Sample records for magnetic water treatment

  1. Removal of less biodegradable dissolved organic matters in water by superconducting magnetic separation with magnetic mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Jin, T.; Miura, O.

    2010-11-01

    Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N2 reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.

  2. Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.

  3. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    NASA Astrophysics Data System (ADS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  4. Effect of magnetic field on the physical properties of water

    NASA Astrophysics Data System (ADS)

    Wang, Youkai; Wei, Huinan; Li, Zhuangwen

    2018-03-01

    In this study, the effect of magnetic field (MF) on the partial physical properties of water are reported, tap water (TW) and 4 types of magnetized water (MW) were measured in the same condition. It was found that the properties of TW were changed following the MF treatment, shown as the increase of evaporation amount, the decrease of specific heat and boiling point after magnetization, the changes depend on the magnetization effect. In addition, magnetic field strength (MFS) has a marked influence on the magnetization effect, the optimal magnetizing condition was determined as the MFS of 300 mT. The findings of this study offered a facile approach to improve cooling and power generation efficiency in industrial.

  5. The influence of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putro, Triswantoro, E-mail: tris@physics.its.ac.id; Endarko, E-mail: endarko@physics.its.ac.id

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, aroundmore » 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.« less

  6. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    PubMed

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  7. Antioxidative effects of magnetized extender containing bovine serum albumin on sperm oxidative stress during long-term liquid preservation of boar semen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Hee; Park, Choon-Keun, E-mail: parkck@kangwon.ac.kr

    Magnetized water is defined as water that has passed through a magnet and shows increased permeability into cells and electron-donating characteristics. These attributes can protect against membrane damage and remove reactive oxygen species (ROS) in mammalian cells. We explored the effects of improved magnetized semen extenders containing bovine serum albumin (BSA) as antioxidants on apoptosis in boar sperm. Ejaculated semen was diluted in magnetized extender (0G and 6000G) with or without BSA (0G + BSA and 6000G + BSA), and sperm were analyzed based on viability, acrosome reaction, and H{sub 2}O{sub 2} level of live sperm using flow cytometry. Sperm were then preserved formore » 11 days at 18 °C. We found that viability was significantly higher in 6000G + BSA than under the other treatments (P < 0.05). The acrosome reaction was significantly lower in the 6000G + BSA group compared with the other treatments (P < 0.05). Live sperm with high intracellular H{sub 2}O{sub 2} level were significantly lower in the 6000G + BSA group than under other treatments (P < 0.05). Based on our results, magnetized extenders have antioxidative effects on the liquid preservation of boar sperm. - Highlights: • Magnetized water is water that has been passed through a magnetic field. • Magnetized extender improve viability and decrease oxidative stress of boar sperm for preservation. • Ejaculated semen diluted with magnetized extender can improve liquid preservation period.« less

  8. Effective Role of Magnetic Core-Shell Nanocomposites in Removing Organic and Inorganic Wastes from Water.

    PubMed

    Shah, Nasrullah; Claessyns, Frederick; Rimmer, Stephen; Arain, Muhammad Balal; Rehan, Touseef; Wazwaz, Aref; Ahmad, Mohammad Wasi; Ul-Islam, Mazhar

    2016-01-01

    Affordable and efficient water treatment process to produce water free from various contaminants is a big challenge. The presence of toxic heavy metals, dyes, hazardous chemicals and other toxins causes contamination of water sources and our food chain and make them hazardous to living organisms. The current water treatment processes are no longer sustainable due to high cost and low efficiency. Due to advantageous properties, nanotechnology based materials can play a great role in increasing the efficiency of water treatment processes. Magnetic nanocomposites use nano as well as magnetic properties and have the potential to provide a sophisticated system to overcome most of the impurities present in water. There is a diversity of magnetic nanocomposites, however presently we have focussed the core-shell magnetic nanocomposites because they have excellent magnetic and separation properties, stability, and good biocompatibility. We collected systematically the bibliographic data bases for peer-reviewed research literature focusing on the theme of our review. The quality of the included research papers are selected by standard tools. A conceptual frame work is designed to arrange the topics and extracted the interventions and findings of the included studies. The overall study was divided into sections and each section incorporated the most appropriate literature citation. Total one hundred and eight references were included of which 32 references were used for basic description/introduction of core-shell magnetic nanocomposites. One review paper containing the synthesis methods for core shell magnetic nanocomposites is included while majority (76) of the references are included for comprehensive description of applications of the core-shell nanocomposites among which 25 were for dyes removal, 27 for hazardous metals, 07 for hazardous chemicals, 12 for pesticides and biological contaminants removal and five other including patents were added as miscellaneous substances removal from water sources. This review identified the effective role of core-shell magnetic nanocomposites for environmental remediation in terms of removal of various hazardous substances from water resources. The outcome of the present review confirms that the magnetic core-shell nanocomposites provide a cost effective and efficient way for the removal of various toxic substances including dyes, heavy metals, toxic organic chemicals, pesticides and some biological contaminants from water sources.

  9. Photocatalytic/Magnetic Composite Particles

    NASA Technical Reports Server (NTRS)

    Wu, Chang-Yu; Goswami, Yogi; Garretson, Charles; Andino, Jean; Mazyck, David

    2007-01-01

    Photocatalytic/magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water treatment reactors.

  10. From biowaste to magnet-responsive materials for water remediation from polycyclic aromatic hydrocarbons.

    PubMed

    Nisticò, Roberto; Cesano, Federico; Franzoso, Flavia; Magnacca, Giuliana; Scarano, Domenica; Funes, Israel G; Carlos, Luciano; Parolo, Maria E

    2018-07-01

    Composted urban biowaste-derived substances (BBS-GC) are used as carbon sources for the preparation of carbon-coated magnet-sensitive nanoparticles obtained via co-precipitation method and the subsequent thermal treatment at 550 °C under nitrogen atmosphere. A multitechnique approach has been applied to investigate the morphology, magnetic properties, phase composition, thermal stability of the obtained magnet-sensitive materials. In particular, pyrolysis-induced modifications affecting the BBS-GC/carbon shell were highlighted. The adsorption capacity of such bio-derivative magnetic materials for the removal of hydrophobic contaminants such as polycyclic aromatic hydrocarbons was evaluated in order to verify their potential application in wastewater remediation process. The promising results suggest their use as a new generation of magnet-responsive easily-recoverable adsorbents for water purification treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment.

    PubMed

    Santos, Tássia R T; Silva, Marcela F; Nishi, Leticia; Vieira, Angélica M S; Fagundes-Klen, Márcia R; Andrade, Murilo B; Vieira, Marcelo F; Bergamasco, Rosângela

    2016-04-01

    In this work, to evaluate the effectiveness of the coagulation/flocculation using a natural coagulant, using Moringa oleifera Lam functionalized with magnetic iron oxide nanoparticles, producing flakes that are attracted by an external magnetic field, thereby allowing a fast settling and separation of the clarified liquid, is proposed. The removal efficiency of the parameters, apparent color, turbidity, and compounds with UV254nm absorption, was evaluated. The magnetic functionalized M. oleifera Lam coagulant could effectively remove 90 % of turbidity, 85 % of apparent color, and 50 % for the compounds with absorption at UV254nm, in surface waters under the influence of an external magnetic field within 30 min. It was found that the coagulation/flocculation treatment using magnetic functionalized M. oleifera Lam coagulant was able to reduce the values of the physico-chemical parameters evaluated with reduced settling time.

  12. Green and facile approach for enhancing the inherent magnetic properties of carbon nanotubes for water treatment applications.

    PubMed

    Ateia, Mohamed; Koch, Christian; Jelavić, Stanislav; Hirt, Ann; Quinson, Jonathan; Yoshimura, Chihiro; Johnson, Matthew

    2017-01-01

    Current methods for preparing magnetic composites with carbon nanotubes (MCNT) commonly include extensive use of treatment with strong acids and result in massive losses of carbon nanotubes (CNTs). In this study we explore the potential of taking advantage of the inherent magnetic properties associated with the metal (alloy or oxide) incorporated in CNTs during their production. The as-received CNTs are refined by applying a permanent magnet to a suspension of CNTs to separate the high-magnetic fraction; the low-magnetic fraction is discarded with the solvent. The collected MCNTs were characterized by a suite of 10 diffraction and spectroscopic techniques. A key discovery is that metallic nano-clusters of Fe and/or Ni located in the interior cavities of the nanotubes give MCNTs their ferromagnetic character. After refinement using our method, the MCNTs show saturation magnetizations up to 10 times that of the as-received materials. In addition, we demonstrate the ability of these MCNTs to repeatedly remove atrazine from water in a cycle of dispersion into a water sample, adsorption of the atrazine onto the MCNTs, collection by magnetic attraction and regeneration by ethanol. The resulting MCNTs show high adsorption capacities (> 40 mg-atrazine/g), high magnetic response, and straightforward regeneration. The method presented here is simpler, faster, and substantially reduces chemical waste relative to current techniques and the resulting MCNTs are promising adsorbents for organic/chemical contaminants in environmental waters.

  13. Green and facile approach for enhancing the inherent magnetic properties of carbon nanotubes for water treatment applications

    PubMed Central

    Jelavić, Stanislav; Hirt, Ann; Quinson, Jonathan; Yoshimura, Chihiro; Johnson, Matthew

    2017-01-01

    Current methods for preparing magnetic composites with carbon nanotubes (MCNT) commonly include extensive use of treatment with strong acids and result in massive losses of carbon nanotubes (CNTs). In this study we explore the potential of taking advantage of the inherent magnetic properties associated with the metal (alloy or oxide) incorporated in CNTs during their production. The as-received CNTs are refined by applying a permanent magnet to a suspension of CNTs to separate the high-magnetic fraction; the low-magnetic fraction is discarded with the solvent. The collected MCNTs were characterized by a suite of 10 diffraction and spectroscopic techniques. A key discovery is that metallic nano-clusters of Fe and/or Ni located in the interior cavities of the nanotubes give MCNTs their ferromagnetic character. After refinement using our method, the MCNTs show saturation magnetizations up to 10 times that of the as-received materials. In addition, we demonstrate the ability of these MCNTs to repeatedly remove atrazine from water in a cycle of dispersion into a water sample, adsorption of the atrazine onto the MCNTs, collection by magnetic attraction and regeneration by ethanol. The resulting MCNTs show high adsorption capacities (> 40 mg-atrazine/g), high magnetic response, and straightforward regeneration. The method presented here is simpler, faster, and substantially reduces chemical waste relative to current techniques and the resulting MCNTs are promising adsorbents for organic/chemical contaminants in environmental waters. PMID:28708835

  14. Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging.

    PubMed

    Yanagisawa, Osamu; Takahashi, Hideyuki; Fukubayashi, Toru

    2010-09-01

    In this study, we determined the effects of different cooling treatments on exercised muscles. Seven adults underwent four post-exercise treatments (20-min ice-bag application, 60-min gel-pack application at 10 degrees C and 17 degrees C, and non-cooling treatment) with at least 1 week between treatments. Magnetic resonance diffusion- and T2-weighted images were obtained to calculate the apparent diffusion coefficients (apparent diffusion coefficient 1, which reflects intramuscular water diffusion and microcirculation, and apparent diffusion coefficient 2, which is approximately equal to the true diffusion coefficient that excludes as much of the effect of intramuscular microcirculation as possible) and the T2 values (intramuscular water content level) of the ankle dorsiflexors, respectively, before and after ankle dorsiflexion exercise and after post-exercise treatment. The T2 values increased significantly after exercise and returned to pre-exercise values after each treatment; no significant differences were observed among the four post-exercise treatments. Both apparent diffusion coefficients also increased significantly after exercise and decreased significantly after the three cooling treatments; no significant difference was detected among the three cooling treatments. Local cooling suppresses both water diffusion and microcirculation within exercised muscles. Moreover, although the treatment time was longer, adequate cooling effects could be achieved using the gel-pack applications at relatively mild cooling temperatures.

  15. Evaluation of Commercial Magnetic Descalers.

    DTIC Science & Technology

    1984-05-01

    and magnetic Ochkov of the Moscow Power Institute published a properties of the particles in the water, (d) -prior paper in which they formulated a...forming substances in the form of a soft sludge, either In 1974 another sales peak of electric and electronic ahead of the boiler or in the boiler." water...Speranskiy, V. V. Vikhreu, V. N. Vinogradou, and in preventing scale deposition," and was "unable to Y . 1. Dolya, "Experience of Magnetic Treatment of Feed

  16. Chemical and bioanalytical assessments on drinking water treatments by quaternized magnetic microspheres.

    PubMed

    Shi, Peng; Ma, Rong; Zhou, Qing; Li, Aimin; Wu, Bing; Miao, Yu; Chen, Xun; Zhang, Xuxiang

    2015-03-21

    This study aimed to compare the toxicity reduction performance of conventional drinking water treatment (CT) and a treatment (NT) with quaternized magnetic microspheres (NDMP) based on chemical analyses. Fluorescence excitation-emission-matrix combined with parallel factor analysis identified four components in source water of different rivers or lake, and the abundance of each component differed greatly among the different samples. Compared with the CT, the NT evidently reduced the concentrations of dissolved organic carbon, adsorbable organic halogens (AOX), bromide and disinfection by-products. Toxicological evaluation indicated that the NT completely eliminated the cytotoxicity, and greatly reduced the genotoxicity and oxidative stress of all raw water. In contrast, the CT increased the cytotoxicity of Taihu Lake and the Zhongshan River water, genotoxicity of Taihu Lake and the Mangshe River water, as well as the levels of superoxide dismutase and malondialdehyde of the Mangshe River water. Correlation analysis indicated that the AOX of the treated samples was significantly correlated with the genotoxicity and glutathione concentration, but exhibited no correlation with either of them for all the samples. As it can effectively reduce pollutant levels and the toxicities of drinking water, NDMP might be widely used for drinking water treatment in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Earlier Detection of Tumor Treatment Response Using Magnetic Resonance Diffusion Imaging with Oscillating Gradients

    PubMed Central

    Colvin, Daniel C.; Loveless, Mary E.; Does, Mark D.; Yue, Zou; Yankeelov, Thomas E.; Gore, John C.

    2011-01-01

    An improved method for detecting early changes in tumors in response to treatment, based on a modification of diffusion-weighted magnetic resonance imaging, has been demonstrated in an animal model. Early detection of therapeutic response in tumors is important both clinically and in pre-clinical assessments of novel treatments. Non-invasive imaging methods that can detect and assess tumor response early in the course of treatment, and before frank changes in tumor morphology are evident, are of considerable interest as potential biomarkers of treatment efficacy. Diffusion-weighted magnetic resonance imaging is sensitive to changes in water diffusion rates in tissues that result from structural variations in the local cellular environment, but conventional methods mainly reflect changes in tissue cellularity and do not convey information specific to micro-structural variations at sub-cellular scales. We implemented a modified imaging technique using oscillating gradients of the magnetic field for evaluating water diffusion rates over very short spatial scales that are more specific for detecting changes in intracellular structure that may precede changes in cellularity. Results from a study of orthotopic 9L gliomas in rat brains indicate that this method can detect changes as early as 24 hours following treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), when conventional approaches do not find significant effects. These studies suggest that diffusion imaging using oscillating gradients may be used to obtain an earlier indication of treatment efficacy than previous magnetic resonance imaging methods. PMID:21190804

  18. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    NASA Astrophysics Data System (ADS)

    Yang, Song-tao; Zhou, Mi; Jiang, Tao; Guan, Shan-fei; Zhang, Wei-jun; Xue, Xiang-xin

    2016-12-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V-Ti-Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio ( η), S removal ratio ( R S), and P removal ratio ( R P) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved the η, R S, and R P in the coal-based reduction of V-Ti-Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70 μm at 1350°C, which is substantially larger than the minimum particle size required (20 μm) for magnetic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V-Ti-Cr iron ore followed by magnetic separation.

