Sample records for magnetic testing

  1. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    NASA Technical Reports Server (NTRS)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  2. [Magnetic resonance compatibility research for coronary mental stents].

    PubMed

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  3. Training manuals for nondestructive testing using magnetic particles

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Training manuals containing the fundamentals of nondestructive testing using magnetic particle as detection media are used by metal parts inspectors and quality assurance specialists. Magnetic particle testing involves magnetization of the test specimen, application of the magnetic particle and interpretation of the patterns formed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikhin, V.; Cheban, S.; DiMarco, J.

    New LCLS-II Linear Superconducting Accelerator Cry-omodules are under construction at Fermilab. Installed in-side each SCRF Cryomodule is a superconducting magnet package to focus and steer an electron beam. The magnet package is an iron dominated configuration with conduc-tively cooled racetrack-type quadrupole and dipole coils. For easier installation the magnet can be split in the vertical plane. Initially the magnet was tested in a liquid helium bath, and high precision magnetic field measurements were performed. The first (prototype) Cryomodule with the magnet inside was built and successfully tested at Fermilab test facility. In this paper the magnet package is discussed, themore » Cryomodule magnet test results and current leads con-duction cooling performance are presented. So far magnets in nine Cryomodules were successfully tested at Fermilab.« less

  5. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...

  6. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...

  7. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...

  8. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...

  9. A magnetic bearing control approach using flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1989-01-01

    A magnetic bearing control approach using flux feedback is described and test results for a laboratory model magnetic bearing actuator are presented. Test results were obtained using a magnetic bearing test fixture, which is also described. The magnetic bearing actuator consists of elements similar to those used in a laboratory test model Annular Momentum Control Device (AMCD).

  10. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  11. Precision measurement of magnetic characteristics of an article with nullification of external magnetic fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B. (Inventor); Narvaez, Pablo (Inventor); Mcauley, James M. (Inventor)

    1992-01-01

    An apparatus for characterizing the magnetic field of a device under test is discussed. The apparatus is comprised of five separate devices: (1) a device for nullifying the ambient magnetic fields in a test environment area with a constant applied magnetic field; (2) a device for rotating the device under test in the test environment area; (3) a device for sensing the magnetic field (to obtain a profile of the magnetic field) at a sensor location which is along the circumference of rotation; (4) a memory for storing the profiles; and (5) a processor coupled to the memory for characterizing the magnetic field of the device from the magnetic field profiles thus obtained.

  12. Circular swimming in mice after exposure to a high magnetic field.

    PubMed

    Houpt, Thomas A; Houpt, Charles E

    2010-06-16

    There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.

  13. Cryogenic Magnetic Bearing Test Facility (CMBTF)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Cryogenic Magnetic Bearing Test Facility (CMBTF) was designed and built to evaluate compact, lightweight magnetic bearings for use in the SSME's (space shuttle main engine) liquid oxygen and liquid hydrogen turbopumps. State of the art and tradeoff studies were conducted which indicated that a hybrid permanent magnet bias homopolar magnetic bearing design would be smaller, lighter, and much more efficient than conventional industrial bearings. A test bearing of this type was designed for the test rig for use at both room temperature and cryogenic temperature (-320 F). The bearing was fabricated from state-of-the-art materials and incorporated into the CMBTF. Testing at room temperature was accomplished at Avcon's facility. These preliminary tests indicated that this magnetic bearing is a feasible alternative to older bearing technologies. Analyses showed that the hybrid magnetic bearing is one-third the weight, considerably smaller, and uses less power than previous generations of magnetic bearings.

  14. Magnetic testing for inter-granular crack defect of tubing coupling

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yu, Runqiao

    2018-04-01

    This study focused on the inter-granular crack defects of tubing coupling wherein a non-destructive magnetic testing technique was proposed to determine the magnetic flux leakage features on coupling surface in the geomagnetic field using a high-precision magnetic sensor. The abnormal magnetic signatures of defects were analysed, and the principle of the magnetic test was explained based on the differences in the relative permeability of defects and coupling materials. Abnormal fluctuations of the magnetic signal were observed at the locations of the inter-granular crack defects. Imaging showed the approximate position of defects. The test results were proven by metallographic phase.

  15. Goddard Space Flight Center specification for Helical-Scan 8-millimeter (mm) magnetic digital data tape cartridge

    NASA Technical Reports Server (NTRS)

    Perry, Jimmy L.

    1992-01-01

    The same kind of standard and controls are established that are currently in use for the procurement of new analog, digital, and IBM/IBM compatible 3480 tape cartridges, and 1 in wide channel video magnetic tapes. The Magnetic Tape Certification Facility (MTCF) maintains a Qualified Products List (QPL) for the procurement of new magnetic media and uses the following specifications for the QPL and Acceptance Tests: (1) NASA TM-79724 is used for the QPL and Acceptance Testing of new analog magnetic tapes; (2) NASA TM-80599 is used for the QPL and Acceptance Testing of new digital magnetic tapes; (3) NASA TM-100702 is used for the QPL and Acceptance Testing of new IBM/IBM compatible 3840 magnetic tape cartridges; and (4) NASA TM-100712 is used for the QPL and Acceptance Testing of new 1 in wide channel video magnetic tapes. This document will be used for the QPL and Acceptance Testing of new Helical Scan 8 mm digital data tape cartridges.

  16. Electromyography tests in patients with implanted cardiac devices are safe regardless of magnet placement.

    PubMed

    Ohira, Masayuki; Silcox, Jade; Haygood, Deavin; Harper-King, Valerie; Alsharabati, Mohammad; Lu, Liang; Morgan, Marla B; Young, Angela M; Claussen, Gwen C; King, Peter H; Oh, Shin J

    2013-01-01

    We compared the problems or complications associated with electrodiagnostic testing in 77 patients with implanted cardiac devices. Thirty tests were performed after magnet placement, and 47 were performed without magnet application. All electrodiagnostic tests were performed safely in all patients without any serious effect on the implanted cardiac devices with or without magnet placement. A significantly higher number of patient symptoms and procedure changes were reported in the magnet group (P < 0.013). No statistical difference was found in the testing difficulty or ECG changes. The magnet group patients had an approximately 11-fold greater risk of symptoms than those in the control group. Our data do not support a recommendation that magnet placement is necessary for routine electrodiagnostic testing in patients with implanted cardiac devices, as long as our general and specific guidelines are followed. Copyright © 2012 Wiley Periodicals, Inc.

  17. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    NASA Astrophysics Data System (ADS)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  18. Thermal-hydraulic analysis of the coil test facility for CFETR.

    PubMed

    Ren, Yong; Liu, Xiaogang; Li, Junjun; Wang, Zhaoliang; Qiu, Lilong; Du, Shijun; Li, Guoqiang; Gao, Xiang

    2016-01-01

    Performance test of the China Fusion Engineering Test Reactor (CFETR) central solenoid (CS) and toroidal field (TF) insert coils is of great importance to evaluate the CFETR magnet performance in relevant operation conditions. The superconducting magnet of the coil test facility for CFETR is being designed with the aim of providing a background magnetic field to test the CFETR CS insert and TF insert coils. The superconducting magnet consists of the inner module with Nb 3 Sn coil and the outer module with NbTi coil. The superconducting magnet is designed to have a maximum magnetic field of 12.59 T and a stored energy of 436.6 MJ. An active quench protection circuit and the positive temperature coefficient dump resistor were adopted to transfer the stored magnetic energy. The temperature margin behavior of the test facility for CFETR satisfies the design criteria. The quench analysis of the test facility shows that the cable temperature and the helium pressure inside the jacket are within the design criteria.

  19. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orris, D.; Carcagno, R.; Nogiec, J.

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less

  20. Magnetic Particle Testing, RQA/M1-5330.16.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on magnetic particle testing. The subject is divided under the following headings: Introduction, Principles of Magnetic Particle Testing, Magnetic Particle Test…

  1. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  2. Magnetic strength and corrosion of rare earth magnets.

    PubMed

    Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen

    2006-09-01

    Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.

  3. Commissioning of horizontal-bend superconducting magnet for Jefferson Lab's 11-GeV super high momentum spectrometer

    DOE PAGES

    Sun, Eric; Brindza, Paul D.; Lassiter, Steven R.; ...

    2016-03-02

    Commissioning characteristics of the Superconducting High Momentum Spectrometer (SHMS) Horizontal Bend (HB) magnet was presented. Pre-commissioning peer review of the magnet uncovered issues with eddy currents in the thermal shield, resulting in additional testing and modeling of the magnet. A three-stage test plan was discussed. A solution of using a small dump resistor and a warm thermal shield was presented. Analyses illustrated that it was safe to run the magnet to full test current. As a result, the HB magnet was successfully cooled to 4 K and reached its maximum test current of 4000 A.

  4. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    DOE PAGES

    Kashikhin, Vladimir; Andreev, Nikolai; DiMarco, Joseph; ...

    2017-01-05

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currentsmore » where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.« less

  5. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  6. The test facility for the short prototypes of the LHC superconducting magnets

    NASA Astrophysics Data System (ADS)

    Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.

    2002-05-01

    The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come.

  7. The inverse microconglomerate test: Definition and application to the preservation of Paleoarchean to Hadean magnetizations in metasediments of the Jack Hills, Western Australia

    NASA Astrophysics Data System (ADS)

    Cottrell, Rory; Tarduno, John; Bono, Richard; Dare, Matthew

    2016-04-01

    We introduce a new paleomagnetic field test, the inverse microconglomerate test. In contrast with traditional conglomerate tests, which target specimens that might preserve primary magnetizations, the inverse microconglomerate test focuses on magnetic carriers having unblocking temperatures less than peak metamorphic temperatures. These mineral carriers are expected to carry a consistent direction of remagnetization. Hence, the inverse microconglomerate test evaluates whether coherent magnetizations are retained on a grain/mineral scale in a given sedimentary rock sample. By defining the remagnetization direction, it also serves as a benchmark for comparison of magnetizations from other grains/minerals having unblocking temperatures higher than peak metamorphic conditions (i.e., potential primary magnetizations). We apply this new test to sediments of the Jack Hills (JH), Yilgarn craton, Western Australia. For the JH sediments we focus on fuchsite, a secondary Cr-mica that contains relict Cr-Fe spinels capable of recording remanent magnetizations. We find that JH fuchsite grains retain consistent magnetic directions at unblocking temperatures between ˜270 and 340 oC, which defines a positive test. This direction does not reproduce a nominal 1078-1070 Ma remagnetization reported by Weiss et al. (EPSL, 2015) that we interpret as an artifact of inappropriate use of averaging and statistics. The thermochemical remanent magnetization recorded by the fuchsite was most likely imparted during peak JH metamorphic conditions at ˜2650 Ma. Our inverse microconglomerate test complements a positive microconglomerate test and large scale positive conglomerate test conducted on JH cobbles (Tarduno and Cottrell, EPSL, 2013), further supporting evidence that JH zircons record Paleoarchean to Hadean primary magnetizations at high (greater than 550 oC) unblocking temperatures (Tarduno et al., Science, 2015). More generally, the new inverse microconglomerate test may aid in understanding the timing of peak metamorphism and deformation in complex terrains that have undergone multiple episodes of folding.

  8. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer for detecting bridge cables.

    PubMed

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.

  9. A Magnetic Flux Leakage and Magnetostrictive Guided Wave Hybrid Transducer for Detecting Bridge Cables

    PubMed Central

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483

  10. Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC

    DOE PAGES

    DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...

    2016-12-12

    The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.

  11. Superconductor shields test chamber from ambient magnetic fields

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1965-01-01

    Shielding a test chamber for magnetic components enables it to maintain a constant, low magnetic field. The chamber is shielded from ambient magnetic fields by a lead foil cylinder maintained in a superconducting state by liquid helium.

  12. Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide

    NASA Astrophysics Data System (ADS)

    Okano, M.; Iwamoto, T.; Furuse, M.; Fuchino, S.; Ishii, I.

    2006-06-01

    A pinning-type superconducting magnetic levitation guide with bulk high-Tc superconductors was studied for use as a goods transportation system, an energy storage system, etc. A superconducting magnetic levitation running test apparatus with a circular track of ca. 38 m length, 12 m diameter, which comprises the magnetic rail constituted by Nd-B-Fe rare-earth permanent magnets and steel plates, was manufactured to examine loss and high-speed performance of the magnetic levitation guide. Running tests were conducted in air. These tests clarify that a vehicle supported by a superconducting magnetic levitation guide runs stably at speeds greater than 42 km/h above the circular track.

  13. Superconducting coil development and motor demonstration: Overview

    NASA Astrophysics Data System (ADS)

    Gubser, D. U.

    1995-12-01

    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  14. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    USGS Publications Warehouse

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize the aquifer, and the surface nuclear magnetic resonance was able to provide missing data. In favorable locations, surface nuclear magnetic resonance is able to provide valuable noninvasive information about aquifer parameters and should be a useful tool for groundwater managers in Nebraska.

  15. Laboratory testing of a supercritical helium pump for a magnetic refrigerator

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1988-01-01

    A supercritical helium testing system for a magnetic refrigerator has been built. Details of the supercritical helium pump, the test system, and the test instrumentation are given. Actual pump tests were not run during this ASEE term because of delivery problems associated with the required pump flow meter. Consequently, efforts were directed on preliminary design of the magnetic refrigeration system for the pump. The first concern with the magnetic refrigerator design was determining how to effectively make use of the pump. A method to incorporate the supercritical helium pump into a magnetic refrigerator was determined by using a computer model. An illustrated example of this procedure is given to provide a tool for sizing the magnetic refrigerator system as a function of the pump size. The function of the computer model and its operation are also outlined and discussed.

  16. Passive Magnetic Bearing With Ferrofluid Stabilization

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; DiRusso, Eliseo

    1996-01-01

    A new class of magnetic bearings is shown to exist analytically and is demonstrated experimentally. The class of magnetic bearings utilize a ferrofluid/solid magnet interaction to stabilize the axial degree of freedom of a permanent magnet radial bearing. Twenty six permanent magnet bearing designs and twenty two ferrofluid stabilizer designs are evaluated. Two types of radial bearing designs are tested to determine their force and stiffness utilizing two methods. The first method is based on the use of frequency measurements to determine stiffness by utilizing an analytical model. The second method consisted of loading the system and measuring displacement in order to measure stiffness. Two ferrofluid stabilizers are tested and force displacement curves are measured. Two experimental test fixtures are designed and constructed in order to conduct the stiffness testing. Polynomial models of the data are generated and used to design the bearing prototype. The prototype was constructed and tested and shown to be stable. Further testing shows the possibility of using this technology for vibration isolation. The project successfully demonstrated the viability of the passive magnetic bearing with ferrofluid stabilization both experimentally and analytically.

  17. Flexural Behavior of GFRP Tubes Filled with Magnetically Driven Concrete

    PubMed Central

    Xie, Fang; Chen, Ju; Dong, Xinlong; Feng, Bing

    2018-01-01

    Experimental investigation of GFRP (glass fiber reinforced polymer) tubes that were filled with magnetically driven concrete was carried out to study the flexural behavior of specimens under bending. Specimens having different cross section and lengths were tested. The test specimens were fabricated by filling magnetically driven concrete into the GFRP tubes and the concrete was vibrated using magnetic force. Specimens vibrated using vibrating tube were also tested for comparison. In addition, specimens having steel reinforcing bars and GFRP bars were both tested to study the effect of reinforcing bars on the magnetically driven concrete. The load-displacement curves, load-strain curves, failure mode, and ultimate strengths of test specimens were obtained. Design methods for the flexural stiffness of test specimens were also discussed in this study. PMID:29316732

  18. Flexural Behavior of GFRP Tubes Filled with Magnetically Driven Concrete.

    PubMed

    Xie, Fang; Chen, Ju; Dong, Xinlong; Feng, Bing

    2018-01-08

    Experimental investigation of GFRP (glass fiber reinforced polymer) tubes that were filled with magnetically driven concrete was carried out to study the flexural behavior of specimens under bending. Specimens having different cross section and lengths were tested. The test specimens were fabricated by filling magnetically driven concrete into the GFRP tubes and the concrete was vibrated using magnetic force. Specimens vibrated using vibrating tube were also tested for comparison. In addition, specimens having steel reinforcing bars and GFRP bars were both tested to study the effect of reinforcing bars on the magnetically driven concrete. The load-displacement curves, load-strain curves, failure mode, and ultimate strengths of test specimens were obtained. Design methods for the flexural stiffness of test specimens were also discussed in this study.

  19. Magnetic Test Performance Capabilities at the Goddard Space Flight Center as Applied to the Global Geospace Science Initiative

    NASA Technical Reports Server (NTRS)

    Mitchell, Darryl R.

    1997-01-01

    Goddard Space Flight Center's (GSFC) Spacecraft Magnetic Test Facility (SMTF) is a historic test facility that has set the standard for all subsequent magnetic test facilities. The SMTF was constructed in the early 1960's for the purpose of simulating geomagnetic and interplanetary magnetic fields. Additionally, the facility provides the capability for measuring spacecraft generated magnetic fields as well as calibrating magnetic attitude control systems and science magnetometers. The SMTF was designed for large, spacecraft level tests and is currently the second largest spherical coil system in the world. The SMTF is a three-axis Braunbek system composed of four coils on each of three orthogonal axes. The largest coils are 12.7 meters (41.6 feet) in diameter. The three-axis Braunbek configuration provides a highly uniform cancellation of the geomagnetic field over the central 1.8 meter (6 foot) diameter primary test volume. Cancellation of the local geomagnetic field is to within +/-0.2 nanotesla with a uniformity of up to 0.001% within the 1.8 meter (6 foot) diameter primary test volume. Artificial magnetic field vectors from 0-60,000 nanotesla can be generated along any axis with a 0.1 nanotesla resolution. Oscillating or rotating field vectors can also be produced about any axis with a frequency of up to 100 radians/second. Since becoming fully operational in July of 1967, the SMTF has been the site of numerous spacecraft magnetics tests. Spacecraft tested at the SMTF include: the Solar Maximum Mission (SMM), Magsat, LANDSAT-D, the Fast Aurora] Snapshot (FAST) Explorer and the Sub-millimeter-Wave-Astronomy Satellite (SWAS) among others. This paper describes the methodology and sequencing used for the Global Geospace Science (GGS) initiative magnetic testing program in the Goddard Space Flight Center's SMTF. The GGS initiative provides an exemplary model of a strict and comprehensive magnetic control program.

  20. Study on corrosion behaviors of sintered Nd-Fe-B magnets in different environmental conditions

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Li, A. H.; Zhu, M. G.; Pan, W.; Li, W.

    2011-04-01

    Nd-Fe-B magnets have outstanding magnetic properties, but their corrosion resistance is poor because the rare-earth-rich phases in them are easily oxidized. In this article, we report an investigation of the corrosion behaviors of sintered Nd-Fe-B magnets with varied compositions in different corrosion conditions. The weight losses of the magnets after corrosion testing were measured after brushing off the corrosion products. The magnetic flux losses of the magnets were measured using a fluxmeter. A scanning electron microscope equipped with an energy dispersive x-ray analysis system was employed to observe the corrosion morphology. It was found that the humid-heat resistance of the magnets was obviously improved by partially substituting Dy for Nd and adding minor Co. The corrosion products and morphologies of Nd-Fe-B magnets for the autoclave test were different from those for the constant humid-heat test. The corrosion rates of the magnets for the former were much slower than for the latter; this is probably because the high-pressure steam led to an oxygen-deficient atmosphere, and the liquid film on the surface of the magnet specimens hindered the diffusion of oxygen into the bulk for the autoclave test.

  1. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 05: Not all geometries are equivalent for magnetic field Fano cavity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malkov, Victor N.; Rogers, David W.O.

    The coupling of MRI and radiation treatment systems for the application of magnetic resonance guided radiation therapy necessitates a reliable magnetic field capable Monte Carlo (MC) code. In addition to the influence of the magnetic field on dose distributions, the question of proper calibration has arisen due to the several percent variation of ion chamber and solid state detector responses in magnetic fields when compared to the 0 T case (Reynolds et al., Med Phys, 2013). In the absence of a magnetic field, EGSnrc has been shown to pass the Fano cavity test (a rigorous benchmarking tool of MC codes)more » at the 0.1 % level (Kawrakow, Med.Phys, 2000), and similar results should be required of magnetic field capable MC algorithms. To properly test such developing MC codes, the Fano cavity theorem has been adapted to function in a magnetic field (Bouchard et al., PMB, 2015). In this work, the Fano cavity test is applied in a slab and ion-chamber-like geometries to test the transport options of an implemented magnetic field algorithm in EGSnrc. Results show that the deviation of the MC dose from the expected Fano cavity theory value is highly sensitive to the choice of geometry, and the ion chamber geometry appears to pass the test more easily than larger slab geometries. As magnetic field MC codes begin to be used for dose simulations and correction factor calculations, care must be taken to apply the most rigorous Fano test geometries to ensure reliability of such algorithms.« less

  2. Performance tests of a cryogenic hybrid magnetic bearing for turbopumps

    NASA Technical Reports Server (NTRS)

    Dirusso, Eliseo; Brown, Gerald V.

    1992-01-01

    Experiments were performed on a Hybrid Magnetic Bearing designed for cryogenic applications such as turbopumps. This bearing is considerably smaller and lighter than conventional magnetic bearings and is more efficient because it uses a permanent magnet to provide a bias flux. The tests were performed in a test rig that used liquid nitrogen to simulate cryogenic turbopump temperatures. The bearing was tested at room temperature and at liquid nitrogen temperature (-320 F). The maximum speed for the test rig was 14000 rpm. For a magnetic bearing stiffness of 20000 lb/in, the flexible rotor had two critical speeds. A static (nonrotating) bearing stiffness of 85000 lb/in was achieved. Magnetic bearing stiffness, permanent magnet stiffness, actuator gain, and actuator force interaction between two axes were evaluated, and controller/power amplifier characteristics were determined. The tests revealed that it is feasible to use this bearing in the cryogenic environment and to control the rotor dynamics of flexible rotors when passing through bending critical speeds. The tests also revealed that more effort should be placed on enhancing the controller to achieve higher bearing stiffness and on developing displacement sensors that reduce drift caused by temperature and reduce sensor electrical noise.

  3. The Third Flight Magnet

    NASA Technical Reports Server (NTRS)

    McGhee, R. Wayne

    1998-01-01

    A self-shielded superconducting magnet was designed for the NASA Goddard Space Flight Center Adiabatic Demagnetization Refrigerator Program. This is the third magnet built from this design. The magnets utilize Cryomagnetics' patented ultra-low current technology. The magnetic system is capable of reaching a central field of two tesla at slightly under two amperes and has a total inductance of 1068 henries. This final report details the requirements of the magnet, the specifications of the resulting magnet, the test procedures and test result data for the third magnet (Serial # C-654-M), and recommended precautions for use of the magnet.

  4. 40 CFR 63.3960 - By what date must I conduct performance tests and other initial compliance demonstrations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... performance test of one representative magnet wire coating machine for each group of identical or very similar... you complete the performance test of a representative magnet wire coating machine. The requirements in... operations, you may, with approval, conduct a performance test of a single magnet wire coating machine that...

  5. Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun

    2018-04-01

    The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 104 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10-9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10-14 for a pendulum dipole less than 10-9 A m2. The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ˜ 10-14.

  6. Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum.

    PubMed

    Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun

    2018-04-01

    The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 10 4 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10 -9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10 -14 for a pendulum dipole less than 10 -9 A m 2 . The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ∼ 10 -14 .

  7. Leak testing and repair of fusion devices

    NASA Astrophysics Data System (ADS)

    Kozman, T. A.

    1983-06-01

    The leak testing, reporting and vacuum leak repair techniques of the MPTF yin-yang number one magnet system, the world's largest superconducting magnet system, are discussed. Based on this experience, techniques are developed for testing and repairing leaks on the 42 MPTF-B magnets. The leak hunting techniques for the yin-yang magnet systems were applied to two helium circuits (the coil bundle and guard vacuum; both require helium flow for magnet cooldown). Additionally, during MPTF-B operation there are warm water plasma shields and piping that require leak checking.

  8. Development of a dc motor with virtually zero powered magnetic bearing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The development of magnetic bearings for use in direct current electric motors is discussed. The characteristics of the magnets used in the construction of the bearings are described. A magnetic bearing using steel armoring on permanent magnets was selected for performance tests. The specifications of the motor are presented. The test equipment used in the evaluation is described.

  9. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet...

  10. Overview of NASA Magnet and Linear Alternator Research Efforts

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schwarze, Gene E.; Nieda, Janis M.

    2005-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  11. Overview of NASA Magnet and Linear Alternator Research Efforts

    NASA Astrophysics Data System (ADS)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2005-02-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  12. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    NASA Astrophysics Data System (ADS)

    Kimura, N.; Andreev, N.; Kashikhin, V. S.; Kerby, J.; Takahashi, M.; Tartaglia, M. A.; Tosaka, T.; Yamamoto, A.

    2014-01-01

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  13. Conical Magnetic Bearing Development and Magnetic Bearing Testing for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jansen, Mark

    2004-01-01

    The main proposed research of this grant were: to design a high-temperature, conical magnetic bearing facility, to test the high-temperature, radial magnetic bearing facility to higher speeds, to investigate different backup bearing designs and materials, to retrofit the high-temperature test facility with a magnetic thrust bearing, to evaluate test bearings at various conditions, and test several lubricants using a spiral orbit tribometer. A high-temperature, conical magnetic bearing facility has been fully developed using Solidworks. The facility can reuse many of the parts of the current high-temperature, radial magnetic bearing, helping to reduce overall build costs. The facility has the ability to measure bearing force capacity in the X, Y, and Z directions through a novel bearing mounting design. The high temperature coils and laminations, a main component of the facility, are based upon the current radial design and can be fabricated at Texas A&M University. The coil design was highly successful in the radial magnetic bearing. Vendors were contacted about fabrication of the high temperature lamination stack. Stress analysis was done on the laminations. Some of the components were procured, but due to budget cuts, the facility build up was stopped.

  14. Overview of Imaging Tests

    MedlinePlus

    ... Overview of Imaging Tests Angiography Computed Tomography (CT) Magnetic Resonance Imaging (MRI) Plain X-Rays Radionuclide Scanning ... and radionuclide scanning Sound waves, as in ultrasonography Magnetic fields, as in magnetic resonance imaging (MRI) Substances ...

  15. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  16. Cable testing for Fermilab's high field magnets using small racetrack coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feher, S.; Ambrosio, G.; Andreev, N.

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.

  17. Magnetic suspension and balance system advanced study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1985-01-01

    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design.

  18. A Magnetic Suspension and Excitation System for Spin Vibration Testing of Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Mehmed, Oral

    1998-01-01

    The Dynamic Spin Rig (DSR) is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. A heteropolar radial active magnetic bearing was integrated into the DSR to provide non-contact magnetic suspension and mechanical excitation of the rotor to induce turbomachinery blade vibrations. The magnetic bearing replaces one of the two existing conventional radial ball bearings. Prior operation of the DSR used two voice-coil type linear electromagnetic shakers which provided axial excitation of the rotor. The new magnetic suspension and excitation system has provided enhanced testing capabilities. Tests were performed at high rotational speeds for longer duration and higher vibration amplitudes. Some characteristics of the system include magnetic bearing stiffness values up to 60,000 lb./in., closed loop control bandwidth around 500 Hz, and multi-directional radial excitation of the rotor. This paper reports on the implementation and operation of this system and presents some test results using this system.

  19. Superconducting magnets for the RAON electron cyclotron resonance ion source.

    PubMed

    Choi, S; Kim, Y; Hong, I S; Jeon, D

    2014-02-01

    The RAON linear accelerator of Rare Isotope Science Project has been developed since 2011, and the superconducting magnet for ECRIS was designed. The RAON ECR ion source was considered as a 3rd generation source. The fully superconducting magnet has been designed for operating using 28 GHz radio frequency. The RAON ECRIS operates in a minimum B field configuration which means that a magnetic sextupole field for radial confinement is superimposed with a magnetic mirror field for axial confinement. The highest field strength reaches 3.5 T on axis and 2 T at the plasma chamber wall for operating frequency up to 28 GHz. In this paper, the design results are presented of optimized superconducting magnet consisting of four solenoids and sextupole. The prototype magnet for ECRIS was fabricated and tested to verify the feasibility of the design. On the basis of test results, a fully superconducting magnet will be fabricated and tested.

  20. Final Assembly and Factory Testing of the Jefferson Lab SHMS Spectrometer Quadrupole and Dipole Superconducting Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brindza, Paul; Lassiter, Steven; Sun, Eric

    Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less

  1. Final Assembly and Factory Testing of the Jefferson Lab SHMS Spectrometer Quadrupole and Dipole Superconducting Magnets

    DOE PAGES

    Brindza, Paul; Lassiter, Steven; Sun, Eric; ...

    2017-06-01

    Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less

  2. Studies on laws of stress-magnetization based on magnetic memory testing technique

    NASA Astrophysics Data System (ADS)

    Ren, Shangkun; Ren, Xianzhi

    2018-03-01

    Metal magnetic memory (MMM) testing technique is a novel testing method which can early test stress concentration status of ferromagnetic components. Under the different maximum tensile stress, the relationship between the leakage magnetic field of at certain point of cold rolled steel specimen and the tensile stress was measured during the process of loading and unloading by repeated. It shows that when the maximum tensile stress is less than 610 MPa, the relationship between the magnetic induction intensity and the stress is linear; When the maximum tensile stress increase from 610 MPa to 653 MPa of yield point, the relationship between the magnetic induction intensity and the tensile becomes bending line. The location of the extreme point of the bending line will move rapidly from the position of smaller stress to the larger stress position, and the variation of magnetic induction intensity increases rapidly. When the maximum tensile stress is greater than the 653 MPa of yield point, the variation of the magnetic induction intensity remains large, and the position of the extreme point moves very little. In theoretical aspects, tensile stress is to be divided into ordered stress and disordered stress. In the stage of elastic stress, a microscopic model of the order stress magnetization is established, and the conclusions are in good agreement with the experimental data. In the plastic deformation stage, a microscopic model of disordered stress magnetization is established, and the conclusions are in good agreement with the experimental data, too. The research results can provide reference for the accurate quantitative detection and evaluation of metal magnetic memory testing technology.

  3. Spontaneous Magnetic Alignment by Yearling Snapping Turtles: Rapid Association of Radio Frequency Dependent Pattern of Magnetic Input with Novel Surroundings

    PubMed Central

    Landler, Lukas; Painter, Michael S.; Youmans, Paul W.; Hopkins, William A.; Phillips, John B.

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736

  4. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings.

    PubMed

    Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.

  5. R&D Progress of HTS Magnet Project for Ultrahigh-field MRI

    NASA Astrophysics Data System (ADS)

    Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    An R&D project on high-temperature superconducting (HTS) magnets using rare-earth Ba2Cu3O7 (REBCO) wires was started in 2013. The project objective is to investigate the feasibility of adapting REBCO magnets to ultrahigh field (UHF) magnetic resonance imaging (MRI) systems. REBCO wires are promising components for UHF-MRI magnets because of their superior superconducting and mechanical properties, which make them smaller and lighter than conventional ones. Moreover, REBCO magnets can be cooled by the conduction-cooling method, making liquid helium unnecessary. In the past two years, some test coils and model magnets have been fabricated and tested. This year is the final year of the project. The goals of the project are: (1) to generate a 9.4 T magnetic field with a small test coil, (2) to generate a homogeneous magnetic field in a 200 mm diameter spherical volume with a 1.5 T model magnet, and (3) to perform imaging with the 1.5 T model magnet. In this paper, the progress of this R&D is described. The knowledge gained through these R&D results will be reflected in the design of 9.4 T MRI magnets for brain and whole body imaging.

  6. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  7. Helium gas bubble trapped in liquid helium in high magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, H.; Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-01

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T2/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  8. Development of a magnetically suspended momentum wheel

    NASA Technical Reports Server (NTRS)

    Hamilton, S. B.

    1973-01-01

    An engineering model of a magnetically suspended momentum wheel was designed, fabricated, and tested under laboratory conditions. The basic unit consisted of two magnet bearings, a sculptured aluminum rotor, brushless dc spin motor, and electronics. The magnet bearings, utilizing rare-earth cobltrat-samarium magnets were active radially and passive axially. The results of the program showed that momentum wheels with magnetic bearings are feasible and operable, and that magnetic bearings of this type are capable of being used for applications where high capacity, high stiffness, and low power consumption are required. The tests performed developed criteria for improved performance for future designs.

  9. 49 CFR 236.383 - Valve locks, valves, and valve magnets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Valve locks, valves, and valve magnets. 236.383... Inspection and Tests § 236.383 Valve locks, valves, and valve magnets. Valve locks on valves of the non-cut-off type shall be tested at least once every three months, and valves and valve magnets shall be...

  10. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Pengpeng; Zheng, Xiaojing, E-mail: xjzheng@xidian.edu.cn; Jin, Ke

    2016-04-14

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress–strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress–magnetization curve, especially in the compression case. Based on the thermodynamic relations and themore » approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.« less

  11. Magneto-Optic Kerr Effect in a Magnetized Electron Gun

    NASA Astrophysics Data System (ADS)

    Hardy, Benjamin; Grames, Joseph; CenterInjectors; Sources Team

    2016-09-01

    Magnetized electron sources have the potential to improve ion beam cooling efficiency. At the Gun Test Stand at Jefferson Lab, a solenoid magnet will be installed adjacent to the photogun to magnetize the electron beam. Due to the photocathode operating in a vacuum chamber, measuring and monitoring the magnetic field at the beam source location with conventional probes is impractical. The Magneto-Optical Kerr Effect (MOKE) describes the change on polarized light by reflection from a magnetized surface. The reflection from the surface may alter the polarization direction, ellipticity, or intensity, and depends linearly upon the surface magnetization of the sample. By replacing the photocathode with a magnetized sample and reflecting polarized light from the sample surface, the magnetic field at the beam source is inferred. A controlled MOKE system has been assembled to test the magnetic field. Calibration of the solenoid magnet is performed by comparing the MOKE signal with magnetic field measurements. The apparatus will provide a description of the field at electron beam source. The report summarizes the method and results of controlled tests and calibration of the MOKE sample with the solenoid magnet field measurements. This work is supported by the National Science Foundation, Research Experience for Undergraduates Award 1359026 and the Department of Energy, Laboratory Directed Research and Development Contract DE-AC05-06OR23177.

  12. Cytotoxic effect of indigenously fabricated dental magnets for application in prosthodontics.

    PubMed

    Guttal, Satyabodh Shesharaj; Nadiger, Ramesh K; Shetty, Pravinkumar

    2018-01-01

    Dental magnets are used for retaining removable prostheses such as a removable partial denture, complete denture, and maxillofacial prosthesis. They provide good retention for the prostheses. However, the elements released from the magnets may be cytotoxic for the tissues. Therefore, it is necessary to evaluate their cytotoxic effect on cell lines. The aim of the study is to check the cytotoxic effect of indigenously fabricated dental magnets on animal cell lines. Neodymium-iron-boron (Nd-Fe-B) magnet was tested for cytotoxicity. The magnet was encased in a teflon cylinder. Magnets were placed in the well tissue-cultured plates together with a suspension containing NIH 3T3 mouse fibroblasts (5 × 10 5 cells/ml). After 3 days of incubation at 37°C, cell viability was determined by mean transit time (MTT) assay. Cells were subsequently dissolved in 100 μl dimethyl sulfoxide with gentle shaking for 2 h at room temperature followed by measurement of absorbance at 570 nm. Eight replicate wells were used at each point in each of four separate measurements. Measured absorbance values were directly used for calculating percent of viable cells remaining after the respective treatment. Data were analyzed statistically with significance level set at P < 0.05. The control group had highest absorbance reading for the MTT assay followed by test group. The lowest values were found with bare Nd-Fe-B magnets. One-way ANOVA test was performed for the data obtained. There was a statistical significant difference seen in the positive control (bare magnets, 44.96) and the test (teflon cased magnets, 96.90) group. More number of viable cells was visible in test group cells indicating that the indigenously fabricated dental magnet did not show any cytotoxicity.

  13. Study on magnetic circuit of moving magnet linear compressor

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Chen, Xiaoping; Chen, Jun

    2015-05-01

    The moving magnet linear compressors are very popular in the tactical miniature stirling cryocoolers. The magnetic circuit of LFC3600 moving magnet linear compressor, manufactured by Kunming institute of Physics, was studied in this study. Three methods of the analysis theory, numerical calculation and experiment study were applied in the analysis process. The calculated formula of magnetic reluctance and magnetomotive force were given in theoretical analysis model. The magnetic flux density and magnetic flux line were analyzed in numerical analysis model. A testing method was designed to test the magnetic flux density of the linear compressor. When the piston of the motor was in the equilibrium position, the value of the magnetic flux density was at the maximum of 0.27T. The results were almost equal to the ones from numerical analysis.

  14. Cochlear implant with a non-removable magnet: preliminary research at 3-T MRI.

    PubMed

    Dubrulle, F; Sufana Iancu, A; Vincent, C; Tourrel, G; Ernst, O

    2013-06-01

    To perform preliminary tests in vitro and with healthy volunteers to determine the 3-T MRI compatibility of a cochlear implant with a non-removable magnet. In the in vitro phase, we tested six implants for temperature changes and internal malfunctioning. We measured the demagnetisation of 65 internal magnets with different tilt angles between the implant's magnetic field (bi) and the main magnetic field (b0). In the in vivo phase, we tested 28 operational implants attached to the scalps of volunteers with the head in three different positions. The study did not find significant temperature changes or electronic malfunction in the implants tested in vitro. We found considerable demagnetisation of the cochlear implant magnets in the in vitro and in vivo testing influenced by the position of the magnet in the main magnetic field. We found that if the bi/b0 angle is <90°, there is no demagnetisation; if the bi/b0 angle is >90°, there is demagnetisation in almost 60 % of the cases. When the angle is around 90°, the risk of demagnetisation is low (6.6 %). The preliminary results on cochlear implants with non-removable magnets indicate the need to maintain the contraindication of passage through 3-T MRI. • Magnetic resonance imaging can affect cochlear implants and vice versa. • Demagnetisation of cochlear implant correlates with the angle between bi and b0. • The position of the head in the MRI influences the demagnetisation. • Three-Tesla MRI for cochlear implants is still contraindicated. • However some future solutions are discussed.

  15. Homing pigeons ( Columba livia f. domestica) can use magnetic cues for locating food

    NASA Astrophysics Data System (ADS)

    Thalau, Peter; Holtkamp-Rötzler, Elke; Fleissner, Gerta; Wiltschko, Wolfgang

    2007-10-01

    An experimental group of homing pigeons ( Columba livia f. domestica) learned to associate food with a magnetic anomaly produced by bar magnets that were fixed to the bowl in which they received their daily food ration in their home loft; the control group lacked this experience. Both groups were trained to search for two hidden food depots in a rectangular sand-filled arena without obvious visual cues; for the experimental birds, these depots were also marked with three 1.15 × 106 μT bar magnets. During the tests, there were two food depots, one marked with the magnets, the other unmarked; their position within the arena was changed from test to test. The experimental birds searched within 10 cm of the magnetically marked depot in 49% of the test sessions, whereas the control birds searched there in only 11% of the sessions. Both groups searched near the control depot in 11 and 13% of the sessions, respectively. The significant preference of the magnetically marked food depot by the experimental birds shows that homing pigeons cannot only detect a magnetic anomaly but can also use it as a cue for locating hidden food in an open arena.

