined whether gender or age moderated these potential differences. Cross-sectional survey data were compiled on 1422 female and 948 male randomly selected physicians aged 25-65 years from The Finnish Health Care Professionals Study. Logistic regression and linear regression analyses were used with adjustment for gender, age, specialisation status, working time, managerial position, and on-call duty. Occupational hazards, physical violence, and presenteeism were more commonly reported by physicians working in the public sector than by their counterparts in the private sector. Among physicians aged 50 years or younger, those who worked in the public sector consumed more alcohol than those who worked in the private sector, whereas in those aged 50 or more the reverse was true. In addition, working in the private sector was most strongly associated with lower levels of physical violence in those who were older than 50 years, and with lower levels of presenteeism among those aged 40-50 years. The present study found evidence for the public sector being a more strenuous work environment for physicians than the private sector. Our results suggest that public healthcare organisations should pay more attention to the working conditions of their employees.

  18. A systematic review of instruments to assess organizational readiness for knowledge translation in health care.

    PubMed

    Gagnon, Marie-Pierre; Attieh, Randa; Ghandour, El Kebir; Légaré, France; Ouimet, Mathieu; Estabrooks, Carole A; Grimshaw, Jeremy

    2014-01-01

    The translation of research into practices has been incomplete. Organizational readiness for change (ORC) is a potential facilitator of effective knowledge translation (KT). However we know little about the best way to assess ORC. Therefore, we sought to systematically review ORC measurement instruments. We searched for published studies in bibliographic databases (Pubmed, Embase, CINAHL, PsychINFO, Web of Science, etc.) up to November 1st, 2012. We included publications that developed ORC measures and/or empirically assessed ORC using an instrument at the organizational level in the health care context. We excluded articles if they did not refer specifically to ORC, did not concern the health care domain or were limited to individual-level change readiness. We focused on identifying the psychometric properties of instruments that were developed to assess readiness in an organization prior to implementing KT interventions in health care. We used the Standards for Educational and Psychological Testing to assess the psychometric properties of identified ORC measurement instruments. We found 26 eligible instruments described in 39 publications. According to the Standards for Educational and Psychological Testing, 18 (69%) of a total of 26 measurement instruments presented both validity and reliability criteria. The Texas Christian University -ORC (TCU-ORC) scale reported the highest instrument validity with a score of 4 out of 4. Only one instrument, namely the Modified Texas Christian University - Director version (TCU-ORC-D), reported a reliability score of 2 out of 3. No information was provided regarding the reliability and validity of five (19%) instruments. Our findings indicate that there are few valid and reliable ORC measurement instruments that could be applied to KT in the health care sector. The TCU-ORC instrument presents the best evidence in terms of validity testing. Future studies using this instrument could provide more knowledge on its relevance to

  19. Magnetic field in the NGC7023 photodissociation region

    NASA Astrophysics Data System (ADS)

    Alves, Marta

    2015-10-01

    The far-UV radiation of massive stars illuminates molecular clouds creating photodissociation regions (PDRs), the transition layers between atomic and molecular media. Recent results based on Herschel observations reveal the presence of small regions at high gas pressure in the PDRs, whose origin is still not well understood, while polarization measurements towards a few PDRs indicate that magnetic fields can play a significant role in their structure. The limited number of existing polarization observations suggest that, when subject to a high gas and radiation pressure from the stars, the magnetic field tends to align and to be compressed in the PDR. As a consequence, bright PDRs should be magnetically dominated. However, this possibility has been the subject of very few studies due to the sparsity of relevant data. We propose to map the magnetic field in a nearby bright PDR, NGC 7023, using the unique capabilities of HAWC+ onboard SOFIA. For one, we wish to test the hypothesis that the magnetic field should be parallel to this PDR, which is illuminated by a radiation field of 2600 (in Habing units). Secondly, since NGC 7023 is a well studied region, its physical conditions (density, temperature) are known and can thus be related to the magnetic field across the PDR. We can investigate the relation between the field structure and the geometry of the PDR, and aided by Herschel observations we can also explore a possible connection between the magnetic field and the existence of high density regions in the PDR. SOFIA HAWC+ is the only instrument capable of imaging the polarized emission of extended objects, with structure at arcsecond scales. Moreover, it allows us trace the magnetic field within the PDR, owing to its 63micron band that traces the warm (40K) dust present at the illuminated surface. Our observations will be complementary to those led by the instrument team, who will observe NGC 7023 using the three highest wavelength filters.

  20. Ionospheric and Thermospheric Response to the 2015 St. Patrick's Day Storm: a Global Multi-Instrumental Overview

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Zakharenkova, I.; Foerster, M.; Doornbos, E.; Encarnacao, J.; Siemes, C.

    2015-12-01

    We study the ionospheric response to the geomagnetic storm of 17-18 March 2015 (the St. Patrick's Day 2015 storm) that was up to now the strongest in the 24th solar cycle (minimum SYM-H value of -233 nT). For this purpose, we use data of ground-based GPS-receivers and ionosondes, along space-borne instruments onboard the following satellites: Jason-2, GRACE, Terra-SAR-X, the three Swarm satellites (A, B, and C), and GUVI/TIMED. The storm consisted of two successive moderate storms. In the response to the first short storm, a short-term positive effect in the ionospheric vertical electron content (VTEC) occurred at low- and mid-latitudes on the dayside. The second event lasted longer and caused significant and complex storm-time changes around the globe. At high-latitudes, negative storm signatures were recorded in all longitudinal regions. The negative storm phase was found to be strongest in the Asian sector, in particular in the northern hemisphere (NH), but developed globally on March 18 at the beginning of the recovery phase. At mid-latitudes, inverse hemispheric asymmetries occurred in different longitudinal regions: in the European-African sector, positive storm signatures were observed in the NH, whereas in the American sector, a large positive storm occurred in the southern hemisphere (SH), and the NH experienced a negative storm. These observations performed around the spring equinox signify the existence of other impact factors than seasonal dependence for hemispheric asymmetries to occur. At low-latitudes, data from multiple satellites revealed the strongest storm-time effects in the morning (~100-150% enhancement) and post-sunset (~80-100% enhancement) sectors in the topside ionosphere. These dramatic VTEC enhancements were observed at different UT, but around the same area of Eastern Pacific region. To further understand the storm development, we are planning to use thermospheric data from Swarm-C satellite, as well as the data from the electric field

  1. Methods and instruments for materials testing

    NASA Technical Reports Server (NTRS)

    Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)

    2011-01-01

    Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.

  2. Sector retinitis pigmentosa.

    PubMed

    Van Woerkom, Craig; Ferrucci, Steven

    2005-05-01

    Retinitis pigmentosa (RP) is one of the most common hereditary retinal dystrophies and causes of visual impairment affecting all age groups. The reported incidence varies, but is considered to be between 1 in 3,000 to 1 in 7,000. Sector retinitis pigmentosa is an atypical form of RP that is characterized by regionalized areas of bone spicule pigmentation, usually in the inferior quadrants of the retina. A 57-year-old Hispanic man with a history of previously diagnosed retinitis pigmentosa came to the clinic with a longstanding symptom of decreased vision at night. Bone spicule pigmentation was found in the nasal and inferior quadrants in each eye. He demonstrated superior and temporal visual-field loss corresponding to the areas of the affected retina. Clinical measurements of visual-field loss, best-corrected visual acuity, and ophthalmoscopic appearance have remained stable during the five years the patient has been followed. Sector retinitis pigmentosa is an atypical form of RP that is characterized by bilateral pigmentary retinopathy, usually isolated to the inferior quadrants. The remainder of the retina appears clinically normal, although studies have found functional abnormalities in these areas as well. Sector RP is generally considered a stationary to slowly progressive disease, with subnormal electro-retinogram findings and visual-field defects corresponding to the involved retinal sectors. Management of RP is very difficult because there are no proven methods of treatment. Studies have shown 15,000 IU of vitamin A palmitate per day may slow the progression, though this result is controversial. Low vision rehabilitation, long wavelength pass filters, and pedigree counseling remain the mainstay of management.

  3. C/NOFS Measurements of Magnetic Perturbations in the Low-Latitude Ionosphere During Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Le, Guan; Burke, William J.; Pfaff, Robert F.; Freudenreich, Henry; Maus, Stefan; Luhr, Hermann

    2011-01-01

    The Vector Electric Field Investigation suite on the C/NOFS satellite includes a fluxgate magnetometer to monitor the Earth s magnetic fields in the low-latitude ionosphere. Measurements yield full magnetic vectors every second over the range of +/-45,000 nT with a one-bit resolution of 1.37 nT (16 bit A/D) in each component. The sensor s primary responsibility is to support calculations of both V x B and E x B with greater accuracy than can be obtained using standard magnetic field models. The data also contain information about large-scale current systems that, when analyzed in conjunction with electric field measurements, promise to significantly expand understanding of equatorial electrodynamics. We first compare in situ measurements with the POMME (Potsdam Magnetic Model of the Earth) model to establish in-flight sensor "calibrations" and to compute magnetic residuals. At low latitudes the residuals are predominately products of the storm time ring current. Since C/NOFS provides a complete coverage of all local times every 97 min, magnetic field data allow studies of the temporal evolution and local time variations of storm time ring current. The analysis demonstrates the feasibility of using instrumented spacecraft in low-inclination orbits to extract a timely proxy for the provisional Dst index and to specify the ring current s evolution.

  4. Chilly dark sectors and asymmetric reheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-06-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  5. Holographic estimate of heavy quark diffusion in a magnetic field

    NASA Astrophysics Data System (ADS)

    Dudal, David; Mertens, Thomas G.

    2018-03-01

    We study the influence of a background magnetic field on the J /ψ vector meson in a Dirac-Born-Infeld-extension of the soft wall model, building upon our earlier work [D. Dudal and T. G. Mertens Phys. Rev. D 91, 086002 (2015), 10.1103/PhysRevD.91.086002]. In this specific holographic QCD model, we discuss the heavy quark number susceptibility and diffusion constants of charm quarks and their dependence on the magnetic field by either a hydrodynamic expansion or by numerically solving the differential equation. This allows us to determine the response of these transport coefficients to the magnetic field. The effects of the latter are considered both from a direct as indirect (medium) viewpoint. As expected, we find a magnetic field induced anisotropic diffusion, with a stronger diffusion in the longitudinal direction compared to the transversal one. We backup, at least qualitatively, our findings with a hanging string analysis of heavy quark diffusion in a magnetic field. From the quark number susceptibility we can extract an estimate for the effective deconfinement temperature in the heavy quark sector, reporting consistency with the phenomenon of inverse magnetic catalysis.

  6. Scientific and technological Challenges in the development of astronomical instrumentation: E-ELT & ALMA

    NASA Astrophysics Data System (ADS)

    Barrado, David; Gallego, Jesús

    2009-12-01

    The answers to the present astrophysical questions require the development of highly sophisticated instrumentation, which needs long-term scheduling and large assets of human and material resources, managed by consortia of several institutions. Spain has carried in the last years serious efforts in this direction (GTC, ESO, ESA), but there is still a notable offset between astronomical research at the theoretical and observational levels and the development of instrumentation. Now, the incorporation of new countries to ESO (in particular Spain) to ESO and several future big projects (ALMA, E-ELT, Cosmic Vision), raise the level of exigency. The goal of this workshop is to gather the scientific teams and the industries of the sector to expose their needs and projects, and share experiences. The workshop is aimed as well at serving as an echo to convince financing agencies and the astronomical community in general of the need to promote with decision the development of astrophysical instrumentation and the tools for the analysis of related data. The formation and acknowledgement of instrumentation astronomers will be a key factor for Spain to meet the requirements of its position in Astronomy in the next decades. Here, we present the contributions most closely related to the development of E-ELT, ALMA and ESA missions.