  19. Antioxidative effects of magnetized extender containing bovine serum albumin on sperm oxidative stress during long-term liquid preservation of boar semen.

    PubMed

    Lee, Sang-Hee; Park, Choon-Keun

    2015-08-21

    Magnetized water is defined as water that has passed through a magnet and shows increased permeability into cells and electron-donating characteristics. These attributes can protect against membrane damage and remove reactive oxygen species (ROS) in mammalian cells. We explored the effects of improved magnetized semen extenders containing bovine serum albumin (BSA) as antioxidants on apoptosis in boar sperm. Ejaculated semen was diluted in magnetized extender (0G and 6000G) with or without BSA (0G + BSA and 6000G + BSA), and sperm were analyzed based on viability, acrosome reaction, and H2O2 level of live sperm using flow cytometry. Sperm were then preserved for 11 days at 18 °C. We found that viability was significantly higher in 6000G + BSA than under the other treatments (P < 0.05). The acrosome reaction was significantly lower in the 6000G + BSA group compared with the other treatments (P < 0.05). Live sperm with high intracellular H2O2 level were significantly lower in the 6000G + BSA group than under other treatments (P < 0.05). Based on our results, magnetized extenders have antioxidative effects on the liquid preservation of boar sperm. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer.Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02273a

  1. Water entry for the black locust (Robinia pseudoacacia L.) seeds observed by dedicated micro-magnetic resonance imaging.

    PubMed

    Koizumi, Mika; Kano, Hiromi

    2016-07-01

    Water entry at germination for black locust (Robinia pseudoacacia L.) seeds which are known as hard seeds with impermeable seed coat to water, was examined using micro-magnetic resonance imaging (MRI). The MRI apparatus equipped with a low-field (1 T; Tesla) permanent magnet was used, which is open access, easy maintenance, operable and transportable. The excellent point of the apparatus is that T 1-enhancement of water signals absorbed in dry seeds against steeping free water is stronger than the apparatuses with high-field superconducting magnets, which enabled clear detection of water entry. Water hardly penetrated into the seeds for more than 8 h but approximately 60 % of seeds germinated by incubating on wet filter papers for several days. Hot water treatments above 75 °C for 3 min effectively induced water gap; scarification was 70 % at 100 °C and 75 °C, declined to 15 % at 50 °C and decreased further at room temperature. Water entered into the scarified seeds exclusively through the lens, spread along the dorsal side of the seeds and reached the hypocotyl, whereas water migrated slowly through hilum side to radicle within 3 h.

  2. In vivo quantification of response to treatment in patients with multiple myeloma by 1H magnetic resonance spectroscopy of bone marrow.

    PubMed

    Oriol, Albert; Valverde, Daniel; Capellades, Jaume; Cabañas, Miquel E; Ribera, Josep-Maria; Arús, Carles

    2007-04-01

    Magnetic resonance imaging (MRI) is the gold standard non-invasive technique to detect malignant disease in the bone marrow. Proton magnetic resonance spectroscopy (MRS) can be performed as a quick adjunct to routine spinal MRI. We performed proton MRS to patients with multiple myeloma (MM) at diagnosis and after treatment to investigate the possible correlation of MRS data with response to therapy. Twenty-one patients with newly diagnosed MM underwent combined MRI/MRS explorations of a transverse center section in the fifth lumbar vertebral body. MRS was acquired with STEAM and 40 ms TE. Areas of unsuppressed water and lipid resonances were used to calculate the lipid-to-water ratio (LWR). No association was detected between initial LWRs and the clinical characteristics of patients. Post treatment MRS was available in 16 patients of whom 11 (69%) presented an LWR increase, this included all complete responders (8/8, 100%, P = 0.012). A post-treatment LWR value equal to or larger than one is proposed as a non-invasive marker of complete response to treatment. Only patients responding to treatment presented a significant increase in bone marrow LWR after therapy. MRS may provide an adequate quantification of response to chemotherapy in patients with MM.

  3. Triclosan and methyl-triclosan monitoring study in the northeast of Spain using a magnetic particle enzyme immunoassay and confirmatory analysis by gas chromatography mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kantiani, Lina; Farré, Marinella; Asperger, Danijela; Rubio, Fernando; González, Susana; López de Alda, Maria J.; Petrović, Mira; Shelver, Weilin L.; Barceló, Damià

    2008-10-01

    SummaryFor the first time, the occurrence of triclosan and its metabolite methyl-triclosan was investigated in a typical Mediterranean area using a two-step methodology based on screening using a magnetic particle immunoassay (IA) and confirmatory analysis by solid phase extraction (SPE) followed by gas chromatography-mass spectrometry (GC-MS). In this study, 95 environmental samples were analyzed. A commercial immunoassay was assessed for use in the different types of water selected for this study. A large monitoring study was performed on the influent and the effluent of eight wastewater treatment plants (WWTPs), water samples from Ebro and Llobregat rivers, and drinking water. All wastewater samples tested in this study (influents and effluents) showed the presence of triclosan, with concentrations for raw influents being high (10 μg/L as average value). The percentages of triclosan removal for the WWTPs were evaluated (30-70%) along the different treatment processes showing that the best removal rates were obtained by the processes equipped with membrane bioreactors (MBRs). However, important concentrations of triclosan were detected even after treatment by MBRs. The presence of this biocide was confirmed in 50% of the river samples analyzed. Twenty two drinking water samples from the Barcelona city area were investigated, and in this case no triclosan was detected. Due to its properties and the widespread usage of triclosan, there is a need for monitoring and controlling the amounts present in wastewater effluents, river water, drinking water catchments areas, and drinking water. To this end, we present a feasible methodology using a magnetic particle-based immunoassay as a screening, followed by confirmatory analysis using solid phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS).

  4. Application and Prospect of Superconducting High Gradient Magnetic Separation in Disposal of Micro-fine Tailings

    NASA Astrophysics Data System (ADS)

    Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei

    2017-12-01

    Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.

  5. Monte Carlo evaluation of magnetically focused proton beams for radiosurgery

    NASA Astrophysics Data System (ADS)

    McAuley, Grant A.; Heczko, Sarah L.; Nguyen, Theodore T.; Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.

    2018-03-01

    The purpose of this project is to investigate the advantages in dose distribution and delivery of proton beams focused by a triplet of quadrupole magnets in the context of potential radiosurgery treatments. Monte Carlo simulations were performed using various configurations of three quadrupole magnets located immediately upstream of a water phantom. Magnet parameters were selected to match what can be commercially manufactured as assemblies of rare-earth permanent magnetic materials. Focused unmodulated proton beams with a range of ~10 cm in water were target matched with passive collimated beams (the current beam delivery method for proton radiosurgery) and properties of transverse dose, depth dose and volumetric dose distributions were compared. Magnetically focused beams delivered beam spots of low eccentricity to Bragg peak depth with full widths at the 90% reference dose contour from ~2.5 to 5 mm. When focused initial beam diameters were larger than matching unfocused beams (10 of 11 cases) the focused beams showed 16%–83% larger peak-to-entrance dose ratios and 1.3 to 3.4-fold increases in dose delivery efficiency. Peak-to-entrance and efficiency benefits tended to increase with larger magnet gradients and larger initial diameter focused beams. Finally, it was observed that focusing tended to shift dose in the water phantom volume from the 80%–20% dose range to below 20% of reference dose, compared to unfocused beams. We conclude that focusing proton beams immediately upstream from tissue entry using permanent magnet assemblies can produce beams with larger peak-to-entrance dose ratios and increased dose delivery efficiencies. Such beams could potentially be used in the clinic to irradiate small-field radiosurgical targets with fewer beams, lower entrance dose and shorter treatment times.

  6. Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles.

    PubMed

    Lakshmanan, Ramnath; Kuttuva Rajarao, Gunaratna

    2014-02-01

    The present work compares the use of three flocculants for sedimentation of sludge and sludge water content from sewage wastewater i.e. magnetic iron oxide nanoparticles (MION), ferrous sulfate (chemical) and Moringa crude extract (protein). Sludge water content, wet/dry weight, turbidity and color were performed for, time kinetics and large-scale experiment. A 30% reduction of the sludge water content was observed when the wastewater was treated with either protein or chemical coagulant. The separation of sludge from wastewater treated with MION was achieved in less than 5min using an external magnet, resulted in 95% reduction of sludge water content. Furthermore, MION formed denser flocs and more than 80% reduction of microbial content was observed in large volume experiments. The results revealed that MION is efficient in rapid separation of sludge with very low water content, and thus could be a suitable alternative for sludge sedimentation and dewatering in wastewater treatment processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synthesis of NiFe2O4 nanoparticles for energy and environment applications

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Rimal, Gaurab; Tang, Jinke; Dai, Qilin

    2018-02-01

    Magnetic nanoparticles are of great interest due to their applications in energy and environment. In this work, we developed a chemical solution based method to synthesize NiFe2O4 (NFO) nanoparticles with different sizes and structures by organic ligands and studied their applications in magnetic electrolyte concentration cells and waste water treatment. NFO nanoparticle growth is controlled by the organic passivating ligand ratios, reaction temperatures, and reaction solution concentrations to achieve the control of NFO nanoparticle size ranging from 25 nm to 160 nm. The NFO growth mechanism is controlled by aggregation related mechanism, leading to tunable magnetic properties and concentration cell device performance. Magnetic biochar consisting of biochar/NFO composite was also obtained based on the developed method. Waste water containing Rhodamine B was tested by the synthesized magnetic biochar. We believe the method developed in this work about magnetic NFO nanoparticles and magnetic biochar will shed light on the application of magnetic nanoparticles in energy and environment.

  8. Resource Recovery and Reuse: Recycled Magnetically Separable Iron-based Catalysts for Phosphate Recovery and Arsenic Removal

    EPA Science Inventory

    Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...

  9. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres.

    PubMed

    Luo, Xiaogang; Zeng, Jian; Liu, Shilin; Zhang, Lina

    2015-10-01

    Development of highly cost-effective, highly operation-convenient and highly efficient natural polymer-based adsorbents for their biodegradability and biocompatibility, and supply of safe drinking water are the most threatening problems in water treatment field. To tackle the challenges, a new kind of efficient recyclable magnetic chitosan/cellulose hybrid microspheres was prepared by sol-gel method. By embedding magnetic γ-Fe2O3 nanoparticles in chitosan/cellulose matrix drops in NaOH/urea aqueous solution, it combined renewability and biocompatibility of chitosan and cellulose as well as magnetic properties of γ-Fe2O3 to create a hybrid system in heavy metal ions removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.

    PubMed

    Liu, Dan; Wang, Peng; Wei, Guanran; Dong, Wenbo; Hui, Franck

    2013-01-01

    This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation-magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe(3)O(4)). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L(-1)). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic-coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups.

  11. Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium.

    PubMed

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-10-18

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 µg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.

  12. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol-gel method, and subsequently with surface modifying with amino in the purpose to form SiO2-NH2 shell. Thus, metal particles were easily adsorbed into the SiO2-NH2 shell and in-situ reduced by NaBH4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu2(OH)3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water.

  13. Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI).

    PubMed

    Simeonidis, K; Kaprara, E; Samaras, T; Angelakeris, M; Pliatsikas, N; Vourlias, G; Mitrakas, M; Andritsos, N

    2015-12-01

    The potential of magnetite nanoparticles to be applied in drinking water treatment for the removal of hexavalent chromium is discussed. In this study, a method for their preparation which combines the use of low-cost iron sources (FeSO4 and Fe2(SO4)3) and a continuous flow mode, was developed. The produced magnetite nanoparticles with a size of around 20 nm, appeared relatively stable to passivation providing a removal capacity of 1.8 μg Cr(VI)/mg for a residual concentration of 50 μg/L when tested in natural water at pH7. Such efficiency is explained by the reducing ability of magnetite which turns Cr(VI) to an insoluble Cr(OH)3 form. The successful operation of a small-scale system consisting of a contact reactor and a magnetic separator demonstrates a way for the practical introduction and recovery of magnetite nanoparticles in water treatment technology. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION).

    PubMed

    Hwang, Jeong-Ha; Han, Dong-Woo

    2015-01-01

    Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.

  15. Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium

    PubMed Central

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-01-01

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 μg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water. PMID:23202034

  16. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy.more » Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.« less

  17. Solar energy harvesting by magnetic-semiconductor nanoheterostructure in water treatment technology.

    PubMed

    Mahmoodi, Vahid; Bastami, Tahereh Rohani; Ahmadpour, Ali

    2018-03-01

    Photocatalytic degradation of toxic organic pollutants in the wastewater using dispersed semiconductor nanophotocatalysts has a number of advantages such as high activity, cost effectiveness, and utilization of free solar energy. However, it is difficult to recover and recycle nanophotocatalysts since the fine dispersed nanoparticles are easily suspended in waters. Furthermore, a large amount of photocatalysts will lead to color contamination. Thus, it is necessary to prepare photocatalysts with easy separation for the reusable application. To take advantage of high photocatalysis activity and reusability, magnetic photocatalysts with separation function were utilized. In this review, the photocatalytic principle, structure, and application of the magnetic-semiconductor nanoheterostructure photocatalysts under solar light are evaluated. Graphical abstract ᅟ.

  18. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  19. Monte Carlo study of the impact of a magnetic field on the dose distribution in MRI-guided HDR brachytherapy using Ir-192

    NASA Astrophysics Data System (ADS)

    Beld, E.; Seevinck, P. R.; Lagendijk, J. J. W.; Viergever, M. A.; Moerland, M. A.

    2016-09-01

    In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner’s magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.

  20. Monte Carlo study of the impact of a magnetic field on the dose distribution in MRI-guided HDR brachytherapy using Ir-192.

    PubMed

    Beld, E; Seevinck, P R; Lagendijk, J J W; Viergever, M A; Moerland, M A

    2016-09-21

    In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner's magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.

  1. Evaluation of dripper clogging using magnetic water in drip irrigation

    NASA Astrophysics Data System (ADS)

    Khoshravesh, Mojtaba; Mirzaei, Sayyed Mohammad Javad; Shirazi, Pooya; Valashedi, Reza Norooz

    2018-06-01

    This study was performed to investigate the uniformity of distribution of water and discharge variations in drip irrigation using magnetic water. Magnetic water was achieved by transition of water using a robust permanent magnet connected to a feed pipeline. Two main factors including magnetic and non-magnetic water and three sub-factor of salt concentration including well water, addition of 150 and 300 mg L-1 calcium carbonate to irrigation water with three replications were applied. The result of magnetic water on average dripper discharge was significant at ( P ≤ 0.05). At the final irrigation, the average dripper discharge and distribution uniformity were higher for the magnetic water compared to the non-magnetic water. The magnetic water showed a significant effect ( P ≤ 0.01) on distribution uniformity of drippers. At the first irrigation, the water distribution uniformity was almost the same for both the magnetic water and the non-magnetic water. The use of magnetic water for drip irrigation is recommended to achieve higher uniformity.

  2. Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield.

