NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri
2017-12-01
A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of ˜ 300-1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.
Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity
NASA Astrophysics Data System (ADS)
Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru
2016-10-01
Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.
NASA Astrophysics Data System (ADS)
Wang, H.; Cheng, J.
2017-12-01
A method to Synthesis natural electric and magnetic Time series is proposed whereby the time series of local site are derived using an Impulse Response and a reference (STIR). The method is based on the assumption that the external source of magnetic fields are uniform, and the electric and magnetic fields acquired at the surface satisfy a time-independent linear relation in frequency domain.According to the convolution theorem, we can synthesize natural electric and magnetic time series using the impulse responses of inter-station transfer functions with a reference. Applying this method, two impulse responses need to be estimated: the quasi-MT impulse response tensor and the horizontal magnetic impulse response tensor. These impulse response tensors relate the local horizontal electric and magnetic components with the horizontal magnetic components at a reference site, respectively. Some clean segments of times series are selected to estimate impulse responses by using least-square (LS) method. STIR is similar with STIN (Wang, 2017), but STIR does not need to estimate the inter-station transfer functions, and the synthesized data are more accurate in high frequency, where STIN fails when the inter-station transfer functions are contaminated severely. A test with good quality of MT data shows that synthetic time-series are similar to natural electric and magnetic time series. For contaminated AMT example, when this method is used to remove noise present at the local site, the scatter of MT sounding curves are clear reduced, and the data quality are improved. *This work is funded by National Key R&D Program of China(2017YFC0804105),National Natural Science Foundation of China (41604064, 51574250), State Key Laboratory of Coal Resources and Safe Mining ,China University of Mining & Technology,(SKLCRSM16DC09)
Study of wave form compensation at CSNS/RCS magnets
NASA Astrophysics Data System (ADS)
Xu, S. Y.; Fu, S. N.; Wang, S.; Kang, W.; Qi, X.; Li, L.; Deng, C. D.; Zhou, J. X.
2018-07-01
A method of wave form compensation for magnets of the Rapid Cycling Synchrotron (RCS), which is based on transfer function between magnetic field and exciting current, was investigated on the magnets of RCS of Chinese Spallation Neutron Source (CSNS). By performing wave form compensation, the magnetic field ramping function for RCS magnets can be accurately controlled to the given wave form, which is not limited to sine function. The method of wave form compensation introduced in this paper can be used to reduce the magnetic field tracking errors, and can also be used to accurately control the betatron tune for RCS.
Goodrich, K C; Blatter, D D; Parker, D L; Du, Y P; Meyer, K J; Bernstein, M A
1996-06-01
The authors compare the effectiveness of various magnetic resonance (MR) angiography acquisition strategies in enhancing the visibility of small intracranial vessels. Blood vessel contrast-to-noise ratio (CNR) in time-of-flight MR angiography was studied as a function of vessel size and several selectable imaging parameters. Contrast-to-noise measurements were made on 257 vessel segments ranging in size from 0.3 mm to 4.2 mm in patients who recently had undergone intraarterial cerebral angiography. Imaging parameters studied included magnetization transfer, spatially variable radio frequency (RF) pulse profile (ramped RF), and imaging slab thickness. The combination of thin slabs (16 slices/slab), ramped RF, and magnetization transfer resulted in the highest CNR for all but the smallest vessel sizes. The smallest vessels (< 0.5 mm) had the highest CNR, using the thick slab (64 slices/slab) with ramped RF and magnetization transfer. Magnetization transfer always improved vessel CNR, but the improvement diminished as the slab thickness was reduced. The CNR increased with a decrease in slab thickness for all but the smallest vessel sizes. Overall, the results provide a quantitative demonstration that inflow enhancement of blood is reduced for small vessels. Thus, whereas magnetization transfer is important at all vessel sizes, it becomes the primary factor in improving the visibility of the smallest vessels.
Note: A calibration method to determine the lumped-circuit parameters of a magnetic probe.
Li, Fuming; Chen, Zhipeng; Zhu, Lizhi; Liu, Hai; Wang, Zhijiang; Zhuang, Ge
2016-06-01
This paper describes a novel method to determine the lumped-circuit parameters of a magnetic inductive probe for calibration by using Helmholtz coils with high frequency power supply (frequency range: 10 kHz-400 kHz). The whole calibration circuit system can be separated into two parts: "generator" circuit and "receiver" circuit. By implementing the Fourier transform, two analytical lumped-circuit models, with respect to these separated circuits, are constructed to obtain the transfer function between each other. Herein, the precise lumped-circuit parameters (including the resistance, inductance, and capacitance) of the magnetic probe can be determined by fitting the experimental data to the transfer function. Regarding the fitting results, the finite impedance of magnetic probe can be used to analyze the transmission of a high-frequency signal between magnetic probes, cables, and acquisition system.
Magnetization Transfer Ratio Relates to Cognitive Impairment in Normal Elderly
Seiler, Stephan; Pirpamer, Lukas; Hofer, Edith; Duering, Marco; Jouvent, Eric; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold
2014-01-01
Magnetization transfer imaging (MTI) can detect microstructural brain tissue changes and may be helpful in determining age-related cerebral damage. We investigated the association between the magnetization transfer ratio (MTR) in gray and white matter (WM) and cognitive functioning in 355 participants of the Austrian stroke prevention family study (ASPS-Fam) aged 38–86 years. MTR maps were generated for the neocortex, deep gray matter structures, WM hyperintensities, and normal appearing WM (NAWM). Adjusted mixed models determined whole brain and lobar cortical MTR to be directly and significantly related to performance on tests of memory, executive function, and motor skills. There existed an almost linear dose-effect relationship. MTR of deep gray matter structures and NAWM correlated to executive functioning. All associations were independent of demographics, vascular risk factors, focal brain lesions, and cortex volume. Further research is needed to understand the basis of this association at the tissue level, and to determine the role of MTR in predicting cognitive decline and dementia. PMID:25309438
Tunable magnetotransport in Fe/hBN/graphene/hBN/Pt(Fe) epitaxial multilayers
NASA Astrophysics Data System (ADS)
Magnus Ukpong, Aniekan
2018-03-01
Theoretical and computational analysis of the magnetotransport properties and spin-transfer torque field-induced switching of magnetization density in vertically-stacked multilayers is presented. Using epitaxially-capped free layers of Pt and Fe, atom-resolved magnetic moments and spin-transfer torques are computed at finite bias. The calculations are performed within linear response approximation to the spin-density reformulation of the van der Waals density functional theory. Dynamical spin excitations are computed as a function of a spin-transfer torque induced magnetic field along the magnetic easy axis, and the corresponding spin polarization perpendicular to the easy axis is obtained. Bias-dependent giant anisotropic magnetoresistance of up to 3200% is obtained in the nonmagnetic-metal-capped Fe/hBN/graphene/hBN/Pt multilayer architecture. Since this specific heterostructure is not yet fabricated and characterized, the predicted high performance has not been demonstrated experimentally. Nevertheless, similar calculations performed on the Fe/hBN/Co stack show that the tunneling magnetoresistance obtained at the Fermi-level is in excellent agreement with results of recent magnetotransport measurements on magnetic tunnel junctions that contain the monolayer hBN tunnel region. The magnitude of the spin-transfer torque is found to increase as the tunneling spin current increases, and this activates the magnetization switching process due to increased charge accumulation. This mechanism causes substantial spin backflow, which manifests as rapid undulations in the bias-dependent tunneling spin currents. The implication of these findings on the design of nanoscale spintronic devices with spin-transfer torque tunable magnetization density is discussed. Insights derived from this study are expected to enhance the prospects for developing and integrating artificially assembled van der Waals multilayer heterostructures as the preferred material platform for efficient engineering of spin switches for spintronic applications.
Magnetic resonance imaging using chemical exchange saturation transfer
NASA Astrophysics Data System (ADS)
Park, Jaeseok
2012-10-01
Magnetic resonance imaging (MRI) has been widely used as a valuable diagnostic imaging modality that exploits water content and water relaxation properties to provide both structural and functional information with high resolution. Chemical exchange saturation transfer (CEST) in MRI has been recently introduced as a new mechanism of image contrast, wherein exchangeable protons from mobile proteins and peptides are indirectly detected through saturation transfer and are not observable using conventional MRI. It has been demonstrated that CEST MRI can detect important tissue metabolites and byproducts such as glucose, glycogen, and lactate. Additionally, CEST MRI is sensitive to pH or temperature and can calibrate microenvironment dependent on pH or temperature. In this work, we provide an overview on recent trends in CEST MRI, introducing general principles of CEST mechanism, quantitative description of proton transfer process between water pool and exchangeable solute pool in the presence or absence of conventional magnetization transfer effect, and its applications
Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses
NASA Astrophysics Data System (ADS)
Ataide, Filipe Andre Prata
The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic nanoparticles on interfacial area and mass transfer coefficient. The parameters ranges used were: 250-750 rpm for stirring speed, 0-2 vvm for aeration and 0-0.00120 g g?1 magnetic nanoparticles mass fraction. It was found that 36 nm-sized nanoparticles produced during the course of this dissertation enhanced the volumetric mass transfer coefficient up to 3.3-fold and the interfacial area up to 3.3-fold in relation to gas-liquid dispersions without nanoparticles. These results are concordant with previously published enhancement data (kLa enhancement by 7.1-fold and a enhancement by 4.1-fold) (Olle et al. 2006). The magnetic nanoparticles synthesized in this thesis were stable (constant diameter) over a 1wide pH range (2-9). Statistical regression models showed that both kLa and a have high sensitivity to the nanoparticles loading. Empirical correlation models were derived for kLa and for interfacial area, a, as function of physical properties and nanoparticles loading. These correlations lay out a methodology that can help the scientific community to design and scale-up oxygen transfer systems that are based on nanoparticle suspensions. None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None
Contribution functions for Zeeman-split lines, and line formation in photospheric faculae
NASA Technical Reports Server (NTRS)
Vanballegooijen, A. A.
1985-01-01
The transfer of polarized light in an inhomogeneous stellar atmosphere, and the formation of magnetically sensitive spectral lines, are discussed. A new method for the solution of the transfer equations is proposed. The method gives a natural definition of the contribution functions for Stokes' parameters, i.e., functions describing the contributions from different parts along the line-of-sight (LOS). The formalism includes all magneto-optical effects, and allows for an arbitrary variation of magnetic field, velocity field, temperature, density, etc., along the LOS. The formation of FeI lambda 5250.2 in photospheric faculae is described. A potential-field model of a facular element is presented, and spectra profiles and contribution functions are computed for the Stokes parameters I, Q, and V.
2015-10-01
with fMRI , and CEST acquisitions. Analysis hurdles were noted in the qMT, which we discuss here. Recruitment continues in the MS cohort (all healthy...Saturation Transfer (CEST) • Magnetization Transfer (MT) • Brain • Cortical Gray Matter (cGM) • Multiple Sclerosis (MS) • Functional MRI ( fMRI ) • Pool Size...MPRAGE Anatomical – 2:12 • fMRI Resting State – 8:34 • fMRI N-Back task – 8:30 • fMRI Trailmaking task – 4:14 The current scan time for all scans is
Scanning systems for particle cancer therapy
Trbojevic, Dejan
2015-08-04
A particle beam to treat malignant tissue is delivered to a patient by a gantry. The gantry includes a plurality of small magnets sequentially arranged along a beam tube to transfer the particle beam with strong focusing and a small dispersion function, whereby a beam size is very small, allowing for the small magnet size. Magnets arranged along the beam tube uses combined function magnets where the magnetic field is a combination of a bending dipole field with a focusing or defocusing quadrupole field. A triplet set of combined function magnets defines the beam size at the patient. A scanning system of magnets arranged along the beam tube after the bending system delivers the particle beam in a direction normal to the patient, to minimize healthy skin and tissue exposure to the particle beam.
Active Magnetic Regenerative Liquefier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barclay, John A.; Oseen-Send, Kathryn; Ferguson, Luke
2016-01-12
This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designsmore » indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature as a function of the amount of bypass flow of the heat transfer fluid. The operational AMRR prototype can be used to answer key questions such as the best recipe for multiple layers of different magnetic refrigerants in one or more integrated regenerators with varying amounts of bypass flow of the heat transfer fluid. Layered regenerators are necessary to span the AMRR range from 290 K to 120K. Our AMRR performance simulation model predicts that ~10-15 % of bypass flow should significantly improve the thermodynamic performance. Initial results obtained with regenerators made of gadolinium spheres were very encouraging; a temperature span of ~ 50 K (between 295K and 245 K) across both regenerators was achieved with zero bypass flow of the heat transfer fluid and with the magnetic field strength of ~4 T.« less
Enhancement of Spin-transfer torque switching via resonant tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterji, Niladri; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran
We propose the use of resonant tunneling as a route to enhance the spin-transfer torque switching characteristics of magnetic tunnel junctions. The proposed device structure is a resonant tunneling magnetic tunnel junction based on a MgO-semiconductor heterostructure sandwiched between a fixed magnet and a free magnet. Using the non-equilibrium Green's function formalism coupled self consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation, we demonstrate enhanced tunnel magneto-resistance characteristics as well as lower switching voltages in comparison with traditional trilayer devices. Two device designs based on MgO based heterostructures are presented, where the physics of resonant tunneling leads to an enhanced spin transfer torquemore » thereby reducing the critical switching voltage by up to 44%. It is envisioned that the proof-of-concept presented here may lead to practical device designs via rigorous materials and interface studies.« less
Wireless power using magnetic resonance coupling for neural sensing applications
NASA Astrophysics Data System (ADS)
Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.
2012-04-01
Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.
Spin Transfer torques in Antiferromagnets
NASA Astrophysics Data System (ADS)
Saidaoui, Hamed; Waintal, Xavier; Manchon, Aurelien; Spsms, Cea, Grenoble France Collaboration
2013-03-01
Spin Transfer Torque (STT) has attracted tremendously growing interest in the past two decades. Consisting on the transfer of spin angular momentum of a spin polarized current to local magnetic moments, the STT gives rise to a complex dynamics of the magnetization. Depending on the the structure, the STT shows a dominated In plane component for spin valves, whereas both components coexist for magnetic tunneling junctions (MTJ). For latter case the symmetry of the structure is considered to be decisive in identifying the nature and behavior of the torque. In the present study we are interested in magnetic structures where we substitute either one or both of the magnetic layers by antiferromagnets (AF). We use Non-equilibrium Green's function formalism applied on a tight-binding model to investigate the nature of the spin torque. We notice the presence of two types of torque exerted on (AF), a torque which tends to rotate the order parameter and another one that competes with the exchange interaction. We conclude by comparison with previous works.
(LaTiO3)n/(LaVO3)n as a model system for unconventional charge transfer and polar metallicity
NASA Astrophysics Data System (ADS)
Weng, Yakui; Zhang, Jun-Jie; Gao, Bin; Dong, Shuai
At interfaces between oxide materials, lattice and electronic reconstructions always play important roles in exotic phenomena. In this study, the density-functional theory and maximally localized Wannier functions are employed to investigate the (LaTiO3)n/(LaVO3)n magnetic superlattices. By considering lattice distortion and dimensional effect, many interesting interfacial physics have been found in the n = 1 superlattice, e.g. magnetic phase transition, unconventional charge transfer, and metal-insulator transition. In addition, the compatibility among the polar structure, ferrimagnetism, and metallicity is predicted in the n = 2 superlattice.
Combined free and forced convection heat transfer in magneto fluid mechanic pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, R.A.; Lo, Y.T.
1977-01-01
A study is made of fully developed, laminar, free-and-forced convection heat transfer in an electrically conducting fluid flowing in an electrically insulated, horizontal, circular pipe in a vertical transverse magnetic field. The normalized magnetofluidmechanic and energy equations are reduced to three coupled partial differential equations by the introduction of a stream function of the secondary flow. A perturbation solution is generated in inverse powers of the Lykoudis number, Ly = M/sup 2//..sqrt..Gr, which yields the influence of the magnetic field on the stream function of the secondary flow, axial velocity profiles, temperature profiles, and Nusselt number. 6 figures, 1 table.
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Dusl, John (Inventor)
2003-01-01
Transceiver and methods are included that are especially suitable for detecting metallic materials, such as metallic mines, within an environment. The transceiver includes a digital waveform generator used to transmit a signal into the environment and a receiver that produces a digital received signal. A tracking module preferably compares an in-phase and quadrature transmitted signal with an in-phase and quadrature received signal to produce a spectral transfer function of the magnetic transceiver over a selected range of frequencies. The transceiver initially preferably creates a reference transfer function which is then stored in a memory. Subsequently measured transfer functions will vary depending on the presence of metal in the environment which was not in the environment when the reference transfer function was determined. The system may be utilized in the presence of other antennas, metal, and electronics which may comprise a plastic mine detector for detecting plastic mines. Despite the additional antennas and other metallic materials that may be in the environment due to the plastic mine detector, the magnetic transceiver remains highly sensitive to metallic material which may be located in various portions of the environment and which may be detected by sweeping the detector over ground that may contain metals or mines.
NASA Astrophysics Data System (ADS)
Honkura, Y.; Watanabe, N.; Kaneko, Y.; Oshima, S.
1989-03-01
Two-dimensional analyses of magnetotelluric data provide information on anisotropic response for two different polarization cases; the so-called B-polarization and E-polarization cases. Similar anisotropy should also be observed in the horizontal components of magnetic field variations. On the assumption that a reference station provides the normal magnetic field, transfer functions for the horizontal magnetic fields can be derived in a fashion similar to the impedance analysis for magnetotelluric data. We applied this method to magnetic data obtained at some observation sites in a geothermal area in Japan. Transfer functions for the horizontal magnetic fields exhibit a strong anisotropy with the preferred direction nearly perpendicular to that for the electric field. This result implies the existence of strong electric currents flowing in the direction perpendicular to the above preferred direction for the magnetic field. The present method was also applied to the horizontal components of magnetic field variations observed at the seafloor. In this case, a magnetic observatory on land was taken as the reference station, and attenuation of the amplitude of horizontal magnetic field variation was examined. Anisotropy in attenuation was then found with the preferred direction perpendicular to the axis of the Okinawa trough where the seafloor measurement was undertaken.
Wireless power transfer electric vehicle supply equipment installation and validation tool
Jones, Perry T.; Miller, John M.
2015-05-19
A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.
Giant oscillating magnetoresistance in silicene-based structures
NASA Astrophysics Data System (ADS)
Oubram, O.; Navarro, O.; Rodríguez-Vargas, I.; Guzman, E. J.; Cisneros-Villalobos, L.; Velásquez-Aguilar, J. G.
2018-02-01
Ballistic electron transport in a silicene structure, composed of a pair of magnetic gates, in the ferromagnetic and an-tiferromagnetic configuration is studied. This theoretical study has been done using the matrix transfer method to calculate the transmission, the conductance for parallel and antiparallel magnetic alignment and the magnetoresistance. Results show that conductance and magnetoresistance oscillate as a function of the length between the two magnetic domains. The forbidden transmission region also increases as a function of the barrier separation distance.
Quantized spin-momentum transfer in atom-sized magnetic systems
NASA Astrophysics Data System (ADS)
Loth, Sebastian
2010-03-01
Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Chikamoto, Takuma; Ogawa, Tatsuya; Hirata, Yoshiki; Inoue, Takahito; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro
2009-02-01
In order to probe dynamical properties of mesoscopic soft matter systems such as polymers, structured liquid, etc., a new atomic force microscopy apparatus with a wide-band magnetic cantilever excitation system was developed. Constant-current driving of an electromagnet up to 1 MHz was implemented with a closed-loop driver circuit. Transfer function of a commercial cantilever attached with a magnetic particle was measured in a frequency range of 1-1000 kHz in distilled water. Effects of the laser spot position, distribution of the force exerted on the cantilever, and difference in the detection scheme on the obtained transfer function are discussed in comparison with theoretical predictions by other research groups. A preliminary result of viscoelasticity spectrum measurement of a single dextran chain is shown and is compared with a recent theoretical calculation.
(LaTiO3)n/(LaVO3)n as a model system for unconventional charge transfer and polar metallicity
NASA Astrophysics Data System (ADS)
Weng, Yakui; Zhang, Jun-Jie; Gao, Bin; Dong, Shuai
2017-04-01
At interfaces between oxide materials, lattice and electronic reconstructions always play important roles in exotic phenomena. In this study, the density functional theory and maximally localized Wannier functions are employed to investigate the (LaTiO3)n/(LaVO3)n magnetic superlattices. The electron transfer from Ti3 + to V3 + is predicted, which violates the intuitive band alignment based on the electronic structures of LaTiO3 and LaVO3. Such unconventional charge transfer quenches the magnetism of LaTiO3 layer mostly and leads to metal-insulator transition in the n =1 superlattice when the stacking orientation is altered. In addition, the compatibility among the polar structure, ferrimagnetism, and metallicity is predicted in the n =2 superlattice.
Magnetic field dependence of spin torque switching in nanoscale magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Yang, Liu; Rowlands, Graham; Katine, Jordan; Langer, Juergen; Krivorotov, Ilya
2012-02-01
Magnetic random access memory based on spin transfer torque effect in nanoscale magnetic tunnel junctions (STT-RAM) is emerging as a promising candidate for embedded and stand-alone computer memory. An important performance parameter of STT-RAM is stability of its free magnetic layer against thermal fluctuations. Measurements of the free layer switching probability as a function of sub-critical voltage at zero effective magnetic field (read disturb rate or RDR measurements) have been proposed as a method for quantitative evaluation of the free layer thermal stability at zero voltage. In this presentation, we report RDR measurement as a function of external magnetic field, which provide a test of the RDR method self-consistency and reliability.
Dynamics of magnetization in ferromagnet with spin-transfer torque
NASA Astrophysics Data System (ADS)
Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming
2014-11-01
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field.
Near-Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Near Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii K.; Welp, Ulrich; Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...
Helium Transfer System for the Superconducting Devices at NSRRC
NASA Astrophysics Data System (ADS)
Li, H. C.; Hsiao, F. Z.; Chang, S. H.; Chiou, W. S.
2006-04-01
A helium cryogenic plant with a maximum cooling power of 450 W at 4.5K was installed at the end of the year 2003. This plant has provide the cooling power for the test of one superconducting cavity and the commission of one superconducting magnet for nine months. In November 2004, we installed one helium transfer system in NSRRC's storage ring to fulfill the cooling requirement for the operation of one superconducting cavity and two superconducting magnets. This helium transfer system consists of a switch valve box and the nitrogen-shielding multi-channel transfer lines. The averaged heat leak to the helium process line (including the straight section, the joint, the elbow, the coupling) at liquid helium temperature is specified to be less than 0.1 W/m at 4.2K; the total heat leak of the switching valve box to helium process lines is less than 16 W at 4.2K. In this paper we present the function, design parameters and test result of the helium transfer system. Commissioning results of both the cavity and the magnets using this helium transfer system will be shown as well.
GAP JUNCTION COMMUNICATON IN A TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS
GAP JUNCTION COMMUNICTION IN TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS.
OBJECTIVE: We previously showed that functional gap junction communication (GJC), as monitored by dye transfer (DT), could be enhanced in mouse C3H 10T112 cells and in mouse...
Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou
2006-09-01
An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.
NASA Astrophysics Data System (ADS)
Bommier, Véronique
2017-11-01
Context. In previous papers of this series, we presented a formalism able to account for both statistical equilibrium of a multilevel atom and coherent and incoherent scatterings (partial redistribution). Aims: This paper provides theoretical expressions of the redistribution function for the two-term atom. This redistribution function includes both coherent (RII) and incoherent (RIII) scattering contributions with their branching ratios. Methods: The expressions were derived by applying the formalism outlined above. The statistical equilibrium equation for the atomic density matrix is first formally solved in the case of the two-term atom with unpolarized and infinitely sharp lower levels. Then the redistribution function is derived by substituting this solution for the expression of the emissivity. Results: Expressions are provided for both magnetic and non-magnetic cases. Atomic fine structure is taken into account. Expressions are also separately provided under zero and non-zero hyperfine structure. Conclusions: Redistribution functions are widely used in radiative transfer codes. In our formulation, collisional transitions between Zeeman sublevels within an atomic level (depolarizing collisions effect) are taken into account when possible (I.e., in the non-magnetic case). However, the need for a formal solution of the statistical equilibrium as a preliminary step prevents us from taking into account collisional transfers between the levels of the upper term. Accounting for these collisional transfers could be done via a numerical solution of the statistical equilibrium equation system.
1998-06-01
determination of the partition function could be attempted. According to Gatteschi et al, however, [Ref. 15] when commenting on the quantum mechanical...1995 15. Gatteschi , D. et al, "Large Clusters of Metal Ions: The Transition from Molecular to Bulk Magnets" Science vol. 265, pp. 1054-1058, August... Gatteschi , D. et al, "Spin Dynamics in Mesoscopic Size Magnetic Systems... ", Phys. Rev. B, vol. 55, no. 21, 01 June, 1997 18. Tejeda, J. etal, "Quantum
Spin-transfer torque in spin filter tunnel junctions
NASA Astrophysics Data System (ADS)
Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek
2014-12-01
Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.
Methods for Dichoptic Stimulus Presentation in Functional Magnetic Resonance Imaging - A Review
Choubey, Bhaskar; Jurcoane, Alina; Muckli, Lars; Sireteanu, Ruxandra
2009-01-01
Dichoptic stimuli (different stimuli displayed to each eye) are increasingly being used in functional brain imaging experiments using visual stimulation. These studies include investigation into binocular rivalry, interocular information transfer, three-dimensional depth perception as well as impairments of the visual system like amblyopia and stereodeficiency. In this paper, we review various approaches of displaying dichoptic stimulus used in functional magnetic resonance imaging experiments. These include traditional approaches of using filters (red-green, red-blue, polarizing) with optical assemblies as well as newer approaches of using bi-screen goggles. PMID:19526076
Magnetic to magnetic and kinetic to magnetic energy transfers at the top of the Earth's core
NASA Astrophysics Data System (ADS)
Huguet, Ludovic; Amit, Hagay; Alboussière, Thierry
2016-11-01
We develop the theory for the magnetic to magnetic and kinetic to magnetic energy transfer between different spherical harmonic degrees due to the interaction of fluid flow and radial magnetic field at the top of the Earth's core. We show that non-zero secular variation of the total magnetic energy could be significant and may provide evidence for the existence of stretching secular variation, which suggests the existence of radial motions at the top of the Earth's core-whole core convection or MAC waves. However, the uncertainties of the small scales of the geomagnetic field prevent a definite conclusion. Combining core field and flow models we calculate the detailed magnetic to magnetic and kinetic to magnetic energy transfer matrices. The magnetic to magnetic energy transfer shows a complex behaviour with local and non-local transfers. The spectra of magnetic to magnetic energy transfers show clear maxima and minima, suggesting an energy cascade. The kinetic to magnetic energy transfers, which are much weaker due to the weak poloidal flow, are either local or non-local between degree one and higher degrees. The patterns observed in the matrices resemble energy transfer patterns that are typically found in 3-D MHD numerical simulations.
Magnetization transfer proportion: a simplified measure of dose response for polymer gel dosimetry.
Whitney, Heather M; Gochberg, Daniel F; Gore, John C
2008-12-21
The response to radiation of polymer gel dosimeters has most often been described by measuring the nuclear magnetic resonance transverse relaxation rate as a function of dose. This approach is highly dependent upon the choice of experimental parameters, such as the echo spacing time for Carr-Purcell-Meiboom-Gill-type pulse sequences, and is difficult to optimize in imaging applications where a range of doses are applied to a single gel, as is typical for practical uses of polymer gel dosimetry. Moreover, errors in computing dose can arise when there are substantial variations in the radiofrequency (B1) field or resonant frequency, as may occur for large samples. Here we consider the advantages of using magnetization transfer imaging as an alternative approach and propose the use of a simplified quantity, the magnetization transfer proportion (MTP), to assess doses. This measure can be estimated through two simple acquisitions and is more robust in the presence of some sources of system imperfections. It also has a dependence upon experimental parameters that is independent of dose, allowing simultaneous optimization at all dose levels. The MTP is shown to be less susceptible to B1 errors than are CPMG measurements of R2. The dose response can be optimized through appropriate choices of the power and offset frequency of the pulses used in magnetization transfer imaging.
Das, Vijay Kumar; Mazhar, Sumaira; Gregor, Lennon; Stein, Barry D; Morgan, David Gene; Maciulis, Nicholas A; Pink, Maren; Losovyj, Yaroslav; Bronstein, Lyudmila M
2018-06-14
Here, we report transfer hydrogenation of nitroarenes to aminoarenes using 2-propanol as a hydrogen source and Ag-containing magnetically recoverable catalysts based on partially reduced graphene oxide (pRGO) sheets. X-ray diffraction and X-ray photoelectron spectroscopy data demonstrated that, during the one-pot catalyst synthesis, formation of magnetite nanoparticles (NPs) is accompanied by the reduction of graphene oxide (GO) to pRGO. The formation of Ag 0 NPs on top of magnetite nanoparticles does not change the pRGO structure. At the same time, the catalyst structure is further modified during the transfer hydrogenation, leading to a noticeable increase of sp 2 carbons. These carbons are responsible for the adsorption of substrate and intermediates, facilitating a hydrogen transfer from Ag NPs and creating synergy between the components of the catalyst. The nitroarenes with electron withdrawing and electron donating substituents allow for excellent yields of aniline derivatives with high regio and chemoselectivity, indicating that the reaction is not disfavored by these functionalities. The versatility of the catalyst synthetic protocol was demonstrated by a synthesis of an Ru-containing graphene derivative based catalyst, also allowing for efficient transfer hydrogenation. Easy magnetic separation and stable catalyst performance in the transfer hydrogenation make this catalyst promising for future applications.
Electronic and magnetic properties of transition metal doped graphyne
NASA Astrophysics Data System (ADS)
Gangan, Abhijeet Sadashiv; Yadav, Asha S.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2017-05-01
We have theoretically investigated the interaction of few 3d (V,Mn) and 4d (Y,Zr) transition metals with the γ-graphyne structure using the spin-polarized density functional theory for its potentials application in Hydrogen storage, spintronics and nano-electronics. By doping different TMs we have observed that the system can be either metallic(Y), semi-conducting or half metallic. The system for Y and Zr doped graphyne becomes non-magnetic while V and Mn doped graphyne have a magnetic moments of l μB and 3 μB respectively From bader charge analysis it is seen that there is a charge transfer from the TM atom to the graphyne. Zr and Y have a net charge transfer of 2.15e and 1.73e respectively. Charge density analysis also shows the polarization on the carbon skeleton which becomes larger as the charge transfer for the TM atom increases. Thus we see Y and Zr are better candidates for hydrogen storage devices since they are non-magnetic and have less d electrons which is ideal for kubas-type interactions between hydrogen molecule and TM.
Prai-In, Yingrak; Boonthip, Chatchai; Rutnakornpituk, Boonjira; Wichai, Uthai; Montembault, Véronique; Pascual, Sagrario; Fontaine, Laurent; Rutnakornpituk, Metha
2016-10-01
Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of Permanent Magnet Focusing for Astronomical Camera Tubes
NASA Technical Reports Server (NTRS)
Long, D. C.; Lowrance, J. L.
1975-01-01
A design is developed of a permanent magnet assembly (PMA) useful as the magnetic focusing unit for the 35 and 70 mm (diagonal) format SEC tubes. Detailed PMA designs for both tubes are given, and all data on their magnetic configuration, size, weight, and structure of magnetic shields adequate to screen the camera tube from the earth's magnetic field are presented. A digital computer is used for the PMA design simulations, and the expected operational performance of the PMA is ascertained through the calculation of a series of photoelectron trajectories. A large volume where the magnetic field uniformity is greater than 0.5% appears obtainable, and the point spread function (PSF) and modulation transfer function(MTF) indicate nearly ideal performance. The MTF at 20 cycles per mm exceeds 90%. The weight and volume appear tractable for the large space telescope and ground based application.
Redistribution of resonance radiation. II - The effect of magnetic fields.
NASA Technical Reports Server (NTRS)
Omont, A.; Cooper, J.; Smith, E. W.
1973-01-01
Previously obtained results for scattering of radiation in the presence of collisions are restated in a density matrix formalism which employs an irreducible-tensor description of the radiation field. This formalism is particularly useful for problems associated with radiative transfer theory. The redistribution is then extended to include the effect of a weak magnetic field. By averaging over a finite bandwidth which is on the order of the Doppler width, simplified expressions of physical significance for the scattering in the Doppler core and the Lorentz wings are obtained. Expressions are also obtained for the corresponding source function of radiative transfer theory.
Flux transformers made of commercial high critical temperature superconducting wires.
Dyvorne, H; Scola, J; Fermon, C; Jacquinot, J F; Pannetier-Lecoeur, M
2008-02-01
We have designed flux transformers made of commercial BiSCCO tapes closed by soldering with normal metal. The magnetic field transfer function of the flux transformer was calculated as a function of the resistance of the soldered contacts. The performances of different kinds of wires were investigated for signal delocalization and gradiometry. We also estimated the noise introduced by the resistance and showed that the flux transformer can be used efficiently for weak magnetic field detection down to 1 Hz.
Mulkern, Robert V; Vajapeyam, Sridhar; Haker, Steven J; Maier, Stephan E
2005-05-01
Magnetization transfer (MT) properties of the fast and slow diffusion components recently observed in the human brain were assessed experimentally. One set of experiments, performed at 1.5 T in healthy volunteers, was designed to determine whether the amplitudes of fast and slow diffusion components, differentiated on the basis of biexponential fits to signal decays over a wide range of b-factors, demonstrated a different or similar magnetization transfer ratio (MTR). Another set of experiments, performed at 3 T in healthy volunteers, was designed to determine whether MTRs differed when measured from high signal-to-noise images acquired with b-factor weightings of 350 vs 3500 s/mm2. The 3 T studies included measurements of MTR as a function of off-resonance frequency for the MT pulse at both low and high b-factors. The primary conclusion drawn from all the studies is that there appears to be no significant difference between the magnetization transfer properties of the fast and slow tissue water diffusion components. The conclusions do not lend support to a direct interpretation of the 'components' of the biexponential diffusion decay in terms of the 'compartments' associated with intra- and extracellular water. Copyright 2004 John Wiley & Sons, Ltd.
RIE-based Pattern Transfer Using Nanoparticle Arrays as Etch Masks
NASA Astrophysics Data System (ADS)
Hogg, Chip; Majetich, Sara A.; Bain, James A.
2009-03-01
Nanomasking is used to transfer the pattern of a self-assembled array of nanoparticles into an underlying thin film, for potential use as bit-patterned media. We have used this process to investigate the limits of pattern transfer, as a function of gap size in the pattern. Reactive Ion Etching (RIE) is our chosen process, since the gaseous reaction products and high chemical selectivity are ideal features for etching very small gaps. Interstitial surfactant is removed with an O2 plasma, allowing the etchants to penetrate between the particles. Their pattern is transferred into an intermediate SiO2 mask using a CH4-based RIE. This patterned SiO2 layer is finally used as a mask for the MeOH-based RIE which patterns the magnetic film. We present cross-sectional TEM characterization of the etch profiles, as well as magnetic characterization of the film before and after patterning.
Ntorkou, Alexandra A; Tsili, Athina C; Giannakis, Dimitrios; Batistatou, Anna; Stavrou, Sotirios; Sofikitis, Nikolaos; Argyropoulou, Maria I
2016-03-31
Cellular angiofibroma represents a rare mesenchymal tumor typically involving the inguinoscrotal area in middle-aged men. Although the origin of this benign tumor is unknown, it is histologically classified as an angiomyxoid tumor. Cellular angiofibroma is characterized by a diversity of pathological and imaging features. An accurate preoperative diagnosis is challenging. Magnetic resonance imaging examination of the scrotum has been reported as a valuable adjunct modality in the investigation of scrotal pathology. The technique by providing both structural and functional information is useful in the differentiation between extratesticular and intratesticular diseases and in the preoperative characterization of the histologic nature of various scrotal lesions. There are few reports in the English literature addressing the magnetic resonance imaging findings of cellular angiofibroma of the scrotum and no reports on functional magnetic resonance imaging data. Here we present the first case of a cellular angiofibroma arising from the tunica vaginalis of the testis and we discuss the value of a multiparametric magnetic resonance protocol, including diffusion-weighted imaging, magnetization transfer imaging and dynamic contrast-enhanced magnetic resonance imaging in the preoperative diagnosis of this rare neoplasm. A 47-year Greek man presented with a painless left scrotal swelling, which had gradually enlarged during the last 6 months. Magnetic resonance imaging of his scrotum displayed a left paratesticular mass, in close proximity to the tunica vaginalis, with heterogeneous high signal intensity on T2-weighted images and no areas of restricted diffusion. The tumor was hypointense on magnetization transfer images, suggestive for the presence of macromolecules. On dynamic contrast-enhanced magnetic resonance imaging the mass showed intense heterogeneous enhancement with a type II curve. Magnetic resonance imaging findings were strongly suggestive of a benign paratesticular tumor, which was confirmed on pathology following lesion excision. Magnetic resonance imaging of the scrotum by combining conventional and functional magnetic resonance data provides useful diagnostic information in the preoperative characterization of scrotal masses. A possible diagnosis of a benign paratesticular tumor based on magnetic resonance imaging features may improve patient care and decrease the number of unnecessary radical surgical explorations.
Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer
NASA Astrophysics Data System (ADS)
Urzhumov, Yaroslav; Smith, David R.
2011-05-01
Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio.
31P-Magnetization Transfer Magnetic Resonance Spectroscopy Measurements of In Vivo Metabolism
Befroy, Douglas E.; Rothman, Douglas L.; Petersen, Kitt Falk; Shulman, Gerald I.
2012-01-01
Magnetic resonance spectroscopy offers a broad range of noninvasive analytical methods for investigating metabolism in vivo. Of these, the magnetization-transfer (MT) techniques permit the estimation of the unidirectional fluxes associated with metabolic exchange reactions. Phosphorus (31P) MT measurements can be used to examine the bioenergetic reactions of the creatine-kinase system and the ATP synthesis/hydrolysis cycle. Observations from our group and others suggest that the inorganic phosphate (Pi) → ATP flux in skeletal muscle may be modulated by certain conditions, including aging, insulin resistance, and diabetes, and may reflect inherent alterations in mitochondrial metabolism. However, such effects on the Pi → ATP flux are not universally observed under conditions in which mitochondrial function, assessed by other techniques, is impaired, and recent articles have raised concerns about the absolute magnitude of the measured reaction rates. As the application of 31P-MT techniques becomes more widespread, this article reviews the methodology and outlines our experience with its implementation in a variety of models in vivo. Also discussed are potential limitations of the technique, complementary methods for assessing oxidative metabolism, and whether the Pi → ATP flux is a viable biomarker of metabolic function in vivo. PMID:23093656
Dissipative structures induced by spin-transfer torques in nanopillars
NASA Astrophysics Data System (ADS)
León, Alejandro O.; Clerc, Marcel G.; Coulibaly, Saliya
2014-02-01
Macroscopic magnetic systems subjected to external forcing exhibit complex spatiotemporal behaviors as result of dissipative self-organization. Pattern formation from a uniform magnetization state, induced by the combination of a spin-polarized current and an external magnetic field, is studied for spin-transfer nano-oscillator devices. The system is described in the continuous limit by the Landau-Lifshitz-Gilbert equation. The bifurcation diagram of the quintessence parallel state, as a function of the external field and current, is elucidated. We have shown analytically that this state exhibits a spatial supercritical quintic bifurcation, which generates in two spatial dimensions a family of stationary stripes, squares, and superlattice states. Analytically, we have characterized their respective stabilities and bifurcations, which are controlled by a single dimensionless parameter. This scenario is confirmed numerically.
Peristaltic Transport of Prandtl-Eyring Liquid in a Convectively Heated Curved Channel
Hayat, Tasawar; Bibi, Shahida; Alsaadi, Fuad; Rafiq, Maimona
2016-01-01
Here peristaltic activity for flow of a Prandtl-Eyring material is modeled and analyzed for curved geometry. Heat transfer analysis is studied using more generalized convective conditions. The channel walls satisfy complaint walls properties. Viscous dissipation in the thermal equation accounted. Unlike the previous studies is for uniform magnetic field on this topic, the radial applied magnetic field has been utilized in the problems development. Solutions for stream function (ψ), velocity (u), and temperature (θ) for small parameter β have been derived. The salient features of heat transfer coefficient Z and trapping are also discussed for various parameters of interest including magnetic field, curvature, material parameters of fluid, Brinkman, Biot and compliant wall properties. Main observations of present communication have been included in the conclusion section. PMID:27304458
Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.
Kim, Young-Kee; Lee, Haryeong
2016-03-01
The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Huiming; Xie, Yang
2007-02-01
The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.
O'Dell, Luke A; Schurko, Robert W
2009-05-20
A new approach for the acquisition of static, wideline (14)N NMR powder patterns is outlined. The method involves the use of frequency-swept pulses which serve two simultaneous functions: (1) broad-band excitation of magnetization and (2) signal enhancement via population transfer. The signal enhancement mechanism is described using numerical simulations and confirmed experimentally. This approach, which we call DEISM (Direct Enhancement of Integer Spin Magnetization), allows high-quality (14)N spectra to be acquired at intermediate field strengths in an uncomplicated way and in a fraction of the time required for previously reported methods.
Theoretical study of Ag doping-induced vacancies defects in armchair graphene
NASA Astrophysics Data System (ADS)
Benchallal, L.; Haffad, S.; Lamiri, L.; Boubenider, F.; Zitoune, H.; Kahouadji, B.; Samah, M.
2018-06-01
We have performed a density functional theory (DFT) study of the absorption of silver atoms (Ag,Ag2 and Ag3) in graphene using SIESTA code, in the generalized gradient approximation (GGA). The absorption energy, geometry, magnetic moments and charge transfer of Ag clusters-graphene system are calculated. The minimum energy configuration demonstrates that all structures remain planar and silver atoms fit into this plane. The charge transfer between the silver clusters and carbon atoms constituting the graphene surface is an indicative of a strong bond. The structure doped with a single silver atom has a magnetic moment and the two other are nonmagnetic.
Energy transfers in large-scale and small-scale dynamos
NASA Astrophysics Data System (ADS)
Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra
2015-11-01
We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.
Covalent functionalization of octagraphene with magnetic octahedral B6- and non-planar C6- clusters
NASA Astrophysics Data System (ADS)
Chigo-Anota, E.; Cárdenas-Jirón, G.; Salazar Villanueva, M.; Bautista Hernández, A.; Castro, M.
2017-10-01
The interaction between the magnetic boron octahedral (B6-) and non-planar (C6-) carbon clusters with semimetal nano-sheet of octa-graphene (C64H24) in the gas phase is studied by means of DFT calculations. These results reveal that non-planar-1 (anion) carbon cluster exhibits structural stability, low chemical reactivity, magnetic (1.0 magneton bohr) and semiconductor behavior. On the other hand, there is chemisorption phenomena when the stable B6- and C6- clusters are absorbed on octa-graphene nanosheets. Such absorption generates high polarity and the low-reactivity remains as on the individual pristine cases. Electronic charge transference occurs from the clusters toward the nanosheets, producing a reduction of the work function for the complexes and also induces a magnetic behavior on the functionalized sheets. The quantum descriptors obtained for these systems reveal that they are feasible candidates for the design of molecular circuits, magnetic devices, and nano-vehicles for drug delivery.
Yang, Yang; Liu, Xuegang; Ye, Gang; Zhu, Shan; Wang, Zhe; Huo, Xiaomei; Matyjaszewski, Krzysztof; Lu, Yuexiang; Chen, Jing
2017-04-19
Developing green and efficient technologies for surface modification of magnetic nanoparticles (MNPs) is of crucial importance for their biomedical and environmental applications. This study reports, for the first time, a novel strategy by integrating metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) with the bioinspired polydopamine (PDA) chemistry for controlled architecture of functional polymer brushes from MNPs. Conformal PDA encapsulation layers were initially generated on the surfaces of MNPs, which served as the protective shells while providing an ideal platform for tethering 2-bromo-2-phenylacetic acid (BPA), a highly efficient initiator. Metal-free PET-ATRP technique was then employed for controlled architecture of poly(glycidyl methacrylate) (PGMA) brushes from the core-shell MNPs by using diverse organic dyes as photoredox catalysts. Impacts of light sources (including UV and visible lights), photoredox catalysts, and polymerization time on the composition and morphology of the PGMA brushes were investigated. Moreover, the versatility of the PGMA-functionalized core-shell MNPs was demonstrated by covalent attachment of ethylenediamine (EDA), a model functional molecule, which afforded the MNPs with improved hydrophilicity, dispersibility, and superior binding ability to uranyl ions. The green methodology by integrating metal-free PET-ATRP with facile PDA chemistry would provide better opportunities for surface modification of MNPs and miscellaneous nanomaterials for biomedical and electronic applications.