  7. 50 CFR 648.87 - Sector allocation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... biological, economic, and social impacts of sectors and their fishing operations consistent with confidentiality requirements of applicable law. (vii) Interaction with other fisheries—(A) Use of DAS. A sector...

  8. Actively Controlled Magnetic Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Grodsinky, Carlos M.; Logsdon, Kirk A.; Wbomski, Joseph F.; Brown, Gerald V.

    1993-01-01

    Prototype magnetic suspension system with active control isolates object from vibrations in all six degrees of freedom at frequencies as low as 0.01 Hz. Designed specifically to protect instruments aboard spacecraft by suppressing vibrations to microgravity levels; basic control approach used for such terrestrial uses as suppression of shocks and other vibrations in trucks and railroad cars.

  9. Partnership in Sector Wide Approaches

    ERIC Educational Resources Information Center

    Tolley, Hilary

    2011-01-01

    Within the context of bilateral support to the education sector in Tonga and the Solomon Islands, this paper will explore how the discourse of "partnership" has been interpreted and activated within the Sector wide approach (SWAp). In concentrating particularly on the relationship between the respective Ministries of Education and New…

  10. [Harassment in the public sector].

    PubMed

    Puech, Paloma; Pitcho, Benjamin

    2013-01-01

    The French Labour Code, which provides full protection against moral and sexual harassment, is not applicable to public sector workers. The public hospital is however not exempt from such behaviour, which could go unpunished. Public sector workers are therefore protected by the French General Civil Service Regulations and the penal code.

  11. Private sector contribution to childhood immunization: Sri Lankan experience.

    PubMed

    Agampodi, S B; Amarasinghe, D A C L

    2007-04-01

    The main service provider for childhood immunization in Sri Lanka is the government sector. However, utilization of private sector for childhood immunization is increasing rapidly. Existing national immunization data does not routinely include statistics on private sector immunization delivery adequately. To estimate the proportion of children immunized in the private sector; describe socio-demographic characteristics of private sector users and compare these with government sector users. A community-based crosssectional descriptive study was conducted using a pre-tested interviewer-administered structured questionnaire. This was done in the Colombo municipal council area using the WHO 30 cluster methodology. The total number of households in the sample was 553. Out of the 5,028 total immunizations reported in the present study, around one-third (2,544) was obtained through the private sector. Nineteen percent (104) of children were exclusively immunized from the private sector. The distribution of usual immunization provider was - government sector 72.3% (400) and private sector 27.7% (153). Significant differences were observed (P < 0.001) between private and government sector users with regard to family income, social class, ethnicity, religion and educational level of the mother. The age-appropriate immunization among the 12- to 23-month age group was 92.3% (144) in the government sector, whereas it was 95% (38) in the private sector. Among the 24- to 35-month age group, it was 91.7% (121) and 92.7% (76) respectively. The age-adjusted immunization coverage rates were almost same among the government and private sector users except for the measles vaccine, where the private sector users had significantly (P = 0.016) higher coverage. Utilization of private sector immunization services is high in the Colombo municipal council area.

  12. Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star

    NASA Astrophysics Data System (ADS)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchère, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Braukhane, A.; Casini, R.; Curdt, W.; Davila, J.; Dittus, H.; Fineschi, S.; Fludra, A.; Gandorfer, A.; Griffin, D.; Inhester, B.; Lagg, A.; Landi Degl'Innocenti, E.; Maiwald, V.; Sainz, R. Manso; Martínez Pillet, V; Matthews, S.; Moses, D.; Parenti, S.; Pietarila, A.; Quantius, D.; Raouafi, N.-E.; Raymond, J.; Rochus, P.; Romberg, O.; Schlotterer, M.; Schühle, U.; Solanki, S.; Spadaro, D.; Teriaca, L.; Tomczyk, S.; Trujillo Bueno, J.; Vial, J.-C.

    2012-04-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.

  13. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, J. S.; McKenzie, I.; Baker, P. J.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  14. A Review of Permanent Magnet Stirring During Metal Solidification

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander

    2017-12-01

    Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

  15. 22 CFR 139.8 - Target economic sectors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Target economic sectors. 139.8 Section 139.8... § 139.8 Target economic sectors. Job/Training under the IPPCTP will be authorized for preferred economic... authorized to approve different employers in different economic sectors. [66 FR 52506, Oct. 16, 2001] ...

  16. 22 CFR 139.8 - Target economic sectors.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Target economic sectors. 139.8 Section 139.8... § 139.8 Target economic sectors. Job/Training under the IPPCTP will be authorized for preferred economic... authorized to approve different employers in different economic sectors. [66 FR 52506, Oct. 16, 2001] ...

  17. 22 CFR 139.8 - Target economic sectors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Target economic sectors. 139.8 Section 139.8... § 139.8 Target economic sectors. Job/Training under the IPPCTP will be authorized for preferred economic... authorized to approve different employers in different economic sectors. [66 FR 52506, Oct. 16, 2001] ...

  18. 22 CFR 139.8 - Target economic sectors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Target economic sectors. 139.8 Section 139.8... § 139.8 Target economic sectors. Job/Training under the IPPCTP will be authorized for preferred economic... authorized to approve different employers in different economic sectors. [66 FR 52506, Oct. 16, 2001] ...

  19. 22 CFR 139.8 - Target economic sectors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Target economic sectors. 139.8 Section 139.8... § 139.8 Target economic sectors. Job/Training under the IPPCTP will be authorized for preferred economic... authorized to approve different employers in different economic sectors. [66 FR 52506, Oct. 16, 2001] ...

  20. The status of the federal magnetic fusion program, or fusion in transition: from science to technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, J.S.

    1983-06-01

    The current status of magnetic fusion is summarized. The science is in place; the application must be made. Government will have to underwrite the risk of the program, but the private sector must manage it. Government officials must be convinced fusion is in the interest of the taxpayer, private sector decision makers that it is commercial. Questions concerning reliability, availability, first cost, safety, environment, and sociology must be asked. Fusion energy is essentially inexhaustible, appears environmentally acceptable, and is one of a very short list of alternatives.

  1. Magnetic particle motions within living cells. Physical theory and techniques.

    PubMed Central

    Valberg, P A; Butler, J P

    1987-01-01

    Body tissues are not ferromagnetic, but ferromagnetic particles can be present as contaminants or as probes in the lungs and in other organs. The magnetic domains of these particles can be aligned by momentary application of an external magnetic field; the magnitude and time course of the resultant remanent field depend on the quantity of magnetic material and the degree of particle motion. The interpretation of magnetometric data requires an understanding of particle magnetization, agglomeration, random motion, and both rotation and translation in response to magnetic fields. We present physical principles relevant to magnetometry and suggest models for intracellular particle motion driven by thermal, elastic, or cellular forces. The design principles of instrumentation for magnetizing intracellular particles and for detecting weak remanent magnetic fields are described. Such magnetic measurements can be used for noninvasive studies of particle clearance from the body or of particle motion within body tissues and cells. Assumptions inherent to this experimental approach and possible sources of artifact are considered and evaluated. PMID:3676435

  2. Post market surveillance in the german medical device sector - current state and future perspectives.

    PubMed

    Zippel, Claus; Bohnet-Joschko, Sabine

    2017-08-01

    Medical devices play a central role in the diagnosis and treatment of diseases but also bring the potential for adverse events, hazards or malfunction with serious consequences for patients and users. Medical device manufacturers are therefore required by law to monitor the performance of medical devices that have been approved by the competent authorities (post market surveillance). Conducting a nationwide online-survey in the German medical device sector in Q2/2014 in order to explore the current status of the use of post market instruments we obtained a total of 118 complete data sets, for a return rate of 36%. The survey included manufacturers of different sizes, producing medical devices of all risk classes. The post market instruments most frequently reported covered the fields of production monitoring and quality management as well as literature observation, regulatory vigilance systems, customer knowledge management and market observation while Post Market Clinical Follow-up and health services research were being used less for product monitoring. We found significant differences between the different risk classes of medical devices produced and the intensity of use of post market instruments. Differences between company size and the intensity of instruments used were hardly detected. Results may well contribute to the development of device monitoring which is a crucial element of the policy and regulatory system to identify device-related safety issues. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Strong constraints on sub-GeV dark sectors from SLAC beam dump E137.

    PubMed

    Batell, Brian; Essig, Rouven; Surujon, Ze'ev

    2014-10-24

    We present new constraints on sub-GeV dark matter and dark photons from the electron beam-dump experiment E137 conducted at SLAC in 1980-1982. Dark matter interacting with electrons (e.g., via a dark photon) could have been produced in the electron-target collisions and scattered off electrons in the E137 detector, producing the striking, zero-background signature of a high-energy electromagnetic shower that points back to the beam dump. E137 probes new and significant ranges of parameter space and constrains the well-motivated possibility that dark photons that decay to light dark-sector particles can explain the ∼3.6σ discrepancy between the measured and standard model value of the muon anomalous magnetic moment. It also restricts the parameter space in which the relic density of dark matter in these models is obtained from thermal freeze-out. E137 also convincingly demonstrates that (cosmic) backgrounds can be controlled and thus serves as a powerful proof of principle for future beam-dump searches for sub-GeV dark-sector particles scattering off electrons in the detector.

  4. Measuring the Large-scale Solar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Scherrer, P. H.; Peterson, E.; Svalgaard, L.

    2017-12-01

    The Sun's large-scale magnetic field is important for determining global structure of the corona and for quantifying the evolution of the polar field, which is sometimes used for predicting the strength of the next solar cycle. Having confidence in the determination of the large-scale magnetic field of the Sun is difficult because the field is often near the detection limit, various observing methods all measure something a little different, and various systematic effects can be very important. We compare resolved and unresolved observations of the large-scale magnetic field from the Wilcox Solar Observatory, Heliseismic and Magnetic Imager (HMI), Michelson Doppler Imager (MDI), and Solis. Cross comparison does not enable us to establish an absolute calibration, but it does allow us to discover and compensate for instrument problems, such as the sensitivity decrease seen in the WSO measurements in late 2016 and early 2017.

  5. Prevalence of information stored in arrays of magnetic nanowires against external fields

    NASA Astrophysics Data System (ADS)

    Ceballos, D.; Cisternas, E.; Vogel, E. E.; Allende, S.

    2018-04-01

    Arrays of magnetic nanowires in porous alumina can be used to store information inscribed on the system by orienting the magnetization of selected wires pointing in a desired direction, so symbols can be read as ferromagnetic sectors. However, this information is subject to aging and the stored information could be gradually lost. We investigate here two mechanisms proposed to improve the prevalence of the stored information: opposite ferromagnetic band at the center of the symbol and bi-segmented nanowires acting as two layers of nanowires storing the same information. Both mechanisms prove to increase resistance to the action of external magnetic fields for the case of Ni wires in a geometry compatible with actually grown nanowires. Advantages and disadvantages of these mechanisms are discussed.

  6. Interplanetary sector boundaries, 1971 - 1973

    NASA Technical Reports Server (NTRS)

    Klein, L.; Burlaga, L. F.