    PubMed

    Asghar, Tehseen; Iqbal, Munawar; Jamil, Yasir; Zia-Ul-Haq; Nisar, Jan; Shahid, Muhammad

    2017-01-01

    Recently, laser and magnetic field pre-sowing seed treatments attracted the attention of the scientific community in response to their positive effect on plant characteristics and the present study was exemplified for Glycine max Var 90-I. Seeds were exposed to laser (HeNe-wave length 632nm and density power of 1mW/cm 2 ) and magnetic field (sinusoidal non-uniform-50, 75 and 100mT for 3, 5min with exposure) and seed germination, seedling growth and yield attributes were compared. The germination (mean germination, germination percentage, emergence index, germination speed, relative germination coefficient, emergence coefficient of uniformity) growth (root dry weight, root length, shoot fresh weight and shoot dry weight, leaf dry & fresh weight, root fresh weight, leaf area, shoot length, plant total dry weight at different stages, stem diameter, number of leaves, vigor index I & II), biochemical (essential oil) and yield attributes (seed weight, count) were enhanced significantly in response to both laser and magnetic field treatments. However, magnetic field treatment furnished slightly higher response versus laser except relative water contents, whole plant weight and shoot length. Results revealed that both laser and magnetic field pre-sowing seed treatments affect the germination, seedling growth, and yield characteristics positively and could possibly be used to enhance Glycine max productivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effect of fluxing treatment on the properties of Fe66Co15Mo1P7.5C5.5B2Si3 bulk metallic glass by water quenching

    NASA Astrophysics Data System (ADS)

    Li, Jin-Feng; Wang, Xin; Liu, Xue; Zhao, Shao-Fan; Yao, Ke-Fu

    2018-01-01

    The effect of fluxing treatment on the properties of Fe66Co15Mo1P7.5C5.5B2Si3bulk amorphous alloy (BAA) has been investigated. Prepared by a combination method of flux treatment and water quenching, the Fe66Co15Mo1P7.5C5.5B2Si3 BAA exhibits better glass-forming ability, thermal stability, soft magnetic properties and ductility than those of the one prepared by direct water quenching. This indicates that fluxing treatment can play a potential role in improving the properties of Fe-based BAA due to the effective elimination of the impurities within the alloy.

  4. Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion

    NASA Astrophysics Data System (ADS)

    Solla-Gullón, J.; Gómez, Elvira; Vallés, Elisa; Aldaz, Antonio; Feliu, Juan M.

    2010-05-01

    PtCo nanoparticles with homogeneous size (around 3-4 nm) have been synthesized in a water-in-oil microemulsion of water/polyethylenglycol-dodecylether (BRIJ®30)/n-heptane. X-ray diffraction study revealed the formation of a cubic phase with a gradual decrease of the cell parameter with increasing cobalt incorporation in the crystalline lattice of platinum. In relation to their magnetic properties, the PtCo nanoparticles present a superparamagnetic behaviour even after annealing, although higher permeability was induced by the thermal treatment. Finally, the electrocatalytic activity of the particles towards oxalic acid oxidation in H2SO4 was evaluated. The Pt74Co26 nanoparticles showed the highest reactivity for this reaction.

  5. A novel combined electrochemical-magnetic method for water treatment.

    PubMed

    Ibanez, Jorge G; Vazquez-Olavarrieta, Jorge Luis; Hernandez-Rivera, Lydia; Garcia-Sanchez, Martin Adolfo; Garcia-Pintor, Elizabeth

    2012-01-01

    Electrocoagulation (EC) is a wastewater treatment process in which aqueous pollutants can be removed by adsorption, entrapment, precipitation or coalescence during a coagulation step produced by electrochemically generated metallic species. When using Fe as the sacrificial electrode, Fe(2+) and Fe(3+) ions are formed. As Fe(3+) species are paramagnetic, this property can in principle be used to facilitate their removal through the application of a magnetic field. In the present work we present a proof-of-concept for a combined electrochemical-magnetic method for pollutant removal. For this approach, the amounts of Fe(2+) and Fe(3+) produced in an EC cell at various voltages were measured by spectroscopic methods to confirm that Fe(3+) species predominate (up to 84%). The effectiveness of the presence of a magnetic field in the precipitation of coagulants from a suspension was confirmed by monitoring the turbidity change versus time with and without exposure to a magnetic field, up to a 30% improvement.

  6. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  7. Noncovalent magnetic control and reversible recovery of graphene oxide using iron oxide and magnetic surfactants.

    PubMed

    McCoy, Thomas M; Brown, Paul; Eastoe, Julian; Tabor, Rico F

    2015-01-28

    The unique charging properties of graphene oxide (GO) are exploited in the preparation of a range of noncovalent magnetic GO materials, using microparticles, nanoparticles, and magnetic surfactants. Adsorption and desorption are controlled by modification of pH within a narrow window of <2 pH units. The benefit conferred by using charge-based adsorption is that the process is reversible, and the GO can be captured and separated from the magnetic nanomaterial, such that both components can be recycled. Iron oxide (Fe2O3) microparticles form a loosely flocculated gel network with GO, which is demonstrated to undergo magnetic compressional dewatering in the presence of an external magnetic field. For composites formed from GO and Fe2O3 nanoparticles, it is found that low Fe2O3:GO mass ratios (<5:1) favor flocculation of GO, whereas higher ratios (>5:1) cause overcharging of the surfaces resulting in restabilization. The effectiveness of the GO adsorption and magnetic capture process is demonstrated by separating traditionally difficult-to-recover gold nanoparticles (d ≈ 10 nm) from water. The fully recyclable nature of the assembly and capture process, combined with the vast adsorption capacity of GO, presents obvious and appealing advantages for applications in decontamination and water treatment.

  8. Synthesis of pH-sensitive and recyclable magnetic nanoparticles for efficient separation of emulsified oil from aqueous environments

    NASA Astrophysics Data System (ADS)

    Lü, Ting; Zhang, Shuang; Qi, Dongming; Zhang, Dong; Vance, George F.; Zhao, Hongting

    2017-02-01

    Emulsified oil wastewaters, arisen from oil industry and oil spill accidents, cause severe environmental and ecological problems. In this study, a series of pH-sensitive magnetic nanomaterials (MNPs) were synthesized and characterized for their evaluation in separation of emulsified oil from aqueous environments. A coprecipitation method was used to produce Fe3O4 magnetic nanoparticles that were coated in a 2-step process with first silica to form a surface for anchoring an (3-aminopropyl)triethoxysilane (APTES) molecular layer. Detailed studies were conducted on effects of MNPs dosage, APTES anchoring density (DA) and pH on oil-water separation performance of the synthetic MNPs. Results showed that, under both acidic and neutral conditions, MNPs with high DA exhibited enhanced oil-water separation performance, while under alkaline condition, the oil-water separation process was minimal. Alkaline conditions allowed the MNPs to be recycled up to 9 cycles without showing any significant decrease in oil-water separation efficiency. An examination of the oil-water separation mechanism found that electrostatic interaction and interfacial activity both played important roles in oil-water separation. In conclusion, pH-sensitive MNPs can be easily synthesized and recycled, providing a promising, cost-effective and environmentally-friendly process for the efficient treatment of emulsified oil wastewater.

  9. Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Pérez, Rosa Ana; Albero, Beatriz; Férriz, Macarena; Tadeo, José Luis

    2017-11-30

    Macrolides are one of the most commonly used families of antibiotics employed in human and veterinary treatment. These compounds are considered emerging contaminants with potential ecological and human health risks that could be present in surface water. This paper describes the development and application of a simple and efficient extraction procedure for the determination of tilmicosin; erythromycin, tylosin and erythromycin-H 2 O from water samples. Sample extraction was carried out using magnetic solid-phase extraction using oleate functionalized magnetic nanoparticles followed by LC-MS/MS analysis. The effects of several parameters on the extraction efficiency of MLs from water were evaluated. The recovery results obtained were >84% for most of the compounds, except for erytromycin. The LOD and LOQ values ranged from 11.5 to 26ngL -1 and from 34 to 77ngL -1 , respectively. The selected method was applied to monitor these contaminants in water samples from different sources. Tilmicosin and tylosin were not detected in any of the samples, but erythromycin and erythromycin-H 2 O were found in 50% of the surface water samples at levels from

  10. Development and Testing of a Magnetically Actuated Capsule Endoscopy for Obesity Treatment

    PubMed Central

    Do, Thanh Nho; Seah, Tian En Timothy; Yu, Ho Khek; Phee, Soo Jay

    2016-01-01

    Intra-gastric balloons (IGB) have become an efficient and less invasive method for obesity treatment. The use of traditional IGBs require complex insertion tools and flexible endoscopes to place and remove the balloon inside the patient’s stomach, which may cause discomfort and complications to the patient. This paper introduces a new ingestible weight-loss capsule with a magnetically remote-controlled inflatable and deflatable balloon. To inflate the balloon, biocompatible effervescent chemicals are used. As the source of the actuation is provided via external magnetic fields, the magnetic capsule size can be significantly reduced compared to current weight-loss capsules in the literature. In addition, there are no limitations on the power supply. To lose weight, the obese subject needs only to swallow the magnetic capsule with a glass of water. Once the magnetic capsule has reached the patient’s stomach, the balloon will be wirelessly inflated to occupy gastric space and give the feeling of satiety. The balloon can be wirelessly deflated at any time to allow the magnetic capsule to travel down the intestine and exit the body via normal peristalsis. The optimal ratio between the acid and base to provide the desired gas volume is experimentally evaluated and presented. A prototype capsule (9.6mm x 27mm) is developed and experimentally validated in ex-vivo experiments. The unique ease of delivery and expulsion of the proposed magnetic capsule is slated to make this development a good treatment option for people seeking to lose excess weight. PMID:26815309

  11. Effects of magnetic fields on dissolution of arthritis causing crystals

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Iwasaka, M.

    2015-05-01

    The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.

  12. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Filip, Jan; Marušák, Zdeněk; Sharma, Virender K; Zbořil, Radek

    2013-04-02

    We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet.

  13. Property of filler-loaded magnetic ferrite from plastic waste bottle used to treat municipal domestic sewage.

    PubMed

    Zhao, Ru-Jin; Gong, Li-Ying; Zhu, Hai-Dong; Liu, Qiao; Xu, Li-Xia; Lu, Lu; Yang, Qi-Zhi

    2018-06-01

    The present work investigates the properties of self-made magnetic filler from plastic waste bottle and explores a new technology approach of waste plastic resource utilization. The magnetic filler was prepared by air plasma modification and loading magnetic ferrite on the plastic strip from waste plastic bottle. The surface properties of magnetic filler were characterized by Atomic Force Microscope (AFM), contact angle system and Fourier Transform Infrared (FTIR). AFM images of original and modified plastic strip showed that low-temperature plasma treatment markedly increased the surface roughness of plastic strip. The mean roughness (Ra) of plastic strip rose from 1.116 to 5.024 nm. FTIR spectra indicated that a lot of polar oxygenic groups were introduced onto the surface of plastic by plasma modification. Modification by low-temperature plasma increased the hydrophilicity of plastic strip surface. When treatment time is 40 s, water contact angle of plastic strip surface reduced from 78.2° of original plastic strip to 25.3°. When used in bioreactor, magnetic filler had very favorable microenvironment for microorganism growth. Magnetic filler was more efficient for removing chemical oxygen demand (COD) and [Formula: see text] in sewage than nonmagnetic filler. The resource utilization of plastic wastes will become reality if the magnetic filler is applied widely.

  14. TiO2-based (Fe3O4, SiO2, reduced graphene oxide) magnetically recoverable photocatalysts for imazalil degradation in a synthetic wastewater.

    PubMed

    Santiago, Dunia E; Pastrana-Martínez, Luisa M; Pulido-Melián, Elisenda; Araña, Javier; Faria, Joaquim L; Silva, Adrián M T; González-Díaz, Óscar; Doña-Rodríguez, José M

    2018-03-02

    Magnetite (Fe 3 O 4 ), a core-shell material (SiO 2 @Fe 3 O 4 ), and reduced graphene oxide-Fe 3 O 4 (referred as rGO-MN) were used as supports of a specific highly active TiO 2 photocatalyst. Thermal treatments at 200 or 450 °C, different atmospheres (air or N 2 ), and TiO 2 :support weight ratios (1.0, 1.5, or 2.0) were investigated. X-ray diffractograms revealed that magnetite is not oxidized to hematite when the core-shell SiO 2 @Fe 3 O 4 material-or a N 2 atmosphere (instead of air) in the thermal treatment-was employed to prepare the TiO 2 -based catalysts (the magnetic properties being preserved). The materials treated with N 2 were first tested for degradation of imazalil (a well-known fungicide) in deionized water. The best compromise between the photocatalytic activity, magnetic separation, and Fe leached (1.61 mg L -1 , i.e., below the threshold for water reuse in irrigation) was found for the magnetic catalyst prepared with SiO 2 @Fe 3 O 4 , an intermediate TiO 2 :support ratio (1.5), and treated at 200 °C under N 2 atmosphere (i.e., SiO 2 @Fe 3 O 4 -EST-1.5-200-N 2 ). This material was then tested for the treatment of imazalil in a synthetic wastewater, SW (with a chemical composition simulating an effluent resulting from fruit postharvest activity). This SW has a pH of 4.2 and the experiments were carried out at this natural pH 0 and at neutral conditions (keeping pH at 7 along the reaction). The magnetic catalyst was more active than bare TiO 2 for the treatment of imazalil in SW at natural pH. Since Fe leaching was observed (3.53 mg L -1 ), added H 2 O 2 enhanced both imazalil degradation and mineralization. Conveniently, these catalysts can be readily recovered by using a conventional magnetic field, as demonstrated over three consecutive recycling runs. Graphical abstract % Imazalil conversion using different magnetic catalysts and comparison with bare TiO 2 .

  15. Preparation of a magnetic N-Fe/AC catalyst for aqueous pharmaceutical treatment in heterogeneous sonication system.

    PubMed

    Zhang, Nan; Zhao, He; Zhang, Guangming; Chong, Shan; Liu, Yucan; Sun, Liyan; Chang, Huazhen; Huang, Ting

    2017-02-01

    High efficiency and facile separation are desirable for catalysts used in water treatment. In this study, a magnetic catalyst (nitrogen doped iron/activated carbon) was prepared and used for pharmaceutical wastewater treatment. The catalyst was characterized using BET, SEM, XRD, VSM and XPS. Results showed that iron and nitrogen were successfully loaded and doped, magnetic Fe 2 N was formed, large amount of active surface oxygen and Fe(II) were detected, and the catalyst could be easily separated from water. Diclofenac was then degraded using the catalyst in ultrasound system. The catalyst showed high catalytic activity with 95% diclofenac removal. Analysis showed that ·OH attack of diclofenac was a main pathway, and then ·OH generation mechanism was clarified. The effects of catalyst dosage, sonication time, ultrasonic density, initial pH, and inorganic anions on diclofenac degradation were studied. Sulfate anion enhanced the degradation of diclofenac. Mechanism in the catalytic ultrasonic process was analyzed and reactions were clarified. Large quantity of oxidants was generated on the catalyst surface, including ·OH, O 2 - , O - and HO 2 ·, which degraded diclofenac efficiently. In the solution and interior of cavitation bubbles, ·OH and "hot spot" effects contributed to the degradation of diclofenac. Reuse of the catalyst was further investigated to enhance its economy, and the catalyst maintained activity after seven uses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effectiveness of a magnetized water oral irrigator (Hydro Floss) on plaque, calculus and gingival health.

    PubMed

    Johnson, K E; Sanders, J J; Gellin, R G; Palesch, Y Y

    1998-04-01

    The purpose of this study was to evaluate the effects of a magnetized water oral irrigator on plaque, calculus and gingival health. 29 patients completed this double-blind crossover study. Each patient was brought to baseline via an oral prophylaxis with a plaque index < or = 1 and a gingival index < or = 1. Subjects used the irrigator for a period of 3 months with the magnet and 3 months without the magnet. After each 3 month interval, data were collected using the plaque index, gingival index, and accretions index. The repeated measures analysis on plaque, gingival and calculus indices yielded a statistically-significant period effect for PlI (p=0.0343), GI (p=0.0091), and approached significance for calculus (p=0.0593). This meant that the effect of irrigation resulted in a decrease of all indices over time. Therefore, the treatment effect on each index was evaluated using only the measurements obtained at the end of the first period (i.e., assuming a parallel design). Irrigation with magnetized water resulted in 64% less calculus compared to the control group. The reduction was statistically significant (p< or =0.02). The reduction by 27% in gingival index was not statistically significant. The reduction in plaque was minimal (2.2%). A strong positive correlation between the plaque index and the Watt accretion index was observed. The magnetized water oral irrigator could be a useful adjunct in the prevention of calculus accumulation in periodontal patients, but appears to have minimal effect on plaque reduction. The results indicated a clinical improvement in the gingival index, but this was not a statistically significant finding.