Proton transfer pathways, energy landscape, and kinetics in creatine-water systems.
Ivchenko, Olga; Whittleston, Chris S; Carr, Joanne M; Imhof, Petra; Goerke, Steffen; Bachert, Peter; Wales, David J
2014-02-27
We study the exchange processes of the metabolite creatine, which is present in both tumorous and normal tissues and has NH2 and NH groups that can transfer protons to water. Creatine produces chemical exchange saturation transfer (CEST) contrast in magnetic resonance imaging (MRI). The proton transfer pathway from zwitterionic creatine to water is examined using a kinetic transition network constructed from the discrete path sampling approach and an approximate quantum-chemical energy function, employing the self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The resulting potential energy surface is visualized by constructing disconnectivity graphs. The energy landscape consists of two distinct regions corresponding to the zwitterionic creatine structures and deprotonated creatine. The activation energy that characterizes the proton transfer from the creatine NH2 group to water was determined from an Arrhenius fit of rate constants as a function of temperature, obtained from harmonic transition state theory. The result is in reasonable agreement with values obtained in water exchange spectroscopy (WEX) experiments.
Novel magnet-retained prosthetic system for facial reconstruction.
Ahmed, Mostafa M; Piper, James M; Hansen, Nancy A; Sutton, Alan J; Schmalbach, Cecelia E
2014-01-01
Traumatic facial defects negatively impact speech, mastication, deglutition, dental hygiene, and psychosocial well-being. Reconstruction must address restoration of function and aesthetics to provide quality of life. This report describes soft-tissue reconstruction using a novel magnet-retained facial prosthesis without osseointegrated abutments, performed in a patient after traumatic loss of the entire left lower part of the face, including lips, commissure, and mentum. This reconstructive technique successfully addressed the cosmetic defect while also restoring function with respect to speech and oral nutrition. For this reason, magnet-retained facial prosthesis should be added to free tissue transfer and regional flaps as a reasonable option in the reconstructive algorithm for complex soft-tissue defects of the lower face.
Magnetization transfer and adiabatic R 1ρ MRI in the brainstem of Parkinson's disease.
Tuite, Paul J; Mangia, Silvia; Tyan, Andrew E; Lee, Michael K; Garwood, Michael; Michaeli, Shalom
2012-06-01
In addition to classic midbrain pathology, Parkinson's disease (PD) is accompanied by changes in pontine and medullary brainstem structures. These additional abnormalities may underlie non-motor features as well as play a role in motor disability. Using novel magnetic resonance imaging (MRI) methods based on rotating frame adiabatic R(1ρ) (i.e., measurements of longitudinal relaxation during adiabatic full passage pulses) and modified magnetization transfer (MT) MRI mapping, we sought to identify brainstem alterations in nine individuals with mild-moderate PD (off medication) and ten age-matched controls at 4 T. We discovered significant differences in MRI parameters between midbrain and medullary brainstem structures in control subjects as compared to PD patients. These findings support the presence of underlying functional/structural brainstem changes in mild-moderate PD. Copyright © 2012 Elsevier Ltd. All rights reserved.
Richardson, Peter M; Jackson, Scott; Parrott, Andrew J; Nordon, Alison; Duckett, Simon B; Halse, Meghan E
2018-07-01
Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H 2 , to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand-held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF-dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. © 2017 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.
Auer, Tibor; Schweizer, Renate; Frahm, Jens
2015-01-01
This study investigated the level of self-regulation of the somatomotor cortices (SMCs) attained by an extended functional magnetic resonance imaging (fMRI) neurofeedback training. Sixteen healthy subjects performed 12 real-time functional magnetic resonance imaging neurofeedback training sessions within 4 weeks, involving motor imagery of the dominant right as well as the non-dominant left hand. Target regions of interests in the SMC were individually localized prior to the training by overt finger movements. The feedback signal (FS) was defined as the difference between fMRI activation in the contra- and ipsilateral SMC and visually presented to the subjects. Training efficiency was determined by an off-line general linear model analysis determining the fMRI percent signal changes in the SMC target areas accomplished during the neurofeedback training. Transfer success was assessed by comparing the pre- and post-training transfer task, i.e., the neurofeedback paradigm without the presentation of the FS. Group results show a distinct increase in feedback performance (FP) in the transfer task for the trained group compared to a matched untrained control group, as well as an increase in the time course of the training, indicating an efficient training and a successful transfer. Individual analysis revealed that the training efficiency was not only highly correlated to the transfer success but also predictive. Trainings with at least 12 efficient training runs were associated with a successful transfer outcome. A group analysis of the hemispheric contributions to the FP showed that it is mainly driven by increased fMRI activation in the contralateral SMC, although some individuals relied on ipsilateral deactivation. Training and transfer results showed no difference between left- and right-hand imagery, with a slight indication of more ipsilateral deactivation in the early right-hand trainings. PMID:26500521
Extragalactic photon-ALP conversion at CTA energies
Kartavtsev, A.; Raffelt, G.; Vogel, H.
2017-01-12
Magnetic fields in extragalactic space between galaxy clusters may induce conversions between photons and axion-like particles (ALPs), thereby shielding the photons from absorption on the extragalactic background light. For TeV gamma rays, the oscillation length (l osc) of the photon-ALP system becomes inevitably of the same order as the coherence length of the magnetic field l and the length over which the field changes significantly (transition length l t) due to refraction on background photons. We derive exact statistical evolution equations for the mean and variance of the photon and ALP transfer functions in the non-adiabatic regime (l osc ~more » l >> l t). We also make analytical predictions for the transfer functions in the quasi-adiabatic regime (l osc
Richardson, Peter M.; Jackson, Scott; Parrott, Andrew J.; Nordon, Alison; Duckett, Simon B.
2018-01-01
Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H2, to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand‐held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF‐dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. PMID:29193324
Mascalchi, M; Ginestroni, A; Bessi, V; Toschi, N; Padiglioni, S; Ciulli, S; Tessa, C; Giannelli, M; Bracco, L; Diciotti, S
2013-01-01
Manually drawn VOI-based analysis shows a decrease in magnetization transfer ratio in the hippocampus of patients with Alzheimer disease. We investigated with whole-brain voxelwise analysis the regional changes of the magnetization transfer ratio in patients with mild Alzheimer disease and patients with amnestic mild cognitive impairment. Twenty patients with mild Alzheimer disease, 27 patients with amnestic mild cognitive impairment, and 30 healthy elderly control subjects were examined with high-resolution T1WI and 3-mm-thick magnetization transfer images. Whole-brain voxelwise analysis of magnetization transfer ratio maps was performed by use of Statistical Parametric Mapping 8 software and was supplemented by the analysis of the magnetization transfer ratio in FreeSurfer parcellation-derived VOIs. Voxelwise analysis showed 2 clusters of significantly decreased magnetization transfer ratio in the left hippocampus and amygdala and in the left posterior mesial temporal cortex (fusiform gyrus) of patients with Alzheimer disease as compared with control subjects but no difference between patients with amnestic mild cognitive impairment and either patients with Alzheimer disease or control subjects. VOI analysis showed that the magnetization transfer ratio in the hippocampus and amygdala was significantly lower (bilaterally) in patients with Alzheimer disease when compared with control subjects (ANOVA with Bonferroni correction, at P < .05). Mean magnetization transfer ratio values in the hippocampus and amygdala in patients with amnestic mild cognitive impairment were between those of healthy control subjects and those of patients with mild Alzheimer disease. Support vector machine-based classification demonstrated improved classification performance after inclusion of magnetization transfer ratio-related features, especially between patients with Alzheimer disease versus healthy subjects. Bilateral but asymmetric decrease of magnetization transfer ratio reflecting microstructural changes of the residual GM is present not only in the hippocampus but also in the amygdala in patients with mild Alzheimer disease.
Nonhelical inverse transfer of a decaying turbulent magnetic field.
Brandenburg, Axel; Kahniashvili, Tina; Tevzadze, Alexander G
2015-02-20
In the presence of magnetic helicity, inverse transfer from small to large scales is well known in magnetohydrodynamic (MHD) turbulence and has applications in astrophysics, cosmology, and fusion plasmas. Using high resolution direct numerical simulations of magnetically dominated self-similarly decaying MHD turbulence, we report a similar inverse transfer even in the absence of magnetic helicity. We compute for the first time spectral energy transfer rates to show that this inverse transfer is about half as strong as with helicity, but in both cases the magnetic gain at large scales results from velocity at similar scales interacting with smaller-scale magnetic fields. This suggests that both inverse transfers are a consequence of universal mechanisms for magnetically dominated turbulence. Possible explanations include inverse cascading of the mean squared vector potential associated with local near two dimensionality and the shallower k^{2} subinertial range spectrum of kinetic energy forcing the magnetic field with a k^{4} subinertial range to attain larger-scale coherence. The inertial range shows a clear k^{-2} spectrum and is the first example of fully isotropic magnetically dominated MHD turbulence exhibiting weak turbulence scaling.
Kong, Fanjie; Hu, Yanfei
2014-03-01
The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).
Stability phase diagram of a perpendicular magnetic tunnel junction in noncollinear geometry
NASA Astrophysics Data System (ADS)
Strelkov, N.; Timopheev, A.; Sousa, R. C.; Chshiev, M.; Buda-Prejbeanu, L. D.; Dieny, B.
2017-05-01
Experimental measurements performed on MgO-based perpendicular magnetic tunnel junctions show a strong dependence of the stability voltage-field diagrams as a function of the direction of the magnetic field with respect to the plane of the sample. When the magnetic field is applied in-plane, systematic nonlinear phase boundaries are observed for various lateral sizes. The simulation results based on the phenomenological Landau-Lifshitz-Gilbert equation including the in-plane and out-of-plane spin transfer torques are consistent with the measurements if a second-order anisotropy contribution is considered. Furthermore, performing the stability analysis in linear approximation allowed us to analytically extract the critical switching voltage at zero temperature in the presence of an in-plane field. This study indicates that in the noncollinear geometry investigations are suitable to detect the presence of the second-order term in the anisotropy. Such higher order anisotropy term can yield an easy-cone anisotropy which reduces the thermal stability factor but allows for more reproducible spin transfer torque switching due to a reduced stochasticity of the switching. As a result, the energy per write event decreases much faster than the thermal stability factor as the second-order anisotropy becomes more negative. Easy-cone anisotropy can be useful for fast-switching spin transfer torque magnetic random access memories provided the thermal stability can be maintained above the required value for a given memory specification.
Engineered superlattices with crossover from decoupled to synthetic ferromagnetic behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopdekar, Rajesh V.; Malik, Vivek K.; Kane, Alexander M.
The extent of interfacial charge transfer and the resulting impact on magnetic interactions were investigated as a function of sublayer thickness in La 0.7Sr 0.3MnO 3/La 0.7Sr 0.3CoO 3 ferromagnetic superlattices. Element-specific soft x-ray magnetic spectroscopy reveals that the electronic structure is altered within 5–6 unit cells of the chemical interface, and can lead to a synthetic ferromagnet with strong magnetic coupling between the sublayers. The saturation magnetization and coercivity depends sensitively on the sublayer thickness due to the length scale of this interfacial effect. For larger sublayer thicknesses, the La 0.7Sr 0.3MnO 3 and La 0.7Sr 0.3CoO 3 sublayersmore » are magnetically decoupled, displaying two independent magnetic transitions with little sublayer thickness dependence. Lastly, these results demonstrate how interfacial phenomena at perovskite oxide interfaces can be used to tailor their functional properties at the atomic scale.« less
Engineered superlattices with crossover from decoupled to synthetic ferromagnetic behavior
Chopdekar, Rajesh V.; Malik, Vivek K.; Kane, Alexander M.; ...
2017-12-04
The extent of interfacial charge transfer and the resulting impact on magnetic interactions were investigated as a function of sublayer thickness in La 0.7Sr 0.3MnO 3/La 0.7Sr 0.3CoO 3 ferromagnetic superlattices. Element-specific soft x-ray magnetic spectroscopy reveals that the electronic structure is altered within 5–6 unit cells of the chemical interface, and can lead to a synthetic ferromagnet with strong magnetic coupling between the sublayers. The saturation magnetization and coercivity depends sensitively on the sublayer thickness due to the length scale of this interfacial effect. For larger sublayer thicknesses, the La 0.7Sr 0.3MnO 3 and La 0.7Sr 0.3CoO 3 sublayersmore » are magnetically decoupled, displaying two independent magnetic transitions with little sublayer thickness dependence. Lastly, these results demonstrate how interfacial phenomena at perovskite oxide interfaces can be used to tailor their functional properties at the atomic scale.« less
A novel architecture of non-volatile magnetic arithmetic logic unit using magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Guo, Wei; Prenat, Guillaume; Dieny, Bernard
2014-04-01
Complementary metal-oxide-semiconductor (CMOS) technology is facing increasingly difficult obstacles such as power consumption and interconnection delay. Novel hybrid technologies and architectures are being investigated with the aim to circumvent some of these limits. In particular, hybrid CMOS/magnetic technology based on magnetic tunnel junctions (MTJs) is considered as a very promising approach thanks to the full compatibility of MTJs with CMOS technology. By tightly merging the conventional electronics with magnetism, both logic and memory functions can be implemented in the same device. As a result, non-volatility is directly brought into logic circuits, yielding significant improvement of device performances and new functionalities as well. We have conceived an innovative methodology to construct non-volatile magnetic arithmetic logic units (MALUs) combining spin-transfer torque MTJs with MOS transistors. The present 4-bit MALU utilizes 4 MTJ pairs to store its operation code (opcode). Its operations and performances have been confirmed and evaluated through electrical simulations.
2017-06-01
other documentation. TITLE: Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube REPORT DOCUMENTATION...TITLE AND SUBTITLE Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube 5a. CONTRACT NUMBER W81XWH-09-2...Technical Abstract: Further Development and Technology Transfer of the Syncro BLUETUBE™ (Gabriel) Magnetically Guided Feeding Tube. New Primary
NASA Astrophysics Data System (ADS)
Abd Elazem, Nader Y.; Ebaid, Abdelhalim
2017-12-01
In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.
Nanoscale Reactions In Opto-magneto-electric Systems
NASA Astrophysics Data System (ADS)
Zeng, Zheng
My research is interdisciplinary in the areas of chemistry, physics and biology for better understanding of synergies between nanomaterials and opto-magneto-electric systems aimed at the practical applications in biosensor, energy (energy storage and electrocatalysis), and biomimetics, in particular, the associated electron transfer, light-matter interactions in nanoscale, such as surface plasmon resonance (SPR) (nanoplasmonics), and magnetic field effect on these phenomena with targeted nanomaterials. Specific research thrusts include: (1) investigation of surface plasmon generation from a novel nanoledge structure on thin metal film. The results are used for the nanostructure optimization for a nanofluidic-nanoplasmonic platform that may function as a multiplexed biosensor for protein biomarker detection; (2) examination of magnetic field effect on uniformly deposited metal oxide on electrospun carbon nanofiber (ECNF) scaffold for efficient energy storage (supercapacitor) and electrocatalytic energy conversion (oxygen reduction reduction). (3) magnetic response of cryptochrome 1 (CRY1) in photoinduced heterogeneous electron transfer (PHET).
NASA Astrophysics Data System (ADS)
Javed, T.; Ghaffari, A.; Ahmad, H.
2016-05-01
The unsteady stagnation point flow impinging obliquely on a flat plate in presence of a uniform applied magnetic field due to an oscillating stream has been studied. The governing partial differential equations are transformed into dimensionless form and the stream function is expressed in terms of Hiemenz and tangential components. The dimensionless partial differential equations are solved numerically by using well-known implicit finite difference scheme named as Keller-box method. The obtained results are compared with those available in the literature. It is observed that the results are in excellent agreement with the previous studies. The effects of pertinent parameters involved in the problem namely magnetic parameter, Prandtl number and impinging angle on flow and heat transfer characteristics are illustrated through graphs. It is observed that the influence of magnetic field strength increases the fluid velocity and by the increase of obliqueness parameter, the skin friction increases.
Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector
NASA Astrophysics Data System (ADS)
Menshawy, S.; Jenkins, A. S.; Merazzo, K. J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ebels, U.; Bortolotti, P.; Kermorvant, J.; Cros, V.
2017-05-01
Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf) detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs). In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.
NASA Astrophysics Data System (ADS)
Velev, Julian P.; Merodio, Pablo; Pollack, Cesar; Kalitsov, Alan; Chshiev, Mairbek; Kioussis, Nicholas
2017-12-01
Using model calculations, we demonstrate a very high level of control of the spin-transfer torque (STT) by electric field in multiferroic tunnel junctions with composite dielectric/ferroelectric barriers. We find that, for particular device parameters, toggling the polarization direction can switch the voltage-induced part of STT between a finite value and a value close to zero, i.e. quench and release the torque. Additionally, we demonstrate that under certain conditions the zero-voltage STT, i.e. the interlayer exchange coupling, can switch sign with polarization reversal, which is equivalent to reversing the magnetic ground state of the tunnel junction. This bias- and polarization-tunability of the STT could be exploited to engineer novel functionalities such as softening/hardening of the bit or increasing the signal-to-noise ratio in magnetic sensors, which can have important implications for magnetic random access memories or for combined memory and logic devices.
NASA Astrophysics Data System (ADS)
Amera Aziz, Laila; Kasim, Abdul Rahman Mohd; Zuki Salleh, Mohd; Syahidah Yusoff, Nur; Shafie, Sharidan
2017-09-01
The main interest of this study is to investigate the effect of MHD on the boundary layer flow and heat transfer of viscoelastic micropolar fluid. Governing equations are transformed into dimensionless form in order to reduce their complexity. Then, the stream function is applied to the dimensionless equations to produce partial differential equations which are then solved numerically using the Keller-box method in Fortran programming. The numerical results are compared to published study to ensure the reliability of present results. The effects of selected physical parameters such as the viscoelastic parameter, K, micropolar parameter, K1 and magnetic parameter, M on the flow and heat transfer are discussed and presented in tabular and graphical form. The findings from this study will be of critical importance in the fields of medicine, chemical as well as industrial processes where magnetic field is involved.
Spin orbit torque based electronic neuron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung
2015-04-06
A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of themore » neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.« less
NASA Astrophysics Data System (ADS)
Takaya, Satoshi; Tanamoto, Tetsufumi; Noguchi, Hiroki; Ikegami, Kazutaka; Abe, Keiko; Fujita, Shinobu
2017-04-01
Among the diverse applications of spintronics, security for internet-of-things (IoT) devices is one of the most important. A physically unclonable function (PUF) with a spin device (spin transfer torque magnetoresistive random access memory, STT-MRAM) is presented. Oxide tunnel barrier breakdown is used to realize long-term stability for PUFs. A secure PUF has been confirmed by evaluating the Hamming distance of a 32-bit STT-MRAM-PUF fabricated using 65 nm CMOS technology.
A Novel Method Of Gradient Forming and Fluid Manipulation in Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Ramachandran N.; Leslie, F.
1999-01-01
The use of magnetic fields to control the motion and position of non-conducting liquids has received growing interest in recent times. The possibility of using the forces exerted by a nonuniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for applications such as heat transfer in space systems. Terrestrial heat transfer equipment often relies on the normal gravitational force to hold liquid in a desired position or to provide a buoyant force to enhance the heat transfer rate. The residual gravitational force present in a space environment may no longer serve these useful functions and other forces, such as surface tension, can play a significant role in determining heat transfer rates. Although typically overwhelmed by gravitational forces in terrestrial applications, the body force induced in a ferrofluid by a nonuniform magnetic field can help to achieve these objectives in a microgravity environment. This paper will address the fluid manipulation aspect and will comprise of results from model fluid experiments and numerical modeling of the problem. Results from a novel method of forming concentration gradients that are applicable to low gravity applications will be presented. The ground based experiments are specifically tailored to demonstrate the magnetic manipulation capability of a ferrofluid and show that gravitational effects can be countered in carefully designed systems. The development of governing equations for the system will be presented along with a sampling of numerical results.
Phase-synchronization, energy cascade, and intermittency in solar-wind turbulence.
Perri, S; Carbone, V; Vecchio, A; Bruno, R; Korth, H; Zurbuchen, T H; Sorriso-Valvo, L
2012-12-14
The energy cascade in solar wind magnetic turbulence is investigated using MESSENGER data in the inner heliosphere. The decomposition of magnetic field time series in intrinsic functions, each characterized by a typical time scale, reveals phase reorganization. This allows for the identification of structures of all sizes generated by the nonlinear turbulent cascade, covering both the inertial and the dispersive ranges of the turbulent magnetic power spectrum. We find that the correlation (or anticorrelation) of phases occurs between pairs of neighboring time scales, whenever localized peaks of magnetic energy are present at both scales, consistent with the local character of the energy transfer process.
Neural coding using telegraphic switching of magnetic tunnel junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Dong Ik; Bae, Gi Yoon; Oh, Heong Sik
2015-05-07
In this work, we present a synaptic transmission representing neural coding with spike trains by using a magnetic tunnel junction (MTJ). Telegraphic switching generates an artificial neural signal with both the applied magnetic field and the spin-transfer torque that act as conflicting inputs for modulating the number of spikes in spike trains. The spiking probability is observed to be weighted with modulation between 27.6% and 99.8% by varying the amplitude of the voltage input or the external magnetic field. With a combination of the reverse coding scheme and the synaptic characteristic of MTJ, an artificial function for the synaptic transmissionmore » is achieved.« less
Mainka, Alexander; Kürbis, Steffen; Birkholz, Peter
2018-01-01
Recently, 3D printing has been increasingly used to create physical models of the vocal tract with geometries obtained from magnetic resonance imaging. These printed models allow measuring the vocal tract transfer function, which is not reliably possible in vivo for the vocal tract of living humans. The transfer functions enable the detailed examination of the acoustic effects of specific articulatory strategies in speaking and singing, and the validation of acoustic plane-wave models for realistic vocal tract geometries in articulatory speech synthesis. To measure the acoustic transfer function of 3D-printed models, two techniques have been described: (1) excitation of the models with a broadband sound source at the glottis and measurement of the sound pressure radiated from the lips, and (2) excitation of the models with an external source in front of the lips and measurement of the sound pressure inside the models at the glottal end. The former method is more frequently used and more intuitive due to its similarity to speech production. However, the latter method avoids the intricate problem of constructing a suitable broadband glottal source and is therefore more effective. It has been shown to yield a transfer function similar, but not exactly equal to the volume velocity transfer function between the glottis and the lips, which is usually used to characterize vocal tract acoustics. Here, we revisit this method and show both, theoretically and experimentally, how it can be extended to yield the precise volume velocity transfer function of the vocal tract. PMID:29543829
Fritz, Nora E; Keller, Jennifer; Calabresi, Peter A; Zackowski, Kathleen M
2017-01-01
At least 85% of individuals with multiple sclerosis report walking dysfunction as their primary complaint. Walking and strength measures are common clinical measures to mark increasing disability or improvement with rehabilitation. Previous studies have shown an association between strength or walking ability and spinal cord MRI measures, and strength measures with brainstem corticospinal tract magnetization transfer ratio. However, the relationship between walking performance and brain corticospinal tract magnetization transfer imaging measures and the contribution of clinical measurements of walking and strength to the underlying integrity of the corticospinal tract has not been explored in multiple sclerosis. The objectives of this study were explore the relationship of quantitative measures of walking and strength to whole-brain corticospinal tract-specific MRI measures and to determine the contribution of quantitative measures of function in addition to basic clinical measures (age, gender, symptom duration and Expanded Disability Status Scale) to structural imaging measures of the corticospinal tract. We hypothesized that quantitative walking and strength measures would be related to brain corticospinal tract-specific measures, and would provide insight into the heterogeneity of brain pathology. Twenty-nine individuals with relapsing-remitting multiple sclerosis (mean(SD) age 48.7 (11.5) years; symptom duration 11.9(8.7); 17 females; median[range] Expanded Disability Status Scale 4.0 [1.0-6.5]) and 29 age and gender-matched healthy controls (age 50.8(11.6) years; 20 females) participated in clinical tests of strength and walking (Timed Up and Go, Timed 25 Foot Walk, Two Minute Walk Test ) as well as 3 T imaging including diffusion tensor imaging and magnetization transfer imaging. Individuals with multiple sclerosis were weaker (p = 0.0024) and walked slower (p = 0.0013) compared to controls. Quantitative measures of walking and strength were significantly related to corticospinal tract fractional anisotropy (r > 0.26; p < 0.04) and magnetization transfer ratio (r > 0.29; p < 0.03) measures. Although the Expanded Disability Status Scale was highly correlated with walking measures, it was not significantly related to either corticospinal tract fractional anisotropy or magnetization transfer ratio (p > 0.05). Walk velocity was a significant contributor to magnetization transfer ratio (p = 0.006) and fractional anisotropy (p = 0.011) in regression modeling that included both quantitative measures of function and basic clinical information. Quantitative measures of strength and walking are associated with brain corticospinal tract pathology. The addition of these quantitative measures to basic clinical information explains more of the variance in corticospinal tract fractional anisotropy and magnetization transfer ratio than the basic clinical information alone. Outcome measurement for multiple sclerosis clinical trials has been notoriously challenging; the use of quantitative measures of strength and walking along with tract-specific imaging methods may improve our ability to monitor disease change over time, with intervention, and provide needed guidelines for developing more effective targeted rehabilitation strategies.
NASA Astrophysics Data System (ADS)
Smith-Boughner, Lindsay
Many Earth systems cannot be studied directly. One cannot measure the velocities of convecting fluid in the Earth's core but can measure the magnetic field generated by these motions on the surface. Examining how the magnetic field changes over long periods of time, using power spectral density estimation provides insight into the dynamics driving the system. The changes in the magnetic field can also be used to study Earth properties - variations in magnetic fields outside of Earth like the ring-current induce currents to flow in the Earth, generating magnetic fields. Estimating the transfer function between the external changes and the induced response characterizes the electromagnetic response of the Earth. From this response inferences can be made about the electrical conductivity of the Earth. However, these types of time series, and many others have long breaks in the record with no samples available and limit the analysis. Standard methods require interpolation or section averaging, with associated problems of introducing bias or reducing the frequency resolution. Extending the methods of Fodor and Stark (2000), who adapt a set of orthogonal multi-tapers to compensate for breaks in sampling- an algorithm and software package for applying these techniques is developed. Methods of empirically estimating the average transfer function of a set of tapers and confidence intervals are also tested. These methods are extended for cross-spectral, coherence and transfer function estimation in the presence of noise. With these methods, new analysis of a highly interrupted ocean sediment core from the Oligocene (Hartl et al., 1993) reveals a quasi-periodic signal in the calibrated paleointensity time series at 2.5 cpMy. The power in the magnetic field during this period appears to be dominated by reversal rate processes with less overall power than the early Oligocene. Previous analysis of the early Oligocene by Constable et al. (1998) detected a signal near 8 cpMy. These results suggest that a strong magnetic field inhibits reversals and has more variability in shorter term field changes. Using over 9 years of data from the CHAMP low-Earth orbiting magnetic satellite and the techniques developed here, more robust estimates of the electromagnetic response of the Earth can be made. The tapers adapted for gaps provide flexibility to study the effects of local time, storm conditions on Earth's 1-D electromagnetic response as well as providing robust estimates of the C-response at longer periods than previous satellite studies.
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
NASA Astrophysics Data System (ADS)
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-03-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.
Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.
2015-09-07
Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pavemore » the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.« less
NASA Astrophysics Data System (ADS)
Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.
2017-12-01
The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can reduce an error contaminated through the calibration to less than 0.1 % of amplitude of input waves; (1) a Turkey-type window function with a flat top region of one-third of the window length and (2) modification of the window function for each frequency by referring the estimation of the phase shift due to the first order differential coefficient from the transfer functions.
Pedogenic Magnetic Minerals in Soils: Some Tests of Current Models
NASA Astrophysics Data System (ADS)
Egli, R.
2008-12-01
The magnetic enhancement of soils is increasingly used as a proxy for continental climate, since it is related to the formation of pedogenic iron minerals under warm, humid conditions. Ultrafine magnetite is believed to be the major responsible of the magnetic enhancement, however, very little is known on the detailed formation mechanism, ant its relation to the soil iron cycle. Furthermore, the 'textbook' case of the Chinese Loess Plateau is not well replicated around the World: Loessic soils from the Midwestern US are systematically less enhanced than their Chinese counterpart under similar climatic conditions, and many loessic soils in Argentina are not enhanced at all. In trying to find a rationale behind these differences, I will address three main questions that need to be answered in a bottom-up approach to the problem. The first question is whether susceptibility is indeed controlled by fine magnetite, excluding any significant role of other minerals such as ferrihydrite, goethite, and hematite. This is a rock magnetic problem addressing the interpretation of magnetic measurements: is susceptibility an adequate proxy for the concentration of magnetic minerals in soils? Answering this question allows us to think directly in terms of abundance specific magnetic minerals, which is fundamental for any subsequent interpretation. The second question is directed to understanding the role of magnetic minerals in the soil iron cycle and how they are formed. This brings us to a discussion of the transfer function linking magnetic enhancement with climate. Is indeed rainfall the only parameter controlling pedogenesis? Why is rainfall apparently related with the logarithm of susceptibility in enhanced soils? Can we test current pedogenetic models against this empirical transfer function? The third question points to the role of parent material and later dust inputs. Midwestern US and Argentinian loesses are different from Chinese loess. Is this a reason for the differences observed in the magnetic enhancement of the respective soils? Enough material is now available to test current models and hypotheses with respect to the first two questions.
Magnetic tunnel junction based spintronic logic devices
NASA Astrophysics Data System (ADS)
Lyle, Andrew Paul
The International Technology Roadmap for Semiconductors (ITRS) predicts that complimentary metal oxide semiconductor (CMOS) based technologies will hit their last generation on or near the 16 nm node, which we expect to reach by the year 2025. Thus future advances in computational power will not be realized from ever-shrinking device sizes, but rather by 'outside the box' designs and new physics, including molecular or DNA based computation, organics, magnonics, or spintronic. This dissertation investigates magnetic logic devices for post-CMOS computation. Three different architectures were studied, each relying on a different magnetic mechanism to compute logic functions. Each design has it benefits and challenges that must be overcome. This dissertation focuses on pushing each design from the drawing board to a realistic logic technology. The first logic architecture is based on electrically connected magnetic tunnel junctions (MTJs) that allow direct communication between elements without intermediate sensing amplifiers. Two and three input logic gates, which consist of two and three MTJs connected in parallel, respectively were fabricated and are compared. The direct communication is realized by electrically connecting the output in series with the input and applying voltage across the series connections. The logic gates rely on the fact that a change in resistance at the input modulates the voltage that is needed to supply the critical current for spin transfer torque switching the output. The change in resistance at the input resulted in a voltage margin of 50--200 mV and 250--300 mV for the closest input states for the three and two input designs, respectively. The two input logic gate realizes the AND, NAND, NOR, and OR logic functions. The three input logic function realizes the Majority, AND, NAND, NOR, and OR logic operations. The second logic architecture utilizes magnetostatically coupled nanomagnets to compute logic functions, which is the basis of Magnetic Quantum Cellular Automata (MQCA). MQCA has the potential to be thousands of times more energy efficient than CMOS technology. While interesting, these systems are academic unless they can be interfaced into current technologies. This dissertation pushed past a major hurdle by experimentally demonstrating a spintronic input/output (I/O) interface for the magnetostatically coupled nanomagnets by incorporating MTJs. This spintronic interface allows individual nanomagnets to be programmed using spin transfer torque and read using magneto resistance structure. Additionally the spintronic interface allows statistical data on the reliability of the magnetic coupling utilized for data propagation to be easily measured. The integration of spintronics and MQCA for an electrical interface to achieve a magnetic logic device with low power creates a competitive post-CMOS logic device. The final logic architecture that was studied used MTJs to compute logic functions and magnetic domain walls to communicate between gates. Simulations were used to optimize the design of this architecture. Spin transfer torque was used to compute logic function at each MTJ gate and was used to drive the domain walls. The design demonstrated that multiple nanochannels could be connected to each MTJ to realize fan-out from the logic gates. As a result this logic scheme eliminates the need for intermediate reads and conversions to pass information from one logic gate to another.
The study of structures and properties of PdnHm(n=1-10, m=1,2) clusters by density functional theory
NASA Astrophysics Data System (ADS)
Wen, Jun-Qing; Chen, Guo-Xiang; Zhang, Jian-Min; Wu, Hua
2018-04-01
The geometrical evolution, local relative stability, magnetism and charge transfer characteristics of PdnHm(n = 1-10, m = 1,2) have been systematically calculated by using density functional theory. The studied results show that the most stable geometries of PdnH and PdnH2 (n = 1-10) can be got by doping one or two H atoms on the sides of Pdn clusters except Pd6H and Pd6H2. It is found that doping one or two H atoms on Pdn clusters cannot change the basic framework of Pdn. The analysis of stability shows that Pd2H, Pd4H, Pd7H, Pd2H2, Pd4H2 and Pd7H2 clusters have higher local relative stability than neighboring clusters. The analysis of magnetic properties demonstrates that absorption of hydrogen atoms decreases the average atomic magnetic moments compared with pure Pdn clusters. More charges transfer from H atoms to Pd atoms for Pd6H and Pd6H2 clusters, demonstrating the adsorption of hydrogen atoms change from side adsorption to surface adsorption.
Polarization transfer NMR imaging
Sillerud, Laurel O.; van Hulsteyn, David B.
1990-01-01
A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.
Diagonalizing controller for a superconducting six-axis accelerometer
NASA Astrophysics Data System (ADS)
Bachrach, B.; Canavan, E. R.; Levine, W. S.
A relatively simple MIMO (multiple input, multiple output) controller which converts an instrument with a nondiagonally dominant transfer function matrix into a strongly diagonally dominant device is developed. The instrument, which uses inductance bridges to sense the position of a magnetically levitated superconducting mass, has very lightly damped resonances and fairly strong cross coupling. By taking advantage of the particular structure of the instrument's transfer function matrix, it is possible to develop a relatively simple controller which achieves the desired decoupling. This controller consists of two parts. The first part cancels the nondiagonal terms of the open-loop transfer function matrix, while the second part is simply a set of SISO (single input, single output) controllers. The stability of the closed-loop system is studied using Rosenbrock's INA (inverse Nyguist array) technique, which produces a simple set of conditions guaranteeing stability. Simulation of the closed-loop system indicates that it should easily achieve its performance goals.
Yoon, Sungjun; Kim, Jeong Ah; Lee, Seung Hwan; Kim, Minsoo; Park, Tai Hyun
2013-04-21
The importance of creating a three-dimensional (3-D) multicellular spheroid has recently been gaining attention due to the limitations of monolayer cell culture to precisely mimic in vivo structure and cellular interactions. Due to this emerging interest, researchers have utilized new tools, such as microfluidic devices, that allow high-throughput and precise size control to produce multicellular spheroids. We have developed a droplet-based microfluidic system that can encapsulate both cells and magnetic nanoparticles within alginate beads to mimic the function of a multicellular tumor spheroid. Cells were entrapped within the alginate beads along with magnetic nanoparticles, and the beads of a relatively uniform size (diameters of 85% of the beads were 170-190 μm) were formed in the oil phase. These beads were passed through parallel streamlines of oil and culture medium, where the beads were magnetically transferred into the medium phase from the oil phase using an external magnetic force. This microfluidic chip eliminates additional steps for collecting the spheroids from the oil phase and transferring them to culture medium. Ultimately, the overall spheroid formation process can be achieved on a single microchip.
Ohoyama, H; Maruyama, S
2012-06-28
Steric effect in the energy transfer reaction of N(2)(A(3)Σ(u)(+)) + NO(X(2)Π) → NO(A(2)Σ(+)) + N(2)(X(1)Σ(g)(+)) has been studied under crossed beam conditions at a collision energy of ~0.07 eV by using an aligned N(2)(A(3)Σ(u)(+)) beam prepared by a magnetic hexapole. The emission intensity of NO(A(2)Σ(+)) has been measured as a function of the magnetic orientation field direction (i.e., alignment of N(2)(A(3)Σ(u)(+))) in the collision frame. A significant alignment effect on the energy transfer probability is observed. The shape of the steric opacity function turns out to be most reactive at the oblique configuration of N(2)(A(3)Σ(u)(+)) with an orientation angle of γ(v(R)) ~ 45° with respect to the relative velocity vector (v(R)), which has a good correlation with the spatial distribution of the 2pπ(g)* molecular orbital of N(2)(A(3)Σ(u)(+)). We propose the electron exchange mechanism in which the energy transfer probability is dominantly controlled by the orbital overlap between N(2)(2pπ(g)*) and NO(6σ).
Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T
2017-02-01
In established multiple sclerosis, tissue abnormality-as assessed using magnetization transfer ratio-increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1-5 mm and 6-10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1-5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus -0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T 2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple sclerosis. The magnetization transfer ratio gradient was not significantly affected by the presence of brain lesions [T 2 lesions (P = 0.918), periventricular T 2 lesions (P = 0.580) or gadolinium-enhancing T 1 lesions (P = 0.724)]. The magnetization transfer ratio gradient also correlated with Expanded Disability Status Scale score 5 years later (Spearman r = 0.313, P = 0.027). An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis, is clinically relevant, and may arise from one or more mechanisms that are at least partly independent of lesion formation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis
Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T
2017-01-01
Abstract In established multiple sclerosis, tissue abnormality—as assessed using magnetization transfer ratio—increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1–5 mm and 6–10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1–5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus −0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple sclerosis. The magnetization transfer ratio gradient was not significantly affected by the presence of brain lesions [T2 lesions (P = 0.918), periventricular T2 lesions (P = 0.580) or gadolinium-enhancing T1 lesions (P = 0.724)]. The magnetization transfer ratio gradient also correlated with Expanded Disability Status Scale score 5 years later (Spearman r = 0.313, P = 0.027). An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis, is clinically relevant, and may arise from one or more mechanisms that are at least partly independent of lesion formation. PMID:28043954
Source biases in midlatitude magnetotelluric transfer functions due to Pc3-4 geomagnetic pulsations
NASA Astrophysics Data System (ADS)
Murphy, Benjamin S.; Egbert, Gary D.
2018-01-01
The magnetotelluric (MT) method for imaging the electrical conductivity structure of the Earth is based on the assumption that source magnetic fields can be considered quasi-uniform, such that the spatial scale of the inducing source is much larger than the intrinsic length scale of the electromagnetic induction process (the skin depth). Here, we show using EarthScope MT data that short spatial scale source magnetic fields from geomagnetic pulsations (Pc's) can violate this fundamental assumption. Over resistive regions of the Earth, the skin depth can be comparable to the short meridional range of Pc3-4 disturbances that are generated by geomagnetic field-line resonances (FLRs). In such cases, Pc's can introduce narrow-band bias in MT transfer function estimates at FLR eigenperiods ( 10-100 s). Although it appears unlikely that these biases will be a significant problem for data inversions, further study is necessary to understand the conditions under which they may distort inverse solutions.[Figure not available: see fulltext.
Takatsu, Yasuo; Ueyama, Tsuyoshi; Miyati, Tosiaki; Yamamura, Kenichirou
2016-12-01
The image characteristics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) depend on the partial Fourier fraction and contrast medium concentration. These characteristics were assessed and the modulation transfer function (MTF) was calculated by computer simulation. A digital phantom was created from signal intensity data acquired at different contrast medium concentrations on a breast model. The frequency images [created by fast Fourier transform (FFT)] were divided into 512 parts and rearranged to form a new image. The inverse FFT of this image yielded the MTF. From the reference data, three linear models (low, medium, and high) and three exponential models (slow, medium, and rapid) of the signal intensity were created. Smaller partial Fourier fractions, and higher gradients in the linear models, corresponded to faster MTF decline. The MTF more gradually decreased in the exponential models than in the linear models. The MTF, which reflects the image characteristics in DCE-MRI, was more degraded as the partial Fourier fraction decreased.
Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio
2016-08-01
The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.
Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela
2016-11-10
Gene therapy is a promising approach for chronic disorders that require continuous treatment such as cardiovascular disease. Overexpression of vasoprotective genes has generated encouraging results in animal models, but not in clinical trials. One major problem in humans is the delivery of sufficient amounts of genetic vectors to the endothelium which is impeded by blood flow, whereas prolonged stop-flow conditions impose the risk of ischemia. In the current study we have therefore developed a strategy for the efficient circumferential lentiviral gene transfer in the native endothelium under constant flow conditions. For that purpose we perfused vessels that were exposed to specially designed magnetic fields with complexes of lentivirus and magnetic nanoparticles thereby enabling overexpression of therapeutic genes such as endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF). This treatment enhanced NO and VEGF production in the transduced endothelium and resulted in a reduction of vascular tone and increased angiogenesis. Thus, the combination of MNPs with magnetic fields is an innovative strategy for site-specific and efficient vascular gene therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Magnetic forces and localized resonances in electron transfer through quantum rings.
Poniedziałek, M R; Szafran, B
2010-11-24
We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.
NASA Astrophysics Data System (ADS)
Banerjee, Supratik; Kritsuk, Alexei G.
2018-02-01
Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.
Banerjee, Supratik; Kritsuk, Alexei G
2018-02-01
Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016)2470-004510.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017)1751-811310.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jia, E-mail: lijia@wipm.ac.cn
2014-10-07
We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current ismore » present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.« less
Electronic structure and magnetic anisotropy of Sm2Fe17Nx
NASA Astrophysics Data System (ADS)
Akai, Hisazumi; Ogura, Masako
2014-03-01
Electronic structure and magnetic properties of Sm2Fe17Nx are studies on the basis of the first-principles electronic structure calculation in the framework of the density functional theory within the local density and coherent potential approximations. The magnetic anisotropy of the system as a function of nitrogen concentration x is discussed by taking account not only of the crystal field effects but also of the effects of the f-electron transfer from Sm to the neighboring sites. Also discussed is the magnetic transition temperature that is estimated by mapping the system into a Heisenberg model. The results show the crystalline magnetic anisotropy changes its direction from in-plane to uniaxial ones as x increases. It takes the maximum value near x ~ 2 . 8 and then decreases slightly towards x = 3 . The mechanism for these behaviors is discussed in the light of the results of detailed calculations on the bonding properties between Sm and its neighboring N. This work was partly supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Numerical investigation of MHD flow of blood and heat transfer in a stenosed arterial segment
NASA Astrophysics Data System (ADS)
Majee, Sreeparna; Shit, G. C.
2017-02-01
A numerical investigation of unsteady flow of blood and heat transfer has been performed with an aim to provide better understanding of blood flow through arteries under stenotic condition. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. The heat transfer characteristic has been analyzed by taking into consideration of the dissipation of energy due to applied magnetic field and the viscosity of blood. The vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The quantitative profile analysis of velocity, temperature and wall shear stress as well as Nusselt number is carried out over the entire arterial segment. The streamline and temperature contours have been plotted to understand the flow pattern in the diseased artery, which alters significantly in the downstream of the stenosis in the presence of magnetic field. Both the wall shear stress and Nusselt number increases with increasing magnetic field strength. However, wall shear stress decreases and Nusselt number enhances with Reynolds number. The results show that with an increase in the magnetic field strength upto 8 T, does not causes any damage to the arterial wall, but the study is significant for assessing temperature rise during hyperthermic treatment.
You, Xiaoxiao; Gao, Lei; Qin, Dongli; Chen, Ligang
2017-01-01
A novel and highly efficient approach to obtain magnetic molecularly imprinted polymers is described to detect avermectin in fish samples. The magnetic molecularly imprinted polymers were synthesized by surface imprinting polymerization using magnetic multiwalled carbon nanotubes as the support materials, atom transfer radical polymerization as the polymerization method, avermectin as template, acrylamide as functional monomer, and ethylene glycol dimethacrylate as crosslinker. The characteristics of the magnetic molecularly imprinted polymers were assessed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometry, X-ray diffraction, and thermogravimetric analysis. The binding characteristics of magnetic molecularly imprinted polymers were researched through isothermal adsorption experiment, kinetics adsorption experiment, and the selectivity experiment. Coupled with ultra high performance liquid chromatography and tandem mass spectrometry, the extraction conditions of the magnetic molecularly imprinted polymers as adsorbents for avermectin were investigated in detail. The recovery of avermectin was 84.2-97.0%, and the limit of detection was 0.075 μg/kg. Relative standard deviations of intra- and inter-day precisions were in the range of 1.7-2.9% and 3.4-5.6%, respectively. The results demonstrated that the extraction method not only has high selectivity and accuracy, but also is convenient for the determination of avermectin in fish samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun
2017-01-24
Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.