  16. Improving the Testing Environment of a Lab Transition-Edge Sensor: An Exercise in Nulling Earth’s Magnetic Field

    NASA Astrophysics Data System (ADS)

    Melton, Casey; McCammon Lab at University of Wisconsin-Madison

    2018-01-01

    In Dr. Dan McCammon’s lab at the University of Wisconsin-Madison, a special class of x-ray microcalorimeter called a Transition-Edge Sensor, or TES, is being tested in order to identify the strengths and weaknesses of this device in detecting x-ray photons from astronomical sources. The TES is currently housed in a cryogenic refrigerator where it can be tested at superconducting temperatures. Although this refrigerator is equipped with magnetic field shielding to keep magnetic fields out during testing, latent magnetic fields are trapped inside the receptacle at the time of cool-down. To remedy this problem, I built a set of tri-axial Helmholtz coils, which have at their center a uniform volume of magnetic field. This uniform region can be tuned prior to cool-down and nulls the magnetic field that would typically be trapped inside the receptacle. The magnetic field will be monitored inside the receptacle with a tri-axial fluxgate magnetic field sensor, which I began designing in the latter half of the project. This project is still in progress, and will be implemented in the lab in the near future.

  17. Octet baryons in large magnetic fields

    NASA Astrophysics Data System (ADS)

    Deshmukh, Amol; Tiburzi, Brian C.

    2018-01-01

    Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory. Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated exactly giving rise to baryon energies that depend nonanalytically on the strength of the magnetic field. In the small-field limit, baryon magnetic moments and polarizabilities emerge from the calculated energies. We argue that the magnetic polarizabilities of hyperons provide a testing ground for potentially large contributions from decuplet pole diagrams. In external magnetic fields, such contributions manifest themselves through decuplet-octet mixing, for which possible results are compared in a few scenarios. These scenarios can be tested with lattice QCD calculations of the octet baryon energies in magnetic fields.

  18. Magneto acoustic emission apparatus for testing materials for embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Min, Namkung (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1990-01-01

    A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an ac current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a dc current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.

  19. Cryogenic properties of dispersion strengthened copper for high magnetic fields

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.

    2014-01-01

    Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.

  20. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    PubMed

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  1. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar

    PubMed Central

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-01

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens. PMID:29361798

  2. Dental materials and magnetic resonance imaging.

    PubMed

    Hubálková, Hana; Hora, Karel; Seidl, Zdenek; Krásenský, Jan

    2002-09-01

    The objective of this investigation was to evaluate the reaction of selected dental materials in the magnetic field of a magnetic resonance imaging device to determine a possible health risk. The following dental materials were tested in vitro during magnetic resonance imaging: 15 dental alloys, four dental implants, one surgical splint and two wires for fixation of maxillofacial fractures. Possible artefacts (corresponding with magnetic properties), heating and force effects were tested. Results concerning movement and heating were in agreement with the literature. The artefacts seen were significant: for the surgical splint, a spherical artefact with a diameter of 55 mm; for the wires, up to 22 mm; and for the dental blade implant, an artefact of 28 x 20 mm. The results of our tests of selected dental appliances indicate that their presence in the human organism is safe for patients undergoing magnetic resonance imaging procedures. The presence of artefacts can substantially influence the magnetic resonance imaging results.

  3. Demagnetization Tests Performed on a Linear Alternator for a Stirling Power Convertor

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2012-01-01

    The NASA Glenn Research Center (GRC) is conducting in-house research on rare-earth permanent magnets and linear alternators to assist in developing free-piston Stirling convertors for radioisotope space power systems and for developing advanced linear alternator technology. This research continues at GRC, but, with the exception of Advanced Stirling Radioisotope Generator references, the work presented in this paper was conducted in 2005. A special arc-magnet characterization fixture was designed and built to measure the M-H characteristics of the magnets used in Technology Demonstration Convertors developed under the 110-W Stirling Radioisotope Generator (SRG110) project. This fixture was used to measure these characteristics of the arc magnets and to predict alternator demagnetization temperatures in the SRG110 application. Demagnetization tests using the TDC alternator on the Alternator Test Rig were conducted for two different magnet grades: Sumitomo Neomax 44AH and 42AH. The purpose of these tests was to determine the demagnetization temperatures of the magnets for the alternator under nominal loads. Measurements made during the tests included the linear alternator terminal voltage, current, average power, magnet temperatures, and stator temperatures. The results of these tests were found to be in good agreement with predictions. Alternator demagnetization temperatures in the Advanced Stirling Convertor (ASC-developed under the Advanced Stirling Radioisotope Generator project) were predicted as well because the prediction method had been validated through the SRG110 alternator tests. These predictions led to a specification for maximum temperatures of the ASC pressure vessel.

  4. A forecast of new test capabilities using Magnetic Suspension and Balance Systems

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.; Johnson, William G., Jr.

    1988-01-01

    This paper outlines the potential of Magnetic Suspension and Balance System (MSBS) technology to solve existing problems related to support interference in wind tunnels. Improvement of existing test techniques and exciting new techniques are envisioned as a result of applying MSBS. These include improved data accuracy, dynamic stability testing, two-body/stores release testing, and pilot/designer-in-the-loop tests. It also discusses the use of MSBS for testing exotic configurations such as hybrid hypersonic vehicles. A new facility concept that combines features of ballistic tubes, magnetic suspension, and cryogenic tunnels is described.

  5. Analysis of NSWC Ocean EM Observatory Test Data

    DTIC Science & Technology

    2016-09-01

    deployment locations. 1S. SUBJECT TERMS magnetic anomaly detection (MAD), oceanographic magnetic fields, coherence, magnetic noise reduction 16...analyses ......................................................................................... 11 3. Analysis of magnetic data...37 Appendix B: Feb 11 underwater magnetic data

  6. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  7. IMP-I spacecraft final magnetic tests

    NASA Technical Reports Server (NTRS)

    Harris, C. A.

    1972-01-01

    The increased IMP-I spacecraft spin axis moment resulting from excessive field exposures during environmental testing substantiated the need for a final pre-launch magnetic deperm and measurement. By performing a dc rotation deperm it was possible to reduce this moment below the previous initial test post deperm magnitude. In addition, the magnetic field disturbance at the flight magnetometer diminished to below 0.1 nanotesla (gamma) in all directions.

  8. Magnetically Actuated Propellant Orientation Experiment, Controlling Fluid Motion With Magnetic Fields in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Holt, J. B.

    2000-01-01

    This report details the results of a series of fluid motion experiments to investigate the use of magnets to orient fluids in a low-gravity environment. The fluid of interest for this project was liquid oxygen (LO2) since it exhibits a paramagnetic behavior (is attracted to magnetic fields). However, due to safety and handling concerns, a water-based ferromagnetic mixture (produced by Ferrofluidics Corporation) was selected to simplify procedures. Three ferromagnetic fluid mixture strengths and a nonmagnetic water baseline were tested using three different initial fluid positions with respect to the magnet. Experiment accelerometer data were used with a modified computational fluid dynamics code termed CFX-4 (by AEA Technologies) to predict fluid motion. These predictions compared favorably with experiment video data, verifying the code's ability to predict fluid motion with and without magnetic influences. Additional predictions were generated for LO2 with the same test conditions and geometries used in the testing. Test hardware consisted of a cylindrical Plexiglas tank (6-in. bore with 10-in. length), a 6,000-G rare Earth magnet (10-in. ring), three-axis accelerometer package, and a video recorder system. All tests were conducted aboard the NASA Reduced-Gravity Workshop, a KC-135A aircraft.

  9. New vertical cryostat for the high field superconducting magnet test station at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vande Craen, A.; Atieh, S.; Bajko, M.

    2014-01-29

    In the framework of the R and D program for new superconducting magnets for the Large Hadron Collider accelerator upgrades, CERN is building a new vertical test station to test high field superconducting magnets of unprecedented large size. This facility will allow testing of magnets by vertical insertion in a pressurized liquid helium bath, cooled to a controlled temperature between 4.2 K and 1.9 K. The dimensions of the cryostat will allow testing magnets of up to 2.5 m in length with a maximum diameter of 1.5 m and a mass of 15 tons. To allow for a faster insertionmore » and removal of the magnets and reducing the risk of helium leaks, all cryogenics supply lines are foreseen to remain permanently connected to the cryostat. A specifically designed 100 W heat exchanger is integrated in the cryostat helium vessel for a controlled cooling of the magnet from 4.2 K down to 1.9 K in a 3 m{sup 3} helium bath. This paper describes the cryostat and its main functions, focusing on features specifically developed for this project. The status of the construction and the plans for assembly and installation at CERN are also presented.« less

  10. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doose, C.; Dejus, R.; Jaski, M.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces tomore » gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.« less

  11. Performance of conduction cooled splittable superconducting magnet package for linear accelerators

    DOE PAGES

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; ...

    2016-02-19

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. Furthermore, themore » effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.« less

  12. Cryogenic Design of the New High Field Magnet Test Facility at CERN

    NASA Astrophysics Data System (ADS)

    Benda, V.; Pirotte, O.; De Rijk, G.; Bajko, M.; Craen, A. Vande; Perret, Ph.; Hanzelka, P.

    In the framework of the R&D program related to the Large Hadron Collider (LHC) upgrades, a new High Field Magnet (HFM) vertical test bench is required. This facility located in the SM18 cryogenic test hall shall allow testing of up to 15 tons superconducting magnets with energy up to 10 MJ in a temperature range between 1.9 K and 4.5 K. The article describes the cryogenic architecture to be inserted in the general infrastructure of SM18 including the process and instrumentation diagram, the different operating phases including strategy for magnet cool down and warm up at controlled speed and quench management as well as the design of the main components.

  13. Developing a magnetism conceptual survey and assessing gender differences in student understanding of magnetism

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2012-02-01

    We discuss the development of a research-based conceptual multiple-choice survey of magnetism. We also discuss the use of the survey to investigate gender differences in students' difficulties with concepts related to magnetism. We find that while there was no gender difference on the pre-test. However, female students performed significantly worse than male students when the survey was given as a post-test in traditionally taught calculus-based introductory physics courses with similar results in both the regular and honors versions of the course. In the algebra-based courses, the performance of female and male students has no statistical difference on the pre-test or the post-test.

  14. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, Joshua T.; Biallas, George H.; Brown, G.

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete themore » system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.« less

  15. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Astrophysics Data System (ADS)

    Wang, Pao-Lien

    1992-09-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  16. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  17. Specification for wide channel bandwidth one-inch video tape

    NASA Technical Reports Server (NTRS)

    Perry, Jimmy L.

    1988-01-01

    Standards and controls are established for the procurement of wide channel bandwidth one inch video magnetic recording tapes for Very Long Base Interferometer (VLBI) system applications. The Magnetic Tape Certification Facility (MTCF) currently maintains three specifications for the Quality Products List (QPL) and acceptance testing of magnetic tapes. NASA-TM-79724 is used for the QPL and acceptance testing of new analog tapes; NASA-TM-80599 is used for QPL and acceptance testing of new digital tapes; and NASA-TM-100702 is used for the QPL and acceptance testing of new IBM/IBM compatible 3480 magnetic tape cartridges. This specification will be used for the QPL and acceptance testing of new wide channel bandwidth one inch video magnetic recording tapes. The one inch video tapes used by the Jet Propulsion Lab., the Deep Space Network and the Haystack Observatory will be covered by this specification. These NASA stations will use the video tapes for their VLBI system applications. The VLBI system is used for the tracking of quasars and the support of interplanetary exploration.

  18. MTL distributed magnet measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogiec, J.M.; Craker, P.A.; Garbarini, J.P.

    1993-04-01

    The Magnet Test Laboratory (MTL) at the Superconducting Super collider Laboratory will be required to precisely and reliably measure properties of magnets in a production environment. The extensive testing of the superconducting magnets comprises several types of measurements whose main purpose is to evaluate some basic parameters characterizing magnetic, mechanic and cryogenic properties of magnets. The measurement process will produce a significant amount of data which will be subjected to complex analysis. Such massive measurements require a careful design of both the hardware and software of computer systems, having in mind a reliable, maximally automated system. In order to fulfillmore » this requirement a dedicated Distributed Magnet Measurement System (DMMS) is being developed.« less

  19. Magnetic measurement of soft magnetic composites material under 3D SVPWM excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Changgeng; Jiang, Baolin; Li, Yongjian; Yang, Qingxin

    2018-05-01

    The magnetic properties measurement and analysis of soft magnetic material under the rotational space-vector pulse width modulation (SVPWM) excitation are key factors in design and optimization of the adjustable speed motor. In this paper, a three-dimensional (3D) magnetic properties testing system fit for SVPWM excitation is built, which includes symmetrical orthogonal excitation magnetic circuit and cubic field-metric sensor. Base on the testing system, the vector B and H loci of soft magnetic composite (SMC) material under SVPWM excitation are measured and analyzed by proposed 3D SVPWM control method. Alternating and rotating core losses under various complex excitation with different magnitude modulation ratio are calculated and compared.

  20. Experimental evaluation of a magnetic torquer rod using an innovative test system

    NASA Astrophysics Data System (ADS)

    Fakhari Mehrjardi, Mohamad; Mirshams, Mehran

    2010-03-01

    In today's world satellites have an immense and profound role in a country's financial, social and military development and having the technology of creation and launching satellites is a yard stick to a country's progress. Each satellite, like any other advanced machine is consisted of many subsystems in order to do its mission, among those, the attitude Control subsystem has the duty of stabilizing and orientation. Depending on the type of stabilization and control laws, different actuators like momentum wheels, reaction wheels, magnetic torquers and etcetera are used. Due to its smaller shape and weight, lower cost and minimal power consumption, the magnetic torquer is frequently used in low-earth orbit satellites. A magnetic torquer is consisted of a winding wire and a magnetic core that with the current of electricity passing through the winding wire, a magnetic dipole moment is produced. In reaction to the earth's magnetic field, this moment produces the required torque. Thus, having a broader understanding of the specification of the magnetic torquer before using it in the satellite is quite necessary. As a result, in this paper we try to show how to make such system in the laboratory. A magnetorquer is manufactured that the main idea is to estimate the magnetic dipole moment from the magnetic field measurement by this magnetic torquer. To achieve this, first we talk about the theories of creating such device and test system, then we will delve into the more technical aspects of designing such subsystem. In the end, from the output results, the performance curve of the magnetic torquer is produced and the linear areas and scale coefficients are determined. This paper presents test methodology, experimental setup and test results of manufacturing a torque rod with CK30 ferromagnetic alloy core.

  1. Experimental evaluation of a magnetic torquer rod using an innovative test system

    NASA Astrophysics Data System (ADS)

    Fakhari Mehrjardi, Mohamad; Mirshams, Mehran

    2009-12-01

    In today's world satellites have an immense and profound role in a country's financial, social and military development and having the technology of creation and launching satellites is a yard stick to a country's progress. Each satellite, like any other advanced machine is consisted of many subsystems in order to do its mission, among those, the attitude Control subsystem has the duty of stabilizing and orientation. Depending on the type of stabilization and control laws, different actuators like momentum wheels, reaction wheels, magnetic torquers and etcetera are used. Due to its smaller shape and weight, lower cost and minimal power consumption, the magnetic torquer is frequently used in low-earth orbit satellites. A magnetic torquer is consisted of a winding wire and a magnetic core that with the current of electricity passing through the winding wire, a magnetic dipole moment is produced. In reaction to the earth's magnetic field, this moment produces the required torque. Thus, having a broader understanding of the specification of the magnetic torquer before using it in the satellite is quite necessary. As a result, in this paper we try to show how to make such system in the laboratory. A magnetorquer is manufactured that the main idea is to estimate the magnetic dipole moment from the magnetic field measurement by this magnetic torquer. To achieve this, first we talk about the theories of creating such device and test system, then we will delve into the more technical aspects of designing such subsystem. In the end, from the output results, the performance curve of the magnetic torquer is produced and the linear areas and scale coefficients are determined. This paper presents test methodology, experimental setup and test results of manufacturing a torque rod with CK30 ferromagnetic alloy core.

  2. A polyvalent harmonic coil testing method for small-aperture magnets

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Buzio, Marco; Golluccio, Giancarlo; Walckiers, Louis

    2012-08-01

    A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).

  3. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  4. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  5. Theoretical investigation of metal magnetic memory testing technique for detection of magnetic flux leakage signals from buried defect

    NASA Astrophysics Data System (ADS)

    Xu, Kunshan; Qiu, Xingqi; Tian, Xiaoshuai

    2018-01-01

    The metal magnetic memory testing (MMMT) technique has been extensively applied in various fields because of its unique advantages of easy operation, low cost and high efficiency. However, very limited theoretical research has been conducted on application of MMMT to buried defects. To promote study in this area, the equivalent magnetic charge method is employed to establish a self-magnetic flux leakage (SMFL) model of a buried defect. Theoretical results based on the established model successfully capture basic characteristics of the SMFL signals of buried defects, as confirmed via experiment. In particular, the newly developed model can calculate the buried depth of a defect based on the SMFL signals obtained via testing. The results show that the new model can successfully assess the characteristics of buried defects, which is valuable in the application of MMMT in non-destructive testing.

  6. Magnetic Excitation for Spin Vibration Testing

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Mehmed, Oral; Brown, Gerald V.

    1997-01-01

    The Dynamic Spin Rig Laboratory (DSRL) at the NASA Lewis Research Center is a facility used for vibration testing of structures under spinning conditions. The current actuators used for excitation are electromagnetic shakers which are configured to apply torque to the rig's vertical rotor. The rotor is supported radially and axially by conventional bearings. Current operation is limited in rotational speed, excitation capability, and test duration. In an effort to enhance its capabilities, the rig has been initially equipped with a radial magnetic bearing which provides complementary excitation and shaft support. The new magnetic feature has been used in actual blade vibration tests and its performance has been favorable. Due to the success of this initial modification further enhancements are planned which include making the system fully magnetically supported. This paper reports on this comprehensive effort to upgrade the DSRL with an emphasis on the new magnetic excitation capability.

  7. Magnetic Gimbal Proof-of-Concept Hardware performance results

    NASA Technical Reports Server (NTRS)

    Stuart, Keith O.

    1993-01-01

    The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.

  8. ALS superbend magnet performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Steve; Zbasnik, John; Byrne, Warren

    2001-12-10

    The Lawrence Berkeley National Laboratory has been engaged in the design, construction and testing of four superconducting dipoles (Superbends) that are installed in three arcs of the Advanced Light Source (ALS), with the fourth magnet as a spare. This represents a major upgrade to the ALS providing an enhanced flux and brightness at photon energies above 10 keV. In preparation for installation, an extensive set of tests and measurements have been conducted to characterize the magnetic and cryogenic performance of the Superbends and to fiducialize them for accurate placement in the ALS storage ring. The magnets are currently installed, andmore » the storage ring is undergoing final commissioning. This paper will present the results of magnetic and cryogenic testing.« less

  9. Magnetic Gimbal Proof-of-Concept Hardware performance results

    NASA Astrophysics Data System (ADS)

    Stuart, Keith O.

    The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.

  10. Probing magnetic helicity with synchrotron radiation and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Oppermann, N.; Junklewitz, H.; Robbers, G.; Enßlin, T. A.

    2011-06-01

    We present a first application of the recently proposed LITMUS test for magnetic helicity, as well as a thorough study of its applicability under different circumstances. In order to apply this test to the galactic magnetic field, the newly developed critical filter formalism is used to produce an all-sky map of the Faraday depth. The test does not detect helicity in the galactic magnetic field. To understand the significance of this finding, we made an applicability study, showing that a definite conclusion about the absence of magnetic helicity in the galactic field has not yet been reached. This study is conducted by applying the test to simulated observational data. We consider simulations in a flat sky approximation and all-sky simulations, both with assumptions of constant electron densities and realistic distributions of thermal and cosmic ray electrons. Our results suggest that the LITMUS test does indeed perform very well in cases where constant electron densities can be assumed, both in the flat-sky limit and in the galactic setting. Non-trivial distributions of thermal and cosmic ray electrons, however, may complicate the scenario to the point where helicity in the magnetic field can escape detection.

  11. Magnetic levitation systems for future aeronautics and space research and missions

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.; Mankins, John C.

    1996-01-01

    The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.

  12. Thermo-magneto-elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Shi, Pengpeng; Zhang, Pengcheng; Jin, Ke; Chen, Zhenmao; Zheng, Xiaojing

    2018-04-01

    Metal magnetic memory (MMM) testing (also known as micro-magnetic testing) is a new non-destructive electromagnetic testing method that can diagnose ferromagnetic materials at an early stage by measuring the MMM signal directly on the material surface. Previous experiments have shown that many factors affect MMM signals, in particular, the temperature, the elastoplastic state, and the complex environmental magnetic field. However, the fact that there have been only a few studies of either how these factors affect the signals or the physical coupling mechanisms among them seriously limits the industrial applications of MMM testing. In this paper, a nonlinear constitutive relation for a ferromagnetic material considering the influences of temperature and elastoplastic state is established under a weak magnetic field and is used to establish a nonlinear thermo-magneto-elastoplastic coupling model of MMM testing. Comparing with experimental data verifies that the proposed theoretical model can accurately describe the thermo-magneto-elastoplastic coupling influence on MMM signals. The proposed theoretical model can predict the MMM signals in a complex environment and so is expected to provide a theoretical basis for improving the degree of quantification in MMM testing.

  13. Magnetic Control of Concentration Gradient in Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2005-01-01

    A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.

  14. Multiple degree-of-freedom force and moment measurement for static propulsion testing using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Stuart, Keith; Bartosh, Blake

    1993-01-01

    Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.

  15. Ultra-low magnetic field apparatus for a cryogenic gyroscope

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Van Kann, F. J.

    1978-01-01

    An ultralow magnetic field apparatus for earth-based testing of a cryogenic gyroscope system designed for a satellite test of general relativity is described. The magnetic field apparatus makes use of a superconducting lead shield while also maintaining sufficient mechanical stability to obtain a gyroscope readout sensitivity of one arcsec over a limited range. A gyroscope environment of 2.3 times 10 to the minus seventh power gauss has been attained with the magnetic field shielding technique. The magnetic field apparatus is to be used with a three-axis London moment readout system.

  16. Electric Propulsion Test and Evaluation Methodologies for Plasma in the Environments of Space and Testing (EP TEMPEST)

    DTIC Science & Technology

    2016-04-14

    Swanson AEDC Path 1: Magnetized electron transport impeded across magnetic field lines; transport via electron-particle collisions Path 2*: Electron...T&E (higher pressure, metallic walls) → Impacts stability, performance, plume properties, thruster lifetime Magnetic Field Lines Plasma Plume...Development of T&E Methodologies • Current-Voltage- Magnetic Field (I-V-B) Mapping • Facility Interaction Studies • Background Pressure • Plasma Wall

  17. Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel

    NASA Astrophysics Data System (ADS)

    Bao, Sheng; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan

    2017-02-01

    The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect.

  18. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    NASA Astrophysics Data System (ADS)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  19. Self-testing security sensor for monitoring closure of vault doors and the like

    DOEpatents

    Cawthorne, Duane C.

    1997-05-27

    A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member.

  20. Self-testing security sensor for monitoring closure of vault doors and the like

    DOEpatents

    Cawthorne, D.C.

    1997-05-27

    A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member. 5 figs.

  1. Magnetic materials selection for static inverter and converter transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.

    1971-01-01

    Different magnetic alloys best suited for high-frequency and high-efficiency applications were comparatively investigated together with an investigation of each alloy's inherent characteristics. One of the characteristics in magnetic materials deterimental in transformer design is the residual flux density, which can be additive on turn-on and cause the transformer to saturate. Investigation of this problem led to the design of a transformer with a very low residual flux. Tests were performed to determine the dc and ac magnetic properties at 2400 Hz using square-wave excitation. These tests were performed on uncut cores, which were then cut for comparison of the gapped and ungapped magnetic properties. The optimum transformer was found to be that with the lowest residual flux and a small amount of air gap in the magnetic material. The data obtained from these tests are described, and the potential uses for the materials are discussed.

  2. Design and test of a magnetic thrust bearing

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Mikula, A.; Banerjee, B.; Lewis, D. W.; Imlach, J.

    1993-01-01

    A magnetic thrust bearing can be employed to take thrust loads in rotating machinery. The design and construction of a prototype magnetic thrust bearing for a high load per weight application is described. The theory for the bearing is developed. Fixtures were designed and the bearing was tested for load capacity using a universal testing machine. Various shims were employed to have known gap thicknesses. A comparison of the theory and measured results is presented.

  3. Results from tests, with van-mounted sensor, of magnetic leader cable for aircraft guidance during roll-out and turnoff

    NASA Technical Reports Server (NTRS)

    Young, J. C.; Bundick, W. T.; Irwin, S. H.

    1983-01-01

    Tests were conducted with a van mounted experimental magnetic leader cable sensor to evaluate its potential for measuring aircraft displacement and heading with respect to the leader cable during roll out and turnoff. Test results show that the system may be usable in measuring displacement but the heading measurement contains errors introduced by distortion of the magnetic field by the metal van or aircraft.

  4. Magnetic shielding and vacuum test for passive hydrogen masers

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.; Wolf, S. A.; Jacoby, A. B.; Jones, L. D.

    1982-01-01

    Vibration tests on high permeability magnetic shields used in the SAO-NRL Advanced Development Model (ADM) hydrogen maser were made. Magnetic shielding factors were measured before and after vibration. Preliminary results indicate considerable (25%) degradation. Test results on the NRL designed vacuum pumping station for the ADM hydrogen maser are also discussed. This system employs sintered zirconium carbon getter pumps to pump hydrogen plus small ion pumps to pump the inert gases. In situ activation tests and pumping characteristics indicate that the system can meet design specifications.

  5. Neuropsychology of selective attention and magnetic cortical stimulation.

    PubMed

    Sabatino, M; Di Nuovo, S; Sardo, P; Abbate, C S; La Grutta, V

    1996-01-01

    Informed volunteers were asked to perform different neuropsychological tests involving selective attention under control conditions and during transcranial magnetic cortical stimulation. The tests chosen involved the recognition of a specific letter among different letters (verbal test) and the search for three different spatial orientations of an appendage to a square (visuo-spatial test). For each test the total time taken and the error rate were calculated. Results showed that cortical stimulation did not cause a worsening in performance. Moreover, magnetic stimulation of the temporal lobe neither modified completion time in both verbal and visuo-spatial tests nor changed error rate. In contrast, magnetic stimulation of the pre-frontal area induced a significant reduction in the performance time of both the verbal and visuo-spatial tests always without an increase in the number of errors. The experimental findings underline the importance of the pre-frontal area in performing tasks requiring a high level of controlled attention and suggest the need to adopt an interdisciplinary approach towards the study of neurone/mind interface mechanisms.

  6. Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K

    NASA Astrophysics Data System (ADS)

    van Nugteren, J.; Kirby, G.; Bajas, H.; Bajko, M.; Ballarino, A.; Bottura, L.; Chiuchiolo, A.; Contat, P.-A.; Dhallé, M.; Durante, M.; Fazilleau, P.; Fontalva, A.; Gao, P.; Goldacker, W.; ten Kate, H.; Kario, A.; Lahtinen, V.; Lorin, C.; Markelov, A.; Mazet, J.; Molodyk, A.; Murtomäki, J.; Long, N.; Perez, J.; Petrone, C.; Pincot, F.; de Rijk, G.; Rossi, L.; Russenschuck, S.; Ruuskanen, J.; Schmitz, K.; Stenvall, A.; Usoskin, A.; Willering, G.; Yang, Y.

    2018-06-01

    This paper describes the standalone magnet cold testing of the high temperature superconducting (HTS) magnet Feather-M2.1-2. This magnet was constructed within the European funded FP7-EUCARD2 collaboration to test a Roebel type HTS cable, and is one of the first high temperature superconducting dipole magnets in the world. The magnet was operated in forced flow helium gas with temperatures ranging between 5 and 85 K. During the tests a magnetic dipole field of 3.1 T was reached inside the aperture at a current of 6.5 kA and a temperature of 5.7 K. These values are in agreement with the self-field critical current of the used SuperOx cable assembled with Sunam tapes (low-performance batch), thereby confirming that no degradation occurred during winding, impregnation, assembly and cool-down of the magnet. The magnet was quenched many tens of times by ramping over the critical current and no degradation nor training was evident. During the tests the voltage over the coil was monitored in the microvolt range. An inductive cancellation wire was used to remove the inductive component, thereby significantly reducing noise levels. Close to the quench current, drift was detected both in temperature and voltage over the coil. This drifting happens in a time scale of minutes and is a clear indication that the magnet has reached its limit. All quenches happened approximately at the same average electric field and thus none of the quenches occurred unexpectedly.

  7. Development and validation of a questionnaire evaluating patient anxiety during Magnetic Resonance Imaging: the Magnetic Resonance Imaging-Anxiety Questionnaire (MRI-AQ).

    PubMed

    Ahlander, Britt-Marie; Årestedt, Kristofer; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2016-06-01

    To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging- Anxiety Questionnaire. Questionnaires measuring patients' anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients' experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Psychometric cross-sectional study with test-retest design. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbach's alpha. Criterion-related validity, known-group validity and test-retest was calculated. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbach's alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  8. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  9. Performance improvement of magnetized coaxial plasma gun by magnetic circuit on a bias coil

    NASA Astrophysics Data System (ADS)

    Edo, Takahiro; Matsumoto, Tadafumi; Asai, Tomohiko; Kamino, Yasuhiro; Inomoto, Michiaki; Gota, Hiroshi

    2016-10-01

    A magnetized coaxial plasmoid accelerator has been utilized for compact torus (CT) injection to refuel into fusion reactor core plasma. Recently, CT injection experiments have been conducted on the C-2/C-2U facility at Tri Alpha Energy. In the series of experiments successful refueling, i.e. increased particle inventory of field-reversed configuration (FRC) plasma, has been observed. In order to improve the performance of CT injector and to refuel in the upgraded FRC device, called C-2W, with higher confinement magnetic field, magnetic circuit consisting of magnetic material onto a bias magnetic coil is currently being tested at Nihon University. Numerical work suggests that the optimized bias magnetic field distribution realizes the increased injection velocity because of higher conversion efficiency of Lorenz self force to kinetic energy. Details of the magnetic circuit design as well as results of the test experiment and field calculations will be presented and discussed.

  10. Approach to magnetic neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Anatoly A.; Podoynitsyn, Sergey N.; Filippov, Victor I.

    2005-11-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area ofmore » tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity.« less

  11. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Esa, Mohammad Faris Mohammad; Rahim, Faszly; Hassan, Ibrahim Haji; Hanifah, Sharina Abu

    2015-09-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  12. Larp Nb3Sn Quadrupole Magnets for the Lhc Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Ferracin, P.

    2010-04-01

    The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb3Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: 1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, 2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos 2θ coils, and 3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that Nb3Sn technology is mature for use in high energy accelerators. After an overview of design features and test result of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos 2θ coils, and the of the qualification support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb3Sn superconducting, magnets, is presented.

  13. Testing of Prototype Magnetic Suspension Cryogenic Transfer Line

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.

    2006-04-01

    A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.

  14. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1974-01-01

    Based on the premises that (1) magnetic suspension techniques can play a useful role in large-scale aerodynamic testing and (2) superconductor technology offers the only practical hope for building large-scale magnetic suspensions, an all-superconductor three-component magnetic suspension and balance facility was built as a prototype and was tested successfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities have been made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  15. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities. [cryogenic traonics wind tunnel

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    Based on the premises that magnetic suspension techniques can play a useful role in large scale aerodynamic testing, and that superconductor technology offers the only practical hope for building large scale magnetic suspensions, an all-superconductor 3-component magnetic suspension and balance facility was built as a prototype and tested sucessfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities at Langley Research Center were made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  16. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  17. Characterizing permanent magnet blocks with Helmholtz coils

    NASA Astrophysics Data System (ADS)

    Carnegie, D. W.; Timpf, J.

    1992-08-01

    Most of the insertion devices to be installed at the Advanced Photon Source will utilize permanent magnets in their magnetic structures. The quality of the spectral output is sensitive to the errors in the field of the device which are related to variations in the magnetic properties of the individual blocks. The Advanced Photon Source will have a measurement facility to map the field in the completed insertion devices and equipment to test and modify the magnetic strength of the individual magnet blocks. One component of the facility, the Helmholtz coil permanent magnet block measurement system, has been assembled and tested. This system measures the total magnetic moment vector of a block with a precision better than 0.01% and a directional resolution of about 0.05°. The design and performance of the system will be presented.

  18. Paleomagnetism studies at micrometer scales using quantum diamond microscopy

    NASA Astrophysics Data System (ADS)

    Kehayias, P.; Fu, R. R.; Glenn, D. R.; Lima, E. A.; Men, M.; Merryman, H.; Walsworth, A.; Weiss, B. P.; Walsworth, R. L.

    2017-12-01

    Traditional paleomagnetic experiments generally measure the net magnetic moment of cm-size rock samples. Field tests such as the conglomerate and fold tests, based on the measurements of such cm-size samples, are frequently used to constrain the timing of magnetization. However, structures permitting such field tests may occur at the micron scale in geological samples, precluding paleomagnetic field tests using traditional bulk measurement techniques. The quantum diamond microscope (QDM) is a recently developed technology that uses magnetically-sensitive nitrogen-vacancy (NV) color centers in diamond for magnetic mapping with micron resolution [1]. QDM data were previously used to identify the ferromagnetic carriers in chondrules and terrestrial zircons and to image the magnetization distribution in multi-domain dendritic magnetite. Taking advantage of new hardware components, we have developed an optimized QDM setup with a 1E-15 J/T moment sensitivity over a measurement area of several millimeters squared. The improved moment sensitivity of the new QDM setup permits us to image natural remanent magnetization (NRM) in weakly magnetized samples, thereby enabling paleomagnetic field tests at the millimeter scale. We will present recent and ongoing QDM measurements of (1) the Renazzo class carbonaceous (CR) chondrite GRA 95229 and (2) 1 cm scale folds in a post-Bitter Springs Stage ( 790 Ma) carbonate from the Svanbergfjellet Formation (Svalbard). Results from the GRA 95229 micro-conglomerate test, performed on single chondrules containing dusty olivine metals crystallized during chondrule formation, hold implications for the preservation of nebular magnetic field records. The Svanbergfjellet Formation micro-fold test can help confirm the primary origin of a paleomagnetic pole at 790 Ma, which has been cited as evidence for rapid true polar wander in the 820-790 Ma interval. In addition, we will detail technical aspects of the new QDM setup, emphasizing key elements that enable improved sensitivity. [1] D. R. Glenn et al., arXiv:1707.06714 (2017).

  19. A Comprehensive Comparison of Relativistic Particle Integrators

    NASA Astrophysics Data System (ADS)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  20. The Common Cryogenic Test Facility for the ATLAS Barrel and End-Cap Toroid Magnets

    NASA Astrophysics Data System (ADS)

    Delruelle, N.; Haug, F.; Junker, S.; Passardi, G.; Pengo, R.; Pirotte, O.

    2004-06-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requirements of the magnets in the various operating scenarios.

  1. Structural behavior of the Bitter plate tf magnet for the Zephyr ignition test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrov, E.S.; Becker, H.

    1981-01-01

    This paper discusses methods and results of the computer structural analysis of the Bitter plate toroidal field magnet design for the ZEPHYR Ignition Test Reactor. The magnet provides a field of 7.06 T at the center of the bore which is 1.76 m from the major toroidal axis. The ignited plasma is located at a major radius of 1.36 m where the magnetic field is 9.11 T. The plasma is moved to this final position following compression in the major radius. The horizontal bore of the magnet is 1.8 m.

  2. Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…

  3. INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER (CENTER) ON WHICH WAS WAS MOUNTED MAGNETIC MEASURING INSTRUMENTS FOR TESTING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  4. On Magnetic Flux Trapping by Surface Superconductivity

    NASA Astrophysics Data System (ADS)

    Podolyak, E. R.

    2018-03-01

    The magnetic flux trapping by surface superconductivity is considered. The stability of the state localized at the cylindrical sample surface upon a change in the external magnetic field is tested. It is shown that as the magnetic field decreases, the sample acquires a positive magnetic moment due to magnetic flux trapping; i.e., the magnetization curve of surface superconductivity is "paramagnetic" by nature.

  5. Construction of CHESS compact undulator magnets at Kyma

    NASA Astrophysics Data System (ADS)

    Temnykh, Alexander B.; Lyndaker, Aaron; Kokole, Mirko; Milharcic, Tadej; Pockar, Jure; Geometrante, Raffaella

    2015-05-01

    In 2014 KYMA S.r.l. has built two CHESS Compact Undulator (CCU) magnets that are at present installed and successfully operate at the Cornell Electron Storage Ring. This type of undulator was developed for upgrade of Cornell High Energy Synchrotron Source beam-lines, but it can be used elsewhere as well. CCU magnets are compact, lightweight, cost efficient and in-vacuum compatible. They are linearly polarized undulators and have a fixed gap. Magnetic field tuning is achieved by phasing (shifting) top magnetic array relative bottom. Two CCUs constructed by KYMA S.r.l. have 28.4 mm period, 6.5 mm gap, 0.93 T peak field. Magnetic structure is of PPM type, made with NdFeB (40UH grade) permanent magnet material. Transitioning from the laboratory to industrial environment for a novel design required additional evaluation, design adjusting and extensive testing. Particular attention was given to the soldering technique used for fastening of the magnetic blocks to holders. This technique had thus far never been used before for undulator magnet construction by industry. The evaluation included tests of different types of soldering paste, measurements of strength of solder and determining the deformations of the soldered magnet and holder under simulated loading forces. This paper focuses on critical features of the CCU design, results of the soldering technique testing and the data regarding permanent magnets magnetization change due to soldering. In addition it deals with optimization-assisted assembly and the performance of the assembled devices and assesses some of the results of the CCU magnets operation at CESR.

  6. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong; Caspi, Shlomo; Dietderich, Daniel R.; Ghiorso, William B.; Gourlay, Stephen A.; Higley, Hugh C.; Lin, Andy; Prestemon, Soren O.; van der Laan, Danko; Weiss, Jeremy D.

    2018-04-01

    REBCO coated conductors maintain a high engineering current density above 16 T at 4.2 K. That fact will significantly impact markets of various magnet applications including high-field magnets for high-energy physics and fusion reactors. One of the main challenges for the high-field accelerator magnet is the use of multi-tape REBCO cables with high engineering current density in magnet development. Several approaches developing high-field accelerator magnets using REBCO cables are demonstrated. In this paper, we introduce an alternative concept based on the canted cos θ (CCT) magnet design using conductor on round core (CORC®) wires that are wound from multiple REBCO tapes with a Cu core. We report the development and test of double-layer three-turn CCT dipole magnets using CORC® wires at 77 and 4.2 K. The scalability of the CCT design allowed us to effectively develop and demonstrate important magnet technology features such as coil design, winding, joints and testing with minimum conductor lengths. The test results showed that the CCT dipole magnet using CORC® wires was a viable option in developing a REBCO accelerator magnet. One of the critical development needs is to increase the engineering current density of the 3.7 mm diameter CORC® wire to 540 A mm-2 at 21 T, 4.2 K and to reduce the bending radius to 15 mm. This would enable a compact REBCO dipole insert magnet to generate a 5 T field in a background field of 16 T at 4.2 K.

  7. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Chandrasekaran, Saravan Kumar; Crawford, Anthony

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and tomore » keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.« less

  8. Diagnostic value of three-dimensional magnetic resonance imaging of inner ear after intratympanic gadolinium injection, and clinical application of magnetic resonance imaging scoring system in patients with delayed endolymphatic hydrops.