  17. Characterisation of the aqueous corrosion process in NdFeB melt spun ribbon and MQI bonded magnets

    NASA Astrophysics Data System (ADS)

    McCain, Stephen

    A major factor limiting the use and longevity of rare earth based magnetic materials is their susceptibility to aqueous corrosion and associated detrimental effects upon the magnetic properties of the material. This process was investigated through a combination of exposure to simulated environmental conditions and hydrogen absorption/desorption studies (HADS) in conjunction with magnetic characterisation. This study utilises NdFeB MQP-B melt-spun ribbon manufactured by Magnequench, in the form of MQI bonded magnets and also in its unbonded state as MQ powder. Specifically, it was concerned with how effective a variety of bonding media (epoxy resin,PTFE, zinc) and surface coatings (PTFE, Qsil, zinc LPPS, Dex-Cool) were at limiting the impact of aqueous corrosion in MQI bonded magnets. To characterise the effect of hydrogen absorption upon the magnetic properties of the MQP-B, hydrogen uptake was induced followed by a series of outgassing heat treatments with subsequent magnetic characterisation accompanied by HADS techniques performed after each outgas. This allowed comparisons to be made between the effects of aqueous corrosion process and hydrogen absorption upon the magnetic properties of the alloy.. This study has clearly demonstrated the link between the abundance of environmental moisture and rate of Hci losses in MQI bonded magnets. In addition to this the key mechanism responsible for the degradation of magnetic properties has been identified. These losses have been attributed to the absorption of hydrogen generated by the dissociation of water in the presence of NdFeB during the aqueous corrosion process. It has been shown that the use of a bonding media that is impermeable to water can limit the effects of aqueous corrosion by limiting water access to the Magnequench particles (MQP) and also the positive effects of the use of suitable surface coatings has been shown to be effective for the same reason..

  18. Polydopamine-coated magnetic nanoparticles for isolation and enrichment of estrogenic compounds from surface water samples followed by liquid chromatography-tandem mass spectrometry determination.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Piovesana, Susy; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2016-06-01

    Estrogens, phytoestrogens, and mycoestrogens may enter into the surface waters from different sources, such as effluents of municipal wastewater treatment plants, industrial plants, and animal farms and runoff from agricultural areas. In this work, a multiresidue analytical method for the determination of 17 natural estrogenic compounds, including four steroid estrogens, six mycoestrogens, and seven phytoestrogens, in river water samples has been developed. (Fe3O4)-based magnetic nanoparticles coated by polydopamine (Fe3O4@pDA) were used for dispersive solid-phase extraction, and the final extract was analyzed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The Fe3O4 magnetic nanoparticles were prepared by a co-precipitation procedure, coated by pDA, and characterized by scanning electron microscopy, infrared spectroscopy, and elemental analysis. The sample preparation method was optimized in terms of extraction recovery, matrix effect, selectivity, trueness, precision, method limits of detection, and method limits of quantification (MLOQs). For all the 17 analytes, recoveries were >70 % and matrix effects were below 30 % when 25 mL of river water sample was treated with 90 mg of Fe3O4@pDA nanoparticles. Selectivity was tested by spiking river water samples with 50 other compounds (mycotoxins, antibacterials, conjugated hormones, UV filters, alkylphenols, etc.), and only aflatoxins and some benzophenones showed recoveries >60 %. This method proved to be simple and robust and allowed the determination of natural estrogenic compounds belonging to different classes in surface waters with MLOQs ranging between 0.003 and 0.1 μg L(-1). Graphical Abstract Determination of natural estrogenic compounds in water by magnetic solid phase extraction followed by liquid chromatography-tandem mass spectrometry analysis.

  19. Low-Field Dynamic Magnetic Separation by Self-Fabricated Magnetic Meshes for Efficient Heavy Metal Removal.

    PubMed

    Wei, Xiangxia; Sugumaran, Pon Janani; Peng, Erwin; Liu, Xiao Li; Ding, Jun

    2017-10-25

    Wastewater contaminated with heavy metals is a worldwide concern due to the toxicity to human and animals. The current study presents an incorporation of adsorption and low-field dynamic magnetic separation technique for the treatment of heavy-metal-contaminated water. The key components are the eco-fabricated magnetic filter with mesh architectures (constituted of a soft magnetic material (Ni,Zn)Fe 2 O 4 ) and poly(acrylic acid) (PAA)-coated quasi-superparamagnetic Fe 3 O 4 nanoparticles (NPs). PAA-coated Fe 3 O 4 NPs possess high adsorption capacity of heavy metal ions including Pb, Ni, Co, and Cu and can be easily regenerated after the adjustment of pH. Moreover, magnetic mesh filter has shown excellent collection ability of quasi-superparamagnetic particles under a magnetic field as low as 0.7 kOe (0.07 T) and can easily release these particles during ultrasonic washing when small magnets are removed. In the end, after one filtration process, the heavy metal concentration can be significantly decreased from 1.0 mg L -1 to below the drinking water standard recommended by the World Health Organization (e.g., less than 0.01 mg L -1 for Pb). Overall, a proof-of-concept adsorption and subsequent low-field dynamic separation technique is demonstrated as an economical and efficient route for heavy metal removal from wastewater.

  20. Nano-magnetic particles used in biomedicine: core and coating materials.

    PubMed

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. [Preparation and characterization of a polyvinylpyrrolidone water-based magnetic fluid].

    PubMed

    Xie, Jian-feng; Zhang, Yang-de; Zeng, Zhao-wu; Wang, Xiao-li; Liu, Xing-yan; Zhou, Wei-hua

    2008-03-01

    To prepare a stable water-based magnetic fluid. A water-based magnetic fluid was prepared by addition of polyvinylpyrrolidone (PVP) as the coating agent for the magnetic particles. After preparation of Fe3O4 by co-precipitation method, PVP was added for its coating, followed by ultrasonic agitation and purification. The magnetic nanoparticles of homogeneously small size and water-based magnetic fluid were obtained, which had good dispersion in water with strong magnetism. PVP can be used as a surfactant to stabilize the magnetic fluid.

  2. Surface modification of porous suspended ceramsite used for water treatment by activated carbon/Fe3O4 magnetic composites.

    PubMed

    Lu, Mang; Xia, Guang-Hua; Zhao, Xiao-Dong

    2013-01-01

    In this study, porous suspended ceramsite with a specific density close to that of water was prepared by high-temperature calcination using fly ash, feldspar, calcite, fired talc and kaolin as the raw materials. The ceramsite was modified by activated carbon/Fe3O4 magnetic composites. The optimum modification conditions determined by methylene blue adsorption experiment were: KOH/glucose ratio of 1.5:1, carbonization temperature of 400 degrees C, activation temperature of 850 degrees C, activation time of 1 h, and Fe3O4/KOH+glucose ratio of 1:10. The results demonstrated that the adsorption capacity of the modified ceramsite for methylene blue was significantly higher than that of the unmodified ones. The presence of the composites did not lead to significant decrease in the mechanical properties of the modified ceramsite. Moreover, the modified ceramsite showed good resistance towards acid and alkali. The modified ceramsite can be used as biocarrier and adsorbent for a wide range of contaminants in water and can subsequently be removed from the medium by a simple magnetic procedure.

  3. Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon.

    PubMed

    Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping

    2017-02-01

    Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe 3 O 4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe 3 O 4 /PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe 3 O 4 /PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.

  4. Cerium and lanthanum-modified, magnetically separable nano-catalysts for water treatment

    EPA Science Inventory

    Currently, people are exposed to many chemicals in the environment by a variety of chemicals used and produced for anthropogenic activities. Many studies reportadverse effects of chemicals in the environment on the health of humans and animals; such as endocrine disruption, femin...

  5. Magnetic field influences on the lateral dose response functions of photon-beam detectors: MC study of wall-less water-filled detectors with various densities.

    PubMed

    Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2017-06-21

    The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.

  6. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    PubMed Central

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-01-01

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air. PMID:23443127

  7. Evaporation rate of water as a function of a magnetic field and field gradient.

    PubMed

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-12-11

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  8. SU-F-T-410: Investigation of Treatment Planning Accuracy with the Presence of Magnetic Injection Port (breast Tissue Expander)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, W; Wagar, M; Lyatskaya, Y

    2016-06-15

    Purpose: Mastectomy patients with breast reconstruction usually have a magnetic injection port inside the breast during radiation treatments. The magnet has a very high CT number and produces severe streaking artifact across the entire breast in CT images. Our routine strategy is to replace the artifact volumes with uniform water, and it is necessary to validate that the planned dose, with such an artifact correction, is sufficiently accurate. Methods: A phantom was made with a gelatine-filled container sitting on a Matrixx detector, and the magnetic port was inserted into gelatine with specific depths and orientations. The phantom was scanned onmore » a CT simulator and imported into Eclipse for treatment planning. The dose distribution at the Matrixx detector plane was calculated for raw CT images and artifact-corrected images. The treatment beams were then delivered to the phantom and the dose distributions were acquired by the Matrixx detector. Gamma index was calculated to compare the planned dose and the measurement. Results: Three field sizes (10×10, 15×15 and 20×20) and two depths (50mm and 20mm) were investigated. With the 2%/2mm or 3%/3mm criteria, several points (6–10) failed in the plan for raw CT images, and the number of failure was reduced close to zero for the corrected CT images. An assignment of 10,000 HU to the magnet further reduced the dose error directly under the magnet. Conclusion: It is validated that our routine strategy of artifact correction can effectively reduce the number of failures in the detector plane. It is also recommended to set the magnet with a CT number of 10,000HU, which could potentially improve the dose calculation at the points right behind the magnet.« less

  9. SU-F-T-409: Modelling of the Magnetic Port in Temporary Breast Tissue Expanders for a Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, J; Heins, D; Zhang, R

    Purpose: To model the magnetic port in the temporary breast tissue expanders and to improve accuracy of dose calculation in Pinnacle, a commercial treatment planning system (TPS). Methods: A magnetic port in the tissue expander was modeled with a radiological measurement-basis; we have determined the dimension and the density of the model by film images and ion chamber measurement under the magnetic port, respectively. The model was then evaluated for various field sizes and photon energies by comparing depth dose values calculated by TPS (using our new model) and ion chamber measurement in a water tank. Also, the model wasmore » further evaluated by using a simplified anthropomorphic phantom with realistic geometry by placing thermoluminescent dosimeters (TLD)s around the magnetic port. Dose perturbations in a real patient’s treatment plan from the new model and a current clinical model, which is based on the subjective contouring created by the dosimetrist, were also compared. Results: Dose calculations based on our model showed less than 1% difference from ion chamber measurements for various field sizes and energies under the magnetic port when the magnetic port was placed parallel to the phantom surface. When it was placed perpendicular to the phantom surface, the maximum difference was 3.5%, while average differences were less than 3.1% for all cases. For the simplified anthropomorphic phantom, the calculated point doses agreed with TLD measurements within 5.2%. By comparing with the current model which is being used in clinic by TPS, it was found that current clinical model overestimates the effect from the magnetic port. Conclusion: Our new model showed good agreement with measurement for all cases. It could potentially improve the accuracy of dose delivery to the breast cancer patients.« less

  10. Magnetic water-in-water droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Navi, Maryam; Abbasi, Niki; Tsai, Scott

    2017-11-01

    Aqueous two-phase systems (ATPS) have shown to be ideal candidates for replacing the conventional water-oil systems used in droplet microfluidics. We use an ATPS of Polyethylene Glycol (PEG) and Dextran (DEX) for microfluidic generation of magnetic water-in-water droplets. As ferrofluid partitions to DEX phase, there is no significant diffusion of ferrofluid at the interface of the droplets, rendering generation of magnetic DEX droplets in a non-magnetic continuous phase of PEG possible. In this system, both phases are water-based and highly biocompatible. We microfluidically generate magnetic DEX droplets at a flow-focusing junction in a jetting regime. We sort the droplets based on their size by placing a permanent magnet downstream of the droplet generation region, and show that the deflection of droplets is in good agreement with a mathematical model. We also show that the magnetic DEX droplets can be stabilized by lysozyme and be used for separation of single cell containing water-in-water droplets. This system of magnetic water-in-water droplet manipulation may find biomedical applications such as single-cell studies and drug delivery.

  11. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field.

    PubMed

    Shine, M B; Guruprasad, K N; Anand, Anjali

    2011-09-01

    Experiments were conducted to study the effect of static magnetic fields on the seeds of soybean (Glycine max (L.) Merr. var: JS-335) by exposing the seeds to different magnetic field strengths from 0 to 300 mT in steps of 50 mT for 30, 60, and 90 min. Treatment with magnetic fields improved germination-related parameters like water uptake, speed of germination, seedling length, fresh weight, dry weight and vigor indices of soybean seeds under laboratory conditions. Improvement over untreated control was 5-42% for speed of germination, 4-73% for seedling length, 9-53% for fresh weight, 5-16% for dry weight, and 3-88% and 4-27% for vigor indices I and II, respectively. Treatment of 200 mT (60 min) and 150 mT (60 min), which were more effective than others in increasing most of the seedling parameters, were further explored for their effect on plant growth, leaf photosynthetic efficiency, and leaf protein content under field conditions. Among different growth parameters, leaf area, and leaf fresh weight showed maximum enhancement (more than twofold) in 1-month-old plants. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at the J-I-P phase. The total soluble protein map (SDS-polyacrylamide gel) of leaves showed increased intensities of the bands corresponding to a larger subunit (53 KDa) and smaller subunit (14 KDa) of Rubisco in the treated plants. We report here the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. Copyright © 2011 Wiley-Liss, Inc.

  12. SU-E-J-204: Can a Commercial System for MR-IGRT Be Used to Treat Patients Without Acquiring a CT Scan?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, H; Yaddanapudi, S; Santanam, L

    2015-06-15

    Patients treated using a magnetic-resonance image guided radiation therapy (MR-IGRT) system received both CT and MR simulations. During planning, the CT is used to determine relative electron density (RED) using a calibration table. This study aims to investigate the feasibility of MR-only treatments by comparing CT-computed dose distributions to those computed with combinations of water (1.0), lung (0.26), tissue (1.02), and bone (1.12) bulk RED overrides, and to identify the effects of the magnetic field on the RED-overridden doses. Methods: Four patients who received treatment using a commercial MR-IGRT system were analyzed (1 lung, 2 abdomen, and 1 pelvis). Themore » clinical plans were computed using the first fraction MRI as primary, and the simulation CT as secondary for REDs. Plans were reoptimized using default bulk RED overrides (water/lung and tissue/lung for the lung patient, water/bone, tissue/bone, water only, and tissue only for the abdomen and pelvis patients). Additionally, each plan was re-optimized to include the static magnetic field. All plans were normalized to the same PTV coverage as the clinical plan. Dose-difference volumes and DVHs were computed for bulk density override plans, and 3D gamma analyses between each plan and its accompanying magnetic field plan were performed using 3%/3 mm dose difference and distance-to-agreement criteria using the PTV and Skin as masking structures. Results: The average differences in PTV and organs-at-risk mean dose for all RED combinations tested were −0.19 Gy (−0.62 – 0.06 Gy) and −0.34 Gy (−1.76 – 0.33 Gy), respectively. The average PTV and Skin gamma pass rates for all RED combinations tested were 99.88% (99.5% – 100%) and 98. 35% (96.3% – 99.6%). No systematic differences in DVHs or isodoses were observed. Conclusions: It is likely that that a commercial MR-IGRT system may produce high quality treatment plans without the need for CT scans. Authors of this abstract are members of the Washington University Radiation Oncology department, which has a research agreement with ViewRay, Inc.« less

  13. Laser treatment of a neodymium magnet and analysis of surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Rizwan, M.; Kassas, M.