2014-10-21
measures working memory • Trail making test (both A and B): measures planning/executive function • "Black Box” (choice reaction time, critical flicker ...associated with SIR imaging. The former of these was mitigated by developing a novel B+ and !1B insensitive in- version composite pulse (Fig. 2) and...employing a low-flip angle TFE readout; the latter was mitigated by the efficiency of the TFE readout along with additional protocol optimization
Multi-orbit tight binding calculations for spin transfer torque in magnetic tunneling junctions
NASA Astrophysics Data System (ADS)
You, Chun-Yeol; Han, Jae-Ho; Lee, Hyun-Woo
2012-04-01
We investigate the spin transfer torque (STT) with multi-orbit tight binding model in the magnetic tunneling junctions (MTJs). So far, most of the theoretical works based on the non-equilibrium Keldysh Green's function method employ a single band model for the simplicity, except a few first principle studies. Even though the single band model captures main physics of STT in MTJ, multi-band calculation reveals new features of the STT that depend on band parameters, such as insulator bandgap, inter-band hopping energy of the ferromagnetic layer. We find that the sign change of perpendicular torkance with bandgap of the insulator layer, and when we allow the inter-band hopping, the bias dependences of perpendicular STT are dramatically changed, while no noticeable changes in parallel STT are found.
NASA Astrophysics Data System (ADS)
Park, Kiwan
2017-12-01
In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.
Albanese, Elisa; Leccese, Mirko; Di Valentin, Cristiana; Pacchioni, Gianfranco
2016-01-01
N-dopants in bulk monoclinic ZrO2 and their magnetic interactions have been investigated by DFT calculations, using the B3LYP hybrid functional. The electronic and magnetic properties of the paramagnetic N species, substitutionals and interstitials, are discussed. Their thermodynamic stability has been estimated as a function of the oxygen partial pressure. At 300 K, N prefers interstitial sites at any range of oxygen pressure, while at higher temperatures (700–1000 K), oxygen poor-conditions facilitate substitutional dopants. We have considered the interaction of two N defects in various positions in order to investigate the possible occurrence of ferromagnetic ordering. A very small magnetic coupling constant has been calculated for several 2N-ZrO2 configurations, thus demonstrating that magnetic ordering can be achieved only at very low temperatures, well below liquid nitrogen. Furthermore, when N atoms replace O at different sites, resulting in slightly different positions of the corresponding N 2p levels, a direct charge transfer can occur between the two dopants with consequent quenching of the magnetic moment. Another mechanism that contributes to the quenching of the N magnetic moments is the interplay with oxygen vacancies. These effects contribute to reduce the concentration of magnetic impurities, thus limiting the possibility to establish magnetic ordering. PMID:27527493
NASA Astrophysics Data System (ADS)
Xing, Li; Quan, Wei; Fan, Wenfeng; Li, Rujie; Jiang, Liwei; Fang, Jiancheng
2018-05-01
The frequency-response and dynamics of a dual-axis spin-exchange-relaxation-free (SERF) atomic magnetometer are investigated by means of transfer function analysis. The frequency-response at different bias magnetic fields is tested to demonstrate the effect of the residual magnetic field. The resonance frequency of alkali atoms and magnetic linewidth can be obtained simultaneously through our theoretical model. The coefficient of determination of the fitting results is superior to 0.995 with 95% confidence bounds. Additionally, step responses are applied to analyze the dynamics of the control system and the effect of imperfections. Finally, a noise-limited magnetic field resolution of 15 fT {{\\sqrt{Hz}}-1} has been achieved for our dual-axis SERF atomic magnetometer through magnetic field optimization.
Physical processes in the strong magnetic fields of accreting neutron stars
NASA Technical Reports Server (NTRS)
Meszaros, P.
1984-01-01
Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.
Liu, Yan; Guenneau, Sébastien; Gralak, Boris
2013-01-01
We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix () breaks down. PMID:24101891
NESSY: NLTE spectral synthesis code for solar and stellar atmospheres
NASA Astrophysics Data System (ADS)
Tagirov, R. V.; Shapiro, A. I.; Schmutz, W.
2017-07-01
Context. Physics-based models of solar and stellar magnetically-driven variability are based on the calculation of synthetic spectra for various surface magnetic features as well as quiet regions, which are a function of their position on the solar or stellar disc. Such calculations are performed with radiative transfer codes tailored for modeling broad spectral intervals. Aims: We aim to present the NLTE Spectral SYnthesis code (NESSY), which can be used for modeling of the entire (UV-visible-IR and radio) spectra of solar and stellar magnetic features and quiet regions. Methods: NESSY is a further development of the COde for Solar Irradiance (COSI), in which we have implemented an accelerated Λ-iteration (ALI) scheme for co-moving frame (CMF) line radiation transfer based on a new estimate of the local approximate Λ-operator. Results: We show that the new version of the code performs substantially faster than the previous one and yields a reliable calculation of the entire solar spectrum. This calculation is in a good agreement with the available observations.
NASA Astrophysics Data System (ADS)
Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid
2017-02-01
In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.
Lederer, Stefan; Auffarth, Alexander; Bogner, Robert; Tauber, Mark; Mayer, Michael; Karpik, Stefanie; Matis, Nicholas; Resch, Herbert
2011-10-01
Irreparable ruptures of the subscapularis tendon lead to impaired function of the shoulder joint. In such cases, transfer of the pectoralis major tendon has led to encouraging results. The procedure fails periodically, typically associated with insufficient in-growth of the transferred tissue. We hypothesized that tendon harvest with chips of cancellous bone would improve the tendon-bone interface. Of 62 consecutive pectoralis tendon transfers, 54 shoulders were followed-up at an average of 35 months. In all shoulders, the transferred tendon was rerouted behind the conjoint tendon and fixed by transosseous sutures. In 29 shoulders, the tendon was harvested with a cuff of cancellous bone. In 25 shoulders, the conventional technique with sharp detachment of the tendon was used. Apart from detailed clinical examination of all shoulders, a magnetic resonance image (MRI) was available in 52 shoulders. The overall Constant score had improved from an average of 38.8 points preoperatively to 63.4 points at follow-up. Shoulders treated with the new fixation technique scored 64.4 compared with 62.2 for the conventional fixations. The MRI showed intact tendons and muscles in 80.8% of shoulders. In 7 shoulders (13.5%), the transferred tendon was ruptured. Two of these were treated with the new fixation technique. Mean patient satisfaction score was 8.2 points. A secure method of fixation that avoids secondary ruptures despite insufficiency of the transferred tendon is of great importance. Also the rerouting of the transferred tendon under the conjoined tendon is essential to imitate the natural force vector and the function of an intact subscapularis tendon. Patients in this investigation were also monitored by MRI to verify the integrity of the transferred tendon. As a salvage procedure, the pectoralis major tendon transfer provides good results in most cases. Sufficient in-growth of the transferred tissue is essential for the success of the procedure. This seems to be facilitated by both methods. Copyright © 2011 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.
NASA Astrophysics Data System (ADS)
Evans, Emrys W.; Kattnig, Daniel R.; Henbest, Kevin B.; Hore, P. J.; Mackenzie, Stuart R.; Timmel, Christiane R.
2016-08-01
Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (kBT), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, the form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green's function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ˜500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.
Amplification of large scale magnetic fields in a decaying MHD system
NASA Astrophysics Data System (ADS)
Park, Kiwan
2017-10-01
Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.
Magnetic damping of thermocapillary convection in the floating-zone growth of semiconductor crystals
NASA Astrophysics Data System (ADS)
Morthland, Timothy Edward
The floating zone is one process used to grow high purity semiconductor single crystals. In the floating-zone process, a liquid bridge of molten semiconductor, or melt, is held by surface tension between the upper, melting polycrystalline feed rod and the lower, solidifying single crystal. A perfect crystal would require a quiescent melt with pure diffusion of dopants during the entire period needed to grow the crystal. However, temperature variations along the free surface of the melt lead to gradients of the temperature-dependent surface tension, driving a strong and unsteady flow in the melt, commonly labeled thermocapillary or Marangoni convection. For small temperature differences along the free surface, unsteady thermocapillary convection occurs, disrupting the diffusion controlled solidification and creating undesirable dopant concentration variations in the semiconductor single crystal. Since molten semiconductors are good electrical conductors, an externally applied, steady magnetic field can eliminate the unsteadiness in the melt and can reduce the magnitude of the residual steady motion. Crystal growers hope that a strong enough magnetic field will lead to diffusion controlled solidification, but the magnetic field strengths needed to damp the unsteady thermocapillary convection as a function of floating-zone process parameters is unknown. This research has been conducted in the area of the magnetic damping of thermocapillary convection in floating zones. Both steady and unsteady flows have been investigated. Due to the added complexities in solving Maxwells equations in these magnetohydrodynamic problems and due to the thin boundary layers in these flows, a direct numerical simulation of the fluid and heat transfer in the floating zone is virtually impossible, and it is certainly impossible to run enough simulations to search for neutral stability as a function of magnetic field strength over the entire parameter space. To circumvent these difficulties, we have used matched asymptotic expansions, linear stability theory and numerics to characterize these flows. Some fundamental aspects of the heat transfer and fluid mechanics in these magnetohydrodynamic flows are elucidated in addition to the calculation of the magnetic field strengths required to damp unsteady thermocapillary convection as a function of process parameters.
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
Study of crystal-field excitations and infrared active phonons in TbMnO3
NASA Astrophysics Data System (ADS)
Mansouri, S.; Jandl, S.; Balli, M.; Fournier, P.; Mukhin, A. A.; Ivanov, V. Yu; Balbashov, A.; Orlita, M.
2018-05-01
The Tb3+ (4f 8) crystal-field (CF) excitations and the infrared phonons in TbMnO3 are studied as a function of temperature and under an applied magnetic field. The phonon energy shifts reflect local displacement of the oxygen ions that contribute to the CF energy level shifts below 120 K and under magnetic field. The CF polarized transmission spectra provide interesting information about the debated nature of the excitations at 41, 65, 130 cm‑1. We also evaluate the contribution of the charge transfer mechanism to the magnetoelectric process in TbMnO3 under magnetic field.
Radiation transfer and stellar atmospheres
NASA Astrophysics Data System (ADS)
Swihart, T. L.
This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.
Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma
NASA Astrophysics Data System (ADS)
Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru
2016-10-01
Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.
NASA Astrophysics Data System (ADS)
Koppán, András; Kis, Márta; Merényi, László; Papp, Gábor; Benedek, Judit; Meurers, Bruno
2017-04-01
In this presentation authors propose a method for the determination of transfer characteristics and fine calibration of LCR relative gravimeters used for earth-tide recordings, by means of the moving-mass gravimeter calibration device of Budapest-Mátyáshegy Gravity and Geodynamical Observatory. Beam-position dependent transfer functions of four relative LCR G type gravimeters were determined and compared. In order to make these instruments applicable for observatory tidal recordings, there is a need for examining the unique characteristics of equipments and adequately correcting these inherent distorting effects. Thus, the sensitivity for the tilting, temporal changes of scale factors and beam-position dependent transfer characteristics are necessary to be determined for observatory use of these instruments. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. Magnetic experiments were also carried out on the pillar of the calibration device as well, in order to analyse the magnetic effect of the moving stainless steel-mass. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. The calibration process is aided by intelligent controller electronics. A PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The system can be controlled remotely through the internet. Authors wish to express their thanks to OTKA (Hungarian Scientific Research Fund) for their support (OTKA-K101603, OTKA K109060).
Perceptual learning modifies the functional specializations of visual cortical areas.
Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang
2016-05-17
Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.
Magnetic hydrogels from alkyne/cobalt carbonyl-functionalized ABA triblock copolymers
Jiang, Bingyin; Hom, Wendy L.; Chen, Xianyin; ...
2016-03-09
A series of alkyne-functionalized poly(4-(phenylethynyl)styrene)- block-poly(ethylene oxide)- block-poly(4-(phenylethynyl)styrene) (PPES-b-PEO-b-PPES) ABA triblock copolymers was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. PES n[Co 2(CO) 6] x-EO 800-PES n[Co 2(CO) 6] x ABA triblock copolymer/cobalt adducts (10–67 wt % PEO) were subsequently prepared by reaction of the alkyne-functionalized PPES block with Co 2(CO) 8 and their phase behavior was studied by TEM. Heating triblock copolymer/cobalt carbonyl adducts at 120 °C led to cross-linking of the PPES/Co domains and the formation of magnetic cobalt nanoparticles within the PPES/Co domains. Magnetic hydrogels could be prepared by swelling the PEO domains of the cross-linkedmore » materials with water. Furthermore, swelling tests, rheological studies and actuation tests demonstrated that the water capacity and modulus of the hydrogels were dependent upon the composition of the block copolymer precursors.« less
NASA Astrophysics Data System (ADS)
Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed
2018-02-01
This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.
On the dependence of the domain of values of functionals of hypersonic aerodynamics on controls
NASA Astrophysics Data System (ADS)
Bilchenko, Grigory; Bilchenko, Nataly
2018-05-01
The properties of mathematical model of control of heat and mass transfer in laminar boundary layer on permeable cylindrical and spherical surfaces of the hypersonic aircraft are considered. Dependences of hypersonic aerodynamics functionals (the total heat flow and the total Newton friction force) on controls (the blowing into boundary layer, the temperature factor, the magnetic field) are investigated. The domains of allowed values of functionals of hypersonic aerodynamics are obtained. The results of the computational experiments are presented: the dependences of total heat flow on controls; the dependences of total Newton friction force on controls; the mutual dependences of functionals (as the domains of allowed values "Heat and Friction"); the dependences of blowing system power on controls. The influences of magnetic field and dissociation on the domain of "Heat and Friction" allowed values are studied. It is proved that for any fixed constant value of magnetic field the blowing system power is a symmetric function of constant dimensionless controls (the blowing into boundary layer and the temperature factor). It is shown that the obtained domain of allowed values of functionals of hypersonic aerodynamics depending on permissible range of controls may be used in engineering.
2013-05-01
Magnetization transfer MRI in multiple sclerosis . J Neuroimaging. 2007;17 Suppl 1:S22–S26. 82. Filippi M, Rocca MA. Magnetization transfer magnetic resonance... multiple sclerosis . Neuroimaging Clin N Am. 2009;19(1):27–36. 84. Lundbom N. Determination of magnetization transfer contrast in tissue: an MR... multiple RF coils intended for optimal direct and indirect detection of hyperpolarized contrast agents in vivo. 4.b. Y1Q3-Y1Q4. Low field MRI: pre
Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.
2008-04-01
Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.
Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields.
Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Kaptein, Robert; Vieth, Hans-Martin; Ivanov, Konstantin L
2013-08-01
We have investigated the mechanism of para-hydrogen-induced polarization (PHIP) transfer from the original strongly aligned protons to other nuclei at low external magnetic fields. Although it is known that PHIP is efficiently transferred at low fields, the nature of the transfer mechanism, that is, coherent spin mixing or cross-relaxation, is not well established. Polarization transfer kinetics for individual protons of styrene was, for the first time, measured and modeled theoretically. Pronounced oscillations were observed indicating a coherent transfer mechanism. Spin coherences were excited by passing through an avoided level crossing of the nuclear spin energy levels. Transfer at avoided level crossings is selective with respect to spin order. Our work provides evidence that the coherent PHIP transfer mechanism is dominant at low magnetic fields.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.
1984-01-01
A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.
Westerhausen, René; Grüner, Renate; Specht, Karsten; Hugdahl, Kenneth
2009-06-01
The midsagittal corpus callosum is topographically organized, that is, with regard to their cortical origin several subtracts can be distinguished within the corpus callosum that belong to specific functional brain networks. Recent diffusion tensor tractography studies have also revealed remarkable interindividual differences in the size and exact localization of these tracts. To examine the functional relevance of interindividual variability in callosal tracts, 17 right-handed male participants underwent structural and diffusion tensor magnetic resonance imaging. Probabilistic tractography was carried out to identify the callosal subregions that interconnect left and right temporal lobe auditory processing areas, and the midsagittal size of this tract was seen as indicator of the (anatomical) strength of this connection. Auditory information transfer was assessed applying an auditory speech perception task with dichotic presentations of consonant-vowel syllables (e.g., /ba-ga/). The frequency of correct left ear reports in this task served as a functional measure of interhemispheric transfer. Statistical analysis showed that a stronger anatomical connection between the superior temporal lobe areas supports a better information transfer. This specific structure-function association in the auditory modality supports the general notion that interindividual differences in callosal topography possess functional relevance.
Energy minibands degeneration induced by magnetic field effects in graphene superlattices
NASA Astrophysics Data System (ADS)
Reyes-Villagrana, R. A.; Carrera-Escobedo, V. H.; Suárez-López, J. R.; Madrigal-Melchor, J.; Rodríguez-Vargas, I.
2017-12-01
Energy minibands are a basic feature of practically any superlattice. In this regard graphene superlattices are not the exception and recently miniband transport has been reported through magneto-transport measurements. In this work, we compute the energy miniband and transport characteristics for graphene superlattices in which the energy barriers are generated by magnetic and electric fields. The transfer matrix approach and the Landauer-Büttiker formalism have been implemented to calculate the energy minibands and the linear-regime conductance. We find that energy minibands are very sensitive to the magnetic field and become degenerate by rising it. We were also able to correlate the evolution of the energy minibands as a function of the magnetic field with the transport characteristics, finding that miniband transport can be destroyed by magnetic field effects. Here, it is important to remark that although magnetic field effects have been a key element to unveil miniband transport, they can also destroy it.
Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals.
Parobek, David; Roman, Benjamin J; Dong, Yitong; Jin, Ho; Lee, Elbert; Sheldon, Matthew; Son, Dong Hee
2016-12-14
We report the one-pot synthesis of colloidal Mn-doped cesium lead halide (CsPbX 3 ) perovskite nanocrystals and efficient intraparticle energy transfer between the exciton and dopant ions resulting in intense sensitized Mn luminescence. Mn-doped CsPbCl 3 and CsPb(Cl/Br) 3 nanocrystals maintained the same lattice structure and crystallinity as their undoped counterparts with nearly identical lattice parameters at ∼0.2% doping concentrations and no signature of phase separation. The strong sensitized luminescence from d-d transition of Mn 2+ ions upon band-edge excitation of the CsPbX 3 host is indicative of sufficiently strong exchange coupling between the charge carriers of the host and dopant d electrons mediating the energy transfer, essential for obtaining unique properties of magnetically doped quantum dots. Highly homogeneous spectral characteristics of Mn luminescence from an ensemble of Mn-doped CsPbX 3 nanocrystals and well-defined electron paramagnetic resonance spectra of Mn 2+ in host CsPbX 3 nanocrystal lattices suggest relatively uniform doping sites, likely from substitutional doping at Pb 2+ . These observations indicate that CsPbX 3 nanocrystals, possessing many superior optical and electronic characteristics, can be utilized as a new platform for magnetically doped quantum dots expanding the range of optical, electronic, and magnetic functionality.
A helium based pulsating heat pipe for superconducting magnets
NASA Astrophysics Data System (ADS)
Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John
2014-01-01
This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.
NASA Astrophysics Data System (ADS)
Rupnik, Kresimir; Cooper, Benjamin; Dunne, Taylor; Gerosa, Katherine; Mercer, Kaitlyn; McGill, Stephen
In previous work, new Nanoparticle-enzyme Based Hybrids (NEBH) synthesis methods were investigated for nanoparticles of different shapes and electron energies. These hybrids can provide electromagnetic-field-driven ESH separations and transfers to desired molecular locations. Of paramount biomedical interest are the activity centers (including Fe-clusters) in proteins that perform their intended function and help synthesize other molecules. In this work we discuss results of our recent in situ ESH dynamics measurements: we use <15fs (Vitara) PPS broad band pulses and ultrahigh, 25T, magnetic fields from Split-helix magnet at NHMFL. Work included multi-spectral domain PPS harmonic generations and PPS sum frequency generations. Model compounds, including cytochromes, were used for testing and calibrations and previously studied Fe-S enzymes were prepared for measurements. While PPS opto-magnetic methods are known for their insight into electronic structure, our femtosecond measurements can provide ultrafast dynamic imaging of ESH mechanisms decision making steps. UF-PPS Project, performed in part at NHMFL, supported by NSF CA No. DMR-1157490, and 0654118 and U.S. DOE.
Magnetic field-assisted gene delivery: achievements and therapeutic potential.
Schwerdt, Jose I; Goya, Gerardo F; Calatayud, M Pilar; Hereñú, Claudia B; Reggiani, Paula C; Goya, Rodolfo G
2012-04-01
The discovery in the early 2000's that magnetic nanoparticles (MNPs) complexed to nonviral or viral vectors can, in the presence of an external magnetic field, greatly enhance gene transfer into cells has raised much interest. This technique, called magnetofection, was initially developed mainly to improve gene transfer in cell cultures, a simpler and more easily controllable scenario than in vivo models. These studies provided evidence for some unique capabilities of magnetofection. Progressively, the interest in magnetofection expanded to its application in animal models and led to the association of this technique with another technology, magnetic drug targeting (MDT). This combination offers the possibility to develop more efficient and less invasive gene therapy strategies for a number of major pathologies like cancer, neurodegeneration and myocardial infarction. The goal of MDT is to concentrate MNPs functionalized with therapeutic drugs, in target areas of the body by means of properly focused external magnetic fields. The availability of stable, nontoxic MNP-gene vector complexes now offers the opportunity to develop magnetic gene targeting (MGT), a variant of MDT in which the gene coding for a therapeutic molecule, rather than the molecule itself, is delivered to a therapeutic target area in the body. This article will first outline the principle of magnetofection, subsequently describing the properties of the magnetic fields and MNPs used in this technique. Next, it will review the results achieved by magnetofection in cell cultures. Last, the potential of MGT for implementing minimally invasive gene therapy will be discussed.
Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej
2015-07-01
Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej
2015-07-01
Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.
Item-Specific and Generalization Effects on Brain Activation when Learning Chinese Characters
ERIC Educational Resources Information Center
Deng, Yuan; Booth, James R.; Chou, Tai-Li; Ding, Guo-Sheng; Peng, Dan-Ling
2008-01-01
Neural changes related to learning of the meaning of Chinese characters in English speakers were examined using functional magnetic resonance imaging (fMRI). We examined item specific learning effects for trained characters, but also the generalization of semantic knowledge to novel transfer characters that shared a semantic radical (part of a…
The energy associated with MHD waves generation in the solar wind plasma
NASA Technical Reports Server (NTRS)
delaTorre, A.
1995-01-01
Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.
Novel semi-airborne CSEM system for the exploration of mineral resources
NASA Astrophysics Data System (ADS)
Nittinger, Christian; Cherevatova, Maria; Becken, Michael; Rochlitz, Raphael; Günther, Thomas; Martin, Tina; Matzander, Ulrich
2017-04-01
Within the DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration), a semi-airborne CSEM system for mineral exploration is developed which aims to achieve a penetration depth of 1 km with a large areal coverage. Harmonically Time-varying electrical currents are injected with a grounded transmitter in order to measure the electric field on the ground and induced magnetic fields with highly sensitive magnetic sensors in the air. To measure the magnetic field and its variations, three-axis induction coils (MFS-11e by Metronix) and fluxgate sensors (Bartington FGS-03) are mounted on the platform towed by a helicopter. In addition, there is a SQUID based magnetometer, developed by IPHT and Supracon AG, available for future measurements. We deploy the different magnetometer sensors to cover a broad frequency range of 1-10000Hz. During the flight, the sensors encounter a broad variety of motion/vibration which produces noise in the magnetic field sensors. Therefore, a high accuracy motion tracking system is installed within the bird and a low vibrating system design needs to be considered in the airborne sensor platform. We conducted several flights with different source positions in a test area in Germany, which is already covered by ground based measurements. Based on the data, we discuss possible calibration schemes which are needed to overcome orthogonality and scaling errors in the fluxgate data as well as orientation errors. We apply noise correction schemes to the data and calculate transfer functions between the magnetic field and the source current. First 1-D inversion models based on the estimated transfer functions are calculated and compared to existing conductivity models from DC geoelectrics and helicopter electromagnetic (HEM) measurements.
Barone, Vincenzo; Bencini, Alessandro; Gatteschi, Dante; Totti, Federico
2002-11-04
Density functional theory (DFT) was applied to describe the magnetic and electron-transfer properties of dinuclear systems containing the [MnO2Mn]n+ core, with n=0,1,2,3,4. The calculation of the potential energy surfaces (PESs) of the mixed-valence species (n=1,3) allowed the classification of these systems according to the extent of valence localization as Class II compounds, in the Robin-Day classification scheme. The fundamental frequencies corresponding to the asymmetric breathing vibration were also computed.
NASA Technical Reports Server (NTRS)
Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.
2011-01-01
We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.
Multipolar modes in dielectric disk resonator for wireless power transfer
NASA Astrophysics Data System (ADS)
Song, Mingzhao; Belov, Pavel; Kapitanova, Polina
2017-09-01
We demonstrate a magnetic resonant WPT system based on dielectric disk resonators and investigated the WPT efficiency as a function of separation. It has been demonstrated that the power transfer can be achieved at different multipolar modes. The numerical study shows that the highest WPT efficiency of 99% can be obtained for the MQ mode in an ideal case. However, the efficiency of MQ mode decays much faster than the MD mode which suggests that a trade-off has to be made in the practical WPT system design.
NASA Astrophysics Data System (ADS)
Dalmasse, K.; Pariat, É.; Valori, G.; Jing, J.; Démoulin, P.
2018-01-01
In the solar corona, magnetic helicity slowly and continuously accumulates in response to plasma flows tangential to the photosphere and magnetic flux emergence through it. Analyzing this transfer of magnetic helicity is key for identifying its role in the dynamics of active regions (ARs). The connectivity-based helicity flux density method was recently developed for studying the 2D and 3D transfer of magnetic helicity in ARs. The method takes into account the 3D nature of magnetic helicity by explicitly using knowledge of the magnetic field connectivity, which allows it to faithfully track the photospheric flux of magnetic helicity. Because the magnetic field is not measured in the solar corona, modeled 3D solutions obtained from force-free magnetic field extrapolations must be used to derive the magnetic connectivity. Different extrapolation methods can lead to markedly different 3D magnetic field connectivities, thus questioning the reliability of the connectivity-based approach in observational applications. We address these concerns by applying this method to the isolated and internally complex AR 11158 with different magnetic field extrapolation models. We show that the connectivity-based calculations are robust to different extrapolation methods, in particular with regard to identifying regions of opposite magnetic helicity flux. We conclude that the connectivity-based approach can be reliably used in observational analyses and is a promising tool for studying the transfer of magnetic helicity in ARs and relating it to their flaring activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Emrys W.; Henbest, Kevin B.; Timmel, Christiane R., E-mail: christiane.timmel@chem.ox.ac.uk, E-mail: stuart.mackenzie@chem.ox.ac.uk
Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (k{sub B}T), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, themore » form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green’s function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ∼500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.« less
[Functional magnetic resonance imaging. What are the benefits expected in hand surgery?].
Moutet, F; Delon-Martin, C; Martin, O; Sirigu, A; Delaquaize, F; Benali, H; Masquelet, A-C
2013-06-01
Functional MRI (fMRI) allowed considerable advances upon understanding of cerebral functioning. Cortical plasticity, which allows the voluntary command of a restored function by a transferred muscle remains to be investigated in its intimacy. The authors present here the round table held at the 48th annual meeting of the French Society for Surgery of the Hand on December 22nd, 2012. It tries to review the analysis of the phenomenon observed during multiple tendinous transfers for restoration of proximal radial nerve palsy. Were successively approached: 1) Methods of acquisition and analysis of the signals (C. D-M.); 2) Movement reorganization (O.M.); 3) Motor plasticity after hand allograft (A. S.); 4) The potential interest of the fMRI in hand rehabilitation (F. D.); 5) The analysis of cerebral plasticity in general (H. B.). A rather philosophical conclusion opens other fields to f MRI (A.M.). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Decorrelation dynamics and spectra in drift-Alfven turbulence
NASA Astrophysics Data System (ADS)
Fernandez Garcia, Eduardo
Motivated by the inability of one-fluid magnetohydrodynamics (MHD) to explain key turbulence characteristics in systems ranging from the solar wind and interstellar medium to fusion devices like the reversed field pinch, this thesis studies magnetic turbulence using a drift-Alfven model that extends MHD by including electron density dynamics. Electron effects play a significant role in the dynamics by changing the structure of turbulent decorrelation in the Alfvenic regime (where fast Alfvenic propagation provides the fastest decorrelation of the system): besides the familiar counter-propagating Alfvenic branches of MHD, an additional branch tied to the diamagnetic and eddy-turn- over rates enters in the turbulent response. This kinematic branch gives hydrodynamic features to turbulence that is otherwise strongly magnetic. Magnetic features are observed in the RMS frequency, energy partitions, cross-field energy transfer and in the turbulent response, whereas hydrodynamic features appear in the average frequency, self-field transfer, turbulent response and finally the wavenumber spectrum. These features are studied via renormalized closure theory and numerical simulation. The closure calculation naturally incorporates the eigenmode structure of the turbulent response in specifying spectral energy balance equations for the magnetic, kinetic and internal (density) energies. Alfvenic terms proportional to cross correlations and involved in cross field transfer compete with eddy-turn-over, self transfer, auto-correlation terms. In the steady state, the kinematic terms dominate the energy balances and yield a 5/3 Kolmogorov spectrum (as observed in the interstellar medium) for the three field energies in the strong turbulence, long wavelength limit. Alfvenic terms establish equipartition of kinetic and magnetic energies. In the limit where wavelengths are short compared to the gyroradius, the Alfvenic terms equipartition the internal and magnetic energies resulting in a steep (-2) spectrum fall-off for those energies while the largely uncoupled kinetic modes still obey a 5/3 law. From the numerical simulations, the response function of drift-Alfven turbulence is measured. Here, a statistical ensemble is constructed from small perturbations of the turbulent amplitudes at fixed wavenumber. The decorrelation structure born out of the eigenmode calculation is verified in the numerical measurement.
Unusual negative permeability of single magnetic nanowire excited by the spin transfer torque effect
NASA Astrophysics Data System (ADS)
Han, Mangui; Zhou, Wu
2018-07-01
Due to the effect of spin transfer torque, negative imaginary parts of permeability (μ″ < 0) are reported in a ferromagnetic nanowire. It is found that negative μ″ values are resulted from the interaction of spin polarized conduction electrons with the spatially non-uniform distributed magnetic moments at both ends of nanowires. The results are well explained from the effect of spin transfer torque on the precession of magnetization under the excitation of both the pulsed magnetic field and static electric field.
Band Alignment and Charge Transfer in Complex Oxide Interfaces
NASA Astrophysics Data System (ADS)
Zhong, Zhicheng; Hansmann, Philipp
2017-01-01
The synthesis of transition metal heterostructures is currently one of the most vivid fields in the design of novel functional materials. In this paper, we propose a simple scheme to predict band alignment and charge transfer in complex oxide interfaces. For semiconductor heterostructures, band-alignment rules like the well-known Anderson or Schottky-Mott rule are based on comparison of the work function or electron affinity of the bulk components. This scheme breaks down for oxides because of the invalidity of a single work-function approximation as recently shown in [Phys. Rev. B 93, 235116 (2016), 10.1103/PhysRevB.93.235116; Adv. Funct. Mater. 26, 5471 (2016), 10.1002/adfm.201600243]. Here, we propose a new scheme that is built on a continuity condition of valence states originating in the compounds' shared network of oxygen. It allows for the prediction of sign and relative amplitude of the intrinsic charge transfer, taking as input only information about the bulk properties of the components. We support our claims by numerical density functional theory simulations as well as (where available) experimental evidence. Specific applications include (i) controlled doping of SrTiO3 layers with the use of 4 d and 5 d transition metal oxides and (ii) the control of magnetic ordering in manganites through tuned charge transfer.
Magnetic energy storage and the nightside magnetosphere-ionosphere coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, W.; Pekker, M.; Doxas, I.
1998-05-01
The change m in the magnetic energy stored m in the Earth`s magnetotail as a function of the solar wind, BIF conditions are investigated using an empirical magnetic field model. The results are used to calculate the two normal modes contained m in the low-dimensional global model called WINDMI for the solar wind driven magnetosphere-ionosphere system. The coupling of the magnetosphere-ionosphere (MI) through the nightside region 1 current loop transfers power to the ionosphere through two modes: a fast (period of minutes) oscillation and a slow (period of one hour) geotail cavity mode. The solar wind drives both modes mmore » in the substorm dynamics.« less
NASA Astrophysics Data System (ADS)
Grancharov, Stephanie G.
I. A general introduction to the field of nanomaterials is presented, highlighting their special attributes and characteristics. Nanoparticles in general are discussed with respect to their structure, form and properties. Magnetic particles in particular are highlighted, especially the iron oxides. The importance and interest of integrating these materials with biological media is discussed, with emphasis on transferring particles from one medium to another, and subsequent modification of surfaces with different types of materials. II. A general route to making magnetic iron oxide nanoparticles is explained, both as maghemite and magnetite, including properties of the particles and characterization. A novel method of producing magnetite particles without a ligand is then presented, with subsequent characterization and properties described. III. Attempts to coat iron oxide nanoparticles with a view to creating biofunctional magnetic nanoparticles are presented, using a gold overcoating method. Methods of synthesis and characterization are examined, with unique problems to core-shell structures analyzed. IV. Solubility of nanoparticles in both aqueous and organic media is discussed and examined. The subsequent functionalization of the surface of maghemite and magnetite nanoparticles with a variety of biomaterials including block copolypeptides, phospholipids and carboxydextran is then presented. These methods are integral to the use of magnetic nanoparticles in biological applications, and therefore their properties are examined once tailored with these molecules. V. A new type of magnetic nanoparticle sensor-type device is described. This device integrates bio-and DNA-functionalized nanoparticles with conjugate functionalized silicon dioxide surfaces. These techniques to pattern particles to a surface are then incorporated into a device with a magnetic tunnel junction, which measures magnetoresistance in the presence of an external magnetic field. This configuration thereby introduces a new way to detect magnetic nanoparticles via their magnetic properties after conjugation via biological entities.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji
2016-09-01
We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.
Role of phase breaking processes on resonant spin transfer torque nano-oscillators
NASA Astrophysics Data System (ADS)
Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran
2018-05-01
Spin transfer torque nano-oscillators (STNOs) based on magnetoresistance and spin transfer torque effects find potential applications in miniaturized wireless communication devices. Using the non-coherent non-equilibrium Green's function spin transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski's equation and the Poisson's equation, we elucidate the role of elastic phase breaking on the proposed STNO design featuring double barrier resonant tunneling. Demonstrating the immunity of our proposed design, we predict that despite the presence of elastic dephasing, the resonant tunneling magnetic tunnel junction structures facilitate oscillator designs featuring a large enhancement in microwave power up to 8μW delivered to a 50Ω load.
Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Fadaei, Farzad; Shahrokhi, Mohammad; Molaei Dehkordi, Asghar; Abbasi, Zeinab
2017-05-01
In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source (i.e., a permanent magnet or current-carrying wire) on the forced-convection heat transfer of magnetic nanofluids were carefully investigated. It was found that by applying the magnetic field, the fluid mixing could be intensified that leads to an increase in the Nusselt number value along the pipe length. Moreover, the obtained simulation results indicate that applying the magnetic field induced by two permanent magnets with a magnetization of 3×105 (A/m) (for each one), the fully developed Nusselt number value can be increased by 196%.
Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α -RuCl3
NASA Astrophysics Data System (ADS)
Wang, Zhe; Reschke, S.; Hüvonen, D.; Do, S.-H.; Choi, K.-Y.; Gensch, M.; Nagel, U.; Rõõm, T.; Loidl, A.
2017-12-01
We report on terahertz spectroscopy of quantum spin dynamics in α -RuCl3 , a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. We follow the evolution of an extended magnetic continuum below the structural phase transition at Ts 2=62 K . With the onset of a long-range magnetic order at TN=6.5 K , spectral weight is transferred to a well-defined magnetic excitation at ℏω1=2.48 meV , which is accompanied by a higher-energy band at ℏω2=6.48 meV . Both excitations soften in a magnetic field, signaling a quantum phase transition close to Bc=7 T , where a broad continuum dominates the dynamical response. Above Bc, the long-range order is suppressed, and on top of the continuum, emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of a possibly field-induced quantum spin liquid.
King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; ...
2015-12-07
Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less
Magnetic field transfer device and method
Wipf, S.L.
1990-02-13
A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.
Magnetic field transfer device and method
Wipf, Stefan L.
1990-01-01
A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.
Estimating the Geoelectric Field Using Precomputed EMTFs: Effect of Magnetometer Cadence
NASA Astrophysics Data System (ADS)
Grawe, M.; Butala, M.; Makela, J. J.; Kamalabadi, F.
2017-12-01
Studies that make use of electromagnetic transfer functions (EMTFs) to calculate the surface electric field from a specified surface magnetic field often use historical magnetometer information for validation and comparison purposes. Depending on the data source, the magnetometer cadence is typically between 1 and 60 seconds. It is often implied that a 60 (and sometimes 10) second cadence is acceptable for purposes of geoelectric field calculation using a geophysical model. Here, we quantitatively assess this claim under different geological settings and using models of varying complexity (using uniform/1D/3D EMTFs) across several different space weather events. Conclusions are made about sampling rate sufficiency as a function of local geology and the spectral content of the surface magnetic field.
Multilayer MgB{sub 2} superconducting quantum interference filter magnetometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.
2016-04-25
We report two types of all-MgB{sub 2} superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB{sub 2} superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm{sup 2}. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ∼16 V/T at 3 K and a field noise of ∼110 pT/Hz{sup 1/2} above 100 Hz at 10 K. In a second configuration, themore » SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm{sup 2} to 25 μm{sup 2} and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ∼70 pT/Hz{sup 1/2} above 100 Hz at 20 K.« less
Local magnetic fields, uplift, gravity, and dilational strain changes in Southern California ( USA).
Johnston, M.J.S.
1986-01-01
Measurements of regional magnetic field near the San Andreas fault at Cajon, Palmdale and Tejon are strongly correlated with changes in gravity, areal strain, and uplift in these regions during the period 1977-1984. Because the inferred relationships between these parameters are in approximate agreement with those obtained from simple deformation models, the preferred explanation appeals to short-term strain episodes independently detected in each data set. Transfer functions from magnetic to strain, gravity, and uplift perturbations, obtained by least-square linear fits to the data, are -0.98 nT/ppm, -0.03 nT/mu Gal, and 9.1 nT/m respectively. Tectonomagnetic model calculations underestimate the observed changes and those reported previously for dam loading and volcano-magnetic observations. A less likely alternative explanation of the observed data appeals to a common source of meteorologically generated crustal or instrumental noise in the strain, gravity, magnetic, and uplift data.-from Author
Single array of magnetic vortex disks uses in-plane anisotropy to create different logic gates
NASA Astrophysics Data System (ADS)
Vigo-Cotrina, H.; Guimarães, A. P.
2017-11-01
Using micromagnetic simulation, we show that in-plane uniaxial magnetic anisotropy (IPUA) can be used to obtain FAN-OUT, AND and OR gates in an array of coupled disks with magnetic vortex configuration. First, we studied the influence of the direction of application of the IPUA on the energy transfer time (τ) between two identical coupled nanodisks. We found that when the direction of the IPUA is along the x axis the magnetic interaction increases, allowing shorter values of τ , while the IPUA along the y direction has the opposite effect. The magnetic interactions between the nanodisks along x and y directions (the coupling integrals) as a function of the uniaxial anisotropy constant (Kσ) were obtained using a simple dipolar model. Next, we demonstrated that choosing a suitable direction of application of the IPUA, it is possible to create several different logic gates with a single array of coupled nanodisks.
Band-pass Fabry-Pèrot magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Sharma, Abhishek; Tulapurkar, Ashwin. A.; Muralidharan, Bhaskaran
2018-05-01
We propose a high-performance magnetic tunnel junction by making electronic analogs of optical phenomena such as anti-reflections and Fabry-Pèrot resonances. The devices we propose feature anti-reflection enabled superlattice heterostructures sandwiched between the fixed and the free ferromagnets of the magnetic tunnel junction structure. Our predictions are based on non-equilibrium Green's function spin transport formalism coupled self-consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation. Owing to the physics of bandpass spin filtering in the bandpass Fabry-Pèrot magnetic tunnel junction device, we demonstrate an ultra-high boost in the tunnel magneto-resistance (≈5 × 104%) and nearly 1200% suppression of spin transfer torque switching bias in comparison to a traditional trilayer magnetic tunnel junction device. The proof of concepts presented here can lead to next-generation spintronic device design harvesting the rich physics of superlattice heterostructures and exploiting spintronic analogs of optical phenomena.
NASA Astrophysics Data System (ADS)
Zhang, D. P.; Lei, Y.; Shen, Z. B.
2017-12-01
The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.
NASA Astrophysics Data System (ADS)
Tito, M. A.; Pusep, Yu A.
2018-01-01
Time-resolved magneto-photoluminescence was employed to study the magnetic field induced quantum phase transition separating two phases with different distributions of electrons over quantum wells in an aperiodic multiple quantum well, embedded in a wide AlGaAs parabolic quantum well. Intensities, broadenings and recombination times attributed to the photoluminescence lines emitted from individual quantum wells of the multiple quantum well structure were measured as a function of the magnetic field near the transition. The presented data manifest themselves to the magnetic field driven migration of the free electrons between the quantum wells of the studied multiple quantum well structure. The observed charge transfer was found to influence the screening of the multiple quantum well and disorder potentials. Evidence of the localization of the electrons in the peripheral quantum wells in strong magnetic field is presented.
NASA Astrophysics Data System (ADS)
Perminov, A. V.; Nikulin, I. L.
2016-03-01
We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.
Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn; Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024
2015-05-15
We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties onmore » the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.« less
NASA Astrophysics Data System (ADS)
Bibi, Madiha; Khalil-Ur-Rehman; Malik, M. Y.; Tahir, M.
2018-04-01
In the present article, unsteady flow field characteristics of the Williamson fluid model are explored. The nanosized particles are suspended in the flow regime having the interaction of a magnetic field. The fluid flow is induced due to a stretching permeable surface. The flow model is controlled through coupled partial differential equations to the used shooting method for a numerical solution. The obtained partial differential equations are converted into ordinary differential equations as an initial value problem. The shooting method is used to find a numerical solution. The mathematical modeling yields physical parameters, namely the Weissenberg number, the Prandtl number, the unsteadiness parameter, the magnetic parameter, the mass transfer parameter, the Lewis number, the thermophoresis parameter and Brownian parameters. It is found that the Williamson fluid velocity, temperature and nanoparticles concentration are a decreasing function of the unsteadiness parameter.
First-principles spin-transfer torque in CuMnAs |GaP |CuMnAs junctions
NASA Astrophysics Data System (ADS)
Stamenova, Maria; Mohebbi, Razie; Seyed-Yazdi, Jamileh; Rungger, Ivan; Sanvito, Stefano
2017-02-01
We demonstrate that an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation. By using state-of-the-art density functional theory combined with quantum transport, we show that the Néel vector of the electrodes can be manipulated by spin-transfer torque. This is staggered over the two different magnetic sublattices and can generate dynamics and switching. At the same time the different magnetization states of the junction can be read by standard tunneling magnetoresistance. Calculations are performed for CuMnAs |GaP |CuMnAs junctions with different surface terminations between the antiferromagnetic CuMnAs electrodes and the insulating GaP spacer. We find that the torque remains staggered regardless of the termination, while the magnetoresistance depends on the microscopic details of the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Luc, E-mail: luc.thomas@headway.com; Jan, Guenole; Le, Son
The thermal stability of perpendicular Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) devices is investigated at chip level. Experimental data are analyzed in the framework of the Néel-Brown model including distributions of the thermal stability factor Δ. We show that in the low error rate regime important for applications, the effect of distributions of Δ can be described by a single quantity, the effective thermal stability factor Δ{sub eff}, which encompasses both the median and the standard deviation of the distributions. Data retention of memory chips can be assessed accurately by measuring Δ{sub eff} as a function of device diameter andmore » temperature. We apply this method to show that 54 nm devices based on our perpendicular STT-MRAM design meet our 10 year data retention target up to 120 °C.« less
Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M; Zukley, Linda M; Ferrucci, Luigi; Resnick, Susan M; Spencer, Richard G
2018-04-18
We investigated brain demyelination in aging, mild cognitive impairment (MCI), and dementia using magnetic resonance imaging of myelin. Brains of young and old controls and old subjects with MCI, Alzheimer's disease, or vascular dementia were scanned using our recently developed myelin water fraction (MWF) mapping technique, which provides greatly improved accuracy over previous comparable methods. Maps of MWF, a direct and specific myelin measure, and relaxation times and magnetization transfer ratio, indirect and nonspecific measures, were constructed. MCI subjects showed decreased MWF compared with old controls. Demyelination was greater in Alzheimer's disease or vascular dementia. As expected, decreased MWF was accompanied by decreased magnetization transfer ratio and increased relaxation times. The young subjects showed greater myelin content than the old subjects. We believe this to be the first demonstration of myelin loss in MCI, Alzheimer's disease, and vascular dementia using a method that provides a quantitative magnetic resonance imaging-based measure of myelin. Our findings add to the emerging evidence that myelination may represent an important biomarker for the pathology of MCI and dementia. This study supports the investigation of the role of myelination in MCI and dementia through use of this quantitative magnetic resonance imaging approach in clinical studies of disease progression, relationship of functional status to myelination status, and therapeutics. Furthermore, mapping MWF may permit myelin to serve as a therapeutic target in clinical trials. Copyright © 2018. Published by Elsevier Inc.