    PubMed

    Gu, X; Fang, Z-M; Liu, Y; Lin, S-L; Han, B; Zhang, R; Chen, X

    2014-01-01

    Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging of the inner ear after intratympanic injection of gadolinium, together with magnetic resonance imaging scoring of the perilymphatic space, were used to investigate the positive identification rate of hydrops and determine the technique's diagnostic value for delayed endolymphatic hydrops. Twenty-five patients with delayed endolymphatic hydrops underwent pure tone audiometry, bithermal caloric testing, vestibular-evoked myogenic potential testing and three-dimensional magnetic resonance imaging of the inner ear after bilateral intratympanic injection of gadolinium. The perilymphatic space of the scanned images was analysed to investigate the positive identification rate of endolymphatic hydrops. According to the magnetic resonance imaging scoring of the perilymphatic space and the diagnostic standard, 84 per cent of the patients examined had endolymphatic hydrops. In comparison, the positive identification rates for vestibular-evoked myogenic potential and bithermal caloric testing were 52 per cent and 72 per cent respectively. Three-dimensional magnetic resonance imaging after intratympanic injection of gadolinium is valuable in the diagnosis of delayed endolymphatic hydrops and its classification. The perilymphatic space scoring system improved the diagnostic accuracy of magnetic resonance imaging.

  9. Cryogenic System for J-Parc Neutrino Superconducting Magnet Beam LINE—DESIGN, Construction and Performance Test

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Ohhata, H.; Okamura, T.; Suzuki, S.; Araoka, O.; Ogitsu, T.; Kimura, N.; Nakamoto, T.; Sasaki, K.; Kaneda, S.; Takahashi, T.; Ito, A.; Nagami, M.; Kumaki, T.; Nakashima, T.

    2010-04-01

    A helium cryogenic plant has been constructed in the proton accelerator research complex, J-PARC, to cool a string of superconducting magnets in the neutrino beam line since 2005. It consists of a screw compressor with a capacity of 160 g/s at 1.4 MPa, a 1.5 kW refrigerator, a centrifugal SHE pump with a flow rate of 300 g/s and peripherals. After system integration, performance tests have been carried out. In a preliminary cooling test without magnets, the cryogenic system attained a cooling capacity of 522 W by circulating supercritical helium flow of 300 g/s at 0.4 MPa and at 4.5 K. Afterwards a full system test with the magnets was carried out. The magnets were successfully charged up to an ultimate current of 5000 A beyond a nominal current of 4400 A. This paper describes the plant design and the result of performance measurements.

  10. A Method for Testing the Dynamic Accuracy of Micro-Electro-Mechanical Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) Sensors for Inertial Navigation Systems (INS) and Human Motion Tracking Applications

    DTIC Science & Technology

    2010-06-01

    32 2. Low-Cost Framework........................................................................33 3. Low Magnetic Field ...that have a significant impact on the magnetic field measured by a MARG, which could potentially add errors that are due entirely to the test...minimize the impact on the local magnetic field , and the apparatus was made as rigidly as possible using 2 x 4s to minimize any out of plane motions that

  11. BETA (Bitter Electromagnet Testing Apparatus) Design and Testing

    NASA Astrophysics Data System (ADS)

    Bates, Evan; Birmingham, William; Rivera, William; Romero-Talamas, Carlos

    2016-10-01

    BETA is a 1T water cooled Bitter-type magnetic system that has been designed and constructed at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County to serve as a prototype of a scaled 10T version. Currently the system is undergoing magnetic, thermal and mechanical testing to ensure safe operating conditions and to prove analytical design optimizations. These magnets will function as experimental tools for future dusty plasma based and collaborative experiments. An overview of design methods used for building a custom made Bitter magnet with user defined experimental constraints is reviewed. The three main design methods consist of minimizing the following: ohmic power, peak conductor temperatures, and stresses induced by Lorentz forces. We will also discuss the design of BETA which includes: the magnet core, pressure vessel, cooling system, power storage bank, high powered switching system, diagnostics with safety cutoff feedback, and data acquisition (DAQ)/magnet control Matlab code. Furthermore, we present experimental data from diagnostics for validation of our analytical preliminary design methodologies and finite element analysis calculations. BETA will contribute to the knowledge necessary to finalize the 10 T magnet design.

  12. Magnetic materials selection for static inverter and converter transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1973-01-01

    A program to study magnetic materials is described for use in spacecraft transformers used in static inverters, converters, and transformer-rectifier supplies. Different magnetic alloys best suited for high-frequency and high-efficiency applications were comparatively investigated together with an investigation of each alloy's inherent characteristics. The materials evaluated were the magnetic alloys: (1) 50% Ni, 50% Fe; (2) 79% Ni, 17% Fe, 4% Mo; (3) 48% Ni, 52% Fe; (4) 78% Ni, 17% Fe, 5% Mo; and (5) 3% Si, 97% Fe. Investigations led to the design of a transformer with a very low residual flux. Tests were performed to determine the dc and ac magnetic properties at 2400 Hz using square-wave excitation. These tests were performed on uncut cores, which were then cut for comparison of the gapped and ungapped magnetic properties. When the data of many transformers in many configurations were compiled the optimum transformer was found to be that with the lowest residual flux and a small amount of air gap in the magnetic material. The data obtained from these tests are described, and the potential uses for the materials are discussed.

  13. A microprocessor-based table lookup approach for magnetic bearing linearization

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Miller, J. B.

    1981-01-01

    An approach for producing a linear transfer characteristic between force command and force output of a magnetic bearing actuator without flux biasing is presented. The approach is microprocessor based and uses a table lookup to generate drive signals for the magnetic bearing power driver. An experimental test setup used to demonstrate the feasibility of the approach is described, and test results are presented. The test setup contains bearing elements similar to those used in a laboratory model annular momentum control device.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji; Rahim, Faszly

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties ofmore » specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.« less

  15. Three-dimensional photogrammetric measurement of magnetic field lines in the WEGA stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewelow, Peter; Braeuer, Torsten; Otte, Matthias

    2009-12-15

    The magnetic confinement of plasmas in fusion experiments can significantly degrade due to perturbations of the magnetic field. A precise analysis of the magnetic field in a stellarator-type experiment utilizes electrons as test particles following the magnetic field line. The usual fluorescent detector for this electron beam limits the provided information to two-dimensional cut views at certain toroidal positions. However, the technique described in this article allows measuring the three-dimensional structure of the magnetic field by means of close-range photogrammetry. After testing and optimizing the main diagnostic components, measurements of the magnetic field lines were accomplished with a spatial resolutionmore » of 5 mm. The results agree with numeric calculations, qualifying this technique as an additional tool to investigate magnetic field configurations in a stellarator. For a possible future application, ways are indicated on how to reduce experimental error sources.« less

  16. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  17. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  18. Method and apparatus for using magneto-acoustic remanence to determine embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Namkung, Min (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1992-01-01

    A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component are presented. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets and then by turning the magnets off and observing the residual magnetic induction.

  19. Cryogenic Fluid Film Bearing Tester Development Study

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph K. (Editor); Murphy, Brian T.; Hawkins, Lawrence A.

    1993-01-01

    Conceptual designs were developed for the determination of rotordynamic coefficients of cryogenic fluid film bearings. The designs encompassed the use of magnetic and conventional excitation sources as well as the use of magnetic bearings as support bearings. Test article configurations reviewed included overhung, floating housing, and fixed housing. Uncertainty and forced response analyses were performed to assess quality of data and suitability of each for testing a variety of fluid film bearing designs. Development cost and schedule estimates were developed for each design. Facility requirements were reviewed and compared with existing MSFC capability. The recommended configuration consisted of a fixed test article housing centrally located between two magnetic bearings. The magnetic bearings would also serve as the excitation source.

  20. Test Bench for Coupling and Shielding Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Esteve, V.; Dede, E.; Sanchis, E.; Maset, E.; Ferreres, A.; Ejea, J. B.; Cases, C.

    2016-05-01

    This paper describes a test bench for training purposes, which uses a magnetic field generator to couple this magnetic field to a victim circuit. It can be very useful to test for magnetic susceptibility as well. The magnetic field generator consists of a board, which generates a variable current that flows into a printed circuit board with spiral tracks (noise generator). The victim circuit consists of a coaxial cable concentric with the spiral tracks and its generated magnetic field. The coaxial cable is part of a circuit which conducts a signal produced by a signal generator and a resistive load. In the paper three cases are studied. First, the transmitted signal from the signal generator uses the central conductor of the coaxial cable and the shield is floating. Second, the shield is short circuited at its ends (and thus forming a loop). Third, when connecting the shield in series with the inner conductor and therefore having the current flowing into the coax via the inner conductor and returning via the shield.

  1. Nondestructive Testing Magnetic Particle RQA/M1-5330.11.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of programmed instruction handbooks, prepared by the U. S. space program, home study material is presented in this volume concerning familiarization and orientation on magnetic particle properties. The subject is presented under the following headings: Magnetism, Producing a Magnetic Field, Magnetizing Currents, Materials and…

  2. 36 CFR 1236.28 - What additional requirements apply to the selection and maintenance of electronic records storage...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., contact phone number (301) 975-6478. (d) Agencies must test magnetic computer tape media no more than 6... retention. This test should verify that the magnetic computer tape media are free of permanent errors and in... magnetic computer tape media containing permanent and unscheduled records to identify any loss of data and...

  3. 40 CFR 63.3960 - By what date must I conduct performance tests and other initial compliance demonstrations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance date specified in § 63.3883. For magnet wire coating operations you may, with approval, conduct a performance test of one representative magnet wire coating machine for each group of identical or very similar magnet wire coating machines. (2) You must develop and begin implementing the work practice plan required...

  4. MAGNET ENGINEERING AND TEST RESULTS OF THE HIGH FIELD MAGNET R AND D PROGRAM AT BNL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    COZZOLINO,J.; ANERELLA,M.; ESCALLIER,J.

    2002-08-04

    The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has been carrying out design, engineering, and technology development of high performance magnets for future accelerators. High Temperature Superconductors (HTS) play a major role in the BNL vision of a few high performance interaction region (IR) magnets that would be placed in a machine about ten years from now. This paper presents the engineering design of a ''react and wind'' Nb{sub 3}Sn magnet that will provide a 12 Tesla background field on HTS coils. In addition, the coil production tooling as well as the most recent 10-turn R&D coil test resultsmore » will be discussed.« less

  5. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  6. Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere

    NASA Astrophysics Data System (ADS)

    Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit

    2015-08-01

    Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.

  7. Magnetic and electric bulge-test instrument for the determination of coupling mechanical properties of functional free-standing films and flexible electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zejun; Li, Faxin; Pei, Yongmao, E-mail: peiym@pku.edu.cn, E-mail: fangdn@pku.edu.cn

    2014-06-15

    For the first time a novel multi-field bulge-test instrument which enables measurements of the biaxial mechanical properties and electro-magnetic-mechanical coupling effect of free-standing films in external magnetic/electric fields was proposed. The oil pressure was designed with two ranges, 0–1 MPa for elastic small deformation and 0–7 MPa for plastic/damage large deformation. A magnetic field that was horizontal and uniform in the film plane was supplied by a hollow cylindrical magnet. The magnitude could be changed from 0 to 10 000 Oe by adjusting the position of the testing film. Meanwhile, an electric field applied on the film was provided by amore » voltage source (Maximum voltage: 1000 V; Maximum current: 1 A). Various signals related to deformation, mechanical loading, magnetic field, and electric field could be measured simultaneously without mutual interference, which was confirmed by the coincidence of the measured P-H curves for titanium (Ti)/nickel (Ni) specimens with/without external fields. A hardening phenomenon under magnetic/electric fields was observed for Ni and lead zirconate titanate specimens. The multi-field bulge-test instrument will provide a powerful research tool to study the deformation mechanism of functional films and flexible electronics in the coupling field.« less

  8. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    NASA Technical Reports Server (NTRS)

    Abdelnour, Z.; Mildrun, H.; Strant, K.

    1981-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.

  9. Results of aircraft open-loop tests of an experimental magnetic leader cable system for guidance during roll-out and turnoff

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas; Middleton, David B.; Poole, William L.

    1990-01-01

    An experimental magnetic leader cable (MLC) system designed to measure aircraft lateral displacement from centerline and heading relative to centerline during rollout, turnoff, and taxi was tested at NASA's Wallops Flight Facility using NASA's Transport System Research Vehicle (TSRV), a modified B-737. The MLC system consisted of ground equipment that produced a magnetic field about a wire along runway centerline and airborne equipment that detected the strength and direction of this field and computed displacement and heading. Results of these tests indicate that estimates of aircraft displacement from centerline produced by the magnetic leader cable system using either of the two algorithms appear to be adequate for use by an automatic control system during rollout, turnoff, and taxi. Estimates of heading, however, are not sufficiently accurate for use, probably because of distortion of the magnetic field by the metal aircraft.

  10. A study: Effect of Students Peer Assisted Learning on Magnetic Field Achievement

    NASA Astrophysics Data System (ADS)

    Mueanploy, Wannapa

    2016-04-01

    This study is the case study of Physic II Course for students of Pathumwan Institute of Technology. The purpose of this study is: 1) to develop cooperative learning method of peer assisted learning (PAL), 2) to compare the learning achievement before and after studied magnetic field lesson by cooperative learning method of peer assisted learning. The population was engineering students of Pathumwan Institute of Technology (PIT’s students) who registered Physic II Course during year 2014. The sample used in this study was selected from the 72 students who passed in Physic I Course. The control groups learning magnetic fields by Traditional Method (TM) and experimental groups learning magnetic field by method of peers assisted learning. The students do pretest before the lesson and do post-test after the lesson by 20 items achievement tests of magnetic field. The post-test higher than pretest achievement significantly at 0.01 level.

  11. Assessment of Alphamagnetic Spectrometer (AMS) Upper Experiment Structural Configuration Shielding Effectiveness Associated with Change from Cryo-Cooled Magnet to Permanent Magnet

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2012-01-01

    In the spring of 2010, the Alpha Magnetic Spectrometer 2 (AMS-02) underwent a series of system level electromagnetic interference control measurements, followed by thermal vacuum testing. Shortly after completion of the thermal vacuum testing, the project decided to remove the cryogenically cooled superconducting magnet, and replace it with the original permanent magnet design employed in the earlier AMS- 01 assembly. Doing so necessitated several structural changes, as well as removal or modification of numerous electronic and thermal control devices and systems. At this stage, the project was rapidly approaching key milestone dates for hardware completion and delivery for launch, and had little time for additional testing or assessment of any impact to the electromagnetic signature of the AMS-02. Therefore, an analytical assessment of the radiated emissions behavioural changes associated with the system changes was requested.

  12. Magnetic Suspension for Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter

    1998-01-01

    NASA Lewis Research Center's Dynamic Spin Rig, located in Building 5, Test Cell CW-18, is used to test turbomachinery blades and components by rotating them in a vacuum chamber. A team from Lewis' Machine Dynamics Branch successfully integrated a magnetic bearing and control system into the Dynamic Spin Rig. The magnetic bearing worked very well both to support and shake the shaft. It was demonstrated that the magnetic bearing can transmit more vibrational energy into the shaft and excite some blade modes to larger amplitudes than the existing electromagnetic shakers can.

  13. Feasibility study of determining axial stress in ferromagnetic bars using reciprocal amplitude of initial differential susceptibility obtained from static magnetization by permanent magnets

    NASA Astrophysics Data System (ADS)

    Deng, Dongge; Wu, Xinjun

    2018-03-01

    An electromagnetic method for determining axial stress in ferromagnetic bars is proposed. In this method, the tested bar is under the static magnetization provided by permanent magnets. The tested bar do not have to be magnetized up to the technical saturation because reciprocal amplitude of initial differential susceptibility (RAIDS) is adopted as the feature parameter. RAIDS is calculated from the radial magnetic flux density Br Lo = 0.5 at the Lift-off Lo = 0.5 mm, radial magnetic flux density Br Lo = 1 at the Lift-off Lo = 1 mm and axial magnetic flux density Bz Lo = 1 at the Lift-off Lo = 1 mm from the surface of the tested bar. Firstly, the theoretical derivation of RAIDS is carried out according to Gauss' law for magnetism, Ampere's Law and the Rayleigh relation in Rayleigh region. Secondly, the experimental system is set up for a 2-meter length and 20 mm diameter steel bar. Thirdly, an experiment is carried out on the steel bar to analyze the relationship between the obtained RAIDS and the axial stress. Experimental results show that the obtained RAIDS decreases almost linearly with the increment of the axial stress inside the steel bar in the initial elastic region. The proposed method has the potential to determine tensile axial stress in the slender cylindrical ferromagnetic bar.

  14. Fabrication and Test of an Optical Magnetic Mirror

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.; Roman, Patrick A.; Shiri, Shahram; Wollack, Edward J.; Roy, Madhumita

    2011-01-01

    Traditional mirrors at optical wavelengths use thin metalized or dielectric layers of uniform thickness to approximate a perfect electric field boundary condition. The electron gas in such a mirror configuration oscillates in response to the incident photons and subsequently re-emits fields where the propagation and electric field vectors have been inverted and the phase of the incident magnetic field is preserved. We proposed fabrication of sub-wavelength-scale conductive structures that could be used to interact with light at a nano-scale and enable synthesis of the desired perfect magnetic-field boundary condition. In a magnetic mirror, the interaction of light with the nanowires, dielectric layer and ground plate, inverts the magnetic field vector resulting in a zero degree phase shift upon reflection. Geometries such as split ring resonators and sinusoidal conductive strips were shown to demonstrate magnetic mirror behavior in the microwave and then in the visible. Work to design, fabricate and test a magnetic mirror began in 2007 at the NASA Goddard Space Flight Center (GSFC) under an Internal Research and Development (IRAD) award Our initial nanowire geometry was sinusoidal but orthogonally asymmetric in spatial frequency, which allowed clear indications of its behavior by polarization. We report on the fabrication steps and testing of magnetic mirrors using a phase shifting interferometer and the first far-field imaging of an optical magnetic mirror.

  15. Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field.

    PubMed

    Shakhparonov, Vladimir V; Ogurtsov, Sergei V

    2017-01-01

    Orientation by magnetic cues appears to be adaptive during animal migrations. Whereas the magnetic orientation in birds, mammals, and urodele amphibians is being investigated intensively, the data about anurans are still scarce. This study tests whether marsh frogs could determine migratory direction between the breeding pond and the wintering site by magnetic cues in the laboratory. Adult frogs (N = 32) were individually tested in the T-maze 127 cm long inside the three-axis Helmholtz coil system (diameter 3 m). The arms of the maze were positioned parallel to the natural migratory route of this population when measured in accordance with magnetic field. The frogs were tested under two-motivational conditions mediated by temperature/light regime: the breeding migratory state and the wintering state. The frogs' choice in a T-maze was evident only when analyzed in accordance with the direction of the magnetic field: they moved along the migratory route to the breeding pond and followed the reversion of the horizontal component of the magnetic field. This preference has been detected in both sexes only in the breeding migratory state. This suggests that adult ranid frogs can obtain directional information from the Earth's magnetic field as was shown earlier in urodeles and anuran larvae.

  16. Characterizing the magnetic memory signals on the surface of plasma transferred arc cladding coating under fatigue loads

    NASA Astrophysics Data System (ADS)

    Huang, Haihong; Han, Gang; Qian, Zhengchun; Liu, Zhifeng

    2017-12-01

    The metal magnetic memory signals were measured during dynamic tension tests on the surfaces of the cladding coatings by plasma transferred arc (PTA) welding and the 0.45% C steel. Results showed that the slope of the normal component Hp(y) of magnetic signal and the average value of the tangential component Hp(x) reflect the magnetization of the specimens. The signals increased sharply in the few initial cycles; and then fluctuated around a constant value during fatigue process until fracture. For the PTA cladding coating, the slope of Hp(y) was steeper and the average of Hp(x) was smaller, compared with the 0.45% C steel. The hysteresis curves of cladding layer, bonding layer and substrate were measured by vibrating sample magnetometer testing, and then saturation magnetization, initial susceptibility and coercivity were further calculated. The stress-magnetization curves were also plotted based on the J-A model, which showed that the PTA cladding coating has smaller remanence and coercivity compared with the 0.45% C steel. The microstructures of cladding coating confirmed that the dendritic structure and second-phase of alloy hinder the magnetic domain motion, which was the main factor influencing the variation of magnetic signal during the fatigue tests.

  17. Nondestructive examination of decarburised layer of steels using eddy current and magnetic Barkhausen noise testing techniques

    NASA Astrophysics Data System (ADS)

    Falahat, S.; Ghanei, S.; Kashefi, M.

    2018-04-01

    Eddy current and Barkhausen noise nondestructive testing techniques were considered to evaluate the magnetic properties of the decarburised steels as a function of microstructure. To make changes in decarburising depth, carbon steel samples were austenitised at 890 °C for 120-270 min. Considering different decarburised depths, height, position and width of the noise profiles were extracted in order to analyse the magnetic Barkhausen noise measurements. Next, the eddy current test was performed to detect the changes in the microstructure through decarburising of the steel taking into account the impedance variations. According to the results, both techniques allow us to detect changes in the magnetic properties of the decarburised steels and link them with their microstructural changes, nondestructively.

  18. ''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marston, P.G.; Iwasa, Y.; Thome, R.J.

    Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test ofmore » that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs.« less

  19. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.

    PubMed

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-21

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  20. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    PubMed Central

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-01

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety. PMID:28117721

  1. Corrosion Protection of Nd-Fe Magnets via Phophatization, Silanization and Electrostatic Spraying with Organic Resin Composite Coatings

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Li, Jingjie; Li, Musen; Ge, Shengsong; Wang, Xiuchun; Ding, Kaihong; Cui, Shengli; Sun, Yongcong

    2014-09-01

    Nd-Fe-B permanent magnets possess excellent properties. However, they are highly sensitive to the attack of corrosive environment. The aim of this work is to improve the corrosion resistance of the magnets by phosphatization, silanization, and electrostatic spraying with organic resin composite coatings. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectrometer (EDS) tests showed that uniform phosphate conversion coatings and spray layers were formed on the surface of the Nd-Fe-B magnets. Neutral salt spray tests exhibited that, after treated by either phosphating, silanization or electrostatic spraying, the protectiveness of Nd-Fe-B alloys was apparently increased. And corrosion performance of magnets treated with silane only was slightly inferior to those of phosphatized ones. However, significant improvement in corrosion protection was achieved after two-step treatments, i.e. by top-coating spray layer with phosphate or silane films underneath. Grid test indicated that the phosphate and silane coating were strongly attached to the substrate while silane film was slightly weaker than the phosphate-treated ones. Magnetic property analysis revealed phosphatization, silanization, and electrostatic spraying caused decrease in magnetism, but silanization had the relatively smaller effect.

  2. Compact Undulator for the Cornell High Energy Synchrotron Source: Design and Beam Test Results

    NASA Astrophysics Data System (ADS)

    Temnykh, A.; Dale, D.; Fontes, E.; Li, Y.; Lyndaker, A.; Revesz, P.; Rice, D.; Woll, A.

    2013-03-01

    We developed, built and beam tested a novel, compact, in-vacuum undulator magnet based on an adjustable phase (AP) scheme. The undulator is 1 m long with a 5mm gap. It has a pure permanent magnet structure with 24.4mm period and 1.1 Tesla maximum peak field. The device consists of two planar magnet arrays mounted on rails inside of a rectangular box-like frame with 156 mm × 146 mm dimensions. The undulator magnet is enclosed in a 273 mm (10.75") diameter cylindrical vacuum vessel with a driver mechanism placed outside. In May 2012 the CHESS Compact Undulator (CCU) was installed in Cornell Electron Storage Ring and beam tested. During four weeks of dedicated run we evaluated undulator radiation properties as well as magnetic, mechanical and vacuum properties of the undulator magnet. We also studied the effect of the CCU on storage ring beam. The spectral characteristics and intensity of radiation were found to be in very good agreement with expected. The magnet demonstrated reproducibility of undulator parameter K at 1.4 × 10-4 level. It was also found that the undulator K. parameter change does not affect electron beam orbit and betatron tunes.

  3. Cryogenic Testing of High Current By-Pass Diode Stacks for the Protection of the Superconducting Magnets in the LHC

    NASA Astrophysics Data System (ADS)

    Gharib, A.; Hagedorn, D.; Della Corte, A.; Fiamozzi Zignani, C.; Turtu, S.; Brown, D.; Rout, C.

    2004-06-01

    For the protection of the LHC superconducting magnets, about 2100 specially developed by-pass diodes were manufactured by DYNEX SEMICONDUCTOR LTD (Lincoln, GB) and about 1300 of these diodes were mounted into diode stacks and submitted to tests at cryogenic temperatures. To date about 800 dipole diode stacks and about 250 quadrupole diode stacks for the protection of the superconducting lattice dipole and lattice quadrupole magnets have been assembled at OCEM (Bologna,Italy) and successfully tested in liquid helium at ENEA (Frascati, Italy). This report gives an overview of the test results obtained so far. After a short description of the test installations and test procedures, a statistical analysis is presented for test data during diode production as well as for the performance of the diode stacks during testing in liquid helium, including failure rates and degradation of the diodes.

  4. Universal control and measuring system for modern classic and amorphous magnetic materials single/on-line strip testers

    NASA Astrophysics Data System (ADS)

    Zemánek, Ivan; Havlíček, Václav

    2006-09-01

    A new universal control and measuring system for classic and amorphous soft magnetic materials single/on-line strip testing has been developed at the Czech Technical University in Prague. The measuring system allows to measure magnetization characteristic and specific power losses of different tested materials (strips) at AC magnetization of arbitrary magnetic flux density waveform at wide range of frequencies 20 Hz-20 kHz. The measuring system can be used for both single strip testing in laboratories and on-line strip testing during the production process. The measuring system is controlled by two-stage master-slave control system consisting of the external PC (master) completed by three special A/D measuring plug-in boards, and local executing control unit (slave) with one-chip microprocessor 8051, connected with PC by the RS232 serial line. The "user friendly" powerful control software implemented on the PC and the effective program code for the microprocessor give possibility for full automatic measurement with high measuring power and high measuring accuracy.

  5. Summary of Test Results of MQXFS1 - The First Short Model 150 mm Aperture $$Nb_3Sn$$ Quadrupole for the High-Luminosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynev, S.; et al.

    The development ofmore » $$Nb_3Sn$$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.« less

  6. Status of MSBS Study at NAL in 1995

    NASA Technical Reports Server (NTRS)

    Sawada, Hideo; Suenaga, Hisasi; Kunimasu, Tetuya; Kohno, Takashi

    1996-01-01

    Magnetic field intensity and currents passing through the coils of the National Aerospace Laboratory (NAL) 1O cm Magnetic Suspension and Balance System (MSBS) were measured while a cylindrical model was oscillated along x,y,z and also about y and z axes, respectively. The model was made of alnico 5 and was 8 mm in diameter and 60 mm long. Two kinds of tests were carried out. Amplitude of the oscillation was varied at a frequency of 10 Hz. Frequency was varied from 1 to 50 Hz in the other test. Results of the tests show that the relation between coil currents and magnetic force acting on the model is affected by frequency. They also show that the relation between measured magnetic field intensity and the force in vertical direction is independent of the frequency below 30 Hz. Using the measured magnetic field intensity, the vertical force can be evaluated at the MSBS instantaneously when a model moves at frequencies below 30 Hz. A static drag force calibration test was carried out at the 60 cm MSBS. Obtained relationships between measured drag coil currents and loads shows large hysteresis.

  7. Using external magnet guidance and endoscopically placed magnets to create suture-free gastro-enteral anastomoses.

    PubMed

    Myers, Christopher; Yellen, Benjamin; Evans, John; DeMaria, Eric; Pryor, Aurora

    2010-05-01

    To facilitate endolumenal and natural orifice procedures, this study evaluated a novel technique using external and endoscopically placed magnets to create suture-free gastroenteral anastomoses. Seven anesthetized adult swine underwent endoscopic placement of magnets into the small bowel and stomach. Using external magnets, the endoscopically placed internal magnets were brought into opposition under endoscopic view. After 1-2 weeks, the pigs were killed and analyzed. At laparotomy and under sterile conditions, peritoneal cultures were obtained. The anastomoses were evaluated endoscopically and tested using an air insufflation test. Finally, the anastomoses were resected and evaluated microscopically. The average operative time for endoscopic placement of the magnets was 34.3 +/- 14.8 min. Successful placement and creation of anastomoses occurred in six of the pigs. One pig did not form an anastomosis because the magnets were too large to pass through the pylorus at the time of attempted magnet placement. Six swine experienced uncomplicated postoperative courses. One pig's postoperative course involved constipation for several days, requiring additional fluids and fiber supplementation. The findings at endoscopy showed that the magnets were adhered to the anastomosis, which were easily freed, or within the stomach. The air insufflation test results were negative for all the pigs. At laparotomy, there was no evidence of infection, abscess, or leak, but two peritoneal culture results were positive with scant growth of Staphylococcus aureus and coagulase-negative staphylococcus, presumably contaminants. Microscopically, the anastomoses illustrated granulation and fibrous connective tissue without evidence of infection or leak. Endoscopically placed magnets with external magnet guidance is a feasible and novel approach to creating patent gastroenteral anastomoses without abdominal incisions or sutures.

  8. Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, W.; Bolz, H.; Jansen, A.

    The Karlsruhe Tritium Neutrino experiment (KATRIN) requires a series of superconducting solenoid magnets for guiding beta-electrons from the source to the detector. By-pass diodes will operate at liquid helium temperatures to protect the superconducting magnets and bus bars in case of quenches. The operation conditions of the by-pass diodes depend on the different magnet systems of KATRIN. Therefore, different diode stacks are designed with adequate copper heat sinks assuming adiabatic conditions. The by-pass diode stacks have been submitted to cold tests both at liquid nitrogen and liquid helium temperatures for checking operation conditions. This report presents the test set upmore » and first results of the diode characteristics at 300 K and 77 K, as well as of endurance tests of the diode stacks at constant current load at 77 K and 4.2 K.« less

  9. Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks

    NASA Astrophysics Data System (ADS)

    Takeuchi, Satoshi

    2018-02-01

    A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.

  10. Electric Propulsion Laboratory Vacuum Chamber

    NASA Image and Video Library

    1964-06-21

    Engineer Paul Reader and his colleagues take environmental measurements during testing of a 20-inch diameter ion engine in a vacuum tank at the Electric Propulsion Laboratory (EPL). Researchers at the Lewis Research Center were investigating the use of a permanent-magnet circuit to create the magnetic field required power electron bombardment ion engines. Typical ion engines use a solenoid coil to create this magnetic field. It was thought that the substitution of a permanent magnet would create a comparable magnetic field with a lower weight. Testing of the magnet system in the EPL vacuum tanks revealed no significant operational problems. Reader found the weight of the two systems was similar, but that the thruster’s efficiency increased with the magnet. The EPL contained a series of large vacuum tanks that could be used to simulate conditions in space. Large vacuum pumps reduced the internal air pressure, and a refrigeration system created the cryogenic temperatures found in space.

  11. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David; Schoenenberger, Mark

    2017-01-01

    A feasibility study is in progress at NASA Glenn Research Center to implement a magnetic suspension and balance system in the 225 sq cm Supersonic Wind Tunnel for the purpose of testing the dynamic stability of blunt bodies. An important area of investigation in this study was determining the optimum size of the model and the iron spherical core inside of it. In order to minimize the required magnetic field and thus the size of the magnetic suspension system, it was determined that the test model should be as large as possible. Blockage tests were conducted to determine the largest possible model that would allow for tunnel start at Mach 2, 2.5, and 3. Three different forebody model geometries were tested at different Mach numbers, axial locations in the tunnel, and in both a square and axisymmetric test section. Experimental results showed that different model geometries produced more varied results at higher Mach Numbers. It was also shown that testing closer to the nozzle allowed larger models to start compared with testing near the end of the test section. Finally, allowable model blockage was larger in the axisymmetric test section compared with the square test section at the same Mach number. This testing answered key questions posed by the feasibility study and will be used in the future to dictate model size and performance required from the magnetic suspension system.

  12. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    PubMed

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less 'fixed' north-northeast-south-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the 'fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the head-body axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier suggestion that homing newts use the light-dependent magnetic compass to align a magnetite-based 'map detector' when obtaining the precise measurements necessary to derive map information from the magnetic field. However, aligning the putative map detector does not explain the fixed-axis response of newts tested under long-wavelength light. Preliminary evidence suggests that, in the absence of reliable directional information from the magnetic compass (caused by the 90 degrees rotation of the response of the magnetic compass under long-wavelength light), newts may resort to a systematic sampling strategy to identify alignment(s) of the map detector that yields reliable magnetic field measurements.

  13. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  14. Retentive force and magnetic flux leakage of magnetic attachment in various keeper and magnetic assembly combinations.

    PubMed

    Hasegawa, Mikage; Umekawa, Yoshitada; Nagai, Eiich; Ishigami, Tomohiko

    2011-04-01

    Magnetic attachments are commonly used for overdentures. However, it can be difficult to identify and provide the same type and size of magnetic assembly and keeper if a repair becomes necessary. Therefore, the size and type may not match. This study evaluated the retentive force and magnetic flux strength and leakage of magnetic attachments in different combinations of keepers and magnetic assemblies. For 6 magnet-keeper combinations using 4 sizes of magnets (GIGAUSS D400, D600, D800, and D1000) (n=5), retentive force was measured 5 times at a crosshead speed of 5 mm/min in a universal testing machine. Magnetic flux strength was measured using a Hall Effect Gaussmeter. Data were statistically analyzed using a 1-way ANOVA, and between-group differences were analyzed with Tukey's HSD post hoc test (α=.05). The mean retentive force of the same-size magnet-keeper combinations was 3.2 N for GIGAUSS D400 and 5.1 N for GIGAUSS D600, but was significantly reduced when using larger magnets (P<.05). Magnetic flux leakage was significantly lower for corresponding size combinations. Size differences influence the retentive force and magnetic flux strength of magnetic attachments. Retentive force decreased due to the closed field structure becoming incomplete and due to magnetic field leakage. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  15. Determination of Magnetic Parameters of Maghemite (γ-Fe2O3) Core-Shell Nanoparticles from Nonlinear Magnetic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Syvorotka, Ihor I.; Pavlyk, Lyubomyr P.; Ubizskii, Sergii B.; Buryy, Oleg A.; Savytskyy, Hrygoriy V.; Mitina, Nataliya Y.; Zaichenko, Oleksandr S.

    2017-04-01

    Method of determining of magnetic moment and size from measurements of dependence of the nonlinear magnetic susceptibility upon magnetic field is proposed, substantiated and tested for superparamagnetic nanoparticles (SPNP) of the "magnetic core-polymer shell" type which are widely used in biomedical technologies. The model of the induction response of the SPNP ensemble on the combined action of the magnetic harmonic excitation field and permanent bias field is built, and the analysis of possible ways to determine the magnetic moment and size of the nanoparticles as well as the parameters of the distribution of these variables is performed. Experimental verification of the proposed method was implemented on samples of SPNP with maghemite core in dry form as well as in colloidal systems. The results have been compared with the data obtained by other methods. Advantages of the proposed method are analyzed and discussed, particularly in terms of its suitability for routine express testing of SPNP for biomedical technology.

  16. MAGID-II: a next-generation magnetic unattended ground sensor (UGS)

    NASA Astrophysics Data System (ADS)

    Walter, Paul A.; Mauriello, Fred; Huber, Philip

    2012-06-01

    A next generation magnetic sensor is being developed at L-3 Communications, Communication Systems East to enhance the ability of Army and Marine Corps unattended ground sensor (UGS) systems to detect and track targets on the battlefield. This paper describes a magnetic sensor that provides superior detection range for both armed personnel and vehicle targets, at a reduced size, weight, and level of power consumption (SWAP) over currently available magnetic sensors. The design integrates the proven technology of a flux gate magnetometer combined with advanced digital signal processing algorithms to provide the warfighter with a rapidly deployable, extremely low false-alarm-rate sensor. This new sensor improves on currently available magnetic UGS systems by providing not only target detection and direction information, but also a magnetic disturbance readout, indicating the size of the target. The sensor integrates with Government Off-the-Shelf (GOTS) systems such as the United States Army's Battlefield Anti-Intrusion System (BAIS) and the United States Marine Corps Tactical Remote Sensor System (TRSS). The system has undergone testing by the US Marine Corps, as well as extensive company testing. Results from these field tests are given.

  17. Measurement of magnetic property of FePt granular media at near Curie temperature

    NASA Astrophysics Data System (ADS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.

    2017-02-01

    The characterization of the magnetic switching behavior of heat assisted magnetic recording (HAMR) media at near Curie temperature (Tc) is important for high density recording. In this study, we measured the magnetic property of FePt granular media (with room temperature coercivity 25 kOe) at near Tc with a home built HAMR testing instrument. The local area of HAMR media is heated to near Tc by a flat-top optical heating beam. The magnetic property in the heated area was in-situ measured by a magneto-optic Kerr effect (MOKE) testing beam. The switching field distribution (SFD) and coercive field (Hc) of the FePt granular media and their dependence on the optical heating power at near Tc were studied. We measured the DC demagnetization (DCD) signal with pulsed laser heating at different optical powers. We also measured the Tc distribution of the media by measuring the AC magnetic signal as a function of optical heating power. In a summary, we studied the SFD, Hc of the HAMR media at near Tc in a static manner. The present methodology will facilitate the HAMR media testing.

  18. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when themore » orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.« less

  19. Magnetic Fluid Friction and Wear Behavior

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1998-01-01

    The friction and wear properties of two groups of magnetic fluids, one developed at NASA Lewis Research Center and a commercial fluid, were evaluated for boundary lubrication. Friction and wear measurements were made using a pin-on-disk apparatus. Three different ball materials were evaluated, (1) 440C, (2) Al2O3, and (3) Si3N4 against 440C disks. The first class of magnetic fluids have a low vapor pressure hydrocarbon base oil and are suitable for space application. Four variations of this fluid were evaluated: (1) the base oil, (2) base oil with anti-wear additives, (3) a 100 Gauss strength magnetic fluid, and (4) a 400 gauss magnetic fluid. The commercial fluid base oil and four different magnetic particle concentration levels have been evaluated. A space qualified fluorinated lubricant was tested for base line comparison. Hardness, optical microscopy, surface profilometry, and surface analysis were used to characterize the test specimens. Friction was unaffected by the concentration of magnetic particles. Wear rates for magnetic fluids were slightly higher than the base oil. The low vapor pressure magnetic fluid has better wear characteristics than the space qualified fluorinated lubricant.

  20. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  1. Magnetic Flux Density of Different Types of New Generation Magnetic Attachment Systems.

    PubMed

    Akin, Hakan

    2015-07-01

    The purpose of this study was to analyze the static magnetic flux density of different types of new generation laser-welded magnetic attachments in the single position and the attractive position and to determine the effect of different corrosive environments on magnetic flux density. Magnetic flux densities of four magnetic attachment systems (Hyper slim, Hicorex slim, Dyna, and Steco) were measured with a gaussmeter. Then magnetic attachment systems were immersed in two different media, namely 1% lactic acid solution (pH 2.3), and 0.9% NaCl solution (pH 7.3). Magnetic flux densities of the attachment systems were measured with a gaussmeter after immersion to compare with measurements before immersion (α = 0.05). The data were statistically evaluated with one-way ANOVA, paired-samples t-test, and post hoc Tukey-Kramer multiple comparisons tests (α = 0.05). The highest magnetic flux density was found in Dyna magnets for both single and attractive positions. In addition, after the magnets were in the corrosive environments for 2 weeks, they had a significant decrease in magnetic flux density (p < 0.05). No significant differences were found between corrosive environments (p > 0.05). The leakage flux of all the magnetic attachments did not exceed the WHO's guideline of 40 mT. The magnets exhibited a significant decrease in magnetic flux density after aging in corrosive environments including lactic acid and NaCl. © 2014 by the American College of Prosthodontists.