    2016-08-01

    Laser treatment of neodymium magnet (Nd2Fe14B) surface is carried out under the high pressure nitrogen assisting gas. A thin carbon film containing 12% WC carbide particles with 400 nm sizes are formed at the surface prior to the laser treatment process. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools. The corrosion resistance of the laser treated surface is analyzed incorporating the potentiodynamic tests carried out in 0.05 M NaCl+0.1 M H2SO4 solution. The friction coefficient of the laser treated surface is measured using the micro-scratch tester. The wetting characteristics of the treated surface are assessed incorporating the sessile water drop measurements. It is found that a dense layer consisting of fine size grains and WC particles is formed in the surface region of the laser treated layer. Corrosion resistance of the surface improves significantly after the laser treatment process. Friction coefficient of laser treated surface is lower than that of the as received surface. Laser treatment results in superhydrophobic characteristics at the substrate surface. The formation of hematite and grain size variation in the treated layer slightly lowers the magnetic strength of the laser treated workpiece.

  14. Magnetic adsorbent constructed from the loading of amino functionalized Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates nanoparticle and its tetracycline adsorption removal property study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Jinzhao; Mei, Mingliang; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn

    2016-06-15

    A magnetic polyoxometalates based adsorbent has been synthesized successfully through the loading of amino functionalized Fe{sub 3}O{sub 4} (NH{sub 2}-Fe{sub 3}O{sub 4}) on nanoparticle of a coordination complex modified polyoxometalates (CC/POMNP). FTIR illustrate there exist intense hydrogen bonds between NH{sub 2}-Fe{sub 3}O{sub 4} and CC/POMNP, which keep the stability of this adsorbent. At room temperature, this adsorbent exhibits ferromagnetic character with saturation magnetization of 8.19 emu g{sup −1}, which provides prerequisite for fast magnetic separation. Water treatment experiment illustrates this POM based magnetic adsorbent exhibits high adsorption capacity on tetracycline. The adsorption process can be described well with Temkin model,more » which illustrates the interaction between adsorbent and tetracycline plays the dominated role in tetracycline removal. The rapid, high efficient tetracycline adsorption ability suggests this POM based magnetic adsorbent exhibits promising prospect in medical and agriculture waste water purification. A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates - Graphical abstract: A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalate. Display Omitted - Highlights: • A POM based magnetic adsorbent was fabricated through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on POM nanoparticle. • This adsorbent possesses excellent tetracycline adsorption property. • Saturation magnetization value of this adsorbent is 8.19 emug−1, which is enough for magnetic separation.« less

  15. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging.

    PubMed

    Mardor, Yael; Pfeffer, Raphael; Spiegelmann, Roberto; Roth, Yiftach; Maier, Stephan E; Nissim, Ouzi; Berger, Raanan; Glicksman, Ami; Baram, Jacob; Orenstein, Arie; Cohen, Jack S; Tichler, Thomas

    2003-03-15

    To study the feasibility of using diffusion-weighted magnetic resonance imaging (DWMRI), which is sensitive to the diffusion of water molecules in tissues, for detection of early tumor response to radiation therapy; and to evaluate the additional information obtained from high DWMRI, which is more sensitive to low-mobility water molecules (such as intracellular or bound water), in increasing the sensitivity to response. Standard MRI and DWMRI were acquired before and at regular intervals after initiating radiation therapy for 10 malignant brain lesions in eight patients. One week posttherapy, three of six responding lesions showed an increase in the conventional DWMRI parameters. Another three responding lesions showed no change. Four nonresponding lesions showed a decrease or no change. The early change in the diffusion parameters was enhanced by using high DWMRI. When high DWMRI was used, all responding lesions showed increase in the diffusion parameter and all nonresponding lesions showed no change or decrease. Response was determined by standard MRI 7 weeks posttherapy. The changes in the diffusion parameters measured 1 week after initiating treatment were correlated with later tumor response or no response (P <.006). This correlation was increased to P <.0006 when high DWMRI was used. The significant correlation between changes in diffusion parameters 1 week after initiating treatment and later tumor response or no response suggests the feasibility of using DWMRI for early, noninvasive prediction of tumor response. The ability to predict response may enable early termination of treatment in nonresponding patients, prevent additional toxicity, and allow for early changes in treatment.

  16. Removal of oil droplets from contaminated water using magnetic carbon nanotubes.

    PubMed

    Wang, Haitao; Lin, Kun-Yi; Jing, Benxin; Krylova, Galyna; Sigmon, Ginger E; McGinn, Paul; Zhu, Yingxi; Na, Chongzheng

    2013-08-01

    Water contaminated by oil and gas production poses challenges to the management of America's water resources. Here we report the design, fabrication, and laboratory evaluation of multi-walled carbon nanotubes decorated with superparamagnetic iron-oxide nanoparticles (SPIONs) for oil-water separation. As revealed by confocal laser-scanning fluorescence microscopy, the magnetic carbon nanotubes (MCNTs) remove oil droplets through a two-step mechanism, in which MCNTs are first dispersed at the oil-water interface and then drag the droplets with them out of water by a magnet. Measurements of removal efficiency with different initial oil concentration, MCNT dose, and mixing time show that kinetics and equilibrium of the separation process can be described by the Langmuir model. Separation capacity qt is a function of MCNT dose m, mixing time t, and residual oil concentration Ce at equilibrium: [Formula in text] where qmax, kw, and K are maximum separation capacity, wrapping rate constant, and equilibrium constant, respectively. Least-square regressions using experimental data estimate qmax = 6.6(± 0.6) g-diesel g-MCNT(-1), kw = 3.36(± 0.03) L g-diesel(-1) min(-1), and K = 2.4(± 0.2) L g-diesel(-1). For used MCNTs, we further show that over 80% of the separation capacity can be restored by a 10 min wash with 1 mL ethanol for every 6 mg MCNTs. The separation by reusable MCNTs provides a promising alternative strategy for water treatment design complementary to existing ones such as coagulation, adsorption, filtration, and membrane processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Controlled fabrication of luminescent and magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  18. One-step microwave-assisted synthesis of water-dispersible Fe3O4 magnetic nanoclusters for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Sathya, Ayyappan; Kalyani, S.; Ranoo, Surojit; Philip, John

    2017-10-01

    To realize magnetic hyperthermia as an alternate stand-alone therapeutic procedure for cancer treatment, magnetic nanoparticles with optimal performance, within the biologically safe limits, are to be produced using simple, reproducible and scalable techniques. Herein, we present a simple, one-step approach for synthesis of water-dispersible magnetic nanoclusters (MNCs) of superparamagnetic iron oxide by reducing of Fe2(SO4)3 in sodium acetate (alkali), poly ethylene glycol (capping ligand), and ethylene glycol (solvent and reductant) in a microwave reactor. The average size and saturation magnetization of the MNC's are tuned from 27 to 52 nm and 32 to 58 emu/g by increasing the reaction time from 10 to 600 s. Transmission electron microscopy images reveal that each MNC composed of large number of primary Fe3O4 nanoparticles. The synthesised MNCs show excellent colloidal stability in aqueous phase due to the adsorbed PEG layer. The highest SAR value of 215 ± 10 W/gFe observed in 52 nm size MNC at a frequency of 126 kHz and field of 63 kA/m suggest the potential use of these MNC in hyperthermia applications. This study further opens up the possibilities to develop metal ion-doped MNCs with tunable sizes suitable for various biomedical applications using microwave assisted synthesis.

  19. The Sterilization Effect of Cooperative Treatment of High Voltage Electrostatic Field and Variable Frequency Pulsed Electromagnetic Field on Heterotrophic Bacteria in Circulating Cooling Water

    NASA Astrophysics Data System (ADS)

    Gao, Xuetong; Liu, Zhian; Zhao, Judong

    2018-01-01

    Compared to other treatment of industrial circulating cooling water in the field of industrial water treatment, high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization technology, an advanced technology, is widely used because of its special characteristics--low energy consumption, nonpoisonous and environmentally friendly. In order to get a better cooling water sterilization effect under the premise of not polluting the environment, some experiments about sterilization of heterotrophic bacteria in industrial circulating cooling water by cooperative treatment of high voltage electrostatic field and variable frequency pulsed electromagnetic field were carried out. The comparison experiment on the sterilization effect of high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization on heterotrophic bacteria in industrial circulating cooling water was carried out by change electric field strength and pulse frequency. The results show that the bactericidal rate is selective to the frequency and output voltage, and the heterotrophic bacterium can only kill under the condition of sweep frequency range and output voltage. When the voltage of the high voltage power supply is 4000V, the pulse frequency is 1000Hz and the water temperature is 30°C, the sterilization rate is 48.7%, the sterilization rate is over 90%. Results of this study have important guiding significance for future application of magnetic field sterilization.

  20. Comparison of drinking water treatment process streams for optimal bacteriological water quality.

    PubMed

    Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary

    2012-08-01

    Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. MSWI boiler fly ashes: magnetic separation for material recovery.

    PubMed

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. TU-AB-BRA-12: Quality Assurance of An Integrated Magnetic Resonance Image Guided Adaptive Radiotherapy Machine Using Cherenkov Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreozzi, J; Bruza, P; Saunders, S

    Purpose: To investigate the viability of using Cherenkov imaging as a fast and robust method for quality assurance tests in the presence of a magnetic field, where other instruments can be limited. Methods: Water tank measurements were acquired from a clinically utilized adaptive magnetic resonance image guided radiation therapy (MR-IGRT) machine with three multileaf-collimator equipped 60Co sources. Cherenkov imaging used an intensified charge coupled device (ICCD) camera placed 3.5m from the treatment isocenter, looking down the bore of the 0.35T MRI into a water tank. Images were post-processed to make quantitative comparison between Cherenkov light intensity with both film andmore » treatment planning system predictions, in terms of percent depth dose curves as well as lateral beam profile measurements. A TG-119 commissioning test plan (C4: C-Shape) was imaged in real-time at 6.33 frames per second to investigate the temporal and spatial resolution of the Cherenkov imaging technique. Results: A .33mm/pixel Cherenkov image resolution was achieved across 1024×1024 pixels in this setup. Analysis of the Cherenkov image of a 10.5×10.5cm treatment beam in the water tank successfully measured the beam width at the depth of maximum dose within 1.2% of the film measurement at the same point. The percent depth dose curve for the same beam was on average within 2% of ionization chamber measurements for corresponding depths between 3–100mm. Cherenkov video of the TG-119 test plan provided qualitative agreement with the treatment planning system dose predictions, and a novel temporal verification of the treatment. Conclusions: Cherenkov imaging was successfully used to make QA measurements of percent depth dose curves and cross beam profiles of MRI-IGRT radiotherapy machines after only several seconds of beam-on time and data capture; both curves were extracted from the same data set. Video-rate imaging of a dynamic treatment plan provided new information regarding temporal dose deposition. This study has been funded by NIH grants R21EB17559 and R01CA109558, as well as Norris Cotton Cancer Center Pilot funding.« less

  3. Magnetic force microscopy study on wide adjacent track erasure in perpendicular magnetic write heads

    NASA Astrophysics Data System (ADS)

    Ruksasakchai, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    We used a phase-contrast magnetic force microscopy (MFM) to observe and analyze the failure of magnetic write heads due to the WATEr problem, which limits the off-track performance. During MFM imaging, the magnetic write head was energized by a DC current. The induced out-of-plane magnetic field was then detected by scanning a MFM probe across the surface of the magnetic write head. MFM images were then mapped with WATEr measured results from a spin stand method. Results showed that WATEr effect can be generated by several factors, i.e. the structure of magnetic domains and walls from material discontinuities and the magnetic field leakage at different locations on magnetic write heads. Understanding WATEr mechanisms is useful for design and process development engineers.

  4. Discontinuous finite element space-angle treatment of the first order linear Boltzmann transport equation with magnetic fields: Application to MRI-guided radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Aubin, J., E-mail: joel.st.aubin@albertahealthservices.ca; Keyvanloo, A.; Fallone, B. G.

    Purpose: The advent of magnetic resonance imaging (MRI) guided radiotherapy systems demands the incorporation of the magnetic field into dose calculation algorithms of treatment planning systems. This is due to the fact that the Lorentz force of the magnetic field perturbs the path of the relativistic electrons, hence altering the dose deposited by them. Building on the previous work, the authors have developed a discontinuous finite element space-angle treatment of the linear Boltzmann transport equation to accurately account for the effects of magnetic fields on radiotherapy doses. Methods: The authors present a detailed description of their new formalism and comparemore » its accuracy to GEANT4 Monte Carlo calculations for magnetic fields parallel and perpendicular to the radiation beam at field strengths of 0.5 and 3 T for an inhomogeneous 3D slab geometry phantom comprising water, bone, and air or lung. The accuracy of the authors’ new formalism was determined using a gamma analysis with a 2%/2 mm criterion. Results: Greater than 98.9% of all points analyzed passed the 2%/2 mm gamma criterion for the field strengths and orientations tested. The authors have benchmarked their new formalism against Monte Carlo in a challenging radiation transport problem with a high density material (bone) directly adjacent to a very low density material (dry air at STP) where the effects of the magnetic field dominate collisions. Conclusions: A discontinuous finite element space-angle approach has been proven to be an accurate method for solving the linear Boltzmann transport equation with magnetic fields for cases relevant to MRI guided radiotherapy. The authors have validated the accuracy of this novel technique against GEANT4, even in cases of strong magnetic field strengths and low density air.« less

  5. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    NASA Astrophysics Data System (ADS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-06-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles (Fe3O4-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe3O4-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe3O4-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe3O4. Transmission electron microscopy (TEM) analysis confirmed that the Fe3O4-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe3O4-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe3O4-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe3O4-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K.

  6. The magnetodynamic filters in monitoring the contaminants from polluted water systems (abstract)

    NASA Astrophysics Data System (ADS)

    Swarup, R.; Singh, Bharat

    1994-05-01

    The magnetic interaction seems to influence the ``structural memory'' of water systems which is quenched in ideally pure water. The sedentary lifetime of each water molecule is extremely short (10-10 s) and its molecular structures may be influenced by some physical effect like magnetic field treatment, it's space time gradients, water velocity, pressure drop, etc. in the interpolar space, so as to yield a noticeable temporal magnetopotential development characterizing the properties of homogeneous and heterogeneous water systems. This principle is also extended to prevailing water systems which always contain various impurities, gas, molecules, ions, microscopic particles in random order. Still the existence of structural memory may be verified by reliable experimental data. The magnetopotential curves of different water systems depict the design and develop-software package for constructing the magnetodynamic-filters superior to the existing techniques on pollution studies like remote sensing, muon spin resonance, laser spectroscopy, nuclear techniques, the gamma ray peak efficiency method, trace elemental characterization due to NBS, neutron activation analysis, and graphite furnance atomic absorption spectrometer. The physiochemical characteristics of water calibrated in terms of magnetopotential curves change with the removal of dissolved gasses, impurities, thermal activation, etc. and the algae, bacteria, phosphates, etc. have been removed at a rapid rate. The magnetodynamic study of ganga water proves it to be an extremely pure and highly resourced fluid.

  7. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress.