    1979-01-01

    Eighteen interplanetary sector boundary crossings observed at 1 AU by the magnetometer on the IMP-6 spacecraft are discussed. The events were examined on many different time scales ranging from days on either side of the boundary to high resolution measurements of 12.5 vectors per second. Two categories of boundaries were found, one group being relatively thin and the other being thick. In many cases the field vector rotated in a plane from one polarity to the other. Only two of the transitions were null sheets. Using the minimum variance analysis to determine the normals to the plane of rotation, and assuming that this is the same as the normal to the sector boundary surface, it was found that the normals were close to the ecliptic plane. An analysis of tangential discontinuities contained in 4-day periods about the events showed that their orientations were generally not related to the orientations of the sector boundary surface, but rather their characteristics were about the same as those for discontinuities outside the sector boundaries.

  7. A Sphere-Scanning Radiometer for Rapid Directional Measurements of Sky and Ground Radiance: the PARABOLA Field Instrument

    NASA Technical Reports Server (NTRS)

    Deering, D. W.; Leone, P.

    1984-01-01

    A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere.

  8. A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance: The PARABOLA field instrument

    NASA Astrophysics Data System (ADS)

    Deering, D. W.; Leone, P.

    1984-11-01

    A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere.

  9. Aerodynamics of magnetic levitation (MAGLEV) trains

    NASA Technical Reports Server (NTRS)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  10. Mineral Processing Sector

    EPA Pesticide Factsheets

    Find environmental regulatory and compliance information for the nonmetallic mineral processing sector (NAICS 327), including NESHAPs for asbestos and hazardous waste, and wastewater permit information.

  11. Rotationally driven magnetic reconnection in Saturn's dayside

    NASA Astrophysics Data System (ADS)

    Guo, R. L.; Yao, Z. H.; Wei, Y.; Ray, L. C.; Rae, I. J.; Arridge, C. S.; Coates, A. J.; Delamere, P. A.; Sergis, N.; Kollmann, P.; Grodent, D.; Dunn, W. R.; Waite, J. H.; Burch, J. L.; Pu, Z. Y.; Palmaerts, B.; Dougherty, M. K.

    2018-06-01

    Magnetic reconnection is a key process that explosively accelerates charged particles, generating phenomena such as nebular flares1, solar flares2 and stunning aurorae3. In planetary magnetospheres, magnetic reconnection has often been identified on the dayside magnetopause and in the nightside magnetodisc, where thin-current-sheet conditions are conducive to reconnection4. The dayside magnetodisc is usually considered thicker than the nightside due to the compression of solar wind, and is therefore not an ideal environment for reconnection. In contrast, a recent statistical study of magnetic flux circulation strongly suggests that magnetic reconnection must occur throughout Saturn's dayside magnetosphere5. Additionally, the source of energetic plasma can be present in the noon sector of giant planetary magnetospheres6. However, so far, dayside magnetic reconnection has only been identified at the magnetopause. Here, we report direct evidence of near-noon reconnection within Saturn's magnetodisc using measurements from the Cassini spacecraft. The measured energetic electrons and ions (ranging from tens to hundreds of keV) and the estimated energy flux of 2.6 mW m-2 within the reconnection region are sufficient to power aurorae. We suggest that dayside magnetodisc reconnection can explain bursty phenomena in the dayside magnetospheres of giant planets, which can potentially advance our understanding of quasi-periodic injections of relativistic electrons6 and auroral pulsations7.

  12. Thermal magnetic field noise limits resolution in transmission electron microscopy.

    PubMed

    Uhlemann, Stephan; Müller, Heiko; Hartel, Peter; Zach, Joachim; Haider, Max

    2013-07-26

    The resolving power of an electron microscope is determined by the optics and the stability of the instrument. Recently, progress has been obtained towards subångström resolution at beam energies of 80 kV and below but a discrepancy between the expected and achieved instrumental information limit has been observed. Here we show that magnetic field noise from thermally driven currents in the conductive parts of the instrument is the root cause for this hitherto unexplained decoherence phenomenon. We demonstrate that the deleterious effect depends on temperature and at least weakly on the type of material.

  13. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    NASA Astrophysics Data System (ADS)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  14. Infection with spinal instrumentation: Review of pathogenesis, diagnosis, prevention, and management

    PubMed Central

    Kasliwal, Manish K.; Tan, Lee A.; Traynelis, Vincent C.

    2013-01-01

    Background: Instrumentation has become an integral component in the management of various spinal pathologies. The rate of infection varies from 2% to 20% of all instrumented spinal procedures. Every occurrence produces patient morbidity, which may adversely affect long-term outcome and increases health care costs. Methods: A comprehensive review of the literature from 1990 to 2012 was performed utilizing PubMed and several key words: Infection, spine, instrumentation, implant, management, and biofilms. Articles that provided a current review of the pathogenesis, diagnosis, prevention, and management of instrumented spinal infections over the years were reviewed. Results: There are multiple risk factors for postoperative spinal infections. Infections in the setting of instrumentation are more difficult to diagnose and treat due to biofilm. Infections may be early or delayed. C Reactive Protein (CRP) and Magnetic Resonance Imaging (MRI) are important diagnostic tools. Optimal results are obtained with surgical debridement followed by parenteral antibiotics. Removal or replacement of hardware should be considered in delayed infections. Conclusions: An improved understanding of the role of biofilm and the development of newer spinal implants has provided insight in the pathogenesis and management of infected spinal implants. This literature review highlights the mechanism, pathogenesis, prevention, and management of infection after spinal instrumentation. It is important to accurately identify and treat postoperative spinal infections. The treatment is often multimodal and prolonged. PMID:24340238

  15. Building recycling rates through the informal sector.

    PubMed

    Wilson, David C; Araba, Adebisi O; Chinwah, Kaine; Cheeseman, Christopher R

    2009-02-01

    Many developing country cities aspire to modern waste management systems, which are associated with relatively high recycling rates of clean, source separated materials. Most already have informal sector recycling systems, which are driven solely by the revenues derived from selling recovered materials, even though they are saving the formal sector money by reducing waste quantities. There is clear potential for 'win-win' co-operation between the formal and informal sectors, as providing support to the informal sector, to build recycling rates and to address some of the social issues could reduce the overall costs of waste management for the formal sector. This paper shows that recycling rates already achieved by the informal sector can be quite high, typically in the range from 20% to 50%; often up to half of this is in the form of clean, source separated materials collected directly from households and businesses by itinerant waste buyers. Four country case studies provide a number of lessons on how this solid foundation could be used to build high recycling rates of clean materials.

  16. Magnetic resonance imaging of tablet dissolution.

    PubMed

    Nott, Kevin P

    2010-01-01

    Magnetic resonance imaging (MRI) is the technique of choice for measuring hydration, and its effects, during dissolution of tablets since it non-invasively maps (1)H nuclei associated with 'mobile' water. Although most studies have used MRI systems with high-field superconducting magnets, low-field laboratory-based instruments based on permanent magnet technology are being developed that provide key data for the formulation scientist. Incorporation of dissolution hardware, in particular the United States Pharmacopeia (USP) apparatus 4 flow-through cell, allows measurements under controlled conditions for comparison against other dissolution methods. Furthermore, simultaneous image acquisition and measurement of drug concentration allow direct comparison of the drug release throughout the hydration process. The combination of low-field MRI with USP-4 apparatus provides another tool to aid tablet formulation. Copyright 2009 Elsevier B.V. All rights reserved.

  17. A method for real time detecting of non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Marusenkov, Andriy

    2015-04-01

    The principle of measuring magnetic signatures for observing diverse objects is widely used in Near Surface work (unexploded ordnance (UXO); engineering & environmental; archaeology) and security and vehicle detection systems as well. As a rule, the magnitude of the signals to be measured is much lower than that of the quasi-uniform Earth magnetic field. Usually magnetometers for these purposes contain two or more spatially separated sensors to estimate the full tensor gradient of the magnetic field or, more frequently, only partial gradient components. The both types (scalar and vector) of magnetic sensors could be used. The identity of the scale factors and proper alignment of the sensitivity axes of the vector sensors are very important for deep suppression of the ambient field and detection of weak target signals. As a rule, the periodical calibration procedure is used to keep matching sensors' parameters as close as possible. In the present report we propose the technique for detection magnetic anomalies, which is almost insensitive to imperfect matching of the sensors. This method based on the idea that the difference signals between two sensors are considerably different when the instrument is rotated or moved in uniform and non-uniform fields. Due to the misfit of calibration parameters the difference signal observed at the rotation in the uniform field is similar to the total signal - the sum of the signals of both sensors. Zero change of the difference and total signals is expected, if the instrument moves in the uniform field along a straight line. In contrast, the same move in the non-uniform field produces some response of each of the sensors. In case one measures dB/dx and moves along x direction, the sensors signals is shifted in time with the lag proportional to the distance between sensors and the speed of move. It means that the difference signal looks like derivative of the total signal at move in the non-uniform field. So, using quite simple

  18. Public Sector/Private Sector Interaction in Providing Information Services. Report to the NCLIS from the Public Sector/Private Sector Task Force.

    ERIC Educational Resources Information Center

    National Commission on Libraries and Information Science, Washington, DC.

    The results of a 2-year study on the interactions between government and private sector information activities are presented in terms of principles and guidelines for federal policy to support the development and use of information resources, products, and services, and to implement the principles. Discussions address sources of conflict between…

  19. Energy Spectra of Geomagnetically Trapped Light Isotopes Measured by NINA-2 Instrument

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. V.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Voronov, S.; Bidoli, V.; Caoslino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvincini, V.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2003-07-01

    This paper reports about the energy spectrum of geomagnetically trapped protons, deuterons, tritons and He isotop es measured by the instrument NINA2 at the low boundary of the South Atlantic Anomaly. NINA-2 on board the satellite MITA has been in orbit from 15 July 2000 to 10 August 2001, flying with circular polar orbit (87° inclination), at an altitude between 300-440 km. Differential energy spectra were measured at L-shell ˜ 1.2 and local magnetic field b< 0.22 G. Data from NINA-2 are compared with measurements made onboard Resurs-01 N4 satellite with NINA instrument. Possible solar modulation effects are discussed.

  20. Magnetic Ureteral Stent Removal Without Cystoscopy: A Randomized Controlled Trial.

    PubMed

    Rassweiler, Marie-Claire; Michel, Maurice-Stephan; Ritter, Manuel; Honeck, Patrick

    2017-08-01

    Ureteral stenting is a common procedure in urology. The cystoscopic removal of Double-J stents (DJ) causes unpleasant side effects with a negative impact on patient's quality of life. The aim of our study was to evaluate this newly developed magnetic DJ and compare it with a standard DJ regarding quality of life with indwelling DJs as well as discomfort during the removal. The magnetic DJ (Blackstar, Urotech [Achenmühle, Germany]) is a standard 7F ureteral stent with a small magnetic cube fixed through a string on the loop of the distal part of the stent. For DJ removal, a special catheter-like retrieval instrument with a magnetic tip is inserted, the two magnets connect and the retrieval instrument is removed with the DJ. We first tested this DJ in 20 cases. Afterward we evaluated 40 consecutive cases that required a DJ placement after ureterorenoscopy in a prospective randomized manner. The quality of life was assessed by the ureteral stent symptom questionnaire. A visual analogue scale was used to document the pain by DJ removal. There was a significant difference regarding the pain location with the indwelling DJ (p = 0.038). The maximum pain was located in the lower abdomen and/or around the bladder (48%) with the magnetic DJ, whereas the standard DJ caused flank pain in 54% of the patients. The mean time for the magnetic DJ removal including preparation and cleaning as for a transurethral catheter insertion was 9.55 [7-14] minutes, whereas the mean time for the cystoscopic DJ removal was 21.35 [18-30] minutes. The pain caused by the removal of the magnetic DJ was significantly less than that caused by the cystoscopic DJ removal (p = 0.019). The discomfort caused by the indwelling magnetic DJ is comparable with that caused by the standard DJ. However, the magnetic DJ removal is less painful and faster.