  2. Performance of a continuous flow ventricular assist device: magnetic bearing design, construction, and testing.

    PubMed

    Allaire, P; Hilton, E; Baloh, M; Maslen, E; Bearnson, G; Noh, D; Khanwilkar, P; Olsen, D

    1998-06-01

    A new centrifugal continuous flow ventricular assist device, the CFVAD III, which is fully magnetic bearing suspended, has been developed. It has only one moving part (the impeller), has no contact (magnetic suspension), is compact, and has minimal heating. A centrifugal impeller of 2 inch outer diameter is driven by a permanent magnet brushless DC motor. This paper discusses the design, construction, testing, and performance of the magnetic bearings in the unit. The magnetic suspension consists of an inlet side magnetic bearing and an outlet side magnetic bearing, each divided into 8 pole segments to control axial and radial displacements as well as angular displacements. The magnetic actuators are composed of several different materials to minimize size and weight while having sufficient load capacity to support the forces on the impeller. Flux levels in the range of 0.1 T are employed in the magnetic bearings. Self sensing electronic circuits (without physical sensors) are employed to determine the impellar position and provide the feedback control signal needed for the magnetic bearing control loops. The sensors provide position sensitivity of approximately 0.025 mm. A decentralized 5 axis controller has been developed using modal control techniques. Proportional integral derivative controls are used for each axis to levitate the magnetically supported impeller.

  3. Active Tensor Magnetic Gradiometer System

    DTIC Science & Technology

    2007-11-01

    Modify Forward Computer Models .............................................................................................2 Modify TMGS Simulator...active magnetic gradient measurement system are based upon the existing tensor magnetic gradiometer system ( TMGS ) developed under project MM-1328...Magnetic Gradiometer System ( TMGS ) for UXO Detection, Imaging, and Discrimination.” The TMGS developed under MM-1328 was successfully tested at the

  4. Numerical Study of Magnetic Damping During Unidirectional Solidification

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.

    1997-01-01

    A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring necessary design parameters for planning magnetic damping experiments and interpreting the experimental results.

  5. Fail Safe, High Temperature Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Minihan, Thomas; Palazzolo, Alan; Kim, Yeonkyu; Lei, Shu-Liang; Kenny, Andrew; Na, Uhn Joo; Tucker, Randy; Preuss, Jason; Hunt, Andrew; Carter, Bart; hide

    2002-01-01

    This paper contributes to the magnetic bearing literature in two distinct areas: high temperature and redundant actuation. Design considerations and test results are given for the first published combined 538 C (1000 F) high speed rotating test performance of a magnetic bearing. Secondly, a significant extension of the flux isolation based, redundant actuator control algorithm is proposed to eliminate the prior deficiency of changing position stiffness after failure. The benefit of the novel extension was not experimentally demonstrated due to a high active stiffness requirement. In addition, test results are given for actuator failure tests at 399 C (750 F), 12,500 rpm. Finally, simulation results are presented confirming the experimental data and validating the redundant control algorithm.

  6. Precision measurement and modeling of superconducting magnetic bearings for the satellite test of the equivalence principle

    NASA Astrophysics Data System (ADS)

    Sapilewski, Glen Alan

    The Satellite Test of the Equivalence Principle (STEP) is a modern version of Galileo's experiment of dropping two objects from the leaning tower of Pisa. The Equivalence Principle states that all objects fall with the same acceleration, independent of their composition. The primary scientific objective of STEP is to measure a possible violation of the Equivalence Principle one million times better than the best ground based tests. This extraordinary sensitivity is made possible by using cryogenic differential accelerometers in the space environment. Critical to the STEP experiment is a sound fundamental understanding of the behavior of the superconducting magnetic linear bearings used in the accelerometers. We have developed a theoretical bearing model and a precision measuring system with which to validate the model. The accelerometers contain two concentric hollow cylindrical test masses, of different materials, each levitated and constrained to axial motion by a superconducting magnetic bearing. Ensuring that the bearings satisfy the stringent mission specifications requires developing new testing apparatus and methods. The bearing is tested using an actively-controlled table which tips it relative to gravity. This balances the magnetic forces from the bearing against a component of gravity. The magnetic force profile of the bearing can be mapped by measuring the tilt necessary to position the test mass at various locations. An operational bearing has been built and is being used to verify the theoretical levitation models. The experimental results obtained from the bearing test apparatus were inconsistent with the previous models used for STEP bearings. This led to the development of a new bearing model that includes the influence of surface current variations in the bearing wires and the effect of the superconducting transformer. The new model, which has been experimentally verified, significantly improves the prediction of levitation current, accurately estimates the relationship between tilting and translational modes, and predicts the dependence of radial mode frequencies on the bearing current. In addition, we developed a new model for the forces produced by trapped magnetic fluxons, a potential source of imperfections in the bearing. This model estimates the forces between magnetic fluxons trapped in separate superconducting objects.

  7. Benefits of GMR sensors for high spatial resolution NDT applications

    NASA Astrophysics Data System (ADS)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  8. Design of Magnetic Shielding and Field Coils for a TES X-Ray Microcalorimeter Test Platform

    NASA Technical Reports Server (NTRS)

    Miniussi, Antoine R.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Doriese, William B.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    The performance of Transition-Edge Sensors (TES) and their SQUID multiplexed read-outs are very sensitive to the ambient magnetic field from Earth and fluctuations that can arise due to fluctuating magnetic fields outside of the focal plane assembly from the Adiabatic Demagnetization Refrigerator (ADR).Thus, the experimental platform we are building to test the FPA of the X-ray Integral Field Unit (X-IFU) of the Athena mission needs to include a series of shields and a coil in order to meet the following requirement of magnetic field density and uniformity.

  9. Effect of moderate magnetic annealing on the microstructure, quasi-static and viscoelastic mechanical behavior of a structural epoxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tehrani, Mehran; Al-Haik, Marwan; Garmestani, Hamid

    2012-01-01

    In this study the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle x-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent tomore » the macro scale creep compliance was calculated using the aforementioned nano-creep data. Using the continuous complex compliance (CCC) analysis, the phase lag angle, tan (δ), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems through which the effect of low magnetic fields on the viscoelastic properties of the epoxy was invoked. The comparison of the creep strain rate sensitivity parameter , A/d(0), from short term(80 ), creep tests and the creep compliance J(t) from the long term(2700 s) creep tests with the tan(δ) suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The results of this investigation reveal that under low magnetic fields both the quasi-static and viscoelastic mechanical properties of the epoxy have been improved.« less

  10. Flux-canceling electrodynamic maglev suspension. Part 1: Test fixture design and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.T.; Thornton, R.D.; Kondoleon, A.

    1999-05-01

    The design and analysis of a scale-model suspension test facility for magnetic levitation (maglev) is discussed. The authors describe techniques for the design, construction, and testing of a prototype electrodynamic suspension (EDS) levitation system. The viability of future high-temperature superconducting magnet designs for maglev has been investigated with regard to their application to active secondary suspensions. In order to test the viability of a new flux-canceling EDS suspension, a 1/5-scale suspension magnet and guideway was constructed. The suspension was tested by using a high-speed rotating test wheel facility with linear peripheral speed of up to 84 m/s (300 km/h). Amore » set of approximate design tools and scaling laws has been developed in order to evaluate forces and critical velocities in the suspension.« less

  11. A Rosetta Stone for in situ Observations of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Daughton, W. S.; Karimabadi, H.; Roytershteyn, V.

    2015-12-01

    Local conditions that constrain the physics of magnetic reconnection in space in 3D will be discussed, including those observable conditions presently used and new ones that enhance experimental closure. Three classes of tests will be discussed: i) proxies for unmeasurable theoretical properties II) observable properties satisfied by all layers that pass mass flux, including those of the reconnection layer, and (iii) observable kinetic tests that are increasingly peculiar to collisionless magnetic reconnection. A Rosetta Stone of state of the art observables will be proposed, including proxies for unmeasurable theoretical local rate of frozen flux violation and measures of the significance of frozen flux encountered. A suite of kinetic observables involving properties peculiar to electrons will also be demonstrated as promising litmus tests for certifying sites of collisionless magnetic reconnection.

  12. Shimming of a Magnet for Calibration of NMR Probes for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Bielajew, Rachel

    2013-10-01

    The Muon g-2 Experiment at Fermilab aims to measure the anomalous magnetic moment aμ ≡ (g-2)/2 of the muon to the precision of 0.14 parts per million. This experimental value of aμ can then be compared to the similarly precise theoretical predictions of the Standard Model in order to test the completeness of the model. The value of aμ is extracted from muons precessing in a magnetic field. The magnetic field will be measured with a set of 400 Nuclear Magnetic Resonance (NMR) probes, which have the ability to measure the field to a precision of tens of parts per billion. Before the Muon g-2 Experiment can take place, new NMR probes must be designed, built, and tested using a 1.45 Tesla test magnet at the University of Washington Center for Experimental Nuclear Physics and Astrophysics (CENPA). In order to achieve a significant signal from NMR probes, the magnetic field in which the probes are immersed must be extremely uniform. The existing magnet at CENPA has an approximately linear gradient in magnetic field of about 1 Gauss per centimeter in the smoothest direction. A pair of adjacent square Helmholtz coils was designed and built to create a linear gradient in order to cancel the existing gradient. The length of the NMR signals improved with the implementation of the coils. The results of the addition of the coils to the magnet on the signals from the NMR probes will be presented.

  13. Nondestructive Testing Information Analysis Center, 1982.

    DTIC Science & Technology

    1983-03-01

    RF Fields Microwaves Magnetic Flux Analysis Magnetic Particles * ULTRASONIC AND ACOUSTIC TESTING Ultrasonic Transmission and Reflectometry Ultrasonic... Reflectometry and Transmission Holography THERMAL TESTING Infrared Radiometry Thermography 3 The present organization and personnel of NTIAC are...the current core and secondary serials. As an added check on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, as well as the

  14. Students' Initial Knowledge of Electric and Magnetic Fields--More Profound Explanations and Reasoning Models for Undesired Conceptions

    ERIC Educational Resources Information Center

    Saarelainen, M.; Laaksonen, A.; Hirvonen, P. E.

    2007-01-01

    This study explores undergraduate students' understanding and reasoning models of electric and magnetic fields. The results indicate that the tested students had various alternative concepts in applying their reasoning to certain CSEM test questions. The total number of physics students tested at the beginning of the first course on…

  15. Axial Magneto-Inductive Effect in Soft Magnetic Microfibers, Test Methodology, and Experiments

    DTIC Science & Technology

    2016-03-24

    NUWC-NPT Technical Report 12,186 24 March 2016 Axial Magneto-Inductive Effect in Soft Magnetic Microfibers, Test Methodology , and...Microfibers, Test Methodology , and Experiments 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Anthony B...5 4 MEASUREMENTS AND EXPERIMENTAL APPARATUS ...........................................9 5 SAMPLE PREPARATION

  16. Analysis and Design of a Double-Divert Spiral Groove Seal

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Berard, Gerald

    2007-01-01

    This viewgraph presentation describes the design and analysis of a double spiral groove seal. The contents include: 1) Double Spiral Design Features; 2) Double Spiral Operational Features; 3) Mating Ring/Rotor Assembly; 4) Seal Ring Assembly; 5) Insert Segment Joints; 6) Rotor Assembly Completed Prototype Parts; 7) Seal Assembly Completed Prototype Parts; 8) Finite Element Analysis; 9) Computational Fluid Dynamics (CFD) Analysis; 10) Restrictive Orifice Design; 11) Orifice CFD Model; 12) Orifice Results; 13) Restrictive Orifice; 14) Seal Face Coning; 15) Permanent Magnet Analysis; 16) Magnetic Repulsive Force; 17) Magnetic Repulsive Test Results; 18) Spin Testing; and 19) Testing and Validation.

  17. Alternate bearing design fabrication and test program, exhibit B

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A 50 ft-lb-sec (FPS) reaction wheel was modified with an ironless armature brushless dc motor and a magnetic bearing suspension. The purpose was to demonstrate the performance of an alternate bearing concept, i.e., a magnetic bearing suspension, which could be used in Skylab type CMG's to meet the attitude control requirements of long term space stations. A magnetic suspension was built, installed and tested in the 50 FPS reaction wheel. A secondary effort included the build and test of a compatible reaction wheel motor. Performance characteristics of both are presented and discussed.

  18. Gilbert [Gilberd], William (1544-1603)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Doctor and scientist, born in Colchester, England, wrote De Magnete (On the Magnet), published in 1600. The magnetic compass was one of most useful the navigational instruments before the chronometer, but little was known about the lodestone (magnetic iron ore). Gilbert made his own experiments, such as testing the folk-belief that garlic destroys the magnetic effect of the compass needle. He dra...

  19. Naval applications of SC magnet systems

    NASA Astrophysics Data System (ADS)

    Gubser, D. U.

    The US Navy continues to develop advanced systems that utilize superconducting (SC) magnets. Recent impetus toward the “all” electric ship is accelerating the desire to produce “engineering” prototypes that can be field tested to ascertain the overall impact of these new technologies toward meeting Navy mission requirements. SC magnets for motors, energy storage, mine sweeping, and RF amplifiers are all being built and tested. This article provides a brief description of these projects.

  20. Bevalac studies of magnet Cerenkov spectroscopy

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The attempt was made to identify the various contributions to the velocity resolution of Cerenkov detectors such as might be used in Astromag, to measure the magnitude of these contributions and assess their effect on the mass resolution of an isotope spectrometer for Astromag, and to perform Bevalac tests of magnet/Cerenkov spectroscopy. A first version of a new 5 in. photomultiplier tube was also tested that is designed for use in large magnetic fields.

  1. Safety of High Speed Magnetic Levitation Transportation Systems : Magnetic Field Testing of TR-07 Maglev Vehicle. Volume 1. Analysis.

    DOT National Transportation Integrated Search

    1992-04-01

    The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). This report catalogs and documents detailed magnet...

  2. Safety of High Speed Magnetic Levitation Transportation Systems : Magnetic Field Testing of TR-07 Maglev Vehicle and System. Volume 2. Appendices.

    DOT National Transportation Integrated Search

    1992-04-01

    The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). This report catalogs and documents detailed magnet...

  3. In Vitro Capture of Small Ferrous Particles with a Magnetic Filtration Device Designed for Intravascular Use with Intraarterial Chemotherapy: Proof-of-Concept Study.

    PubMed

    Mabray, Marc C; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W

    2016-03-01

    To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Uncoated iron oxide particles 50-100 nm and 1-5 µm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-µm carboxylic acid-coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50-100-nm particles in water with a large magnet), 97% (50-100-nm particles in water with a small magnet), 99% (1-5-µm particles in water with a large magnet), 99% (1-5-µm particles in water with a small magnet), 95% (50-100-nm particles in serum with a small magnet), 92% (1-5-µm particles in serum with a small magnet), and 75% (1-µm coated beads in serum with a small magnet) lower compared with matched control runs. This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  4. Characterization of compact-toroid injection during formation, translation, and field penetration

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  5. Characterization of compact-toroid injection during formation, translation, and field penetration.

    PubMed

    Matsumoto, T; Roche, T; Allfrey, I; Sekiguchi, J; Asai, T; Gota, H; Cordero, M; Garate, E; Kinley, J; Valentine, T; Waggoner, W; Binderbauer, M; Tajima, T

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  6. Evaluation of a method to shield a welding electron beam from magnetic interference

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  7. Magnetic suspension and balance systems (MSBSs)

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Kilgore, Robert A.

    1987-01-01

    The problems of wind tunnel testing are outlined, with attention given to the problems caused by mechanical support systems, such as support interference, dynamic-testing restrictions, and low productivity. The basic principles of magnetic suspension are highlighted, along with the history of magnetic suspension and balance systems. Roll control, size limitations, high angle of attack, reliability, position sensing, and calibration are discussed among the problems and limitations of the existing magnetic suspension and balance systems. Examples of the existing systems are presented, and design studies for future systems are outlined. Problems specific to large-scale magnetic suspension and balance systems, such as high model loads, requirements for high-power electromagnets, high-capacity power supplies, highly sophisticated control systems and position sensors, and high costs are assessed.

  8. Magnetic gradiometer for underwater detection applications

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Skvoretz, D. C.; Moeller, C. R.; Ebbert, M. J.; Perry, A. R.; Ostrom, R. K.; Tzouris, A.; Bennett, S. L.; Czipott, P. V.; Sulzberger, G.; Allen, G. I.; Bono, J.; Clem, T. R.

    2006-05-01

    We have designed and constructed a magnetic gradiometer for underwater mine detection, location and tracking. The United States Naval Surface Warfare Center (NSWC PC) in Panama City, FL has conducted sea tests of the system using an unmanned underwater vehicle (UUV). The Real-Time Tracking Gradiometer (RTG) measures the magnetic field gradients caused by the presence of a mine in the Earth's magnetic field. These magnetic gradients can then be used to detect and locate a target with the UUV in motion. Such a platform can also be used for other applications, including the detection and tracking of vessels and divers for homeland (e.g., port) security and the detection of underwater pipelines. Data acquired by the RTG in sea tests is presented in this paper.

  9. Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph

    2005-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.

  10. Minimally invasive entero-enteral dual-path bypass using self-assembling magnets.

    PubMed

    Ryou, Marvin; Aihara, Hiroyuki; Thompson, Christopher C

    2016-10-01

    A minimally invasive method of entero-enteral bypass may be desirable for treatment of obstruction, obesity, or metabolic syndrome. We have developed a technology based on miniature self-assembling magnets which create large-caliber anastomoses (incisionless anastomosis system or IAS). The aim of this study was to assess (a) procedural characteristics of IAS deployment and (b) long-term integrity and patency of the resulting jejuno-ileal dual-path bypass. Endoscopic jejuno-ileal bypass creation using IAS magnets was performed in 8 Yorkshire pigs survived 3 months. The jejunal magnet was endoscopically deployed. However, the ileal magnet required surgical delivery given restraints of porcine anatomy. A 5-mm enterotomy was created through which the ileal magnet was inserted using a modified laparoscopic delivery tool. Magnets were manually coupled. Pigs underwent serial endoscopies for anastomosis assessment. Three-month necropsies were performed, followed by pressure testing of anastomoses and histological analysis. Jejuno-ileal bypass creation using self-assembling IAS magnets was successful in all 8 pigs (100 %). Patent, leak-free bypasses formed in all animals by day 10. All IAS magnets were expelled by day 12. Anastomoses were widely patent at 3 months, with mean maximal diameter of 30 mm. At necropsy, adhesions were minimal. Pressure testing confirmed superior integrity of anastomotic tissue. Histology showed full epithelialization across the anastomosis with no evidence of submucosal fibrosis or inflammation. Entero-enteral bypass using self-assembling IAS magnets is safe and technically feasible in the porcine model. IAS magnets can be rapidly delivered endoscopically or through a modified laparoscopic device. Expulsion of fused magnets avoids retention of prosthetic material. Anastomoses are widely patent and fully re-epithelialized. Three-month pressure testing reveals anastomotic tissue to be as robust as native tissue, while necropsy and histology suggests minimal/absent tissue inflammation. In human anatomy, a fully endoscopic jejuno-ileal bypass using IAS magnets may be feasible.

  11. Magnetic Tape Recording for the Eighties

    NASA Technical Reports Server (NTRS)

    Kalil, Ford (Editor)

    1982-01-01

    The practical and theoretical aspects of state-of-the-art magnetic tape recording technology are reviewed. Topics covered include the following: (1) analog and digital magnetic tape recording, (2) tape and head wear, (3) wear testing, (4) magnetic tape certification, (5) care, handling, and management of magnetic tape, (6) cleaning, packing, and winding of magnetic tape, (7) tape reels, bands, and packaging, (8) coding techniques for high-density digital recording, and (9) tradeoffs of coding techniques.

  12. High Temperature Texturing of Engineered Materials in a Magnetic Field

    DTIC Science & Technology

    2003-03-01

    by 43.7 % after magnetic annealing in a 19 T field. The kink at the demagnetization curve disappeared and, in addition, a much better squareness of...the demagnetization curves was observed after the magnetic annealing (Figure 10). The improvement in the hard magnetic properties after magnetic ...A number of materials systems have been tested in a variety of magnetic fields (8-20 Tesla) and temperatures (500 to 1250oC). Four materials

  13. Testing of a First Order AC Magnetic Susceptometer

    NASA Astrophysics Data System (ADS)

    Fukuda, Ryan; Sunny, Smitha; Ho, Pei-Chun

    2011-11-01

    A first-order AC magnetic susceptometer has been constructed and tested to find the magnetic response of strongly correlated electron materials. The instrument works by using a primary coil to apply a small AC magnetic field of .104 Oe to a sample with a cylindrical coil space of length .635 cm and diameter .355 cm. A lock-in amplifier is used to monitor the induced voltage from a set of secondary coils. By coupling a temperature-controlled system with this instrument, the change in the magnetic signal with respect to temperature is measured. Monitoring the signal changes may indicate the temperature that causes the material to transition to either a ferromagnetic, anti-ferromagnetic, or superconducting state. A 122.47 mg Gd polycrystal was used to test our susceptometer. The data qualitatively agrees with the previous results of magnetization vs. temperature of Gd single crystals by Nigh et al. [1]: there is a steep increase in the pick-up signal at 300 K where Gd becomes ferromagnetic and a peak at 210 K [1]. This susceptometer will be used for our future investigation of magnetic properties of rare earth compounds and nanoparticles in the temperature range of 10 K to 300 K. [4pt] [1] H. E. Nigh, S. Legvold, and F. H. Spedding, Physical Review 132, 1092 (1963)

  14. Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis

    PubMed Central

    Yarmola, Elena G.; Shah, Yash; Arnold, David P.; Dobson, Jon; Allen, Kyle D.

    2015-01-01

    Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker - the c-terminus telopeptide of type II collagen (CTXII) - magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 µL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed 10 fold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat. PMID:26136062

  15. Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis.

    PubMed

    Yarmola, Elena G; Shah, Yash; Arnold, David P; Dobson, Jon; Allen, Kyle D

    2016-04-01

    Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker--the c-terminus telopeptide of type II collagen (CTXII)--magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 μL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed tenfold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat.

  16. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virostek, S.P.; Green, M.A.; Trillaud, F.

    2010-05-16

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniformmore » field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.« less

  17. Vertically polarizing undulator with the dynamic compensation of magnetic forces for the next generation of light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelnikov, N.; Budker Institute of Nuclear Physics, Novosibirsk 630090; Trakhtenberg, E.

    2014-11-15

    A short prototype (847-mm-long) of an Insertion Device (ID) with the dynamic compensation of ID magnetic forces has been designed, built, and tested at the Advanced Photon Source (APS) of the Argonne National Laboratory. The ID magnetic forces were compensated by the set of conical springs placed along the ID strongback. Well-controlled exponential characteristics of conical springs permitted a very close fit to the ID magnetic forces. Several effects related to the imperfections of actual springs, their mounting and tuning, and how these factors affect the prototype performance has been studied. Finally, series of tests to determine the accuracy andmore » reproducibility of the ID magnetic gap settings have been carried out. Based on the magnetic measurements of the ID B{sub eff}, it has been demonstrated that the magnetic gaps within an operating range were controlled accurately and reproducibly within ±1 μm. Successful tests of this ID prototype led to the design of a 3-m long device based on the same concept. The 3-m long prototype is currently under construction. It represents R and D efforts by the APS toward APS Upgrade Project goals as well as the future generation of IDs for the Linac Coherent Light Source (LCLS)« less

  18. Superconductor bearings, flywheels and transportation

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  19. Magnetic Launch Assist Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  20. How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based Orientation Estimation.

    PubMed

    Fan, Bingfei; Li, Qingguo; Liu, Tao

    2017-12-28

    With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method.

  1. Sickle cell detection using a smartphone

    PubMed Central

    Knowlton, S. M.; Sencan, I.; Aytar, Y.; Khoory, J.; Heeney, M. M.; Ghiran, I. C.; Tasoglu, S.

    2015-01-01

    Sickle cell disease affects 25% of people living in Central and West Africa and, if left undiagnosed, can cause life threatening “silent” strokes and lifelong damage. However, ubiquitous testing procedures have yet to be implemented in these areas, necessitating a simple, rapid, and accurate testing platform to diagnose sickle cell disease. Here, we present a label-free, sensitive, and specific testing platform using only a small blood sample (<1 μl) based on the higher density of sickle red blood cells under deoxygenated conditions. Testing is performed with a lightweight and compact 3D-printed attachment installed on a commercial smartphone. This attachment includes an LED to illuminate the sample, an optical lens to magnify the image, and two permanent magnets for magnetic levitation of red blood cells. The sample is suspended in a paramagnetic medium with sodium metabisulfite and loaded in a microcapillary tube that is inserted between the magnets. Red blood cells are levitated in the magnetic field based on equilibrium between the magnetic and buoyancy forces acting on the cells. Using this approach, we were able to distinguish between the levitation patterns of sickle versus control red blood cells based on their degree of confinement. PMID:26492382

  2. Sickle cell detection using a smartphone.

    PubMed

    Knowlton, S M; Sencan, I; Aytar, Y; Khoory, J; Heeney, M M; Ghiran, I C; Tasoglu, S

    2015-10-22

    Sickle cell disease affects 25% of people living in Central and West Africa and, if left undiagnosed, can cause life threatening "silent" strokes and lifelong damage. However, ubiquitous testing procedures have yet to be implemented in these areas, necessitating a simple, rapid, and accurate testing platform to diagnose sickle cell disease. Here, we present a label-free, sensitive, and specific testing platform using only a small blood sample (<1 μl) based on the higher density of sickle red blood cells under deoxygenated conditions. Testing is performed with a lightweight and compact 3D-printed attachment installed on a commercial smartphone. This attachment includes an LED to illuminate the sample, an optical lens to magnify the image, and two permanent magnets for magnetic levitation of red blood cells. The sample is suspended in a paramagnetic medium with sodium metabisulfite and loaded in a microcapillary tube that is inserted between the magnets. Red blood cells are levitated in the magnetic field based on equilibrium between the magnetic and buoyancy forces acting on the cells. Using this approach, we were able to distinguish between the levitation patterns of sickle versus control red blood cells based on their degree of confinement.

  3. Reversible assembly of magnetized particles: Application to water-borne pathogen enumeration

    NASA Astrophysics Data System (ADS)

    Ramadan, Qasem

    2009-12-01

    Reversible assembly of magnetized particles and cells has been proposed and implemented. The approach is based on magnetized particles or magnetically labeled cell immobilization in an array of individual particle/cell for optical counting. The device has been tested for few types of magnetic particles and one water-borne pathogen: Giardia Lamblia. An individual particle immobilization efficiency of 92% was achieved.

  4. Testing the Capture Magnet

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image of a model capture magnet was taken after an experiment in a Mars simulation chamber at the University of Aarhus, Denmark. It has some dust on it, but not as much as that on the Mars Exploration Rover Spirit's capture magnet. The capture and filter magnets on both Mars Exploration Rovers were delivered by the magnetic properties team at the Center for Planetary Science, Copenhagen, Denmark.

  5. Casting the Coronal Magnetic Field Reconstructions with Magnetic Field Constraints above the Photosphere in 3D Using MHD Bifrost Model

    NASA Astrophysics Data System (ADS)

    Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.

    2017-12-01

    Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are free from this systematic error, while have other metrics either comparable or only marginally worse than those estimated for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing.

  6. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    NASA Astrophysics Data System (ADS)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  7. Investigating the Effects of Magnetic Variations on Inertial/Magnetic Orientation Sensors

    DTIC Science & Technology

    2007-09-01

    caused by test objects, a track was constructed using nonferrous materials and set so that the orientation of an inertial/magnetic sensor module...states ◆ metal filing cabinet ◆ mobile robot, unpowered, powered, and motor engaged. The MicroStrain 3DM-G sensor module is factory calibrated and...triad of the sensor module approached a large metal filing cabinet. The deviations for this test object are the largest of any observed in the

  8. Modelling of eddy currents related to large angle magnetic suspension test fixture

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Foster, Lucas E.

    1994-01-01

    This report presents a preliminary analysis of the mathematical modelling of eddy current effects in a large-gap magnetic suspension system. It is shown that eddy currents can significantly affect the dynamic behavior and control of these systems, but are amenable to measurement and modelling. A theoretical framework is presented, together with a comparison of computed and experimental data related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center.

  9. Ontogenetic development of magnetic compass orientation in domestic chickens (Gallus gallus).

    PubMed

    Denzau, Susanne; Nießner, Christine; Rogers, Lesley J; Wiltschko, Wolfgang

    2013-08-15

    Domestic chickens (Gallus gallus) can be trained to search for a social stimulus in a specific magnetic direction, and cryptochrome 1a, found in the retina, has been proposed as a receptor molecule mediating magnetic directions. The present study combines immuno-histochemical and behavioural data to analyse the ontogenetic development of this ability. Newly hatched chicks already have a small amount of cryptochrome 1a in their violet cones; on day 5, the amount of cryptochrome 1a reached the same level as in adult chickens, suggesting that the physical basis for magnetoreception is present. In behavioural tests, however, young chicks 5 to 7 days old failed to show a preference of the training direction; on days 8, 9 and 12, they could be successfully trained to search along a specific magnetic axis. Trained and tested again 1 week later, the chicks that had not shown a directional preference on days 5 to 7 continued to search randomly, while the chicks tested from day 8 onward preferred the correct magnetic axis when tested 1 week later. The observation that the magnetic compass is not functional before day 8 suggests that certain maturation processes in the magnetosensitive system in the brain are not yet complete before that day. The reasons why chicks that have been trained before that day fail to learn the task later remain unclear.

  10. Anisotropic Mechanical Properties of Magnetically Aligned Fibrin Gels Measured by Magnetic Resonance Elastography

    PubMed Central

    Namani, Ravi; Wood, Matthew D.; Sakiyama-Elbert, Shelly E.; Bayly, Philip V.

    2009-01-01

    The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and nondestructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7T and 4.7T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels. PMID:19656516

  11. Magnetic Cleanliness Program Under Control of Electromagnetic Compatibility for the SELENE (Kaguya) Spacecraft

    NASA Astrophysics Data System (ADS)

    Matsushima, Masaki; Tsunakawa, Hideo; Iijima, Yu-Ichi; Nakazawa, Satoru; Matsuoka, Ayako; Ikegami, Shingo; Ishikawa, Tomoaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Takahashi, Futoshi

    2010-07-01

    To achieve the scientific objectives related to the lunar magnetic field measurements in a polar orbit at an altitude of 100 km, strict electromagnetic compatibility (EMC) requirements were applied to all components and subsystems of the SELENE (Kaguya) spacecraft. The magnetic cleanliness program was defined as one of the EMC control procedures, and magnetic tests were carried out for most of the engineering and flight models. The EMC performance of all components was systematically controlled and examined through a series of EMC tests. As a result, the Kaguya spacecraft was made to be very clean, magnetically. Hence reliable scientific data related to the magnetic field around the Moon were obtained by the LMAG (Lunar MAGnetometer) and the PACE (Plasma energy Angle and Composition Experiment) onboard the Kaguya spacecraft. These data have been available for lunar science use since November 2009.

  12. Rock Magnetic and Ferromagnetic Resonance Tests of Biogenic Magnetite in ALH84001

    NASA Technical Reports Server (NTRS)

    Kirschvink, J. L.; Kim, S.; Weiss, B. P.; Shannon, D. M.; Kobayashi, A. K.

    2002-01-01

    Three separate rock magnetic and ferromagnetic resonance tests support the hypothesis that between 25 and 50% of the fine-grained magnetite in the Martian meteorite ALH84001 was formed via biological processes. Additional information is contained in the original extended abstract.

  13. Magnetic Nozzle and Plasma Detachment Experiment

    NASA Technical Reports Server (NTRS)

    Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher

    2006-01-01

    High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.

  14. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    NASA Astrophysics Data System (ADS)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  15. A general way for quantitative magnetic measurement by transmitted electrons

    NASA Astrophysics Data System (ADS)

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons.

  16. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.

    PubMed

    Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M

    2017-09-21

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  17. Atomic magnetometer-based ultra-sensitive magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-03-01

    An atomic magnetometer (AM) based on lasers and alkali-metal vapor cells is currently the most sensitive non-cryogenic magnetic-field sensor. Many applications in neuroscience and other fields require high resolution, high sensitivity magnetic microscopic measurements. In order to meet this need we combined a cm-size spin-exchange relaxation-free AM with a flux guide (FG) to produce an ultra-sensitive FG-AM magnetic microscope. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution for tiny magnetic objects. In this talk, we will describe a prototype FG-AM device and present experimental and numerical tests of its sensitivity and resolution. We also demonstrate that an optimized FG-AM achieves high resolution and high sensitivity sufficient to detect a magnetic field of a single neuron in a few seconds, which would be an important milestone in neuroscience. We anticipate that this unique device can be applied to the detection of a single neuron, the detection of magnetic nano-particles, which in turn are very important for detection of target molecules in national security and medical diagnostics, and non-destructive testing.

  18. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE PAGES

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-12-05

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  19. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  20. Performance of the first short model 150 mm aperture Nb$$_3$$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was builtmore » with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.« less

  1. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance

    NASA Astrophysics Data System (ADS)

    Del Seppia, C.; Mezzasalma, L.; Messerotti, M.; Cordelli, A.; Ghione, S.

    2009-01-01

    We have previously reported that the exposure to an abnormal magnetic field simulating the one encountered by the International Space Station (ISS) orbiting around the Earth may enhance autonomic response to emotional stimuli. Here we report the results of the second part of that study which tested whether this field also affects cognitive functions. Twenty-four volunteers participated in the study, 12 exposed to the natural geomagnetic field and 12 to the magnetic field encountered by ISS. The test protocol consisted of a set of eight tests chosen from a computerized test battery for the assessment of attentional performance. The duration of exposure was 90 min. No effect of exposure to ISS magnetic field was observed on attentional performance.

  2. Magnetic Damping For Maglev

    DOE PAGES

    Zhu, S.; Cai, Y.; Rote, D. M.; ...

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  3. The superconducting magnet for the Maglev transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroshi

    1994-07-01

    Magnetically levitated vehicles (Maglev) using superconducting magnets have been under development in Japan for the past 23 years. The superconducting magnets for the Maglev system are used in a special environment compared to other applications. They have to work stably subject to both mechanical and electromagnetic disturbances. The brief history of the Maglev development in Japan, the planning of new test line, the superconducting magnet`s stability and the on board refrigeration system will be presented.

  4. Experimental investigation on a colloidal damper rendered controllable under the variable magnetic field generated by moving permanent magnets

    NASA Astrophysics Data System (ADS)

    Suciu, B.

    2016-09-01

    In this work, a colloidal damper rendered controllable under variable magnetic fields is proposed and its controllability is experimentally evaluated. This absorber employs a water- based ferrofluid (FERROTEC MSGW10) in association with a liquid-repellent nanoporous solid matrix, consisted of particles of gamma alumina or/and silica gel. Control of the dynamic characteristics is obtained by moving permanent neodymium annular magnets, which are placed either on the piston head (axial magnetic field) or on the external surface of the cylinder (radial magnetic field). In order to properly select these magnets, flow visualizations inside of a transparent model damper were performed, and the quantity of the displaced liquid by the magnets through the damper's filter and through the nanoporous solid matrix was determined. Experimental data concerning variation of the magnetic flux density at the magnet surface versus the height of the magnet, and versus the target distance was collected. Based on such data, the suitable magnet geometry was decided. Then, the 3D structural model of the trial colloidal damper obtained by using Solidworks, and the excitation test rig are presented. From excitation tests on a ball-screw shaker, one confirmed larger damping abilities of the proposed absorber relative to the traditional colloidal damper, and also the possibility to adjust the damping coefficient according to the excitation type.

  5. Magnetic dipole moment determination by near-field analysis

    NASA Technical Reports Server (NTRS)

    Eichhorn, W. L.

    1972-01-01

    A method for determining the magnetic moment of a spacecraft from magnetic field data taken in a limited region of space close to the spacecraft. The spacecraft's magnetic field equations are derived from first principles. With measurements of this field restricted to certain points in space, the near-field equations for the spacecraft are derived. These equations are solved for the dipole moment by a least squares procedure. A method by which one can estimate the magnitude of the error in the calculations is also presented. This technique was thoroughly tested on a computer. The test program is described and evaluated, and partial results are presented.

  6. Inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.

  7. Un test de la variation en dents de scie du champ magnétique terrestre par les anomalies du champ magnétique sur les dorsales

    NASA Astrophysics Data System (ADS)

    Westphal, Michel; Munschy, Marc

    1999-10-01

    In order to test the possible saw-tooth behaviour of the Earth's magnetic field during stable polarity intervals, we selected several magnetic profiles over the East Indian Ridge, the Juan de Fuca Ridge and the East Pacific Rise. We then compared the stacked magnetic anomaly profiles with different models. It appears that neither the uniform pattern nor the saw-tooth pattern fully explain the shape of all anomalies. We propose a new magnetic field model with a gradual transition between Gauss and Matuyama periods and smaller intensities for some short episodes.

  8. Quantitative characterization of spin-orbit torques in Pt/Co/Pt/Co/Ta/BTO heterostructures due to the magnetization azimuthal angle dependence

    NASA Astrophysics Data System (ADS)

    Engel, Christian; Goolaup, Sarjoosing; Luo, Feilong; Lew, Wen Siang

    2017-08-01

    Substantial understanding of spin-orbit interactions in heavy-metal (HM)/ferromagnet (FM) heterostructures is crucial in developing spin-orbit torque (SOT) spintronics devices utilizing spin Hall and Rashba effects. Though the study of SOT effective field dependence on the out-of-plane magnetization angle has been relatively extensive, the understanding of in-plane magnetization angle dependence remains unknown. Here, we analytically propose a method to compute the SOT effective fields as a function of the in-plane magnetization angle using the harmonic Hall technique in perpendicular magnetic anisotropy (PMA) structures. Two different samples with PMA, a Pt /Co /Pt /Co /Ta /BaTi O3 (BTO) test sample and a Pt/Co/Pt/Co/Ta reference sample, are studied using the derived formula. Our measurements reveal that only the dampinglike field of the test sample with a BTO capping layer exhibits an in-plane magnetization angle dependence, while no angular dependence is found in the reference sample. The presence of the BTO layer in the test sample, which gives rise to a Rashba effect at the interface, is ascribed as the source of the angular dependence of the dampinglike field.

  9. Wind-tunnel simulation of store jettison with the aid of magnetic artificial gravity

    NASA Technical Reports Server (NTRS)

    Stephens, T.; Adams, R.