Strain Manipulated Magnetic Properties in ZnO and GaN Induced by Cation Vacancy
NASA Astrophysics Data System (ADS)
Gai, Yanqin; Jiang, Jiaping; Wu, Yuxi; Tang, Gang
2016-07-01
The effects of isotropic strains on the magnetic properties in ZnO and GaN induced by cation vacancies are comparatively investigated by density functional theory calculations. The magnetic moments and the couplings between vacancies in different charged states are calculated as a function of strains. The modulation of strain on the magnetic properties relies on the materials and the charge states of cation vacancies in them. As the occurrence of charge transfer in ZnO: V Zn under compression, the coupling between V_{{Zn}}0 is antiferromagnetic (AFM) and it could be stabilized by strains. Tensions can strengthen the ferromagnetic (FM) coupling between V_{{Zn}}0 but weaken that of V_{{Ga}}^{ - } . The neutral V Ga are always AFM coupling under strains from -6 to +6% and could be stabilized by compressions. The interactions between V_{{Ga}}^{ - } are always FM with ignorable variations under strains; however, the FM couplings between V_{{Ga}}^{2 - } could be strengthened by compressions. These varying trends of magnetic coupling under strains are interpreted by the band coupling models. Therefore, strain-engineering provides a route to manipulate and design high Curie temperature ferromagnetism derived and mediated by intrinsic defect for spintronic applications.
One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...
Iterative optimization method for design of quantitative magnetization transfer imaging experiments.
Levesque, Ives R; Sled, John G; Pike, G Bruce
2011-09-01
Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Ziane, M.; Amitouche, F.; Bouarab, S.; Vega, A.
2017-12-01
Structural and electronic properties of pure molybdenum Mo n and molybdenum-sulfide Mo n S ( n = 1 - 10) clusters were investigated in the framework of the density functional theory within the generalized gradient approximation to exchange and correlation with the aim of addressing how doping with a single S atom affects the geometries, magnetic properties, and reactivity of pure molybdenum clusters. These clusters exhibit a less marked tendency to dimerization than their isoelectronic Cr counterparts despite sharing their half-filled valence shell configuration. Doping with a single S impurity is enough to change the structure of the host molybdenum cluster to a large extent, as well as to modify the bonding pattern, the magnetic state and the magnetic moment distribution in the Mo host. Vertical ionization potentials and electron affinities are calculated to determine global reactivity indicators like the electronegativity and the chemical hardness. The results are discussed in terms of the thermodynamical and relative stabilities, charge transfer effects, and spin-polarized densities of electronic states.
NASA Astrophysics Data System (ADS)
Deng, Xiao-Jiao; Kong, Xiang-Yu; Liang, Xiaoqing; Yang, Bin; Xu, Hong-Guang; Xu, Xi-Ling; Feng, Gang; Zheng, Wei-Jun
2017-12-01
The structural, electronic, and magnetic properties of FeGen-/0 (n = 3-12) clusters were investigated by using anion photoelectron spectroscopy in combination with density functional theory calculations. For both anionic and neutral FeGen (n = 3-12) clusters with n ≤ 7, the dominant structures are exohedral. The FeGe8-/0 clusters have half-encapsulated boat-shaped structures, and the opening of the boat-shaped structure is gradually covered by the additional Ge atoms to form Gen cage from n = 9 to 11. The structures of FeGe10-/0 can be viewed as two Ge atoms symmetrically capping the opening of the boat-shaped structure of FeGe8, and those of FeGe12-/0 are distorted hexagonal prisms with the Fe atom at the center. Natural population analysis shows that there is an electron transfer from the Ge atoms to the Fe atom at n = 8-12. The total magnetic moment of FeGen-/0 and local magnetic moment of the Fe atom have not been quenched.
Perpendicular magnetic anisotropy in Mn2VIn (001) films: An ab initio study
NASA Astrophysics Data System (ADS)
Zipporah, Muthui; Robinson, Musembi; Julius, Mwabora; Arti, Kashyap
2018-05-01
First principles study of the magnetic anisotropy of Mn2VIn (001) films show perpendicular magnetic anisotropy (PMA), which increases as a function of the thickness of the film. Density functional theory (DFT) as implemented in the Vienna Ab initio simulation package (VASP) is employed here to perform a comprehensive theoretical investigation of the structural, electronic and magnetic properties of the Mn2VIn(001) films of varying thickness. Our calculations were performed on fully relaxed structures, with five to seventeen mono layers (ML). The degree of spin polarization is higher in the (001) Mn2VIn thin films as compared to the bulk in contrast to what is usually the case and as in Mn2VAl, which is isoelectronic to Mn2VIn as well as inCo2VIn (001) films studied for comparison. Tetragonal distortions are found in all the systems after relaxation. The distortion in the Mn2VIn system persists even for the 17ML thin film, resulting in PMA in the Mn2VIn system. This significant finding has potential to contribute to spin transfer torque (STT) and magnetic random access memory MRAM applications, as materials with PMA derived from volume magnetocrystalline anisotropy are being proposed as ideal magnetic electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halpin, M.P.
This project used a Box and Jenkins time-series analysis of energetic electron fluxes measured at geosynchronous orbit in an effort to derive prediction models for the flux in each of five energy channels. In addition, the technique of transfer function modeling described by Box and Jenkins was used in an attempt to derive input-output relationships between the flux channels (viewed as the output) and the solar-wind speed or interplanetary magnetic field (IMF) north-south component, Bz, (viewed as the input). The transfer function modeling was done in order to investigate the theoretical dynamic relationship which is believed to exist between themore » solar wind, the IMF Bz, and the energetic electron flux in the magnetosphere. The models derived from the transfer-function techniques employed were also intended to be used in the prediction of flux values. The results from this study indicate that the energetic electron flux changes in the various channels are dependent on more than simply the solar-wind speed or the IMF Bz.« less
Adsorption of magnetic transition metals on borophene: an ab initio study
NASA Astrophysics Data System (ADS)
Tomar, Shalini; Rastogi, Priyank; Bhadoria, Bhagirath Singh; Bhowmick, Somnath; Chauhan, Yogesh Singh; Agarwal, Amit
2018-03-01
We explore the doping strategy for adsorbing different metallic 3d transition-metal atoms (Fe, Co and Ni) on two different polymorphs of borophene monolayer: 2-Pmmn and 8-Pmmn borophene. Both have energy dispersion, with 2-Pmmn borophene being metallic in nature, and 8-Pmmn borophene being semi-metallic with a tilted Dirac cone like dispersion. Using density functional theory based calculations, we find the most suitable adsorption site for each adatom, and calculate the binding energy, binding energy per atom, charge transfer, density of states and magnetic moment of the resulting borophene-adatom system. We show that Ni is the most effective for electron doping for both the polymorphs. Additionally Fe is the most suitable to magnetically dope 8-Pmmn borophene, while Co is the best for magnetically doping 2-Pmmn borophene.
Khashan, S. A.; Alazzam, A.; Furlani, E. P.
2014-01-01
A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437
Theory of atomistic simulation of spin-transfer torque in nanomagnets
NASA Astrophysics Data System (ADS)
Tay, Tiamhock; Sham, L. J.
2013-05-01
In spin-transfer torque (STT) for technological applications, the miniaturization of the magnet may reach the stage of requiring a fully quantum-mechanical treatment. We present an STT theory which uses the quantum macrospin ground and excited (magnon) states of the nanomagnet. This allows for energy and angular momentum exchanges between the current electron and the nano-magnet. We develop a method of magnetization dynamics simulation which captures the heating effect on the magnet by the spin-polarized current and the temperature dependence in STT. We also discuss the magnetostatics effect on magnon scattering for ferromagnetic relaxation in a thin film. Our work demonstrates a realistic step towards simulation of quantum spin-transfer torque physics in nanoscale magnets.
Skeist, S. Merrill; Baker, Richard H.
2006-01-10
An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.
Magnetic nanoparticles: A multifunctional vehicle for modern theranostics.
Angelakeris, M
2017-06-01
Magnetic nanoparticles provide a unique multifunctional vehicle for modern theranostics since they can be remotely and non-invasively employed as imaging probes, carrier vectors and smart actuators. Additionally, special delivery schemes beyond the typical drug delivery such as heat or mechanical stress may be magnetically triggered to promote certain cellular pathways. To start with, we need magnetic nanoparticles with several well-defined and reproducible structural, physical, and chemical features, while bio-magnetic nanoparticle design imposes several additional constraints. Except for the intrinsic requirement for high quality of magnetic properties in order to obtain the maximum efficiency with the minimum dose, the surface manipulation of the nanoparticles is a key aspect not only for transferring them from the growth medium to the biological environment but also to bind functional molecules that will undertake specific targeting, drug delivery, cell-specific monitoring and designated treatment without sparing biocompatibility and sustainability in-vivo. The ability of magnetic nanoparticles to interact with matter at the nanoscale not only provides the possibility to ascertain the molecular constituents of a disease, but also the way in which the totality of a biological function may be affected as well. The capacity to incorporate an array of structural and chemical functionalities onto the same nanoscale architecture also enables more accurate, sensitive and precise screening together with cure of diseases with significant pathological heterogeneity such as cancer. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.
NMR measurements in SSC dipole D00001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchnir, M.; Schmidt, E.E.; Hanft, R.W.
The first 16.5 m long SSC dipole magnet (D00001) had its field intensity measured as a function of position with a custom made NMR magnetometer. A short description of the probe is presented. The data obtained (most of it near 2 T spaced apart by one inch) shows an average transfer function of 1.02830 T/KA with position dependent values deviating from the average by up to .00130 T/KA revealing contruction inhomogeneities that were measured with a sensitivity of 25 ppM.
Smith, Mark L; Molina, Bianca J; Dayan, Erez; Saint-Victor, Diane S; Kim, Julie N; Kahn, Eugene S; Kagen, Alexander; Dayan, Joseph H
2017-01-01
The use of heterotopic vascularized lymph node transfer (HVLNT) for the treatment of lower extremity lymphedema is still evolving. Current techniques, either place the lymph nodes in the thigh without a skin paddle or at the ankle requiring an unsightly and often bulky skin paddle for closure. We explored the feasibility of doing a below-knee transfer without a skin paddle using the medial sural vessels as recipient vessels and report our experience in 21 patients. A retrospective review of all patients who underwent HVLNT to the medial calf was performed. Postoperative magnetic resonance angiography (MRA) and lymphoscintigraphy (LS) were analyzed to assess lymph node viability and function after transfer. Twenty-one patients underwent HVLNT to the medial calf. Postoperative imaging was performed at an average of 11 months after surgery. Thirteen patients had postoperative MRA, of whom 12 demonstrated viable lymph nodes. Seven patients underwent postoperative LS, of whom three demonstrated uptake in the transferred nodes. In the other four patients, the injectate failed to reach the level of the proximal calf. We provide proof of concept that HVLNT to the lower leg using the medial sural vessels without a skin paddle can result in viable and functional lymph nodes in the setting of lower extremity lymphedema. J. Surg. Oncol. 2017;115:90-95. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence
2012-05-01
Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.
Wireless power transfer magnetic couplers
Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee
2016-01-19
A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.
Neural field theory of perceptual echo and implications for estimating brain connectivity
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.
2018-04-01
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
NASA Astrophysics Data System (ADS)
Hariri, Saman; Mokhtari, Mojtaba; Gerdroodbary, M. Barzegar; Fallah, Keivan
2017-02-01
In this article, a three-dimensional numerical investigation is performed to study the effect of a magnetic field on a ferrofluid inside a tube. This study comprehensively analyzes the influence of a non-uniform magnetic field in the heat transfer of a tube while a ferrofluid (water with 0.86 vol% nanoparticles (Fe3O4) is let flow. The SIMPLEC algorithm is used for obtaining the flow and heat transfer inside the tube. The influence of various parameters, such as concentration of nanoparticles, intensity of the magnetic field, wire distance and Reynolds number, on the heat transfer is investigated. According to the obtained results, the presence of a non-uniform magnetic field significantly increases the Nusselt number (more than 300%) inside the tube. Also, the magnetic field induced by the parallel wire affects the average velocity of the ferrofluid and forms two strong eddies in the tube. Our findings show that the diffusion also raises as the concentration of the nanoparticle is increased.
Heat transfer in turbulent magneto-fluid-mechanic pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andelman, M.P.
1975-12-01
The ability to predict heat transfer in Magneto-Fluid-Mechanic flow is of importance in light of the development of MHD generators and the proposed development of thermonuclear reactors. In both cases heat transfer from (or to) a conducting fluid in the presence of a magnetic field plays an important part in the overall economics of the system. A semi-empirical analytical method is given for obtaining heat transfer coefficients in turbulent liquid metal pipe flow in the presence of a magnetic field aligned to the flow. The analysis was based on the Lykoudis turbulent transport model with the influence of a longitudinalmore » magnetic field included. The results are shown to be in agreement with available experimental values. Experimental velocity profiles in mercury for pipe flow in a transverse magnetic field were made at a Reynolds number of 315,000; for Hartmann numbers of 0, 92, 184, 369, and 1198; and at orientations of 0 degrees, 45 degrees, and 90 degrees from the magnetic field. These results provide a basis for the determination of the effect of a transverse magnetic field on turbulent diffusivities.« less
The influence of eddy currents on magnetic actuator performance
NASA Technical Reports Server (NTRS)
Zmood, R. B.; Anand, D. K.; Kirk, J. A.
1987-01-01
The present investigation of the effects of eddy currents on EM actuators' transient performance notes that a transfer function representation encompassing a first-order model of the eddy current influence can be useful in control system analysis. The method can be extended to represent the higher-order effects of eddy currents for actuators that cannot be represented by semiinfinite planes.
Bit patterned media with composite structure for microwave assisted magnetic recording
NASA Astrophysics Data System (ADS)
Eibagi, Nasim
Patterned magnetic nano-structures are under extensive research due to their interesting emergent physics and promising applications in high-density magnetic data storage, through magnetic logic to bio-magnetic functionality. Bit-patterned media is an example of such structures which is a leading candidate to reach magnetic densities which cannot be achieved by conventional magnetic media. Patterned arrays of complex heterostructures such as exchange-coupled composites are studied in this thesis as a potential for next generation of magnetic recording media. Exchange-coupled composites have shown new functionality and performance advantages in magnetic recording and bit patterned media provide unique capability to implement such architectures. Due to unique resonant properties of such structures, their possible application in spin transfer torque memory and microwave assisted switching is also studied. This dissertation is divided into seven chapters. The first chapter covers the history of magnetic recording, the need to increase magnetic storage density, and the challenges in the field. The second chapter introduces basic concepts of magnetism. The third chapter explains the fabrication methods for thin films and various lithographic techniques that were used to pattern the devices under study for this thesis. The fourth chapter introduces the exchanged coupled system with the structure of [Co/Pd] / Fe / [Co/Pd], where the thickness of Fe is varied, and presents the magnetic properties of such structures using conventional magnetometers. The fifth chapter goes beyond what is learned in the fourth chapter and utilizes polarized neutron reflectometry to study the vertical exchange coupling and reversal mechanism in patterned structures with such structure. The sixth chapter explores the dynamic properties of the patterned samples, and their reversal mechanism under microwave field. The final chapter summarizes the results and describes the prospects for future applications of these structures.
NASA Astrophysics Data System (ADS)
Prasad, Paras N.
2017-02-01
Chiral control of nonlinear optical functions holds a great promise for a wide range of applications including optical signal processing, bio-sensing and chiral bio-imaging. In chiral polyfluorene thin films, we demonstrated extremely large chiral nonlinearity. The physics of manipulating excitation dynamics for photon transformation will be discussed, along with nanochemistry control of upconversion in hierarchically built organic chromophore coupled-core-multiple shell nanostructures which enable introduce new, organic-inorganic energy transfer routes for broadband light harvesting and increased upconversion efficiency via multistep cascaded energy transfer. We are pursuing the applications of photon conversion technology in IR harvesting for photovoltaics, high contrast bioimaging, photoacoustic imaging, photodynamic therapy, and optogenetics. An important application is in Brain research and Neurophotonics for functional mapping and modulation of brain activities. Another new direction pursued is magnetic field control of light in in a chiral polymer nanocomposite to achieve large magneto-optic coefficient which can enable sensing of extremely weak magnetic field due to brain waves. Finally, we will consider the thought provoking concept of utilizing photons to quantify, through magneto-optics, and augment - through nanoptogenetics, the cognitive states, thus paving the path way to a quantified human paradigm.
NASA Astrophysics Data System (ADS)
Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.
2016-11-01
Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.
Schizophrenia and the corpus callosum: developmental, structural and functional relationships.
David, A S
1994-10-20
Several empirical and theoretical connections exist between schizophrenia and the corpus callosum: (1) disconnection symptoms resemble certain psychotic phenomena; (2) abnormal interhemispheric transmission could explain typically schizophrenic phenomena; (3) cases of psychosis have been found in association with complete and partial agenesis of the callosum; (4) experimental neuropsychology with schizophrenic patients has revealed abnormal patterns of interhemispheric transfer; (5) studies using magnetic resonance imaging have shown abnormal callosal dimensions in schizophrenic patients. The evidence in support of these links is discussed critically. Novel neuropsychological approaches in the study of information transfer in the visual modality between the cerebral hemispheres, consistent with callosal hyperconnectivity in schizophrenic patients but not matched psychiatric controls are highlighted. Some suggestions for further work including integrating functional and structural measures are offered.
Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples
NASA Astrophysics Data System (ADS)
Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao
2018-04-01
Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.
NASA Astrophysics Data System (ADS)
Zhang, Dacheng; Gao, Xiaoshuang; Cheng, Tanyu; Liu, Guohua
2014-05-01
The construction of chiral biaryl alcohols using enantio-relay catalysis is a particularly attractive synthetic method in organic synthesis. However, overcoming the intrinsic incompatibility of distinct organometallic complexes and the reaction conditions used are significant challenges in asymmetric catalysis. To overcome these barriers, we have taken advantage of an enantio-relay catalysis strategy and a combined dual-immobilization approach. We report the use of an imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica and ethylene-coated chiral organoruthenium-functionalized magnetic nanoparticles to catalyze a cascade Suzuki cross-coupling-asymmetric transfer hydrogenation reaction to prepare chiral biaryl alcohols in a two-step, one-pot process. As expected, the site-isolated active species, salient imidazolium phase-transfer character and high ethylene-coated hydrophobicity can synergistically boost the catalytic performance. Furthermore, enantio-relay catalysis has the potential to efficiently prepare a variety of chiral biaryl alcohols. Our synthetic strategy is a general method that shows the potential of developing enantio-relay catalysis towards environmentally benign and sustainable organic synthesis.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.
1993-01-01
A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.
Gallagher, Ferdia A; Sladen, Helen; Kettunen, Mikko I; Serrao, Eva M; Rodrigues, Tiago B; Wright, Alan; Gill, Andrew B; McGuire, Sarah; Booth, Thomas C; Boren, Joan; McIntyre, Alan; Miller, Jodi L; Lee, Shen-Han; Honess, Davina; Day, Sam E; Hu, De-En; Howat, William J; Harris, Adrian L; Brindle, Kevin M
2015-10-01
Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH. ©2015 American Association for Cancer Research.
Tokaya, Janot P; Raaijmakers, Alexander J E; Luijten, Peter R; van den Berg, Cornelis A T
2018-04-24
We introduce the transfer matrix (TM) that makes MR-based wireless determination of transfer functions (TFs) possible. TFs are implant specific measures for RF-safety assessment of linear implants. The TF relates an incident tangential electric field on an implant to a scattered electric field at its tip that generally governs local heating. The TM extends this concept and relates an incident tangential electric field to a current distribution in the implant therewith characterizing the RF response along the entire implant. The TM is exploited to measure TFs with MRI without hardware alterations. A model of rightward and leftward propagating attenuated waves undergoing multiple reflections is used to derive an analytical expression for the TM. This allows parameterization of the TM of generic implants, e.g., (partially) insulated single wires, in a homogeneous medium in a few unknowns that simultaneously describe the TF. These unknowns can be determined with MRI making it possible to measure the TM and, therefore, also the TF. The TM is able to predict an induced current due to an incident electric field and can be accurately parameterized with a limited number of unknowns. Using this description the TF is determined accurately (with a Pearson correlation coefficient R ≥ 0.9 between measurements and simulations) from MRI acquisitions. The TM enables measuring of TFs with MRI of the tested generic implant models. The MR-based method does not need hardware alterations and is wireless hence making TF determination in more realistic scenarios conceivable. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Mazerolle, Erin L; D'Arcy, Ryan CN; Beyea, Steven D
2008-01-01
Background It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI. Results Both group and individual data were considered. At liberal statistical thresholds (p < 0.005, uncorrected), group level activation was detected in the isthmus of the corpus callosum. This region connects the superior parietal cortices, which have been implicated previously in interhemispheric transfer. At the individual level, five of the 24 subjects (21%) had activation clusters that were located primarily within the corpus callosum. Consistent with the group results, the clusters of all five subjects were located in posterior callosal regions. The signal time courses for these clusters were comparable to those observed for task related gray matter activation. Conclusion The findings support the idea that, despite the inherent challenges, fMRI activation can be detected in the corpus callosum at the individual level. Future work is needed to determine whether the detection of this activation can be improved by utilizing higher spatial resolution, optimizing acquisition parameters, and analyzing the data with tissue specific models of the hemodynamic response. The ability to detect white matter fMRI activation expands the scope of basic and clinical brain mapping research, and provides a new approach for understanding brain connectivity. PMID:18789154
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.; Wang, S.; Akasofu, S.-I.
1991-01-01
Spacecraft observations suggest that flux transfer events and interplanetary magnetic clouds may be associated with magnetic flux ropes which are magnetic flux tubes containing helical magnetic field lines. In the magnetic flux ropes, the azimuthal magnetic field is superposed on the axial field. The time evolution of a localized magnetic flux rope is studied. A two-dimensional compressible MHD simulation code with a cylindrical symmetry is developed to study the wave modes associated with the evolution of flux ropes. It is found that in the initial phase both the fast magnetosonic wave and the Alfven wave are developed in the flux rope. After this initial phase, the Alfven wave becomes the dominant wave mode for the evolution of the magnetic flux rope and the radial expansion velocity of the flux rope is found to be negligible. Numerical results further show that even for a large initial azimuthal component of the magnetic field, the propagation velocity along the axial direction of the flux rope remains the Alfven velocity. It is also found that the localized magnetic flux rope tends to evolve into two separate magnetic ropes propagating in opposite directions. The simulation results are used to study the evolution of magnetic flux ropes associated with flux transfer events observed at the earth's dayside magnetopause and magnetic clouds in the interplanetary space.
Sherman, David M.
1990-01-01
Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates.
Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, N.; Maroun, F., E-mail: fouad.maroun@polytechnique.fr; Allongue, P.
2015-03-23
We studied the influence of controlled surface-limited oxidation of electrodeposited epitaxial Co(0001)/Au(111) films on their magnetic anisotropy energy using real time in situ magneto optical Kerr effect and density functional theory (DFT) calculations. We investigated the Co first electrochemical oxidation step which we demonstrate to be completely reversible and determined the structure of this oxide layer. We show that the interface magnetic anisotropy of the Co film increases by 0.36 erg/cm{sup 2} upon Co surface oxidation. We performed DFT calculations to determine the different surface structures in a wide potential range as well as the charge transfer at the Co surface.more » Our results suggest that the magnetic anisotropy change is correlated with a positive charge increase of 0.54 e{sup −} for the Co surface atom upon oxidation.« less
Chwiej, T; Szafran, B
2013-04-17
We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.
Interferometric study on the mass transfer in cryogenic distillation under magnetic field
NASA Astrophysics Data System (ADS)
Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.
2017-12-01
Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.
NASA Astrophysics Data System (ADS)
Sugawara, Hirotake; Yamamoto, Tappei
2016-09-01
In order to quantitatively evaluate the electron confinement effect of the confronting divergent magnetic fields (CDMFs) applied to an inductively coupled plasma, we analyzed the electron transfer between two regions divided by the separatrix of the CDMFs in Ar at 0.67 Pa at 300 K using a Monte Carlo method. A conventional transfer judgement was simply based on the electron passage across the separatrix from the upstream source region to the downstream diffusion region. An issue was an overestimation of the transfer due to temporary stay of electrons in the downstream region. Electrons may pass the downstream region during their gyration even in case they are effectively bound to the upstream region, where their guiding magnetic flux lines run. More than half of the transfers were temporary ones and such seeming transfers were relevantly excluded from the statistics by introducing a newly chosen criterion based on the passage of electron gyrocenters across the separatrix and collisional events in the downstream region. Simulation results showed a tendency that the ratio of the temporary transfers excluded was higher under stronger magnetic fields because of higher cyclotron frequency. Work supported by JSPS Kakenhi Grant Number 16K05626.
Spin Transfer Torque in Graphene
NASA Astrophysics Data System (ADS)
Lin, Chia-Ching; Chen, Zhihong
2014-03-01
Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.
NASA Astrophysics Data System (ADS)
Valiallah Mousavi, S.; Barzegar Gerdroodbary, M.; Sheikholeslami, Mohsen; Ganji, D. D.
2016-09-01
In this study, two dimensional numerical simulations are performed to investigate the influence of the magnetic field on the nanofluid flow inside a sinusoidal channel. This work reveals the influence of variable magnetic field in the heat transfer of heat exchanger while the mixture is in a single phase. In this heat exchanger, the inner tube is sinusoidal and the outer tube is considered smooth. The magnetic field is applied orthogonal to the axis of the sinusoidal tube. In our study, the ferrofluid (water with 4 vol% nanoparticles (Fe3O4)) flows in a channel with sinusoidal bottom. The finite volume method with the SIMPLEC algorithm is used for handling the pressure-velocity coupling. The numerical results present validated data with experimentally measured data and show good agreement with measurement. The influence of different parameters, like the intensity of magnetic field and Reynolds number, on the heat transfer is investigated. According to the obtained results, the sinusoidal formation of the internal tube significantly increases the Nusselt number inside the channel. Our findings show that the magnetic field increases the probability of eddy formation inside the cavities and consequently enhances the heat transfer (more than 200%) in the vicinity of the magnetic field at low Reynolds number ( Re=50). In addition, the variation of the skin friction shows that the magnetic field increases the skin friction (more than 600%) inside the sinusoidal channel.
NASA Astrophysics Data System (ADS)
Phillips, Patrick J.; Rui, Xue; Georgescu, Alexandru B.; Disa, Ankit S.; Longo, Paolo; Okunishi, Eiji; Walker, Fred; Ahn, Charles H.; Ismail-Beigi, Sohrab; Klie, Robert F.
2017-05-01
Epitaxial strain, layer confinement, and inversion symmetry breaking have emerged as powerful new approaches to control the electronic and atomic-scale structural properties of complex metal oxides. Trivalent rare-earth (RE) nickelate R E NiO3 heterostructures have been shown to be exemplars since the orbital occupancy, degeneracy, and, consequently, electronic/magnetic properties can be altered as a function of epitaxial strain, layer thickness, and superlattice structure. One recent example is the tricomponent LaTiO3-LaNiO3-LaAlO3 superlattice which exhibits charge transfer and orbital polarization as the result of its interfacial dipole electric field. A crucial step towards control of these parameters for future electronic and magnetic device applications is to develop an understanding of both the magnitude and range of the octahedral network's response towards interfacial strain and electric fields. An approach that provides atomic-scale resolution and sensitivity towards the local octahedral distortions and orbital occupancy is therefore required. Here, we employ atomic-resolution imaging coupled with electron spectroscopies and first-principles theory to examine the role of interfacial charge transfer and symmetry breaking in a tricomponent nickelate superlattice system. We find that nearly complete charge transfer occurs between the LaTiO3 and LaNiO3 layers, resulting in a mixed Ni2 +/Ni3 + valence state. We further demonstrate that this charge transfer is highly localized with a range of about 1 unit cell within the LaNiO3 layers. We also show how Wannier-function-based electron counting provides a simple physical picture of the electron distribution that connects directly with formal valence charges. The results presented here provide important feedback to synthesis efforts aimed at stabilizing new electronic phases that are not accessible by conventional bulk or epitaxial film approaches.
NASA Astrophysics Data System (ADS)
Freeland, J. W.; Chakhalian, J.; Boris, A. V.; Tonnerre, J.-M.; Kavich, J. J.; Yordanov, P.; Grenier, S.; Zschack, P.; Karapetrova, E.; Popovich, P.; Lee, H. N.; Keimer, B.
2010-03-01
A combination of spectroscopic probes was used to develop a detailed experimental description of the transport and magnetic properties of superlattices composed of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3 . The charge-carrier density and Ru valence state in the superlattices are not significantly different from those of bulk CaRuO3 . The small charge transfer across the interface implied by these observations confirms predictions derived from density-functional calculations. However, a ferromagnetic polarization due to canted Mn spins penetrates 3-4 unit cells into CaMnO3 , far exceeding the corresponding predictions. The discrepancy may indicate the formation of magnetic polarons at the interface.
Remote sensing of the magnetic moment of uranus: predictions for voyager.
Hill, T W; Dessler, A J
1985-03-22
Power is supplied to a planet's magnetosphere from the kinetic energy of planetary spin and the energy flux of the impinging solar wind. A fraction of this power is available to drive numerous observable phenomena, such as polar auroras and planetary radio emissions. In this report our present understanding of these power transfer mechanisms is applied to Uranus to make specific predictions of the detectability of radio and auroral emissions by the planetary radio astronomy (PRA) and ultraviolet spectrometer (UVS) instruments aboard the Voyager spacecraft before its encounter with Uranus at the end of January 1986. The power available for these two phenomena is (among other factors) a function of the magnetic moment of Uranus. The date of earliest detectability also depends on whether the predominant power source for the magnetosphere is planetary spin or solar wind. The magnetic moment of Uranus is derived for each power source as a function of the date of first detection of radio emissions by the PRA instrument or auroral emissions by the UVS instrument. If we accept the interpretation of ultraviolet observations now available from the Earth-orbiting International Ultraviolet Explorer satellite, Uranus has a surface magnetic field of at least 0.6 gauss, and more probably several gauss, making it the largest or second-largest planetary magnetic field in the solar system.
Current driven dynamics of magnetic domain walls in permalloy nanowires
NASA Astrophysics Data System (ADS)
Hayashi, Masamitsu
The significant advances in micro-fabrication techniques opened the door to access interesting properties in solid state physics. With regard to magnetic materials, geometrical confinement of magnetic structures alters the defining parameters that govern magnetism. For example, development of single domain nano-pillars made from magnetic multilayers led to the discovery of electrical current controlled magnetization switching, which revealed the existence of spin transfer torque. Magnetic domain walls (DWs) are boundaries in magnetic materials that divide regions with distinct magnetization directions. DWs play an important role in the magnetization reversal processes of both bulk and thin film magnetic materials. The motion of DW is conventionally controlled by magnetic fields. Recently, it has been proposed that spin polarized current passed across the DW can also control the motion of DWs. Current in most magnetic materials is spin-polarized, due to spin-dependent scattering of the electrons, and thus can deliver spin angular momentum to the DW, providing a "spin transfer" torque on the DW which leads to DW motion. In addition, owing to the development of micro-fabrication techniques, geometrical confinement of magnetic materials enables creation and manipulation of a "single" DW in magnetic nanostructures. New paradigms for DW-based devices are made possible by the direct manipulation of DWs using spin polarized electrical current via spin transfer torque. This dissertation covers research on current induced DW motion in magnetic nanowires. Fascinating effects arising from the interplay between DWs with spin polarized current will be revealed.
First principles study of the magnetic properties and charge transfer of Ni-doped BiFeO3
NASA Astrophysics Data System (ADS)
Sun, Yuan; Sun, Zhenghao; Wei, Ren; Huang, Yuxin; Wang, Lili; Leng, Jing; Xiang, Peng; Lan, Min
2018-03-01
We present a first-principles study of electronic structures and magnetic properties in Ni-doped BiFeO3 using the density functional theory + U methods. The BiNixFe1-xO3 (x = 0.125, 0.25, 0.5) multiferroic ceramics represent ferromagnetic properties due to the ferrimagnetic order in Ni-O-Fe, and the magnetic moment rises with increase in Ni doping concentration agreeing well with experimental results. Ni atoms prefer to occupy the diagonal positions in the quasi-plane Ni-O-Fe eight-membered ring. Charge transfer from Bi 6s state to Ni 3d state through O 2p orbital lead to the 2+ oxidation state of Ni, indicating high Néel temperatures of BiNixFe1-xO3, and the electronic state of the system can be described as Bi4+xBi3+1-xNi2+xFe3+1-xO3. The spin polarization of Bi 6s state and O 2p state near the Fermi level contributes to the total magnetic moment. A spin-polarized acceptor level of about 0.4 eV constituted by Bi 6s state and O 2p state is found, which is responsible for the increase in leakage current of Ni-doped BiFeO3.
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-09-01
In magnetically mediated hyperthermia (MMH), an externally applied alternating magnetic field interacts with a mediator (such as a magnetic nanoparticle or an implant) inside the body to heat up the tissue in its proximity. Producing heat via induced currents in this manner is strikingly similar to wireless power transfer (WPT) for implants, where power is transferred from a transmitter outside of the body to an implanted receiver, in most cases via magnetic fields as well. Leveraging this analogy, a systematic method to design MMH implants for optimal heating efficiency is introduced, akin to the design of WPT systems for optimal power transfer efficiency. This paper provides analytical formulas for the achievable heating efficiency bounds as well as the optimal operating frequency and the implant material. Multiphysics simulations validate the approach and further demonstrate that optimization with respect to maximum heating efficiency is accompanied by minimizing heat delivery to healthy tissue. This is a property that is highly desirable when considering MMH as a key component or complementary method of cancer treatment and other applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felser, Claudia, E-mail: felser@cpfs.mpg.de; Wollmann, Lukas; Chadov, Stanislav
Heusler compounds are a remarkable class of materials with more than 1000 members and a wide range of extraordinary multi-functionalities including halfmetallic high-temperature ferri- and ferromagnets, multi-ferroics, shape memory alloys, and tunable topological insulators with a high potential for spintronics, energy technologies, and magneto-caloric applications. The tunability of this class of materials is exceptional and nearly every functionality can be designed. Co{sub 2}-Heusler compounds show high spin polarization in tunnel junction devices and spin-resolved photoemission. Manganese-rich Heusler compounds attract much interest in the context of spin transfer torque, spin Hall effect, and rare earth free hard magnets. Most Mn{sub 2}-Heuslermore » compounds crystallize in the inverse structure and are characterized by antiparallel coupling of magnetic moments on Mn atoms; the ferrimagnetic order and the lack of inversion symmetry lead to the emergence of new properties that are absent in ferromagnetic centrosymmetric Heusler structures, such as non-collinear magnetism, topological Hall effect, and skyrmions. Tetragonal Heusler compounds with large magneto crystalline anisotropy can be easily designed by positioning the Fermi energy at the van Hove singularity in one of the spin channels. Here, we give a comprehensive overview and a prospective on the magnetic properties of Heusler materials.« less
NASA Astrophysics Data System (ADS)
Kim, Dongwook; Park, Bumjin; Park, Jaehyoung; Park, Hyun Ho; Ahn, Seungyoung
2018-05-01
In this paper, we propose a novel coil structure, using a ferromagnetic material which concentrates the magnetic field, as the propulsion system of a wireless power transfer (WPT) based micro-robot. This structure uses an incident magnetic field to induce current during wireless power transfer, to generate a Lorentz force. To prevent net cancelation of the Lorentz force in the load coil, ferrite films were applied to one side of the coil segment. The demonstrated simplicity and effectiveness of the proposed micro-robot showed its suitability for applications. Simulation and experimental results confirmed a velocity of 1.02 mm/s with 6 mW power transfer capacity for the 3 mm sized micro-robot.
NASA Astrophysics Data System (ADS)
Geng, Jialu; Wang, Caiping; Zhu, Honglang; Wang, Xiaojie
2018-03-01
Elastomeric matrix embedded with magnetic micro-sized particles has magnetically controllable properties, which has been investigated extensively in the last decades. In this study we develop a new magnetically controllable elastomeric material for acoustic applications at lower frequencies. The soft polyurethane foam is used as matrix material due to its extraordinary elastic and acoustic absorption properties. One-step method is used to synthesize polyurethane foam, in which all components including polyether polyols 330N, MDI, deionized water, silicone oil, carbonyl iron particle (CIP) and catalyst are put into one container for curing. Changing any component can induce the change of polyurethane foam's properties, such as physical and acoustic properties. The effect of the content of MDI on acoustic absorption is studied. The CIPs are aligned under extra magnetic field during the foaming process. And the property of polyurethane foam with aligned CIPs is also investigated. Scanning electron microscope (SEM) is used to observe the structure of pore and particle-chain. The two-microphone impedance tube and the transfer function method are used to test acoustic absorption property of the magnetic foams.
NASA Astrophysics Data System (ADS)
Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu
2017-01-01
Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.
Wang, Ranran; Hu, Yang; Zhao, Nana; Xu, Fu-Jian
2016-05-11
Due to their unique properties, one-dimensional (1D) magnetic nanostructures are of great significance for biorelated applications. A facile and straightforward strategy to fabricate 1D magnetic structure with special shapes is highly desirable. In this work, well-defined peapod-like 1D magnetic nanoparticles (Fe3O4@SiO2, p-FS) are readily synthesized by a facile method without assistance of any templates, magnetic string or magnetic field. There are few reports on 1D gene carriers based on Fe3O4 nanoparticles. BUCT-PGEA (ethanolamine-functionalized poly(glycidyl methacrylate) is subsequently grafted from the surface of p-FS nanoparticles by atom transfer radical polymerization to construct highly efficient gene vectors (p-FS-PGEA) for effective biomedical applications. Peapod-like p-FS nanoparticles were proven to largely improve gene transfection performance compared with ordinary spherical Fe3O4@SiO2 nanoparticles (s-FS). External magnetic field was also utilized to further enhance the transfection efficiency. Moreover, the as-prepared p-FS-PGEA gene carriers could combine the magnetic characteristics of p-FS to well achieve noninvasive magnetic resonance imaging (MRI). We show here novel and multifunctional magnetic nanostructures fabricated for biomedical applications that realized efficient gene delivery and real-time imaging at the same time.
Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III).
Crawford, Scott E; Andolina, Christopher M; Kaseman, Derrick C; Ryoo, Bo Hyung; Smith, Ashley M; Johnston, Kathryn A; Millstone, Jill E
2017-12-13
Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 10 6 M -1 cm -1 ) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.
NASA Astrophysics Data System (ADS)
Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.
2018-06-01
Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6 × 9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.
NASA Astrophysics Data System (ADS)
Azimi, Neda; Rahimi, Masoud
2017-01-01
Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe3O4 nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (KLa) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of KLa and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002-0.01 (w/v) on KLa and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of KLa (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008-0.01 (w/v).
Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
NASA Astrophysics Data System (ADS)
Zhang, Qi; Gui, Keting; Wang, Xiaobo
2016-02-01
The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.
Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory
NASA Astrophysics Data System (ADS)
Sun, Jonathan Z.
2016-10-01
Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.
NASA Astrophysics Data System (ADS)
Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi
2003-08-01
When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.
Magnetic induced heating of nanoparticle solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murph, S. Hunyadi; Brown, M.; Coopersmith, K.
2016-12-02
Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.
Energy transport in cooling device by magnetic fluid
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroshi; Iwamoto, Yuhiro
2017-06-01
Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.
Nonlinear Magnetic Dynamics and The Switching Phase Diagrams in Spintronic Devices
NASA Astrophysics Data System (ADS)
Yan, Shu
Spin-transfer torque induced magnetic switching, by which the spin-polarized current transfers its magnetic moment to the ferromagnetic layer and changes its magnetization, holds great promise towards faster and smaller magnetic bits in data-storage applications due to the lower power consumption and better scalability. We propose an analytic approach which can be used to calculate the switching phase diagram of a nanomagnetic system in the presence of both magnetic field and spin-transfer torque in an exact fashion. This method is applied to the study of switching conditions for the uniaxial, single domain magnetic layers in different spin-transfer devices. In a spin valve with spin polarization collinear with the easy axis, we get a modified Stoner-Wohlfarth astroid which represents many of the features that have been found in experiment. It also shows a self-crossing boundary and demonstrates a region with three stable equilibria. We demonstrate that the region of stable equilibria with energy near the maximum can be reached only through a narrow bottleneck in the field space, which sets a stringent requirement for magnetic field alignment in the experiments. Switching diagrams are then calculated for the setups with magnetic field not perfectly aligned with the easy axis. In a ferromagnet-heavy-metal bilayer device with strong spin Hall effect, the in plane current becomes spin-polarized and transfers its magnetic moment to the ferromagnetic layer by diffusion. The three-dimensional asymmetric phase diagram is calculated. In the case that the external field is confined in the vertical plane defined by the direction of the current and the easy axis, the spin-transfer torque shifts the conventional in-plane (IP) equilibria within the same plane, and also creates two out-of-plane (OOP) equilibria, one of which can be stable. The threshold switching currents for IP switching and OOP switching are discussed. We also address the magnetic switching processes. Damping switching and precessional switching are two different switching types that are typically considered in recent studies. In the damping mode the switching is slow and heavily depends on the initial deviation, while in the precessional mode the accurate manipulation of the field or current pulse is required. We propose a switching scenario for a fast and reliable switching by taking advantage of the out-of-plane stable equilibrium in the SHE induced magnetic switching. The magnetization is first driven by a pulse of field and current towards the OOP equilibrium without precession. Since it is in the lower half of the unit sphere, no backwards pulse is required for a complete switching. This indicates a potentially feasible method of reliable ultra-fast magnetic control.
2016-07-27
ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Wireless Power Transfer , Structural Health Monitoring...efficient strongly coupled magnetic resonant systems, Wireless Power Transfer , (03 2014): 0. doi: 10.1017/wpt.2014.3 TOTAL: 1 Received Paper TOTAL...2016 Received Paper . Miniaturized Strongly Coupled Magnetic Resonant Systems for Wireless Power Transfer , 2016 IEEE Antennas Propagat. Society
Analysis of FORTE data to extract ionospheric parameters
NASA Astrophysics Data System (ADS)
Roussel-Dupré, Robert A.; Jacobson, Abram R.; Triplett, Laurie A.
2001-01-01
The ionospheric transfer function is derived for a spherically symmetric ionosphere with an arbitrary radial electron density profile in the limit where the radio frequencies of interest ω are much larger than the plasma frequency ωpe. An expansion of the transfer function to second order in the parameter X (= ω2pe/ω2) is carried out. In this limit the dispersive properties of the ionosphere are manifested as a frequency-dependent time of arrival that includes quadratic, cubic, and quartic terms in 1/ω. The coefficients of these terms are related to the total electron content (TEC) along the slant path from transmitter to receiver, the product of TEC and the longitudinal magnetic field strength along the slant path, and refractive bending and higher-order electron density profile effects, respectively. By fitting the time of arrival versus frequency of a transionospheric signal to a polynomial in 1/ω it is possible to extract the TEC, the longitudinal magnetic field strength, the peak electron density, and an effective thickness for the ionosphere. This exercise was carried out for a number of transionospheric pulses measured in the VHF by the FORTE satellite receiver and generated by the Los Alamos Portable Pulser. The results are compared with predictions derived from the International Reference Ionosphere and the United States Geological Survey geomagnetic field model.
NASA Astrophysics Data System (ADS)
Jaya, Selvaraj Mathi
2017-06-01
A non-equilibrium Green's function formulation to study the spin transfer torque (STT) in non-collinear magnetic tunnel junctions (MTJs) exhibiting quasiparticle bands is developed. The formulation can be used to study the magnetoresistance and spin current too. The formulation is used to study the STT in model tunnel junctions exhibiting multiple layers and quasiparticle bands. The many body interaction that gives rise to quasiparticle bands is assumed to be a s - f exchange interaction at the electrode regions of the MTJ. The quasiparticle bands are obtained using a many body procedure and the single particle band structure is obtained using the tight binding model. The bias dependence of the STT as well as the influence of band occupancy and s - f exchange coupling strength on the STT are studied. We find from our studies that the band occupancy plays a significant role in deciding the STT and the s - f interaction strength too influences the STT significantly. Anomalous behavior in both the parallel and perpendicular components of the STT is obtained from our studies. Our results obtained for certain values of the band occupation are found to show the trend observed from the experimental measurements of STT.
Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat
2014-01-01
This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.
Magnetic metamaterial superlens for increased range wireless power transfer.
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Huang, Da; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav
2014-01-10
The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the "long range" regime - referring to distances larger than the diameter of the largest loop - WPT efficiency in free space falls off as (1/d)(6); power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A "superlens", however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13-16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system.
Quantum approach of mesoscopic magnet dynamics with spin transfer torque
NASA Astrophysics Data System (ADS)
Wang, Yong; Sham, L. J.
2013-05-01
We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.
Quantitative MRI in hypomyelinating disorders: Correlation with motor handicap.
Steenweg, Marjan E; Wolf, Nicole I; van Wieringen, Wessel N; Barkhof, Frederik; van der Knaap, Marjo S; Pouwels, Petra J W
2016-08-23
To assess the correlation of tissue parameters estimated by quantitative magnetic resonance (MR) techniques and motor handicap in patients with hypomyelination. Twenty-eight patients with different causes of hypomyelination (12 males, 16 females; mean age 10 years) and 61 controls (33 males, 28 females; mean age 8 years) were prospectively investigated. We quantified T2 relaxation time, magnetization transfer ratio, fractional anisotropy, mean, axial, and radial diffusivities, and brain metabolites. We performed measurements in the splenium, parietal deep white matter, and corticospinal tracts in the centrum semiovale. We further analyzed diffusion measures using tract-based spatial statistics. We estimated severity of motor handicap by the gross motor function classification system. We evaluated correlation of handicap with MR measures by linear regression analyses. Fractional anisotropy, magnetization transfer ratio, choline, and N-acetylaspartate/creatine ratio were lower and diffusivities, T2 values, and inositol were higher in patients than in controls. Tract-based spatial statistics showed that these changes were widespread for fractional anisotropy (96% of the white matter skeleton), radial (93%) and mean (84%) diffusivity, and less so for axial diffusivity (20%). Correlation with handicap yielded radial diffusivity and N-acetylaspartate/creatine ratio as strongest independent explanatory variables. Gross motor function classification system grades are in part explained by MR measures. They indicate that mainly lack of myelin and, to a lesser degree, loss of axonal integrity codetermine the degree of motor handicap in patients with hypomyelinating disorders. These MR measures can be used to evaluate strategies that are aimed at promotion of myelination. © 2016 American Academy of Neurology.
Magnetotelluric investigation of the Vestfold Hills and Rauer Group, East Antarctica
Peacock, Jared R.; Selway, Katherine
2016-01-01
The Vestfold Hills and Rauer Group in East Antarctica have contrasting Archean to Neoproterozoic geological histories and are believed to be juxtaposed along a suture zone that now lies beneath the Sørsdal Glacier. Exact location and age of this suture zone are unknown, as is its relationship to regional deformation associated with the amalgamation of East Gondwana. To image the suture zone, magnetotelluric (MT) data were collected in Prydz Bay, East Antarctica, mainly along a profile crossing the Sørsdal Glacier and regions inland of the Vestfold Hills and Rauer Group islands. Time-frequency analysis of the MT time series yielded three important observations: (1) Wind speeds in excess of ∼8 m/s reduce coherence between electric and magnetic fields due to charged wind-blown particles of ice and snow. (2) Estimation of the MT transfer function is best between 1000 and 1400 UT when ionospheric Hall currents enhance the magnetic source field. (3) Nonplanar source field effects were minimal but detectable and removed from estimation of the MT transfer function. Inversions of MT data in 2-D and 3-D produce similar resistivity models, where structures in the preferred 3-D resistivity model correlate strongly with regional magnetic data. The electrically conductive Rauer Group is separated from the less conductive Vestfold Hills by a resistive zone under the Sørsdal Glacier, which is interpreted to be caused by oxidation during suturing. Though a suture zone has been imaged, no time constrains on suturing can be made from the MT data.
NASA Astrophysics Data System (ADS)
Amani, Mohammad; Ameri, Mohammad; Kasaeian, Alibakhsh
2017-06-01
In the present experimental study, the influence of permanent and alternating magnetic fields on the flow and thermal behavior of MnFe2O4 magnetic nanofluid flowing through a circular open-cell metal foam tube is investigated under homogeneous heat flux conditions. The experiments are performed at various nanoparticle concentrations, Reynolds numbers and magnetic fields with different strengths and frequencies. According to the observations, the heat transfer rate enhances directly relative to nanoparticle concentration and Reynolds number in attendance of magnetic field, whereas its maximum value of 16.4% is found for 2 wt% nanoparticles at Re = 200 under alternating field with 400 G strength and 20 Hz frequency. Moreover, it is observed that the influence of strength and frequency of magnetic field is insignificant for the pressure drop. Hydrothermal efficiency as the ratio of the Nusselt number to the ratio of the pressure drop is defined in order to evaluate the privilege of using MnFe2O4 nanofluids in practical applications. The maximum efficiency of 1.25 is observed at 2 wt% under magnetic field with 400 G and 20 Hz at Re = 1000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeland, J. W.; Chakhalian, J.; Boris, A. V.
2010-01-01
A combination of spectroscopic probes was used to develop a detailed experimental description of the transport and magnetic properties of superlattices composed of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3. The charge carrier density and Ru valence state in the superlattices are not significantly different from those of bulk CaRuO3. The small charge transfer across the interface implied by these observations confirms predictions derived from density functional calculations. However, a ferromagnetic polarization due to canted Mn spins penetrates 3-4 unit cells into CaMnO3, far exceeding the corresponding predictions. The discrepancy may indicate the formation of magnetic polarons atmore » the interface.« less
Proton transport through aqueous Nafion membrane
NASA Astrophysics Data System (ADS)
Son, D. N.; Kasai, H.
2009-08-01
We introduce a new model for proton transport through a single proton-conducting channel of an aqueous Nafion membrane based on a mechanism in which protons move under electrostatic effect provided by the sulfonate ( SO3 -groups of the Nafion side chains, the spin effect of active components, the hydrogen bonding effect with water molecules, and the screening effect of water media. This model can describe the proton transport within various levels of humidification ranging from the low humidity to the high humidity as a function of operating temperature. At low humidity, this model approaches to the so-called surface mechanism, while at high humidity, it approaches the well-known Grotthuss one. Proton motion is considered as the transfer from cluster to cluster under a potential energy. A proton-proton interaction is comprised in the calculation. Using Green function method, we obtained the proton current as a function of the Nafion membrane temperature. We found that the lower the temperature, the higher the proton current transfer through the Nafion membrane in low temperatures compared to the critical point 10K, which separates magnetic regime from non-magnetic regime. The increasing of proton current at very low temperatures is attributed to the spin effect. As the membrane temperature is higher than 40 ° C , the decreasing of proton current is attributed to the loss of water uptake and the polymer contraction. The results of this study are qualitatively in good agreement with experiments. The expression for the critical temperature is also presented as a function of structural and tunable parameters, and interpreted by experimental data. in here
Afroze, J D; Abden, M J; Islam, M A
2018-05-01
Hydroxyapatite-functionalized multi-walled carbon nanotube (HA-fMWCNT) magnetic nanocomposite was successfully prepared using a novel slurry-compounding method. The prepared HA-fMWCNT nanocomposite with the addition of small amount (0.5 wt%) of fMWCNT exhibited much greater improvement in mechanical properties due to strong interfacial adhesion between acid-treated MWCNTs fillers and HA matrix, thus efficient stress transfer to nanotubes from the matrix. The nanocomposite exhibited excellent haemocompatibility. Fractographic analysis was performed in order to understand the fracture behavior and toughening mechanisms. The fracture mechanisms and micro-deformation were examined by studying the microstructure of arrested crack tips using field emission scanning electron microscopy (FESEM). The origination and formation of micro-cracks are the dominant fracture mechanisms and micro-deformation in the HA-fMWCNTs nanocomposite. The developed new method enables to the fabrication of magnetic HA-fMWCNTs nanocomposite with superior mechanical performance may be potential for application as high load-bearing bone implants in the biomedical field. Copyright © 2018 Elsevier B.V. All rights reserved.
Observatory geoelectric fields induced in a two-layer lithosphere during magnetic storms
Love, Jeffrey J.; Swidinsky, Andrei
2015-01-01
We report on the development and validation of an algorithm for estimating geoelectric fields induced in the lithosphere beneath an observatory during a magnetic storm. To accommodate induction in three-dimensional lithospheric electrical conductivity, we analyze a simple nine-parameter model: two horizontal layers, each with uniform electrical conductivity properties given by independent distortion tensors. With Laplace transformation of the induction equations into the complex frequency domain, we obtain a transfer function describing induction of observatory geoelectric fields having frequency-dependent polarization. Upon inverse transformation back to the time domain, the convolution of the corresponding impulse-response function with a geomagnetic time series yields an estimated geoelectric time series. We obtain an optimized set of conductivity parameters using 1-s resolution geomagnetic and geoelectric field data collected at the Kakioka, Japan, observatory for five different intense magnetic storms, including the October 2003 Halloween storm; our estimated geoelectric field accounts for 93% of that measured during the Halloween storm. This work demonstrates the need for detailed modeling of the Earth’s lithospheric conductivity structure and the utility of co-located geomagnetic and geoelectric monitoring.
On the topology of flux transfer events
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim; Schindler, Karl
1990-01-01
A topological analysis is made of a simple model magnetic field of a perturbation at the magnetopause that shares magnetic properties with flux transfer events. The aim is to clarify a number of topological aspects that arise in the case of fully three-dimensional magnetic fields. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause by the formation of a ropelike magnetic field structure. For this purpose a global topological model of a closed magnetosphere is considered as the unperturbed state. The topological substructure of the model flux rope is discussed in detail.
MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
NASA Astrophysics Data System (ADS)
Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick
2015-01-01
The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu-water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers.
Preparation, characteristics, convection and applications of magnetic nanofluids: A review
NASA Astrophysics Data System (ADS)
Kumar, Aditya; Subudhi, Sudhakar
2018-02-01
Magnetic nanofluids (MNfs), the colloidal suspension of ferromagnetic nanomaterial, have been taken into research fascinatingly. After contemplating its distinctive interesting properties and unique eximious features it offers innumerous application not only in heat transfer field but also immensely prevalent in medical, biological, aerospace, electronics and solar sciences. This review paper epitomizes and perusing the research work done on heat transfer application of MNfs and encapsulate it for the future research support. Moreover, numerical and experimental, both the approaches has been included for the insightful analysis of phenomenon to apprehend augmentation in heat transfer by MNfs. This article first underlines the importance of appropriate methods of preparation of MNfs as well as its effects on the thermophysical properties of MNfs. Subsequently, the paper comprehended the descriptive analysis of augmentation of convection heat transfer and the effect of magnetic field on the behavior MNfs. Additionally, the effect of magnetic field intensity has been taken as a pertinent parameter and correlations have been developed for thermal conductivity, viscosity and heat transfer coefficient based on the reviewed data. The paper concluded with the tremendous applications of the MNfs and the futuristic plan to support the potential areas for future research.
Analyzing Small Signal Stability of Power System based on Online Data by Use of SMES
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyuki; Shirai, Yasuyuki; Nitta, Tanzo; Shibata, Katsuhiko
The purpose of this study is to estimate eigen-values and eigen-vectors of a power system from on-line data to evaluate the power system stability. Power system responses due to the small power modulation of known pattern from SMES (Superconducting Magnetic Energy Storage) were analyzed, and the transfer functions between the power modulation and power oscillations of generators were obtained. Eigen-values and eigen-vectors were estimated from the transfer functions. Experiments were carried out by use of a model SMES and Advanced Power System Analyzer (APSA), which is an analogue type power system simulator of Kansai Electric Power Company Inc., Japan. Changes in system condition were observed by the estimated eigen-values and eigen-vectors. Result agreed well with the resent report and digital simulation. This method gives a new application for SMES, which will be installed for improving electric power quality.
Subwavelength resolution from multilayered structure (Conference Presentation)
NASA Astrophysics Data System (ADS)
Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping
2016-10-01
Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.
A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...
Karasawa, Masanobu; Ishii, Kazuyuki
2018-05-03
We have investigated the demagnetization of a ferrimagnetic substrate, Bi, Al-substituted dysprosium iron garnet (Bi0.8Dy2.2Fe4.3Al0.7O12), based on selective pulsed laser irradiation of a molecular thin film consisting of μ-oxo-bis[hydroxyl{2,9(or 10),16(or 17),23(or 24)-tetra-tert-butylphthalocyanato}silicon] ((SiPc)2) and poly(vinylidene fluoride), and succeeded in reproducing photothermal energy transfer from a molecular thin film to an inorganic magnetic substrate in a submicrometer-order and a submicrosecond time scale using numerical analysis. After the instant temperature rise due to nanosecond pulsed laser irradiation of the (SiPc)2-based film, followed by heat transfer from the film to the neighboring magnetic substrate, demagnetization of the magnetic substrate was spectroscopically monitored by the decrease in its magnetic circular dichroism (MCD) intensity. The MCD intensity decreased with increasing pulsed laser energy, which reflects the fact that the submicrometer-order region of the substrate was demagnetized as a result of temperature rise reaching high Curie temperature. This heat transfer phenomenon resulting in the demagnetization of the magnetic substrate was numerically analyzed in a submicrometer-order and a submicrosecond time scale using the finite difference method: the demagnetized regions were calculated to be the same order of magnitude as those experimentally evaluated. These results would provide a more detailed understanding of photothermal energy transfer in organic-inorganic hybrid materials, which would be useful for developing photofunctional materials.
Resonant Spin-Transfer-Torque Nano-Oscillators
NASA Astrophysics Data System (ADS)
Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran
2017-12-01
Spin-transfer-torque nano-oscillators are potential candidates for replacing the traditional inductor-based voltage-controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions, which have the disadvantages of low power outputs and poor conversion efficiencies. We theoretically propose using resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present viable device designs geared toward a high microwave output power and an efficient conversion of the dc input power. We attribute these robust qualities to the resulting nontrivial spin-current profiles and the ultrahigh tunnel magnetoresistance, both of which arise from resonant spin filtering. The device designs are based on the nonequilibrium Green's-function spin-transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation and Poisson's equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around 1150% and an efficiency enhancement of over 1100% compared to typical trilayer designs. We rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. We also demonstrate the robustness of our structures against device design fluctuations and elastic dephasing. This work sets the stage for pentalyer spin-transfer-torque nano-oscillator device designs that ameliorate major issues associated with typical trilayer designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Liu, Guodong; Wu, Hong
2008-03-03
We present a poly(guanine)-functionalized silica nanoparticle (NP) label-based electrochemical immunoassay for sensitively detecting 2,4,6-trinitrotoluene (TNT). This immunoassay takes advantage of magnetic bead–based platform for competitive displacement immunoreactions and separation, and use electroactive nanoparticles as labels for signal amplification. For this assay, anti-TNT-coated magnetic beads interacted with TNT analog-conjugated poly(guanine)-silica NPs and formed analog-anti-TNT immunocomplexes on magnetic beads. The immunocomplexes coated magnetic beads were exposed to TNT samples, which resulted in displacing the analog conjugated poly(guanine) silica NPs into solution by TNT. In contrast, there are no guanine residues releasing into the solution in the absence of TNT. The reaction solutionmore » was then separated from the magnetic beads and transferred to the electrode surface for electrochemical measurements of guanine oxidation with Ru(bpy)32+ as mediator. The sensitivity of this TNT assay was greatly enhanced through dual signal amplifications: 1) a large amount of guanine residues on silica nanoparticles is introduced into the test solution by displacement immunoreactions and 2) a Ru(bpy)32+-induced guanine catalytic oxidation further enhances the electrochemical signal. Some experimental parameters for the nanoparticle label-based electrochemical immunoassay were studied and the performance of this assay was evaluated. The method is found to be very sensitive and the detection limit of this assay is ~ 0.1 ng mL-1 TNT. The electrochemical immunoassay based on the poly[guanine]-functionalized silica NP label offers a new approach for sensitive detection of explosives.« less
Magnetically Suspended Linear Pulse Motor for Semiconductor Wafer Transfer in Vacuum Chamber
NASA Technical Reports Server (NTRS)
Moriyama, Shin-Ichi; Hiraki, Naoji; Watanabe, Katsuhide; Kanemitsu, Yoichi
1996-01-01
This paper describes a magnetically suspended linear pulse motor for a semiconductor wafer transfer robot in a vacuum chamber. The motor can drive a wafer transfer arm horizontally without mechanical contact. In the construction of the magnetic suspension system, four pairs of linear magnetic bearings for the lift control are used for the guidance control as well. This approach allows us to make the whole motor compact in size and light in weight. The tested motor consists of a double-sided stator and a transfer arm with a width of 50 mm and a total length of 700 mm. The arm, like a ladder in shape, is designed as the floating element with a tooth width of 4 mm (a tooth pitch of 8 mm). The mover mass is limited to about 1.6 kg by adopting such an arm structure, and the ratio of thrust to mover mass reaches to 3.2 N/kg under a broad air gap (1 mm) between the stator teeth and the mover teeth. The performance testing was carried out with a transfer distance less than 450 mm and a transfer speed less than 560 mm/s. The attitude of the arm was well controlled by the linear magnetic bearings with a combined use, and consequently the repeatability on the positioning of the arm reached to about 2 micron. In addition, the positioning accuracy was improved up to about 30 micron through a compensation of the 128-step wave current which was used for the micro-step drive with a step increment of 62.5 micron.
A dynamic model of the eye nystagmus response to high magnetic fields.
Glover, Paul M; Li, Yan; Antunes, Andre; Mian, Omar S; Day, Brian L
2014-02-07
It was recently shown that high magnetic fields evoke nystagmus in human subjects with functioning vestibular systems. The proposed mechanism involves interaction between ionic currents in the endolymph of the vestibular labyrinth and the static magnetic field. This results in a Lorentz force that causes endolymph flow to deflect the cupulae of the semi-circular canals to evoke a vestibular-ocular reflex (VOR). This should be analogous to stimulation by angular acceleration or caloric irrigation. We made measurements of nystagmus slow-phase velocities in healthy adults experiencing variable magnetic field profiles of up to 7 T while supine on a bed that could be moved smoothly into the bore of an MRI machine. The horizontal slow-phase velocity data were reliably modelled by a linear transfer function incorporating a low-pass term and a high-pass adaptation term. The adaptation time constant was estimated at 39.3 s from long exposure trials. When constrained to this value, the low-pass time constant was estimated at 13.6 ± 3.6 s (to 95% confidence) from both short and long exposure trials. This confidence interval overlaps with values obtained previously using angular acceleration and caloric stimulation. Hence it is compatible with endolymph flow causing a cupular deflection and therefore supports the hypothesis that the Lorentz force is a likely transduction mechanism of the magnetic field-evoked VOR.
High data volume and transfer rate techniques used at NASA's image processing facility
NASA Technical Reports Server (NTRS)
Heffner, P.; Connell, E.; Mccaleb, F.
1978-01-01
Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.
Removal of GaAs growth substrates from II-VI semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Bieker, S.; Hartmann, P. R.; Kießling, T.; Rüth, M.; Schumacher, C.; Gould, C.; Ossau, W.; Molenkamp, L. W.
2014-04-01
We report on a process that enables the removal of II-VI semiconductor epilayers from their GaAs growth substrate and their subsequent transfer to arbitrary host environments. The technique combines mechanical lapping and layer selective chemical wet etching and is generally applicable to any II-VI layer stack. We demonstrate the non-invasiveness of the method by transferring an all-II-VI magnetic resonant tunneling diode. High resolution x-ray diffraction proves that the crystal integrity of the heterostructure is preserved. Transport characterization confirms that the functionality of the device is maintained and even improved, which is ascribed to completely elastic strain relaxation of the tunnel barrier layer.
MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.
Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H
2009-05-01
Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.
Auer, Tibor; Dewiputri, Wan Ilma; Frahm, Jens; Schweizer, Renate
2018-05-15
Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-02-23
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10 6 A·cm -2 , or about 1 × 10 25 electrons s -1 cm -2 . This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10 13 electrons per cm 2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-01-01
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. PMID:28230054
Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Ashorynejad, H. R.; Sheikholeslami, M.; Pop, I.; Ganji, D. D.
2013-03-01
In this paper, flow and heat transfer of a nanofluid over a stretching cylinder in the presence of magnetic field has been investigated. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved numerically by the fourth order Runge-Kutta integration scheme featuring a shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titanium oxide (TiO2) with water as their base fluid has been considered. The influence of significant parameters such as nanoparticle volume fraction, nanofluids type, magnetic parameter and Reynolds number on the flow and heat transfer characteristics is discussed. It was found that the Nusselt number increases as each of Reynolds number or nanoparticles volume fraction increase, but it decreases as magnetic parameter increase. Also it can be found that choosing copper (for small of magnetic parameter) and alumina (for large values of magnetic parameter) leads to the highest cooling performance for this problem.
Latissimus dorsi transfer for irreparable subscapularis tendon tears.
Mun, Sang Won; Kim, Ji Young; Yi, Seung Hoon; Baek, Chang Hee
2018-06-01
There are several tendon transfers for reconstruction of irreparable subscapularis tears. The latissimus dorsi (LD) could be used because its direction and function are similar to those of the subscapularis. We performed LD transfers for irreparable subscapularis tears and evaluated clinical outcomes. The study enrolled 24 consecutive patients who underwent LD transfers. Clinical and functional outcomes were evaluated using the Constant score, American Shoulder and Elbow Surgeons score, pain visual analog scale, and range of shoulder motion preoperatively and at last follow-up. The lift-off and belly-press tests were performed to assess subscapularis integrity and function. Magnetic resonance imaging was performed preoperatively and 1 year postoperatively to evaluate tendon integrity. Mean Constant, American Shoulder and Elbow Surgeons, and pain scores improved from 46 ± 6 to 69 ± 5 (P < .001), from 40 ± 3 to 70 ± 5 (P < .001), and from 6 ± 1 to 2 ± 1 (P = .006), respectively. The mean range of motion for forward elevation and internal rotation increased from 135° ± 17° to 166° ± 15° (P = .016) and from L5 to L1 (P = .010), respectively. Improvement in the range of motion for external rotation was not significant (51° ± 7° to 68° ± 7°; P = .062). At final follow-up, the belly-press test results were negative for 18 of 24 patients, and the lift-off test results were negative for 16 of 20 patients. No complications related to tendon transfer, including axillary and radial nerve injuries, were found. No retearing of the transferred LD was observed. LD transfer resulted in pain relief and restoration of shoulder range of motion and function. LD transfer could be considered an effective and safe salvage treatment for irreparable subscapularis tears. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Guo, Yunsheng; Li, Jiansheng; Hou, Xiaojuan; Lv, Xiaolong; Liang, Hao; Zhou, Ji; Wu, Hongya
2017-04-07
Wireless power transfer is a nonradiative type of transmission that is performed in the near-field region. In this region, the electromagnetic fields that are produced by both the transmitting and receiving coils are evanescent fields, which should not transmit energy. This then raises the question of how the energy can be transferred. Here we describe a theoretical study of the two evanescent field distributions at different terminal loads. It is shown that the essential principle of wireless energy transfer is the superposition of the two evanescent fields, and the resulting superimposed field is mediated through the terminal load. If the terminal load is either capacitive or inductive, then the superimposed field cannot transfer the energy because its Poynting vector is zero; in contrast, if the load is resistive, energy can then be conveyed from the transmitting coil to the receiving coil. The simulation results for the magnetic field distributions and the time-domain current waveforms agree very well with the results of the theoretical analysis. This work thus provides a comprehensive understanding of the energy transfer mechanism involved in the magnetic resonant coupling system.
Review of heat transfer problems associated with magnetically-confined fusion reactor concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, M.A.; Werner, R.W.; Carlson, G.A.
1976-04-01
Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements.more » Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.« less
Pulsed Magnetic Resonance to Signal-Enhance Metabolites within Seconds by utilizing para-Hydrogen.
Korchak, Sergey; Yang, Shengjun; Mamone, Salvatore; Glöggler, Stefan
2018-05-01
Diseases such as Alzheimer's and cancer have been linked to metabolic dysfunctions, and further understanding of metabolic pathways raises hope to develop cures for such diseases. To broaden the knowledge of metabolisms in vitro and in vivo, methods are desirable for direct probing of metabolic function. Here, we are introducing a pulsed nuclear magnetic resonance (NMR) approach to generate hyperpolarized metabolites within seconds, which act as metabolism probes. Hyperpolarization represents a magnetic resonance technique to enhance signals by over 10 000-fold. We accomplished an efficient metabolite hyperpolarization by developing an isotopic labeling strategy for generating precursors containing a favorable nuclear spin system to add para -hydrogen and convert its two-spin longitudinal order into enhanced metabolite signals. The transfer is performed by an invented NMR experiment and 20 000-fold signal enhancements are achieved. Our technique provides a fast way of generating hyperpolarized metabolites by using para -hydrogen directly in a high magnetic field without the need for field cycling.
Construction and Performance of a Superconducting Multipole Wiggler
NASA Astrophysics Data System (ADS)
Hwang, C. S.; Wang, B.; Chen, J. Y.; Chang, C. H.; Chen, H. H.; Fan, T. C.; Lin, F. Y.; Huang, M. H.; Chang, C. C.; Hsu, S. N.; Hsiung, G. Y.; Hsu, K. T.; Chen, J.; Chien, Y. C.; Chen, J. R.; Chen, C. T.
2004-05-01
A 3.2 Tesla superconducting multipole wiggler was designed and fabricated as an X-ray source. The magnet assembly, which consists of 32 pairs of racetrack NbTi superconducting coils with a periodic length of 60 mm, provides 28 effective poles. A 1.4056 m long elliptical cold-bore stainless steel beam duct with taper flanges and a wall thickness of 1 mm, was developed and constructed to fit the ultra-high vacuum condition for electron beam. The magnetic field strength was measured in liquid helium using a cryogenic Hall probe, revealing a field behavior very close to behavior consistent with the designed values. A Hall generator and the stretch wire methods are used to determine the transfer function of the peak field, the first and second integrated field distributions, and the good field region of the magnet. The quench protection of the magnet, the control algorithm for automatic filling of liquid helium, and the boil off rate of liquid helium and liquid nitrogen will also be discussed.
2015-01-01
Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881
Cyclotron emission from AM Herculis
NASA Technical Reports Server (NTRS)
Chanmugam, G.
1981-01-01
The cyclotron absorption coefficients in the ordinary and extraordinary modes are calculated for the shock heated region of AM Her. The equations of radiative transfer are solved and the intensity of the emitted UV radiation determined as a function of angle. The average spectrum is shown to have deviations from the previously predicted Rayleigh-Jeans spectrum and the magnetic field of AM Her is deduced to be roughly 5 x 10 to the 7th power gauss.
Electronic safing of a diode laser arm-fire device
NASA Astrophysics Data System (ADS)
Willis, Kenneth E.; Chang, Suk T.
1993-06-01
The paper describes a rocket motor arm-fire device which uses a diode laser protected from unintentional function with a specially designed RF frequency attenuating coupler (RFAC). The RFAC transfers power into a Faraday cage via magnetic flux, thereby protecting the diode, its drive circuit, and the pyrotechnic from all electromagnetic and electrostatic hazards. Diagrams of the diode laser arm-fire device are presented together with a diagram illustrating the RFAC principle of operation.
International solar polar mission: The vector helium magnetometer
NASA Technical Reports Server (NTRS)
1982-01-01
The functional requirements for the vector helium magnetometer (VHM) on the Solar Polar spacecraft are presented. The VHM is one of the two magnetometers on board that will measure the vector magnetic field along the Earth to Jupiter transfer trajectory, as well as in the vicinity of Jupiter and along the solar polar orbit following the Jupiter encounter. The interconnection between these two magnetometers and their shared data processing unit is illustrated.
Laakso, Ilkka; Hirata, Akimasa
2013-11-07
In this study, an induced electric field in a human body is evaluated for the magnetic field leaked from a wireless power transfer system for charging an electrical vehicle. The magnetic field from the wireless power transfer system is modelled computationally, and its effectiveness is confirmed by comparison with the field measured in a previous study. The induced electric field in a human standing around the vehicle is smaller than the allowable limit prescribed in international guidelines, although the magnetic field strength in the human body is locally higher than the allowable external field strength. Correlation between the external magnetic field and the induced electric field is confirmed to be reasonable at least in the standing posture, which is the case discussed in the international standard. Based on this finding, we discussed and confirmed the applicability of a three-point magnetic field measurement at heights of 0.5, 1.0, and 1.5 m for safety compliance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong
We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strandmore » is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.« less
NASA Technical Reports Server (NTRS)
Hermance, J. F. (Principal Investigator)
1981-01-01
A spherical harmonic analysis program is being tested which takes magnetic data in universal time from a set of arbitrarily space observatories and calculates a value for the instantaneous magnetic field at any point on the globe. The calculation is done as a least mean-squares value fit to a set of spherical harmonics up to any desired order. The program accepts as a set of input the orbit position of a satellite coordinates it with ground-based magnetic data for a given time. The output is a predicted time series for the magnetic field on the Earth's surface at the (r, theta) position directly under the hypothetically orbiting satellite for the duration of the time period of the input data set. By tracking the surface magnetic field beneath the satellite, narrow-band averages crosspowers between the spatially coordinated satellite and the ground-based data sets are computed. These crosspowers are used to calculate field transfer coefficients with minimum noise distortion. The application of this technique to calculating the vector response function W is discussed.
Development of spontaneous magnetism and half-metallicity in monolayer MoS2
NASA Astrophysics Data System (ADS)
Rahman, Altaf Ur; Rahman, Gul; García-Suárez, Víctor M.
2017-12-01
Half-metallic behavior and ferromagnetism are predicted in strained MoS2 with different light elements adsorbed using density functional theory. We find that strain increases the density of states at the Fermi energy for Y doping (Y = H, Li, and F) at the S sites and strain-driven magnetism develops in agreement with the Stoner mean field model. Strain-driven magnetism requires less strain (∼3%) for H doping as compared with F and Li doping. No saturation of the spin-magnetic moment is observed in Li-doped MoS2 due to less charge transfer from the Mo d electrons and the added atoms do not significantly increase the Spin-orbit coupling. Half-metallic ferromagnetism is predicted in H and F-doped MoS2. Fixed magnetic moments calculations are also performed, and the DFT computed data is fitted with the Landau mean field theory to investigate the emergence of spontaneous magnetism in Y-doped MoS2. We predict spontaneous magnetism in systems with large (small) mag netic moments for H/F (Li) atoms. The large (small) magnetic moments are atttributed to the electronegativity difference between S and Y atoms. These results suggest that H and F adsorbed monolayer MoS2 is a good candidate for spin-based electronic devices.
Tsai, Hweiyan; Lu, Yi-Hsuan; Liao, Huan-Xuan; Wu, Shih-Wei; Yu, Feng-Yih; Fuh, Chwan Bor
2015-01-01
The enzyme-linked immunosorbent assay (ELISA) has been used for diagnosing medical and plant pathologies. In addition, it is used for quality-control evaluations in various industries. The ELISA is the simplest method for obtaining excellent results; however, it is time consuming because the immunoreagents interact only on the contact surfaces. Antibody-labeled magnetic particles can be dispersed in a solution to yield a pseudohomogeneous reaction with antigens which improved the efficiency of immunoreaction, and can be easily separated from the unreactive substances by applying a magnetic force. We used a homemade magnetic microplate, functional magnetic particles (MPs) and enzyme-labeled secondary antibody to perform the sandwich ELISA successfully. Using antibody-labeled MPs enabled reducing the analysis time to one-third of that required in using a conventional ELISA. The secondary antibody conjugated with horseradish peroxidase (HRP) was affinity-bound to the analyte (IgG in this study). The calibration curve was established according to the measured absorbance of the 3, 3', 5, 5'-tetramethybezidine-HRP reaction products versus the concentrations of standard IgG. The linear range of IgG detection was 114 ng/mL-3.5 ng/mL. The limit of detection (LOD) of IgG was 3.4 ng/mL. The recovery and coefficient of variation were 100% (±7%) and 116% (±4%) for the spiked concentrations of 56.8 ng/mL and 14.2 ng/mL, respectively. Pseudohomogeneous reactions can be performed using functional MPs and a magnetic microplate. Using antibody-labeled MPs, the analysis time can be reduced to one-third of that required in using a conventional ELISA. The substrate-enzyme reaction products can be easily transferred to another microplate, and their absorbance can be measured without interference by light scattering caused by magnetic microbeads. This method demonstrates great potential for detecting other biomarkers and in biochemical applications. Graphical AbstractA magnetic ELISA with convenient magnetic microplate.
Resonant-cavity antenna for plasma heating
Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.
1984-01-10
This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.
Solis, Kyle Jameson; Martin, James E.
2012-11-01
Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less
Low-current-density spin-transfer switching in Gd{sub 22}Fe{sub 78}-MgO magnetic tunnel junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinjo, Hidekazu, E-mail: kinjou.h-lk@nhk.or.jp; Machida, Kenji; Aoshima, Ken-ichi
2014-05-28
Magnetization switching of a relatively thick (9 nm) Gd-Fe free layer was achieved with a low spin injection current density of 1.0 × 10{sup 6} A/cm{sup 2} using MgO based magnetic tunnel junction devices, fabricated for light modulators. At about 560 × 560 nm{sup 2} in size, the devices exhibited a tunneling magnetoresistance ratio of 7%. This low-current switching is mainly attributed to thermally assisted spin-transfer switching in consequence of its thermal magnetic behavior arising from Joule heating.
Magnetic and optoelectronic properties of gold nanocluster-thiophene assembly.
Qin, Wei; Lohrman, Jessica; Ren, Shenqiang
2014-07-07
Nanohybrids consisting of Au nanocluster and polythiophene nanowire assemblies exhibit unique thermal-responsive optical behaviors and charge-transfer controlled magnetic and optoelectronic properties. The ultrasmall Au nanocluster enhanced photoabsorption and conductivity effectively improves the photocurrent of nanohybrid based photovoltaics, leading to an increase of power conversion efficiency by 14 % under AM 1.5 illumination. In addition, nanohybrids exhibit electric field controlled spin resonance and magnetic field sensing behaviors, which open up the potential of charge-transfer complex system where the magnetism and optoelectronics interact. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
IS VOYAGER 1 INSIDE AN INTERSTELLAR FLUX TRANSFER EVENT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwadron, N. A.; McComas, D. J., E-mail: n.schwadron@unh.edu
Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm{sup –3}, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.
Wireless power transfer based on dielectric resonators with colossal permittivity
NASA Astrophysics Data System (ADS)
Song, Mingzhao; Belov, Pavel; Kapitanova, Polina
2016-11-01
Magnetic resonant wireless power transfer system based on dielectric disk resonators made of colossal permittivity (ɛ = 1000) and low loss (tan δ = 2.5 × 10-4) microwave ceramic is experimentally investigated. The system operates at the magnetic dipole mode excited in the resonators providing maximal power transfer efficiency of 90% at the frequency 232 MHz. By applying an impedance matching technique, the efficiency of 50% is achieved within the separation between the resonators d = 16 cm (3.8 radii of the resonator). The separation, misalignment and rotation dependencies of wireless power transfer efficiency are experimentally studied.
Gmeiner, Matthias; Topakian, Raffi; Göschl, Manuel; Wurm, Sarah; Holzinger, Anita; van Ouwerkerk, Willem J R; Holl, Kurt
2015-09-01
An accessory to suprascapular nerve (XIN-SSN) transfer is considered in patients with obstetric brachial plexus lesion who fail to recover active shoulder external rotation. The aim of this study was to evaluate the quality of extraplexal suprascapular nerve neurotization and to perform a detailed analysis of the infraspinatus muscle (IM) and shoulder external rotation. A XIN-SSN transfer was performed in 14 patients between 2000 and 2007. Patients had been operated at the age of 3.7 ± 2.8 years. Follow-up examinations were conducted up to 8.5 ± 2.5 years. Magnetic resonance imaging was performed to investigate muscle trophism. Fatty muscle degeneration of the IM was classified according to the Goutallier classification. We conducted nerve conduction velocity studies of the suprascapular nerve and needle electromyography of the IM to assess pathologic spontaneous activity and interference patterns. Active glenohumeral shoulder external rotation and global shoulder function were evaluated using the Mallet score. Postoperatively, growth of the IM increased equally on the affected and unaffected sides, although significant differences of muscle thickness persisted over time. There was only grade 1 or 2 fatty degeneration pre- and postoperatively. Electromyography of the IM revealed a full interference pattern in all except one patient, and there was no pathological spontaneous activity. Glenohumeral external rotation as well as global shoulder function increased significantly. Our results indicate that the anastomosis after XIN-SSN transfer is functional and that successful reinnervation of the infraspinatus muscle may enable true glenohumeral active external rotation.
NASA Astrophysics Data System (ADS)
Mermut, O.; Bouchard, J.-P.; Cormier, J.-F.; Desroches, P.; Diamond, K. R.; Fortin, M.; Gallant, P.; Leclair, S.; Marois, J.-S.; Noiseux, I.; Morin, J.-F.; Patterson, M. S.; Vernon, M.
2008-02-01
The development of multimodal molecular probes and photosensitizing agents for use in photodynamic therapy (PDT) is vital for optimizing and monitoring cytotoxic responses. We propose a combinatorial approach utilizing photosensitizing molecules that are both paramagnetic and luminescent with multimodal functionality to perturb, control, and monitor molecular-scale reaction pathways in PDT. To this end, a time-domain single photon counting lifetime apparatus with a 400 nm excitation source has been developed and integrated with a variable low field magnet (0- 350mT). The luminescence lifetime decay function was measured in the presence of a sweeping magnetic field for a custom designed photosensitizing molecule in which photoinduced electron transfer was studied The photosensitizer studied was a donor-acceptor complex synthesized using a porphyrin linked to a fullerene molecule. The magneto-optic properties were investigated for the free-base photosensitizer complex as well as those containing either diamagnetic (paired electron) or paramagnetic (unpaired electron) metal centers, Zn(II) and Cu(II). The magnetic field was employed to affect and modify the spin states of radical pairs of the photosensitizing agents via magnetically induced hyperfine and Zeeman effects. Since the Type 1 reaction pathway of an excited triplet state photosensitizer involves the production of radical species, lifetime measurements were conducted at low dissolved oxygen concentration (0.01ppm) to elucidate the dependence of the magnetic perturbation on the photosensitization mechanistic pathway. To optimize the magnetic response, a solvent study was performed examining the dependence of the emission properties on the magnetic field in solutions of varying dielectric constants. Lastly, the cytotoxicity in murine tumor cell suspensions was investigated for the novel porphyrin-fullerene complex by inducing photodynamic treatments and determining the associated cell survival.
A chiral-based magnetic memory device without a permanent magnet
Dor, Oren Ben; Yochelis, Shira; Mathew, Shinto P.; Naaman, Ron; Paltiel, Yossi
2013-01-01
Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices. PMID:23922081
A chiral-based magnetic memory device without a permanent magnet.
Ben Dor, Oren; Yochelis, Shira; Mathew, Shinto P; Naaman, Ron; Paltiel, Yossi
2013-01-01
Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices.
Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...
Serial Magnetization Transfer Imaging in Acute Optic Neuritis
ERIC Educational Resources Information Center
Hickman, S. J.; Toosy, A. T.; Jones, S. J.; Altmann, D. R.; Miszkiel, K. A.; MacManus, D. G.; Barker, G. J.; Plant, G. T.; Thompson, A. J.; Miller, D.H.
2004-01-01
In serial studies of multiple sclerosis lesions, reductions in magnetization transfer ratio (MTR) are thought to be due to demyelination and axonal loss, with later rises due to remyelination. This study followed serial changes in MTR in acute optic neuritis in combination with clinical and electrophysiological measurements to determine if the MTR…
O2 adsorbed on Ptn clusters: Structure and optical absorption
NASA Astrophysics Data System (ADS)
Wang, Ruiying; Zhao, Liang; Jia, Jianfeng; Wu, Hai-Shun
2018-03-01
The interaction of O2 with Ptn and the optical absorption properties of PtnO2 were explored under the framework of density functional theory. The Ptn (n= 2, 4, 6, 9, 10, 14, 18, 22, and 27) clusters were selected, which were reported as magnetic number Ptn clusters in reference (V. Kumar and Y. Kawazoe, Phys. Rev. B 77(20), 205418 (2008)). The single Pt atom was also considered. The longest O2 bonds were found for Pt27O2, Pt6O2 and Pt14O2, while PtO2 and Pt2O2 have the shortest O2 bonds. This result showed that the single Pt atom was not preferred for O2 activation. The O2 bond length was closely related to the electron transfer from Ptn to O2. The optical absorptions of PtnO2 were investigated with time-dependent density functional theory method. A new term of charge transfer strength was defined to estimate the further electron transfer from Ptn to O2 caused by the optical absorption in the visible light range. Our calculations showed that with the increasing n, the further electron transfer from Ptn to O2 caused by optical absorption will become very weak.
Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa
2015-01-07
The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.
Ning, Xingkun; Wang, Zhanjie; Zhang, Zhidong
2015-01-01
A large magnetic coupling has been observed at the La0.7Ca0.3MnO3/LaNiO3 (LCMO/LNO) interface. The x-ray photoelectron spectroscopy (XPS) study results show that Fermi level continuously shifted across the LCMO/LNO interface in the interface region. In addition, the charge transfer between Mn and Ni ions of the type Mn3+ − Ni3+ → Mn4+ − Ni2+ with the oxygen vacancies are observed in the interface region. The intrinsic interfacial charge transfer can give rise to itinerant electrons, which results in a “shoulder feature” observed at the low binding energy in the Mn 2p core level spectra. Meanwhile, the orbital reconstruction can be mapped according to the Fermi level position and the charge transfer mode. It can be considered that the ferromagnetic interaction between Ni2+ and Mn4+ gives rise to magnetic regions that pin the ferromagnetic LCMO and cause magnetic coupling at the LCMO/LNO interface. PMID:25676088
On the relevance of source effects in geomagnetic pulsations for induction soundings
NASA Astrophysics Data System (ADS)
Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri
2018-03-01
This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.
Magnetosensitive e-skins with directional perception for augmented reality
Cañón Bermúdez, Gilbert Santiago; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Lebanov, Ana; Bischoff, Lothar; Kaltenbrunner, Martin; Fassbender, Jürgen; Schmidt, Oliver G.; Makarov, Denys
2018-01-01
Electronic skins equipped with artificial receptors are able to extend our perception beyond the modalities that have naturally evolved. These synthetic receptors offer complimentary information on our surroundings and endow us with novel means of manipulating physical or even virtual objects. We realize highly compliant magnetosensitive skins with directional perception that enable magnetic cognition, body position tracking, and touchless object manipulation. Transfer printing of eight high-performance spin valve sensors arranged into two Wheatstone bridges onto 1.7-μm-thick polyimide foils ensures mechanical imperceptibility. This resembles a new class of interactive devices extracting information from the surroundings through magnetic tags. We demonstrate this concept in augmented reality systems with virtual knob-turning functions and the operation of virtual dialing pads, based on the interaction with magnetic fields. This technology will enable a cornucopia of applications from navigation, motion tracking in robotics, regenerative medicine, and sports and gaming to interaction in supplemented reality. PMID:29376121
SUSANS With Polarized Neutrons.
Wagh, Apoorva G; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang
2005-01-01
Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10(-4) nm(-1) to 10(-3) nm(-1) afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 10(4) A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10(-3) nm(-1) range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples.
Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE
NASA Astrophysics Data System (ADS)
Roy, Soumya S.; Stevanato, Gabriele; Rayner, Peter J.; Duckett, Simon B.
2017-12-01
Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼ 3 orders of magnitude 15N signal enhancement within 2 s of RF pulsing.
Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE.
Roy, Soumya S; Stevanato, Gabriele; Rayner, Peter J; Duckett, Simon B
2017-12-01
Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15 N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼3 orders of magnitude 15 N signal enhancement within 2 s of RF pulsing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1975-01-01
Since superconducting magnets cooled by liquid helium are limited to magnetic fields of about 18 teslas, the design of a 30 tesla cryomagnet necessitates forced convection liquid neon heat transfer in small coolant channels. As these channels are too small to handle the vapor flow if the coolant were to boil, the design philosophy calls for suppressing boiling by subjecting the fluid to high pressures. Forced convection heat transfer data are obtained by using a blowdown technique to force the fluid vertically through a resistance-heated instrumented tube. The data are obtained at inlet temperatures between 28 and 34 K and system pressures between 28 to 29 bars. Data correlation is limited to a very narrow range of test conditions, since the tests were designed to simulate the heat transfer characteristics in the coolant channels of the 30 tesla cryomagnet concerned. The results can therefore be applied directly to the design of the magnet system.-
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1982-01-01
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.
Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui
2017-06-01
In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.
NASA Astrophysics Data System (ADS)
Strychalski, M.; Chorowski, M.; Polinski, J.
2014-05-01
Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.
NASA Astrophysics Data System (ADS)
Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.
2015-12-01
Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.
Testing of Prototype Magnetic Suspension Cryogenic Transfer Line
NASA Astrophysics Data System (ADS)
Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.
2006-04-01
A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.
Nonlinear resistivity for magnetohydrodynamical models
Lingam, M.; Hirvijoki, E.; Pfefferlé, D.; ...
2017-04-20
A new formulation of the plasma resistivity that stems from the collisional momentum-transfer rate between electrons and ions is presented. The resistivity computed herein is shown to depend not only on the temperature and density but also on all other polynomial velocity-space moments of the distribution function, such as the pressure tensor and heat flux vector. The full expression for the collisional momentum-transfer rate is determined and is used to formulate the nonlinear anisotropic resistivity. The new formalism recovers the Spitzer resistivity, as well as the concept of thermal force if the heat flux is assumed to be proportional tomore » a temperature gradient. Furthermore, if the pressure tensor is related to viscous stress, the latter enters the expression for the resistivity. The relative importance of the nonlinear term(s) with respect to the well-established electron inertia and Hall terms is also examined. Lastly, the subtle implications of the nonlinear resistivity, and its dependence on the fluid variables, are discussed in the context of magnetized plasma environments and phenomena such as magnetic reconnection.« less
NASA Astrophysics Data System (ADS)
Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser
2016-12-01
As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low electrical resistivity; and (4) superior imaging of the horizontal continuity of structures with low electrical resistivity. These advantages offer new opportunities for the MT method by making the results from a MT profile in a 3-D environment more convincing, supporting the possibility of high-resolution studies in 3-D areas without expending a large amount of economical and computational resources, and also offering better resolution of targets with high electrical resistivity.
EDITORIAL: Spin-transfer-torque-induced phenomena Spin-transfer-torque-induced phenomena
NASA Astrophysics Data System (ADS)
Hirohata, Atsufumi
2011-09-01
This cluster, consisting of five invited articles on spin-transfer torque, offers the very first review covering both magnetization reversal and domain-wall displacement induced by a spin-polarized current. Since the first theoretical proposal on spin-transfer torque—reported by Berger and Slonczewski independently—spin-transfer torque has been experimentally demonstrated in both vertical magnetoresistive nano-pillars and lateral ferromagnetic nano-wires. In the former structures, an electrical current flowing vertically in the nano-pillar exerts spin torque onto the thinner ferromagnetic layer and reverses its magnetization, i.e., current-induced magnetization switching. In the latter structures, an electrical current flowing laterally in the nano-wire exerts torque onto a domain wall and moves its position by rotating local magnetic moments within the wall, i.e., domain wall displacement. Even though both phenomena are induced by spin-transfer torque, each phenomenon has been investigated separately. In order to understand the physical meaning of spin torque in a broader context, this cluster overviews both cases from theoretical modellings to experimental demonstrations. The earlier articles in this cluster focus on current-induced magnetization switching. The magnetization dynamics during the reversal has been calculated by Kim et al using the conventional Landau--Lifshitz-Gilbert (LLG) equation, adding a spin-torque term. This model can explain the dynamics in both spin-valves and magnetic tunnel junctions in a nano-pillar form. This phenomenon has been experimentally measured in these junctions consisting of conventional ferromagnets. In the following experimental part, the nano-pillar junctions with perpendicularly magnetized FePt and half-metallic Heusler alloys are discussed from the viewpoint of efficient magnetization reversal due to a high degree of spin polarization of the current induced by the intrinsic nature of these alloys. Such switching can be further operated at high frequency resulting in an oscillator, as shown in the article by Sulka et al. These results provide fundamental elements for magnetic random access memories. The later articles discuss domain-wall displacement. Again this phenomenon is also described by Shibata et al based on the LLG equation with spin-torque terms. This analytical model can explain the details of the depinning mechanism and a critical current for the displacement. Experimental observation is presented in the subsequent article by Malinowski et al, showing the depinning processes for the cases of intrinsic and extrinsic pinning sites. Here, the detailed magnetic moment configurations within the wall hold the dominant control over the critical current. These results can be used for future 3-dimensional magnetic memories, such as racetrack memory proposed by IBM. We sincerely hope this cluster offers an up-to-date understanding of macroscopic behaviour induced by spin-transfer torque and contributes to further advancement in this exciting research field. We are grateful to all the authors for spending their precious time and knowledge submitting to this cluster. We would also like to thank Professor Kevin O'Grady for his kind offer of the opportunity to make this review accessible to a general audience.
Lee, Jong-Chul; Lee, Sangyoup
2013-09-01
Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.
NASA Astrophysics Data System (ADS)
Zahlan, A. B.
2010-01-01
Preface; List of participants; Part I. Spin-orbit Coupling and Intersystem Crossing: 1. Spin-orbit interactions in organic molecules; 2. Singlet-triplet transitions in organic molecules; 3. Triplet decay and intersystem crossing in aromatic hydrocarbons; 4. Statistical aspects of resonance energy transfer; Discussion; Part II. Magnetic Resonance and Magnetic Interactions: 5. Magnetic resonance spectra of organic molecules in triplet states in single crystals; 6. Magnetic interactions related to phosphorescence; 7. ESR investigations of naphthalene-d8:Naphthalene-h8 mixed crystals; 8. Biradicals and polyradicals in the nitroxide series; 9. Changes induced in the phosphorescent radiation of aromatic molecules by paramagnetic resonance in their metastable triplet states; 10. Paramagnetic resonance of the triplet state of tetramethylpyrazine; 11. On magnetic dipole contributions to the intrinsic S0 = T1 transition in simple aromatics; Discussion; Part III. Photochemistry: 12. The kinetics of energy transfer from the triplet state in rigid solutions; 13. Triplet states in gas-phase photochemistry; 14. Biphotonic photochemistry, involving the triplet state: polarisation of the effective T-T transition and solvent effects; 15. Direct and sensitised photo-oxidation of aromatic hydrocarbons in boric acid glass; Discussion; Part IV. Radiationless Transitions: 16. Radiationless transitions in gaseous benzene; 17. Low-lying excited triplet states and intersystem crossing in aromatic hydrocarbons; 18. De-excitation rates of triplet states in condensed media; 19. Lifetimes of the triplet state of aromatic hydrocarbons in the vapour phase; Discussion; Part V. Triplet Excitons: 20. Some comments on the properties of triplet excitons in molecular crystals; 21. Exact treatment of coherent and incoherent triplet exciton migration; 22. Magnetic susceptibility of a system of triplet excitons: Würster's Blue Perchlorate; 23. A study of triplet excitons in anthracene crystals under laser excitation; 24. The electronic states in crystaline anthracene; Discussion; Part VI. Delayed Fluorescent and Phosphorescence: 25. Delayed fluorescence of solutions; 26. The kinetics of the excited states of anthracene and phenanthrene vapor; 27. Optical investigations of the triplet states of naphthalene in different crystalline environments; 28. Excitation of the triplet states of organic molecules; 29. The delayed luminescence and triplet quantum yields of pyrene solutions; 30. Triplet state studies of some polyphenyls in rigid glasses; 31. Decay time of delayed fluorescence of anthracene as a function of temperature (2-30ºK); 32. Energy transfer between benzene and biacetyl and the lifetime of triplet benzene in the gas phase; 33. Charge transfer triplet state of molecular complexes. 34. Flash-photolytic detection of triplet acridine formed by energy transfer from biacetyl; 35. Extinction coefficients of triplet-triplet transitions between 3000 and 8800 A in anthracene; 36. Anthracene triplet-triplet annihilation rate constant; Discussion; Part VII. Triplet State Related to Biology: 37. ESR and optical studies of some triplet states of biological interest; 38. The triplet state of DNA; 39. Some characteristics of the triplet states of the nucleic bases; Discussion; Indexes.
Basic theory for polarized, astrophysical maser radiation in a magnetic field
NASA Technical Reports Server (NTRS)
Watson, William D.
1994-01-01
Fundamental alterations in the theory and resulting behavior of polarized, astrophysical maser radiation in the presence of a magnetic field have been asserted based on a calculation of instabilities in the radiative transfer. I reconsider the radiative transfer and find that the relevant instabilities do not occur. Calculational errors in the previous investigation are identified. In addition, such instabilities would have appeared -- but did not -- in the numerous numerical solutions to the same radiative transfer equations that have been presented in the literature. As a result, all modifications that have been presented in a recent series of papers (Elitzur 1991, 1993) to the theory for polarized maser radiation in the presence of a magnetic field are invalid. The basic theory is thus clarified.
Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis
NASA Astrophysics Data System (ADS)
Martin, J.; Shore, B. W.; Bergmann, K.
1995-07-01
We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.
Magnetic Proximity Effect in a Transferred Topological Insulator Thin Film on a Magnetic Insulator
NASA Astrophysics Data System (ADS)
Che, Xiaoyu; Murata, Koichi; Pan, Lei; He, Qinglin; Yin, Gen; Fan, Yabin; Bi, Lei; Wang, Kang Lung
Exotic physical phenomena such as the quantum anomalous Hall effect (QAHE) arise by breaking the time-reversal symmetry (TRS) in topological insulators. However, substantial efforts have been made in improving the temperature for realizing the QAHE via magnetically doping, while the proximity coupling is another approach to develop the magnetic order without the introduction of additional carriers or the presence of local Fermi level fluctuation. Here we demonstrate the experimental signature of magnetic proximity effect in a molecular beam epitaxy-grown TI thin film of Bi2Se3 transferred to a magnetic substrate of yttrium iron garnet using a wet transfer technique. Comparing to the TI/GaAs control sample, the magnetic order is manifested by the anomalous Hall effect in magneto-transport characterization. Furthermore, due to TRS breaking by the proximity effect we observed a constituent weak localization component accompanied with the weak antilocalization behavior. The present work takes a step further toward realizing QAHE at higher temperature and opens up a new path in TI device designs for applications. We acknowledge the support from the ARO program under contract 15-1-10561, the SHINES Center under Award # S000686, NSF DMR-1350122, and the FAME Center, one of six centers of STARnet, sponsored by MARCO and DARPA.
Layer and doping tunable ferromagnetic order in two-dimensional Cr S2 layers
NASA Astrophysics Data System (ADS)
Wang, Cong; Zhou, Xieyu; Pan, Yuhao; Qiao, Jingsi; Kong, Xianghua; Kaun, Chao-Cheng; Ji, Wei
2018-06-01
Interlayer coupling is of vital importance for manipulating physical properties, e.g., electronic band gap, in two-dimensional materials. However, tuning magnetic properties in these materials is yet to be addressed. Here, we found the in-plane magnetic orders of Cr S2 mono and few layers are tunable between striped antiferromagnetic (sAFM) and ferromagnetic (FM) orders by manipulating charge transfer between Cr t2 g and eg orbitals. Such charge transfer is realizable through interlayer coupling, direct charge doping, or substituting S with Cl atoms. In particular, the transferred charge effectively reduces a portion of Cr4 + to Cr3 +, which, together with delocalized S p orbitals and their resulting direct S-S interlayer hopping, enhances the double-exchange mechanism favoring the FM rather than sAFM order. An exceptional interlayer spin-exchange parameter was revealed over -10 meV , an order of magnitude stronger than available results of interlayer magnetic coupling. It addition, the charge doping could tune Cr S2 between p - and n -doped magnetic semiconductors. Given these results, several prototype devices were proposed for manipulating magnetic orders using external electric fields or mechanical motion. These results manifest the role of interlayer coupling in modifying magnetic properties of layered materials and shed considerable light on manipulating magnetism in these materials.
Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa.
Vasquez, Erick S; Feugang, Jean M; Willard, Scott T; Ryan, Peter L; Walters, Keisha B
2016-03-17
Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-QDs for bioimaging, there are strong concerns about QD nanocomposites containing cadmium which exhibits potential cellular toxicity. In this study, bioluminescent composites comprised of magnetic nanoparticles and firefly luciferase (Photinus pyralis) are examined as potential light-emitting agents for imaging, detection, and tracking mammalian spermatozoa. Characterization was carried out using infrared spectroscopy, TEM and cryo-TEM imaging, and ζ-potential measurements to demonstrate the successful preparation of these nanocomposites. Binding interactions between the synthesized nanoparticles and spermatozoon were characterized using confocal and atomic/magnetic force microscopy. Bioluminescence imaging and UV-visible-NIR microscopy results showed light emission from sperm samples incubated with the firefly luciferase-modified nanoparticles. Therefore, these newly synthesized luciferase-modified magnetic nanoparticles show promise as substitutes for QD labeling, and can potentially also be used for in vivo manipulation and tracking, as well as MRI techniques. These preliminary data indicate that luciferase-magnetic nanoparticle composites can potentially be used for spermatozoa detection and imaging. Their magnetic properties add additional functionality to allow for manipulation, sorting, or tracking of cells using magnetic techniques.
NASA Technical Reports Server (NTRS)
Rossow, Vernon J
1958-01-01
The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.
Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; ...
2016-11-22
Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La 2/3Sr 1/3MnO 3 (LSMO) and the correlated metal LaNiO 3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependencemore » of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni 2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less
Parity-Time Symmetry Breaking in Spin Chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galda, Alexey; Vinokur, Valerii M.
We investigate nonequilibrium phase transitions in classical Heisenberg spin chains associated with spontaneous breaking of parity-time (PT) symmetry of the system under the action of Slonczewski spin-transfer torque (STT) modeled by an applied imaginary magnetic field. We reveal the STT-driven PT symmetry-breaking phase transition between the regimes of precessional and exponentially damped spin dynamics and show that its several properties can be derived from the distribution of zeros of the system's partition function, the approach first introduced by Yang and Lee for studying equilibrium phase transitions in Ising spin chains. The physical interpretation of imaginary magnetic field as describing themore » action of nonconservative forces opens the possibility of direct observations of Lee-Yang zeros in nonequilibrium physical systems.« less
Parity-time symmetry breaking in spin chains
NASA Astrophysics Data System (ADS)
Galda, Alexey; Vinokur, Valerii M.
2018-05-01
We investigate nonequilibrium phase transitions in classical Heisenberg spin chains associated with spontaneous breaking of parity-time (PT ) symmetry of the system under the action of Slonczewski spin-transfer torque (STT) modeled by an applied imaginary magnetic field. We reveal the STT-driven PT symmetry-breaking phase transition between the regimes of precessional and exponentially damped spin dynamics and show that its several properties can be derived from the distribution of zeros of the system's partition function, the approach first introduced by Yang and Lee for studying equilibrium phase transitions in Ising spin chains. The physical interpretation of imaginary magnetic field as describing the action of nonconservative forces opens the possibility of direct observations of Lee-Yang zeros in nonequilibrium physical systems.
NASA Astrophysics Data System (ADS)
Hayat, T.; Rafiq, M.; Ahmad, B.
2016-07-01
This article aims to predict the effects of convective condition and particle deposition on peristaltic transport of Jeffrey fluid in a channel. The whole system is in a rotating frame of reference. The walls of channel are taken flexible. The fluid is electrically conducting in the presence of uniform magnetic field. Non-uniform heat source/sink parameter is also considered. Mass transfer with chemical reaction is considered. Relevant equations for the problems under consideration are first modeled and then simplified using lubrication approach. Resulting equations for stream function and temperature are solved exactly whereas mass transfer equation is solved numerically. Impacts of various involved parameters appearing in the solutions are carefully analyzed.
Extend of magnetic field interference in the natural convection of diamagnetic nanofluid
NASA Astrophysics Data System (ADS)
Roszko, Aleksandra; Fornalik-Wajs, Elzbieta
2017-10-01
Main objective of the paper was to experimentally investigate the thermo-magnetic convection of diamagnetic fluids in the Rayleigh-Benard configuration. For better understanding of the magnetic field influence on the phenomena occurring in cubical enclosure the following parameters were studied: absence or presence of nanoparticles (single and two-phase fluids), thermal conditions (temperature difference range of 5-25 K) and magnetic field strength (magnetic induction range of 0-10 T). A multi-stage approach was undertaken to achieve the aim. The multi-stage approach means that the forces system, flow structure and heat transfer were considered. Without understanding the reasons (forces) and the fluid behaviour it would be impossible to analyse the exchanged heat rates through the Nusselt number distribution. The forces were determined at the starting moment, so the inertia force was not considered. The flow structure was identified due to the FFT analysis and it proved that magnetic field application changed the diamagnetic fluid behaviour, either single or two-phase. Going further, the heat transfer analysis revealed dependence of the Nusselt number on the flow structure and at the same time on the magnetic field. It can be said that imposed magnetic field changed the energy transfer within the system. In the paper, it was shown that each of presented steps were linked together and that only a comprehensive approach could lead to better understanding of magnetic field interference in the convection phenomenon.
NASA Astrophysics Data System (ADS)
Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid
2018-03-01
Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.
NASA Astrophysics Data System (ADS)
Cheng, Ye; Guo, Yuhang; Zhang, Zhenya; Dong, Songtao; Liu, Suwei; Wang, Hongying
2018-03-01
Magnetic absorber has been regarded as the advanced electromagnetic energy transfer material to solve the increasingly high frequency electromagnetic interference issue. Even so, the pure magnetic material, in particular magnetic metal nanoparticle, suffering from the poor chemical stability and strong eddy current effect, thus limits it further application. To overcome this shortage, surrounded the magnetic metal nanoparticle (MPs) with insulated oxide shell has been considered to be an efficient route to suppress such an eddy current effect. Meanwhile, the combined insulated shell with good impedance matching feature, shows a positive role on the electromagnetic energy transfer intensity. In this regard, the binary Fe@α-Fe2O3 composite with the average size of ∼ 20 nm was prepared by a facile self-oxidation reaction. Interestingly, both the core diameter and shell thickness is controllable by controlling the oxide degree. The electromagnetic energy transfer performance revealed the maximum absorption frequency bandwidth of the optimal Fe@α-Fe2O3 composite is up to 5.3 G(8.2-13.5 GHz)under a small coating thickness of 1.5 mm.
Advanced MRI in Multiple Sclerosis: Current Status and Future Challenges
Fox, Robert J.; Beall, Erik; Bhattacharyya, Pallab; Chen, Jacqueline; Sakaie, Ken
2011-01-01
Synopsis Magnetic resonance imaging (MRI) has rapidly become a leading research tool in the study of multiple sclerosis (MS). Conventional imaging is useful in diagnosis and management of the inflammatory stages of MS, but has limitations in describing the degree of tissue injury as well as the cause of progressive disability seen in the later stages of disease. Advanced MRI techniques hold promise to fill this void. Magnetization transfer imaging is a widely available technique that can characterize demyelination and may be useful in measuring putative remyelinating therapies. Diffusion tensor imaging describes the three-dimensional diffusion of water and holds promise in characterizing neurodegeneration and putative neuroprotective therapies. Spectroscopy measures the imbalance of cellular metabolites and could help unravel the pathogenesis of neurodegeneration in MS. Functional (f) MRI can be used to understand the functional consequences of MS injury, including the impact on cortical function and compensatory mechanisms. These imaging tools hold great promise to increase our understanding of MS pathogenesis and provide greater insight into the efficacy of new MS therapies. PMID:21439446
Jackson, Alexander W; Chandrasekharan, Prashant; Shi, Jian; Rannard, Steven P; Liu, Quan; Yang, Chang-Tong; He, Tao
2015-01-01
Branched copolymer nanoparticles (D(h) =20-35 nm) possessing 1,4,7, 10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid macrocycles within their cores have been synthesized and applied as magnetic resonance imaging (MRI) nanosized contrast agents in vivo. These nanoparticles have been generated from novel functional monomers via reversible addition-fragmentation chain transfer polymerization. The process is very robust and synthetically straightforward. Chelation with gadolinium and preliminary in vivo experiments have demonstrated promising characteristics as MRI contrast agents with prolonged blood retention time, good biocompatibility, and an intravascular distribution. The ability of these nanoparticles to perfuse and passively target tumor cells through the enhanced permeability and retention effect is also demonstrated. These novel highly functional nanoparticle platforms have succinimidyl ester-activated benzoate functionalities within their corona, which make them suitable for future peptide conjugation and subsequent active cell-targeted MRI or the conjugation of fluorophores for bimodal imaging. We have also demonstrated that these branched copolymer nanoparticles are able to noncovalently encapsulate hydrophobic guest molecules, which could allow simultaneous bioimaging and drug delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan
In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84%more » in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.« less
Yuan, Yin; Xu, Xiu-yue; Lao, Jie; Zhao, Xin
2018-01-01
Nerve transfer is the most common treatment for total brachial plexus avulsion injury. After nerve transfer, the movement of the injured limb may be activated by certain movements of the healthy limb at the early stage of recovery, i.e., trans-hemispheric reorganization. Previous studies have focused on functional magnetic resonance imaging and changes in brain-derived neurotrophic factor and growth associated protein 43, but there have been no proteomics studies. In this study, we designed a rat model of total brachial plexus avulsion injury involving contralateral C7 nerve transfer. Isobaric tags for relative and absolute quantitation and western blot assay were then used to screen differentially expressed proteins in bilateral motor cortices. We found that most differentially expressed proteins in both cortices of upper limb were associated with nervous system development and function (including neuron differentiation and development, axonogenesis, and guidance), microtubule and cytoskeleton organization, synapse plasticity, and transmission of nerve impulses. Two key differentially expressed proteins, neurofilament light (NFL) and Thy-1, were identified. In contralateral cortex, the NFL level was upregulated 2 weeks after transfer and downregulated at 1 and 5 months. The Thy-1 level was upregulated from 1 to 5 months. In the affected cortex, the NFL level increased gradually from 1 to 5 months. Western blot results of key differentially expressed proteins were consistent with the proteomic findings. These results indicate that NFL and Thy-1 play an important role in trans-hemispheric organization following total brachial plexus root avulsion and contralateral C7 nerve transfer. PMID:29557385
NASA Astrophysics Data System (ADS)
Slonczewski, John
2013-03-01
Consider two nanoscopic monodomain magnets connected by a spacer that is composed of a non-magnetic metal or a tunnel barrier. Any externally applied electric current flowing through these three layers contributes tiny pseudo-torques to both magnetic moments (J . S . 1989). Such a weak spin-transfer torque (STT) may counteract and overcome a comparably small torque caused by viscous dissipation (L. Berger1996; J . S . 1996). Any initial motion (e. g. excited by ambient temperature) of one moment (or both), may grow in amplitude and culminate in steady precession or a transient switch to a new direction of static equilibrium. In a memory element, the STT effect writes 0 or 1 in a magnetic-tunnel junction. Indeed, world-wide developments of memory arrays and radio-frequency oscillators utilizing current-driven STT today enjoy a nine-digit dollar commitment. But the fact that transfer of each half-unit of spin momentum h/4 π through a barrier requires the transfer of at least one unit of electric charge limits its efficiency. Arguably, STT should also arise from the flow of external heat, in either direction, between an insulating magnet, of ferrite or garnet (e. g. YIG) composition, and a metallic spacer (J . S . 2010). Whenever s-d exchange annihilates a hot magnon at the insulator/metal-spacer interface, it transfers one unit h/2 π of spin momentum to the spacer. Conduction electrons within the spacer will transport this spin momentum to the second magnet without requiring an electric current. Such a thermagnonicmethod, modestly powered by a Joule-effect heater, can substantially increase the efficiency of STT. Support for this prediction comes from (1) an estimate of the sd-exchange coefficient from data on spin relaxation in magnetically dilute (Cu,Ag,Au):Mn alloys; (2) a DFT computation (J. Xiao et al 2010); and (3) most persuasively, data from spin pumping driven across a YIG/Au interface by ferromagnetic resonance (B. Heinrich et al 2011; C. Burrowes et al 2012).
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1966-01-01
A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.
Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field
NASA Technical Reports Server (NTRS)
Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.
2010-01-01
Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.
Spin current and spin transfer torque in ferromagnet/superconductor spin valves
NASA Astrophysics Data System (ADS)
Moen, Evan; Valls, Oriol T.
2018-05-01
Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.
Powering the High-Luminosity Triplets
NASA Astrophysics Data System (ADS)
Ballarino, A.; Burnet, J. P.
The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1988-01-01
Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.
Assisted Writing in Spin Transfer Torque Magnetic Tunnel Junctions
NASA Astrophysics Data System (ADS)
Ganguly, Samiran; Ahmed, Zeeshan; Datta, Supriyo; Marinero, Ernesto E.
2015-03-01
Spin transfer torque driven MRAM devices are now in an advanced state of development, and the importance of reducing the current requirement for writing information is well recognized. Different approaches to assist the writing process have been proposed such as spin orbit torque, spin Hall effect, voltage controlled magnetic anisotropy and thermal excitation. In this work,we report on our comparative study using the Spin-Circuit Approach regarding the total energy, the switching speed and energy-delay products for different assisted writing approaches in STT-MTJ devices using PMA magnets.
Automated observatory in Antarctica: real-time data transfer on constrained networks in practice
NASA Astrophysics Data System (ADS)
Bracke, Stephan; Gonsette, Alexandre; Rasson, Jean; Poncelet, Antoine; Hendrickx, Olivier
2017-08-01
In 2013 a project was started by the geophysical centre in Dourbes to install a fully automated magnetic observatory in Antarctica. This isolated place comes with specific requirements: unmanned station during 6 months, low temperatures with extreme values down to -50 °C, minimum power consumption and satellite bandwidth limited to 56 Kbit s-1. The ultimate aim is to transfer real-time magnetic data every second: vector data from a LEMI-25 vector magnetometer, absolute F measurements from a GEM Systems scalar proton magnetometer and absolute magnetic inclination-declination (DI) measurements (five times a day) with an automated DI-fluxgate magnetometer. Traditional file transfer protocols (for instance File Transfer Protocol (FTP), email, rsync) show severe limitations when it comes to real-time capability. After evaluation of pro and cons of the available real-time Internet of things (IoT) protocols and seismic software solutions, we chose to use Message Queuing Telemetry Transport (MQTT) and receive the 1 s data with a negligible latency cost and no loss of data. Each individual instrument sends the magnetic data immediately after capturing, and the data arrive approximately 300 ms after being sent, which corresponds with the normal satellite latency.
Magnetic field enhancement of organic photovoltaic cells performance.
Oviedo-Casado, S; Urbina, A; Prior, J
2017-06-27
Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.
Super-Eddington radiation transfer in soft gamma repeaters
NASA Technical Reports Server (NTRS)
Ulmer, Andrew
1994-01-01
Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 10(exp 13) G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.
Applying analog integrated circuits for HERO protection
NASA Technical Reports Server (NTRS)
Willis, Kenneth E.; Blachowski, Thomas J.
1994-01-01
One of the most efficient methods for protecting electro-explosive devices (EED's) from HERO and ESD is to shield the EED in a conducting shell (Faraday cage). Electrical energy is transferred to the bridge by means of a magnetic coupling which passes through a portion of the conducting shell that is made from a magnetically permeable but electrically conducting material. This technique was perfected by ML Aviation, a U.K. company, in the early 80's, and was called a Radio Frequency Attenuation Connector (RFAC). It is now in wide use in the U.K. Previously, the disadvantage of RFAC over more conventional methods was its relatively high cost, largely driven by a thick film hybrid circuit used to switch the primary of the transformer. Recently, through a licensing agreement, this technology has been transferred to the U.S. and significant cost reductions and performance improvements have been achieved by the introduction of analog integrated circuits. An integrated circuit performs the following functions: (1) Chops the DC input to a signal suitable for driving the primary of the transformer; (2) Verifies the input voltage is above a threshold; (3) Verifies the input voltage is valid for a pre set time before enabling the device; (4) Provides thermal protection of the circuit; and (5) Provides an external input for independent logic level enabling of the power transfer mechanism. This paper describes the new RFAC product and its applications.
Magnetic fields and chiral asymmetry in the early hot universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field andmore » lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.« less
Magnetic fields and chiral asymmetry in the early hot universe
NASA Astrophysics Data System (ADS)
Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri
2016-10-01
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.
NASA Astrophysics Data System (ADS)
Jovanović, B.; Brum, R. M.; Torres, L.
2014-04-01
After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.
RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2015-10-29
A new technique is developed that allows one to carry out the signal amplification by reversible exchange (SABRE) experiments at high magnetic field. SABRE is a hyperpolarization method, which utilizes transfer of spin order from para-hydrogen to the spins of a substrate in transient iridium complexes. Previously, it has been thought that such a transfer of spin order is only efficient at low magnetic fields, notably, at level anti-crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields under the action of a RF field. The high-field RF-SABRE experiment can be implemented using commercially available nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) machines and does not require technically demanding field-cycling. The achievable NMR enhancements are around 100 for several substrates as compared to their NMR signals at thermal equilibrium conditions at 4.7 T. The frequency dependence of RF-SABRE is comprised of well pronounced peaks and dips, whose position and amplitude are conditioned solely by the magnetic resonance parameters such as chemical shifts and scalar coupling of the spin system involved in the polarization transfer and by the amplitude of the RF field. Thus, the proposed method can serve as a new sensitive tool for probing transient complexes. Simulations of the dependence of magnetization transfer (i.e., NMR signal amplifications) on the frequency and amplitude of the RF field are in good agreement with the developed theoretical approach. Furthermore, the method enables continuous re-hyperpolarization of the SABRE substrate over a long period of time, giving a straightforward way to repetitive NMR experiments.
Scheidegger, Rachel; Vinogradov, Elena; Alsop, David C
2011-01-01
Amide proton transfer (APT) imaging has shown promise as an indicator of tissue pH and as a marker for brain tumors. Sources of error in APT measurements include direct water saturation, and magnetization transfer (MT) from membranes and macromolecules. These are typically suppressed by post-processing asymmetry analysis. However, this approach is strongly dependent on B0 homogeneity and can introduce additional errors due to intrinsic MT asymmetry, aliphatic proton features opposite the amide peak, and radiation damping-induced asymmetry. Although several methods exist to correct for B0 inhomogeneity, they tremendously increase scan times and do not address errors induced by asymmetry of the z-spectrum. In this paper, a novel saturation scheme - saturation with frequency alternating RF irradiation (SAFARI) - is proposed in combination with a new magnetization transfer ratio (MTR) parameter designed to generate APT images insensitive to direct water saturation and MT, even in the presence of B0 inhomogeneity. The feasibility of the SAFARI technique is demonstrated in phantoms and in the human brain. Experimental results show that SAFARI successfully removes direct water saturation and MT contamination from APT images. It is insensitive to B0 offsets up to 180Hz without using additional B0 correction, thereby dramatically reducing scanning time. PMID:21608029
Collaborative Research: Polymeric Multiferroics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shenqiang
2017-04-20
The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamentalmore » understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.« less
Flux transfer events: Reconnection without separators. [magnetopause
NASA Technical Reports Server (NTRS)
Hesse, M.; Birn, J.; Schindler, K.
1989-01-01
A topological analysis of a simple model magnetic field of a perturbation at the magnetopause modeling an apparent flux transfer event is presented. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause. Although the model field exhibits neutral points, these are not involved in the magnetic connection of the flux tubes. The topological substructure of a localized perturbation is analyzed in a simpler configuration. The presence of both signs of the magnetic field component normal to the magnetopause leads to a linkage of topologically different flux tubes, described as a flux knot, and a filamentary substructure of field lines of different topological types which becomes increasingly complicated for decreasing magnetic shear at the magnetopause.
NASA Astrophysics Data System (ADS)
Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.
2016-11-01
Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.
ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pontin, D. I.; Priest, E. R.; Galsgaard, K., E-mail: dpontin@maths.dundee.ac.uk
2013-09-10
Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takesmore » place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granados, Carlos; Weiss, Christian
The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(M π)] and could be observed in form factor measurements at low momentum transfer.
Su, C; Liu, C; Zhao, L; Jiang, J; Zhang, J; Li, S; Zhu, W; Wang, J
2017-09-01
Prognosis in glioma depends strongly on tumor grade and proliferation. In this prospective study of patients with untreated primary cerebral gliomas, we investigated whether amide proton transfer-weighted imaging could reveal tumor proliferation and reliably distinguish low-grade from high-grade gliomas compared with Ki-67 expression and proton MR spectroscopy imaging. This study included 42 patients with low-grade ( n = 28) or high-grade ( n = 14) glioma, all of whom underwent conventional MR imaging, proton MR spectroscopy imaging, and amide proton transfer-weighted imaging on the same 3T scanner within 2 weeks before surgery. We assessed metabolites of choline and N -acetylaspartate from proton MR spectroscopy imaging and the asymmetric magnetization transfer ratio at 3.5 ppm from amide proton transfer-weighted imaging and compared them with histopathologic grade and immunohistochemical expression of the proliferation marker Ki-67 in the resected specimens. The asymmetric magnetization transfer ratio at 3.5 ppm values measured by different readers showed good concordance and were significantly higher in high-grade gliomas than in low-grade gliomas (3.61% ± 0.155 versus 2.64% ± 0.185, P = .0016), with sensitivity and specificity values of 92.9% and 71.4%, respectively, at a cutoff value of 2.93%. The asymmetric magnetization transfer ratio at 3.5 ppm values correlated with tumor grade ( r = 0.506, P = .0006) and Ki-67 labeling index ( r = 0.502, P = .002). For all patients, the asymmetric magnetization transfer ratio at 3.5 ppm correlated positively with choline ( r = 0.43, P = .009) and choline/ N -acetylaspartate ratio ( r = 0.42, P = .01) and negatively with N -acetylaspartate ( r = -0.455, P = .005). These correlations held for patients with low-grade gliomas versus those with high-grade gliomas, but the correlation coefficients were higher in high-grade gliomas (choline: r = 0.547, P = .053; N -acetylaspartate: r = -0.644, P = .017; choline/ N -acetylaspartate: r = 0.583, P = .036). The asymmetric magnetization transfer ratio at 3.5 ppm may serve as a potential biomarker not only for assessing proliferation, but also for predicting histopathologic grades in gliomas. © 2017 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe
2016-07-01
We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.
Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe
2016-07-01
We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.
Dynamic Nuclear Polarization and other magnetic ideas at EPFL.
Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey
2012-01-01
Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.
Design and prototype fabrication of a 30 tesla cryogenic magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Swanson, M. C.; Brown, G. V.
1977-01-01
A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.
NASA Astrophysics Data System (ADS)
D'Souza, Noel Michael
Nanomagnetic logic, incorporating logic bits in the magnetization orientations of single-domain nanomagnets, has garnered attention as an alternative to transistor-based logic due to its non-volatility and unprecedented energy-efficiency. The energy efficiency of this scheme is determined by the method used to flip the magnetization orientations of the nanomagnets in response to one or more inputs and produce the desired output. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque inhibit the promised energy-efficiency. Another technique offering superior energy efficiency, "straintronics", involves the application of a voltage to a piezoelectric layer to generate a strain which is transferred to an elastically coupled magnetrostrictive layer, causing magnetization rotation. The functionality of this scheme can be enhanced further by introducing magnetocrystalline anisotropy in the magnetostrictive layer, thereby generating four stable magnetization states (instead of the two stable directions produced by shape anisotropy in ellipsoidal nanomagnets). Numerical simulations were performed to implement a low-power universal logic gate (NOR) using such 4-state magnetostrictive/piezoelectric nanomagnets (Ni/PZT) by clocking the piezoelectric layer with a small electrostatic potential (˜0.2 V) to switch the magnetization of the magnetic layer. Unidirectional and reliable logic propagation in this system was also demonstrated theoretically. Besides doubling the logic density (4-state versus 2-state) for logic applications, these four-state nanomagnets can be exploited for higher order applications such as image reconstruction and recognition in the presence of noise, associative memory and neuromorphic computing. Experimental work in strain-based switching has been limited to magnets that are multi-domain or magnets where strain moves domain walls. In this work, we also demonstrate strain-based switching in 2-state single-domain ellipsoidal magnetostrictive nanomagnets of lateral dimensions ˜200 nm fabricated on a piezoelectric substrate (PMN-PT) and studied using Magnetic Force Microscopy (MFM). A nanomagnetic Boolean NOT gate and unidirectional bit information propagation through a finite chain of dipole-coupled nanomagnets are also shown through strain-based "clocking". This is the first experimental demonstration of strain-based switching in nanomagnets and clocking of nanomagnetic logic (Boolean NOT gate), as well as logic propagation in an array of nanomagnets.
Spin-Transfer Studies in Magnetic Multilayer Nanostructures
NASA Astrophysics Data System (ADS)
Emley, N. C.; Albert, F. J.; Ryan, E. M.; Krivorotov, I. N.; Ralph, D. C.; Buhrman, R. A.
2003-03-01
Numerous experiments have demonstrated current-induced magnetization reversal in ferromagnet/paramagnet/ferromagnet nanostructures with the current in the CPP geometry. The primary mechanism for this reversal is the transfer of angular momentum from the spin-polarized conduction electrons to the nanomagnet moment the spin transfer effect. This phenomenon has potential application in nanoscale, current-controlled non-volatile memory elements, but several challenges must be overcome for realistic device implementation. Typical Co/Cu/Co nanopillar devices, although effective for fundamental studies, are not advantageous for technological applications because of their large switching currents Ic ( 3-10 mA) and small R·A (< 1 mΩ·µm^2). Here we report initial results testing some possible approaches for enhancing spin-transfer device performance which involve the addition of more layers, and hence, more complexity, to the simple Co/Cu/Co trilayer structure. These additions include synthetic antiferromagnet layers (SAF), exchange biased layers, nano-oxide layers (NOL), and additional magnetic layers. Research supported by NSF and DARPA
NASA Astrophysics Data System (ADS)
Fast, R. W.
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250
Rendon-Nava, Adrian E; Díaz-Méndez, J Alejandro; Nino-de-Rivera, Luis; Calleja-Arriaga, Wilfrido; Gil-Carrasco, Felix; Díaz-Alonso, Daniela
2014-01-01
An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.
Baird, Abigail A; Colvin, Mary K; Vanhorn, John D; Inati, Souheil; Gazzaniga, Michael S
2005-04-01
In the present study, we combined 2 types of magnetic resonance technology to explore individual differences on a task that required the recognition of objects presented from unusual viewpoints. This task was chosen based on previous work that has established the necessity of information transfer from the right parietal cortex to the left inferior cortex for its successful completion. We used reaction times (RTs) to localize regions of cortical activity in the superior parietal and inferior frontal regions (blood oxygen level-dependent [BOLD] response) that were more active with longer response times. These regions were then sampled, and their signal change used to predict individual differences in structural integrity of white matter in the corpus callosum (using diffusion tensor imaging). Results show that shorter RTs (and associated increases in BOLD response) are associated with increased organization in the splenium of the corpus callosum, whereas longer RTs are associated with increased organization in the genu.
NASA Astrophysics Data System (ADS)
Lee, Kwang-Sup; Kim, Sung-Hyun; Jung, Juhyoung; Teng, Xue-Cheng; Prabhakaran, Prem
2017-02-01
Groups around the world are pursuing optoelctronic and magneto-optic properties of graphene-based materials since they hold a lot of promise for future technologies. Quantum dot (QD) decorated graphenic nanohybrids can be candidates for demonstrating energy transfer, while magnetic nanoparticles (MNPs) on graphene give rise to interesting electronic phenomena like magneto-optical effects. Graphene containing MNPs are also good candidates for exploring quantum-hall effect. In medicine these materials have demonstrated applications in bioimaging, drug delivery, photothermal treatment and magnetic resonance imaging. A majority of groups working on QD or MNPs have focused on chemical functionalization methods for making graphene-MNP nanohybrids. We have developed a set of small molecule as well as polymeric ligands for noncovalent self-assembly of nanoparticles on graphene. The ligands contain pyrene as an anchor group for graphene and also thiol or dipamine as anchor groups for QD or MNPs. In this presentation we discuss the synthesis and characterization of these materials and outline some early results regarding exploratory device fabrication involving these materials.
Review of magnetic refrigeration system as alternative to conventional refrigeration system
NASA Astrophysics Data System (ADS)
Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.
2017-10-01
The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.
Interface-induced phenomena in magnetism
Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; ...
2017-06-05
Our article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important conceptsmore » include spin accumulation, spin currents, spin transfer torque, and spin pumping. We provide an overview for the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. Our article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.« less
Interface-Induced Phenomena in Magnetism
Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S. D.; Fullerton, Eric E.; Leighton, Chris; MacDonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, Bert; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.
2017-01-01
This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes. PMID:28890576
Correcting bulk in-plane motion artifacts in MRI using the point spread function.
Lin, Wei; Wehrli, Felix W; Song, Hee Kwon
2005-09-01
A technique is proposed for correcting both translational and rotational motion artifacts in magnetic resonance imaging without the need to collect additional navigator data or to perform intensive postprocessing. The method is based on measuring the point spread function (PSF) by attaching one or two point-sized markers to the main imaging object. Following the isolation of a PSF marker from the acquired image, translational motion could be corrected directly from the modulation transfer function, without the need to determine the object's positions during the scan, although the shifts could be extracted if desired. Rotation is detected by analyzing the relative displacements of two such markers. The technique was evaluated with simulations, phantom and in vivo experiments.
In situ scanning tunneling microscope tip treatment device for spin polarization imaging
Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN
2008-04-22
A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.
NASA Astrophysics Data System (ADS)
Oubram, O.; Navarro, O.; Guzmán, E. J.; Rodríguez-Vargas, I.
2018-01-01
Electron transport in a silicene structure, composed of a pair of magnetic gates, is studied in a ferromagnetic and antiferromagnetic configuration. The transport properties are investigated for asymmetrical external effects like an electrostatic potential, a magnetic field and for asymmetrical geometric structure. This theoretical study, has been done using the matrix transfer method to calculate the transmission, the conductance for parallel and antiparallel magnetic alignment and the tunneling magnetoresistance (TMR). In Particular, we have found that the transmission, conductance and magnetoresistance oscillate as a function of the width of barriers. It is also found that a best control and high values of TMR spectrum are achieved by an asymmetrical application of the contact voltage. Besides, we have shown that the TMR is enhanced several orders of magnitude by the combined asymmetrical magnetization effect with an adequate applied electrostatic potential. Whereby, the asymmetrical external effects play an important role to improve TMR than symmetrical ones. Finally, the giant TMR can be flexibly modulated by incident energy and a specific asymmetrical application of control voltage. These results could be useful to design filters and digital nanodevices.
New Possibilities for Magnetic Control of Chemical and Biochemical Reactions.
Buchachenko, Anatoly; Lawler, Ronald G
2017-04-18
Chemistry is controlled by Coulomb energy; magnetic energy is lower by many orders of magnitude and may be confidently ignored in the energy balance of chemical reactions. The situation becomes less clear, however, when reaction rates are considered. In this case, magnetic perturbations of nearly degenerate energy surface crossings may produce observable, and sometimes even dramatic, effects on reactions rates, product yields, and spectroscopic transitions. A case in point that has been studied for nearly five decades is electron spin-selective chemistry via the intermediacy of radical pairs. Magnetic fields, external (permanent or oscillating) and the internal magnetic fields of magnetic nuclei, have been shown to overcome electron spin selection rules for pairs of reactive paramagnetic intermediates, catalyzing or inhibiting chemical reaction pathways. The accelerating effects of magnetic stimulation may therefore be considered to be magnetic catalysis. This type of catalysis is most commonly observed for reactions of a relatively long-lived radical pair containing two weakly interacting electron spins formed by dissociation of molecules or by electron transfer. The pair may exist in singlet (total electron spin is zero) or triplet (total spin is unity) spin states. In virtually all cases, only the singlet state yields stable reaction products. Magnetic interactions with nuclear spins or applied fields may therefore affect the reactivity of radical pairs by changing the angular momentum of the pairs. Magnetic catalysis, first detected via its effect on spin state populations in nuclear and electron spin resonance, has been shown to function in a great variety of well-characterized reactions of organic free radicals. Considerably less well studied are examples suggesting that the basic mechanism may also explain magnetic effects that stimulate ATP synthesis, eliminating ATP deficiency in cardiac diseases, control cell proliferation, killing cancer cells, and control transcranial magnetic stimulation against cognitive deceases. Magnetic control has also been observed for some processes of importance in materials science and earth and environmental science and may play a role in animal navigation. In this Account, the radical pair mechanism is applied as a consistent explanation for several intriguing new magnetic phenomena. Specific examples include acceleration of solid state reactions of silicon by the magnetic isotope 29 Si, enrichment of 17 O during thermal decomposition of metal carbonates and magnetic effects on crystal plasticity. In each of these cases, the results are consistent with an initial one-electron transfer to generate a radical pair. Similar processes can account for mass-independent fractionation of isotopes of mercury, sulfur, germanium, tin, iron, and uranium in both naturally occurring samples and laboratory experiments. In the area of biochemistry, catalysis by magnetic isotopes has now been reported in several reactions of DNA and high energy phosphate. Possible medical applications of these observations are pointed out.