  1. Implant positioning in TKA: comparison between conventional and patient-specific instrumentation.

    PubMed

    Ferrara, Ferdinando; Cipriani, Antonio; Magarelli, Nicola; Rapisarda, Santi; De Santis, Vincenzo; Burrofato, Aaron; Leone, Antonio; Bonomo, Lorenzo

    2015-04-01

    The number of total knee arthroplasty (TKA) procedures continuously increases, with good to excellent results. In the last few years, new surgical techniques have been developed to improve prosthesis positioning. In this context, patient-specific instrumentation is included. The goal of this study was to compare the perioperative parameters and the spatial positioning of prosthetic components in TKA procedures performed with patient-specific instrumentation vs traditional TKA. In this prospective comparative randomized study, 15 patients underwent TKA with 3-dimensional magnetic resonance imaging (MRI) preoperative planning (patient-specific instrumentation group) and 15 patients underwent traditional TKA (non-patient-specific instrumentation group). All patients underwent postoperative computed tomography (CT) examination. In the patient-specific instrumentation group, preoperative data planning regarding femoral and tibial bone resection was correlated with intraoperative measurements. Surgical time, length of hospitalization, and intraoperative and postoperative bleeding were compared between the 2 groups. Positioning of implants on postoperative CT was assessed for both groups. Data planned with 3-dimensional MRI regarding the depth of bone cuts showed good to excellent correlation with intraoperative measurements. The patient-specific instrumentation group showed better perioperative outcomes and good correlation between the spatial positioning of prosthetic components planned preoperatively and that seen on postoperative CT. Less variability was found in the patient-specific instrumentation group than in the non-patient-specific instrumentation group in spatial orientation of prosthetic components. Preoperative planning with 3-dimensional MRI in TKA has a better perioperative outcome compared with the traditional method. Use of patient-specific instrumentation can also improve the spatial positioning of both prosthetic components. Copyright 2015, SLACK

  2. Private sector data for performance management.

    DOT National Transportation Integrated Search

    2011-07-01

    This report examines and analyzes technical and institutional issues associated with the use of private sector travel time and speed data for public sector performance management. The primary data needs for congestion performance measures are outline...

  3. Impact of Professional Nursing Practices on Patient/Nurse Outcomes: Testing the Essential Professional Nursing Practices Instrument.

    PubMed

    Kramer, Marlene; Brewer, Barbara B; Halfer, Diana; Hnatiuk, Cynthia Nowicki; MacPhee, Maura; Duchscher, Judy Boychuk; Maguire, Pat; Coe, Thomas; Schmalenberg, Claudia

    2017-05-01

    Increasing patient and healthcare system complexity and the need to accurately measure the engagement of clinical nurses (CNs) in holistic, professional nursing practice indicates that an update to the Essentials of Magnetism instrument is needed. The purposes of this research were to critique and weight items, assess the value and psychometric properties of the newly constructed Essential Professional Nursing Practices (EPNP) instrument, and establish relationships between EPNPs and CN job, practice, and nurse-assessed patient satisfaction.

  4. Correlation lifetimes of quiet and magnetic granulation from the SOUP instrument on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.; Ferguson, S.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.; Pope, T.; Reeves, R.; Rehse, R.; Shine, R.; Simon, G.; Harvey, J.; Leibacher, J.; Livingston, W.; November, L.; Zirker, J.

    The time sequences of diffraction limited granulation images obtained by the Solar Optical Universal Polarimeter on Spacelab 2 are presented. The uncorrection autocorrelation limetime in magnetic regions is dominated by the 5-min oscillation. The removal of this oscillation causes the autocorrelation lifetime to increase by more than a factor of 2. The results suggest that a significant fraction of granule lifetimes are terminated by nearby explosions. Horizontal displacements and transverse velocities in the intensity field are measured. Lower limits to the lifetime in the quiet and magnetic sun are set at 440 s and 950 s, respectively.

  5. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documentsmore » will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.« less

  6. Magnetic enhancement of photoluminescence from blue-luminescent graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Shi, Chentian; Zhang, Chunfeng; Pu, Songyang; Wang, Rui; Wu, Xuewei; Wang, Xiaoyong; Xue, Fei; Pan, Dengyu; Xiao, Min

    2016-02-01

    Graphene quantum-dots (GQDs) have been predicted and demonstrated with fascinating optical and magnetic properties. However, the magnetic effect on the optical properties remains experimentally unexplored. Here, we conduct a magneto-photoluminescence study on the blue-luminescence GQDs at cryogenic temperatures with magnetic field up to 10 T. When the magnetic field is applied, a remarkable enhancement of photoluminescence emission has been observed together with an insignificant change in circular polarization. The results have been well explained by the scenario of magnetic-field-controlled singlet-triplet mixing in GQDs owing to the Zeeman splitting of triplet states, which is further verified by temperature-dependent experiments. This work uncovers the pivotal role of intersystem crossing in GQDs, which is instrumental for their potential applications such as light-emitting diodes, photodynamic therapy, and spintronic devices.

  7. SPIDER OPTIMIZATION. II. OPTICAL, MAGNETIC, AND FOREGROUND EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dea, D. T.; Clark, C. N.; Contaldi, C. R.

    2011-09-01

    SPIDER is a balloon-borne instrument designed to map the polarization of the cosmic microwave background (CMB) with degree-scale resolution over a large fraction of the sky. SPIDER's main goal is to measure the amplitude of primordial gravitational waves through their imprint on the polarization of the CMB if the tensor-to-scalar ratio, r, is greater than 0.03. To achieve this goal, instrumental systematic errors must be controlled with unprecedented accuracy. Here, we build on previous work to use simulations of SPIDER observations to examine the impact of several systematic effects that have been characterized through testing and modeling of various instrumentmore » components. In particular, we investigate the impact of the non-ideal spectral response of the half-wave plates, coupling between focal-plane components and Earth's magnetic field, and beam mismatches and asymmetries. We also present a model of diffuse polarized foreground emission based on a three-dimensional model of the Galactic magnetic field and dust, and study the interaction of this foreground emission with our observation strategy and instrumental effects. We find that the expected level of foreground and systematic contamination is sufficiently low for SPIDER to achieve its science goals.« less

  8. Private sector joins family planning effort.

    PubMed

    1989-12-01

    Projects supported by the Directorate for Population (S&T/POP) of the U.S. Agency for International Development and aimed at increasing for-profit private sector involvement in providing family planning services and products are described. Making products commercially available through social-marketing partnerships with the commercial sector, USAID has saved $1.1 million in commodity costs from Brazil, Dominican Republic, Ecuador, Indonesia, and Peru. Active private sector involvement benefits companies, consumers, and donors through increased corporate profits, healthier employees, improved consumer access at lower cost, and the possibility of sustained family planning programs. Moreover, private, for-profit companies will be able to meet service demands over the next 20 years where traditional government and donor agency sources would fail. Using employee surveys and cost-benefit analyses to demonstrate expected financial and health benefits for businesses and work forces, S&T/POP's Technical Information on Population for the Private Sector (TIPPS) project encourages private companies in developing countries to invest in family planning and maternal/child health care for their employees. 36 companies in 9 countries have responded thus far, which examples provided from Peru and Zimbabwe. The Enterprise program's objectives are also to increase the involvement of for-profit companies in delivering family planning services, and to improve the efficiency and effectiveness of private volunteer organizations in providing services. Projects have been started with mines, factories, banks, insurance companies, and parastatals in 27 countries, with examples cited from Ghana and Indonesia. Finally, the Social Marketing for Change project (SOMARC) builds demand and distributes low-cost contraceptives through commercial channels especially to low-income audiences. Partnerships have been initiated with the private sector in 17 developing countries, with examples provided from

  9. Instrumentation: Software-Driven Instrumentation: The New Wave.

    ERIC Educational Resources Information Center

    Salit, M. L.; Parsons, M. L.

    1985-01-01

    Software-driven instrumentation makes measurements that demand a computer as an integral part of either control, data acquisition, or data reduction. The structure of such instrumentation, hardware requirements, and software requirements are discussed. Examples of software-driven instrumentation (such as wavelength-modulated continuum source…

  10. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  11. The IRM at 25: A Quarter Century of Community-Based Research and Education at the Institute for Rock Magnetism

    NASA Astrophysics Data System (ADS)

    Moskowitz, B. M.

    2015-12-01

    A 1986 meeting on the future of rock magnetism proposed an idea for a center where researchers in rock magnetism, other earth science disciplines, and allied fields in the physical sciences could share ideas and have access to advanced instrumentation in magnetism. The idea became reality in 1990, when the Institute for Rock Magnetism (IRM) was established as a shared resource for the GP and broader research communities, providing instruments to study the magnetism of rocks, sediment, biological materials and synthetic analogs. This is accomplished with a suite of instruments that measures magnetization from 2-1000 K, in DC fields up to 5 T and AC fields up to 10 kHz. These are complemented by Mössbauer spectrometers (4.2-300K, 0-6.5T), a high-temperature magnetic force microscope (Tmax~ 673 K), and a low-temperature probe (20-300 K) for vector remanence measurements. A unique aspect of the IRM was that it allowed for routine measurements below 300 K and provided new ways of "seeing" magnetism. This has enabled researchers to study magnetic behavior through magnetic ordering temperatures, crystal phase transitions, and blocking temperatures, providing new insights into mineral magnetism as well as developing new methods to interpret the magnetism of natural materials. The main access to the IRM is the Visiting Fellowship (VF) program, where 379 have been awarded representing 157 institutions from the US and 30 countries. Nearly 50% of VFs have gone to students. The total output of visiting and in-house researches have produced about 800 publications to date. The IRM also provides education and outreach activities including: (1) The IRM Quarterly with over 600 subscribers; (2) The Biennial Santa Fe meetings on the current state and future trends in magnetic research; and (3) The Biennial Summer Schools for Rock Magnetism offering graduate students in the geosciences with instruction in rock magnetism theory and hands-on lab training.

  12. Triggering for Magnetic Field Measurements of the LCLS Undulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacker, Kirsten

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  13. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches

    NASA Astrophysics Data System (ADS)

    Bobra, M. G.; Sun, X.; Hoeksema, J. T.; Turmon, M.; Liu, Y.; Hayashi, K.; Barnes, G.; Leka, K. D.

    2014-09-01

    A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches ( SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.