    PubMed

    Mridha, Nilimesh; Chattaraj, Sudipta; Chakraborty, Debashis; Anand, Anjali; Aggarwal, Pramila; Nagarajan, Shantha

    2016-09-01

    Soil moisture stress during pod filling is a major constraint in production of chickpea (Cicer arietinum L.), a fundamentally dry land crop. We investigated effect of pre-sowing seed priming with static magnetic field (SMF) on alleviation of stress through improvement in radiation and water use efficiencies. Experiments were conducted under greenhouse and open field conditions with desi and kabuli genotypes. Seeds exposed to SMF (strength: 100 mT, exposure: 1 h) led to increase in root volume and surface area by 70% and 65%, respectively. This enabled the crop to utilize 60% higher moisture during the active growth period (78-118 days after sowing), when soil moisture became limiting. Both genotypes from treated seeds had better water utilization, biomass, and radiation use efficiencies (17%, 40%, and 26% over control). Seed pre-treatment with SMF could, therefore, be a viable option for chickpea to alleviate soil moisture stress in arid and semi-arid regions, helping in augmenting its production. It could be a viable option to improve growth and yield of chickpea under deficit soil moisture condition, as the selection and breeding program takes a decade before a tolerant variety is released. Bioelectromagnetics. 37:400-408, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  9. Recrystallization of starches by hydrothermal treatment: digestibility, structural, and physicochemical properties.

    PubMed

    Trinh, Khanh Son

    2015-12-01

    Gelatinized starches were recrystallized under hydrothermal treatment and their properties were characterized by X-ray diffractometry, solid-state (13)C cross-polarization and magic-angle spinning nuclear magnetic resonance, differential scanning calorimetry, gel-permeation chromatography, high-performance anion-exchange chromatography using pulsed amperomeric detection, high-performance size-exclusion chromatography with attached multiangle laser light scattering and refractive index detectors, and digestibility analysis. Amylopectin molecules of hylon (V, VII) and water yam starch contained long side-chains with high proportion of fb1 and fb2. Under hydrothermal treatment, the double helix proportion and relative crystallinity significantly increased and reached maxima of water yam (48.7 and 28.2 %, respectively). Except water yam starch, X-ray diffraction pattern of all starches exhibited the evidence of type 2 amylose-lipid complex. Besides, under DSC measurement, potato and hylon starches showed the endotherm of amylose-amylose interaction. The hydrothermal treatment caused the recrystallization resulting in the decrease of RDS, especially in case of hylon and water yam starch. HTT water yam contained highest SDS (48.3 %) and HTT hylon VII contained highest RS (44.5 %). The relationship between structure and digestibility was observed, in which, high amylose content and specific structures of amylopectin molecule were necessary for the production of RS and/or SDS of hydrothermally treated starches.

  10. Efficient boron abstraction using honeycomb-like porous magnetic hybrids: Assessment of techno-economic recovery of boric acid.

    PubMed

    Oladipo, Akeem Adeyemi; Gazi, Mustafa

    2016-12-01

    Porous magnetic hybrids were synthesized and functionalized with glycidol to produce boron-selective adsorbent. The magnetic hybrid (MH) comparatively out-performed the existing expensive adsorbents. MH had a saturation magnetisation of 63.48 emu/g and average pore diameter ranging from meso to macropores. The magnetic hybrids showed excellent selectivity towards boron and resulted in 79-93% boron removal even in the presence of competing metal ions (Na + and Cr 2+ ). Experiments were performed in a column system, and breakthrough time was observed to increase with bed depths and decreased with flow rates. The batch experiments revealed that 60 min was enough to achieve equilibrium, and the level of boron sorption was 108.5 mg/g from a synthetic solution. Several adsorption-desorption cycles were performed using a simple acid-water treatment and evaluated using various kinetic models. The spent adsorbents could be separated easily from the mixture by an external magnetic field. The cost-benefit analysis was performed for the treatment of 72 m 3 /year boron effluent, including five years straight line depreciation charges of equipment. The net profit and standard percentage confirmed that the recovery process is economically feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing.

    PubMed

    Shaw, Jennifer L A; Monis, Paul; Fabris, Rolando; Ho, Lionel; Braun, Kalan; Drikas, Mary; Cooper, Alan

    2014-12-01

    Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect and mechanism of a High Gradient Magnetic Separation (HGMS) and Ultraviolet (UV) composite process on the inactivation of microbes in ballast water.

    PubMed

    Ren, Zhijun; Zhang, Lin; Shi, Yue; Leng, Xiaodong; Shao, Jingchao

    2016-07-15

    The patented technology of a High Gradient Magnetic Separation (HGMS)-Ultraviolet (UV) composite process was used to treat ballast water. Staphylococcus aureus (S. aureus) was selected as the reference bacteria. After treatment by the HGMS-UV process, the concentration of S. aureus on the log 10 scale was lower than 2 at different flow rates, S. aureus suffered the most serious damage, and K(+) leakage of the bacteria was 1.73mg/L higher than separate 60min UV irradiation (1.17mg/L) and HGMS (0.12mg/L) processes. These results demonstrated that the HGMS-UV composite process was an effective approach to treat ballast water. Further, the HGMS process had synergistic action on the subsequent UV irradiation process and accelerated cell membrane damage. Meanwhile, the results of superoxide dismutase (SOD) activities of bacteria and DNA band analyses indicated that the inactivation mechanisms were different for HGMS and UV irradiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Application of ultradisperse magnetic adsorbents for removal of small concentrations of pollutants from large volumes of water

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Kuznetsov, Oleg

    2016-07-01

    Pollution of natural bodies of water (rivers, lakes, ground water, etc) is unfortunately very common, both from natural sources like volcanic activity; and, even more importantly, from human activity, including disposal of industrial and municipal waste, mining, etc. Many toxic substances are harmful for humans and other organisms even in very low concentrations (e.g., less than 1 µg/L of cadmium is harmful, for Hg it is 0.5 µg/L, for phenol - 1 µg/L), and can remain in water for decades or longer. Cleaning large volumes of water even from low concentrations of pollutants is a challenging technological task and is very expensive. We propose to use suspension of ultradisperse magnetic adsorbents, for example, nanostructured ferro-carbon particles, produced by plasmachemical technique, for removing small concentrations of pollutants from large volumes of water. The suspension is introduced into the water. Due to their small sizes and densities similar to water (we measured the density of FC-4 ferro-carbon to be about 1 g/cm3; presumably due to porosity) the particles do not sediment for a long time (hours, days or longer), move due to Brownian motion and adsorb a variety of substances from the water. The particle surface can be modified to provide selectivity of the adsorption. Sorption capacities of ferro-carbon adsorbents is in dozens of percent. Therefore, to collect 1 kg of a pollutant, 2 to 20 kg of the adsorbents is required. Then the particles with the adsorbed contaminant can be collected (e.g., downstream of the river) using a variety of magnetic traps. The traps can consist of ferromagnetic wires and permanent magnets, a variety of simple and inexpensive designs are available. As a model system, the kinetics of adsorption of a highly diluted (0.002 mg/ml) aqueous solution of a low molecular weight compound (toluidine blue) by a small concentration of a ferro-carbon powder (FC-4) was studied by spectrophotometry. Before each measurement, the particles with the adsorbed toluidine blue were removed from the solution by magnetic separation. The sorbent was proven to have high sorption capacity and rapid adsorption kinetics for toluidine blue. These experiments demonstrated the validity of the method, where a small concentration of a pollutant was successfully collected from a large volume of water. By varying the ratio of the sorbent/pollutant, it is possible to optimize the sorbent use and the time required to adsorb all pollutant present in the treated water. A variety of magnetically controlled sorbents can be designed and used in this method, from broad-spectrum adsorbing sorbents to sorbents specifically targeting a particular pollutant. These sorbents can be used either individually or as mixtures of sorbents with different properties, depending on the desired purification goals. Simplicity and scalability of this method allow a variety of ecological applications, as well as industrial ones, from process water purification to wastewater treatment.

  14. Removal of р-nitrophenol from aqueous solution by magnetically modified activated carbon

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Zhao, Feng; Sun, Jian; Wang, Bin; Wei, Rongyan; Yan, Shiqiang

    2013-09-01

    Activated carbon was modified with γ-Fe2O3 nanoparticles, using the chemical co-precipitation technique and the carboxylic acid vapor treatment technique. Two magnetic composites were characterized and compared by Fourier Transform Infrared spectroscopy, X-ray diffractometry, vibrating sample magnetometry and nitrogen adsorption-desorption. Then the two materials were used to remove p-nitrophenol in water. The equilibrium data revealed that the Langmuir isotherm was better in fitting the experiment result than the Freundlich isotherm, and the sorption capacity of the nanocomposite made by the chemical co-precipitation technique was higher than that of the other one. We suggest that the chemical co-precipitation technique is a more efficient and practical method to produce magnetically modified activated carbon.

  15. New bioactive bone-like microspheres with intrinsic magnetic properties obtained by bio-inspired mineralisation process.

    PubMed

    Fernandes Patrício, Tatiana Marisa; Panseri, Silvia; Sandri, Monica; Tampieri, Anna; Sprio, Simone

    2017-08-01

    A bio-inspired mineralisation process was investigated and applied to develop novel hybrid magnetic materials by heterogeneous nucleation of Fe 2+ /Fe 3+ -doped hydroxyapatite nanocrystals onto a biopolymeric matrix made of a Type I collagen-based recombinant peptide (RCP). The effect of the synthesis temperature on the phase composition, crystallinity and magnetic properties of the nucleated inorganic phase was studied. The as-obtained magnetic materials were then engineered, by using a water-in-oil emulsification process, into hybrid magnetic microspheres, which were stabilized by de-hydrothermal treatment yielding cross-linking of the macromolecular matrix. Thorough investigation of the physicochemical, morphological and biological properties of the new hybrid microspheres, as induced by the presence of the inorganic nanophase and controlled iron substitution into hydroxyapatite lattice, revealed bone-like composition, good cytocompatibility, designed shape and size, and tailored magnetization. Such features are interesting and promising for application as new biomaterials with ability of remote activation and control by using external magnetic fields, for smart and personalized applications in medicine, particularly in bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Monitoring of changes in cluster structures in water under AC magnetic field

    NASA Astrophysics Data System (ADS)

    Usanov, A. D.; Ulyanov, S. S.; Ilyukhina, N. S.; Usanov, D. A.

    2016-01-01

    A fundamental possibility of visualizing cluster structures formed in distilled water by an optical method based on the analysis of dynamic speckle structures is demonstrated. It is shown for the first time that, in contrast to the existing concepts, water clusters can be rather large (up to 200 -m in size), and their lifetime is several tens of seconds. These clusters are found to have an internal spatially inhomogeneous structure, constantly changing in time. The properties of magnetized and non-magnetized water are found to differ significantly. In particular, the number of clusters formed in magnetized water is several times larger than that formed in the same volume of non-magnetized water.

  17. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.

    PubMed

    O'Shea, Tuathan P; Foley, Mark J; Faddegon, Bruce A

    2011-06-01

    Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.

  18. Rare earth element analysis indicates micropollutants in an urban estuary

    NASA Astrophysics Data System (ADS)

    Mohajerin, T. J.; Johannesson, K. H.; Kolker, A.; Burdige, D. J.; Chevis, D.

    2011-12-01

    Rare earth element analysis of Bayou Bienvenue waters shows anomalously high gadolinium, Gd, concentrations relative to its nearest neighbors in the REE series, europium and terbium. The anomalously high Gd concentrations indicate anthropogenic input from waste-water treatment plants in the area as anthropogenic Gd input can be traced back to its use as a contrast agent in magnetic resonance imaging in hospitals. Others have shown that anomalously high levels of Gd in natural waters are likely to be associated with other micropollutants that also occur in hospital effluent and that are not removed in the wastewater treatment process, including pharmaceuticals in the form of steroids, antihistamines, and antibiotics. Estuaries serve as many important ecological roles and have been shown to act as a filter for pollutants. To better understand the transport, biogeochemical cycling, and ultimate fate of trace elements in estuaries, I collected surface water samples from Bayou Bienvenue, a wetland triangle that covers an area of 427 acres directly adjacent to New Orleans, Louisiana. Water samples from Bayou Bienvenue were collected along the salinity gradient and subsequently filtered through progressively smaller pore-size filters. The resulting fractions were analyzed for trace element concentions, including the REEs, by magnetic sector ICP-MS. The attached figure shows the Gd anomaly present in the particulate (>0.45μm) fraction. Upper continental crust (UCC)-normalized plots of colloidal REEs (0.02μm - 0.45μm) fraction is lacking this anomaly indicating anthropogenic Gd is found chiefly in the particulate fraction in Bayou Bienvenue. No clear relationship between Gd concentration and salinity was apparent.

  19. TH-AB-BRA-06: MOSFET-Based Dosimetry in An MR Image-Guided Radiation Therapy System: Comparison with and Without a Static 0.3T Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammin, J; Curcuru, A; Li, H

    Purpose: To compare depth-dose and surface-dose measurements without and with the magnetic field in a 0.3T MR image-guided Co-60 treatment unit using MOSFET dosimeters. Methods: MOSFET dosimeters (Best Medical Canada, model TN-502RDH-10) were placed in a solid water phantom at 5cm depth with 8cm backscatter (with the MOSFET wires in different orientations to the couch long axis) and also on the surface of an 8cm solid water phantom. The phantoms were placed in an MR image-guided Co-60 treatment machine at an SAD of 105cm to the MOSFETs. Dose measurements were performed between 50 and 200cGy at 5cm depth in amore » 10.5cm × 10.5cm radiation field without the magnetic field (during a machine maintenance period) and with the nominal magnetic field of 0.3T. The dose linearity was measured at 5cm depth with an orthogonal field and the angular dose dependence was measured on the surface with an orthogonal field and oblique fields at +60 degrees and −60 degrees. Results: The measured MOSFET readings at 5cm depth were linear with dose with slopes of (2.97 +/− 0.01) mV/cGy and (3.01 +/− 0.02) mV/cGy without and with the magnetic field, respectively. No statistically significant difference was found. The surface dose measurements, however, were lower by 6.4% for the AP field (2.3 σ) with magnetic field, 4.9% for the −60 degree field (1.4 σ), and 0.4% different for the +60 degree field (0.2 σ). Conclusion: There is no statistically significant difference in the dose at depth without and with the magnetic field and different orientations of the MOSFET wires. There is a statistically significant difference for the surface dose due to the influence of the magnetic field on secondary electrons from head-scatter and the build-up region in certain field orientations. Clinical surface-dose dosimetry in a magnetic field should apply asymmetric angle-dependent corrections.« less

  20. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse.

    PubMed

    Qu, Xiaolei; Brame, Jonathon; Li, Qilin; Alvarez, Pedro J J

    2013-03-19

    Ensuring reliable access to clean and affordable water is one of the greatest global challenges of this century. As the world's population increases, water pollution becomes more complex and difficult to remove, and global climate change threatens to exacerbate water scarcity in many areas, the magnitude of this challenge is rapidly increasing. Wastewater reuse is becoming a common necessity, even as a source of potable water, but our separate wastewater collection and water supply systems are not designed to accommodate this pressing need. Furthermore, the aging centralized water and wastewater infrastructure in the developed world faces growing demands to produce higher quality water using less energy and with lower treatment costs. In addition, it is impractical to establish such massive systems in developing regions that currently lack water and wastewater infrastructure. These challenges underscore the need for technological innovation to transform the way we treat, distribute, use, and reuse water toward a distributed, differential water treatment and reuse paradigm (i.e., treat water and wastewater locally only to the required level dictated by the intended use). Nanotechnology offers opportunities to develop next-generation water supply systems. This Account reviews promising nanotechnology-enabled water treatment processes and provides a broad view on how they could transform our water supply and wastewater treatment systems. The extraordinary properties of nanomaterials, such as high surface area, photosensitivity, catalytic and antimicrobial activity, electrochemical, optical, and magnetic properties, and tunable pore size and surface chemistry, provide useful features for many applications. These applications include sensors for water quality monitoring, specialty adsorbents, solar disinfection/decontamination, and high performance membranes. More importantly, the modular, multifunctional and high-efficiency processes enabled by nanotechnology provide a promising route both to retrofit aging infrastructure and to develop high performance, low maintenance decentralized treatment systems including point-of-use devices. Broad implementation of nanotechnology in water treatment will require overcoming the relatively high costs of nanomaterials by enabling their reuse and mitigating risks to public and environmental health by minimizing potential exposure to nanoparticles and promoting their safer design. The development of nanotechnology must go hand in hand with environmental health and safety research to alleviate unintended consequences and contribute toward sustainable water management.