    1972-01-01

    A method employed in the simulation of jettison of stores from aircraft involving small scale wind-tunnel drop tests from a model of the parent aircraft is described. Proper scaling of such experiments generally dictates that the gravitational acceleration should ideally be a test variable. A method of introducing a controllable artificial component of gravity by magnetic means has been proposed. The use of a magnetic artificial gravity facility based upon this idea, in conjunction with small scale wind-tunnel drop tests, would improve the accuracy of simulation. A review of the scaling laws as they apply to the design of such a facility is presented. The design constraints involved in the integration of such a facility with a wind tunnel are defined. A detailed performance analysis procedure applicable to such a facility is developed. A practical magnet configuration is defined which is capable of controlling the strength and orientation of the magnetic artificial gravity field in the vertical plane, thereby allowing simulation of store jettison from a diving or climbing aircraft. The factors involved in the choice between continuous or intermittent operation of the facility, and the use of normal or superconducting magnets, are defined.

  10. Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater.

    PubMed

    Salinas, Tobías; Durruty, Ignacio; Arciniegas, Lorena; Pasquevich, Gustavo; Lanfranconi, Matías; Orsi, Isabela; Alvarez, Vera; Bonanni, Sebastian

    2018-07-15

    Iron nanoparticles can be incorporated on the structure of natural clays to obtain magnetic clays, an adsorbent that be easily removed from a wastewater by magnetic means. Magnetic clays have high adsorption capacities of different contaminants such as heavy metals, fungicides, aromatic compounds and colorants and show rapid adsorption kinetics, but crucial data for achieving its full or pilot scale application is still lacking. In this work, magnetic bentonites with different amounts of magnetite (iron fractions on the clay of 0.55, 0.6 and 0.6) were used to remove color from a real textile wastewater. On a first stage the optimal conditions for the adsorption of the dye, including pH, temperature and clay dosage were determined. Also design parameters for the separation process such as residence time, distance from magnet to magnetic clay and magnet strength were obtained. Finally a pilot scale magnetic drum separator was constructed and tested. A removal of 60% of the dye from a wastewater that contained more than 250 ppm of azo dye was achieved with only 10 min of residence time inside the separator. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Finite Element Modeling of the Bulk Magnitization of Railroad Wheels to Improve Test Conditions for Magnetoacoustic Residual Stress Measurements

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Namkung, M.; Utrata, D.

    1992-01-01

    The magnetoacoustic measurement technique has been used successfully for residual stress measurements in laboratory samples. However, when used to field test samples with complex geometries, such as railroad wheels, the sensitivity of the method declines dramatically. It has been suggested that the decrease in performance may be due, in part, to an insufficient or nonuniform magnetic induction in the test sample. The purpose of this paper is to optimize the test conditions by using finite element modeling to predict the distribution of the induced bulk magnetization of railroad wheels. The results suggest that it is possible to obtain a sufficiently large and uniform bulk magnetization by altering the shape of the electromagnet used in the tests. Consequently, problems associated with bulk magnetization can be overcome, and should not prohibit the magnetoacoustic technique from being used to make residual stress measurements in railroad wheels. We begin by giving a brief overview of the magnetoacoustic technique as it applies to residual stress measurements of railroad wheels. We then define the finite element model used to predict the behavior of the current test configuration along with the nonlinear constitutive relations which we obtained experimentally through measurements on materials typically used to construct both railroad wheels and electromagnets. Finally, we show that by modifying the pole of the electromagnet it is possible to obtain a significantly more uniform bulk magnetization in the region of interest.

  12. Development of a superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.

  13. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    NASA Astrophysics Data System (ADS)

    Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.

    2007-04-01

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.

  14. Characterization of compact-toroid injection during formation, translation, and field penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T.

    2016-11-15

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation,more » ejection/translation from the MCPG, and penetration into transverse magnetic fields.« less

  15. The metallic sphere in a uniform ac magnetic field: A simple and precise experiment for exploring eddy currents and non-destructive testing

    NASA Astrophysics Data System (ADS)

    Honke, Michael L.; Bidinosti, Christopher P.

    2018-06-01

    We describe a very simple experiment that utilizes standard laboratory equipment to measure the electromagnetic response of a metallic sphere exposed to a uniform ac magnetic field. Measurements were made for a variety of non-magnetic and magnetic metals, and in all cases the results fit very well with theory over the four orders of frequency (25 Hz to 102 kHz) explored here. Precise values of magnetic permeability and electrical conductivity can be extracted from fits to the data given the sphere radius only. The same apparatus is also used to explore the effects of geometry on eddy current generation as well as to demonstrate non-destructive testing through measurements on coins of different composition.

  16. Increasing the switching speed of liquid crystal devices with magnetic nanorods

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yu.; Baptist, J. R.; Thompson, J.; Hunter, T.; Lim, J. H.; Gi Min, Seong; Wiley, J. B.; Malkinski, L. M.; Glushchenko, A.; Celinski, Z.

    2012-10-01

    Liquid crystal (LC)/magnetic nanorods colloids were fabricated and tested using a magneto-optical setup. These thermotropic ferronematics do not show any signs of macroscopic aggregation, exhibit enhanced magnetic sensitivity, and faster time response in the simultaneous presence of crossed electric and magnetic fields. Magnetic nanorods increase an effective magnetic anisotropy of the colloid and decrease magnetic Freedericksz threshold. Applying a magnetic field along the direction perpendicular to the applied electric field leads to a decrease of the time OFF by a factor of 6 for pure liquid crystals, and by a factor of 9—for ferronematics.

  17. The world`s first 27 T and 30 T resistive magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, M.D.; Bole, S.; Eyssa, Y.M.

    1996-07-01

    The authors describe in detail a 30 Tesla, 32mm warm bore,m 15 MW resistive magnet which was put into operation at the National High Magnetic Field Laboratory in Tallahassee, FL in March 1995. The magnet consists of three concentric axially-cooled Bitter stacks connected electrically in series. This magnet employs a substantial new development in Bitter magnet technology which allows high current densities without the usually accompanying high stresses. Details of magnet optimization, design, construction, testing and operation are presented. The authors also report on operating experience with the 27 T magnets.

  18. In Vitro Capture of Small Ferrous Particles with a Magnetic Filtration Device Designed for Intravascular Use with Intraarterial Chemotherapy: Proof-of-Concept Study

    PubMed Central

    Mabray, Marc C.; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D.; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W.

    2015-01-01

    Purpose To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Materials and Methods Uncoated iron oxide particles 50–100 nm and 1–5 μm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-μm carboxylic acid–coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Results Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50–100-nm particles in water with a large magnet), 97% (50–100-nm particles in water with a small magnet), 99% (1–5-μm particles in water with a large magnet), 99% (1–5-μm particles in water with a small magnet), 95% (50–100-nm particles in serum with a small magnet), 92% (1–5-μm particles in serum with a small magnet), and 75% (1-μm coated beads in serum with a small magnet) lower compared with matched control runs. Conclusions This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. PMID:26706187

  19. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  20. Design and construction of the astronautics refrigerator magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresner, L.

    1994-05-01

    This document reports on the design, construction, and testing of a 7-Tesla, 4-in. bore superconducting magnet for use in the Astronautics Refrigerator Experiment. The magnet is a single-strand, layer-wound, potted solenoid wound with Formvar-insulated SSC strands. The magnet was constructed by American Magnetics, Inc. of Oak Ridge and has been installed in the Astronautics Refrigerator Experiment at the Astronautics Technology Center in Madison, Wisconsin.

  1. Magnetically controllable 3D microtissues based on magnetic microcryogels.

    PubMed

    Liu, Wei; Li, Yaqian; Feng, Siyu; Ning, Jia; Wang, Jingyu; Gou, Maling; Chen, Huijun; Xu, Feng; Du, Yanan

    2014-08-07

    Microtissues on the scale of several hundred microns are a promising cell culture configuration resembling the functional tissue units in vivo. In contrast to conventional cell culture, handling of microtissues poses new challenges such as medium exchange, purification and maintenance of the microtissue integrity. Here, we developed magnetic microcryogels to assist microtissue formation with enhanced controllability and robustness. The magnetic microcryogels were fabricated on-chip by cryogelation and micro-molding which could endure extensive external forces such as fluidic shear stress during pipetting and syringe injection. The magnetically controllable microtissues were applied to constitute a novel separable 3D co-culture system realizing functional enhancement of the hepatic microtissues co-cultured with the stromal microtissues and easy purification of the hepatic microtissues for downstream drug testing. The magnetically controllable microtissues with pre-defined shapes were also applied as building blocks to accelerate the tissue assembly process under magnetic force for bottom-up tissue engineering. Finally, the magnetic microcryogels could be injected in vivo as cell delivery vehicles and tracked by MRI. The injectable magnetic microtissues maintained viability at the injection site indicating good retention and potential applications for cell therapy. The magnetic microcryogels are expected to significantly promote the microtissues as a promising cellular configuration for cell-based applications such as in drug testing, tissue engineering and regenerative therapy.

  2. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  3. Exact Green's function method of solar force-free magnetic-field computations with constant alpha. I - Theory and basic test cases

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Hilton, H. H.

    1977-01-01

    Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.

  4. Digital Aeromagnetic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Ponce, David A.

    2000-01-01

    An aeromagnetic map of the Nevada Test Site area was prepared from publicly available aeromagnetic data described by McCafferty and Grauch (1997). Magnetic surveys were processed using standard techniques. Southwest Nevada is characterized by magnetic anomalies that reflect the distribution of thick sequences of volcanic rocks, magnetic sedimentary rocks, and the occurrence of granitic rocks. In addition, aeromagnetic data reveal the presence of linear features that reflect faulting at both regional and local scales.

  5. [The temperature factor and magnetic noise under the conditions of stochastic resonance of magnetosomes].

    PubMed

    Bingi, V N; Chernavskiĭ, D S; Rubin, A B

    2006-01-01

    The influence of magnetic noise on the dynamics of magnetic nanoparticles under the conditions of stochastic resonance is considered. The effect of the magnetic noise is shown to be equivalent to the growth of the effective thermostat temperature for the particles at the permanent actual temperature of the medium. This regularity may be used for testing the hypothesis on the involvement of magnetic nanoparticles in the formation of biological effects of weak magnetic fields.

  6. Electromagnetic Remote Sensing. Low Frequency Electromagnetics

    DTIC Science & Technology

    1989-01-01

    biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics

  7. A persistent-mode 0.5 T solid-nitrogen-cooled MgB2 magnet for MRI.

    PubMed

    Ling, Jiayin; Voccio, John P; Hahn, Seungyong; Qu, Timing; Bascuñán, Juan; Iwasa, Yukikazu

    2017-02-01

    This paper presents construction details and test results of a persistent-mode 0.5-T MgB 2 magnet developed at the Francis Bitter Magnet Lab, MIT. The magnet, of 276-mm inner diameter and 290-mm outer diameter, consisted of a stack of 8 solenoidal coils with a total height of 460 mm. Each coil was wound with monofilament MgB 2 wire, equipped with a persistent-current switch and terminated with a superconducting joint, forming an individual superconducting loop. Resistive solder joints connected the 8 coils in series. The magnet, after being integrated into a testing system, immersed in solid nitrogen, was operated in a temperature range of 10-13 K. A two-stage cryocooler was deployed to cool a radiation shield and the cold mass that included mainly ~60 kg of solid nitrogen and the magnet. The solid nitrogen was capable of providing a uniform and stable cryogenic environment to the magnet. The magnet sustained a 0.47-T magnetic field at its center persistently in a range of 10-13 K. The current in each coil was inversely calculated from the measured field profile to determine the performance of each coil in persistent-mode operation. Persistent-current switches were successfully operated in solid nitrogen for ramping the magnet. They were also designed to absorb magnetic energy in a protection mechanism; its effectiveness was evaluated in an induced quench.

  8. How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based Orientation Estimation

    PubMed Central

    Li, Qingguo

    2017-01-01

    With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method. PMID:29283432

  9. The Predictive Value of Selection Criteria in an Urban Magnet School

    ERIC Educational Resources Information Center

    Lohmeier, Jill Hendrickson; Raad, Jennifer

    2012-01-01

    The predictive value of selection criteria on outcome data from two cohorts of students (Total N = 525) accepted to an urban magnet high school were evaluated. Regression analyses of typical screening variables (suspensions, absences, metropolitan achievement tests, middle school grade point averages [GPAs], Matrix Analogies test scores, and…

  10. A magnetic shield/dual purpose mission

    NASA Technical Reports Server (NTRS)

    Watkins, Seth; Albertelli, Jamil; Copeland, R. Braden; Correll, Eric; Dales, Chris; Davis, Dana; Davis, Nechole; Duck, Rob; Feaster, Sandi; Grant, Patrick

    1994-01-01

    The objective of this work is to design, build, and fly a dual-purpose payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field to protect manned spacecraft against particle radiation. An additional mission objective is to study the effect of this moving field on upper atmosphere plasmas. Both mission objectives appear to be capable of being tested using the same superconducting coil. The potential benefits of this magnetic shield concept apply directly to both earth-orbital and interplanetary missions. This payload would be a first step in assessing the true potential of large volume magnetic fields in the U.S. space program. Either converted launch systems or piggyback payload opportunities may be appropriate for this mission. The use of superconducting coils for magnetic shielding against solar flare radiation during manned interplanetary missions has long been contemplated and was considered in detail in the years preceding the Apollo mission. With the advent of new superconductors, it has now become realistic to reconsider this concept for a Mars mission. Even in near-earth orbits, large volume magnetic fields produced using conventional metallic superconductors allow novel plasma physics experiments to be contemplated. Both deployed field-coil and non-deployed field-coil shielding arrangements have been investigated, with the latter being most suitable for an initial test payload in a polar orbit.

  11. Shallow magnetic inclinations in the Cretaceous Valle Group, Baja California: remagnetization, compaction, or terrane translation?

    NASA Astrophysics Data System (ADS)

    Smith, Douglas P.; Busby, Cathy J.

    1993-10-01

    Paleomagnetic data from Albian to Turonian sedimentary rocks on Cedros Island, Mexico (28.2° N, 115.2° W) support the interpretation that Cretaceous rocks of western Baja California have moved farther northward than the 3° of latitude assignable to Neogene oblique rifting in the Gulf of California. Averaged Cretaceous paleomagnetic results from Cedros Island support 20 ± 10° of northward displacement and 14 ± 7° of clockwise rotation with respect to cratonic North America. Positive field stability tests from the Vizcaino terrane substantiate a mid-Cretaceous age for the high-temperature characteristic remanent magnetization in mid-Cretaceous strata. Therefore coincidence of characteristic magnetization directions and the expected Quaternary axial dipole direction is not due to post mid-Cretaceous remagnetization. A slump test performed on internally coherent, intrabasinal slump blocks within a paleontologically dated olistostrome demonstrates a mid-Cretaceous age of magnetization in the Valle Group. The in situ high-temperature natural remanent magnetization directions markedly diverge from the expected Quaternary axial dipole, indicating that the characteristic, high-temperature magnetization was acquired prior to intrabasinal slumping. Early acquisition of the characteristic magnetization is also supported by a regional attitude test involving three localities in coherent mid-Cretaceous Valle Group strata. Paleomagnetic inclinations in mudstone are not different from those in sandstone, indicating that burial compaction did not bias the results toward shallow inclinations in the Vizcaino terrane.

  12. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird.

    PubMed

    Engels, Svenja; Schneider, Nils-Lasse; Lefeldt, Nele; Hein, Christine Maira; Zapka, Manuela; Michalik, Andreas; Elbers, Dana; Kittel, Achim; Hore, P J; Mouritsen, Henrik

    2014-05-15

    Electromagnetic noise is emitted everywhere humans use electronic devices. For decades, it has been hotly debated whether man-made electric and magnetic fields affect biological processes, including human health. So far, no putative effect of anthropogenic electromagnetic noise at intensities below the guidelines adopted by the World Health Organization has withstood the test of independent replication under truly blinded experimental conditions. No effect has therefore been widely accepted as scientifically proven. Here we show that migratory birds are unable to use their magnetic compass in the presence of urban electromagnetic noise. When European robins, Erithacus rubecula, were exposed to the background electromagnetic noise present in unscreened wooden huts at the University of Oldenburg campus, they could not orient using their magnetic compass. Their magnetic orientation capabilities reappeared in electrically grounded, aluminium-screened huts, which attenuated electromagnetic noise in the frequency range from 50 kHz to 5 MHz by approximately two orders of magnitude. When the grounding was removed or when broadband electromagnetic noise was deliberately generated inside the screened and grounded huts, the birds again lost their magnetic orientation capabilities. The disruptive effect of radiofrequency electromagnetic fields is not confined to a narrow frequency band and birds tested far from sources of electromagnetic noise required no screening to orient with their magnetic compass. These fully double-blinded tests document a reproducible effect of anthropogenic electromagnetic noise on the behaviour of an intact vertebrate.

  13. Leak checker data logging system

    DOEpatents

    Gannon, J.C.; Payne, J.J.

    1996-09-03

    A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time. 18 figs.

  14. Leak checker data logging system

    DOEpatents

    Gannon, Jeffrey C.; Payne, John J.

    1996-01-01

    A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time.

  15. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J. C.; Oliveira-Rodríguez, M.; Blanco-López, M. C.; García, J. A.

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies.

  16. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE PAGES

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    2017-01-01

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  17. Design, Fabrication, and Test of a Superconducting Dipole Magnet Based on Tilted Solenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspi, S.; Dietderich, D. R.; Ferracin, P.

    2007-06-01

    It can be shown that, by superposing two solenoid-like thin windings that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is 'cos-theta' like and the resulting magnetic field in the bore is a pure dipole. As a proof of principle, such a magnet was designed, built and tested as part of a summer undergraduate intern project. The measured field in the 25mm bore, 4 single strand layers using NbTi superconductor, exceeded 1 T. The simplicity of this high field quality design, void of typical wedges end-spacers and coil assembly, is especiallymore » suitable for insert-coils using High Temperature Superconducting wire as well as for low cost superconducting accelerator magnets for High Energy Physics. Details of the design, construction and test are reported.« less

  18. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  19. Development and positioning reliability of a TMS coil holder for headache research.

    PubMed

    Chronicle, Edward P; Pearson, A Jane; Matthews, Cheryl

    2005-01-01

    Accurate and reproducible coil positioning is important for headache research using transcranial magnetic stimulation protocols. We aimed to design a transcranial magnetic stimulation coil holder and demonstrate reliability of test-retest coil positioning. A coil holder was developed and manufactured according to three principles of stability, durability, and three-dimensional positional accuracy. Reliability of coil positioning was assessed by stimulating over the motor cortex of four neurologically normal subjects and recording finger muscle responses, both at a test phase and a retest phase several hours later. In all four subjects, repositioning of the transcranial magnetic stimulation coil solely on the basis of coil holder coordinates was accurate to within 2 mm. The coil holder demonstrated good test-retest reliability of coil positioning, and is thus a promising tool for transcranial magnetic stimulation-based headache research, particularly studies of prophylactic drug effect where several laboratory visits with identical coil positioning are necessary.

  20. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance.

    PubMed

    Del Seppia, Cristina; Mezzasalma, Lorena; Messerotti, Mauro; Cordelli, Alessandro; Ghione, Sergio

    2009-01-01

    We have previously reported that the exposure to an abnormal magnetic field simulating the one encountered by the International Space Station (ISS) orbiting around the Earth may enhance autonomic response to emotional stimuli. Here we report the results of the second part of that study which tested whether this field also affects cognitive functions. Twenty-four volunteers participated in the study, 12 exposed to the natural geomagnetic field and 12 to the magnetic field encountered by ISS. The test protocol consisted of a set of eight tests chosen from a computerized test battery for the assessment of attentional performance. The duration of exposure was 90 min. No effect of exposure to ISS magnetic field was observed on attentional performance. (c) 2008 Wiley-Liss, Inc.

  1. The magnetic sense and its use in long-distance navigation by animals.

    PubMed

    Walker, Michael M; Dennis, Todd E; Kirschvink, Joseph L

    2002-12-01

    True navigation by animals is likely to depend on events occurring in the individual cells that detect magnetic fields. Minimum thresholds of detection, perception and 'interpretation' of magnetic field stimuli must be met if animals are to use a magnetic sense to navigate. Recent technological advances in animal tracking devices now make it possible to test predictions from models of navigation based on the use of variations in magnetic intensity.

  2. Control Study for Five-axis Dynamic Spin Rig Using Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Provenza, Andrew; Morrison, Carlos; Montague, Gerald

    2003-01-01

    The NASA Glenn Research Center (GRC) has developed a magnetic bearing system for the Dynamic Spin Rig (DSR) with a fully suspended shaft that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the DSR to provide magnetic excitation as well as non-contact mag- netic suspension of a 15.88 kg (35 lb) vertical rotor with blades to induce turbomachinery blade vibration. For rotor levitation, a proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, more blade vibration amplitude, and energy savings for the system. The test results of a variety of controllers that were demonstrated up to 10.000 rpm are shown. Furthermore, rotor excitation operation and conceptual study of active blade vibration control are addressed.

  3. Cryocooler based test setup for high current applications

    NASA Astrophysics Data System (ADS)

    Pradhan, Jedidiah; Das, Nisith Kr.; Roy, Anindya; Duttagupta, Anjan

    2018-04-01

    A cryo-cooler based cryogenic test setup has been designed, fabricated, and tested. The setup incorporates two numbers of cryo-coolers, one for sample cooling and the other one for cooling the large magnet coil. The performance and versatility of the setup has been tested using large samples of high-temperature superconductor magnet coil as well as short samples with high current. Several un-calibrated temperature sensors have been calibrated using this system. This paper presents the details of the system along with results of different performance tests.

  4. Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications: Speed, Torque and Efficiency Measurements

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Valiente-Blanco, Ignacio; Cristache, Cristian; Alvarez-Valenzuela, Marco-Antonio; Sanchez-Garcia-Casarrubios, Juan

    2015-09-01

    Harmonic Drives are widely used in space mainly because of their compactness, large reduction ratio ad zero backlash. However, their use in extreme environments like in cryogenic temperatures is still a challenge. Lubrication, lifetime and fatigue are still issues under these conditions.The MAGDRIVE project, funded by the EU Space FP7 was devoted to test a new concept of harmonic drive reducer. By using the magnetic distance force interactions of magnets and ferromagnetic materials, all the conventional mechanical elements of a Harmonic Drives (teeth, flexspline and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between any moving parts prevents wear, lubricants are no longer required and the operational life time is greatly increased. As the magnetic transmission is continuous there is no backlash in the reduction. MAG SOAR Company is already providing contactless mechanical components for space applications able to operate in a wide range of temperatures.In this paper the tests results of a -1:20 ratio MAGDRIVE prototype are reported. In these tests successful operation at 40 K and 10-3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 Nm and efficiency higher than 75% at 3000 rpm were demonstrated. The maximum tested input speed was 3000 rpm -six times the previous existing record for harmonic drives at cryogenic temperature.

  5. In vitro magnetic resonance imaging evaluation of ossicular implants at 3 T.

    PubMed

    Shellock, Frank G; Meepos, Lauren N; Stapleton, Matthew R; Valencerina, Sam

    2012-07-01

    Ossicular implants made from metallic materials may be acceptable or pose hazards for patients referred for magnetic resonance imaging (MRI) examinations, depending on the outcome of proper MRI testing procedures. Using a 3-T MR system, 2 ossicular implants were tested for magnetic field interactions, heating, and artifacts. Two different ossicular implants (Stainless Steel/Fluoroplastic Sanna-Type Piston [6 mm in length] and the Offset ALTO Total Prosthesis [15 mm in length, titanium/silicone]; Grace Medical, Memphis, TN, USA) were selected for testing, which represented the largest metallic mass and materials with the highest magnetic susceptibilities, with the intent of applying the MRI findings to other ossicular implants. The implants were evaluated at 3-T for magnetic field interactions, heating, and artifacts using standard previously described techniques. Each ossicular implant showed relatively minor magnetic field interactions that will not be associated with movement in situ. Heating was not excessive (highest temperature change, ≤ 1.6°C; background temperature change, 1.5°C). Artifacts, although relatively small, may create issues for diagnostic imaging if the area of interest is in the same area or close to these ossicular implants. The results of this investigation demonstrated that it would be acceptable (i.e., "MR conditional" using current terminology) for patients with these ossicular implants to undergo MRI examinations at 3 T or less. In consideration of the materials and dimensions of the implants that underwent testing, these findings pertain to many other similar ossicular implants from the same manufacturer.

  6. Upgrade of the cryogenic infrastructure of SM18, CERN main test facility for superconducting magnets and RF cavities

    NASA Astrophysics Data System (ADS)

    Perin, A.; Dhalla, F.; Gayet, P.; Serio, L.

    2017-12-01

    SM18 is CERN main facility for testing superconducting accelerator magnets and superconducting RF cavities. Its cryogenic infrastructure will have to be significantly upgraded in the coming years, starting in 2019, to meet the testing requirements for the LHC High Luminosity project and for the R&D program for superconducting magnets and RF equipment until 2023 and beyond. This article presents the assessment of the cryogenic needs based on the foreseen test program and on past testing experience. The current configuration of the cryogenic infrastructure is presented and several possible upgrade scenarios are discussed. The chosen upgrade configuration is then described and the characteristics of the main newly required cryogenic equipment, in particular a new 35 g/s helium liquefier, are presented. The upgrade implementation strategy and plan to meet the required schedule are then described.

  7. Experiments in a real scale maglev vehicle prototype

    NASA Astrophysics Data System (ADS)

    Sotelo, G. G.; Dias, D. H. N.; Machado, O. J.; David, E. D.; de Andrade, R., Jr.; Stephan, R. M.; Costa, G. C.

    2010-06-01

    A Brazilian real scale magnetically levitated transport system prototype is under development at the Federal University of Rio de Janeiro. To test this system a 180 m long line has been projected and it will be concluded by the end of 2010. A superconducting linear bearing (SLB) is used to replace the wheels of a conventional train. High temperature superconductor bulks placed inside cryostats attached to the vehicle and a magnetic rail composes the SLB. To choose the magnetic rail for the test line three different rails, selected in a previous simulation work, were built and tested. They are composed by Nd-Fe-B and steel, arranged in a flux concentrator topology. The magnetic flux density for those magnetic rails was mapped. Also, the levitation force between those rails and the superconductor cryostat, for several cooling gaps, were measured to select the best rail geometry to be used in the real scale line. The SLB allows building a light vehicle with distributed load, silent and high energy efficient. The proposed vehicle is composed of four modules with just 1.5 m of length each one and it can transport up to 24 passengers. The test line having two curves with 45 m radius and a 15% acclivity ramp is also presented.

  8. Testing of Photomultiplier Tubes in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Waldron, Zachary; A1 Collaboration

    2016-09-01

    The A1 collaboration at MAMI in Mainz, Germany has designed a neutron detector that can be used in experiments to measure the electric form factor of the neutron. They will measure elastic scattering from the neutron, using the polarized electron beam from MAMI at A1's experimental hall. The detector will be composed of two walls of staggered scintillator bars which will be read out by photomultiplier tubes (PMT), connected to both ends of each scintillator via light guides. The experiment requires a magnetic field with strength of 1 Tesla, 2m away from the first scintillator wall. The resulting fringe field is sufficient to disrupt the PMTs, despite the addition of Mu Metal shielding. The effects of the fringe field on these PMTs was tested to optimize the amplification of the PMTs. A Helmholtz Coil was designed to generate a controlled magnetic field with equivalent strength to the field that the PMTs will encounter. The PMTs were read out using a multi-channel analyzer, were tested at various angles relative to the magnetic field in order to determine the optimal orientation to minimize signal disruption. Tests were also performed to determine: the neutron detector response to cosmic radiation; and the best method for measuring a magnetic field's strength in two dimensions. National Science Foundation Grant No. IIA-1358175.

  9. Design, Construction and Test of Cryogen-Free HTS Coil Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocker, H.; Anerella, M.; Gupta, R.

    2011-03-28

    This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconductingmore » magnets.« less

  10. Development of dual field magnetic flux leakage (MFL) inspection technology to detect mechanical damage.

    DOT National Transportation Integrated Search

    2013-03-01

    This report details the development and testing of a dual magnetization in-line inspection (ILI) : tool for detecting mechanical damage in operating pipelines, including the first field trials of a : fully operational dual-field magnetic flux leakage...

  11. Synthesis and toxicity test of magnetic nanoparticle via biocompatible microemulsion system as template for application in targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Kader, Razinah Abdul; Rose, Laili Che; Suhaimi, Hamdan; Manickam, Mariessa Soosai

    2017-09-01

    This work reports the preparation of magnetic nanoparticles (FeNPs) using biocompatible W/O microemulsion for biomedical applications. W/O microemulsion was formed using decane as oil phase, water, tween 80 as non-ionic surfactant and hexanol as organic solvent. The synthesized FeNPs were characterised by using Fourier Transform Infrared Resonance Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The FTIR showed that Fe-O bond exist on 581cm-1 having strong magnetic strength whereas SEM showed the morphology surface of magnetic nanoparticles (FeNPs). Furthermore, analysis of XRD pattern magnetic nanoparticles (FeNPs) reveals a cubic iron oxide phase with good crystallize structure. Furthermore, toxicity test on human liver cells proved that it is 70% safe on human and proved to be a safety nanomedicine.

  12. Design of portable electric and magnetic field generators

    NASA Astrophysics Data System (ADS)

    Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.

    2000-11-01

    Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.

  13. Development and testing of a magnetic position sensor system for automotive and avionics applications

    NASA Astrophysics Data System (ADS)

    Jacobs, Bryan C.; Nelson, Carl V.

    2001-08-01

    A magnetic sensor system has been developed to measure the 3-D location and orientation of a rigid body relative to an array of magnetic dipole transmitters. A generalized solution to the measurement problem has been formulated, allowing the transmitter and receiver parameters (position, orientation, number, etc.) to be optimized for various applications. Additionally, the method of images has been used to mitigate the impact of metallic materials in close proximity to the sensor. The resulting system allows precise tracking of high-speed motion in confined metal environments. The sensor system was recently configured and tested as an abdomen displacement sensor for an automobile crash-test dummy. The test results indicate a positional accuracy of approximately 1 mm rms during 20 m/s motions. The dynamic test results also confirmed earlier covariance model predictions, which were used to optimize the sensor geometry. A covariance analysis was performed to evaluate the applicability of this magnetic position system for tracking a pilot's head motion inside an aircraft cockpit. Realistic design parameters indicate that a robust tracking system, consisting of lightweight pickup coils mounted on a pilot's helmet, and an array of transmitter coils distributed throughout a cockpit, is feasible. Recent test and covariance results are presented.

  14. A dynamic method for magnetic torque measurement

    NASA Technical Reports Server (NTRS)

    Lin, C. E.; Jou, H. L.

    1994-01-01

    In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system.

  15. Zebra finches have a light-dependent magnetic compass similar to migratory birds.

    PubMed

    Pinzon-Rodriguez, Atticus; Muheim, Rachel

    2017-04-01

    Birds have a light-dependent magnetic compass that provides information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina and mediated by a light-induced, radical-pair mechanism involving cryptochromes as sensory receptor molecules. To investigate how the behavioural responses of birds under different light spectra match with cryptochromes as the primary magnetoreceptor, we examined the spectral properties of the magnetic compass in zebra finches. We trained birds to relocate a food reward in a spatial orientation task using magnetic compass cues. The birds were well oriented along the trained magnetic compass axis when trained and tested under low-irradiance 521 nm green light. In the presence of a 1.4 MHz radio-frequency electromagnetic (RF)-field, the birds were disoriented, which supports the involvement of radical-pair reactions in the primary magnetoreception process. Birds trained and tested under 638 nm red light showed a weak tendency to orient ∼45 deg clockwise of the trained magnetic direction. Under low-irradiance 460 nm blue light, they tended to orient along the trained magnetic compass axis, but were disoriented under higher irradiance light. Zebra finches trained and tested under high-irradiance 430 nm indigo light were well oriented along the trained magnetic compass axis, but disoriented in the presence of a RF-field. We conclude that magnetic compass responses of zebra finches are similar to those observed in nocturnally migrating birds and agree with cryptochromes as the primary magnetoreceptor, suggesting that light-dependent, radical-pair-mediated magnetoreception is a common property for all birds, including non-migratory species. © 2017. Published by The Company of Biologists Ltd.

  16. Testing military grade magnetics (transformers, inductors and coils).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Engineers and designers are constantly searching for test methods to qualify or 'prove-in' new designs. In the High Reliability world of military parts, design test, qualification tests, in process tests and product characteristic tests, become even more important. The use of in process and function tests has been adopted as a way of demonstrating that parts will operate correctly and survive its 'use' environments. This paper discusses various types of tests to qualify the magnetic components - the current carrying capability of coils, a next assembly 'as used' test, a corona test and inductance at temperature test. Each of thesemore » tests addresses a different potential failure on a component. The entire process from design to implementation is described.« less

  17. Magnetically adjustable intraocular lens.

    PubMed

    Matthews, Michael Wayne; Eggleston, Harry Conrad; Pekarek, Steven D; Hilmas, Greg Eugene

    2003-11-01

    To provide a noninvasive, magnetic adjustment mechanism to the repeatedly and reversibly adjustable, variable-focus intraocular lens (IOL). University of Missouri-Rolla, Rolla, and Eggleston Adjustable Lens, St. Louis, Missouri, USA. Mechanically adjustable IOLs have been fabricated and tested. Samarium and cobalt rare-earth magnets have been incorporated into the poly(methyl methacrylate) (PMMA) optic of these adjustable lenses. The stability of samarium and cobalt in the PMMA matrix was examined with leaching studies. Operational force testing of the magnetic optics with emphasis on the rotational forces of adjustment was done. Prototype optics incorporating rare-earth magnetic inserts were consistently produced. After 32 days in solution, samarium and cobalt concentration reached a maximum of 5 ppm. Operational force measurements indicate that successful adjustments of this lens can be made using external magnetic fields with rotational torques in excess of 0.6 ounce inch produced. Actual lenses were remotely adjusted using magnetic fields. The magnetically adjustable version of this IOL is a viable and promising means of handling the common issues of postoperative refractive errors without the requirement of additional surgery. The repeatedly adjustable mechanism of this lens also holds promise for the developing eyes of pediatric patients and the changing needs of all patients.

  18. Development and Testing of a Radial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA John H. Glenn Research Center has developed and tested a revolutionary Radial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Radial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Radial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical applications, manufacturing equipment, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Radial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  19. Development and Testing of an Axial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  20. Tests of a Prototype for Assessing the Field Homogeneity of the Iseult/Inumac 11.7T Whole Body MRI Magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quettier, Lionel

    A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore, the so-call Iseult/Inumac magnet. Regarding the large aperture and field strength, this magnet is a challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&D program. With the objective of demonstrating the possibility of achieving field homogeneity better than 1 ppm using double pancake windings, a 24 double pancakes model coil, working atmore » 1.5 T has been designed. This model magnet has been manufactured by Alstom MSA and tested at CEA. It has been measured with a very high precision, in order to fully characterize the field homogeneity, and then to investigate and discriminate the parameters that influence the field map. This magnet has reached the bare magnet field homogeneity specification expected for Iseult and thus successfully demonstrated the feasibility of building a homogenous magnet with the double pancake winding technique.« less

  1. In situ baking method for degassing of a kicker magnet in accelerator beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuummore » chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.« less

  2. Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.

    1980-01-01

    The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, G.; Capineri, L., E-mail: lorenzo.capineri@unifi.it; Granato, M.

    This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passivemore » components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.« less

  4. Current control of time-averaged magnetization in superparamagnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bapna, Mukund; Majetich, Sara A.

    2017-12-01

    This work investigates spin transfer torque control of time-averaged magnetization in a small 20 nm × 60 nm nanomagnet with a low thermal stability factor, Δ ˜ 11. Here, the nanomagnet is a part of a magnetic tunnel junction and fluctuates between parallel and anti-parallel magnetization states with respect to the magnetization of the reference layer generating a telegraph signal in the current versus time measurements. The response of the nanomagnet to an external field is first analyzed to characterize the magnetic properties. We then show that the time-averaged magnetization in the telegraph signal can be fully controlled between +1 and -1 by voltage over a small range of 0.25 V. NIST Statistical Test Suite analysis is performed for testing true randomness of the telegraph signal that the device generates when operated at near critical current values for spin transfer torque. Utilizing the probabilistic nature of the telegraph signal generated at two different voltages, a prototype demonstration is shown for multiplication of two numbers using an artificial AND logic gate.

  5. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets

    NASA Astrophysics Data System (ADS)

    Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.

    2017-12-01

    The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.

  6. Cooling Stability Test of MgB2 Wire Immersed in Liquid Hydrogen under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Hikawa, Kyosuke; Shiotsu, Masahiro; Tatsumoto, Hideki; Naruo, Yoshihiro; Kobayashi, Hiroaki; Inagaki, Yoshifumi

    2014-05-01

    Liquid hydrogen (LH2), which has large latent heat, low viscosity coefficient, is expected to be a candidate for a cryogen for superconducting wires, not only MgB2 but also other HTC superconductors. LH2 cooled superconducting wires are expected to have excellent electro-magnetic characteristics, which is necessary to be clear for cooling stability design of LH2 cooled superconducting device, however, due to handling difficulties of LH2, there are only few papers on the properties of LH2 cooled superconductors, especially under external magnetic field. We designed and made an experimental setup which can energize superconducting wires immersed in LH2 with the current of up to 500A under the condition of external magnetic field up to 7 T and pressure up to 1.5 MPa. In order to confirm experimental method and safety operation of the setup, over current tests were carried out using MgB2 superconducting wires under various external magnetic field conditions. Critical current of the test wire at the temperature 21, 24, 27, 29 K under external magnetic fields up to 1.2 T was successfully measured. The resistance of the wire also was measured, while the transport current exceeded the critical current of the wire.

  7. CAFE: A New Relativistic MHD Code

    NASA Astrophysics Data System (ADS)

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  8. An algorithm for deriving core magnetic field models from the Swarm data set

    NASA Astrophysics Data System (ADS)

    Rother, Martin; Lesur, Vincent; Schachtschneider, Reyko

    2013-11-01

    In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010) and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations. It has been built to handle possible weak time variations of these angles. The modeling approach and software have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field measurements. We present results of test runs applied to the synthetic Swarm test data set.

  9. Development of precise measurement systems for deep-sea electrical and magnetic explorations by ROV and AUV

    NASA Astrophysics Data System (ADS)

    Sayanagi, K.; Goto, T.; Harada, M.; Kasaya, T.; Sawa, T.; Nakajima, T.; Isezaki, N.; Takeuchi, A.; Nagao, T.; Matsuo, J.