  14. Working with the private sector for child health.

    PubMed

    Waters, Hugh; Hatt, Laurel; Peters, David

    2003-06-01

    Private sector providers are the most commonly consulted source of care for child illnesses in many countries, offering significant opportunities to expand the reach of essential child health services and products. Yet collaboration with private providers presents major challenges - the suitability and quality of the services they provide is often questionable and governments' capacity to regulate them is limited. This article assesses the actual and potential contributions of the private sector to child health, and classifies and evaluates public sector strategies to promote and rationalize the contributions of private sector actors. Governments and international organizations can use a variety of strategies to collaborate with and influence private sector actors to improve child health - including contracting, regulating, financing and social marketing, training, coordinating and informing the public. These mutually reinforcing strategies can both improve the quality of services currently delivered in the private sector, and expand and rationalize the coverage of these services. One lesson from this review is that the private sector is very heterogeneous. At the country level, feasible strategies depend on the potential of the different components of the private sector and the capacity of governments and their partners for collaboration. To date, experience with private sector strategies offers considerable promise for children's health, but also raises many questions about the feasibility and impact of these strategies. Where possible, future interventions should be designed as experiments, with careful assessment of the intervention design and the environment in which they are implemented.

  15. Sectoral Economies, Economic Contexts, and Attitudes toward Immigration

    PubMed Central

    Donnelly, Michael J.

    2013-01-01

    Do economic considerations shape attitudes toward immigration? In this article, we consider the relationship between economic interests and immigration preferences by examining how developments in individuals' sectors of employment affect these views. Using survey data across European countries from 2002 to 2009 and employing new measures of industry-level exposure to immigration, we find that sectoral economies shape opinions about immigration. Individuals employed in growing sectors are more likely to support immigration than are those employed in shrinking sectors. Moreover, the economic context matters: Making use of the exogenous shock to national economies represented by the 2008 financial crisis, we show that sector-level inflows of immigrant workers have little effect on preferences when economies are expanding, but that they dampen support for immigration when economic conditions deteriorate and confidence in the economy declines. These sectoral effects remain even when controlling for natives' views about the impact of immigration on the national economy and culture. When evaluating immigration policy, individuals thus appear to take into account whether their sector of employment benefits economically from immigration. PMID:24363457

  16. Sectoral Economies, Economic Contexts, and Attitudes toward Immigration.

    PubMed

    Dancygier, Rafaela M; Donnelly, Michael J

    2013-01-01

    Do economic considerations shape attitudes toward immigration? In this article, we consider the relationship between economic interests and immigration preferences by examining how developments in individuals' sectors of employment affect these views. Using survey data across European countries from 2002 to 2009 and employing new measures of industry-level exposure to immigration, we find that sectoral economies shape opinions about immigration. Individuals employed in growing sectors are more likely to support immigration than are those employed in shrinking sectors. Moreover, the economic context matters: Making use of the exogenous shock to national economies represented by the 2008 financial crisis, we show that sector-level inflows of immigrant workers have little effect on preferences when economies are expanding, but that they dampen support for immigration when economic conditions deteriorate and confidence in the economy declines. These sectoral effects remain even when controlling for natives' views about the impact of immigration on the national economy and culture. When evaluating immigration policy, individuals thus appear to take into account whether their sector of employment benefits economically from immigration.

  17. Public-private partnerships in China's urban water sector.

    PubMed

    Zhong, Lijin; Mol, Arthur P J; Fu, Tao

    2008-06-01

    During the past decades, the traditional state monopoly in urban water management has been debated heavily, resulting in different forms and degrees of private sector involvement across the globe. Since the 1990s, China has also started experiments with new modes of urban water service management and governance in which the private sector is involved. It is premature to conclude whether the various forms of private sector involvement will successfully overcome the major problems (capital shortage, inefficient operation, and service quality) in China's water sector. But at the same time, private sector involvement in water provisioning and waste water treatments seems to have become mainstream in transitional China.

  18. Fabrication of the Superferric Cyclotron Gas-stopper Magnet at NSCL at Michigan State University

    NASA Astrophysics Data System (ADS)

    Chouhan, S. S.; Bollen, G.; DeKamp, J.; Green, M. A.; Lawton, D.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Schwarz, S.; Zeller, A. F.

    2014-05-01

    The magnet for the cyclotron gas stopper is a newly designed, large warm-iron superconducting cyclotron sector gradient dipole. The maximum field in the centre (gap = 0.18 m) is 2.7 T. The outer diameter of magnet yoke is 4.0 m, with a pole radius of 1.1 m and B*ρ = 1.8 T m. The fabrication and assembly of the iron return yoke and twelve pole pieces is complete. Separate coils are mounted on the return yokes that have a total mass of about 167 metric tons of iron. This paper illustrates the design and the fabrication process for the cyclotron gas-stopper magnet that is being fabricated at MSU.

  19. Association of Hospitalization for Neurosurgical Operations in Magnet Hospitals With Mortality and Length of Stay.

    PubMed

    Missios, Symeon; Bekelis, Kimon

    2018-03-01

    The association of Magnet hospital status with improved surgical outcomes remains an issue of debate. To investigate whether hospitalization in a Magnet hospital is associated with improved outcomes for patients undergoing neurosurgical operations. A cohort study was executed using all patients undergoing neurosurgical operations in New York registered in the Statewide Planning and Research Cooperative System database from 2009 to 2013. We examined the association of Magnet status hospitalization after neurosurgical operations with inpatient case fatality and length of stay (LOS). We employed an instrumental variable analysis to simulate a randomized trial. Overall, 190 787 patients underwent neurosurgical operations. Of these, 68 046 (35.7%) were hospitalized in Magnet hospitals, and 122 741 (64.3%) in non-Magnet institutions. Instrumental variable analysis demonstrated that hospitalization in Magnet hospitals was associated with decreased case fatality (adjusted difference, -0.8%; -95% confidence interval, -0.7% to -0.6%), and LOS (adjusted difference, -1.9; 95% confidence interval, -2.2 to -1.5) in comparison to non-Magnet hospitals. These associations were also observed in propensity score adjusted mixed effects models. These associations persisted in prespecified subgroups of patients undergoing spine surgery, craniotomy for tumor resection, or neurovascular interventions. We identified an association of Magnet hospitals with lower case fatality, and shorter LOS in a comprehensive New York State patient cohort undergoing neurosurgical procedures. Copyright © 2017 by the Congress of Neurological Surgeons

  20. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L., E-mail: jinliang@nankai.edu.cn

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmissionmore » zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.« less

  1. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  2. Virtual special issue: Magnetic resonance at low fields

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2017-01-01

    It appears to be a common understanding that low magnetic fields need to be avoided in magnetic resonance, as sensitivity and the frequency dispersion of the chemical shift increase with increasing field strength. But there many reasons to explore magnetic resonance at low fields. The instrumentation tends to be far less expensive than high-field equipment, magnets are smaller and lighter, internal gradients in heterogeneous media are smaller, conductive media and even metals become transparent at low frequencies to electromagnetic fields, and new physics and phenomena await to be discovered. On account of an increasing attention of the scientific community to magnetic resonance at low field, we have decided to launch JMR's Virtual Special Issue Series with this compilation about Low-Field Magnetic Resonance. This topic, for which we have chosen to focus on articles reporting measurements at fields lower than 2 T, is of widespread interest to our readership. We are therefore happy to offer to this constituency a selected outlook based on papers published during the last five years (volumes 214-270) in the pages of The Journal of Magnetic Resonance. A brief survey of the topics covered in this Virtual Special Issue follows.

  3. The willingness of private-sector doctors to manage public-sector HIV/AIDS patients in the eThekwini metropolitan region of KwaZulu-Natal

    PubMed Central

    Jinabhai, Champaklal C.; Taylor, Myra

    2010-01-01

    ABSTRACT Background South Africa is severely affected by the AIDS pandemic and this has resulted in an already under-resourced public sector being placed under further stress, while there remains a vibrant private sector. To address some of the resource and personnel shortages facing the public sector in South Africa, partnerships between the public and private sectors are slowly being forged. However, little is known about the willingness of private-sector doctors in the eThekwini Metropolitan (Metro) region of KwaZulu-Natal, South Africa to manage public-sector HIV and AIDS patients. Objectives To gauge the willingness of private-sector doctor to manage public-sector HIV and AIDS patients and to describe factors that may influence their responses. Method A descriptive cross-sectional study was undertaken among private-sector doctors, both general practitioners (GPs) and specialists, working in the eThekwini Metro, using an anonymous, structured questionnaire to investigate their willingness to manage public-sector HIV and AIDS patients and the factors associated with their responses. Chi-square and independent t-tests were used to evaluate associations. Odds ratios were determined using a binary logistic regression model. A p value < 0.05 was considered statistically significant. Results Most of the doctors were male GPs aged 30–50 years who had been in practice for more than 10 years. Of these, 133 (77.8%) were willing to manage public-sector HIV and AIDS patients, with 105 (78.9%) reporting adequate knowledge, 99 (74.4%) adequate time, and 83 (62.4%) adequate infrastructure. Of the 38 (22.2%) that were unwilling to manage these patients, more than 80% cited a lack of time, knowledge and infrastructure to manage them. Another reason cited by five doctors (3.8%) who were unwilling, was the distance from public-sector facilities. Of the 33 specialist doctors, 14 (42.4%) indicated that they would not be willing to manage public-sector HIV and AIDS patients

  4. Designing effective power sector reform: A road map for the republic of Georgia

    NASA Astrophysics Data System (ADS)

    Kurdgelashvili, Lado

    to those in economies of transition. The dissertation provides a guide for policy makers in the energy sector for implementing power sector reform. At first the dissertation offers a general overview of different models of power sector organization, regulatory frameworks and market arrangements, and the potential impact of reform on social welfare. This knowledge is then applied for analysis of power sector reform in the Republic of Georgia. Social welfare analysis (SWA) is a major analytical tool used in the research for assessing the potential impacts of different power sector organization models on various stakeholders. Through the research it was identified that power industry arrangements in different countries have their particularities; however, after some level of simplification, power sector organization models can fit into one of three broad categories: (1) Government control and regulation of generation and retail segments of the power industry. (2) Full scale competition in the generation segment and retail choice. (3) Partial government control of the generation segment and limited retail choice. For SWA of different power market arrangement scenarios, electricity supply and demand curves had to be derived; for this purpose electricity demand forecasting and power supply evaluation methodologies were developed. This dissertation combines SWA, accepted demand forecasting methods and established power supply evaluation techniques to assess power sector performance under specified policy scenarios relevant to the circumstances of economies in transition such as the Republic of Georgia. Detailed analyses are performed for understanding possible outcomes with the introduction of different reform models. In addition, specific options for incorporating sustainable energy alternatives in the energy planning process are identified and assessed in economic, environmental and social terms. Special attention is given to market-based instruments for promoting

  5. The Impact Induced Demagnetization Mechanism in NdFeB Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Li, Yan-Feng; Zhu, Ming-Gang; Li, Wei; Zhou, Dong; Lu, Feng; Chen, Lang; Wu, Jun-Ying; Qi, Yan; Du, An

    2013-09-01

    Compression of unmagnetized Nd2Fe14B permanent magnets is executed by using shock waves with different pressures in a one-stage light gas gun system. The microstructure, crystal structure, and magnetic properties of the magnets are examined with scanning electronic microscopy, x-ray diffraction, hysteresis loop instruments, and a vibrating sample magnetometer, respectively. The NdFeB magnets display a demagnetization phenomenon after shock wave compression. The coercivity dropped from about 21.4 kOe to 3.2 kOe. The critical pressure of irreversible demagnetization of NdFeB magnets should be less than 4.92 GPa. The coercivity of the NdFeB magnets compressed by shock waves could be recovered after annealing at 900°C and 520°C for 2 h, sequentially. The chaotic orientation of Nd2Fe14B grains in the compressed magnets is the source of demagnetization.