Rottler, Philipp; Schroeder, Henry W S; Lotze, Martin
2014-02-01
A hypoglossal-facial transfer is a common surgical strategy for reanimating the face after persistent total hemifacial palsy. We were interested in how motor recovery is associated with cortical reorganization of lip and tongue representation in the primary sensorimotor cortex after the transfer. Therefore, we used functional magnetic resonance imaging (fMRI) in 13 patients who underwent a hypoglossal-facial transfer after unilateral peripheral facial palsy. To identify primary motor and somatosensory tongue and lip representation sites, we measured repetitive tongue and lip movements during fMRI. Electromyography (EMG) of the perioral muscles during tongue and lip movements and standardized evaluation of lip elevation served as outcome parameters. We found an association of cortical representation sites in the pre- and postcentral gyrus (decreased distance of lip and tongue representation) with symmetry of recovered lip movements (lip elevation) and coactivation of the lip during voluntary tongue movements (EMG-activity of the lip during tongue movements). Overall, our study shows that hypoglossal-facial transfer resulted in an outcome-dependent cortical reorganization with activation of the cortical tongue area for restituded movement of the lip. Copyright © 2012 Wiley Periodicals, Inc.
Beauchamp, Kathryn G; Kahn, Lauren E; Berkman, Elliot T
2016-09-01
Inhibitory control (IC) is a critical neurocognitive skill for successfully navigating challenges across domains. Several studies have attempted to use training to improve neurocognitive skills such as IC, but few have found that training generalizes to performance on non-trained tasks. We used functional magnetic resonance imaging (fMRI) to investigate the effect of IC training on a related but untrained emotion regulation (ER) task with the goal of clarifying how training alters brain function and why its effects typically do not transfer across tasks. We suggest hypotheses for training-related changes in activation relevant to transfer effects: the strength model and several plausible alternatives (shifting priorities, stimulus-response automaticity, scaffolding). Sixty participants completed three weeks of IC training and underwent fMRI scanning before and after. The training produced pre- to post-training changes in neural activation during the ER task in the absence of behavioral changes. Specifically, individuals in the training group demonstrated reduced activation during ER in the left inferior frontal gyrus and supramarginal gyrus, key regions in the IC neural network. This result is less consistent with the strength model and more consistent with a motivational account. Implications for future work aiming to further pinpoint mechanisms of training transfer are discussed. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
The characteristic of evaporative cooling magnet for ECRIS
NASA Astrophysics Data System (ADS)
Xiong, B.; Ruan, L.; Gu, G. B.; Lu, W.; Zhang, X. Z.; Zhan, W. L.
2016-02-01
Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm2. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.
The characteristic of evaporative cooling magnet for ECRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, B., E-mail: xiongbin@mail.iee.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Ruan, L.
2016-02-15
Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquidmore » coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm{sup 2}. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.« less
Unsteady Magnetized Flow and Heat Transfer of a Viscoelastic fluid over a Stretching Surface
NASA Astrophysics Data System (ADS)
Ghosh, Sushil Kumar
2017-12-01
This paper is to study the flow of heated ferro-fluid over a stretching sheet under the influence of magnetic field. The fluid considered in the present investigation is a mixture of blood as well as fluid-dispersed magnetic nano particles and under this context blood is found to be the appropriate choice of viscoelastic, Walter's B fluid. The objective of the present work is to study the effect of various parameters found in the mathematical analysis. Taking into account the blood has zero electrical conductivity, magnetization effect has been considered in the governing equation of the present study with the use of ferro-fluid dynamics principle. By introducing appropriate non-dimensional variables into the governing equations of unsteady two-dimensional flow of viscoelastic fluid with heat transfer are converted to a set of ordinary differential equations with appropriate boundary conditions. Newton's linearization technique has been employed for the solution of non-linear ordinary differential equations. Important results found in the present investigation are the substantial influence of ferro-magnetic parameter, Prandlt number and the parameter associated with the thermal conductivity on the flow and heat transfer. It is observed that the presence of magnetic dipole essentially reduces the flow velocity in the vertical direction and that helps to damage the cancer cells in the tumor region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granroth, Garrett E
2011-01-01
Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes ofmore » $Q$ and $$\\omega$$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$$_4$$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.« less
A 3D analysis of oxygen transfer in a low-cost micro-bioreactor for animal cell suspension culture.
Yu, P; Lee, T S; Zeng, Y; Low, H T
2007-01-01
A 3D numerical model was developed to study the flow field and oxygen transport in a micro-bioreactor with a rotating magnetic bar on the bottom to mix the culture medium. The Reynolds number (Re) was kept in the range of 100-716 to ensure laminar environment for animal cell culture. The volumetric oxygen transfer coefficient (k(L)a) was determined from the oxygen concentration distribution. It was found that the effect of the cell consumption on k(L)a could be negligible. A correlation was proposed to predict the liquid-phase oxygen transfer coefficient (k(Lm)) as a function of Re. The overall oxygen transfer coefficient (k(L)) was obtained by the two-resistance model. Another correlation, within an error of 15%, was proposed to estimate the minimum oxygen concentration to avoid cell hypoxia. By combination of the correlations, the maximum cell density, which the present micro-bioreactor could support, was predicted to be in the order of 10(12) cells m(-3). The results are comparable with typical values reported for animal cell growth in mechanically stirred bioreactors.
Chemical Exchange Saturation Transfer (CEST): what is in a name and what isn’t?
van Zijl, Peter C.M.; Yadav, Nirbhay N.
2011-01-01
Chemical exchange saturation transfer (CEST) imaging is a relatively new MRI contrast approach in which exogenous or endogenous compounds containing either exchangeable protons or exchangeable molecules are selectively saturated and, after transfer of this saturation, detected indirectly through the water signal with enhanced sensitivity. The focus of this review is on basic MR principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast (MTC). In CEST MRI, transfer of magnetization is studied in mobile compounds instead of semisolids. Similar to MTC, CEST has contributions of both chemical exchange and dipolar cross-relaxation, but the latter can often be neglected if exchange is fast. Contrary to MTC, CEST imaging requires sufficiently slow exchange on the MR time scale to allow selective irradiation of the protons of interest. As a consequence, magnetic labeling is not limited to radio-frequency saturation but can be expanded with slower frequency-selective approaches such as inversion, gradient dephasing and frequency labeling. The basic theory, design criteria, and experimental issues for exchange transfer imaging are discussed. A new classification for CEST agents based on exchange type is proposed. The potential of this young field is discussed, especially with respect to in vivo application and translation to humans. PMID:21337419
Bond-order potential for magnetic body-centered-cubic iron and its transferability
NASA Astrophysics Data System (ADS)
Lin, Yi-Shen; Mrovec, M.; Vitek, V.
2016-06-01
We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to different less symmetric structures and phonons. The results of these calculations are compared with either experiments or calculations based on the density functional theory (DFT), and they all show very good agreement. Importantly, the lowest energy configuration of SIAs agrees with DFT calculations that show that it is an exception within bcc transition metals controlled by magnetism. Moreover, the migration energy of interstitials is significantly lower than that of vacancies, which is essential for correct analysis of the effects of irradiation. Finally, the core structure and glide of ½ <111 > screw dislocations that control the plastic flow in single crystals of bcc metals was explored. The results fully agree with available DFT based studies and with experimental observations of the slip geometry of bcc iron at low temperatures.
Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity
NASA Astrophysics Data System (ADS)
Ashouri, Majid; Behshad Shafii, Mohammad
2017-11-01
The magnetic convection heat transfer in an obstructed two-dimensional square cavity is investigated numerically. The walls of the cavity are heated with different constant temperatures at two sides, and isolated at two other sides. The cavity is filled with a high Prandtl number ferrofluid. The convective force is induced by a magnetic field gradient of a thermally insulated square permanent magnet located at the center of the cavity. The results are presented in the forms of streamlines, isotherms, and Nusselt number for various values of magnetic Rayleigh numbers and permanent magnet size. Two major circulations are generated in the cavity, clockwise flow in the upper half and counterclockwise in the lower half. In addition, strong circulations are observed around the edges of the permanent magnet surface. The strength of the circulations increase monotonically with the magnetic Rayleigh number. The circulations also increase with the permanent magnet size, but eventually, are suppressed for larger sizes. It is found that there is an optimum size for the permanent magnet due to the contrary effects of the increase in magnetic force and the increase in flow resistance by increasing the size. By increasing the magnetic Rayleigh number or isothermal walls temperature ratio, the heat transfer rate increases.
MESSENGER Observations of Mercury's Dynamic Magnetosphere During Three Flybys
NASA Astrophysics Data System (ADS)
Slavin, James; Krimigis, Stamatios; Anderson, Brian J.; Benna, Mehdi; Gold, Robert E.; Ho, George; McNutt, Ralph; Raines, James; Schriver, David; Solomon, Sean C.
MESSENGER's 14 January and 6 October 2008 and 29 September 2009 encounters with Mer-cury have provided new measurements of dynamic variations in the planet's coupled atmo-sphere-magnetosphere system. The three flybys took place under very different interplanetary magnetic field (IMF) conditions. Consistent with predictions of magnetospheric models for northward IMF, the neutral atmosphere was observed to have its strongest sources in the high latitude northern hemisphere for the first flyby. The southward IMF for the second encounter revealed a highly dynamic magnetosphere. Reconnection between the interplanetary and plan-etary magnetic fields is known to control the rate of energy transfer from the solar wind and to drive magnetospheric convection. The MESSENGER magnetic field measurements revealed that the rate at which interplanetary magnetic fields were reconnecting to the planetary fields was a factor of 10 greater than is usually observed at Earth. This extremely high reconnection rate results in a large magnetic field component normal to the magnetopause and the formation of flux transfer events that are much larger relative to the size of the forward magnetosphere than is observed at Earth. The resulting magnetospheric configuration allows the solar wind access to much of the dayside surface of Mercury. During MESSENGER's third Mercury flyby, a variable interplanetary magnetic field produced a series of several-minute-long enhancements of the tail magnetic field by factors of 2 to 3.5. The magnetic field flaring during these intervals indicates that they resulted from loading of the tail with magnetic flux transferred from the dayside magnetosphere. The unloading intervals were associated with plasmoids and traveling compression regions, signatures of tail reconnection. The peak tail magnetic flux during the smallest loading events equaled 30
The MAVEN Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
The MAVEN Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2015-12-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, K; Weber, U; Simeonov, Y
Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular andmore » thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.« less
NASA Astrophysics Data System (ADS)
Laveissière, G.; Todor, L.; Degrande, N.; Jaminion, S.; Jutier, C.; di Salvo, R.; van Hoorebeke, L.; Alexa, L. C.; Anderson, B. D.; Aniol, K. A.; Arundell, K.; Audit, G.; Auerbach, L.; Baker, F. T.; Baylac, M.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Breton, V.; Breuer, H.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Cavata, C.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dale, D. S.; de Jager, C. W.; de Leo, R.; Deur, A.; D'Hose, N.; Dodge, G. E.; Domingo, J. J.; Elouadrhiri, L.; Epstein, M. B.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Fonvieille, H.; Fournier, G.; Frois, B.; Frullani, S.; Furget, C.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Grenier, P.; Guichon, P. A.; Hansen, J. O.; Holmes, R.; Holtrop, M.; Howell, C.; Huber, G. M.; Hyde-Wright, C. E.; Incerti, S.; Iodice, M.; Jardillier, J.; Jones, M. K.; Kahl, W.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khayat, M.; Kino, K.; Kox, S.; Kramer, L. H.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Leone, A.; Lerose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Marchand, C.; Marchand, D.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martino, J.; McCormick, K.; McIntyre, J.; Mehrabyan, S.; Merchez, F.; Meziani, Z. E.; Michaels, R.; Miller, G. W.; Mougey, J. Y.; Nanda, S. K.; Neyret, D.; Offermann, E. A.; Papandreou, Z.; Pasquini, B.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Platchkov, S.; Pomatsalyuk, R.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quémenér, G.; Ransome, R. D.; Ravel, O.; Real, J. S.; Renard, F.; Roblin, Y.; Rowntree, D.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, P.; Souder, P. A.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Tieulent, R.; Tomasi-Gustaffson, E.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Vanderhaeghen, M.; van de Vyver, R.; van der Meer, R. L.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B. B.; Zainea, D. G.; Zhang, W.-M.; Zhao, J.; Zhou, Z.-L.
2004-09-01
We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions PLL-PTT/ɛ and PLT, and the electric and magnetic generalized polarizabilities (GPs) αE(Q2) and βM(Q2) at momentum transfer Q2=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a falloff; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from πN intermediate states.
NASA Astrophysics Data System (ADS)
Fonvieille, H.; Laveissière, G.; Degrande, N.; Jaminion, S.; Jutier, C.; Todor, L.; Di Salvo, R.; Van Hoorebeke, L.; Alexa, L. C.; Anderson, B. D.; Aniol, K. A.; Arundell, K.; Audit, G.; Auerbach, L.; Baker, F. T.; Baylac, M.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Breton, V.; Breuer, H.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Cavata, C.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dale, D. S.; de Jager, C. W.; De Leo, R.; Deur, A.; d'Hose, N.; Dodge, G. E.; Domingo, J. J.; Elouadrhiri, L.; Epstein, M. B.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Fournier, G.; Frois, B.; Frullani, S.; Furget, C.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Grenier, P.; Guichon, P. A. M.; Hansen, J. O.; Holmes, R.; Holtrop, M.; Howell, C.; Huber, G. M.; Hyde, C. E.; Incerti, S.; Iodice, M.; Jardillier, J.; Jones, M. K.; Kahl, W.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khayat, M.; Kino, K.; Kox, S.; Kramer, L. H.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Leone, A.; LeRose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Marchand, C.; Marchand, D.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martino, J.; McCormick, K.; McIntyre, J.; Mehrabyan, S.; Merchez, F.; Meziani, Z. E.; Michaels, R.; Miller, G. W.; Mougey, J. Y.; Nanda, S. K.; Neyret, D.; Offermann, E. A. J. M.; Papandreou, Z.; Pasquini, B.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Platchkov, S.; Pomatsalyuk, R.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quémenér, G.; Ransome, R. D.; Ravel, O.; Real, J. S.; Renard, F.; Roblin, Y.; Rowntree, D.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, P.; Souder, P. A.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Tieulent, R.; Tomasi-Gustaffson, E.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Vanderhaeghen, M.; Van der Meer, R. L. J.; Van De Vyver, R.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B. B.; Zainea, D. G.; Zhang, W.-M.; Zhao, J.; Zhou, Z.-L.
2012-07-01
Virtual Compton scattering (VCS) on the proton has been studied at the Jefferson Laboratory using the exclusive photon electroproduction reaction ep→epγ. This paper gives a detailed account of the analysis which has led to the determination of the structure functions PLL-PTT/ɛ and PLT and the electric and magnetic generalized polarizabilities (GPs) αE(Q2) and βM(Q2) at values of the four-momentum transfer squared Q2=0.92 and 1.76 GeV2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q2 range and point to their nontrivial behavior.
Pastor, Nina; Amero, Carlos
2015-01-01
Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971
Domain wall structure and interactions in 50 nm wide Cobalt nanowires
NASA Astrophysics Data System (ADS)
Tu, Kun-Hua; Ojha, Shuchi; Ross, Caroline A.
2018-05-01
Arrays of cobalt nanowires with widths of 50 nm, thickness of 5 and 20 nm and periodicity of 70 nm were fabricated by pattern transfer from a self-assembled block copolymer film. Transverse domain walls (DWs) were imaged by magnetic force microscopy, indicating repulsive interactions between DWs of the same sign in the 20 nm thick wires. Micromagnetic simulations were used to identify the interactions in the six distinct cases of a pair of transverse DWs in adjacent wires, considering all the possible combinations of head-to-head and tail-to-tail DWs and the orientation of the core magnetization. The boundary between repulsive and attractive DW interactions is mapped out for wires as a function of thickness, width and interwire spacing.
Nonlinear piezoelectric devices for broadband air-flow energy harvesting
NASA Astrophysics Data System (ADS)
Bai, Y.; Havránek, Z.; Tofel, P.; Meggs, C.; Hughes, H.; Button, T. W.
2015-11-01
This paper presents preliminary work on an investigation of a nonlinear air-flow energy harvester integrating magnets and a piezoelectric cantilever array. Two individual piezoelectric cantilevers with the structure of free-standing multi-layer thick-films have been fabricated and assembled with a free-spinning fan. The cantilevers were attached with different tip masses thereby achieving separated resonant frequencies. Also, permanent magnets were fixed onto the blades of the fan as well as the tips of the cantilevers, in order to create nonlinear coupling and transfer fluidic movement into mechanical oscillation. The device has been tested in a wind tunnel. Bifurcations in the spectra of the blade rotation speed of the fan as a function of output voltage have been observed, and a bandwidth (blade rotation speed range) widening effect has been achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg
2015-02-14
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
NASA Technical Reports Server (NTRS)
Jacob, Jamey D.; Carrell, Cynthia
1993-01-01
We present preliminary results of a study of upstream magnetic field and plasma conditions measured by IRM during flux transfer events observed at the Earth's magnetopause by CCE. This study was designed to determine the importance of various upstream factors in the formation of bipolar magnetic field signatures called flux transfer events (FTEs). Six FTE encounters were examined. In three cases, the two satellites were on similar magnetic field lines. Preliminary investigation showed that fluctuations occurred in the Bz component of the interplanetary magnetic field (IMF) resulting in a southward field preceding the FTE in all three of these cases. In two of these cases, the changes were characterized by a distinct rotation from a strong southward to a strong northward field. There were also accompanying changes in the dynamic and thermal pressure in the solar wind immediately before the FTE was encountered. Examination of the 3D plasma distributions showed that these pulses were due to the addition of energetic upstreaming foreshock particles. There were no consistent changes in either Bz or the plasma pressure at IRM for the three events when the satellites were not connected by the IMF.
High-frequency flux transfer events detected near Mercury
NASA Astrophysics Data System (ADS)
Schultz, Colin
2013-01-01
The physical process that creates connections between the magnetic fields emanating from the Sun and a planet—a process known as magnetic reconnection—creates a portal through which solar plasma can penetrate the planetary magnetic field. The opening of these portals, known as flux transfer events (FTEs), takes place roughly every 8 minutes at Earth and spawns a rope of streaming plasma that is typically about half of the radius of the Earth. As early as 1985, scientists analyzing the Mariner 10 observations, collected during their 1974-1975 flybys, have known that FTEs also occur at Mercury. However, using the measurements returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury, Slavin et al. found that Mercurial flux transfer events are proportionally much larger, stronger, and more frequent than those at Earth.
Interfacial spin-filter assisted spin transfer torque effect in Co/BeO/Co magnetic tunnel junction
NASA Astrophysics Data System (ADS)
Tang, Y.-H.; Chu, F.-C.
2015-03-01
The first-principles calculation is employed to demonstrate the spin-selective transport properties and the non-collinear spin-transfer torque (STT) effect in the newly proposed Co/BeO/Co magnetic tunnel junction. The subtle spin-polarized charge transfer solely at O/Co interface gives rise to the interfacial spin-filter (ISF) effect, which can be simulated within the tight binding model to verify the general expression of STT. This allows us to predict the asymmetric bias behavior of non-collinear STT directly via the interplay between the first-principles calculated spin current densities in collinear magnetic configurations. We believe that the ISF effect, introduced by the combination between wurtzite-BeO barrier and the fcc-Co electrode, may open a new and promising route in semiconductor-based spintronics applications.
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1975-01-01
A 30-tesla magnet design is studied which calls for forced convection liquid neon heat transfer in small coolant channels. The design also requires suppressing boiling by subjecting the fluid to high pressures through use of magnet coils enclosed in a pressure vessel which is maintained at the critical pressure of liquid neon. This high pressure reduces the possibility of the system flow instabilities which may occur at low pressures. The forced convection heat transfer data presented were obtained by using a blowdown technique to force the fluid to flow vertically through a resistance heated, instrumented tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jawad; Shahzad, Azeem; Khan, Masood
This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differentialmore » equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.« less
Gooneratne, Chinthaka P.; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G.; Kosel, Jürgen
2016-01-01
The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device. PMID:27571084
Gooneratne, Chinthaka P; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G; Kosel, Jürgen
2016-08-26
The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads(®) demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead(®) SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads(®) travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.
Theillet, François-Xavier; Frank, Martin; Vulliez-Le Normand, Brigitte; Simenel, Catherine; Hoos, Sylviane; Chaffotte, Alain; Bélot, Frédéric; Guerreiro, Catherine; Nato, Farida; Phalipon, Armelle; Mulard, Laurence A; Delepierre, Muriel
2011-12-01
Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties. © The Author 2011. Published by Oxford University Press. All rights reserved.
Asymmetric angular dependence of spin-transfer torques in CoFe/Mg-B-O/CoFe magnetic tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Ling, E-mail: lingtang@zjut.edu.cn; Xu, Zhi-Jun, E-mail: xzj@zjut.edu.cn; Zuo, Xian-Jun
Using a first-principles noncollinear wave-function-matching method, we studied the spin-transfer torques (STTs) in CoFe/Mg-B-O/CoFe(001) magnetic tunnel junctions (MTJs), where three different types of B-doped MgO in the spacer are considered, including B atoms replacing Mg atoms (Mg{sub 3}BO{sub 4}), B atoms replacing O atoms (Mg{sub 4}BO{sub 3}), and B atoms occupying interstitial positions (Mg{sub 4}BO{sub 4}) in MgO. A strong asymmetric angular dependence of STT can be obtained both in ballistic CoFe/Mg{sub 3}BO{sub 4} and CoFe/Mg{sub 4}BO{sub 4} based MTJs, whereas a nearly symmetric STT curve is observed in the junctions based on CoFe/Mg{sub 4}BO{sub 3}. Furthermore, the asymmetry ofmore » the angular dependence of STT can be suppressed significantly by the disorder of B distribution. Such skewness of STTs in the CoFe/Mg-B-O/CoFe MTJs could be attributed to the interfacial resonance states induced by the B diffusion into MgO spacer.« less
Geometrical control of pure spin current induced domain wall depinning.
Pfeiffer, A; Reeve, R M; Voto, M; Savero-Torres, W; Richter, N; Vila, L; Attané, J P; Lopez-Diaz, L; Kläui, Mathias
2017-03-01
We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of [Formula: see text] A m -2 , which is attributed to the optimal control of the position of the domain wall.
NASA Astrophysics Data System (ADS)
Javed, Tariq; Mehmood, Z.; Abbas, Z.
2017-02-01
This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batra, T., E-mail: tba@et.aau.dk; Schaltz, E.
2015-05-07
Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in themore » vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications.« less
Petr, Jan; Schramm, Georg; Hofheinz, Frank; Langner, Jens; van den Hoff, Jörg
2014-10-01
To estimate the relaxation time changes during Q2TIPS bolus saturation caused by magnetization transfer effects and to propose and evaluate an extended model for perfusion quantification which takes this into account. Three multi inversion-time pulsed arterial spin labeling sequences with different bolus saturation duration were acquired for five healthy volunteers. Magnetization transfer exchange rates in tissue and blood were obtained from control image saturation recovery. Cerebral blood flow (CBF) obtained using the extended model and the standard model was compared. A decrease of obtained CBF of 6% (10%) was observed in grey matter when the duration of bolus saturation increased from 600 to 900 ms (1200 ms). This decrease was reduced to 1.6% (2.8%) when the extended quantification model was used. Compared with the extended model, the standard model underestimated CBF in grey matter by 9.7, 15.0, and 18.7% for saturation durations 600, 900, and 1200 ms, respectively. Results for simulated single inversion-time data showed 5-16% CBF underestimation depending on blood arrival time and bolus saturation duration. Magnetization transfer effects caused by bolus saturation pulses should not be ignored when performing quantification as they can cause appreciable underestimation of the CBF. Copyright © 2013 Wiley Periodicals, Inc.
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury.
Lu, Liyan; Wei, Xiaoer; Li, Minghua; Li, Yuehua; Li, Wenbin
2014-01-01
Traumatic brain injury (TBI) is one of the leading causes of death worldwide, and mild traumatic brain injury (mTBI) is the most common traumatic injury. It is difficult to detect mTBI using a routine neuroimaging. Advanced techniques with greater sensitivity and specificity for the diagnosis and treatment of mTBI are required. The aim of this review is to offer an overview of various emerging neuroimaging methodologies that can solve the clinical health problems associated with mTBI. Important findings and improvements in neuroimaging that hold value for better detection, characterization and monitoring of objective brain injuries in patients with mTBI are presented. Conventional computed tomography (CT) and magnetic resonance imaging (MRI) are not very efficient for visualizing mTBI. Moreover, techniques such as diffusion tensor imaging, magnetization transfer imaging, susceptibility-weighted imaging, functional MRI, single photon emission computed tomography, positron emission tomography and magnetic resonance spectroscopy imaging were found to be useful for mTBI imaging.
SUSANS With Polarized Neutrons
Wagh, Apoorva G.; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang
2005-01-01
Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10–4 nm–1 to 10–3 nm–1 afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 104 A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10–3 nm–1 range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples. PMID:27308127
Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles
NASA Astrophysics Data System (ADS)
Tzirtzilakis, E. E.
2015-06-01
In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
Prajapat, C L; Singh, Surendra; Bhattacharya, D; Ravikumar, G; Basu, S; Mattauch, S; Zheng, Jian-Guo; Aoki, T; Paul, Amitesh
2018-02-27
A case study of electron tunneling or charge-transfer-driven orbital ordering in superconductor (SC)-ferromagnet (FM) interfaces has been conducted in heteroepitaxial YBa 2 Cu 3 O 7 (YBCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) multilayers interleaved with and without an insulating SrTiO 3 (STO) layer between YBCO and LSMO. X-ray magnetic circular dichroism experiments revealed anti-parallel alignment of Mn magnetic moments and induced Cu magnetic moments in a YBCO/LSMO multilayer. As compared to an isolated LSMO layer, the YBCO/LSMO multilayer displayed a (50%) weaker Mn magnetic signal, which is related to the usual proximity effect. It was a surprise that a similar proximity effect was also observed in a YBCO/STO/LSMO multilayer, however, the Mn signal was reduced by 20%. This reduced magnetic moment of Mn was further verified by depth sensitive polarized neutron reflectivity. Electron energy loss spectroscopy experiment showed the evidence of Ti magnetic polarization at the interfaces of the YBCO/STO/LSMO multilayer. This crossover magnetization is due to a transfer of interface electrons that migrate from Ti (4+)-δ to Mn at the STO/LSMO interface and to Cu 2+ at the STO/YBCO interface, with hybridization via O 2p orbitals. So charge-transfer driven orbital ordering is the mechanism responsible for the observed proximity effect and Mn-Cu anti-parallel coupling in YBCO/STO/LSMO. This work provides an effective pathway in understanding the aspect of long range proximity effect and consequent orbital degeneracy parameter in magnetic coupling.
Xu, F J; Wuang, S C; Zong, B Y; Kang, E T; Neoh, K G
2006-05-01
A method for immobilizing and mediating the spatial distribution of functional oxide (such as SiO2 and Fe3O4) nanoparticles (NPs) on (100)-oriented single crystal silicon surface, via Si-C bonded poly(3-(trimethoxysilyl)propyl methacrylate) (P(TMSPM)) brushes from surface-initiated atom transfer radical polymerization (ATRP) of (3-(trimethoxysilyl)propyl methacrylate) (TMSPM), was described. The ATRP initiator was covalently immobilized via UV-induced hydrosilylation of 4-vinylbenzyl chloride (VBC) with the hydrogen-terminated Si(100) surface (Si-H surface). The surface-immobilized Fe3O4 NPs retained their superparamagnetic characteristics and their magnetization intensity could be mediated by adjusting the thickness of the P(TMSPM) brushes.
[Morphological and functional cartilage imaging].
Rehnitz, C; Weber, M-A
2014-06-01
Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.
[Morphological and functional cartilage imaging].
Rehnitz, C; Weber, M-A
2015-04-01
Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.
Chernick, Erin T; Casillas, Rubén; Zirzlmeier, Johannes; Gardner, Daniel M; Gruber, Marco; Kropp, Henning; Meyer, Karsten; Wasielewski, Michael R; Guldi, Dirk M; Tykwinski, Rik R
2015-01-21
Understanding the fundamental spin dynamics of photoexcited pentacene derivatives is important in order to maximize their potential for optoelectronic applications. Herein, we report on the synthesis of two pentacene derivatives that are functionalized with the [(2,2,6,6-tetramethylpiperidin-1-yl)oxy] (TEMPO) stable free radical. The presence of TEMPO does not quench the pentacene singlet excited state, but does quench the photoexcited triplet excited state as a function of TEMPO-to-pentacene distance. Time-resolved electron paramagnetic resonance experiments confirm that triplet quenching is accompanied by electron spin polarization transfer from the pentacene excited state to the TEMPO doublet state in the weak coupling regime.
Heat and momentum transfer for magnetoconvection in a vertical external magnetic field
NASA Astrophysics Data System (ADS)
Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg
2016-11-01
The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.
The magnetic nature of disk accretion onto black holes.
Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy
2006-06-22
Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.
NASA Astrophysics Data System (ADS)
Hao, Qiang; Xiao, Gang
2015-03-01
We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.
Gonzales, Marcela; Mitsumori, Lee M.; Kushleika, John V.; Rosenfeld, Michael E.; Krishnan, Kannan M.
2010-01-01
Magnetic nanoparticles are promising molecular imaging agents due to their relative high relaxivity and the potential to modify surface functionality to tailor biodistribution. In this work we describe the synthesis of magnetic nanoparticles using organic solvents with organometallic precursors. This method results in nanoparticles that are highly crystalline, and have uniform size and shape. The ability to create a monodispersion of particles of the same size and shape results in unique magnetic properties that can be useful for biomedical applications with MR imaging. Before these nanoparticles can be used in biological applications, however, means are needed to make the nanoparticles soluble in aqueous solutions and the toxicity of these nanoparticles needs to be studied. We have developed two methods to surface modify and transfer these nanoparticles to the aqueous phase using the biocompatible co-polymer, Pluronic F127. Cytotoxicity was found to be dependent on the coating procedure used. Nanoparticle effects on a cell-culture model was quantified using concurrent assaying; a LDH assay to determine cytotoxicity and an MTS assay to determine viability for a 24 hour incubation period. Concurrent assaying was done to insure that nanoparticles did not interfere with the colorimetric assay results. This report demonstrates that a monodispersion of nanoparticles of uniform size and shape can be manufactured. Initial cytotoxicity testing of new molecular imaging agents need to be carefully constructed to avoid interference and erroneous results. PMID:20623517
Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry
NASA Technical Reports Server (NTRS)
Wang, N.; Ingber, D. E.
1995-01-01
We recently developed a magnetic twisting cytometry technique that allows us to apply controlled mechanical stresses to specific cell surface receptors using ligand-coated ferromagnetic microbeads and to simultaneously measure the mechanical response in living cells. Using this technique, we have previously shown the following: (i) beta 1 integrin receptors mediate mechanical force transfer across the cell surface and to the cytoskeleton, whereas other transmembrane receptors (e.g., scavenger receptors) do not; (ii) cytoskeletal stiffness increases in direct proportion to the level of stress applied to integrins; and (iii) the slope of this linear stiffening response differs depending on the shape of the cell. We now show that different integrins (beta 1, alpha V beta 3, alpha V, alpha 5, alpha 2) and other transmembrane receptors (scavenger receptor, platelet endothelial cell adhesion molecule) differ in their ability to mediate force transfer across the cell surface. In addition, the linear stiffening behavior previously observed in endothelial cells was found to be shared by other cell types. Finally, we demonstrate that dynamic changes in cell shape that occur during both cell spreading and retraction are accompanied by coordinate changes in cytoskeletal stiffness. Taken together, these results suggest that the magnetic twisting cytometry technique may be a powerful and versatile tool for studies analyzing the molecular basis of transmembrane mechanical coupling to the cytoskeleton as well as dynamic relations between changes in cytoskeletal structure and alterations in cell form and function.
Self-consistent models for Coulomb heated X-ray pulsar atmospheres
NASA Technical Reports Server (NTRS)
Harding, A.; Meszaros, S. P.; Kirk, J.; Galloway, D.
1983-01-01
Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres.
MMS Observations of the Evolution of Ion-Scale Flux Transfer Events
NASA Astrophysics Data System (ADS)
Zhao, C.; Russell, C. T.; Strangeway, R. J.; Paterson, W.; Petrinec, S.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; Fischer, D.; Gershman, D. J.; Giles, B. L.; Le, G.; Nakamura, R.; Plaschke, F.; Slavin, J. A.; Torbert, R. B.
2017-12-01
Flux transfer events are key processes in the solar wind-magnetosphere interaction. Previously, the observed flux transfer events have had scale sizes of 10,000 km radius in the cross-section and connect about 2 MWb magnetic flux from solar wind to the terrestrial magnetosphere. Recently, from the high-temporal resolution MMS magnetic field data, many ion-scale FTEs have been found. These FTEs contains only about 2 kWb magnetic flux and are believed to be in an early stage of FTE evolution. With the help of the well-calibrated MMS data, we are also able to determine the velocity profile and forces within the FTE events. We find that some ion-scale FTEs are expanding as we expect, but there are also contracting FTEs. We examine the differences between the two classes of FTEs and their differences with the larger previously studied class of FTE.
Ultralow-current-density and bias-field-free spin-transfer nano-oscillator
Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Amiri, Pedram Khalili; Katine, Jordan A.; Krivorotov, Ilya N.; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L.; Jiang, Hongwen
2013-01-01
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators. PMID:23478390
Ultralow-current-density and bias-field-free spin-transfer nano-oscillator.
Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Khalili Amiri, Pedram; Katine, Jordan A; Krivorotov, Ilya N; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L; Jiang, Hongwen
2013-01-01
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.
Hydromagnetic flow of a Cu-water nanofluid past a moving wedge with viscous dissipation
NASA Astrophysics Data System (ADS)
M. Salem, A.; Galal, Ismail; Rania, Fathy
2014-04-01
A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter λ, solid volume fraction φ, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.
Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.
Duan, Guotao; Cai, Weiping; Li, Yue; Li, Zhigang; Cao, Bingqiang; Luo, Yuanyuan
2006-04-13
We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.
NASA Astrophysics Data System (ADS)
Tahari, M.; Ghorbanian, A.; Hatami, M.; Jing, D.
2017-12-01
In this paper, the physical effect of a variable magnetic field on a nanofluid-based concentrating parabolic solar collector (NCPSC) is demonstrated. A section of reservoir is modeled as a semi-circular cavity under the solar radiation with the magnetic source located in the center or out of the cavity and the governing equations were solved by the FlexPDE numerical software. The effect of four physical parameters, i.e., Hartmann Number (Ha), nanoparticles volume fraction ( φ, magnetic field strength ( γ and magnetic source location ( b, on the Nusselt number is discussed. To find the interaction of these parameters and its effect on the heat transfer, a central composite design (CCD) is used and analysis is performed on the 25 experiments proposed by CCD. Analysis of variance (ANOVA) of the results reveals that increasing the Hartmann number decreases the Nusselt number due to the Lorentz force resulting from the presence of stronger magnetic field.
Design and prototype fabrication of a 30 tesla cryogenic magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Swanson, M. C.; Brown, G. V.
1977-01-01
A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.
Interaction mechanisms and biological effects of static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less
Sensory augmentation: integration of an auditory compass signal into human perception of space
Schumann, Frank; O’Regan, J. Kevin
2017-01-01
Bio-mimetic approaches to restoring sensory function show great promise in that they rapidly produce perceptual experience, but have the disadvantage of being invasive. In contrast, sensory substitution approaches are non-invasive, but may lead to cognitive rather than perceptual experience. Here we introduce a new non-invasive approach that leads to fast and truly perceptual experience like bio-mimetic techniques. Instead of building on existing circuits at the neural level as done in bio-mimetics, we piggy-back on sensorimotor contingencies at the stimulus level. We convey head orientation to geomagnetic North, a reliable spatial relation not normally sensed by humans, by mimicking sensorimotor contingencies of distal sounds via head-related transfer functions. We demonstrate rapid and long-lasting integration into the perception of self-rotation. Short training with amplified or reduced rotation gain in the magnetic signal can expand or compress the perceived extent of vestibular self-rotation, even with the magnetic signal absent in the test. We argue that it is the reliability of the magnetic signal that allows vestibular spatial recalibration, and the coding scheme mimicking sensorimotor contingencies of distal sounds that permits fast integration. Hence we propose that contingency-mimetic feedback has great potential for creating sensory augmentation devices that achieve fast and genuinely perceptual experiences. PMID:28195187
NASA Astrophysics Data System (ADS)
Ambrusi, Ruben E.; Luna, C. Romina; Sandoval, Mario G.; Bechthold, Pablo; Pronsato, M. Estela; Juan, Alfredo
2017-12-01
The Spin-polarized density functional theory is used to study the effect of a single vacancy in a (8,0) single-walled carbon nanotube (SWCNT) on the Rh clustering process. The vacancy is considered oxygenated and non-oxygenated and, in each case, different Rhn cluster sizes (n = 1-4) are taken into account. For the analysis of these systems some physical and chemical properties are calculated, such as binding energy (Eb), work function (WF), magnetic moment, charge transfer, bond length, band gap (Eg), and density of state (DOS). From this analysis it can be concluded that: a single Rh atom and Rh2 dimer are adsorbed on vacancy without oxygen, whereas Rh3 and Rh4 clusters prefer to be adsorbed on oxygenated vacancy. In all cases, Rh adsorption induces a magnetic moment. When the Rh atom and Rh2 dimer are bonded to the defective SWCNT, it has been found that they show a semiconductor behavior that could be interesting to use in the spintronic area. In the case of Rh3 and Rh4 clusters our results show a metallic behavior suggesting that these systems are good candidates for nanotube contact.
A low temperature transfer of ALH84001 from Mars to Earth.
Weiss, B P; Kirschvink, J L; Baudenbacher, F J; Vali, H; Peters, N T; Macdonald, F A; Wikswo, J P
2000-10-27
The ejection of material from Mars is thought to be caused by large impacts that would heat much of the ejecta to high temperatures. Images of the magnetic field of martian meteorite ALH84001 reveal a spatially heterogeneous pattern of magnetization associated with fractures and rock fragments. Heating the meteorite to 40 degrees C reduces the intensity of some magnetic features, indicating that the interior of the rock has not been above this temperature since before its ejection from the surface of Mars. Because this temperature cannot sterilize most bacteria or eukarya, these data support the hypothesis that meteorites could transfer life between planets in the solar system.
Design study of steady-state 30-tesla liquid-neon-cooled magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Brown, G. V.
1976-01-01
A design for a 30-tesla, liquid-neon-cooled magnet was reported which is capable of continuous operation. Cooled by nonboiling, forced-convection heat transfer to liquid neon flowing at 2.8 cu m/min in a closed, pressurized heat-transfer loop and structurally supported by a tapered structural ribbon, the tape-wound coils with a high-purity-aluminum conductor will produce over 30 teslas for 1 minute at 850 kilowatts. The magnet will have an inside diameter of 7.5 centimeters and an outside diameter of 54 centimeters. The minimum current density at design field will be 15.7 kA/sq cm.
NASA Astrophysics Data System (ADS)
Ansari, M. H.; Attarzadeh, M. A.; Nouh, M.; Karami, M. Amin
2018-01-01
In this paper, a physical platform is proposed to change the properties of phononic crystals in space and time in order to achieve nonreciprocal wave transmission. The utilization of magnetoelastic materials in elastic phononic systems is studied. Material properties of magnetoelastic materials change significantly with an external magnetic field. This property is used to design systems with a desired wave propagation pattern. The properties of the magnetoelastic medium are changed in a traveling wave pattern, which changes in both space and time. A phononic crystal with such a modulation exhibits one-way wave propagation behavior. An extended transfer matrix method (TMM) is developed to model a system with time varying properties. The stop band and the pass band of a reciprocal and a nonreciprocal bar are found using this method. The TMM is used to find the transfer function of a magnetoelastic bar. The obtained results match those obtained via the theoretical Floquet-Bloch approach and numerical simulations. It is shown that the stop band in the transfer function of a system with temporal varying property for the forward wave propagation is different from the same in the backward wave propagation. The proposed configuration enables the physical realization of a class of smart structures that incorporates nonreciprocal wave propagation.
First-order particle acceleration in magnetically driven flows
Beresnyak, Andrey; Li, Hui
2016-03-02
In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less
Current control of time-averaged magnetization in superparamagnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Bapna, Mukund; Majetich, Sara A.
2017-12-01
This work investigates spin transfer torque control of time-averaged magnetization in a small 20 nm × 60 nm nanomagnet with a low thermal stability factor, Δ ˜ 11. Here, the nanomagnet is a part of a magnetic tunnel junction and fluctuates between parallel and anti-parallel magnetization states with respect to the magnetization of the reference layer generating a telegraph signal in the current versus time measurements. The response of the nanomagnet to an external field is first analyzed to characterize the magnetic properties. We then show that the time-averaged magnetization in the telegraph signal can be fully controlled between +1 and -1 by voltage over a small range of 0.25 V. NIST Statistical Test Suite analysis is performed for testing true randomness of the telegraph signal that the device generates when operated at near critical current values for spin transfer torque. Utilizing the probabilistic nature of the telegraph signal generated at two different voltages, a prototype demonstration is shown for multiplication of two numbers using an artificial AND logic gate.
Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.
Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong
2013-03-07
Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.
NASA Astrophysics Data System (ADS)
Sharma, Ramkishor; Jagannathan, Sandhya; Seshadri, T. R.; Subramanian, Kandaswamy
2017-10-01
Models of inflationary magnetogenesis with a coupling to the electromagnetic action of the form f2Fμ νFμ ν , are known to suffer from several problems. These include the strong coupling problem, the backreaction problem and also strong constraints due to the Schwinger effect. We propose a model which resolves all these issues. In our model, the coupling function, f , grows during inflation and transits to a decaying phase post-inflation. This evolutionary behavior is chosen so as to avoid the problem of strong coupling. By assuming a suitable power-law form of the coupling function, we can also neglect backreaction effects during inflation. To avoid backreaction post-inflation, we find that the reheating temperature is restricted to be below ≈1.7 ×104 GeV . The magnetic energy spectrum is predicted to be nonhelical and generically blue. The estimated present day magnetic field strength and the corresponding coherence length taking reheating at the QCD epoch (150 MeV) are 1.4 ×10-12 G and 6.1 ×10-4 Mpc , respectively. This is obtained after taking account of nonlinear processing over and above the flux-freezing evolution after reheating. If we consider also the possibility of a nonhelical inverse transfer, as indicated in direct numerical simulations, the coherence length and the magnetic field strength are even larger. In all cases mentioned above, the magnetic fields generated in our models satisfy the γ -ray bound below a certain reheating temperature.
NASA Technical Reports Server (NTRS)
Gonzalez, Dora E.; Karr, Gerald R.
1990-01-01
The purpose of this paper is to review the status of knowledge of the basic concepts needed to establish design parameters for effective magnetic insulation. The objective is to estimate the effectiveness of the magnetic field in insulating the plasma, to calculate the magnitude of the magnetic field necessary to reduce the heat transfer to the walls sufficiently enough to demonstrate the potential of magnetically driven plasma rockets.
Magnetic Ordering under Strain and Spin-Peierls Dimerization in GeCuO3
NASA Astrophysics Data System (ADS)
Filippetti, Alessio; Fiorentini, Vincenzo
2007-05-01
Studying from first principles the competition between ferromagnetic (FM) and antiferromagnetic (AF) interactions in the charge-transfer-insulator GeCuO3, we predict that a small external pressure should switch the uniform AF ground state to FM, and estimate (using exchange parameters computed as a function of strain) the competing AF couplings and the transition temperature to the dimerized spin-Peierls state. Although idealized as a one-dimensional Heisenberg antiferromagnet, GeCuO3 is found to be influenced by nonideal geometry and side groups.