    2009-12-01

    It is generally not easy to obtain the fine-scale structure of the oceanic crust with accuracy better than several tens of meters, because the deep sea prevents us from approaching the bottom in most parts of the oceans. The necessity of such detailed information, however, has increased in researches and developments of the ocean floor. For instance, it is essential in development of ocean floor resources like sea-floor hydrothermal deposits and methane hydrate in order to estimate accurate abundance of those resources. Therefore, it is very important to develop some instruments for precise measurements of the oceanic crust. From this standpoint, we have developed new measurement systems for electrical and magnetic explorations by Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV). In our project, the main target is sea-floor hydrothermal deposits. We are working on research and development regarding measurement of the magnetic field with high resolution and high sampling rate, electrical exploration with accurately controlled source signals, electrical exploration tools for shallow and deep targets, versatile instruments of electrical and magnetic explorations with multi-platforms (deep-tow system, ROV, and AUV), comprehensive analyses of electrical, magnetic, acoustic and thermal data, and so on. We finished basic designs of the magnetic and electrical observation systems last year, and we have been manufacturing each instrument. So far, the first test of the magnetic exploration system was carried out in the Kumano Basin during the R/V Yokosuka cruise in July, 2009. In the test, a vector magnetometer on AUV “Urashima” and a scalar magnetometer hung below towing vehicle “Yokosuka Deep-Tow” successfully detected magnetic anomaly produced by an artificial magnetic body set up on the ocean floor. Details will be reported in another paper by Harada, M. et al. in this meeting. In addition, various performance tests will be planned for check and improvement of the observation systems. For instance, the vector magnetometer will be tested over a volcanic island using a helicopter. The electrical exploration system will be also tested using ROV “Kaiko 7000II” off the northeastern part of Japan during the R/V Kairei cruise. We will present the outline and the current state of the project in this presentation. Note that this project has been supported by the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  10. Triaxial Probe Magnetic Data Analysis

    NASA Technical Reports Server (NTRS)

    Shultz, Kimberly; Whittlesey, Albert; Narvaez, Pablo

    2007-01-01

    The Triaxial Magnetic Moment Analysis software uses measured magnetic field test data to compute dipole and quadrupole moment information from a hardware element. It is used to support JPL projects needing magnetic control and an understanding of the spacecraft-generated magnetic fields. Evaluation of the magnetic moment of an object consists of three steps: acquisition, conditioning, and analysis. This version of existing software was extensively rewritten for easier data acquisition, data analysis, and report presentation, including immediate feedback to the test operator during data acquisition. While prior JPL computer codes provided the same data content, this program has a better graphic display including original data overlaid with reconstructed results to show goodness of fit accuracy and better appearance of the report graphic page. Data are acquired using three magnetometers and two rotations of the device under test. A clean acquisition user interface presents required numeric data and graphic summaries, and the analysis module yields the best fit (least squares) for the magnetic dipole and/or quadrupole moment of a device. The acquisition module allows the user to record multiple data sets, selecting the best data to analyze, and is repeated three times for each of the z-axial and y-axial rotations. In this update, the y-axial rotation starting position has been changed to an option, allowing either the x- or z-axis to point towards the magnetometer. The code has been rewritten to use three simultaneous axes of magnetic data (three probes), now using two "rotations" of the device under test rather than the previous three rotations, thus reducing handling activities on the device under test. The present version of the software gathers data in one-degree increments, which permits much better accuracy of the fit ted data than the coarser data acquisition of the prior software. The data-conditioning module provides a clean data set for the analysis module. For multiple measurements at a given degree, the first measurement is used. For omitted measurements, the missing field is estimated by linear interpolation between the two nearest measurements. The analysis module was rewritten for the dual rotation, triaxial probe measurement process and now has better moment estimation accuracy, based on the finer one degree of data acquisition resolution. The magnetic moments thus computed are used as an input to summarize the total spacecraft field.

  11. Radiation test of AMR sensors for MetNet Mars Precursor Mission

    NASA Astrophysics Data System (ADS)

    Sanz, R.; Fernandez, A. B.; Dominguez, J. A.; Martin, B.; Díaz-Michelena, M.

    2012-04-01

    The MetNet Mars Precursor Mission (MMPM) to Mars is supposed to be the first penetrator-based on ground meteorological station of a net over the Martian surface. MMPM will have very limited communications, power, and mass and lander and instrumentation will have to stand a huge mechanical shock, extremely low temperatures with huge temperature excursions and a radiation envelope of 15 krad. One of the instruments on board the MMPM is vector magnetometer, which main goal is to register the thermomangetic curves of the crustal magnetic minerals [1]. The instrument is based on Anisotropic MagnetoResistive (AMR) Commercial Off-The-Shelf (COTS) sensors due to the miniaturization objective and the successful previous experience in geomagnetic surveys [2, 3], achieving a whole mass of 65 g with a good trade off of magnetic performance (resolution levels in the order of the nT). This work reports on the magnetic sensor and the systematic gamma radiation tests performed on the AMR COTS chips. The objective is to study the damage and degradation of these sensors with the total irradiated dose (TID). The sensors were irradiated with gamma rays up to a total irradiation dose of 200 krad following ESCC Basic Specification No. 22900, with limited number of tested sensors. All tests were performed assuring low disturbances of variable magnetic fields, keeping those variations under the error threshold by means of magnetic shielding and registration of magnetic field variations with pT resolution. Parameters like linear response and saturation field, offset and set/reset strips deviations, and power consumption have been monitored for the four different types of sensors during the irradiation. The sensors chosen for the test have been of the HMC series by Honeywell: HMC 1021 S, HMC 1043, HMC 6042 and HMC 6052. HMC 1043 has been chosen for the AOCS of OPTOS picosatellite of INTA and as the magnetic sensor payload for MetNet precursor mission. HMC 1021 S sensors presented low degradation both in sensitivity (<2%) and offset values (<12 nT). HMC 6042 and HMC 6052 tested biaxial magnetic sensors presented a low degradation response up to TID 100 krad both in variation of sensitivity (<3%) and offset absolute value (<2 nT). HMC 1043 presented low degradation up to a TID of 100 krad gamma irradiation. Offset and sensitivity values presented low deviations up to 200 krad (<12 nT and <5%) against gamma irradiation up to 100 krad. The performed test, avoiding full screening results, points out the suitability of sensor HMC 1043 for future Met-Net precursor mission. [1] R. Sanz, M. F. Cerdán, A. Wise, M. E. McHenry, and M. Díaz-Michelena. Temperature dependent Magnetization and Remanent Magnetization in Pseudo-binary x(Fe2TiO4)-(1-x)(Fe3O4)(0.30

  12. A review of an attempt to create shatter cones with magnetic flyer plate technology

    NASA Technical Reports Server (NTRS)

    Linnerud, H. J.

    1981-01-01

    The feasibility of creating shatter cones in a controlled laboratory environment is discussed. Magnetic flyer plate technology, which generates high amplitude shock waves in test materials is discribed. Considerable sample shear and break up was observed, however, no shatter cones are found in the tested samples.

  13. An experimental approach in revisiting the magnetic orientation of cattle.

    PubMed

    Weijers, Debby; Hemerik, Lia; Heitkönig, Ignas M A

    2018-01-01

    In response to the increasing number of observational studies on an apparent south-north orientation in non-homing, non-migrating terrestrial mammals, we experimentally tested the alignment hypothesis using strong neodymium magnets on the resting orientation of individual cattle in Portugal. Contrary to the hypothesis, the 34 cows in the experiment showed no directional preference, neither with, nor without a strong neodymium magnet fixed to their collar. The concurrently performed 2,428 daytime observations-excluding the hottest part of the day-of 659 resting individual cattle did not show a south-north alignment when at rest either. The preferred compass orientation of these cows was on average 130 degrees from the magnetic north (i.e., south east). Cow compass orientation correlated significantly with sun direction, but not with wind direction. In as far as we can determine, this is the first experimental test on magnetic orientation in larger, non-homing, non-migrating mammals. These experimental and observational findings do not support previously published suggestions on the magnetic south-north alignment in these mammals.

  14. Active magnetic bearings: As applied to centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-01-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  15. Active magnetic bearings: As applied to centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-05-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  16. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    NASA Astrophysics Data System (ADS)

    Wang, R.; Demerdash, N. A.

    1992-06-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  17. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  18. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  19. Crack propagation analysis and fatigue life prediction for structural alloy steel based on metal magnetic memory testing

    NASA Astrophysics Data System (ADS)

    Ni, Chen; Hua, Lin; Wang, Xiaokai

    2018-09-01

    To monitor the crack propagation and predict the fatigue life of ferromagnetic material, the metal magnetic memory (MMM) testing was carried out to the single edge notched specimen made from structural alloy steel under three-point bending fatigue experiment in this paper. The variation of magnetic memory signal Hp (y) in process of fatigue crack propagation was investigated. The gradient K of Hp (y) was investigated and compared with the stress of specimen obtained by finite element analysis. It indicated that the gradient K can qualitatively reflect the distribution and variation of stress. The maximum gradient Kmax and crack size showed a good linear relationship, which indicated that the crack propagation can be estimated by MMM testing. Furthermore, the damage model represented by magnetic memory characteristic was created and a fatigue life prediction method was developed. The fatigue life can be evaluated by the relationship between damage parameter and normalized life. The method was also verified by another specimen. Because of MMM testing, it provided a new approach for predicting fatigue life.

  20. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    NASA Astrophysics Data System (ADS)

    Baldikova, Eva; Prochazkova, Jitka; Stepanek, Miroslav; Hajduova, Jana; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles.

  1. Experimental investigation on thermo-magnetic convection inside cavities.

    PubMed

    Gontijo, R G; Cunha, F R

    2012-12-01

    This paper presents experimental results on thermo-magnetic convection inside cavities. We examine the flow induced by convective currents inside a cavity with aspect ratio near the unity and the heat transfer rates measurements inside a thin cavity with aspect ratio equal to twelve. The convective unstable currents are formed when a magnetic suspension is subjected to a temperature gradient combined with a gradient of an externally imposed magnetic field. Under these conditions, stratifications in the suspension density and susceptibility are both important effects to the convective motion. We show a comparison between flow patterns of magnetic and gravitational convections. The impact of the presence of a magnetic field on the amount of heat extracted from the system when magnetic and gravitational effects are combined inside the test cell is evaluated. The convection state is largely affected by new instability modes produced by stratification in susceptibility. The experiments reveal that magnetic field enhances the instability in the convective flow leading to a more effective mixing and consequently to a more statistically homogenous temperature distribution inside the test cell. The experimental results allow the validation of the scaling law proposed in a previous theoretical work that has predicted that the Nusselt number scales with the magnetic Rayleigh number to the power of 1/3, in the limit in which magnetic force balances viscous force in the convective flow.

  2. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-06-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  3. Development, fabrication and testing of a magnetically connected plastic vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Phillips, G. B.; Pace, V. A., Jr.

    1972-01-01

    The sampler utilizes permanent magnets and soft metal pole pieces to connect the cone/filter assembly to the sampling head and vacuum supply. The cone/filter assembly is packaged in a plastic container and presterilized so that the need for any human contact during the sampling procedure is completely eliminated. Microbiological tests have demonstrated that the sampling efficiency is not affected by the magnetic coupling apparatus and that the probe appears to function as efficiently as the conventional plastic and Sandia vacuum probes.

  4. Modelling high frequency phenomena in the rotor of induction motors under no-load test conditions

    NASA Astrophysics Data System (ADS)

    Boglietti, Aldo; Bottauscio, Oriano; Chiampi, Mario; Lazzari, Mario

    2003-01-01

    The paper aims to deep the electromagnetic phenomena in the rotor of induction motors produced during the no-load test by the high-order harmonics of the spatial distribution of magnetic flux. The analysis is carried out by a flux driven finite element procedure, which can take into account the hysteresis of magnetic material, the induced currents in rotor cage and the eddy currents in the laminations. The computed results, including losses and local waveforms of electrical and magnetic quantities, are finally discussed.

  5. Development of a compact superconducting rotating-gantry for heavy-ion therapy

    PubMed Central

    Iwata, Yoshiyuki; Noda, K.; Murakami, T.; Shirai, T.; Furukawa, T.; Fujita, T.; Mori, S.; Sato, S.; Mizushima, K.; Shouda, K.; Fujimoto, T.; Arai, H.; Ogitsu, T.; Obana, T.; Amemiya, N.; Orikasa, T.; Takami, S.; Takayama, S.

    2014-01-01

    An isocentric superconducting rotating-gantry for heavy-ion therapy is being developed [ 1]. This rotating gantry can transport heavy ions having 430 MeV/u to an isocenter with irradiation angles of over ±180°, and is further capable of performing fast raster-scanning irradiation [ 2]. A layout of the beam-transport line for the compact rotating-gantry is presented in Fig. 1. The rotating gantry has 10 superconducting magnets (BM01-10), a pair of the scanning magnets (SCM-X and SCM-Y) and two pairs of beam profile- monitor and steering magnets (ST01-02 and PRN01-02). For BM01-BM06 and BM09-BM10, the combined-function superconducting magnets are employed. Further, these superconducting magnets are designed for fast slewing of the magnetic field to follow the multiple flattop operation of the synchrotron [ 3]. The use of the combined-function superconducting magnets with optimized beam optics allows a compact gantry design with a large scan size at the isocenter; the length and the radius of the gantry will be to be ∼13 and 5.5 m, respectively, which are comparable to those for the existing proton gantries. Furthermore, the maximum scan size at the isocenter is calculated to be as large as ∼200 mm square for heavy-ion beams at the maximum energy of 430 MeV/u. All of the superconducting magnets were designed, and their magnetic fields were calculated using the Opera-3d code [ 4]. With the calculated magnetic fields, beam-tracking simulations were made. The simulation results agreed well with those of the linear beam-optics calculation, proving validity of the final design for the superconducting magnets. The five out of 10 superconducting magnets, as well as the model magnet were currently manufactured. With these magnets, rotation tests, magnetic field measurements and fast slewing tests were conducted. However, we did not observe any significant temperature increase, which may cause a quench problem. Further, results of the magnetic field measurements roughly agreed with those calculated by the Opera-3d code. The design study as well as major tests of the superconducting magnets was completed, and the construction of the superconducting rotating-gantry is in progress. The construction of the superconducting rotating-gantry will be completed at the end of FY2014, and be commissioned within FY2015. Fig. 1.Layout of the superconducting rotating-gantry. The gantry consists of 10 superconducting magnets (BM01–BM10), a pair of the scanning magnets (SCM-X and SCMY), and two pairs of beam profile-monitor and steering magnets (STR01–STR02 and PRN01–PRN02).

  6. A persistent-mode 0.5 T solid-nitrogen-cooled MgB2 magnet for MRI

    PubMed Central

    Ling, Jiayin; Voccio, John P.; Hahn, Seungyong; Qu, Timing; Bascuñán, Juan; Iwasa, Yukikazu

    2017-01-01

    This paper presents construction details and test results of a persistent-mode 0.5-T MgB2 magnet developed at the Francis Bitter Magnet Lab, MIT. The magnet, of 276-mm inner diameter and 290-mm outer diameter, consisted of a stack of 8 solenoidal coils with a total height of 460 mm. Each coil was wound with monofilament MgB2 wire, equipped with a persistent-current switch and terminated with a superconducting joint, forming an individual superconducting loop. Resistive solder joints connected the 8 coils in series. The magnet, after being integrated into a testing system, immersed in solid nitrogen, was operated in a temperature range of 10–13 K. A two-stage cryocooler was deployed to cool a radiation shield and the cold mass that included mainly ~60 kg of solid nitrogen and the magnet. The solid nitrogen was capable of providing a uniform and stable cryogenic environment to the magnet. The magnet sustained a 0.47-T magnetic field at its center persistently in a range of 10–13 K. The current in each coil was inversely calculated from the measured field profile to determine the performance of each coil in persistent-mode operation. Persistent-current switches were successfully operated in solid nitrogen for ramping the magnet. They were also designed to absorb magnetic energy in a protection mechanism; its effectiveness was evaluated in an induced quench. PMID:28966476

  7. Magnetic cleanliness verification approach on tethered satellite

    NASA Technical Reports Server (NTRS)

    Messidoro, Piero; Braghin, Massimo; Grande, Maurizio

    1990-01-01

    Magnetic cleanliness testing was performed on the Tethered Satellite as the last step of an articulated verification campaign aimed at demonstrating the capability of the satellite to support its TEMAG (TEthered MAgnetometer) experiment. Tests at unit level and analytical predictions/correlations using a dedicated mathematical model (GANEW program) are also part of the verification activities. Details of the tests are presented, and the results of the verification are described together with recommendations for later programs.

  8. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements

    DOT National Transportation Integrated Search

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  9. Some astrophysical processes around magnetized black hole

    NASA Astrophysics Data System (ADS)

    Kološ, M.; Tursunov, A.; Stuchlík, Z.

    2018-01-01

    We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.

  10. High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)

    2001-01-01

    Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In addition, the temperature dependence of the coil's resistance was measured from 77 to 300 K. Following this series of tests, the coil was transported to NHMFL facilities in Los Alamos, NM, and pulsed to 2 T using an existing capacitor bank pulse generator. The coil was completely successful in producing the desired field without damage to the windings.

  11. Experimental measurement and calculation of losses in planar radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kasarda, M. E. F.; Allaire, P. E.; Hope, R. W.; Humphris, R. R.

    1994-01-01

    The loss mechanisms associated with magnetic bearings have yet to be adequately characterized or modeled analytically and thus pose a problem for the designer of magnetic bearings. This problem is particularly important for aerospace applications where low power consumption of components is critical. Also, losses are expected to be large for high speed operation. The iron losses in magnetic bearings can be divided into eddy current losses and hysteresis losses. While theoretical models for these losses exist for transformer and electric motor applications, they have not been verified for magnetic bearings. This paper presents the results from a low speed experimental test rig and compares them to calculated values from existing theory. Experimental data was taken over a range of 90 to 2,800 rpm for several bias currents and two different pole configurations. With certain assumptions agreement between measured and calculated power losses was within 16 percent for a number of test configurations.

  12. Some aspects of wind tunnel magnetic suspension systems with special application at large physical scales

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1983-01-01

    Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.

  13. Enhancement of crystallinity and magnetization in Fe3O4 nanoferrites induced by a high synthesized magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, Xinxiu; Zhang, Zhanxian; Chen, Shijie; Lei, Wei; Xu, Yan; Lin, Jia; Luo, Xiaojing; Liu, Yongsheng

    2018-05-01

    A one-step hydrothermal method in different dc magnetic fields was used to prepare the Fe3O4 nanoparticles. Under the magnetic field, the average particle size decreased from 72.9 to 41.6 nm, meanwhile, the particle crystallinity is greatly improved. The magnetic field enhances its saturation magnetization and coercivity. The high magnetic field induce another magnetic structure. At room temperature, these nanoparticles exhibit superparamagnetism whose critical size (D sp) is about 26 nm. The Verwey transition is observed in the vicinity of 120 K of Fe3O4 nanoparticles. The effective magnetic anisotropy decreases with the increase of the test temperature because of the H c decreased.

  14. Long-lived magnetism on chondrite parent bodies

    NASA Astrophysics Data System (ADS)

    Shah, Jay; Bates, Helena C.; Muxworthy, Adrian R.; Hezel, Dominik C.; Russell, Sara S.; Genge, Matthew J.

    2017-10-01

    We present evidence for both early- and late-stage magnetic activity on the CV and L/LL parent bodies respectively from chondrules in Vigarano and Bjurböle. Using micro-CT scans to re-orientate chondrules to their in-situ positions, we present a new micron-scale protocol for the paleomagnetic conglomerate test. The paleomagnetic conglomerate test determines at 95% confidence, whether clasts within a conglomerate were magnetized before or after agglomeration, i.e., for a chondritic meteorite whether the chondrules carry a pre- or post-accretionary remanent magnetization. We found both meteorites passed the conglomerate test, i.e., the chondrules had randomly orientated magnetizations. Vigarano's heterogeneous magnetization is likely of shock origin, due to the 10 to 20 GPa impacts that brecciated its precursor material on the parent body and transported it to re-accrete as the Vigarano breccia. The magnetization was likely acquired during the break-up of the original body, indicating a CV parent body dynamo was active ∼9 Ma after Solar System formation. Bjurböle's magnetization is due to tetrataenite, which transformed from taenite as the parent body cooled to below 320 °C, when an ambient magnetic field imparted a remanence. We argue either the high intrinsic anisotropy of tetrataenite or brecciation on the parent body manifests as a randomly orientated distribution, and a L/LL parent body dynamo must have been active at least 80 to 140 Ma after peak metamorphism. Primitive chondrites did not originate from entirely primitive, never molten and/or differentiated parent bodies. Primitive chondrite parent bodies consisted of a differentiated interior sustaining a long-lived magnetic dynamo, encrusted by a layer of incrementally accreted primitive meteoritic material. The different ages of carbonaceous and ordinary chondrite parent bodies might indicate a general difference between carbonaceous and ordinary chondrite parent bodies, and/or formation location in the protoplanetary disk.

  15. Pedogenic Magnetic Minerals in Soils: Some Tests of Current Models

    NASA Astrophysics Data System (ADS)

    Egli, R.

    2008-12-01

    The magnetic enhancement of soils is increasingly used as a proxy for continental climate, since it is related to the formation of pedogenic iron minerals under warm, humid conditions. Ultrafine magnetite is believed to be the major responsible of the magnetic enhancement, however, very little is known on the detailed formation mechanism, ant its relation to the soil iron cycle. Furthermore, the 'textbook' case of the Chinese Loess Plateau is not well replicated around the World: Loessic soils from the Midwestern US are systematically less enhanced than their Chinese counterpart under similar climatic conditions, and many loessic soils in Argentina are not enhanced at all. In trying to find a rationale behind these differences, I will address three main questions that need to be answered in a bottom-up approach to the problem. The first question is whether susceptibility is indeed controlled by fine magnetite, excluding any significant role of other minerals such as ferrihydrite, goethite, and hematite. This is a rock magnetic problem addressing the interpretation of magnetic measurements: is susceptibility an adequate proxy for the concentration of magnetic minerals in soils? Answering this question allows us to think directly in terms of abundance specific magnetic minerals, which is fundamental for any subsequent interpretation. The second question is directed to understanding the role of magnetic minerals in the soil iron cycle and how they are formed. This brings us to a discussion of the transfer function linking magnetic enhancement with climate. Is indeed rainfall the only parameter controlling pedogenesis? Why is rainfall apparently related with the logarithm of susceptibility in enhanced soils? Can we test current pedogenetic models against this empirical transfer function? The third question points to the role of parent material and later dust inputs. Midwestern US and Argentinian loesses are different from Chinese loess. Is this a reason for the differences observed in the magnetic enhancement of the respective soils? Enough material is now available to test current models and hypotheses with respect to the first two questions.

  16. Magnetic monopole search with the MoEDAL test trapping detector

    NASA Astrophysics Data System (ADS)

    Katre, Akshay

    2016-11-01

    IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  17. Polarized light modulates light-dependent magnetic compass orientation in birds

    PubMed Central

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  18. Polarized light modulates light-dependent magnetic compass orientation in birds.

    PubMed

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-02-09

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field.

  19. Qualifying the Sunpower M87N Cryocooler for Operation in the AMS-02 Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Banks, Stuart; Shirey, Kim; Breon, Susan

    2003-01-01

    The Alpha Magnetic Spectrometer-02 (AMs-02) experiment uses a superfluid helium dewar to cool a large superconducting magnet. The outer vapor-cooled shields of the dewar are to be held at 80 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87 have been qualified for operation in a magnetic environment similar to the AMs-02 magnetic environment. Although there was no noticeable performance degradation at field levels that were comparable to AMs-02 field levels, there appears to be a small performance degradation at higher field levels. It was theorized that there were three possible issues related to these performance losses at high magnetic fields: i) induced piston rubbing on the cylinder wall due to forces and torques on the linear motor due to the applied magnetic fields; ii) Magnetic hysteretic and/or eddy current damping of the balancer due to its motion in the applied magnetic fields; iii) Inductance losses in motor due to the applied magnetic field. The experiments conducted at the Massachusetts Institute of Technology (MIT) cyclotron facility in June 2002 were designed to test these. Tests were performed over a range of field levels that were lower, comparable, and higher than the field levels that the cryocoolers will experience in the AMs-02 operating environment. This paper describes the experiments and the inferences derived from them.

  20. The reduction, verification and interpretation of MAGSAT magnetic data over Canada

    NASA Technical Reports Server (NTRS)

    Coles, R. L. (Principal Investigator); Haines, G. V.; Vanbeek, G. J.; Walker, J. K.; Newitt, L. R.

    1982-01-01

    Consideration is being given to representing the magnetic field in the area 40 deg N to 83 deg N by means of functions in spherical coordinates. A solution to Laplace's equation for the magnetic potential over a restricted area was found, and programming and testing are currently being carried out. Magnetic anomaly modelling is proceeding. The program SPHERE, which was adapted to function correctly on the Cyber computer, is now operational, for deriving gravity and magnetic models in a spherical coordinate system.

  1. Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1986-01-01

    The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.

  2. A 10 Kelvin Magnet for Space-Flight ADRs

    NASA Technical Reports Server (NTRS)

    Tuttle, James; Pourrahimi, Shahin; Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Riall, Sara

    2003-01-01

    Future NASA missions will include detectors cooled by adiabatic demagnetization refrigerators (ADRs) coupled with mechanical cryocoolers. A lightweight, low-current 10 Kelvin magnet would allow the interface between these devices to be at temperatures as high as 10 Kelvin, adding flexibility to the instrument design. We report on the testing of a standard-technology Nb3Sn magnet and the development of a lightweight, low-current 10 Kelvin magnet. We also discuss the outlook for flying a 10 Kelvin magnet as part of an ADR system.

  3. Magnetic susceptibility characterisation of superparamagnetic microspheres

    NASA Astrophysics Data System (ADS)

    Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve

    2018-04-01

    The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.

  4. Characterization of magnetic colloids by means of magnetooptics.

    PubMed

    Baraban, L; Erbe, A; Leiderer, P

    2007-05-01

    A new, efficient method for the characterization of magnetic colloids based on the Faraday effect is proposed. According to the main principles of this technique, it is possible to detect the stray magnetic field of the colloidal particles induced inside the magnetooptical layer. The magnetic properties of individual particles can be determined providing measurements in a wide range of magnetic fields. The magnetization curves of capped colloids and paramagnetic colloids were measured by means of the proposed approach. The registration of the magnetooptical signals from each colloidal particle in an ensemble permits the use of this technique for testing the magnetic monodispersity of colloidal suspensions.

  5. Possible relation between pulsar rotation and evolution of magnetic inclination

    NASA Astrophysics Data System (ADS)

    Tian, Jun

    2018-05-01

    The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.

  6. Effect of zero magnetic field on cardiovascular system and microcirculation

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.

    2016-02-01

    The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.

  7. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Phase II 10hp 30rpm Radial-Flux Magnetically Geared Generator Test Data

    DOE Data Explorer

    Ouyang, Wen; Tchida, Colin

    2017-05-02

    Static torque, no load, constant speed, and sinusoidal oscillation test data for a 10hp, 300rpm magnetically-geared generator prototype using either an adjustable load bank for a fixed resistance or an output power converter.

  8. Review of Literature on Probability of Detection for Magnetic Particle Nondestructive Testing

    DTIC Science & Technology

    2013-01-01

    4 3.2 Offshore welded structures..................................................................................... 8 3.3 Aerospace...presented in Section 6. 2. Overview of Magnetic Particle Testing MPT is used in heavy engineering to inspect welds for surface-breaking... welded structures, and concluding with a summary of reliability information embedded in aerospace standards. 3.1 Aerospace It appears that the

  9. Preliminary eddy current modelling for the large angle magnetic suspension test fixture

    NASA Technical Reports Server (NTRS)

    Britcher, Colin

    1994-01-01

    This report presents some recent developments in the mathematical modeling of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) at NASA Langley Research Center. It is shown that these effects are significant, but may be amenable to analysis, modeling and measurement. A theoretical framework is presented, together with a comparison of computed and experimental data.

  10. Magnetic perturbation inspection of inner bearing races

    NASA Technical Reports Server (NTRS)

    Barton, J. R.; Lankford, J.

    1972-01-01

    Approximately 100 inner race bearings were inspected nondestructively prior to endurance testing. Two of the bearings which failed during testing spalled at the sites of subsurface inclusions previously detected by using magnetic field perturbation. At other sites initially judged to be suspect, subsurface inclusion-nucleated cracking was observed. Inspection records and metallurgical sectioning results are presented and discussed.

  11. Magnetic and Electric Field Testing of the Amtrak Northeast Corridor and New Jersey/North Jersey coast line rail systems. v. 2. Appendices.

    DOT National Transportation Integrated Search

    1993-04-01

    The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). The characterization of electric and magnetic fields (EMF...

  12. Magnetic and electric field testing of the AMTRAK Northeast Corridor and New Jersey/North Jersey coast line rail systems. Volume 1 : analysis

    DOT National Transportation Integrated Search

    1993-04-01

    The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). The characterization of electric and magnetic fields (EMF...

  13. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements : Technical Summary

    DOT National Transportation Integrated Search

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  14. High torque DC motor fabrication and test program

    NASA Technical Reports Server (NTRS)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  15. Design verification tests for an axial gap permanent magnet compressor motor

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.; Bailey, J. M.

    1987-07-01

    A 30-hp, direct-drive, permanent magnet motor (PMM) has been constructed. The motor is to operate at 15,000 rpm and is designed to drive a Worthington compressor at the US DOE-owned gaseous diffusion plants. The PMM prevents traditional dynamometer testing, including locked rotor current, voltage, and torque measurements. A test plan is presented for data acquisition on the dynamometer test stand in order to calculate the equivalent circuit for the motor. A description of the hardware required for these measurements is included in the plan.

  16. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho

    2018-06-01

    Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.

  17. Glass eels (Anguilla anguilla) have a magnetic compass linked to the tidal cycle

    PubMed Central

    Cresci, Alessandro; Paris, Claire B.; Durif, Caroline M. F.; Shema, Steven; Bjelland, Reidun M.; Skiftesvik, Anne Berit; Browman, Howard I.

    2017-01-01

    The European eel (Anguilla anguilla) has one of the longest migrations in the animal kingdom. It crosses the Atlantic Ocean twice during its life history, migrating between the spawning area in the Sargasso Sea and Europe, where it is widely distributed. The leptocephalus larvae drift with the Gulf Stream and other currents for more than a year and metamorphose into glass eels when they arrive on the continental shelf and move toward coastal areas. The mechanisms underlying glass eel orientation toward the coast and into freshwater systems are poorly known. However, anguillid eels, including the glass eel life stage, have a geomagnetic sense, suggesting the possibility that they use Earth’s magnetic field to orient toward the coast. To test this hypothesis, we used a unique combination of laboratory tests and in situ behavioral observations conducted in a drifting circular arena. Most (98%) of the glass eels tested in the sea exhibited a preferred orientation that was related to the tidal cycle. Seventy-one percent of the same eels showed the same orientation during ebb tide when tested in the laboratory under a manipulated simulated magnetic field in the absence of any other cue. These results demonstrate that glass eels use a magnetic compass for orientation and suggest that this magnetic orientation system is linked to a circatidal rhythm. PMID:28630895

  18. Space Flight Qualification Program for the AMS-2 Commercial Cryocoolers

    NASA Technical Reports Server (NTRS)

    Shirey, K. A.; Banks, I. S.; Breon, S. R.; Boyle, R. F.; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    The Alpha Magnetic Spectrometer-02 (AMS-02) experiment is a state-of-the-art particle physics detector containing a large superfluid helium-cooled superconducting magnet. Highly sensitive detector plates inside the magnet measure a particle's speed, momentum, charge, and path. The AMS-02 experiment will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS-02 will be installed on the International Space Station on Utilization Flight-4. The experiment will be run for at least three years. To extend the life of the stored cryogen and minimize temperature gradients around the magnet, four Stirling-cycle Sunpower M87N cryocoolers will be integrated with AMS-02. The cryocooler cold tip will be connected via a flexible strap to the outer vapor cooled shield of the dewar. Initial thermal analysis shows the lifetime of the experiment is increased by a factor of 2.8 with the use of the cryocooler. The AMS-02 project selected the Sunpower M87 cryocoolers and has asked NASA Goddard to qualify the cryocoolers for space flight use. This paper describes the interfaces with the cryocoolers and presents data collected during testing of the two engineering model cryocoolers. Tests include thermal performance characterization and launch vibration testing. Magnetic field compatibility testing will be presented in a separate paper at the conference.

  19. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    NASA Astrophysics Data System (ADS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-06-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  20. Compact toroid injection into C-2U

    NASA Astrophysics Data System (ADS)

    Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.

  1. A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jeffrey

    2006-04-01

    Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less

  2. Analysis and interpretation of MAGSAT anomalies over north Africa

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1985-01-01

    Crustal anomaly detection with MAGSAT data is frustrated by inherent resolving power of the data and by contamination from external and core fields. Quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within proposed resolution and crustal amplitude capabilities of MAGSAT fields. To test this hypothesis, north African hotspots associated with Ahaggar, Tibesti and Darfur were modeled as magnetic induction anomalies. MAGSAT data were reduced by subtracting external and core fields to isolate scalar and vertical component crustal signals. Of the three volcanic areas, only the Ahaggar region had an associated anomaly of magnitude above error limits of the data. Hotspot hypothesis was tested for Ahaggar by seeing if predicted magnetic signal matched MAGSAT anomaly. Predicted model magnetic signal arising from surface topography of the uplift and the Curie isothermal surface was calculated at MAGSAT altitudes by Fourier transform technique modified to allow for variable magnetization. Curie isotherm surface was calculated using a method for temperature distribution in a moving plate above a fixed hotspot. Magnetic signal was calculated for a fixed plate as well as a number of plate velocities and directions.

  3. The diagnostic test accuracy of magnetic resonance imaging, magnetic resonance arthrography and computer tomography in the detection of chondral lesions of the hip.

    PubMed

    Smith, Toby O; Simpson, Michael; Ejindu, Vivian; Hing, Caroline B

    2013-04-01

    The purpose of this study was to assess the diagnostic test accuracy of magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA) and multidetector arrays in CT arthrography (MDCT) for assessing chondral lesions in the hip joint. A review of the published and unpublished literature databases was performed to identify all studies reporting the diagnostic test accuracy (sensitivity/specificity) of MRI, MRA or MDCT for the assessment of adults with chondral (cartilage) lesions of the hip with surgical comparison (arthroscopic or open) as the reference test. All included studies were reviewed using the quality assessment of diagnostic accuracy studies appraisal tool. Pooled sensitivity, specificity, likelihood ratios and diagnostic odds ratios were calculated with 95 % confidence intervals using a random-effects meta-analysis for MRI, MRA and MDCT imaging. Eighteen studies satisfied the eligibility criteria. These included 648 hips from 637 patients. MRI indicated a pooled sensitivity of 0.59 (95 % CI: 0.49-0.70) and specificity of 0.94 (95 % CI: 0.90-0.97), and MRA sensitivity and specificity values were 0.62 (95 % CI: 0.57-0.66) and 0.86 (95 % CI: 0.83-0.89), respectively. The diagnostic test accuracy for the detection of hip joint cartilage lesions is currently superior for MRI compared with MRA. There were insufficient data to perform meta-analysis for MDCT or CTA protocols. Based on the current limited diagnostic test accuracy of the use of magnetic resonance or CT, arthroscopy remains the most accurate method of assessing chondral lesions in the hip joint.

  4. First AC loss test and analysis of a Bi2212 cable-in-conduit conductor for fusion application

    NASA Astrophysics Data System (ADS)

    Qin, Jinggang; Shi, Yi; Wu, Yu; Li, Jiangang; Wang, Qiuliang; He, Yuxiang; Dai, Chao; Liu, Fang; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud

    2018-01-01

    The main goal of the Chinese fusion engineering test reactor (CFETR) is to build a fusion engineering tokamak reactor with a fusion power of 50-200 MW, and plan to test the breeding tritium during the fusion reaction. This may require a maximum magnetic field of the central solenoid and toroidal field coils up to 15 T. New magnet technologies should be developed for the next generation of fusion reactors with higher requirements. Bi2Sr2CaCu2Ox (Bi2212) is considered as a potential and promising superconductor for the magnets in the CFETR. R&D activities are ongoing at the Institute of Plasma Physics, Chinese Academy of Sciences for demonstration of the feasibility of a CICC based on Bi2212 round wire. One sub-size conductor cabled with 42 wires was designed, manufactured and tested with limited strand indentation during cabling and good transport performance. In this paper, the first test results and analysis on the AC loss of Bi2212 round wires and cabled conductor samples are presented. Furthermore, the impact of mechanical load on the AC loss of the sub-size conductor is investigated to represent the operation conditions with electromagnetic loads. The first tests provide an essential basis for the validation of Bi2212 CICC and its application in fusion magnets.

  5. Enhancement of lateral flow assay performance by electromagnetic relocation of reporter particles

    PubMed Central

    Jacinto, Maria João; Trabuco, João R. C.; Vu, Binh V.; Garvey, Gavin; Khodadady, Mohammad; Azevedo, Ana M.; Aires-Barros, Maria Raquel; Chang, Long; Kourentzi, Katerina; Litvinov, Dmitri

    2018-01-01

    Lateral flow assays (LFAs) are a widely-used point-of care diagnostic format, but suffer from limited analytical sensitivity, especially when read by eye. It has recently been reported that LFA performance can be improved by using magnetic reporter particles and an external magnetic field applied at the test line. The mechanism of sensitivity/performance enhancement was suggested to be concentration/retardation of reporter particles at the test line. Here we demonstrate an additional mechanism of particle relocation where reporter particles from the lower depths of the translucent LFA strip relocate to more-visible locations nearer to the top surface, producing a more visible signal. With a magnetic field we observed an improvement in sensitivity of human chorionic gonadotropin (hCG) detection from 1.25 ng/mL to 0.31 ng/mL. We also observed an increase of the color intensity per particle in test lines when the magnetic field was present. PMID:29309424

  6. A Comparison Study of Magnetic Bearing Controllers for a Fully Suspended Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Morrison, Carlos; Mehmed, Oral; Huff, Dennis (Technical Monitor)

    2002-01-01

    NASA Glenn Research Center (GRC) has developed a fully suspended magnetic bearing system for the Dynamic Spin Rig (DSR) that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust bearing and the associated control system were integrated into the DSR to provide noncontact magnetic suspension and mechanical excitation of the 35 lb vertical rotor with blades to induce turbomachinery blade vibration. A simple proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked very well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, and energy savings for the system. The test results of a variety of controllers we demonstrated up to the rig's maximum allowable speed of 10,000 rpm are shown.

  7. Test Result of the Short Models MQXFS3 and MQXFS5 for the HL-LHC Upgrade

    DOE PAGES

    Bajas, Hugues; Ambrosio, Giorgio; Ballarino, A.; ...

    2018-02-27

    In the framework of the High-Luminosity Large Hadron Collider, the installation of a new generation of quadrupole magnets is foreseen on each side of ATLAS and CMS experiments. The new magnets are based on Nbmore » $$_{3}$$Sn technology and shall be able to reach an ultimate current of 17.9 kA with a peak field of 12.3 T in the coil. In 2016 and 2017, the first two short models, called MQXFS3 and MQXFS5, have been tested at 4.2 and 1.9 K in the two new test benches at the European Organization for Nuclear Research. This paper presents the result of the quench performance of the two models; the first magnet reached nominal but failed to reach ultimate, showing detraining in one coil. MQXFS5 reached ultimate performance without any detraining phenomena, validating the PIT conductor used for the first time in this magnet program.« less

  8. Test Result of the Short Models MQXFS3 and MQXFS5 for the HL-LHC Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajas, Hugues; Ambrosio, Giorgio; Ballarino, A.

    In the framework of the High-Luminosity Large Hadron Collider, the installation of a new generation of quadrupole magnets is foreseen on each side of ATLAS and CMS experiments. The new magnets are based on Nbmore » $$_{3}$$Sn technology and shall be able to reach an ultimate current of 17.9 kA with a peak field of 12.3 T in the coil. In 2016 and 2017, the first two short models, called MQXFS3 and MQXFS5, have been tested at 4.2 and 1.9 K in the two new test benches at the European Organization for Nuclear Research. This paper presents the result of the quench performance of the two models; the first magnet reached nominal but failed to reach ultimate, showing detraining in one coil. MQXFS5 reached ultimate performance without any detraining phenomena, validating the PIT conductor used for the first time in this magnet program.« less

  9. Voltage control of nanoscale magnetoelastic elements: theory and experiments (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Carman, Gregory P.