  6. Dark matter freeze-out in a nonrelativistic sector

    NASA Astrophysics Data System (ADS)

    Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-08-01

    A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the cannibal dark matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of cannibal dark matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.

  7. [Application of magnetic therapy in acute paraproctitis].

    PubMed

    Kondratenko, P G; Elin, F E; Avraimov, S L; Sobolev, D V

    2003-09-01

    There were studied the possibilities and perspectives of application of the magnetically liquefied layer as an instrument for better purulent and putrefactive wounds clearance after intervention for an acute paraproctitis. Together with clinical signs the results of bacteriological investigation were controlled as well. There was established high efficacy of the method proposed and expedience of its application.

  8. Summer Sea Ice Motion from the 18 GHz Channel of AMSR-E and the Exchange of Sea Ice between the Pacific and Atlantic Sectors

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald

    2008-01-01

    We demonstrate that sea ice motion in summer can be derived reliably from the 18GHz channel of the AMSR-E instrument on the EOS Aqua platform. The improved spatial resolution of this channel with its lower sensitivity to atmospheric moisture seems to have alleviated various issues that have plagued summer motion retrievals from shorter wavelength observations. Two spatial filters improve retrieval quality: one reduces some of the microwave signatures associated with synoptic-scale weather systems and the other removes outliers. Compared with daily buoy drifts, uncertainties in motion are approx.3-4 km/day. Using the daily motion fields, we examine five years of summer ice area exchange between the Pacific and Atlantic sectors of the Arctic Ocean. With the sea-level pressure patterns during the summer of 2006 and 2007 favoring the export of sea ice into the Atlantic Sector, the regional outflow is approx.21% and approx.15% of the total sea ice retreat in the Pacific sector.

  9. Spatially Enabling the Health Sector

    PubMed Central

    Weeramanthri, Tarun Stephen; Woodgate, Peter

    2016-01-01

    Spatial information describes the physical location of either people or objects, and the measured relationships between them. In this article, we offer the view that greater utilization of spatial information and its related technology, as part of a broader redesign of the architecture of health information at local and national levels, could assist and speed up the process of health reform, which is taking place across the globe in richer and poorer countries alike. In making this point, we describe the impetus for health sector reform, recent developments in spatial information and analytics, and current Australasian spatial health research. We highlight examples of uptake of spatial information by the health sector, as well as missed opportunities. Our recommendations to spatially enable the health sector are applicable to high- and low-resource settings. PMID:27867933

  10. Spatially Enabling the Health Sector.

    PubMed

    Weeramanthri, Tarun Stephen; Woodgate, Peter

    2016-01-01

    Spatial information describes the physical location of either people or objects, and the measured relationships between them. In this article, we offer the view that greater utilization of spatial information and its related technology, as part of a broader redesign of the architecture of health information at local and national levels, could assist and speed up the process of health reform, which is taking place across the globe in richer and poorer countries alike. In making this point, we describe the impetus for health sector reform, recent developments in spatial information and analytics, and current Australasian spatial health research. We highlight examples of uptake of spatial information by the health sector, as well as missed opportunities. Our recommendations to spatially enable the health sector are applicable to high- and low-resource settings.

  11. Space Weather Monitoring with GOES-16: Instruments and Data Products

    NASA Astrophysics Data System (ADS)

    Loto'aniu, Paul; Rodriguez, Juan; Redmon, Robert; Machol, Janet; Kress, Brian; Seaton, Daniel; Darnel, Jonathan; Rowland, William; Tilton, Margaret; Denig, William; Boudouridis, Athanasios; Codrescu, Stefan; Claycomb, Abram

    2017-04-01

    Since their inception in the 1970s, the NOAA GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The GOES-16 spacecraft, the first of four satellites as part of the GOES-R spacecraft series mission, was launched in November 2016. The space weather instruments on GOES-16 have significantly improved capabilities over older GOES instruments. They will image the sun's atmosphere in extreme-ultraviolet and monitor solar irradiance in X-rays and UV, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and the Earth's magnetic field. These measurements are important for providing alerts and warnings to many worldwide customers, including the NOAA National Weather Service, satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-16 space weather instruments and presents initial post launch data along with a discussion of calibration activities and the current status of the instruments. We also describe the space weather Level 2+ products that are being developed for the GOES-R series including solar thematic maps, automated magnetopause crossing detection and spacecraft charging estimates. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.

  12. Infrastructure and Private Sector Investment in Pakistan

    DTIC Science & Technology

    1997-03-01

    manner in which the expansion in various types of infrastructural facilities interact with private sector investment, and whether there is a long run...passive role in the country’s development. That is public facilities have largely expanded in response to the needs created by private sector investment...tangible needs created by private sector expansion it has, no doubt, been very effective in alleviating real bottlenecks. (JEL F21, 053).

  13. Dimensions of the Independent Sector: A Statistical Profile. Second Edition.

    ERIC Educational Resources Information Center

    Hodgkinson, Virginia Ann; Weitzman, Murray S.

    The second in a biennial series of statistical profiles of the independent sector (voluntary sector, third sector, or nonprofit sector) describes and charts the activities of groups and individuals associated with this sector. Included are voluntary organizations, foundations, the social responsibility programs of corporations, and people who…

  14. The GOES-R Spacecraft Space Weather Instruments and Level 2+ Products

    NASA Astrophysics Data System (ADS)

    Loto'aniu, Paul; Rodriguez, Juan; Machol, Janet; Kress, Brian; Darnel, Jonathan; Redmon, Robert; Rowland, William; Seation, Daniel; Tilton, Margaret; Denig, William

    2016-04-01

    Since their inception in the 1970s, the GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The space weather instruments on GOES-R will monitor: solar X-rays, UV light, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and Earth's magnetic field. These measurements are important for providing alerts and warnings to many customers, including satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-R space weather instruments and describes the space weather Level 2+ products that are being developed for GOES-R. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.

  15. The Astromag superconducting magnet facility configured for a free-flying satellite

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Smoot, G. F.

    1992-01-01

    The magnet parameters of a free-flying version of Astromag and the parameters of the space cryogenic system for the magnet are presented. Consideration is given to the free-flyer version of the Astromag magnet. The diameter of the magnet, its cryostat, the satellite and the two instruments is limited by the 4.27-m shroud diameter of the Atlas IIa. The magnet coil must use a stable reliable superconductor which can carry the full magnet current at 4.2 K at a peak induction in the coil of 7.5 T. The magnet must operate in the persistent mode. The changes in the overall design and operating requirements for the free-flying-design Astromag suggest that the coils, the cryogenic system, and the charging system can be simplified without a loss of required magnet function. Attention is given to switches, trim coils, and plumbing in the low field region between the coils; the magnet charging system and the quench protection system; and cooled helium supply to the magnet gas-cooled electrical leads.

  16. High latitude currents in the 0600 to 0900 MLT sector - Observations from Viking and DMSP-F7

    NASA Technical Reports Server (NTRS)

    Bythrow, P. F.; Potemra, T. A.; Zanetti, L. J.; Erlandson, R. A.; Hardy, D. A.; Rich, F. J.; Acuna, M. H.

    1987-01-01

    High-resolution magnetic field and charged-particle data acquired on March 25, 1986 by the Viking and DMSP-F7 satellites, as they traversed the dawn sector auroral zone on nearly antiparallel trajectories within 40 min of each oher, are analyzed. Magnetic field measurements by Viking at 0850 MLT and by DMSP at 0630 MLT indicate the presence of a large-scale earthward-directed region 1 Birkeland current and an upward-flowing region 2 current. Both satellites also observed a third Birkeland current adjacent to and poleward of the region 1 system with opposite flow. This poleward system is about 0.5 deg invariant latitude wide and has a current density comparable to the region 1 and 2 systems. The highest-latitude current is identified as region 0. Its charged-particle signatures were used to infer field line mapping to the equatorial plane.

  17. Simulating functional magnetic materials on supercomputers.

    PubMed

    Gruner, Markus Ernst; Entel, Peter

    2009-07-22

    The recent passing of the petaflop per second landmark by the Roadrunner project at the Los Alamos National Laboratory marks a preliminary peak of an impressive world-wide development in the high-performance scientific computing sector. Also, purely academic state-of-the-art supercomputers such as the IBM Blue Gene/P at Forschungszentrum Jülich allow us nowadays to investigate large systems of the order of 10(3) spin polarized transition metal atoms by means of density functional theory. Three applications will be presented where large-scale ab initio calculations contribute to the understanding of key properties emerging from a close interrelation between structure and magnetism. The first two examples discuss the size dependent evolution of equilibrium structural motifs in elementary iron and binary Fe-Pt and Co-Pt transition metal nanoparticles, which are currently discussed as promising candidates for ultra-high-density magnetic data storage media. However, the preference for multiply twinned morphologies at smaller cluster sizes counteracts the formation of a single-crystalline L1(0) phase, which alone provides the required hard magnetic properties. The third application is concerned with the magnetic shape memory effect in the Ni-Mn-Ga Heusler alloy, which is a technologically relevant candidate for magnetomechanical actuators and sensors. In this material strains of up to 10% can be induced by external magnetic fields due to the field induced shifting of martensitic twin boundaries, requiring an extremely high mobility of the martensitic twin boundaries, but also the selection of the appropriate martensitic structure from the rich phase diagram.

  18. A Systematic Review of Instruments to Assess Organizational Readiness for Knowledge Translation in Health Care

    PubMed Central

    Gagnon, Marie-Pierre; Attieh, Randa; Ghandour, El Kebir; Légaré, France; Ouimet, Mathieu; Estabrooks, Carole A.; Grimshaw, Jeremy

    2014-01-01

    Background The translation of research into practices has been incomplete. Organizational readiness for change (ORC) is a potential facilitator of effective knowledge translation (KT). However we know little about the best way to assess ORC. Therefore, we sought to systematically review ORC measurement instruments. Methods We searched for published studies in bibliographic databases (Pubmed, Embase, CINAHL, PsychINFO, Web of Science, etc.) up to November 1st, 2012. We included publications that developed ORC measures and/or empirically assessed ORC using an instrument at the organizational level in the health care context. We excluded articles if they did not refer specifically to ORC, did not concern the health care domain or were limited to individual-level change readiness. We focused on identifying the psychometric properties of instruments that were developed to assess readiness in an organization prior to implementing KT interventions in health care. We used the Standards for Educational and Psychological Testing to assess the psychometric properties of identified ORC measurement instruments. Findings We found 26 eligible instruments described in 39 publications. According to the Standards for Educational and Psychological Testing, 18 (69%) of a total of 26 measurement instruments presented both validity and reliability criteria. The Texas Christian University –ORC (TCU-ORC) scale reported the highest instrument validity with a score of 4 out of 4. Only one instrument, namely the Modified Texas Christian University – Director version (TCU-ORC-D), reported a reliability score of 2 out of 3. No information was provided regarding the reliability and validity of five (19%) instruments. Conclusion Our findings indicate that there are few valid and reliable ORC measurement instruments that could be applied to KT in the health care sector. The TCU-ORC instrument presents the best evidence in terms of validity testing. Future studies using this instrument could

  19. Behavioral economics perspectives on public sector pension plans

    PubMed Central

    BESHEARS, JOHN; CHOI, JAMES J.; LAIBSON, DAVID; MADRIAN, BRIGITTE C.