  1. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.

    2003-07-22

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  2. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.

    2006-12-26

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  3. Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water.

    PubMed

    Bao, Xiaolei; Qiang, Zhimin; Chang, Jih-Hsing; Ben, Weiwei; Qu, Jiuhui

    2014-05-01

    The occurrence of antibiotics in the environment has recently raised serious concerns regarding their potential threat to human health and aquatic ecosystem. A new magnetic nanocomposite, Fe3O4@C (Fe3O4 coated with carbon), was synthesized, characterized, and then applied to remove five commonly-used sulfonamides (SAs) from water. Due to its combinational merits of the outer functionalized carbon shell and the inner magnetite core, Fe3O4@C exhibited a high adsorption affinity for selected SAs and a fast magnetic separability. The adsorption kinetics of SAs on Fe3O4@C could be expressed by the pseudo second-order model. The adsorption isotherms were fitted well with the Dual-mode model, revealing that the adsorption process consisted of an initial partitioning stage and a subsequent hole-filling stage. Solution pH exerted a strong impact on the adsorption process with the maximum removal efficiencies (74% to 96%) obtained at pH 4.8 for all selected SAs. Electrostatic force and hydrogen bonding were two major driving forces for adsorption, and electron-donor-acceptor interactions may also make a certain contribution. Because the synthesized Fe3O4@C showed comprehensive advantages of high adsorptivity, fast magnetic separability, and prominent reusability, it has potential applications in water treatment. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Study of magnetic fields from power-frequency current on water lines.

    PubMed

    Lanera, D; Zapotosky, J E; Colby, J A

    1997-01-01

    The magnetic fields from power-frequency current flowing on water lines were investigated in a new approach that involved an area-wide survey in a small town. Magnetic fields were measured outside the residence under power cables and over water lines, and each residence was characterized as to whether it received water from a private well or the municipal water system. The magnetic field data revealed two statistical modes when they were related to water supply type. The data also showed that in the case of the high mode, the magnetic field remained constant along the line formed by power drop wires, at the back of the house, and the water hookup service, in front of the house, all the way to the street. The patterns are explained by the coincidence of measurement points and the presence of net current flowing on power mains, power drop conductors, residential plumbing, water service hookups, and water mains. These patterns, together with other characteristics of this magnetic field source, such as the gradual spatial fall-off of this field and the presence of a constant component in the time sequence, portray a magnetic field more uniform and constant in the residential environment than has been thought to exist. Such characteristics make up for the weakness of the source and make net current a significant source of exposure in the lives of individuals around the house, when human exposure to magnetic fields is assumed to be a cumulative effect over time. This, together with the bimodal statistical distribution of the residential magnetic field (related to water supply type), presents opportunities for retrospective epidemiological analysis. Water line type and its ability to conduct power-frequency current can be used as the historical marker for a bimodal exposure inference, as Wertheimer et al. have shown.

  5. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.

    2015-07-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m2 g-1), excellent magnetic response (14.89 emu g-1), and large mesopore volume (0.09 cm3 g-1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π-π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g-1 at an initial MB concentration of 30 mg L-1, which increased to 245 mg g-1 when the initial MB concentration was 300 mg L-1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles.

  6. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

    PubMed Central

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.

    2015-01-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m2 g−1), excellent magnetic response (14.89 emu g−1), and large mesopore volume (0.09 cm3 g−1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π–π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g−1 at an initial MB concentration of 30 mg L−1, which increased to 245 mg g−1 when the initial MB concentration was 300 mg L−1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles. PMID:26149818

  7. Recycling of iron and silicon from drinking water treatment sludge for synthesis of magnetic iron oxide@SiO₂ composites.

    PubMed

    Meng, Lingyou; Chan, Yingzi; Wang, Han; Dai, Ying; Wang, Xue; Zou, Jinlong

    2016-03-01

    More attention has been paid to the deterioration of water bodies polluted by drinking water treatment sludge (DWTS) in recent years. It is important to develop methods to effectively treat DWTS by avoiding secondary pollution. We report herein a novel investigation for recovery of Si and Fe from DWTS, which are used for the synthesis of two iron oxide@SiO2 composites for adsorption of reactive red X-3B (RRX-3B) and NaNO2. The results show that Fe(3+) (acid-leaching) and Si(4+) (basic-leaching) can be successfully recovered from roasted DWTS. Whether to dissolve Fe(OH)3 precipitation is the key point for obtaining Fe3O4 or γ-Fe2O3 particles using the solvothermal method. The magnetic characteristics of Fe3O4@SiO2 (390.0 m(2) g(-1)) or Fe2O3@SiO2 (220.9 m(2) g(-1)) are slightly influenced by the coated porous SiO2 layer. Peaks of Fe-O stretching vibration (580 cm(-1)) and asymmetric Si-O-Si stretching vibrations (1080 cm(-1)) of Fe3O4@SiO2 indicate the successful coating of a thin silica layer (20-150 nm). The adsorption capacity of RRX-3B and NaNO2 by Fe3O4@SiO2 is better than that of Fe2O3@SiO2, and both composites can be recycled through an external magnetic field. This method is an efficient and environmentally friendly method for recycling DWTS.

  8. Magnetic susceptibility and magnetic resonance measurements of the moisture content and hydration condition of a magnetic mixture material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukada, K., E-mail: tsukada@cc.okayama-u.ac.jp; Kusaka, T.; Saari, M. M.

    2014-05-07

    We developed a magnetic measurement method to measure the moisture content and hydration condition of mortar as a magnetic mixture material. Mortar is a mixture of Portland cement, sand, and water, and these materials exhibit different magnetic properties. The magnetization–magnetic field curves of these components and of mortars with different moisture contents were measured, using a specially developed high-temperature-superconductor superconducting quantum interference device. Using the differences in magnetic characteristics, the moisture content of mortar was measured at the ferromagnetic saturation region over 250 mT. A correlation between magnetic susceptibility and moisture content was successfully established. After Portland cement and water aremore » mixed, hydration begins. At the early stage of the hydration/gel, magnetization strength increased over time. To investigate the magnetization change, we measured the distribution between bound and free water in the mortar in the early stage by magnetic resonance imaging (MRI). The MRI results suggest that the amount of free water in mortar correlates with the change in magnetic susceptibility.« less

  9. γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: preparation, formation mechanism, magnetic property, and application in water treatment.

    PubMed

    Xu, Jing-San; Zhu, Ying-Jie

    2012-11-01

    In this paper, we report the preparation of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres by a solvothermal combined with precursor thermal conversion method. These γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were constructed by three-dimensional self-assembly of nanosheets, forming porous nanostructures. The effects of experimental parameters including molar ratio of reactants and reaction temperature on the precursors were studied. The time-dependent experiments indicated that the Ostwald ripening was responsible for the formation of the hierarchically nanostructured hollow microspheres of the precursors. γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were obtained by the thermal transformation of the precursor hollow microspheres. Both γ-Fe(2)O(3) and Fe(3)O(4) hierarchically nanostructured hollow microspheres exhibited a superparamagnetic property at room temperature and had the saturation magnetization of 44.2 and 55.4 emu/g, respectively, in the applied magnetic field of 20 KOe. Several kinds of organic pollutants including salicylic acid (SA), methylene blue (MB), and basic fuchsin (BF) were chosen as the model water pollutants to evaluate the removal abilities of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres. It was found that γ-Fe(2)O(3) hierarchically nanostructured hollow microspheres showed a better adsorption ability over SA than MB and BF. However, Fe(3)O(4) hierarchically nanostructured hollow microspheres had the best performance for adsorbing MB. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Mesoporous (organo) silica decorated with magnetic nanoparticles as a reusable nanoadsorbent for arsenic removal from water samples.

    PubMed

    Hasanzadeh, Mohammad; Farajbakhsh, Farzad; Shadjou, Nasrin; Jouyban, Abolghasem

    2015-01-01

    Over the last decade, numerous removal methods using solid-supported magnetic nanocomposites have been employed in order to remove arsenic from aqueous solution. In this report, removal of arsenic from aqueous solution by an organo silica, namely, magnetic mobile crystalline material-41 (MCM-41) functionalized by chlorosulphonic acid (MMCM-41-SO3H), was investigated using atomic absorption spectroscopy. The synthesized magnetic mesoporous materials have satisfactory As (V) adsorption capacity. Linearity for arsenic was observed in the concentration range of 5-100 ppb. In addition, the coefficient of determination (R2) was more than 0.999 and the limit of detection (LOD) was 0.061 ppb. Considering these results, MMCM-41-SO3H has a great potential for the removal of As (V) contaminants and potentially for the application in large-scale wastewater treatment plants.

  11. In Vitro Capture of Small Ferrous Particles with a Magnetic Filtration Device Designed for Intravascular Use with Intraarterial Chemotherapy: Proof-of-Concept Study.

    PubMed

    Mabray, Marc C; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W

    2016-03-01

    To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Uncoated iron oxide particles 50-100 nm and 1-5 µm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-µm carboxylic acid-coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50-100-nm particles in water with a large magnet), 97% (50-100-nm particles in water with a small magnet), 99% (1-5-µm particles in water with a large magnet), 99% (1-5-µm particles in water with a small magnet), 95% (50-100-nm particles in serum with a small magnet), 92% (1-5-µm particles in serum with a small magnet), and 75% (1-µm coated beads in serum with a small magnet) lower compared with matched control runs. This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  12. Secondary effects of anion exchange on chloride, sulfate, and lead release: systems approach to corrosion control.

    PubMed

    Willison, Hillary; Boyer, Treavor H

    2012-05-01

    Water treatment processes can cause secondary changes in water chemistry that alter finished water quality including chloride, sulfate, natural organic matter (NOM), and metal release. Hence, the goal of this research was to provide an improved understanding of the chloride-to-sulfate mass ratio (CSMR) with regards to chloride and sulfate variations at full-scale water treatment plants and corrosion potential under simulated premise plumbing conditions. Laboratory corrosion studies were conducted using Pb-Sn solder/Cu tubing galvanic cells exposed to model waters with low (approx. 5 mg/L Cl(-) and 10 mg/L SO(4)(2-)) and high (approx. 50 mg/L Cl(-) and 100 mg/L SO(4)(2-)) concentrations of chloride and sulfate at a constant CSMR of ≈ 0.5. The role of NOM during corrosion was also evaluated by changing the type of organic material. In addition, full-scale sampling was conducted to quantify the raw water variability of chloride, sulfate, and NOM concentrations and the changes to these parameters from magnetic ion exchange treatment. Test conditions with higher concentrations of chloride and sulfate released significantly more lead than the lower chloride and sulfate test waters. In addition, the source of NOM was a key factor in the amount of lead released with the model organic compounds yielding significantly less lead release than aquatic NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Influence of water vapor on the formation of pinning centers in YBa2Cu3O y upon low-temperature annealing

    NASA Astrophysics Data System (ADS)

    Bobylev, I. B.; Gerasimov, E. G.; Zyuzeva, N. A.

    2017-08-01

    The influence of the double heat treatment ( T = 300 and 930°C) on the critical parameters of highly textured YBa2Cu3O6.96 and YBa2Cu3O6.8 ceramics has been investigated. It has been shown that, upon low-temperature annealing in humid air, planar stacking faults are formed in these ceramics. These defects are partly retained after reduction annealing (at T = 930°C) and are efficient pinning centers in magnetic fields applied parallel and perpendicular to the c axis. Due to the absorption of water, the oxygen content is increased in the ceramics, which is accompanied by an increase in the critical temperature of superconducting transition up to 94 K for YBa2Cu3O6.96 and up to 90 K for YBa2Cu3O6.8. Optimal conditions of the double annealing have been established, after which the critical-current density increased to j c ≥ 104 A/cm2 in an external magnetic field of up to 6 T. The low-temperature treatment in the neutral atmosphere saturated by water vapors deteriorates the current-carrying capacity of the highly textured ceramics, which is connected with the disappearance of texture due to the copper reduction and the precipitation of impurity phases.

  14. Magnetic alginate beads for Pb(II) ions removal from wastewater.

    PubMed

    Bée, Agnès; Talbot, Delphine; Abramson, Sébastien; Dupuis, Vincent

    2011-10-15

    A magnetic adsorbent (called magsorbent) was developed by encapsulation of magnetic functionalized nanoparticles in calcium-alginate beads. The adsorption of Pb(II) ions by these magnetic beads was studied and the effect of different parameters, such as initial concentration, contact time and solution pH value on the adsorption of Pb(II) ions was investigated. Our magsorbent was found to be efficient to adsorb Pb(II) ions and maximal adsorption capacity occurred at pH 2.3-6. The classical Langmuir model used to fit the experimental adsorption data showed a maximum sorption capacity close to 100 mg g(-1). The experimental kinetic data were well correlated with a pseudo second-order model, 50% of the Pb(II) ions were removed within 20 min and the equilibrium was attained around 100 min. Moreover our magsorbent was easily collected from aqueous media by using an external magnetic field. These results permitted to conclude that magnetic alginate beads could be efficiently used to remove heavy metals in a water treatment process. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il; Tomsk Polytechnic University, Tomsk, 634050

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) andmore » in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.« less

  16. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  17. [Study on the advanced pre-treatments of reclaimed water used for groundwater recharge].

    PubMed

    Gao, Yu-Tuan; Zhang, Xue; Zhao, Xuan; Zhao, Gang

    2012-03-01

    To prevent groundwater contamination, pretreatments of reclaimed water are needed before the groundwater recharge. In this study, five treatments, including ultrafiltration (UF), ozonation, magnetic ion exchange (MIEX), UF coupled with ozonation and MIEX coupled with ozonation, were evaluated for their purification efficiencies of the reclaimed water and their influences on the following soil aquifer treatments. For organic matters in the secondary effluents, identified as dissolved organic carbon (DOC) and specific ultraviolet absorbance (SUVA), 20% DOC and 10% SUVA are removed by MIEX treatment with dose of 5 mL x L(-1), while only 10% DOC and no SUVA are removed by UF, but neither of these two pretreatments enhance the purification of soil aquifer treatments. Differently, SUVA of the secondary effluents are removed by 60%-79% by ozonation alone or coupled with UF/MIEX, increasing the biodegradability of the reclaimed water. These pretreatments significantly enhance the removal of organic matters by the following soil aquifer with DOC in the final effluents reducing to 1-2 mg x L(-1). For nitrogen, MIEX can remove 25% NO3(-) -N, and ozonation can remove 72% NH4(+) -N. The soil aquifer treatment could efficiently remove NH4(+) -N to below 0.5 mg x L(-1), while no obvious removal is detected for NO3(-) -N. In conclusion, more attentions should be paid to the organic matters and NO3(-) -N during the pretreatments of reclaimed water. Among all the pretreatments tested here, ozonation coupled with MIEX is capable of increasing the biodegradability of the reclaimed water and removing NO3(-) -N, which is a good choice for the pretreatment of groundwater recharge.