    2015-09-01

    Electromagnetic devices rely on electrical currents to generate magnetic fields. While extremely useful this approach has limitations in the small-scale. To overcome the scaling problem, researchers have tried to use electric fields to manipulate a magnetic material's intrinsic magnetization (i.e. multiferroic). The strain mediated class of multiferroics offers up to 70% of energy transduction using available piezoelectric and magnetoelastic materials. While strain mediated multiferroic is promising, few studies exist on modeling/testing of nanoscale magnetic structures. This talk presents motivation, analytical models, and experimental data on electrical control of nanoscale single magnetic domain structures. This research is conducted in a NSF Engineering Research Center entitled Translational Applications for Nanoscale Multiferroics TANMS. The models combine micromagnetics (Landau-Lifshitz-Gilbert) with elastodynamics using the electrostatic approximation producing eight fully coupled nonlinear partial differential equations. Qualitative and quantitative verification is achieved with direct comparison to experimental data. The modeling effort guides fabrication and testing on three elements, i.e. nanoscale rings (onion states), ellipses (single domain reorientation), and superparamagnetic elements. Experimental results demonstrate electrical and deterministic control of the magnetic states in the 5-500 nm structures as measured with Photoemission Electron Microscopy PEEM, Magnetic Force Microscopy MFM, or Lorentz Transmission Electron Microscopy TEM. These data strongly suggests efficient control of nanoscale magnetic spin states is possible with voltage.

  10. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays.

    PubMed

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-11-13

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.

  11. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays

    PubMed Central

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-01-01

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622

  12. High magnetic field test of bismuth Hall sensors for ITER steady state magnetic diagnostic.

    PubMed

    Ďuran, I; Entler, S; Kohout, M; Kočan, M; Vayakis, G

    2016-11-01

    Performance of bismuth Hall sensors developed for the ITER steady state magnetic diagnostic was investigated for high magnetic fields in the range ±7 T. Response of the sensors to the magnetic field was found to be nonlinear particularly within the range ±1 T. Significant contribution of the planar Hall effect to the sensors output voltage causing undesirable cross field sensitivity was identified. It was demonstrated that this effect can be minimized by the optimization of the sensor geometry and alignment with the magnetic field and by the application of "current-spinning technique."

  13. Magnetic shield for turbomolecular pump of the Magnetized Plasma Linear Experimental device at Saha Institute of Nuclear Physics.

    PubMed

    Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath

    2011-01-01

    The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.

  14. Viking magnetic properties investigation: preliminary results.

    PubMed

    Hargraves, R B; Collinson, D W; Spitzer, C R

    1976-10-01

    Three permanent magnet arrays are aboard the Viking lander. By sol 35, one array, fixed on a photometric reference test chart on top of the lander, has clearly attracted magnetic particles from airborne dust; two other magnet arrays, one strong and one weak, incorporated in the backhoe of the surface sampler, have both extracted considerable magnetic mineral from the surface as a result of nine insertions associated with sample acquisition. The loose martian surface material around the landing site is judged to contain 3 to 7 percent highly magnetic mineral which, pending spectrophotometric study, is thought to be mainly magnetite.

  15. Test results of a Nb 3Al/Nb 3Sn subscale magnet for accelerator application

    DOE PAGES

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb 3Al and Nb 3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb 3Al cable and the technology acquisition of magnet fabrication with Nb 3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb 3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in amore » minimum-gap common-coil configuration with two Nb 3Al coils sandwiched between two Nb 3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb 3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb 3Sn coil and 8.2 T in the Nb 3Al coil. The quench characteristics of the magnet were studied.« less

  16. Detecting the magnetic response of iron oxide capped organosilane nanostructures using magnetic sample modulation and atomic force microscopy.

    PubMed

    Li, Jie-Ren; Lewandowski, Brian R; Xu, Song; Garno, Jayne C

    2009-06-15

    A new imaging strategy using atomic force microscopy (AFM) is demonstrated for mapping magnetic domains at size regimes below 100 nm. The AFM-based imaging mode is referred to as magnetic sample modulation (MSM), since the flux of an AC-generated electromagnetic field is used to induce physical movement of magnetic nanomaterials on surfaces during imaging. The AFM is operated in contact mode using a soft, nonmagnetic tip to detect the physical motion of the sample. By slowly scanning an AFM probe across a vibrating area of the sample, the frequency and amplitude of vibration induced by the magnetic field is tracked by changes in tip deflection. Thus, the AFM tip serves as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. Essentially, MSM is a hybrid of contact mode AFM combined with selective modulation of magnetic domains. The positional feedback loop for MSM imaging is the same as that used for force modulation and contact mode AFM; however, the vibration of the sample is analyzed using channels of a lock-in amplifier. The investigations are facilitated by nanofabrication methods combining particle lithography with organic vapor deposition and electroless deposition of iron oxide, to prepare designed test platforms of magnetic materials at nanometer length scales. Custom test platforms furnished suitable surfaces for MSM characterizations at the level of individual metal nanostructures.

  17. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magneticmore » field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.« less

  18. Sub-tesla-field magnetization of vibrated magnetic nanoreagents for screening tumor markers

    NASA Astrophysics Data System (ADS)

    Chieh, Jen-Jie; Huang, Kai-Wen; Shi, Jin-Cheng

    2015-02-01

    Magnetic nanoreagents (MNRs), consisting of liquid solutions and magnetic nanoparticles (MNPs) coated with bioprobes, have been widely used in biomedical disciplines. For in vitro tests of serum biomarkers, numerous MNR-based magnetic immunoassay methods or schemes have been developed; however, their applications are limited. In this study, a vibrating sample magnetometer (VSM) was used for screening tumor biomarkers based on the same MNRs as those used in other immunoassay methods. The examination mechanism is that examined tumor biomarkers are typically conjugated to the bioprobes coated on MNPs to form magnetic clusters. Consequently, the sub-Tesla-field magnetization (Msub-T) of MNRs, including magnetic clusters, exceeds that of MNRs containing only separate MNPs. For human serum samples, proteins other than the targeted biomarkers induce the formation of magnetic clusters with increased Msub-T because of weak nonspecific binding. In this study, this interference problem was suppressed by the vibration condition in the VSM and analysis. Based on a referenced Msub-T,0 value defined by the average Msub-T value of a normal person's serum samples, including general proteins and few tumor biomarkers, the difference ΔMsub-T between the measured Msub-T and the reference Msub-T,0 determined the expression of only target tumor biomarkers in the tested serum samples. By using common MNRs with an alpha-fetoprotein-antibody coating, this study demonstrated that a current VSM can perform clinical screening of hepatocellular carcinoma.

  19. Surface Magnetic Field Strengths: New Tests of Magnetoconvective Models of M Dwarfs

    NASA Astrophysics Data System (ADS)

    MacDonald, James; Mullan, D. J.

    2014-05-01

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.

  20. Flightweight Electro-Magnet Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, Roy G.; Litchford, Ron; Robertson, Tony; Schmidt, Dianne; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    NASA has a need for lightweight high performance magnets to be used in propulsion systems involving plasmas. We report the design, construction, and testing of a six inch diameter by twelve inch long solenoid using high purity aluminum wire operating at a temperature of 77 Kelvin (K) for the current carrying element. High purity aluminum is the material of choice because of three properties that make it optimal for magnetic construction. At 77 K high purity aluminum has one of the lowest resistivities at 77 K of any metal (p = 0.254 muOMEGA-cm), thus reducing the power requirements for creating magnetic fields. Aluminum is a low-density (2.6989 g/cc) material and the end product magnet will be of low total mass compared to similar designs involving copper or other elements. The magneto-resistance of aluminum saturates at low magnetic fields and does not increase indefinitely as is the case in copper. The magnet consists of four layers of closely wound wire and is approximately 150 mm in diameter by 300 mm long. A cylinder made from G - 10 was machined with a spiral groove to hold the high purity Al wire and the wire wound on it. Following the winding, each layer was potted in STYCAST high thermal conductivity epoxy to provide insulation between the turns of the coil and mechanical strength. The magneto-resistance of the coil has been measured at the National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL in externally applied fields to 10 tesla. Following these tests it was energized to the full 2 tesla field it can produce using the facilities of the NHMFL at the Los Alamos National Laboratory. The results of all of these tests will be presented.

  1. Surface magnetic field strengths: New tests of magnetoconvective models of M dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, James; Mullan, D. J., E-mail: jimmacd@udel.edu, E-mail: mullan@udel.edu

    2014-05-20

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Goughmore » and Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.« less

  2. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    PubMed Central

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  3. Superconducting Magnet Power Supply and Hard-Wired Quench Protection at Jefferson Lab for 12 GeV Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoshal, Probir K.; Bachimanchi, Ramakrishna; Fair, Ruben J.

    The superconducting magnet system in Hall B being designed and built as part of the Jefferson Lab 12 GeV upgrade requires powering two conduction cooled superconducting magnets - a torus and a solenoid. The torus magnet is designed to operate at 3770 A and solenoid at 2416 A. Failure Modes and Effects Analysis (FMEA) determined that voltage level thresholds and dump switch operation for magnet protection should be tested and analyzed before incorporation into the system. The designs of the quench protection and voltage tap sub-systems were driven by the requirement to use a primary hard-wired quench detection sub-system togethermore » with a secondary PLC-based protection. Parallel path voltage taps feed both the primary and secondary quench protection sub-systems. The PLC based secondary protection is deployed as a backup for the hard-wired quench detection sub-system and also acts directly on the dump switch. Here, we describe a series of tests and modifications carried out on the magnet power supply and quench protection system to ensure that the superconducting magnet is protected for all fault scenarios.« less

  4. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    PubMed

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  5. Superconducting Magnet Power Supply and Hard-Wired Quench Protection at Jefferson Lab for 12 GeV Upgrade

    DOE PAGES

    Ghoshal, Probir K.; Bachimanchi, Ramakrishna; Fair, Ruben J.; ...

    2017-10-05

    The superconducting magnet system in Hall B being designed and built as part of the Jefferson Lab 12 GeV upgrade requires powering two conduction cooled superconducting magnets - a torus and a solenoid. The torus magnet is designed to operate at 3770 A and solenoid at 2416 A. Failure Modes and Effects Analysis (FMEA) determined that voltage level thresholds and dump switch operation for magnet protection should be tested and analyzed before incorporation into the system. The designs of the quench protection and voltage tap sub-systems were driven by the requirement to use a primary hard-wired quench detection sub-system togethermore » with a secondary PLC-based protection. Parallel path voltage taps feed both the primary and secondary quench protection sub-systems. The PLC based secondary protection is deployed as a backup for the hard-wired quench detection sub-system and also acts directly on the dump switch. Here, we describe a series of tests and modifications carried out on the magnet power supply and quench protection system to ensure that the superconducting magnet is protected for all fault scenarios.« less

  6. Ambulatory position and orientation tracking fusing magnetic and inertial sensing.

    PubMed

    Roetenberg, Daniel; Slycke, Per J; Veltink, Peter H

    2007-05-01

    This paper presents the design and testing of a portable magnetic system combined with miniature inertial sensors for ambulatory 6 degrees of freedom (DOF) human motion tracking. The magnetic system consists of three orthogonal coils, the source, fixed to the body and 3-D magnetic sensors, fixed to remote body segments, which measure the fields generated by the source. Based on the measured signals, a processor calculates the relative positions and orientations between source and sensor. Magnetic actuation requires a substantial amount of energy which limits the update rate with a set of batteries. Moreover, the magnetic field can easily be disturbed by ferromagnetic materials or other sources. Inertial sensors can be sampled at high rates, require only little energy and do not suffer from magnetic interferences. However, accelerometers and gyroscopes can only measure changes in position and orientation and suffer from integration drift. By combing measurements from both systems in a complementary Kalman filter structure, an optimal solution for position and orientation estimates is obtained. The magnetic system provides 6 DOF measurements at a relatively low update rate while the inertial sensors track the changes position and orientation in between the magnetic updates. The implemented system is tested against a lab-bound camera tracking system for several functional body movements. The accuracy was about 5 mm for position and 3 degrees for orientation measurements. Errors were higher during movements with high velocities due to relative movement between source and sensor within one cycle of magnetic actuation.

  7. Mu2e transport solenoid prototype tests results

    DOE PAGES

    Lopes, Mauricio L.; G. Ambrosio; DiMarco, J.; ...

    2016-02-08

    The Fermilab Mu2e experiment has been developed to search for evidence of charged lepton flavor violation through the direct conversion of muons into electrons. The transport solenoid is an s-shaped magnet which guides the muons from the source to the stopping target. It consists of fifty-two superconducting coils arranged in twenty-seven coil modules. A full-size prototype coil module, with all the features of a typical module of the full assembly, was successfully manufactured by a collaboration between INFN-Genoa and Fermilab. The prototype contains two coils that can be powered independently. In order to validate the design, the magnet went throughmore » an extensive test campaign. Warm tests included magnetic measurements with a vibrating stretched wire, electrical and dimensional checks. As a result, the cold performance was evaluated by a series of power tests as well as temperature dependence and minimum quench energy studies.« less

  8. Bias magnetic field and test period dependences of direct and converse magnetoelectric hysteresis of tri-layered magnetoelectric composite

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Li, Xiao-Hong; Wang, Jian-Feng; Zhou, Hao-Miao; Cao, Dan; Jiao, Zhi-Wei; Xu, Long; Li, Qi-Hao

    2018-04-01

    The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Tanmoy, E-mail: tanmoybesus@gmail.com; Singh, Harkirat, E-mail: tanmoybesus@gmail.com; Mitra, Chiranjib, E-mail: tanmoybesus@gmail.com

    Violation of Bell’s inequality test has been established as an efficient tool to determine the presence of entanglement in quantum spin 1/2 magnets. Herein, macroscopic thermodynamic quantities, namely, magnetic susceptibility and specific heat have been employed to perform Bell’s inequality test for [NH{sub 4}CuPO{sub 4}, H{sub 2}O], a spin 1/2 antiferromagnet with nearest neighbor interactions. The mean value of the Bell operator is quantified and plotted as a function of temperature. The threshold temperature is determined above which the Bell’s inequality is not violated and a good consistency is found between the analyses done on magnetic and thermal data.

  10. The thermal stability of magnetically exchange coupled MnBi/FeCo composites at electric motor working temperature

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Wang, Hongying; Li, Zhigang; Liu, Wanhui; Bao, Ilian

    2018-04-01

    The magnetically exchange coupled MnBi/FeCo composites were synthesized through a magnetic self-assembly process. The MnBi/FeCo composites were then hot pressed in a magnetic field to form magnets. The thermal stability of the magnets were tested by annealing at electric motor working temperature of 200 °C for 20, 40 and 60 h, respectively. It was found that after heating for 20 h, there was negligible change in its hysteresis loop. However, when the heating time was increased 40 and 60 h, the magnetic hysteresis loops presented two-phase magnetic behaviors, and the maximum energy products of the magnet were decreased. This research showed that the magnetically exchange coupled MnBi/FeCo composites had low thermal stability at electric motor working temperature.

  11. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured atmore » 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.« less

  12. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    NASA Astrophysics Data System (ADS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-04-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  13. Magnetic separation of algae genetically modified for increased intracellular iron uptake.

    PubMed

    Buck, Amy; Moore, Lee R; Lane, Christopher D; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J; Zborowski, Maciej

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides ( A. p. ) strains. The A. p. cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1,000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  14. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    PubMed Central

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. p.) strains. The A. p. cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1,000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. PMID:29353957

  15. In vitro characterization of a magnetically suspended continuous flow ventricular assist device.

    PubMed

    Kim, H C; Bearnson, G B; Khanwilkar, P S; Olsen, D B; Maslen, E H; Allaire, P E

    1995-01-01

    A magnetically suspended continuous flow ventricular assist device using magnetic bearings was developed aiming at an implantable ventricular assist device. The main advantage of this device includes no mechanical wear and minimal chance of blood trauma such, as thrombosis and hemolysis, because there is no mechanical contact between the stationary and rotating parts. The total system consists of two subsystems: the centrifugal pump and the magnetic bearing. The centrifugal pump is comprised of a 4 vane logarithmic spiral radial flow impeller and a brushless DC motor with slotless stator, driven by the back emf commutation scheme. Two radial and one thrust magnetic bearing that dynamically controls the position of the rotor in a radial and axial direction, respectively, contains magnetic coils, the rotor's position sensors, and feedback electronic control system. The magnetic bearing system was able to successfully suspend a 365.5g rotating part in space and sustain it for up to 5000 rpm of rotation. Average force-current square factor of the magnetic bearing was measured as 0.48 and 0.44 (kg-f/Amp2) for radial and thrust bearing, respectively. The integrated system demonstrated adequate performance in mock circulation tests by providing a 6 L/min flow rate against 100 mmHg differential pressure at 2300 rpm. Based on these in vitro performance test results, long-term clinical application of the magnetically suspended continuous flow ventricular assist device is very promising after system optimization with a hybrid system using both active (electromagnet) and passive (permanent magnets) magnet bearings.

  16. Summary of dipole field angle measurements on 50mm-aperture SSC Collider Dipole Magnet Protoypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, J.; DiMarco, J.; Kuzminski, J.

    At several stages in the production of the SSC collider dipole magnets and their final installation the magnetic field angle needs to be known. A simple device using a permanent magnet which aligns itself with the magnetic field had been developed at FNAL to survey the direction of the magnetic dipole field with respect to the vertical (as determined by gravity) along the magnet axis. The determination of the dipole field angle was part of the field quality characterization of a series of thirteen full-length 50mm-aperture SSC Collider Dipole Magnet Prototypes which were built for R&D purposes at FNAL. Measurementsmore » with the first developed FAP system were performed on a regular basis through several stages of the magnet production process with the intention of fabrication quality control. Part of these included measurements performed before and after cryogenic testing: these data are summarized here. The performance of a second system with an improved probe and data acquisition system was tested on part of the DCA series as well. This paper includes a presentation of time stability, noise and angular resolution data of this second probe. Another alternative instrument to determine the dipole field angle is the ``mole`` rotating coil system developed at BNL used mainly to measure the multipole components of the magnetic field. In the case of magnet DCA320, a comparison is made between the field angle as determined by the mole and those determined by both of the FAPS.« less

  17. Fabrication and investigation on field-dependent properties of natural rubber based magneto-rheological elastomer isolator

    NASA Astrophysics Data System (ADS)

    Ain Abd Wahab, Nurul; Amri Mazlan, Saiful; Ubaidillah; Kamaruddin, Shamsul; Intan Nik Ismail, Nik; Choi, Seung-Bok; Haziq Rostam Sharif, Amirul

    2016-10-01

    This study presents a laminated magnetorheological elastomer (MRE) isolator which applies to vibration control in practice. The proposed isolator is fabricated with multilayer MRE sheets associated with the natural rubber (NR) as a matrix, and steel plates. The fabricated MRE isolator is then magnetically analysed to achieve high magnetic field intensity which can produce high damping force required for effective vibration control. Subsequently, the NR-based MRE specimen is tested to identify the field-dependent rheological properties such as storage modulus with 60 weight percentage of carbonyl iron particles. It is shown from this test that the MR effect of MRE specimen is quantified to reach up to 120% at 0.8 T. Following the design stage, the electromagnetic simulation using the finite element method magnetic (FEMM) software is carried out for analysing the magnetic flux distribution in the laminated MRE isolator. The laminated MRE isolator is then examined to a series of compression for static and dynamic test under various applied currents using the dynamic fatigue machine and biaxial dynamic testing machine. It is shown that the static compression force is increased by 14.5% under strong magnetic field compared to its off-state. Meanwhile, the dynamic compression test results show that the force increase of the laminated MRE isolator is up to 16% and 7% for low and high frequency respectively. From the results presented in this work, it is demonstrated that the full-scale concept of the MRE isolator can be one of the potential candidates for vibration control applications by tunability of the dynamic stiffness.

  18. Assessing cortical excitability in migraine: reliability of magnetic suppression of perceptual accuracy technique over time.

    PubMed

    Custers, Anouk; Mulleners, Wim M; Chronicle, Edward P

    2005-10-01

    To examine test-retest reliability of magnetic suppression of perceptual accuracy (MSPA) prior to its use as a marker of cortical excitability in a trial of migraine prophylactic agents. MSPA is a relatively novel avenue of research in headache, providing an opportunity to study cortical responsiveness objectively and noninvasively. However, little is known about the reliability of magnetic stimulation protocols such as MSPA in longitudinal research designs. We tested 10 healthy headache-free volunteers who had no family history of migraine. In 54 trials, they were briefly presented different three-letter combinations, flashed on a computer screen for 24 ms (target). After a brief interval, each target was followed by a single magnetic pulse through a 90-mm circular coil centered 7 cm above inion in the midline. The interval between target and magnetic pulse was systematically varied. Volunteers were requested to report as many letters as they had possibly identified. After 2 weeks, all volunteers were retested using identical methods. MSPA performance is expressed as a profile of response accuracy (ie, percentage of correctly identified letters) across target-pulse intervals. Profiles were characteristic of normal headache-free subjects at the first test. Analysis of variance revealed no significant difference in profiles between test and retest (F= 2.05; P= .136): the retest profiles are almost coincidental with the test profiles. MSPA is a safe and objective measure of cortical excitability, which is reliable over time. MSPA, therefore, shows excellent promise as a biological marker of cortical response in trials of migraine prophylactics.

  19. Manufacturing of a superconducting magnet system for 28 GHz electron cyclotron resonance ion source at KBSI.

    PubMed

    Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S

    2012-02-01

    A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.

  20. Cosmic Rays in Intermittent Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particlemore » energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.« less

  1. Superconducting magnet and cryostat for a space application

    NASA Technical Reports Server (NTRS)

    Pope, W. L.; Smoot, G. F.; Smith, L. H.; Taylor, C. E.

    1975-01-01

    The paper describes the design concepts, development, and testing of a superconducting coil and cryostat for an orbiting superconducting magnetic spectrometer. Several coils were subject to overall thermal performance and coil charging tests. The coils have low but persistent currents and have proven themselves to be rugged and reliable for mobile balloon flights. Satellite experiments will be conducted on a new, similar design.

  2. Underwater Concrete Inspection Equipment

    DTIC Science & Technology

    1991-04-01

    nondestructive testing of con- crete waterfront structures. One instrument is a magnetic rebar locator that locates rebar in concrete structures and measures the...amount of con- crete cover over the rebar . Another instrument is a rebound hammer that measures the surface hardness of the concrete . The third...development of three specialized instruments for the underwater nondestructive testing or concrete waterfront structures. One instrument is a magnetic rebar

  3. A Hands-On Approach to Maglev for Gifted Students.

    ERIC Educational Resources Information Center

    Budd, Raymond T.

    2003-01-01

    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  4. Analysis of spatial thermal field in a magnetic bearing

    NASA Astrophysics Data System (ADS)

    Wajnert, Dawid; Tomczuk, Bronisław

    2018-03-01

    This paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.

  5. BETA (Bitter Electromagnet Testing Apparatus)

    NASA Astrophysics Data System (ADS)

    Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.

    2017-10-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.

  6. Measurement of Spindle Rigidity by using a Magnet Loader

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  7. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    NASA Astrophysics Data System (ADS)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  8. Optimal design of a shear magnetorheological damper for turning vibration suppression

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhang, Y. L.

    2013-09-01

    The intelligent material, so-called magnetorheological (MR) fluid, is utilized to control turning vibration. According to the structure of a common lathe CA6140, a shear MR damper is conceived by designing its structure and magnetic circuit. The vibration suppression effect of the damper is proved with dynamic analysis and simulation. Further, the magnetic circuit of the damper is optimized with the ANSYS parametric design language (APDL). In the optimization course, the area of the magnetic circuit and the damping force are considered. After optimization, the damper’s structure and its efficiency of electrical energy consumption are improved. Additionally, a comparative study on damping forces acquired from the initial and optimal design is conducted. A prototype of the developed MR damper is fabricated and magnetic tests are performed to measure the magnetic flux intensities and the residual magnetism in four damping gaps. Then, the testing results are compared with the simulated results. Finally, the suppressing vibration experimental system is set up and cylindrical turning experiments are performed to investigate the working performance of the MR damper.

  9. Design of a magnetic force exciter for a small-scale windmill using a piezo-composite generating element

    NASA Astrophysics Data System (ADS)

    Luong, Hung Truyen; Goo, Nam Seo

    2011-03-01

    We introduce a design for a magnetic force exciter that applies vibration to a piezo-composite generating element (PCGE) for a small-scale windmill to convert wind energy into electrical energy. The windmill can be used to harvest wind energy in urban regions. The magnetic force exciter consists of exciting magnets attached to the device's input rotor, and a secondary magnet that is fixed at the tip of the PCGE. Under an applied wind force, the input rotor rotates to create a magnetic force interaction to excite the PCGE. Deformation of the PCGE enables it to generate the electric power. Experiments were performed to test power generation and battery charging capabilities. In a battery charging test, the charging time for a 40 mAh battery is approximately 1.5 hours for a wind speed of 2.5 m/s. Our experimental results show that the prototype can harvest energy in urban areas with low wind speeds, and convert the wasted wind energy into electricity for city use.

  10. An experimental approach in revisiting the magnetic orientation of cattle

    PubMed Central

    Weijers, Debby; Hemerik, Lia; Heitkönig, Ignas M. A.

    2018-01-01

    In response to the increasing number of observational studies on an apparent south-north orientation in non-homing, non-migrating terrestrial mammals, we experimentally tested the alignment hypothesis using strong neodymium magnets on the resting orientation of individual cattle in Portugal. Contrary to the hypothesis, the 34 cows in the experiment showed no directional preference, neither with, nor without a strong neodymium magnet fixed to their collar. The concurrently performed 2,428 daytime observations—excluding the hottest part of the day—of 659 resting individual cattle did not show a south-north alignment when at rest either. The preferred compass orientation of these cows was on average 130 degrees from the magnetic north (i.e., south east). Cow compass orientation correlated significantly with sun direction, but not with wind direction. In as far as we can determine, this is the first experimental test on magnetic orientation in larger, non-homing, non-migrating mammals. These experimental and observational findings do not support previously published suggestions on the magnetic south-north alignment in these mammals. PMID:29641517

  11. Plasma rotation in the Peking University Plasma Test device.

    PubMed

    Xiao, Chijie; Chen, Yihang; Yang, Xiaoyi; Xu, Tianchao; Wang, Long; Xu, Min; Guo, Dong; Yu, Yi; Lin, Chen

    2016-11-01

    Some preliminary results of plasma rotations in a linear plasma experiment device, Peking University Plasma Test (PPT) device, are reported in this paper. PPT has a cylindrical vacuum chamber with 500 mm diameter and 1000 mm length, and a pair of Helmholtz coils which can generate cylindrical or cusp magnetic geometry with magnitude from 0 to 2000 G. Plasma was generated by a helicon source and the typical density is about 10 13 cm -3 for the argon plasma. Some Langmuir probes, magnetic probes, and one high-speed camera are set up to diagnose the rotational plasmas. The preliminary results show that magnetic fluctuations exist during some plasma rotation processes with both cylindrical and cusp magnetic geometries, which might be related to some electromagnetic processes and need further studies.

  12. Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays

    NASA Astrophysics Data System (ADS)

    Barnsley, Lester C.; Carugo, Dario; Aron, Miles; Stride, Eleanor

    2017-03-01

    The aim of this study was to characterize the behaviour of superparamagnetic particles in magnetic drug targeting (MDT) schemes. A 3-dimensional mathematical model was developed, based on the analytical derivation of the trajectory of a magnetized particle suspended inside a fluid channel carrying laminar flow and in the vicinity of an external source of magnetic force. Semi-analytical expressions to quantify the proportion of captured particles, and their relative accumulation (concentration) as a function of distance along the wall of the channel were also derived. These were expressed in terms of a non-dimensional ratio of the relevant physical and physiological parameters corresponding to a given MDT protocol. The ability of the analytical model to assess magnetic targeting schemes was tested against numerical simulations of particle trajectories. The semi-analytical expressions were found to provide good first-order approximations for the performance of MDT systems in which the magnetic force is relatively constant over a large spatial range. The numerical model was then used to test the suitability of a range of different designs of permanent magnet assemblies for MDT. The results indicated that magnetic arrays that emit a strong magnetic force that varies rapidly over a confined spatial range are the most suitable for concentrating magnetic particles in a localized region. By comparison, commonly used magnet geometries such as button magnets and linear Halbach arrays result in distributions of accumulated particles that are less efficient for delivery. The trajectories predicted by the numerical model were verified experimentally by acoustically focusing magnetic microbeads flowing in a glass capillary channel, and optically tracking their path past a high field gradient Halbach array.

  13. Effect of magnetic micropulsations on the biological systems — A bioenvironmental study

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, S.; Narayan, P. V. Sanker; Srinivasan, T. M.

    1985-09-01

    During the last decade considerable interest has been evinced by scientists on the possible influence of earth's electromagnetic environment on human and animal physiology. While some studies on this topic have been reported from high magnetic latitudes — USSR and central Europe — no work has been done in very low latitude and equatorial regions. The present study, undertaken to fill this gap, has been carried out at the low latitude of Madras (Magnetic Dip ≅ 10°). Pulsating magnetic fields in the frequency range of 0.01 Hz to 20 Hz and with amplitudes of ±5 and ±50 gamma were impressed on test animals, normal human subjects and Yoga practitioners lying supine inside a 4-member Fanselau-Braunbeck coil system with the heads oriented in the four cardinal directions with respect to earth's magnetic field. The entire set of exposures of the test animals and humans was given under two ambient magnetic fields namely, against full local geomagnetic field of about 40,000 gamma and half this value. In the animals ECG, EEG, Tail Blood Flow and Respiration were recorded continuously on a polygraph. The biochemical tests carried out were postprandial blood sugar, serum cholesterol and plasma cortisol. Neurochemical assays of Noradrenaline, Adrenaline, Dopamine, Serotonin and 5 Hydroxy Indole Acetic acid were done on the brain tissue, myocardium and adrenal glands, immediately after complete set of exposures of the animals in all four orientations. Motor activity and rectal temperature were also noted before and after the exposures. The ‘Control’ animals were also subjected to exactly the same investigations as the test animals without, however, exposing them to the magnetic fields. These observations revealed some decisive changes in certain parameters for certain frequencies of the impressed field and also in specific orientations of the test animals. Similar studies carried out on normal human subjects and practitioners of Yoga and Meditation, also showed certain decisive changes in the electrophysiology, neurochemistry and biochemistry when oriented to North and East. The North orientation appeared to induce inhibition of brain electrical activity and associated neurochemical and biochemical changes, whereas the East orientation showed a response of calm, blissful alertness.

  14. Improvements and Performance of the Fermilab Solenoid Test Facility

    DOE PAGES

    Orris, Darryl; Arnold, Don; Brandt, Jeffrey; ...

    2017-06-01

    Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less

  15. Improvements and Performance of the Fermilab Solenoid Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orris, Darryl; Arnold, Don; Brandt, Jeffrey

    Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less

  16. Suppression of Instabilities Generated by an Anti-Damper with a Nonlinear Magnetic Element in IOTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, E.

    The Integrable Optics Test Accelerator (IOTA) storage ring is being constructed at Fermilab as a testbed for new accelerator concepts. One important series of experiments tests the use of a novel nonlinear magnetic insert to damp coherent instabilities. To test the damping power of the element, an instability of desired strength may be intentionally excited with an anti-damper. We report on simulations of beam stabilization using the Synergia modeling framework over ranges of driving and damping strengths.

  17. Clinical applications of magnetic nanoparticles for hyperthermia.

    PubMed

    Thiesen, Burghard; Jordan, Andreas

    2008-09-01

    Magnetic fluids are increasingly used for clinical applications such as drug delivery, magnetic resonance imaging and magnetic fluid hyperthermia. The latter technique that has been developed as a cancer treatment for several decades comprises the injection of magnetic nanoparticles into tumors and their subsequent heating in an alternating magnetic field. Depending on the applied temperature and the duration of heating this treatment either results in direct tumor cell killing or makes the cells more susceptible to concomitant radio- or chemotherapy. Numerous groups are working in this field worldwide, but only one approach has been tested in clinical trials so far. Here, we summarize the clinical data gained in these studies on magnetic fluid induced hyperthermia.

  18. Correlation of magnetic perturbation inspection data with rolling element bearing fatigue results

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1973-01-01

    A magnetic perturbation technique was used to nondestructively detect subsurface nonmetallic inclusions in the inner races of 207-size, deep groove ball bearings. The bearings were fatigue tested at 2750 rpm under a radial load of. The inner races were subsequently sectioned at fatigue spall locations and at magnetic perturbation signal locations. Analyses of the data indicated good correlation between magnetic perturbation signals and inclusion size and location. Exclusion of those bearings that had significant magnetic perturbation signals did not alter the statistical life of the bearings.

  19. Energy saver A-sector power test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.; Flora, R.; Tool, G.

    1982-09-15

    The superconducting magnets and associated cryogenic components in A-sector represent the initial phase of installation of the Fermilab superconducting accelerator, designed to accelerate proton beams to energies of 1 TeV. Installation of the magnets, comprising one-eighth of the ring, was completed in December, 1981. Cooldown and power tests took place in the first half of 1982, concurrent with main ring use for 400 GeV high energy physics. The tests described in this paper involved 151 cryogenic components in the tunnel: 94 dipoles, 24 quadrupoles, 25 spool pieces, 3 feed cans, 4 turn-around boxes and 1 bypass. Refrigeration was supplied bymore » three satellite refrigerators, the Central Helium Liquefier, and two compressor buildings. The magnets were powered by a single power supply.« less

  20. Brain Lesions

    MedlinePlus

    ... seen on a brain-imaging test, such as magnetic resonance imaging (MRI) or computerized tomography (CT). On ... A cohort study. PLOS One. 2013;8:e71467. Magnetic resonance imaging (MRI). National Multiple Sclerosis Society. http:// ...

  1. Charged particle transport in magnetic fields in EGSnrc.

    PubMed

    Malkov, V N; Rogers, D W O

    2016-07-01

    To accurately and efficiently implement charged particle transport in a magnetic field in EGSnrc and validate the code for the use in phantom and ion chamber simulations. The effect of the magnetic field on the particle motion and position is determined using one- and three-point numerical integrations of the Lorentz force on the charged particle and is added to the condensed history calculation performed by the EGSnrc PRESTA-II algorithm. The code is tested with a Fano test adapted for the presence of magnetic fields. The code is compatible with all EGSnrc based applications, including egs++. Ion chamber calculations are compared to experimental measurements and the effect of the code on the efficiency and timing is determined. Agreement with the Fano test's theoretical value is obtained at the 0.1% level for large step-sizes and in magnetic fields as strong as 5 T. The NE2571 dose calculations achieve agreement with the experiment within 0.5% up to 1 T beyond which deviations up to 1.2% are observed. Uniform air gaps of 0.5 and 1 mm and a misalignment of the incoming photon beam with the magnetic field are found to produce variations in the normalized dose on the order of 1%. These findings necessitate a clear definition of all experimental conditions to allow for accurate Monte Carlo simulations. It is found that ion chamber simulation times are increased by only 38%, and a 10 × 10 × 6 cm(3) water phantom with (3 mm)(3) voxels experiences a 48% increase in simulation time as compared to the default EGSnrc with no magnetic field. The incorporation of the effect of the magnetic fields in EGSnrc provides the capability to calculate high accuracy ion chamber and phantom doses for the use in MRI-radiation systems. Further, the effect of apparently insignificant experimental details is found to be accentuated by the presence of the magnetic field.

  2. [Factors for Degaussing of a Cochlear Implant Magnet in the MR Scanner].

    PubMed

    Koganezawa, Takumi; Uchiyama, Naoko; Teshigawara, Mai; Ogura, Akio

    This study examined the conditions influencing degauss of the magnet using magnetic resonance imaging (MRI). Poly methyl methacrylate (PMMA) was used to fix the measurement magnets to the MRI bed at angles from 0° to 180° for the magnetic flux vector of static magnetic field. The PMMA was moved in the MRI magnetic field. Magnetic flux density was measured before and after bed movement, and the rate of degauss was calculated. The contents examined are as follows: (1) the angle of the magnetic flux vector of the measurement magnets for the magnetic flux vector of the static magnetic field, (2) the number of movements, (3) moving velocity, and (4) the movement on the spatial gradient of magnetic field. Mann-Whitney U test was used for statistical analysis of the data. In conclusion, the effect of the angle of the magnetic flux vector of the implant magnet was high under the conditions of degauss in this study. Therefore, during the MRI examination of a patient with a cochlear implant magnet, the operators identified the directions of the magnetic flux vector and static magnetic field of the implant magnet.

  3. Directional Cluster Analysis on a Sphere: Retrieval of Archean Magnetic Directions from Data with High Dispersion

    NASA Astrophysics Data System (ADS)

    Bono, R. K.; Dare, M. S.; Tarduno, J. A.; Cottrell, R. D.

    2016-12-01

    Magnetic directions from coarse clastic rocks are typically highly scattered, to the point that the null hypothesis that they are drawn from a random distribution, using the iconic test of Watson (1956), cannot be rejected at a high confidence level (e.g. 95%). Here, we use an alternative approach of searching for directional clusters on a sphere. When applied to a new data set of directions from quartzites from the Jack Hills of Western Australia, we find evidence for distinct and meaningful magnetic directions at low (200 to 300 degrees C) and intermediate ( 350 to 450 degrees C) unblocking temperatures, whereas the test of Watson (1956) fails to draw a distinction from random distributions for the ensemble of directions at these unblocking temperature ranges. The robustness of the directional groups identified by the cluster analysis is confirmed by non-parametric resampling tests. The lowest unblocking temperature directional mode appears related to the present day field, perhaps contaminated by viscous magnetizations. The intermediate temperature magnetization matches an overprint recorded by the secondary mineral fuchsite (Cottrell et al., 2016) acquired at ca. 2.65 Ga. These data thus indicate that the Jack Hills carry an overprint at intermediate unblocking temperatures of Archean age. We find no evidence for a 1 Ga remagnetization. In general, the application of cluster analysis on a sphere, with directions confirmed by nonparametric tests, represents a new approach that should be applied when evaluating data with high dispersion, such as those that typically come from weak coarse-grained clastic sedimentary rocks, and/or rocks that have seen several tectonic events that could have imparted multiple magnetic overprints.

  4. Comparative study of the surface characteristics, microstructure, and magnetic retentive forces of laser-welded dowel-keepers and cast dowel-keepers for use with magnetic attachments.

    PubMed

    Chao, Yonglie; Du, Li; Yang, Ling

    2005-05-01

    Information regarding the merits and problems associated with connecting a keeper to a dowel and coping using a laser welding technique has not been explored extensively in the dental literature. This in vitro study compared the surface characteristics, microstructure, and magnetic retentive forces for a dowel and coping-keeper mechanism fabricated using a laser welding process and a cast-to casting technique. Five cast-to and 6 laser-welded dowel and coping-keeper specimens were tested. Using 5 freestanding keepers as the control group, the surface characteristics and microstructures of the specimens were examined by means of stereomicroscopy, metallographic microscopy, and scanning electron microscopy (SEM). Energy-dispersive spectroscopic (EDS) microanalysis with SEM provided elemental concentration information for the test specimens. The vertical magnetic retentive forces (N) of the 3 groups were measured using a universal testing machine. The results were statistically compared using 1-way analysis of variance and the Newman-Keuls multiple range test (alpha =.05). The laser-welded dowel-keeper generally maintained its original surface smoothness as well as the original microstructure. Elements diffused readily through the fusion zone. The surface of the cast dowel-keeper became rough with the formation of an oxide layer, the microstructure changed, and there was only limited elemental diffusion in the fusion zone. The average vertical magnetic retentive force of the laser-welded group, the cast group, and the control group were 4.2 +/- 0.2 N, 3.8 +/- 0.3 N, and 5.6 +/- 0.3 N, respectively. Statistically significant differences in vertical magnetic retentive force were found between the control group and both the laser-welded and cast groups (P <.01). Compared with the cast dowel-keepers, the average vertical magnetic retentive force of the laser-welded dowel-keepers was significantly higher (P <.05). The laser welding technique had less influence on the surface characteristics, the microstructure, and the magnetic retentive forces of keepers relative to techniques that incorporate a keeper at the time of cast dowel and coping fabrication.