    2011-01-01

    We describe the pension plan features of the states and the largest cities and counties in the U.S. Unlike in the private sector, defined benefit (DB) pensions are still the norm in the public sector. However, a few jurisdictions have shifted toward defined contribution (DC) plans as their primary savings plan, and fiscal pressures are likely to generate more movement in this direction. Holding fixed a public employee’s work and salary history, we show that DB retirement income replacement ratios vary greatly across jurisdictions. This creates large variation in workers’ need to save for retirement in other accounts. There is also substantial heterogeneity across jurisdictions in the savings generated in primary DC plans because of differences in the level of mandatory employer and employee contributions. One notable difference between public and private sector DC plans is that public sector primary DC plans are characterized by required employee or employer contributions (or both), whereas private sector plans largely feature voluntary employee contributions that are supplemented by an employer match. We conclude by applying lessons from savings behavior in private sector savings plans to the design of public sector plans. PMID:21789032

  20. Behavioral economics perspectives on public sector pension plans.

    PubMed

    Beshears, John; Choi, James J; Laibson, David; Madrian, Brigitte C

    2011-04-01

    We describe the pension plan features of the states and the largest cities and counties in the U.S. Unlike in the private sector, defined benefit (DB) pensions are still the norm in the public sector. However, a few jurisdictions have shifted toward defined contribution (DC) plans as their primary savings plan, and fiscal pressures are likely to generate more movement in this direction. Holding fixed a public employee's work and salary history, we show that DB retirement income replacement ratios vary greatly across jurisdictions. This creates large variation in workers' need to save for retirement in other accounts. There is also substantial heterogeneity across jurisdictions in the savings generated in primary DC plans because of differences in the level of mandatory employer and employee contributions. One notable difference between public and private sector DC plans is that public sector primary DC plans are characterized by required employee or employer contributions (or both), whereas private sector plans largely feature voluntary employee contributions that are supplemented by an employer match. We conclude by applying lessons from savings behavior in private sector savings plans to the design of public sector plans.

  1. Coronal Holes and Magnetic Flux Ropes Interweaving Solar Cycles

    NASA Astrophysics Data System (ADS)

    Lowder, Chris; Yeates, Anthony; Leamon, Robert; Qiu, Jiong

    2016-10-01

    Coronal holes, dark patches observed in solar observations in extreme ultraviolet and x-ray wavelengths, provide an excellent proxy for regions of open magnetic field rooted near the photosphere. Through a multi-instrument approach, including SDO data, we are able to stitch together high resolution maps of coronal hole boundaries spanning the past two solar activity cycles. These observational results are used in conjunction with models of open magnetic field to probe physical solar parameters. Magnetic flux ropes are commonly defined as bundles of solar magnetic field lines, twisting around a common axis. Photospheric surface flows and magnetic reconnection work in conjunction to form these ropes, storing magnetic stresses until eruption. With an automated methodology to identify flux ropes within observationally driven magnetofrictional simulations, we can study their properties in detail. Of particular interest is a solar-cycle length statistical description of eruption rates, spatial distribution, magnetic orientation, flux, and helicity. Coronal hole observations can provide useful data about the distribution of the fast solar wind, with magnetic flux ropes yielding clues as to ejected magnetic field and the resulting space weather geo-effectiveness. With both of these cycle-spanning datasets, we can begin to form a more detailed picture of the evolution and consequences of both sets of solar magnetic features.

  2. How to improve collaboration between the public health sector and other policy sectors to reduce health inequalities? - A study in sixteen municipalities in the Netherlands.

    PubMed

    Storm, Ilse; den Hertog, Frank; van Oers, Hans; Schuit, Albertine J

    2016-06-22

    The causes of health inequalities are complex. For the reduction of health inequalities, intersectoral collaboration between the public health sector and both social policy sectors (e.g. youth affairs, education) and physical policy sectors (e.g. housing, spatial planning) is essential, but in local practice difficult to realize. The aim of this study was to examine the collaboration between the sectors in question more closely and to identify opportunities for improvement. A qualitative descriptive analysis of five aspects of collaboration within sixteen Dutch municipalities was performed to examine the collaboration between the public health sector and other policy sectors: 1) involvement of the sectors in the public health policy network, 2) harmonisation of objectives, 3) use of policies by the relevant sectors, 4) formalised collaboration, and 5) previous experience. Empirical data on these collaboration aspects were collected based on document analysis, questionnaires and interviews. The study found that the policy workers of social sectors were more involved in the public health network and more frequently supported the objectives in the field of health inequality reduction. Both social policy sectors and physical policy sectors used policies and activities to reduce health inequalities. More is done to influence the determinants of health inequality through policies aimed at lifestyle and social setting than through policies aimed at socioeconomic factors and the physical environment. Where the physical policy sectors are involved in the public health network, the collaboration follows a very similar pattern as with the social policy sectors. All sectors recognise the importance of good relationships, positive experiences, a common interest in working together and coordinated mechanisms. This study shows that there is scope for improving collaboration in the field of health inequality reduction between the public health sector and both social policy sectors

  3. Cusp/cleft auroral activity in relation to solar wind dynamic pressure, interplanetary magnetic field B(sub z) and B(sub y)

    NASA Technical Reports Server (NTRS)

    Sandholt, P. E.; Farrugia, C. J.; Burlaga, L. F.; Holtet, J. A.; Moen, J.; Lybekk, B.; Jacobsen, B.; Opsvik, D.; Egeland, A.; Lepping, R.

    1994-01-01

    Continuous optical observations of cusp/cleft auroral activities within approximately equal to 09-15 MLT and 70-76 deg magnetic latitude are studied in relation to changes in solar wind dynamic pressure and interplanetary magnetic field (IMF) variability. The observed latitudinal movements of the cusp/cleft aurora in response to IMF B(sub z) changes may be explained as an effect of a variable magnetic field intensity in the outer dayside magnetosphere associated with the changing intensity of region 1 field-aligned currents and associated closure currents. Ground magnetic signatures related to such currents were observed in the present case (January 10, 1993). Strong, isolated enhancements in solar wind dynamic pressure (Delta p/p is greater than or equal to 0.5) gave rise to equatorward shifts of the cusp/cleft aurora, characteristic auroral transients, and distinct ground magnetic signatures of enhanced convection at cleft latitudes. A sequence of auroral events of approximately equal to 5-10 min recurrence time, moving eastward along the poleward boundary of the persistent cusp/cleft aurora in the approximately equal to 10-14 MLT sector, during negative IMF B(sub z) and B(sub y) conditions, were found to be correlated with brief pulses in solar wind dynamic pressure (0.1 is less than Delta p/p is less than 0.5). Simultaneous photometer observations from Ny Alesund, Svalbard, and Danmarkshavn, Greenland, show that the events often appeared on the prenoon side (approximately equal to 10-12 MLT), before moving into the postnoon sector in the case we study here, when IMF B(sub y) is less than 0. In other cases, similar auroral event sequences have been observed to move westward in the prenoon sector, during intervals of positive B(sub y). Thus a strong prenoon/postnoon asymmetry of event occurence and motion pattern related to the IMF B(sub y) polarity is observed. We find that this category of auroral event sequence is stimulated bursts of electron precipitation

  4. Financial development and sectoral CO2 emissions in Malaysia.

    PubMed

    Maji, Ibrahim Kabiru; Habibullah, Muzafar Shah; Saari, Mohd Yusof

    2017-03-01

    The paper examines the impacts of financial development on sectoral carbon emissions (CO 2 ) for environmental quality in Malaysia. Since the financial sector is considered as one of the sectors that will contribute to Malaysian economy to become a developed country by 2020, we utilize a cointegration method to investigate how financial development affects sectoral CO 2 emissions. The long-run results reveal that financial development increases CO 2 emissions from the transportation and oil and gas sector and reduces CO 2 emissions from manufacturing and construction sectors. However, the elasticity of financial development is not significant in explaining CO 2 emissions from the agricultural sector. The results for short-run elasticities were also consistent with the long-run results. We conclude that generally, financial development increases CO 2 emissions and reduces environmental quality in Malaysia.

  5. The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.

    1984-01-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.

  6. Improved understanding of magnetic signatures of basaltic lava flows and cones with implication for extraterrestrial exploration

    NASA Astrophysics Data System (ADS)

    Arlensiú Ordóñez Cencerrado, Amanda; Kilian, Rolf; Díaz-Michelena, Marina

    2017-04-01

    ground mass, • a petrographical and chemical characterization of the magnetites by microscope and electron microprobe, • and a model that considers not exposed rock units and is able to explain the observed 3D magnetic characteristics. This could be transferred to other comparable planetary scenarios. The most important results of our investigation indicate that A vector magnetic data of rocks with highly remanent versus induced magnetic signatures high Königsberger ratios provide implications for paleofield orientations, B magnetic anomalies of up to +8000 nT can be related to different proportions of single versus multi-domain status of magnetites which reflect the local cooling histories in different sectors of the crater and its surroundings as well as on a decimeter scale within single volcanic spatter blocks and C our 3-D model is able to reproduce observed surface rock magnetic signatures together with likely signatures of underlying rock units and their spatial distribution. In the near future the above described results should be provided by a magnetic multisensor instrument combining vector and different susceptibility data as well as local demagnetization histories which is recently developed in our NEWTON EU project in advance to its inclusion on board rovers to planetary missions.

  7. Parametric Power Spectral Density Analysis of Noise from Instrumentation in MALDI TOF Mass Spectrometry

    PubMed Central

    Shin, Hyunjin; Mutlu, Miray; Koomen, John M.; Markey, Mia K.

    2007-01-01

    Noise in mass spectrometry can interfere with identification of the biochemical substances in the sample. For example, the electric motors and circuits inside the mass spectrometer or in nearby equipment generate random noise that may distort the true shape of mass spectra. This paper presents a stochastic signal processing approach to analyzing noise from electrical noise sources (i.e., noise from instrumentation) in MALDI TOF mass spectrometry. Noise from instrumentation was hypothesized to be a mixture of thermal noise, 1/f noise, and electric or magnetic interference in the instrument. Parametric power spectral density estimation was conducted to derive the power distribution of noise from instrumentation with respect to frequencies. As expected, the experimental results show that noise from instrumentation contains 1/f noise and prominent periodic components in addition to thermal noise. These periodic components imply that the mass spectrometers used in this study may not be completely shielded from the internal or external electrical noise sources. However, according to a simulation study of human plasma mass spectra, noise from instrumentation does not seem to affect mass spectra significantly. In conclusion, analysis of noise from instrumentation using stochastic signal processing here provides an intuitive perspective on how to quantify noise in mass spectrometry through spectral modeling. PMID:19455245

  8. Benefits Assessment of Algorithmically Combining Generic High Altitude Airspace Sectors

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod; Lai, Chok Fung; Kopardekar, Parimal

    2009-01-01

    In today's air traffic control operations, sectors that have traffic demand below capacity are combined so that fewer controller teams are required to manage air traffic. Controllers in current operations are certified to control a group of six to eight sectors, known as an area of specialization. Sector combinations are restricted to occur within areas of specialization. Since there are few sector combination possibilities in each area of specialization, human supervisors can effectively make sector combination decisions. In the future, automation and procedures will allow any appropriately trained controller to control any of a large set of generic sectors. The primary benefit of this will be increased controller staffing flexibility. Generic sectors will also allow more options for combining sectors, making sector combination decisions difficult for human supervisors. A sector-combining algorithm can assist supervisors as they make generic sector combination decisions. A heuristic algorithm for combining under-utilized air space sectors to conserve air traffic control resources has been described and analyzed. Analysis of the algorithm and comparisons with operational sector combinations indicate that this algorithm could more efficiently utilize air traffic control resources than current sector combinations. This paper investigates the benefits of using the sector-combining algorithm proposed in previous research to combine high altitude generic airspace sectors. Simulations are conducted in which all the high altitude sectors in a center are allowed to combine, as will be possible in generic high altitude airspace. Furthermore, the algorithm is adjusted to use a version of the simplified dynamic density (SDD) workload metric that has been modified to account for workload reductions due to automatic handoffs and Automatic Dependent Surveillance Broadcast (ADS-B). This modified metric is referred to here as future simplified dynamic density (FSDD). Finally

  9. Hemispherical and Longitudinal Asymmetries in the Heliospheric Magnetic Field: Flip-flops of a Bashful Ballerina

    NASA Astrophysics Data System (ADS)

    Hiltula, T.; Mursula, K.