Heimgartner, Heinz
2017-01-01
The scope of applications of dialkyl dicyanofumarates and maleates as highly functionalized electron-deficient dipolarophiles, dienophiles and Michael acceptors is summarized. The importance for the studies on reaction mechanisms of cycloadditions is demonstrated. Multistep reactions with 1,2-diamines and β-aminoalcohols leading to diverse five- and six-membered heterocycles are discussed. Applications of dialkyl dicyanofumarates as oxidizing agents in the syntheses of disulfides and diselenides are described. The reactions with metallocenes leading to charge-transfer complexes with magnetic properties are also presented. PMID:29114328
Swanson, Scott D; Malyarenko, Dariya I; Fabiilli, Mario L; Welsh, Robert C; Nielsen, Jon-Fredrik; Srinivasan, Ashok
2017-03-01
To elucidate the dynamic, structural, and molecular properties that create inhomogeneous magnetization transfer (ihMT) contrast. Amphiphilic lipids, lamellar phospholipids with cholesterol, and bovine spinal cord (BSC) specimens were examined along with nonlipid systems. Magnetization transfer (MT), enhanced MT (eMT, obtained with double-sided radiofrequency saturation), ihMT (MT - eMT), and dipolar relaxation, T 1D , were measured at 2.0 and 11.7 T. The amplitude of ihMT ratio (ihMTR) is positively correlated with T 1D values. Both ihMTR and T 1D increase with increasing temperature in BSC white matter and in phospholipids and decrease with temperature in other lipids. Changes in ihMTR with temperature arise primarily from alterations in MT rather than eMT. Spectral width of MT, eMT, and ihMT increases with increasing carbon chain length. Concerted motions of phospholipids in white matter decrease proton spin diffusion leading to increased proton T 1D times and increased ihMT amplitudes, consistent with decoupling of Zeeman and dipolar spin reservoirs. Molecular specificity and dynamic sensitivity of ihMT contrast make it a suitable candidate for probing myelin membrane disorders. Magn Reson Med 77:1318-1328, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao
2017-03-01
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.
Nikolaidis, Aki; Voss, Michelle W.; Lee, Hyunkyu; Vo, Loan T. K.; Kramer, Arthur F.
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research. PMID:24711792
Nikolaidis, Aki; Voss, Michelle W; Lee, Hyunkyu; Vo, Loan T K; Kramer, Arthur F
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research.
A wireless magnetic resonance energy transfer system for micro implantable medical sensors.
Li, Xiuhan; Zhang, Hanru; Peng, Fei; Li, Yang; Yang, Tianyang; Wang, Bo; Fang, Dongming
2012-01-01
Based on the magnetic resonance coupling principle, in this paper a wireless energy transfer system is designed and implemented for the power supply of micro-implantable medical sensors. The entire system is composed of the in vitro part, including the energy transmitting circuit and resonant transmitter coils, and in vivo part, including the micro resonant receiver coils and signal shaping chip which includes the rectifier module and LDO voltage regulator module. Transmitter and receiver coils are wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy transfer efficiency of the four-coil system is greatly improved compared to the conventional two-coil system. When the distance between the transmitter coils and the receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The power transfer efficiency can be optimized by adding magnetic enhanced resonators. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. In addition, the output current varies with changes in the distance. The whole implanted part is packaged with PDMS of excellent biocompatibility and the volume of it is about 1 cm(3).
NASA Astrophysics Data System (ADS)
Dieny, B.; Sousa, R.; Prejbeanu, L.
2007-04-01
Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic tunnel junctions were introduced as memory elements in new types of non-volatile magnetic memories (MRAM). A first 4Mbit product was launched by Freescale in July 2006. Future generations of memories are being developed by academic groups or companies. the combination of magnetic elements with CMOS components opens a whole new paradigm in hybrid electronic components which can change the common conception of the architecture of complex electronic components with a much tighter integration of logic and memory. the steady magnetic excitations stimulated by spin-transfer might be used in a variety of microwave components provided the output power can be increased. Intense research and development efforts are being aimed at increasing this power by the synchronization of oscillators. The articles compiled in this special issue of Journal of Physics: Condensed Matter, devoted to spin electronics, review these recent developments. All the contributors are greatly acknowledged.
Laveissière, G; Todor, L; Degrande, N; Jaminion, S; Jutier, C; Di Salvo, R; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Boeglin, W U; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C-C; Chen, J-P; Chudakov, E; Cisbani, E; Dale, D S; de Jager, C W; De Leo, R; Deur, A; d'Hose, N; Dodge, G E; Domingo, J J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fonvieille, H; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gomez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde-Wright, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; LeRose, J J; Liang, M; Lindgren, R A; Liyanage, N; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E A J M; Papandreou, Z; Pasquini, B; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R; Prout, D L; Punjabi, V A; Pussieux, T; Quémenér, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saito, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tieulent, R; Tomasi-Gustaffson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Vanderhaeghen, M; Van De Vyver, R; Van der Meer, R L J; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W-M; Zhao, J; Zhou, Z-L
2004-09-17
We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions P(LL)-P(TT)/epsilon and P(LT), and the electric and magnetic generalized polarizabilities (GPs) alpha(E)(Q2) and beta(M)(Q2) at momentum transfer Q(2)=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a falloff; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from piN intermediate states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nettesheim, D.G.; Klevit, R.E.; Drobny, G.
1989-02-21
The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D{sub 2}O and in H{sub 2}O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by bindingmore » to the sodium channels of excitable membranes.« less
Battiston, Marco; Grussu, Francesco; Ianus, Andrada; Schneider, Torben; Prados, Ferran; Fairney, James; Ourselin, Sebastien; Alexander, Daniel C; Cercignani, Mara; Gandini Wheeler-Kingshott, Claudia A M; Samson, Rebecca S
2018-05-01
To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [k FB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm 3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and k FB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and k FB . The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Hampstead, Benjamin M; Sathian, Krishnankutty; Bikson, Marom; Stringer, Anthony Y
2017-09-01
Memory deficits characterize Alzheimer's dementia and the clinical precursor stage known as mild cognitive impairment. Nonpharmacologic interventions hold promise for enhancing functioning in these patients, potentially delaying functional impairment that denotes transition to dementia. Previous findings revealed that mnemonic strategy training (MST) enhances long-term retention of trained stimuli and is accompanied by increased blood oxygen level-dependent signal in the lateral frontal and parietal cortices as well as in the hippocampus. The present study was designed to enhance MST generalization, and the range of patients who benefit, via concurrent delivery of transcranial direct current stimulation (tDCS). This protocol describes a prospective, randomized controlled, four-arm, double-blind study targeting memory deficits in those with mild cognitive impairment. Once randomized, participants complete five consecutive daily sessions in which they receive either active or sham high definition tDCS over the left lateral prefrontal cortex, a region known to be important for successful memory encoding and that has been engaged by MST. High definition tDCS (active or sham) will be combined with either MST or autobiographical memory recall (comparable to reminiscence therapy). Participants undergo memory testing using ecologically relevant measures and functional magnetic resonance imaging before and after these treatment sessions as well as at a 3-month follow-up. Primary outcome measures include face-name and object-location association tasks. Secondary outcome measures include self-report of memory abilities as well as a spatial navigation task (near transfer) and prose memory (medication instructions; far transfer). Changes in functional magnetic resonance imaging will be evaluated during both task performance and the resting-state using activation and connectivity analyses. The results will provide important information about the efficacy of cognitive and neuromodulatory techniques as well as the synergistic interaction between these promising approaches. Exploratory results will examine patient characteristics that affect treatment efficacy, thereby identifying those most appropriate for intervention.
Analytical treatment for the development of electromagnetic cascades in intense magnetic fields
NASA Astrophysics Data System (ADS)
Wang, Jie-Shuang; Liu, Ruo-Yu; Aharonian, Felix; Dai, Zi-Gao
2018-05-01
In a strong magnetic field, a high-energy photon can be absorbed and then produce an electron-positron pair. The produced electron/positron will in turn radiate a high-energy photon via synchrotron radiation, which then initiates a cascade. We built a one-dimensional Monte Carlo code to study the development of the cascade especially after it reaches the saturated status, when almost all the energy of the primary particles transfers to the photons. The photon spectrum in this status has a cutoff due to the absorption by magnetic fields, which is much sharper than the exponential one. Below the cutoff, the spectral energy distribution (SED) manifest itself as a broken power-law with a spectral index of 0.5 and 0.125, respectively, below and above the broken energy. The SED can be fitted by a simple analytical function, which is solely determined by the product of the cascade scale R and the magnetic field perpendicular to the motion of the particle B⊥ , with an accuracy better than 96%. The similarity of the spectrum to that from the cascade in an isotropic black-body photon field is also studied.
Magnetic pumping of the solar wind
NASA Astrophysics Data System (ADS)
Egedal, Jan; Lichko, Emily; Daughton, William
2015-11-01
The transport of matter and radiation in the solar wind and terrestrial magnetosphere is a complicated problem involving competing processes of charged particles interacting with electric and magnetic fields. Given the rapid expansion of the solar wind, it would be expected that superthermal electrons originating in the corona would cool rapidly as a function of distance to the Sun. However, this is not observed, and various models have been proposed as candidates for heating the solar wind. In the compressional pumping mechanism explored by Fisk and Gloeckler particles are accelerated by random compressions by the interplanetary wave turbulence. This theory explores diffusion due to spatial non-uniformities and provides a mechanism for redistributing particle. For investigation of a related but different heating mechanism, magnetic pumping, in our work we include diffusion of anisotropic features that develops in velocity space. The mechanism allows energy to be transferred to the particles directly from the turbulence. Guided by kinetic simulations a theory is derived for magnetic pumping. At the heart of this work is a generalization of the Parker Equation to capture the role of the pressure anisotropy during the pumping process. Supported by NASA grant NNX15AJ73G.
A Magneto-Inductive Sensor Based Wireless Tongue-Computer Interface
Huo, Xueliang; Wang, Jia; Ghovanloo, Maysam
2015-01-01
We have developed a noninvasive, unobtrusive magnetic wireless tongue-computer interface, called “Tongue Drive,” to provide people with severe disabilities with flexible and effective computer access and environment control. A small permanent magnet secured on the tongue by implantation, piercing, or tissue adhesives, is utilized as a tracer to track the tongue movements. The magnetic field variations inside and around the mouth due to the tongue movements are detected by a pair of three-axial linear magneto-inductive sensor modules mounted bilaterally on a headset near the user’s cheeks. After being wirelessly transmitted to a portable computer, the sensor output signals are processed by a differential field cancellation algorithm to eliminate the external magnetic field interference, and translated into user control commands, which could then be used to access a desktop computer, maneuver a powered wheelchair, or control other devices in the user’s environment. The system has been successfully tested on six able-bodied subjects for computer access by defining six individual commands to resemble mouse functions. Results show that the Tongue Drive system response time for 87% correctly completed commands is 0.8 s, which yields to an information transfer rate of ~130 b/min. PMID:18990653
Energy release and transfer in guide field reconnection
NASA Astrophysics Data System (ADS)
Birn, J.; Hesse, M.
2010-01-01
Properties of energy release and transfer by magnetic reconnection in the presence of a guide field are investigated on the basis of 2.5-dimensional magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations. Two initial configurations are considered: a plane current sheet with a uniform guide field of 80% of the reconnecting magnetic field component and a force-free current sheet in which the magnetic field strength is constant but the field direction rotates by 180° through the current sheet. The onset of reconnection is stimulated by localized, temporally limited compression. Both MHD and PIC simulations consistently show that the outgoing energy fluxes are dominated by (redirected) Poynting flux and enthalpy flux, whereas bulk kinetic energy flux and heat flux (in the PIC simulation) are small. The Poynting flux is mainly associated with the magnetic energy of the guide field which is carried from inflow to outflow without much alteration. The conversion of annihilated magnetic energy to enthalpy flux (that is, thermal energy) stems mainly from the fact that the outflow occurs into a closed field region governed by approximate force balance between Lorentz and pressure gradient forces. Therefore, the energy converted from magnetic to kinetic energy by Lorentz force acceleration becomes immediately transferred to thermal energy by the work done by the pressure gradient force. Strong similarities between late stages of MHD and PIC simulations result from the fact that conservation of mass and entropy content and footpoint displacement of magnetic flux tubes, imposed in MHD, are also approximately satisfied in the PIC simulations.
Neural correlates of training and transfer effects in working memory in older adults.
Heinzel, Stephan; Lorenz, Robert C; Pelz, Patricia; Heinz, Andreas; Walter, Henrik; Kathmann, Norbert; Rapp, Michael A; Stelzel, Christine
2016-07-01
As indicated by previous research, aging is associated with a decline in working memory (WM) functioning, related to alterations in fronto-parietal neural activations. At the same time, previous studies showed that WM training in older adults may improve the performance in the trained task (training effect), and more importantly, also in untrained WM tasks (transfer effects). However, neural correlates of these transfer effects that would improve understanding of its underlying mechanisms, have not been shown in older participants as yet. In this study, we investigated blood-oxygen-level-dependent (BOLD) signal changes during n-back performance and an untrained delayed recognition (Sternberg) task following 12sessions (45min each) of adaptive n-back training in older adults. The Sternberg task used in this study allowed to test for neural training effects independent of specific task affordances of the trained task and to separate maintenance from updating processes. Thirty-two healthy older participants (60-75years) were assigned either to an n-back training or a no-contact control group. Before (t1) and after (t2) training/waiting period, both the n-back task and the Sternberg task were conducted while BOLD signal was measured using functional Magnetic Resonance Imaging (fMRI) in all participants. In addition, neuropsychological tests were performed outside the scanner. WM performance improved with training and behavioral transfer to tests measuring executive functions, processing speed, and fluid intelligence was found. In the training group, BOLD signal in the right lateral middle frontal gyrus/caudal superior frontal sulcus (Brodmann area, BA 6/8) decreased in both the trained n-back and the updating condition of the untrained Sternberg task at t2, compared to the control group. fMRI findings indicate a training-related increase in processing efficiency of WM networks, potentially related to the process of WM updating. Performance gains in untrained tasks suggest that transfer to other cognitive tasks remains possible in aging. Copyright © 2016 Elsevier Inc. All rights reserved.
Total and Linearly Polarized Synchrotron Emission from Overpressured Magnetized Relativistic Jets
NASA Astrophysics Data System (ADS)
Fuentes, Antonio; Gómez, José L.; Martí, José M.; Perucho, Manel
2018-06-01
We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets, which are characterized by their dominant type of energy: internal, kinetic, or magnetic. Each model is threaded by a helical magnetic field with a pitch angle of 45° and features a series of recollimation shocks produced by the initial pressure mismatch, whose strength and number varies as a function of the dominant type of energy. We perform a study of the polarization signatures from these models by integrating the radiative transfer equations for synchrotron radiation using as inputs the RMHD solutions. These simulations show a top-down emission asymmetry produced by the helical magnetic field and a progressive confinement of the emission into a jet spine as the magnetization increases and the internal energy of the non-thermal population is considered to be a constant fraction of the thermal one. Bright stationary components associated with the recollimation shocks appear, presenting a relative intensity modulated by the Doppler boosting ratio between the pre-shock and post-shock states. Small viewing angles show a roughly bimodal distribution in the polarization angle, due to the helical structure of the magnetic field, which is also responsible for the highly stratified degree of linear polarization across the jet width. In addition, small variations of the order of 26° are observed in the polarization angle of the stationary components, which can be used to identify recollimation shocks in astrophysical jets.
Batch extracting process using magneticparticle held solvents
Nunez, Luis; Vandergrift, George F.
1995-01-01
A process for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents.
Yang, Dongmei; Li, Guogang; Kang, Xiaojiao; Cheng, Ziyong; Ma, Ping'an; Peng, Chong; Lian, Hongzhou; Li, Chunxia; Lin, Jun
2012-06-07
In this paper, we demonstrate a simple, template-free, reproducible and one-step synthesis of hydrophilic KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) nanoparticles (NPs) via a solution-based route at room temperature. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and cathodoluminescence (CL) spectra are used to characterize the samples. The results indicate that the use of water-diethyleneglycol (DEG) solvent mixture as the reaction medium not only allows facile particle size control but also endows the as-prepared samples with good water-solubility. In particular, the mean size of NPs is monotonously reduced with the increase of DEG content, from 215 to 40 nm. The luminescence intensity and absolute quantum yields for KGdF(4): Ce(3+), Tb(3+) NPs increase remarkably with particle sizes ranging from 40 to 215 nm. Additionally, we systematically investigate the magnetic and luminescence properties of KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) NPs. They display paramagnetic and superparamagnetic properties with mass magnetic susceptibility values of 1.03 × 10(-4) emu g(-1)·Oe and 3.09 × 10(-3) emu g(-1)·Oe at 300 K and 2 K, respectively, and multicolor emissions due to the energy transfer (ET) process Ce(3+)→ Gd(3+)→ (Gd(3+))(n)→ Ln(3+), in which Gd(3+) ions play an intermediate role in this process. Representatively, it is shown that the energy transfer from Ce(3+) to Tb(3+) occurs mainly via the dipole-quadrupole interaction by comparison of the theoretical calculation and experimental results. This kind of magnetic/luminescent dual-function materials may have promising applications in multiple biolabels and MR imaging.
NASA Astrophysics Data System (ADS)
Butala, Mark D.; Kazerooni, Maryam; Makela, Jonathan J.; Kamalabadi, Farzad; Gannon, Jennifer L.; Zhu, Hao; Overbye, Thomas J.
2017-10-01
Solar-driven disturbances generate geomagnetically induced currents (GICs) that can result in power grid instability and, in the most extreme cases, even failure. Magnetometers provide direct measurements of the geomagnetic disturbance (GMD) effect on the surface magnetic field and GIC response can be determined from the power grid topology and engineering parameters. This paper considers this chain of models: transforming surface magnetic field disturbance to induced surface electric field through an electromagnetic transfer function and, then, induced surface electric field to GIC using the PowerWorld simulator to model a realistic power grid topology. Comparisons are made to transformer neutral current reference measurements provided by the American Transmission Company. Three GMD intervals are studied, with the Kp index reaching 8- on 2 October 2013, 7 on 1 June 2013, and 6- on 9 October 2013. Ultimately, modeled to measured GIC correlations are analyzed as a function of magnetometer to GIC sensor distance. Results indicate that modeling fidelity during the three studied GMD intervals is strongly dependent on both magnetometer to substation transformer baseline distance and GMD intensity.
Standardized volume-rendering of contrast-enhanced renal magnetic resonance angiography.
Smedby, O; Oberg, R; Asberg, B; Stenström, H; Eriksson, P
2005-08-01
To propose a technique for standardizing volume-rendering technique (VRT) protocols and to compare this with maximum intensity projection (MIP) in regard to image quality and diagnostic confidence in stenosis diagnosis with magnetic resonance angiography (MRA). Twenty patients were examined with MRA under suspicion of renal artery stenosis. Using the histogram function in the volume-rendering software, the 95th and 99th percentiles of the 3D data set were identified and used to define the VRT transfer function. Two radiologists assessed the stenosis pathology and image quality from rotational sequences of MIP and VRT images. Good overall agreement (mean kappa=0.72) was found between MIP and VRT diagnoses. The agreement between MIP and VRT was considerably better than that between observers (mean kappa=0.43). One of the observers judged VRT images as having higher image quality than MIP images. Presenting renal MRA images with VRT gave results in good agreement with MIP. With VRT protocols defined from the histogram of the image, the lack of an absolute gray scale in MRI need not be a major problem.
Magnetic Field Effects on Plasma Plumes
NASA Technical Reports Server (NTRS)
Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.
2012-01-01
Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results
NASA Astrophysics Data System (ADS)
Bhosale, Shivaji V.; Mhaske, Pravin; Kanhe, N.; Navale, A. B.; Bhoraskar, S. V.; Mathe, V. L.; Bhatt, S. K.
2014-04-01
The magnetic nickel ferrite (NiFe2O4) nanoparticles with an average size of 30nm were synthesised by Transferred arc DC Thermal Plasma route. The synthesized nickel ferrite nanoparticles were characterized by TEM and FTIR techniques. The synthesized nickel ferrite nanoparticles were further functionalized with PMAA (polymethacrylic acid) by self emulsion polymerization method and subsequently were characterized by FTIR and Zeta Analyzer. The variation of zeta potential with pH was systematically studied for both PMAA functionalized (PNFO) and uncoated nickel ferrite nanoparticles (NFO). The IEP (isoelectric points) for PNFO and NFO was determined from the graph of zeta potential vs pH. It was observed that the IEP for NFO was at 7.20 and for PNFO it was 2.52. The decrease in IEP of PNFO was attributed to the COOH functional group of PMAA.
NASA Astrophysics Data System (ADS)
Lucon, Janice; Qazi, Shefah; Uchida, Masaki; Bedwell, Gregory J.; Lafrance, Ben; Prevelige, Peter E.; Douglas, Trevor
2012-10-01
Virus-like particles (VLPs) have emerged as important and versatile architectures for chemical manipulation in the development of functional hybrid nanostructures. Here we demonstrate a successful site-selective initiation of atom-transfer radical polymerization reactions to form an addressable polymer constrained within the interior cavity of a VLP. Potentially, this protein-polymer hybrid of P22 and cross-linked poly(2-aminoethyl methacrylate) could be useful as a new high-density delivery vehicle for the encapsulation and delivery of small-molecule cargos. In particular, the encapsulated polymer can act as a scaffold for the attachment of small functional molecules, such as fluorescein dye or the magnetic resonance imaging (MRI) contrast agent Gd-diethylenetriaminepentacetate, through reactions with its pendant primary amine groups. Using this approach, a significant increase in the labelling density of the VLP, compared to that of previous modifications of VLPs, can be achieved. These results highlight the use of multimeric protein-polymer conjugates for their potential utility in the development of VLP-based MRI contrast agents with the possibility of loading other cargos.
A Structural Model for a Self-Assembled Nanotube Provides Insight into Its Exciton Dynamics
2016-01-01
The design and synthesis of functional self-assembled nanostructures is frequently an empirical process fraught with critical knowledge gaps about atomic-level structure in these noncovalent systems. Here, we report a structural model for a semiconductor nanotube formed via the self-assembly of naphthalenediimide-lysine (NDI-Lys) building blocks determined using experimental 13C–13C and 13C–15N distance restraints from solid-state nuclear magnetic resonance supplemented by electron microscopy and X-ray powder diffraction data. The structural model reveals a two-dimensional-crystal-like architecture of stacked monolayer rings each containing ∼50 NDI-Lys molecules, with significant π-stacking interactions occurring both within the confines of the ring and along the long axis of the tube. Excited-state delocalization and energy transfer are simulated for the nanotube based on time-dependent density functional theory and an incoherent hopping model. Remarkably, these calculations reveal efficient energy migration from the excitonic bright state, which is in agreement with the rapid energy transfer within NDI-Lys nanotubes observed previously using fluorescence spectroscopy. PMID:26120375
Structures and functions of proteins and nucleic acids in protein biosynthesis
NASA Astrophysics Data System (ADS)
Miyazawa, Tatsuo; Yokoyama, Shigeyuki
Infrared and Raman spectroscopy is useful for studying helical conformations of polypeptides, which are determined by molecular structure parameters. Nuclear magnetic resonance spectroscopy, as well as X-ray analysis, is now established to be important for conformation studies of proteins and nucleic acids in solution. This article is mainly concerned with the conformational aspect and function regulation in protein biosynthesis. The strict recognition of transfer ribonucleic acid (tRNA) by aminoacyl-tRNA synthetase (ARS) is achieved by multi-step mutual adaptation. The conformations of ARS-bound amino acids have been elucidated by transferred nuclear Overhauser effect analysis. Aminoacyl-tRNA takes the 3‧-isomeric form in the polypeptide chain elongation cycle. The regulation of codon recognition by post-transcriptional modification is achieved by conversion of the conformational characteristic of the anticodon of tRNA. The cytidine → lysidine modification of the anticodon of minor isoleucine tRNA concurrently converts the amino acid specificity and the codon specificity. As novel protein engineering, a basic strategy has been established for in vivo biosynthesis of proteins that are substituted with unnatural amino acids (alloproteins).
NASA Astrophysics Data System (ADS)
Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico
2016-11-01
Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.
NASA Astrophysics Data System (ADS)
Fast, R. W.
The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.
A study of flux transfer events at different planets
NASA Technical Reports Server (NTRS)
Russell, C. T.
1995-01-01
Flux transfer events (FTEs) are disturbances in and near the magnetopause current layer that cause a characteristic signature in the component of the magnetic field parallel to the average boundary normal. These disturbances have been observed at Mercury, Earth and Jupiter but not at Saturn, Uranus or Neptune. At Earth, FTEs last about 1 minute and repeat about every 8 but at Mercury, a much smaller magnetosphere, the events last seconds and are tens of seconds apart. These features have been interpreted in terms of magnetospheric flux ropes connected to the interplanetary magnetic field, arising as the result of reconnection. An analogous phenomenon occurs at Venus where magnetic flux ropes arise at the ionosphere, a boundary between a very strongly magnetized one. However, here the flux ropes do not appear to be due to reconnection.
Modeled ground magnetic signatures of flux transfer events
NASA Technical Reports Server (NTRS)
Mchenry, Mark A.; Clauer, C. Robert
1987-01-01
The magnetic field on the ground due to a small (not greater than 200 km scale size) localized field-aligned current (FAC) system interacting with the ionosphere is calculated in terms of an integral over the ionospheric distribution of FAC. Two different candidate current systems for flux transfer events (FTEs) are considered: (1) a system which has current flowing down the center of a cylindrical flux tube with a return current uniformly distributed along the outside edge; and (2) a system which has upward current on one half of the perimeter of a cylindrical flux tube with downward current on the opposite half. The peak magnetic field on the ground is found to differ by a factor of 2 between the two systems, and the magnetic perturbations are in different directions depending on the observer's position.
Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point
NASA Astrophysics Data System (ADS)
Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.
2018-05-01
The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.
A small scale remote cooling system for a superconducting cyclotron magnet
NASA Astrophysics Data System (ADS)
Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.
2017-02-01
Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.
Batch extracting process using magnetic particle held solvents
Nunez, L.; Vandergrift, G.F.
1995-11-21
A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.
NASA Astrophysics Data System (ADS)
Chakraborty, Brotati; Basu, Samita
2010-02-01
Photoinduced electron transfer (PET) between proflavin (PF +) and two aromatic amines viz., dimethylaniline (DMA) and 4,4'-bis(dimethylamino)diphenylmethane (DMDPM) is studied in homogeneous and heterogeneous media using steady-state as well as time-resolved fluorescence spectroscopy and laser flash photolysis with an associated magnetic field. Ionic micelles have been used to study the effect of charge of proflavin on PET with amines. Magnetic field effect on PET reactions reveals that the parent spin-state of precursors of PET for DMA-PF + system is singlet while for DMDPM-PF + system is triplet, implying that the dynamics of PET is influenced by the structure of the donor.
Tiret, Brice; Brouillet, Emmanuel; Valette, Julien
2016-09-01
With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis. © The Author(s) 2016.
Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization
NASA Astrophysics Data System (ADS)
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.
2016-09-01
We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.
Self-consistent models for Coulomb-heated X-ray pulsar atmospheres
NASA Technical Reports Server (NTRS)
Harding, A. K.; Kirk, J. G.; Galloway, D. J.; Meszaros, P.
1984-01-01
Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of Protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres. Previously announced in STAR as N84-12012
Spin-transfer torque induced spin waves in antiferromagnetic insulators
Daniels, Matthew W.; Guo, Wei; Stocks, George Malcolm; ...
2015-01-01
We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations.
Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.
Zhang, Tao; Cheng, Guangming; Koert, Andrew; Zhang, Juntao; Gellman, Barry; Yankey, G Kwame; Satpute, Aditee; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J
2009-01-01
To provide respiratory support for patients with lung failure, a novel compact integrated pump-oxygenator is being developed. The functional and biocompatibility performances of this device are presented. The pump-oxygenator is designed by combining a magnetically levitated pump/rotor with a uniquely configured hollow fiber membrane bundle to create an assembly free, ultracompact, all-in-one system. The hemodynamics, gas transfer and biocompatibility performances of this novel device were investigated both in vitro in a circulatory flow loop and in vivo in an ovine animal model. The in vitro results showed that the device was able to pump blood flow from 2 to 8 L/min against a wide range of pressures and to deliver an oxygen transfer rate more than 300 mL/min at a blood flow of 6 L/min. Blood damage tests demonstrated low hemolysis (normalized index of hemolysis [NIH] approximately 0.04) at a flow rate of 5 L/min against a 100-mm Hg afterload. The data from five animal experiments (4 h to 7 days) demonstrated that the device could bring the venous blood to near fully oxygen-saturated condition (98.6% +/- 1.3%). The highest oxygen transfer rate reached 386 mL/min. The gas transfer performance was stable over the study duration for three 7-day animals. There was no indication of blood damage. The plasma free hemoglobin and platelet count were within the normal ranges. No gross thrombus is found on the explanted pump components and fiber surfaces. Both in vitro and in vivo results demonstrated that the newly developed pump-oxygenator can achieve sufficient blood flow and oxygen transfer with excellent biocompatibility.
HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery.
Niemi, Henna; Honkonen, Krista; Korpisalo, Petra; Huusko, Jenni; Kansanen, Emilia; Merentie, Mari; Rissanen, Tuomas T; André, Helder; Pereira, Teresa; Poellinger, Lorenz; Alitalo, Kari; Ylä-Herttuala, Seppo
2014-10-01
Cardiovascular patients suffer from reduced blood flow leading to ischaemia and impaired tissue metabolism. Unfortunately, an increasing group of elderly patients cannot be treated with current revascularization methods. Thus, new treatment strategies are urgently needed. Hypoxia-inducible factors (HIFs) upregulate the expression of angiogenic mediators together with genes involved in energy metabolism and recovery of ischaemic tissues. Especially, HIF-2α is a novel factor, and only limited information is available about its therapeutic potential. Gene transfers with adenoviral HIF-1α and HIF-2α were performed into the mouse heart and rabbit ischaemic hindlimbs. Angiogenesis was evaluated by histology. Left ventricle function was analysed with echocardiography. Perfusion in rabbit skeletal muscles and energy recovery after electrical stimulation-induced exercise were measured with ultrasound and (31)P-magnetic resonance spectroscopy ((31)P-MRS), respectively. HIF-1α and HIF-2α gene transfers increased capillary size up to fivefold in myocardium and ischaemic skeletal muscles. Perfusion in skeletal muscles was increased by fourfold without oedema. Especially, AdHIF-1α enhanced the recovery of ischaemic muscles from electrical stimulation-induced energy depletion. Special characteristic of HIF-2α gene transfer was a strong capillary growth in muscle connective tissue and that HIF-2α gene transfer maintained left ventricle function. We conclude that both AdHIF-1α and AdHIF-2α gene transfers induced beneficial angiogenesis in vivo. Transient moderate increases in angiogenesis improved energy recovery after exercise in ischaemic muscles. This study shows for the first time that a moderate increase in angiogenesis is enough to improve tissue energy metabolism, which is potentially a very useful feature for cardiovascular gene therapy. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.
Critical speeds and forced response solutions for active magnetic bearing turbomachinery, part 2
NASA Technical Reports Server (NTRS)
Rawal, D.; Keesee, J.; Kirk, R. Gordon
1991-01-01
The need for better performance of turbomachinery with active magnetic bearings has necessitated a study of such systems for accurate prediction of their vibrational characteristics. A modification of existing transfer matrix methods for rotor analysis is presented to predict the response of rotor systems with active magnetic bearings. The position of the magnetic bearing sensors is taken into account and the effect of changing sensor position on the vibrational characteristics of the rotor system is studied. The modified algorithm is validated using a simpler Jeffcott model described previously. The effect of changing from a rotating unbalance excitation to a constant excitation in a single plane is also studied. A typical eight stage centrifugal compressor rotor is analyzed using the modified transfer matrix code. The results for a two mass Jeffcott model were presented previously. The results obtained by running this model with the transfer matrix method were compared with the results of the Jeffcott analysis for the purposes of verification. Also included are plots of amplitude versus frequency for the eight stage centrifugal compressor rotor. These plots demonstrate the significant influence that sensor location has on the amplitude and critical frequencies of the rotor system.
Supersymmetric quantum spin chains and classical integrable systems
NASA Astrophysics Data System (ADS)
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-05-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Exactly solved mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy
NASA Astrophysics Data System (ADS)
Lisnyi, Bohdan; Strečka, Jozef
2015-03-01
The mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration-iteration transformation and the transfer-matrix method. The decoration-iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.
Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.
An In-Rush Current Suppression Technique for the Solid-State Transfer Switch System
NASA Astrophysics Data System (ADS)
Cheng, Po-Tai; Chen, Yu-Hsing
More and more utility companies provide dual power feeders as a premier service of high power quality and reliability. To take advantage of this, the solid-state transfer switch (STS) is adopted to protect the sensitive load against the voltage sag. However, the fast transfer process may cause in-rush current on the load-side transformer due to the resulting DC-offset in its magnetic flux as the load-transfer is completed. The in-rush current can reach 2∼6 p.u. and it may trigger the over-current protections on the power feeder. This paper develops a flux estimation scheme and a thyristor gating scheme based on the impulse commutation bridge STS (ICBSTS) to minimize the DC-offset on the magnetic flux. By sensing the line voltages of both feeders, the flux estimator can predict the peak transient flux linkage at the moment of load-transfer and evaluate a suitable moment for the transfer to minimize the in-rush current. Laboratory test results are presented to validate the performance of the proposed system.
Midterm Summary of Japan-US Fusion Cooperation Program TITAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muroga, Takeo; Sze, Dai-Kai; Sokolov, Mikhail
2011-01-01
Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. Blankets are component systems whose principal functions are extraction of heat and tritium. Thus it is crucial to clarify the potentiality for controlling heat and tritium flow throughout the first wall, blanket and out-of-vessel recovery systems. The TITAN project continues the JUPITER-II activity but extendsmore » its scope including the first wall and the recovery systems with the title of 'Tritium and thermofluid control for magnetic and inertial confinement systems'. The objective of the program is to clarify the mechanisms of tritium and heat transfer throughout the first-wall, the blanket and the heat/tritium recovery systems under specific conditions to fusion such as irradiation, high heat flux, circulation and high magnetic fields. Based on integrated models, the breeding, transfer, inventory of tritium and heat extraction properties will be evaluated for some representative liquid breeder blankets and the necessary database will be obtained for focused research in the future.« less
Ecology, Diversity, and Evolution of Magnetotactic Bacteria
Bazylinski, Dennis A.
2013-01-01
SUMMARY Magnetotactic bacteria (MTB) are widespread, motile, diverse prokaryotes that biomineralize a unique organelle called the magnetosome. Magnetosomes consist of a nano-sized crystal of a magnetic iron mineral that is enveloped by a lipid bilayer membrane. In cells of almost all MTB, magnetosomes are organized as a well-ordered chain. The magnetosome chain causes the cell to behave like a motile, miniature compass needle where the cell aligns and swims parallel to magnetic field lines. MTB are found in almost all types of aquatic environments, where they can account for an important part of the bacterial biomass. The genes responsible for magnetosome biomineralization are organized as clusters in the genomes of MTB, in some as a magnetosome genomic island. The functions of a number of magnetosome genes and their associated proteins in magnetosome synthesis and construction of the magnetosome chain have now been elucidated. The origin of magnetotaxis appears to be monophyletic; that is, it developed in a common ancestor to all MTB, although horizontal gene transfer of magnetosome genes also appears to play a role in their distribution. The purpose of this review, based on recent progress in this field, is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation. PMID:24006473
Transfluxor circuit amplifies sensing current for computer memories
NASA Technical Reports Server (NTRS)
Milligan, G. C.
1964-01-01
To transfer data from the magnetic memory core to an independent core, a reliable sensing amplifier has been developed. Later the data in the independent core is transferred to the arithmetical section of the computer.
Finite Element Modeling of Magnetically-Damped Convection during Solidification
NASA Technical Reports Server (NTRS)
deGroh, H. C.; Li, B. Q.; Lu, X.
1998-01-01
A fully 3-D, transient finite element model is developed to represent the magnetic damping effects on complex fluid flow, heat transfer and electromagnetic field distributions in a Sn- 35.5%Pb melt undergoing unidirectional solidification. The model is developed based on our in- house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The numerical model is tested against numerical and experimental results for water as reported in literature. Various numerical simulations are carried out for the melt convection and temperature distribution with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to stabilize melt flow, reduce turbulence and flow levels in the melt and over a certain threshold value a higher magnetic field resulted in a greater reduction in velocity. Also, for the study of melt flow instability, a long enough running time is needed to ensure the final fluid flow recirculation pattern. Moreover, numerical results suggest that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the 0 convection in the melt is actually enhanced.
Irradiation and Enhanced Magnetic Braking in Cataclysmic Variables
NASA Astrophysics Data System (ADS)
McCormick, P. J.; Frank, J.
1998-12-01
In previous work we have shown that irradiation driven mass transfer cycles can occur in cataclysmic variables at all orbital periods if an additional angular momentum loss mechanism is assumed. Earlier models simply postulated that the enhanced angular momentum loss was proportional to the mass transfer rate without any specific physical model. In this paper we present a simple modification of magnetic braking which seems to have the right properties to sustain irradiation driven cycles at all orbital periods. We assume that the wind mass loss from the irradiated companion consists of two parts: an intrinsic stellar wind term plus an enhancement that is proportional to the irradiation. The increase in mass flow reduces the specific angular momentum carried away by the flow but nevertheless yields an enhanced rate of magnetic braking. The secular evolution of the binary is then computed numerically with a suitably modified double polytropic code (McCormick & Frank 1998). With the above model and under certain conditions, mass transfer oscillations occur at all orbital periods.
Evidence for Neutron Star Formation from Accretion Induced Collapse of a White Dwarf
NASA Technical Reports Server (NTRS)
Paradijis, J. Van; VanDenHeuvel, E. P. J.; Kouveliotou, C.; Fishman, G. J.; Finger, M. H.; Lewin, W. H. G.
1997-01-01
The orbital parameters of the recently discovered transient burster/pulsar GRO J1744-28 indicate that this system is a low-mass X-ray binary in an advanced stage of its mass transfer, with several tenths of a solar mass already transferred from the donor to the compact star. All neutron stars known to have accreted such an amount have very weak magnetic fields, and this has led to the idea that the magnetic fields of neutron stars decay as a result of accretion. The observation of a strongly magnetized neutron star in GRO J1744-28 then suggests that this neutron star was formed recently as a result of the collapse of a white dwarf during an earlier stage of the current phase of mass transfer. It is shown that this model can consistently explain the observed characteristics of GRO J1744-28. Attractive progenitors for such an evolution are the luminous supersoft X-ray sources detected with ROSAT.
Grussu, Francesco; Ianus, Andrada; Schneider, Torben; Prados, Ferran; Fairney, James; Ourselin, Sebastien; Alexander, Daniel C.; Cercignani, Mara; Gandini Wheeler‐Kingshott, Claudia A.M.; Samson, Rebecca S.
2017-01-01
Purpose To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. Methods A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field‐of‐view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer‐Rao‐lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [k FB]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. Results Cramer‐Rao‐lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady‐state MT effect. The proposed framework allows quantitative voxel‐wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole‐cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and k FB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and k FB. Conclusion The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576–2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28921614
NASA Astrophysics Data System (ADS)
Raju, C. S. K.; Sandeep, N.
2016-11-01
Nowadays, many theoretical models are available for analyzing the heat and mass transfer of flows through different geometries. Nevertheless, it is challenging for researchers to choose among these models, the most suitable for a particular geometry. In addition to this, the extrinsic magnetic field is capable to set the thermal and physical properties of magnetic fluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of the fluids and makes it anisotropic. With this incentive, we attempt to study the thermophoresis and Brownian motion effects on the magnetohydrodynamic radiative Casson fluid flow over a wedge filled with gyrotactic microorganisms by considering the Blasius and Falkner-Skan models. Numerical solutions are offered graphically as well as in tabular form with the aid of Runge-Kutta and Newton's methods. Results for Blasius and Falkner-Skan flow cases are exhibited through plots for the parameters of concern. For real life applications, we also calculated the heat and mass transfer rates. It is observed that thermal and concentration boundary layers are not uniform for Falkner-Skan and Blasius flow cases. It is also observed that the heat and mass transfer rate is high in Falkner-Skan flow when compared with Blasius flow.
NASA Technical Reports Server (NTRS)
Seller, J.
1985-01-01
The inertial pointing stability of a gimbal pointing system (AGS) was compared with a magnetic pointing/gimbal followup system (ASPS), under certain conditions of system structural flexibility and disturbance inputs from the gimbal support structure. Separate 3 degree-of-freedom (3DOF) linear models based on NASTRAN modal flexibility data for the gimbal and support structures were generated for the ASPS configurations. Using the models inertial pointing control loops providing 6dB of gain margin and 45 deg of phase margin were defined for each configuration. The pointing loop bandwidth obtained for the ASPS is more than twice the level achieved for the AGS configuration. The AGS limit is attributed to the gimbal and support structure flexibility. As a result of the higher ASPS pointing loop bandwidth and the disturbance rejection provided by the magnetic isolation ASPS pointing performane is significantly better than that of the AGS system. The low frequency peak of the ASPS transfer function from base disturbance to payload angular motion is almost 60dB lower than AGS low frequency peak.
Kemp, Graham J; Brindle, Kevin M
2012-08-01
Magnetic resonance spectroscopy (MRS) methods offer a potentially valuable window into cellular metabolism. Measurement of flux between inorganic phosphate (Pi) and ATP using (31)P MRS magnetization transfer has been used in resting muscle to assess what is claimed to be mitochondrial ATP synthesis and has been particularly popular in the study of insulin effects and insulin resistance. However, the measured Pi→ATP flux in resting skeletal muscle is far higher than the true rate of oxidative ATP synthesis, being dominated by a glycolytically mediated Pi↔ATP exchange reaction that is unrelated to mitochondrial function. Furthermore, even if measured accurately, the ATP production rate in resting muscle has no simple relationship to mitochondrial capacity as measured either ex vivo or in vivo. We summarize the published measurements of Pi→ATP flux, concentrating on work relevant to diabetes and insulin, relate it to current understanding of the physiology of mitochondrial ATP synthesis and glycolytic Pi↔ATP exchange, and discuss some possible implications of recently reported correlations between Pi→ATP flux and other physiological measures.
Marts, Donna J.; Richardson, John G.; Albano, Richard K.; Morrison, Jr., John L.
1995-01-01
This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.
NASA Astrophysics Data System (ADS)
Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran
2016-03-01
Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.
NASA Astrophysics Data System (ADS)
Huang, Haihong; Han, Gang; Qian, Zhengchun; Liu, Zhifeng
2017-12-01
The metal magnetic memory signals were measured during dynamic tension tests on the surfaces of the cladding coatings by plasma transferred arc (PTA) welding and the 0.45% C steel. Results showed that the slope of the normal component Hp(y) of magnetic signal and the average value of the tangential component Hp(x) reflect the magnetization of the specimens. The signals increased sharply in the few initial cycles; and then fluctuated around a constant value during fatigue process until fracture. For the PTA cladding coating, the slope of Hp(y) was steeper and the average of Hp(x) was smaller, compared with the 0.45% C steel. The hysteresis curves of cladding layer, bonding layer and substrate were measured by vibrating sample magnetometer testing, and then saturation magnetization, initial susceptibility and coercivity were further calculated. The stress-magnetization curves were also plotted based on the J-A model, which showed that the PTA cladding coating has smaller remanence and coercivity compared with the 0.45% C steel. The microstructures of cladding coating confirmed that the dendritic structure and second-phase of alloy hinder the magnetic domain motion, which was the main factor influencing the variation of magnetic signal during the fatigue tests.
Chorny, Michael; Fishbein, Ilia; Tengood, Jillian E.; Adamo, Richard F.; Alferiev, Ivan S.; Levy, Robert J.
2013-01-01
Gene therapeutic strategies have shown promise in treating vascular disease. However, their translation into clinical use requires pharmaceutical carriers enabling effective, site-specific delivery as well as providing sustained transgene expression in blood vessels. While replication-deficient adenovirus (Ad) offers several important advantages as a vector for vascular gene therapy, its clinical applicability is limited by rapid inactivation, suboptimal transduction efficiency in vascular cells, and serious systemic adverse effects. We hypothesized that novel zinc oleate-based magnetic nanoparticles (MNPs) loaded with Ad would enable effective arterial cell transduction by shifting vector processing to an alternative pathway, protect Ad from inactivation by neutralizing factors, and allow site-specific gene transfer to arteries treated with stent angioplasty using a 2-source magnetic guidance strategy. Ad-loaded MNPs effectively transduced cultured endothelial and smooth muscle cells under magnetic conditions compared to controls and retained capacity for gene transfer after exposure to neutralizing antibodies and lithium iodide, a lytic agent causing disruption of free Ad. Localized arterial gene expression significantly stronger than in control animal groups was demonstrated after magnetically guided MNP delivery in a rat stenting model 2 and 9 d post-treatment, confirming feasibility of using Ad-loaded MNPs to achieve site-specific transduction in stented blood vessels. In conclusion, Ad-loaded MNPs formed by controlled precipitation of zinc oleate represent a novel delivery system, well-suited for efficient, magnetically targeted vascular gene transfer.—Chorny, M., Fishbein, I., Tengood, J. E., Adamo, R. F., Alferiev, I. S., Levy, R. J. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. PMID:23407712