  5. Spin Testing for Durability Began on a Self-Tuning Impact Damper for Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten; Mehmed, Oral

    2003-01-01

    NASA and Pratt & Whitney will collaborate under a Space Act Agreement to perform spin testing of the impact damper to verify damping effectiveness and durability. Pratt & Whitney will provide the turbine blade and damper hardware for the tests. NASA will provide the facility and perform the tests. Effectiveness and durability will be investigated during and after sustained sweeps of rotor speed through resonance. Tests of a platform wedge damper are also planned to compare its effectiveness with that of the impact damper. Results from baseline tests without dampers will be used to measure damping effectiveness. The self-tuning impact damper combines two damping methods-the tuned mass damper and the impact damper. It consists of a ball located within a cavity in the blade. This ball rolls back and forth on a spherical trough under centrifugal load (tuned mass damper) and can strike the walls of the cavity (impact damper). The ball s rolling natural frequency is proportional to the rotor speed and can be designed to follow an engine-order line (integer multiple of rotor speed). Aerodynamic forcing frequencies typically follow these engineorder lines, and a damper tuned to the engine order will most effectively reduce blade vibrations when the resonant frequency equals the engine-order forcing frequency. This damper has been tested in flat plates and turbine blades in the Dynamic Spin Facility. During testing, a pair of plates or blades rotates in vacuum. Excitation is provided by one of three methods--eddy-current engine-order excitation (ECE), electromechanical shakers, and magnetic bearing excitation. The eddy-current system consists of magnets located circumferentially around the rotor. As a blade passes a magnet, a force is imparted on the blade. The number of magnets used can be varied to change the desired engine order of the excitation. The magnets are remotely raised or lowered to change the magnitude of the force on the blades. The other two methods apply force to the rotating shaft itself at frequencies independent of the rotor speed. During testing, blade vibration is monitored with strain gauges and laser displacement probes.

  6. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  7. Exploration of the validity of weak magnets as a suitable placebo in trials of magnetic therapy.

    PubMed

    Greaves, C J; Harlow, T N

    2008-06-01

    To investigate whether 50 mT magnetic bracelets would be suitable as a placebo control condition for studying the pain relieving effects of higher strength magnetic bracelets in arthritis. Randomised controlled comparison between groups given either a weak 50 mT or a higher strength 180 mT magnetic bracelets to test. Four arthritis support groups in Devon, UK. One hundred sixteen people with osteoarthritis and rheumatoid arthritis. Beliefs about group allocation and expectation of benefit. There was no significant difference between groups in beliefs about allocation to the 'active magnet' group. Participants were however more likely to have an expectation of benefit (pain relief) with the higher strength magnetic bracelets. Asking about perceived group allocation is not sufficient to rule out placebo effects in trials of magnetic bracelets which use weak magnets as a control condition. There are differences in expectation of benefit between different magnet strengths.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin Yong; Pusan National University, Busan; Choi, Seyong

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The finalmore » assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.« less

  9. Influence of magnet eddy current on magnetization characteristics of variable flux memory machine

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang

    2018-05-01

    In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.

  10. Shrink-induced sorting using integrated nanoscale magnetic traps.

    PubMed

    Nawarathna, Dharmakeerthi; Norouzi, Nazila; McLane, Jolie; Sharma, Himanshu; Sharac, Nicholas; Grant, Ted; Chen, Aaron; Strayer, Scott; Ragan, Regina; Khine, Michelle

    2013-02-11

    We present a plastic microfluidic device with integrated nanoscale magnetic traps (NSMTs) that separates magnetic from non-magnetic beads with high purity and throughput, and unprecedented enrichments. Numerical simulations indicate significantly higher localized magnetic field gradients than previously reported. We demonstrated >20 000-fold enrichment for 0.001% magnetic bead mixtures. Since we achieve high purity at all flow-rates tested, this is a robust, rapid, portable, and simple solution to sort target species from small volumes amenable for point-of-care applications. We used the NSMT in a 96 well format to extract DNA from small sample volumes for quantitative polymerase chain reaction (qPCR).

  11. Influence of the configuration of the magnetic filter field on the discharge structure in the RF driven negative ion source prototype for fusion

    NASA Astrophysics Data System (ADS)

    Lishev, S.; Schiesko, L.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The study provides results for the influence of the filter field topology on the plasma parameters in the RF prototype negative ion source for ITER NBI. A previously developed 2D fluid plasma model of the prototype source was extended towards accounting for the particles and energy losses along the magnetic field lines and the presence of a magnetic field in the driver which is the case at the BATMAN and ELISE test-beds. The effect of the magnetic field in the driver is shown for the magnetic field configuration of the prototype source (i.e. a magnetic field produced by an external magnet frame) by comparison of plasma parameters without and with the magnetic field in the driver and for different axial positions of the filter. Since the ELISE-like magnetic field (i.e. a magnetic field produced by a current flowing through the plasma grid) is a new feature planned to be installed at the BATMAN test-bed, its effect on the discharge structure was studied for different strengths of the magnetic field. The obtained results show for both configurations of the magnetic filter the same main features in the patterns of the plasma parameters in the expansion chamber: a strong axial drop of the electron temperature and the formation of a groove accompanied with accumulation of electrons in front of the plasma grid. The presence of a magnetic field in the driver has a local impact on the plasma parameters: the formation of a second groove of the electron temperature in the case of BATMAN (due to the reversed direction of the filter field in the driver) and a strong asymmetry of the electron density. Accounting for the additional losses in the third dimension suppresses the drifts across the magnetic field and, thus, the variations of the electron density in the expansion chamber are less pronounced.

  12. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.

    PubMed

    Phillips, John B; Youmans, Paul W; Muheim, Rachel; Sloan, Kelly A; Landler, Lukas; Painter, Michael S; Anderson, Christopher R

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.

  13. Rapid Learning of Magnetic Compass Direction by C57BL/6 Mice in a 4-Armed ‘Plus’ Water Maze

    PubMed Central

    Phillips, John B.; Youmans, Paul W.; Muheim, Rachel; Sloan, Kelly A.; Landler, Lukas; Painter, Michael S.; Anderson, Christopher R.

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds. PMID:24023673

  14. An approach for estimating the magnetization direction of magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Li, Jinpeng; Zhang, Yingtang; Yin, Gang; Fan, Hongbo; Li, Zhining

    2017-02-01

    An approach for estimating the magnetization direction of magnetic anomalies in the presence of remanent magnetization through correlation between normalized source strength (NSS) and reduced-to-the-pole (RTP) is proposed. The observation region was divided into several calculation areas and the RTP field was transformed using different assumed values of the magnetization directions. Following this, the cross-correlation between NSS and RTP field was calculated, and it was found that the correct magnetization direction was that corresponding to the maximum cross-correlation value. The approach was tested on both simulated and real magnetic data. The results showed that the approach was effective in a variety of situations and considerably reduced the effect of remanent magnetization. Thus, the method using NSS and RTP is more effective compared to other methods such as using the total magnitude anomaly and RTP.

  15. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  16. Flux density measurement of radial magnetic bearing with a rotating rotor based on fiber Bragg grating-giant magnetostrictive material sensors.

    PubMed

    Ding, Guoping; Zhang, Songchao; Cao, Hao; Gao, Bin; Zhang, Biyun

    2017-06-10

    The rotational magnetic field of radial magnetic bearings characterizes remarkable time and spatial nonlinearity due to the eddy current and induced electromagnetic field. It is significant to experimentally obtain the features of the rotational magnetic field of the radial magnetic bearings to validate the theoretical analysis and reveal the discipline of a rotational magnetic field. This paper developed thin-slice fiber Bragg grating-giant magnetostrictive material (FBG-GMM) magnetic sensors to measure air-gap flux density of a radial magnetic bearing with a rotating rotor; a radial magnetic bearing test rig was constructed and the rotational magnetic field with different rotation speed was measured. Moreover, the finite element method (FEM) was used to simulate the rotational magnetic field; the measurement results and FEM results were investigated, and it was concluded that the FBG-GMM sensors were capable of measuring the radial magnetic bearing's air gap flux density with a rotating rotor, and the measurement results showed a certain degree of accuracy.

  17. Comparison of Reasons for Nurse Turnover in Magnet® and Non-Magnet Hospitals.

    PubMed

    Park, Shin Hye; Gass, Stephanie; Boyle, Diane K

    2016-05-01

    The aim of this study is to compare rates and reasons for registered nurse (RN) turnover by Magnet® status. Although lower RN turnover rates in Magnet hospitals have been documented well in the literature, little is known about specific separation reasons for RN turnover and whether the reasons differ between Magnet and non-Magnet hospitals. This descriptive, correlational study analyzed unit-level 2013 National Database of Nursing Quality Indicators® turnover data (2,958 units; 497 hospitals). Poisson regression and Wilcoxon-Mann-Whitney test were used. Registered nurse turnover due to environment-related reasons was higher on units in non-Magnet hospitals than units in Magnet hospitals. Units in non-Magnet hospitals had 4.684 times higher turnover rates due to staffing/workload and 1.439 times higher rates due to work schedules than did units in Magnet hospitals. Nursing administrators in both Magnet and non-Magnet hospitals need to continually strive to improve unit work environments, particularly staffing and workload conditions and work scheduling.

  18. Interfacial Phenomena of Magnetic Fluid with Permanent Magnet in a Longitudinally Excited Container

    NASA Astrophysics Data System (ADS)

    Sudo, Seiichi; Wakuda, Hirofumi; Yano, Tetsuya

    2008-02-01

    This paper describes the magnetic fluid sloshing in a longitudinally excited container. Liquid responses of magnetic fluid with a permanent magnet in a circular cylindrical container subject to vertical vibration are investigated. Experiments are performed on a vibration- testing system which provided longitudinal excitation. A cylindrical container made with the acrylic plastic is used in the experiment. A permanent magnet is in the state of floating in a magnetic fluid. The disk-shaped and ring-shaped magnets are examined. The different interfacial phenomena from the usual longitudinal liquid sloshing are observed. It is found that the wave motion frequency of magnetic fluid with a disk-shaped magnet in the container subject to vertical vibration is exactly same that of the excitation. In the case of ring-shaped magnet, the first symmetrical mode of one-half subharmonic response is dominant at lower excitation frequencies. The magnetic fluid disintegration of the free surface was also observed by a high-speed video camera system.

  19. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    NASA Technical Reports Server (NTRS)

    Abdelnour, Z. A.; Mildrum, H. F.; Strnat, K. J.

    1980-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The commercial material now available is described by the manufacturer's data. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. From this, a list of the needed specific information is extracted. A plan for experimental work is made which would generate this information, or verify data supplied by the producer. The results of these measurements are presented in the form of tables and graphs. The tests determined magnetic design data and some mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 C to +150 C. Hysteresis loops were also measured for three orthogonal directions (the easy and 2 hard axes of magnetization).

  20. The diagnostic accuracy of 1.5T magnetic resonance imaging for detecting root avulsions in traumatic adult brachial plexus injuries.

    PubMed

    Wade, Ryckie G; Itte, Vinay; Rankine, James J; Ridgway, John P; Bourke, Grainne

    2018-03-01

    Identification of root avulsions is of critical importance in traumatic brachial plexus injuries because it alters the reconstruction and prognosis. Pre-operative magnetic resonance imaging is gaining popularity, but there is limited and conflicting data on its diagnostic accuracy for root avulsion. This cohort study describes consecutive patients requiring brachial plexus exploration following trauma between 2008 and 2016. The index test was magnetic resonance imaging at 1.5 Tesla and the reference test was operative exploration of the supraclavicular plexus. Complete data from 29 males was available. The diagnostic accuracy of magnetic resonance imaging for root avulsion(s) of C5-T1 was 79%. The diagnostic accuracy of a pseudomeningocoele as a surrogate marker of root avulsion(s) of C5-T1 was 68%. We conclude that pseudomeningocoles were not a reliable sign of root avulsion and magnetic resonance imaging has modest diagnostic accuracy for root avulsions in the context of adult traumatic brachial plexus injuries. III.

  1. An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters

    NASA Astrophysics Data System (ADS)

    Rabiul Islam, Md.; Guo, Youguang; Wei Lin, Zhi; Zhu, Jianguo

    2014-05-01

    The advanced magnetic materials with high saturation flux density and low specific core loss have led to the development of an efficient, compact, and lightweight multiple-input multiple-output medium frequency magnetic-link. It offers a new route to eliminate some critical limitations of recently proposed medium voltage photovoltaic inverters. In this paper, a medium frequency magnetic-link is developed with Metglas amorphous alloy 2605S3A. The common magnetic-link generates isolated and balanced multiple DC supplies for all of the H-bridge inverter cells of the medium voltage inverter. The design and implementation of the prototype, test platform, and the experimental test results are analyzed and discussed. The medium frequency non-sinusoidal excitation electromagnetic characteristics of alloy 2605S3A are also compared with that of alloy 2605SA1. It is expected that the proposed new technology will have great potential for future renewable power generation systems and smart grid applications.

  2. Development and testing of passive tracking markers for different field strengths and tracking speeds.

    PubMed

    Peeters, J M; Seppenwoolde, J-H; Bartels, L W; Bakker, C J G

    2006-03-21

    Susceptibility markers for passive tracking need to be small in order to maintain the shape and mechanical properties of the endovascular device. Nevertheless, they also must have a high magnetic moment to induce an adequate artefact at a variety of scan techniques, tracking speeds and, preferably, field strengths. Paramagnetic markers do not satisfy all of these requirements. Ferro- and ferrimagnetic materials were therefore investigated with a vibrating sample magnetometer and compared with the strongly paramagnetic dysprosium oxide. Results indicated that the magnetic behaviour of stainless steel type AISI 410 corresponds the best with ideal marker properties. Markers with different magnetic moments were constructed and tested in in vitro and in vivo experiments. The appearance of the corresponding artefacts was field strength independent above magnetic saturation of 1.5 T. Generally, the contrast-to-noise ratio decreased at increasing tracking speed and decreasing magnetic moment. Device depiction was most consistent at a frame rate of 20 frames per second.

  3. Cryogenic Characterization and Testing of Magnetically-Actuated Microshutter Arrays for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    King, T. T.; Kletetschka, G.; Jah, M. A.; Li, M. J.; Jhabvala, M. D.; Wang, L. L.; Beamesderfer, M. A.; Kutyrev, A. S.; Silverberg, R. F.; Rapchun, D.; hide

    2004-01-01

    Two-dimensional MEMS microshutter arrays (MSA) have been fabricated at the NASA Goddard Space Flight Center (GSFC) for the James Webb Space Telescope (JWST) to enable cryogenic (approximately 35 K) spectrographic astronomy measurements in the near-infrared region. Functioning as a focal plane object selection device, the MSA is a 2-D programmable aperture mask with fine resolution, high efficiency and high contrast. The MSA are close- packed silicon nitride shutters (cell size of 100 x 200 microns) patterned with a torsion flexure to allow opening to 90 degrees. A layer of magnetic material is deposited onto each shutter to permit magnetic actuation. Two electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2-D addressing. New techniques were developed to test MSA under mission-similar conditions (8 K less than or equal to T less than 300K). The magnetic rotisserie has proven to be an excellent tool for rapid characterization of MSA. Tests conducted with the magnetic rotisserie method include accelerated cryogenic lifetesting of unpackaged 128 x 64 MSA and parallel measurement of the magneto-mechanical stiffness of shutters in pathfinder test samples containing multiple MSA designs. Lifetest results indicate a logarithmic failure rate out to approximately 10(exp 6) shutter actuations. These results have increased our understanding of failure mechanisms and provide a means to predict the overall reliability of MSA devices.

  4. Assessing students' conceptual knowledge of electricity and magnetism

    NASA Astrophysics Data System (ADS)

    McColgan, Michele W.; Finn, Rose A.; Broder, Darren L.; Hassel, George E.

    2017-12-01

    We present the Electricity and Magnetism Conceptual Assessment (EMCA), a new assessment aligned with second-semester introductory physics courses. Topics covered include electrostatics, electric fields, circuits, magnetism, and induction. We have two motives for writing a new assessment. First, we find other assessments such as the Brief Electricity and Magnetism Assessment and the Conceptual Survey on Electricity and Magnetism not well aligned with the topics and content depth of our courses. We want to test introductory physics content at a level appropriate for our students. Second, we want the assessment to yield scores and gains comparable to the widely used Force Concept Inventory (FCI). After five testing and revision cycles, the assessment was finalized in early 2015 and is available online. We present performance results for a cohort of 225 students at Siena College who were enrolled in our algebra- and calculus-based physics courses during the spring 2015 and 2016 semesters. We provide pretest, post-test, and gain analyses, as well as individual question and whole test statistics to quantify difficulty and reliability. In addition, we compare EMCA and FCI scores and gains, and we find that students' FCI scores are strongly correlated with their performance on the EMCA. Finally, the assessment was piloted in an algebra-based physics course at George Washington University (GWU). We present performance results for a cohort of 130 GWU students and we find that their EMCA scores are comparable to the scores of students in our calculus-based physics course.

  5. Magnetomechanical properties of composites and fibers made from thermoplastic elastomers (TPE) and carbonyl iron powder (CIP)

    NASA Astrophysics Data System (ADS)

    Schrödner, Mario; Pflug, Günther

    2018-05-01

    Magnetoactive elastomers (MAE) made from composites of five thermoplastic elastomers (TPE) of different stiffness with carbonyl iron powder (CIP) as magnetic component were investigated. The composites were produced by melt blending of the magnetic particles with the TPEs in a twin-screw extruder. The resulting materials were characterized by ac permeability testing, stress-strain measurements with and without external magnetic field and magnetically controlled bending of long cylindrical rods in a homogenous magnetic field. The magnetic field necessary for deflection of the rods decreases with decreasing modulus and increasing iron particle content. This effect can be used e.g. for magnetically controlled actuation. Some highly filled MAE show a magnetic field induced increase of Young's modulus. Filaments could be spun from some of the composites.

  6. Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature.

    PubMed

    Nahar, Kamrun; Absar, Shahriar; Patel, Brijeshkumar; Ahsan, Fakhrul

    2014-04-10

    In this study, we tested the feasibility of magnetic liposomes as a carrier for pulmonary preferential accumulation of fasudil, an investigational drug for the treatment of pulmonary arterial hypertension (PAH). To develop an optimal inhalable formulation, various magnetic liposomes were prepared and characterized for physicochemical properties, storage stability and in vitro release profiles. Select formulations were evaluated for uptake by pulmonary arterial smooth muscle cells (PASMCs) - target cells - using fluorescence microscopy and HPLC. The efficacy of the magnetic liposomes in reducing hyperplasia was tested in 5-HT-induced proliferated PASMCs. The drug absorption profiles upon intratracheal administration were monitored in healthy rats. Optimized spherical liposomes - with mean size of 170 nm, zeta potential of -35mV and entrapment efficiency of 85% - exhibited an 80% cumulative drug release over 120 h. Fluorescence microscopic study revealed an enhanced uptake of liposomes by PASMCs under an applied magnetic field: the uptake was 3-fold greater compared with that observed in the absence of magnetic field. PASMC proliferation was reduced by 40% under the influence of the magnetic field. Optimized liposomes appeared to be safe when incubated with PASMCs and bronchial epithelial cells. Compared with plain fasudil, intratracheal magnetic liposomes containing fasudil extended the half-life and area under the curve by 27- and 14-fold, respectively. Magnetic-liposomes could be a viable delivery system for site-specific treatment of PAH. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.

    The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with thesemore » underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.« less

  8. Improvements in magnetic bearing performance for flywheel energy storage

    NASA Technical Reports Server (NTRS)

    Plant, David P.; Anand, Davinder K.; Kirk, James A.; Calomeris, Anthony J.; Romero, Robert L.

    1988-01-01

    The paper considers the development of a 500-Watt-hour magnetically suspended flywheel stack energy storage system. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of noncontacting displacement transducers, and performance enhancements of magnetic bearings. Experimental results show that a stack flywheel energy storage system is feasible technology.

  9. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized bymore » quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.« less

  10. A statistical spatial power spectrum of the Earth's lithospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Thébault, E.; Vervelidou, F.

    2015-05-01

    The magnetic field of the Earth's lithosphere arises from rock magnetization contrasts that were shaped over geological times. The field can be described mathematically in spherical harmonics or with distributions of magnetization. We exploit this dual representation and assume that the lithospheric field is induced by spatially varying susceptibility values within a shell of constant thickness. By introducing a statistical assumption about the power spectrum of the susceptibility, we then derive a statistical expression for the spatial power spectrum of the crustal magnetic field for the spatial scales ranging from 60 to 2500 km. This expression depends on the mean induced magnetization, the thickness of the shell, and a power law exponent for the power spectrum of the susceptibility. We test the relevance of this form with a misfit analysis to the observational NGDC-720 lithospheric magnetic field model power spectrum. This allows us to estimate a mean global apparent induced magnetization value between 0.3 and 0.6 A m-1, a mean magnetic crustal thickness value between 23 and 30 km, and a root mean square for the field value between 190 and 205 nT at 95 per cent. These estimates are in good agreement with independent models of the crustal magnetization and of the seismic crustal thickness. We carry out the same analysis in the continental and oceanic domains separately. We complement the misfit analyses with a Kolmogorov-Smirnov goodness-of-fit test and we conclude that the observed power spectrum can be each time a sample of the statistical one.

  11. Experimental Investigation of a Hall-Current Accelerator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Plank, G. M.

    1983-01-01

    The Hall-current accelerator is being investigated for use in the 1000-2000 sec. range of specific impulse. Three models of this thruster were tested. The first two models had three permanent magnets to supply the magnetic field and the third model had six magnets to supply the field. The third model thus had approximately twice the magnetic field of the first two. The first and second models differ only in the shape of the magnetic field. All other factors remained the same for the three models except for the anode-cathode distance, which was changed to allow for the three thrusters to have the same magnetic field integral between the anode and the cathode. These Hall thrusters were tested to determine the plasma properties, the beam characteristics, and the thruster characteristics. The thruster operated in three modes: (1) main cathode only, (2) main cathode with neutralizer cathode, and (3) neutralizer cathode only. The plasma properties were measured along an axial line, 1 mm inside the cathode radius, at a distance of 0.2 to 6.2 cm from the anode. Results show that the current used to heat the cathode produced nonuniformities in the magnetic field, hence also in the plasma properties. In a Hall thruster this general design appears to provide the most thrust when operated at a magnetic field less than the maximum value studied.

  12. Magnetic shielding of interplanetary spacecraft against solar flare radiation

    NASA Technical Reports Server (NTRS)

    Cocks, Franklin H.; Watkins, Seth

    1993-01-01

    The ultimate objective of this work is to design, build, and fly a dual-purpose, piggyback payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field (1) to protect spacecraft against solar flare protons, (2) to produce a thrust of sufficient magnitude to stabilize low satellite orbits against orbital decay from atmospheric drag, and (3) to test the magsail concept. These all appear to be capable of being tested using the same deployed high temperature superconducting coil. In certain orbits, high temperature superconducting wire, which has now been developed to the point where silver-sheathed high T sub c wires one mm in diameter are commercially available, can be used to produce the magnetic moments required for shielding without requiring any mechanical cooling system. The potential benefits of this concept apply directly to both earth-orbital and interplanetary missions. The usefulness of a protective shield for manned missions needs scarcely to be emphasized. Similarly, the usefulness of increasing orbit perigee without expenditure of propellant is obvious. This payload would be a first step in assessing the true potential of large volume magnetic fields in the US space program. The objective of this design research is to develop an innovative, prototype deployed high temperature superconducting coil (DHTSC) system.

  13. Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility

    NASA Astrophysics Data System (ADS)

    Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.

    2015-03-01

    The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Francis

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magneticmore » refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.« less

  15. SU-F-T-472: Validation of Absolute Dose Measurements for MR-IGRT With and Without Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Li, H; Goddu, S

    Purpose: To validate absolute dose measurements for a MR-IGRT system without presence of the magnetic field. Methods: The standard method (AAPM’s TG-51) of absolute dose measurement with ionization chambers was tested with and without the presence of the magnetic field for a clinical 0.32-T Co-60 MR-IGRT system. Two ionization chambers were used - the Standard Imaging (Madison, WI) A18 (0.123 cc) and the PTW (Freiburg, Germany). A previously reported Monte Carlo simulation suggested a difference on the order of 0.5% for dose measured with and without the presence of the magnetic field, but testing this was not possible until anmore » engineering solution to allow the radiation system to be used without the nominal magnetic field was found. A previously identified effect of orientation in the magnetic field was also tested by placing the chamber either parallel or perpendicular to the field and irradiating from two opposing angles (90 and 270). Finally, the Imaging and Radiation Oncology Core provided OSLD detectors for five irradiations each with and without the field - with two heads at both 0 and 90 degrees, and one head at 90 degrees only as it doesn’t reach 0 (IEC convention). Results: For the TG-51 comparison, expected dose was obtained by decaying values measured at the time of source installation. The average measured difference was 0.4%±0.12% for A18 and 0.06%±0.15% for Farmer chamber. There was minimal (0.3%) orientation dependence without the magnetic field for the A18 chamber, while previous measurements with the magnetic field had a deviation of 3.2% with chamber perpendicular to magnetic field. Results reported by IROC for the OSLDs with and without the field had a maximum difference of 2%. Conclusion: Accurate absolute dosimetry was verified by measurement under the same conditions with and without the magnetic field for both ionization chambers and independently-verifiable OSLDs.« less

  16. Evaluation of calibration accuracy of magnetometer sensors of Aist small spacecraft

    NASA Astrophysics Data System (ADS)

    Sedelnikov, A. V.; Filippov, A. S.; Gorozhakina, A. S.

    2018-05-01

    In the paper the technique of estimation of calibration accuracy of magnetometer gauges by the example of an Aist small spacecraft is stated. According to the measurement of the Earth's magnetic field in the orbital flight of a small spacecraft, the parameters of its rotational motion around the center of mass are estimated and primary information is generated for the magnetic actuators of the orbital motion control system. Therefore, calibration of the magnetometer sensors at the ground test stage is essential for the successful execution of the flight program. The technique can be used at the stages of ground and flight tests of magnetic field measuring instruments.

  17. Development of a cross-polarization scattering system for the measurement of internal magnetic fluctuations in the DIII-D tokamak

    DOE PAGES

    Rhodes, Terry L.; Peebles, William A.; Crocker, Neal A.; ...

    2014-08-05

    The design and performance of a new cross-polarization scattering (CPS) system for the localized measurement of internal magnetic fluctuations is presented. CPS is a process whereby magnetic fluctuations scatter incident electromagnetic radiation into a perpendicular polarization which is subsequently detected. A new CPS design that incorporates a unique scattering geometry was laboratory tested, optimized, and installed on the DIII-D tokamak. Plasma tests of signal-to-noise, polarization purity, and frequency response indicate proper functioning of the system. Lastly, CPS data show interesting features related to internal MHD perturbations known as sawteeth that are not observed on density fluctuations.

  18. Comprehensive evaluation of attitude and orbit estimation using real earth magnetic field data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    A single, augmented extended Kalman filter (EKF) which simultaneously and autonomously estimates spacecraft attitude and orbit was developed and tested with simulated and real magnetometer and rate data. Since the earth's magnetic field is a function of time and position, and since time is accurately known, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft's orbit, are a function of orbit and attitude errors. These differences can be used to estimate the orbit and attitude. The test results of the EKF with magnetometer and gyro data from three NASA satellites are presented and evaluated.

  19. Design and test of the RHIC CMD10 abort kicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, H.; Blaskiewicz, M.; Drees, A.

    2015-05-03

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  20. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  1. Calculation analysis of magnetic-pulse compaction of explosively formed high-velocity metal elements used for meteoroid protection testing

    NASA Astrophysics Data System (ADS)

    Fedorov, Sergey V.; Selivanov, Victor V.; Veldanov, Vladislav A.

    2017-06-01

    Accumulation of microdamages as a result of intensive plastic deformation leads to a decrease in the average density of the high-velocity elements that are formed at the explosive collapse of the special shape metal liners. For compaction of such elements in tests of their spacecraft meteoroid protection reliability, the use of magnetic-field action on the produced elements during their movement trajectory before interaction with a target is proposed. On the basis of numerical modeling within the one-dimensional axisymmetric problem of continuum mechanics and electrodynamics, the physical processes occurring in the porous conducting elastoplastic cylinder placed in a magnetic field are investigated. Using this model, the parameters of the magnetic-pulse action necessary for the compaction of the steel and aluminum elements are determined.

  2. Design and testing of a magnetic suspension and damping system for a space telescope

    NASA Technical Reports Server (NTRS)

    Ockman, N. J.

    1972-01-01

    The basic equations of motion are derived for a two dimensional, three degree of freedom simulation of a space telescope coupled to a spacecraft by means of a magnetic suspension and isolation system. The system consists of paramagnetic or ferromagnetic discs confined to the magnetic field between two Helmholtz coils. Damping is introduced by varying the magnetic field in proportion to a velocity signal derived from the telescope. The equations of motion are nonlinear, similar in behavior to the one-dimensional Van der Pol equation. The computer simulation was verified by testing a 264-kilogram air bearing platform which simulates the telescope in a frictionless environment. The simulation demonstrated effective isolation capabilities for disturbance frequencies above resonance. Damping in the system improved the response near resonance and prevented the build-up of large oscillatory amplitudes.

  3. TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barquero, V.; Xu, S.; Desiati, P.

    We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville’s theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville’s theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity tomore » the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.« less

  4. Telecoil-mode hearing aid compatibility performance requirements for wireless and cordless handsets: magnetic signal levels.

    PubMed

    Julstrom, Stephen; Kozma-Spytek, Linda; Isabelle, Scott

    2011-09-01

    In the development of the requirements for telecoil-compatible magnetic signal sources for wireless and cordless telephones to be specified in the American National Standards Institute (ANSI) C63.19 and ANSI/Telecommunications Industry Association-1083 compatibility standards, it became evident that additional data concerning in-the-field telecoil use and subjective preferences were needed. Primarily, the magnetic signal levels and, secondarily, the field orientations required for effective and comfortable telecoil use with wireless and cordless handsets needed further characterization. (A companion article addresses user signal-to-noise needs and preferences.) Test subjects used their own hearing aids, which were addressed with both a controlled acoustic speech source and a controlled magnetic speech source. Each subject's hearing aid was first measured to find the telecoil's magnetic field orientation for maximum response, and an appropriate large magnetic head-worn coil was selected to apply the magnetic signal. Subjects could control the strength of the magnetic signal, first to match the loudness of a reference acoustic signal and then to find their Most Comfortable Level (MCL). The subjective judgments were compared against objective in-ear probe tube level measurements. The 57 test subjects covered an age range of 22 to 79 yr, with a self-reported hearing loss duration of 12 to 72 yr. All had telecoils that they used for at least some telecommunications needs. The self-reported degree of hearing loss ranged from moderate to profound. A total of 69 hearing aids were surveyed for their telecoil orientation. A guided intake questionnaire yielded general background information for each subject. A custom-built test jig enabled hearing aid telecoil orientation within the aid to be determined. By comparing this observation with the in-use hearing aid position, the in-use orientation for each telecoil was determined. A custom-built test control box fed by prepared speech recordings from computer files enabled the tester to switch between acoustic and magnetic speech signals and to read and record the subject's selected magnetic level settings. The overwhelming majority of behind-the-ear aids tested exhibited in-use telecoil orientations that were substantially vertical. An insufficient number of participants used in-the-ear aids to be able to draw general conclusions concerning the telecoil orientations of this style aid. The subjects showed a generally consistent preference for telecoil speech levels that subjectively matched the level that they heard from 65 dB SPL acoustic speech. The magnetic level needed to achieve their MCL, however, varied over a 30 dB range. Producing the necessary magnetic field strengths from a wireless or cordless telephone's handset in an in-use vertical orientation is vital for compatibility with the vast majority of behind-the-ear aids. Due to the very wide range of preferred magnetic signal levels shown, only indirect conclusions can be drawn concerning required signal levels. The strong preference for a 65 dB SPL equivalent level can be combined with established standards addressing hearing aid performance to derive reasonable source level requirements. Greater consistency between in-the-field hearing aid telecoil and microphone sensitivity adjustments could yield improved results for some users. American Academy of Audiology.

  5. Magnetic bearings for inertial energy storage

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. Ernest; Eakin, Vickie

    1987-01-01

    Advanced flywheels utilizing high strength fibers must operate at high rotational speeds and as such must operate in vacuum to reduce windage losses. The utilization of magnetic bearings in the flywheels overcome lubrication and seal problems, resulting in an energy storage system offering potential improvements over conventional electrochemical energy storage. Magnetic bearings evolved in the 1950s from the simple application of permanent magnets positioned to exert repulsive forces to the present where permanent magnets and electromagnets have been combined to provide axial and radial suspension. Further development of magnetic suspension has led to the design of a shaftless flywheel system for aerospace application. Despite the lack of proof of concept, integrated magnetic suspension in inertial storage systems can provide significant performance improvements to warrant development and tests.

  6. Moving magnets in a micromagnetic finite-difference framework

    NASA Astrophysics Data System (ADS)

    Rissanen, Ilari; Laurson, Lasse

    2018-05-01

    We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.

  7. Magnetic field dependence of spin torque switching in nanoscale magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Rowlands, Graham; Katine, Jordan; Langer, Juergen; Krivorotov, Ilya

    2012-02-01

    Magnetic random access memory based on spin transfer torque effect in nanoscale magnetic tunnel junctions (STT-RAM) is emerging as a promising candidate for embedded and stand-alone computer memory. An important performance parameter of STT-RAM is stability of its free magnetic layer against thermal fluctuations. Measurements of the free layer switching probability as a function of sub-critical voltage at zero effective magnetic field (read disturb rate or RDR measurements) have been proposed as a method for quantitative evaluation of the free layer thermal stability at zero voltage. In this presentation, we report RDR measurement as a function of external magnetic field, which provide a test of the RDR method self-consistency and reliability.

  8. Mechanical and electrical properties of low temperature phase MnBi

    NASA Astrophysics Data System (ADS)

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; Palasyuk, Olena; Dennis, Kevin W.; Dahl, Michael; Choi, Jung-Pyung; Polikarpov, Evgueni; Marinescu, Melania; Cui, Jun

    2016-01-01

    Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ˜5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.

  9. Intermediate frequency magnetic field generated by a wireless power transmission device does not cause genotoxicity in vitro.

    PubMed

    Shi, Dejing; Zhu, Chunbo; Lu, Rengui; Mao, Shitong; Qi, Yanhua

    2014-10-01

    The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity. © 2014 Wiley Periodicals, Inc.

  10. Magnetic emissions testing of the space station engineering model resistojet

    NASA Technical Reports Server (NTRS)

    Briehl, Daniel

    1988-01-01

    The engineering model resistojet intended for altitude maintenance onboard the space station was tested for magnetic radiation emissions in the Radio Frequency Interference (RFI) facility at the Goddard Space Flight Center. The resistojet heater was supplied with power at 20 kHz and low voltage through a power controller. The resistojet was isolated from its power supply in the RFI enclosure, and the magnetic emission measured at three locations around the resistojet at various heater currents. At a heater current of 18.5 A the maximum magnetic emission was 61 dBpt at a distance of 1 m from the resistojet and at a location at the rear of the thruster. Calculations indicate that the case and heat shields provided a minimum of 4 dB of attenuation at a current of 18.5 A. Maximum radiation was measured at the rear of the resistojet along its major axis and was thought to be due to the magnetic radiation from the power leads. At a distance of 37 cm from the resistojet the maximum magnetic radiation measured was 73 dBpt at a current of 11.2 A. The power input leads were also a source of magnetic radiation. The engineering model rssistojet requires about 20 dB of additional shielding.

  11. Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Steuber, Thomas J.

    2004-01-01

    Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, K., E-mail: kshitish@ucla.edu; Rhodes, T. L.; Crocker, N. A.

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak.more » A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.« less

  13. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE PAGES

    Melin, Alexander M.; Kisner, Roger A.

    2018-04-03

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  14. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  15. Development of New Cooling System Using Gm/jt Cryocoolers for the SKS Magnet

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Haruyama, T.; Makida, Y.; Araoka, O.; Kasami, K.; Takahashi, T.; Nagae, T.; Kakiguchi, Y.; Sekimoto, M.; Tosaka, T.; Miyazaki, H.; Kuriyama, T.; Ono, M.; Orikasa, T.; Tsuchihashi, T.; Hirata, Y.

    2008-03-01

    We plan to develop a new improved cooling system for the Superconducting Kaon Spectrometer (SKS) magnet and transfer the magnet to the K1.8 beamline of the Hadron Hall of the Japan Proton Accelerator Research Complex (J-PARC) for further use in nuclear physics experiments. To replace the present 300 W cryogenic system, we will adopt a new cooling method that uses 4 K Gifford-McMahon/Joule-Thomson (GM/JT) cryocoolers. In order to decide a practical design for the new liquid helium reservoir of the magnet, which will be equipped with GM/JT cryocoolers, cooling tests on a GM/JT cryocooler were performed from February to March 2007. We constructed a new cooling test stand with a GM/JT cryocooler and measured the cooling capacities under several thermal shield temperatures with or without a baffle, which helped prevent convection. Based on the test results, we have finally decided to adopt three GM/JT cryocoolers for the new SKS along with a baffle and an additional dedicated GM cooler to cool the thermal shield of the GM/JT ports.

  16. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  17. Chemical remagnetization and clay diagenesis: testing the hypothesis in the Cretaceous sedimentary rocks of northwestern Montana

    NASA Astrophysics Data System (ADS)

    Gill, J. D.; Elmore, R. D.; Engel, M. H.

    Although the migration of fluids is a likely agent of remagnetization for some chemical remanent magnetizations (CRMs), widespread CRMs, which occur in rocks that have not been altered by externally derived fluids, need to explained by another mechanism. We are testing clay diagenesis as a remagnetization mechanism for such CRMs by comparing results from Mesozoic strata in the disturbed belt of Montana where the rocks contain ordered illite/smectite that formed by moderate heating as a result of thrust loading, with equivalent strata on the adjacent Sweetgrass Arch which contain unaltered smectite-rich clay mineral assemblages. The results indicate that the magnetization in the rocks in the Sweetgrass Arch is weak and dominated by a modern viscous component. In contrast, the disturbed belt rocks have higher magnetic intensities and contain a prefolding or early synfolding, reversed tertiary magnetization that is interpreted to be a CRM residing in magnetite and perhaps pyrrhotite. A presence-absence test and the timing of acquisition for the CRM suggest that magnetite authigenesis could be related to the smectite-to-illite conversion.

  18. Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models

    DOE PAGES

    Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela; ...

    2018-01-17

    Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less

  19. Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela

    Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less

  20. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

Top