    2004-12-01

    Several studies during many decennia have studied possible longitudinal and hemispherical asymmetries in various forms of solar activity. E.g., there are well known periods when one of the solar hemispheres has dominated the other in sunspot numbers, flare occurrence or some other form of solar activity. However, the solar asymmetries have not been found to be very conclusive, or to form any clear systematical patterns (e.g., relation to solar cycle). On the contrary, recent studies of similar longitudinal and hemispherical asymmetries in the heliospheric magnetic field have shown a very clear and systematic behaviour. E.g., it was found recently that the dominance of the two HMF sectors experiences an oscillation with a period of about 3.2 years. This new flip-flop periodicity in the heliospheric magnetic field is most likely related to a similar periodicity recently found in sunspots. Also, it has recently been found that the HMF sector coming from the northern solar hemisphere systematically dominates at 1AU during solar minimum times. This leads to a persistent southward shift or coning of the heliospheric current sheet at these times that can be picturesquely described by the concept of a Bashful Ballerina. This result also implies that the Sun has a large-scale quadrupole magnetic moment. Here we review these recent developments concerning the longitudinal and hemispherical asymmetries in the heliospheric magnetic field and study their inter-connection.

  10. Determination of the profit rate of plasma treated production in the food sector

    NASA Astrophysics Data System (ADS)

    Gok, Elif Ceren; Uygun, Emre; Eren, Esin; Oksuz, Lutfi; Uygun Oksuz, Aysegul

    2017-10-01

    Recently, plasma is one of an emerging, green processing technologies used for diverse applications especially food industry. Plasma treatment proposes diverse opportunities in food industry such as surface decontamination, modification of surface properties and improvement in mass transfer with respect for foods and food-related compounds. Sometimes manufacturers use chemical treatment to demolish pathogenic flora, but its capabilities are rather limited. New methods of food sterilization consisting of ionizing radiation, exposure to magnetic fields, high-power ultrasonic treatment are needed expensive equipment or have not yet been developed for industrial use. Plasma could be used for the above mentioned reasons. In this study, the profit rate of plasma treated production in food sector was calculated.

  11. Open versus percutaneous instrumentation in thoracolumbar fractures: magnetic resonance imaging comparison of paravertebral muscles after implant removal.

    PubMed

    Ntilikina, Yves; Bahlau, David; Garnon, Julien; Schuller, Sébastien; Walter, Axel; Schaeffer, Mickaël; Steib, Jean-Paul; Charles, Yann Philippe

    2017-08-01

    OBJECTIVE Percutaneous instrumentation in thoracolumbar fractures is intended to decrease paravertebral muscle damage by avoiding dissection. The aim of this study was to compare muscles at instrumented levels in patients who were treated by open or percutaneous surgery. METHODS Twenty-seven patients underwent open instrumentation, and 65 were treated percutaneously. A standardized MRI protocol using axial T1-weighted sequences was performed at a minimum 1-year follow-up after implant removal. Two independent observers measured cross-sectional areas (CSAs, in cm 2 ) and region of interest (ROI) signal intensity (in pixels) of paravertebral muscles by using OsiriX at the fracture level, and at cranial and caudal instrumented pedicle levels. An interobserver comparison was made using the Bland-Altman method. Reference ROI muscle was assessed in the psoas and ROI fat subcutaneously. The ratio ROI-CSA/ROI-fat was compared for patients treated with open versus percutaneous procedures by using a linear mixed model. A linear regression analyzed additional factors: age, sex, body mass index (BMI), Pfirrmann grade of adjacent discs, and duration of instrumentation in situ. RESULTS The interobserver agreement was good for all CSAs. The average CSA for the entire spine was 15.7 cm 2 in the open surgery group and 18.5 cm 2 in the percutaneous group (p = 0.0234). The average ROI-fat and ROI-muscle signal intensities were comparable: 497.1 versus 483.9 pixels for ROI-fat and 120.4 versus 111.7 pixels for ROI-muscle in open versus percutaneous groups. The ROI-CSA varied between 154 and 226 for open, and between 154 and 195 for percutaneous procedures, depending on instrumented levels. A significant difference of the ROI-CSA/ROI-fat ratio (0.4 vs 0.3) was present at fracture levels T12-L1 (p = 0.0329) and at adjacent cranial (p = 0.0139) and caudal (p = 0.0100) instrumented levels. Differences were not significant at thoracic levels. When adjusting based on age, BMI, and Pfirrmann

  12. Research Frontiers in Public Sector Performance Measurement

    NASA Astrophysics Data System (ADS)

    Zhonghua, Cai; Ye, Wang

    In "New Public Management" era, performance measurement has been widely used in managerial practices of public sectors. From the content and features of performance measurement, this paper aims to explore inspirations on Chinese public sector performance measurement, which based on a review of prior literatures including influencial factors, methods and indicators of public sector performance evaluation. In the end, arguments are presented in this paper pointed out the direction of future researches in this field.

  13. Colaba-Alibag magnetic observatory and Nanabhoy Moos: the influence of one over the other

    NASA Astrophysics Data System (ADS)

    Gawali, P. B.; Doiphode, M. G.; Nimje, R. N.

    2015-09-01

    The first permanent magnetic observatories in colonial India were established by the East India Company and under the Göttingen Magnetic Union. One of the world's longest running observatories was set up at Colaba (Bombay) in 1841, which was shifted to Alibag in 1904 to avoid electric traction effects on magnetic recordings. The observatory is located at the northwestern tip of Maharashtra, India, on the Arabian Sea. The magnetic data at Colaba were collected through eye-observation instruments from 1841 to 1872 and by photographic (magnetograph) instruments from 1872 to 1905, which reveal seasonal and other periodic effects on geomagnetic elements. Seasonal influence can be deciphered on the H minimum, but not on the maximum; the disturbances in March and April were opposite to those in December and January. D was maximum in 1880 (57' E) and minimum in 1904 (10' E). The data from 1882 to 1905 revealed that H annual inequality was influenced by 5.5-year periodicity, D by 13.5 days from 1888 to 1905, and I and Z by 11-year periodicity from 1894 to 1905 and 1873 to 1905, respectively. Secular variation of Z was parallel to that of I. Z exhibited an increasing trend from 1868 (12 874 nT) to 1905 (15 083 nT). The plan and location of Colaba-Alibag as well as the instruments used are discussed. The initial Colaba magnetic data containing "magnetic disturbances" was harnessed to identify the "disturbing point" on Earth. Nanabhoy Moos, the first Indian director, presciently hinted at a solar origin for magnetic disturbances, revealed the dependence of magnetic elements on the sunspot cycle, unraveled disturbance daily variation, and tried to understand the association, if any, between geomagnetic, seismological and meteorological phenomena. The two giant volumes published in 1910 attest to Moos' seminal work and his inventiveness in organizing and analyzing long series data. He also had a major role in moving Colaba magnetic observatory to Alibag. Thus, the observatory

  14. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.

    PubMed

    Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  15. [The creation of the informal sector in urban areas].

    PubMed

    Papayungan, M M

    1984-12-01

    The development of the informal sector of the economy in urban areas of Indonesia is analyzed. The author notes that this sector is dominated by high rates of migration from rural areas, limited employment opportunities for the unskilled in the modern sector, and a demand for low-priced services and products from the informal sector. (summary in ENG)

  16. A new innovative instrument for space plasma instrumentation

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1993-01-01

    The Faraday Ring Ammeter was the subject of this grant for a new innovative instrument for space plasma instrumentation. This report summarizes our progress in this work. Briefly, we have conducted an intensive series of experiments and trials over three years, testing some five configurations of the instrument to measure currents, resulting in two Ph.D. theses, supported by this grant, and two flight configurations of the instrument. The first flight would have been on a NASA-Air Force collaborative sounding rocket, but was not flown because of instrumental difficulties. The second has been successfully integrated on the NASA Auroral Turbulence payload which is to be launched in February, 1994.

  17. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    NASA Astrophysics Data System (ADS)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  18. Counting (green) jobs in Queensland's waste and recycling sector.

    PubMed

    Davis, Georgina

    2013-09-01

    The waste and recycling sector has been identified as a green industry and, as such, jobs within this sector may be classed as 'green jobs'. Many governments have seen green jobs as a way of increasing employment, particularly during the global financial crisis. However, the methods used to define and quantify green jobs directly affect the quantification of these green jobs. In December 2010, Queensland introduced a waste strategy that stated intent to increase green jobs within the waste sector. This article discusses the milieu and existing issues associated with quantifying green jobs within Queensland's waste and recycling sector, and provides a review of the survey that has sought to quantify the true size of the Queensland industry sector. This research has identified nearly 5500 jobs in Queensland's private waste management and recycling sector, which indicates that official data do not accurately reflect the true size of the sector.

  19. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  20. Plasma waves in the magnetic hole

    NASA Technical Reports Server (NTRS)

    Lin, Naiguo; Kellogg, P. J.; MacDowall, R.; Balogh, A.; Forsyth, R. J.; Phillips, J. L.; Pick, M.

    1995-01-01

    Magnetic holes in the solar wind, which are characterized by isolated local depressions in the magnetic field magnitude, have been observed previously. The Unified Radio and Plasma Wave (URAP) instrument of Ulysses has found that within such magnetic structures, electrostatic waves at kHz frequency and ultralow frequency electromagnetic waves are often excited and seen as short duration wave bursts. Most of these bursts occur near the ambient electron plasma frequency, which suggests that the waves are Langmuir waves. Such waves are usually excited by electron streams. Some evidence of the streaming of energetic electrons required for exciting Langmuir waves has been observed. These electrons may have originated at sources near the Sun, which would imply that the magnetic structures containing the waves would exist as long channels formed by field and plasma conditions near the Sun. On the other hand, the electrons could be suprathermal 'tails' from wave collapse processes occurring near the spacecraft. In either case, the Langmuir waves excited in the magnetic holes provide a measurement of the plasma density inside the holes. Low frequency electromagnetic waves, having frequencies of a fraction of the local electron cyclotron frequency, sometimes accompany the Langmuir waves observed in magnetic holes. Waves excited in this frequency range are very likely to be whistler-mode waves. They may have been excited by an electron temperature anisotropy which has been observed in the vicinity of the magnetic holes or generated through the decay of Langmuir waves.