  18. A simple method to synthesize modified Fe3O4 for the removal of organic pollutants on water surface

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Li, Chuanhao; Wang, Juan; Zhang, Hui; Zhang, Jian; Shen, Yuhua; Li, Cun; Wang, Cuiping; Xie, Anjian

    2012-06-01

    In this article, a simple, economic and environment-friendly approach is explored to prepare Fe3O4 nanoparticles by using air oxidation at room temperature. Furthermore, the Fe3O4 magnetic nanoparticles (MNPs) have been modified with sodium oleate successfully to form super-hydrophobic surfaces. The alkali source played an important role in controlling the morphologies of Fe3O4 MNPs. Either Fe3O4 MNPs or sodium oleate modified Fe3O4 MNPs possessed good magnetic property, and the as-prepared modified Fe3O4 nanoparticles are both hydrophobic and lipophilic. Therefore, Fe3O4/sodium oleate could be dispersed stable in the oil medium and have been applied in the cleanup engine oil from the water surface. It will open up a potential and broad application in wastewater treatment.

  19. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  20. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  1. Facile synthesis of Fe3O4@C hollow nanospheres and their application in polluted water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanguang; Xu, Shihao; Xia, Hongyu; Zheng, Fangcai

    2016-11-01

    Nanostructured carbon-based materials, such as carbon nanotube arrays have shown respectable removal ability for heavy metal ions and organic dyes in aqueous solution. Although the carbon-based materials exhibited excellent removal ability, the separation of them from the aqueous solution is difficult and time-consuming. Here we demonstrated a novel and facile route for the large-scale fabrication of Fe3O4@C hollow nanospheres, with using ferrocene as a single reagent and SiO2 as a template. The as-prepared Fe3O4@C hollow nanospheres exhibited adsorption ability for heavy metal ions and organic dyes from aqueous solution, and can be easily separated by an external magnet. When the as-prepared Fe3O4@C hollow nanospheres were mixed with the aqueous solution of Hg2+ within 15 min, the removal efficiency was 90.3%. The as-prepared Fe3O4@C hollow nanospheres were also exhibited a high adsorption capacity (100%) as the adsorbent for methylene blue (MB). In addition, the as-prepared Fe3O4@C hollow nanospheres can be used as the recyclable sorbent for water treatment via a simple magnetic separation.

  2. Urban runoff treatment using nano-sized iron oxide coated sand with and without magnetic field applying

    PubMed Central

    2013-01-01

    Increase of impervious surfaces in urban area followed with increases in runoff volume and peak flow, leads to increase in urban storm water pollution. The polluted runoff has many adverse impacts on human life and environment. For that reason, the aim of this study was to investigate the efficiency of nano iron oxide coated sand with and without magnetic field in treatment of urban runoff. In present work, synthetic urban runoff was treated in continuous separate columns system which was filled with nano iron oxide coated sand with and without magnetic field. Several experimental parameters such as heavy metals, turbidity, pH, nitrate and phosphate were controlled for investigate of system efficiency. The prepared column materials were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDXA) instruments. SEM and EDXA analyses proved that the sand has been coated with nano iron oxide (Fe3O4) successfully. The results of SEM and EDXA instruments well demonstrate the formation of nano iron oxide (Fe3O4) on sand particle. Removal efficiency without magnetic field for turbidity; Pb, Zn, Cd and PO4 were observed to be 90.8%, 73.3%, 75.8%, 85.6% and 67.5%, respectively. When magnetic field was applied, the removal efficiency for turbidity, Pb, Zn, Cd and PO4 was increased to 95.7%, 89.5%, 79.9%, 91.5% and 75.6% respectively. In addition, it was observed that coated sand and magnetic field was not able to remove NO3 ions. Statistical analyses of data indicated that there was a significant difference between removals of pollutants in two tested columns. Results of this study well demonstrate the efficiency of nanosized iron oxide-coated sand in treatment of urban runoff quality; upon 75% of pollutants could be removed. In addition, in the case of magnetic field system efficiency can be improved significantly. PMID:24360061

  3. Magnetic and structural properties of yellow europium oxide compound and Eu(OH){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com; Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr; Valladares, Luis de los Santos

    A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH){sub 3}. The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxidemore » compound weakened. The magnetic properties of Eu(OH){sub 3} were also examined. Although Eu{sup 3+} is present in Eu(OH){sub 3}, a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH){sub 3}) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened.« less

  4. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation.

    PubMed

    Tang, Wenshu; Su, Yu; Li, Qi; Gao, Shian; Shang, Jian Ku

    2013-07-01

    By doping a proper amount of Mg(2+) (~10%) into α-Fe2O3 during a solvent thermal process, ultrafine magnesium ferrite (Mg0.27Fe2.50O4) nanocrystallites were successfully synthesized with the assistance of in situ self-formed NaCl "cage" to confine their crystal growth. Their ultrafine size (average size of ~3.7 nm) and relatively low Mg-content conferred on them a superparamagnetic behavior with a high saturation magnetization (32.9 emu/g). The ultrafine Mg0.27Fe2.50O4 nanoadsorbent had a high specific surface area of ~438.2 m(2)/g, and demonstrated a superior arsenic removal performance on both As(III) and As(V) at near neutral pH condition. Its adsorption capacities on As(III) and As(V) were found to be no less than 127.4 mg/g and 83.2 mg/g, respectively. Its arsenic adsorption mechanism was found to follow the inner-sphere complex mechanism, and abundant hydroxyl groups on its surface played the major role in its superior arsenic adsorption performance. It could be easily separated from treated water bodies with magnetic separation, and could be easily regenerated and reused while maintaining a high arsenic removal efficiency. This novel superparamagnetic magnesium ferrite nanoadsorbent may offer a simple single step adsorption treatment option to remove arsenic contamination from water without the pre-/post-treatment requirement for current industrial practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Heterogeneous anisotropic magnetic susceptibility of the myelin-water layers causes local magnetic field perturbations in axons.

    PubMed

    Puwal, Steffan; Roth, Bradley J; Basser, Peter J

    2017-04-01

    One goal of MRI is to determine the myelin water fraction in neural tissue. One approach is to measure the reduction in T 2 * arising from microscopic perturbations in the magnetic field caused by heterogeneities in the magnetic susceptibility of myelin. In this paper, analytic expressions for the induced magnetic field distribution are derived within and around an axon, assuming that the myelin susceptibility is anisotropic. Previous models considered the susceptibility to be piecewise continuous, whereas this model considers a sinusoidally varying susceptibility. Many conclusions are common in both models. When the magnetic field is applied perpendicular to the axon, the magnetic field in the intraaxonal space is uniformly perturbed, the magnetic field in the myelin sheath oscillates between the lipid and water layers, and the magnetic field in the extracellular space just outside the myelin sheath is heterogeneous. These field heterogeneities cause the spins to dephase, shortening T 2 *. When the magnetic field is applied along the axon, the field is homogeneous within water-filled regions, including between lipid layers. Therefore the spins do not dephase and the magnetic susceptibility has no effect on T 2 *. Generally, the response of an axon is given as the superposition of these two contributions. The sinusoidal model uses a different set of approximations compared with the piecewise model, so their common predictions indicate that the models are not too sensitive to the details of the myelin-water distribution. Other predictions, such as the sensitivity to water diffusion between myelin and water layers, may highlight differences between the two approaches. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. In Vitro Capture of Small Ferrous Particles with a Magnetic Filtration Device Designed for Intravascular Use with Intraarterial Chemotherapy: Proof-of-Concept Study

    PubMed Central

    Mabray, Marc C.; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D.; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W.

    2015-01-01

    Purpose To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Materials and Methods Uncoated iron oxide particles 50–100 nm and 1–5 μm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-μm carboxylic acid–coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Results Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50–100-nm particles in water with a large magnet), 97% (50–100-nm particles in water with a small magnet), 99% (1–5-μm particles in water with a large magnet), 99% (1–5-μm particles in water with a small magnet), 95% (50–100-nm particles in serum with a small magnet), 92% (1–5-μm particles in serum with a small magnet), and 75% (1-μm coated beads in serum with a small magnet) lower compared with matched control runs. Conclusions This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. PMID:26706187

  7. Detection of magnetic dipolar coupling of water molecules at the nanoscale using quantum magnetometry

    NASA Astrophysics Data System (ADS)

    Yang, Zhiping; Shi, Fazhan; Wang, Pengfei; Raatz, Nicole; Li, Rui; Qin, Xi; Meijer, Jan; Duan, Changkui; Ju, Chenyong; Kong, Xi; Du, Jiangfeng

    2018-05-01

    It is a crucial issue to study interactions among water molecules and hydrophobic interfacial water at the nanoscale. Here we succeed in measuring the nuclear magnetic resonance spectrum of a diamond-water interfacial ice with a detection volume of about 2.2 ×10-22 L. More importantly, the magnetic dipolar coupling between the two protons of a water molecule is resolved by measuring the signal contributed from about 7000 water molecules at the nanoscale. The resolved intramolecule magnetic dipolar interactions are about 15 and 33 kHz with spectral resolution of 5 kHz. This work provides a platform for hydrophobic interfacial water study under ambient conditions, with further applications in more general nanoscale structural analysis.

  8. Effective elimination of cancer stem cells by magnetic hyperthermia.

    PubMed

    Sadhukha, Tanmoy; Niu, Lin; Wiedmann, Timothy Scott; Panyam, Jayanth

    2013-04-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells that have stem cell-like properties and are thought to be responsible for tumor drug resistance and relapse. Therapies that can effectively eliminate CSCs will, therefore, likely inhibit tumor recurrence. The objective of our study was to determine the susceptibility of CSCs to magnetic hyperthermia, a treatment that utilizes superparamagnetic iron oxide nanoparticles placed in an alternating magnetic field to generate localized heat and achieve selective tumor cell kill. SPIO NPs having a magnetite core of 12 nm were used to induce magnetic hyperthermia in A549 and MDA-MB-231 tumor cells. Multiple assays for CSCs, including side population phenotype, aldehyde dehydrogenase expression, mammosphere formation, and in vivo xenotransplantation, indicated that magnetic hyperthermia reduced or, in some cases, eliminated the CSC subpopulation in treated cells. Interestingly, conventional hyperthermia, induced by subjecting cells to elevated temperature (46 °C) in a water bath, was not effective in eliminating CSCs. Our studies show that magnetic hyperthermia has pleiotropic effects, inducing acute necrosis in some cells while stimulating reactive oxygen species generation and slower cell kill in others. These results suggest the potential for lower rates of tumor recurrence after magnetic hyperthermia compared to conventional cancer therapies.

  9. Compressed Gas Safety for Experimental Fusion Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertialmore » fusion experiments.« less

  10. Biocompatible core-shell magnetic nanoparticles for cancer treatment

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Qiang, You; Meyer, Daniel; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald

    2008-04-01

    Nontoxic magnetic nanoparticles (MNPs) have expanded treatment delivery options in the medical world. With a size range from 2to200nm, MNPs can be compiled with most of the small cells and tissues in the living body. Monodispersive iron-iron oxide core-shell nanoparticles were prepared by our novel cluster deposition system. This unique method of preparing core-shell MNPs gives the nanoparticles a very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells. Since core iron enhances the heating effect [L. Baker, Q. Zeing, W. Li, and S. Sullivan, J. Appl. Phys. 99, 08H106 (2006)], the rate of oxidation of iron nanoparticles was also tested in de-ionized water at a certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by x-ray diffraction scan after 0, 24, 48, 96, and 204h. Due to the high magnetic moment offered by MNPs produced in our laboratory, we predict that even at low applied external alternating field, the desired temperature could be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover our MNPs do not require additional transfection agent, providing a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

  11. Modified surface based on magnetic nanocomposite of dithiooxamide/Fe3O4 as a sorbent for preconcentration and determination of trace amounts of copper

    NASA Astrophysics Data System (ADS)

    Mirabi, Ali; Shokuhi Rad, Ali; Khodadad, Hadiseh

    2015-09-01

    Magnetic nanocomposites surface (MNCS) which has anionic surfactant sodium dodecyl sulfate (SDS) coating and has undergone dithiooxamide treatment as the sorbent could be an easy and useful method to extract and make a pre-concentrated in detecting the copper ions before they are determined via the flame atomic absorption spectrometry (FAAS). The influences of the experimental parameters such as the pH of the sample, the type and concentration of the eluent, dithiooxamide concentration and volume, amount of sorbent and the interactions of ions with respect to the copper ion detection have been studied. The calibration graph was linear in the range of 2-600 ng ml-1 with detection limit of 0.2 ng ml-1. Relative standard deviation (RSD) for 6 replicate measurements was 1.8%. This method of detection has been applied to the determination of Cu ions at levels in real samples such as wheat flour, tomatoes, potatoes, red beans, oat, tap water, river water and sea water with satisfactory results.

  12. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Daniel J; He, Jibao; Spinu, Leonard; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2016-02-01

    Magnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation. The tubular structure of the nanotubes is exploited for the encapsulation and release of surfactant species that are typical of oil spill dispersants such as dioctyl sulfosuccinate sodium salt and polyoxyethylene (20) sorbitan monooleate. The magnetically responsive halloysite nanotubes anchor to the oil-water interface stabilizing the interface and releasing the surfactants resulting in reduction in the oil-water interfacial tension. The synergistic adsorption of the nanotubes and the released surfactants at the oil-water interface results in oil emulsification into very small droplets (less than 20μm). The synergy of the unique nanotubular morphology and interfacial activity of halloysite with the magnetic properties of iron oxide nanoparticles has potential applications in oil spill dispersion, magnetic mobilization and detection using magnetic fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A magnetically focused molecular beam of ortho-water.

    PubMed

    Kravchuk, T; Reznikov, M; Tichonov, P; Avidor, N; Meir, Y; Bekkerman, A; Alexandrowicz, G

    2011-01-21

    Like dihydrogen, water exists as two spin isomers, ortho and para, with the nuclear magnetic moments of the hydrogen atoms either parallel or antiparallel. The ratio of the two spin isomers and their physical properties play an important role in a wide variety of research fields, ranging from astrophysics to nuclear magnetic resonance (NMR). Unlike ortho and para H(2), however, the two water isomers remain challenging to separate, and as a consequence, very little is currently known about their different physical properties. Here, we report the formation of a magnetically focused molecular beam of ortho-water. The beam we formed also had a particular spin projection. Thus, in the presence of holding magnetic fields, the water molecules are hyperpolarized, laying the foundation for ultrasensitive NMR experiments in the future.

  14. Static and Alternating Field Magnetic Capture and Heating of Iron Oxide Nanoparticles in Simulated Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lee, Joanne Haeun; Shah, Rhythm R.; Brazel, Christopher S.

    2014-11-01

    Targeted drug delivery and localized hyperthermia are being studied as alternatives to conventional cancer treatments, which can affect the whole body and indiscriminately kill healthy cells. Magnetic nanoparticles (MNPs) have potential as drug carriers that can be captured and trigger hyperthermia at the site of the tumor by applying an external magnetic field. This study focuses on comparing the capture efficiency of the magnetic field applied by a static magnet to an alternating current coil. The effect of particle size, degree of dispersion, and the frequency of the AC field on capture and heating were studied using 3 different dispersions: 16 nm maghemite in water, 50 nm maghemite in dopamine, and 20--30 nm magnetite in dimercaptosuccinic acid. A 480G static field captured more MNPs than a similar 480G AC field at either 194 or 428 kHz; however, the AC field also allowed heating. The MNPs in water had a lower capture and heating efficiency than the larger, dopamine-coated MNPs. This finding was supported by dynamic light scattering data showing the particle size distribution and vibrating sample magnetometry data showing that the larger MNPs in the dopamine solution have a higher field of coercivity, exhibit ferrimagnetism and allow for better capture while smaller (16 nm) MNPs exhibit superparamagnetism. The dispersions that captured the best also heated the best. NSF ECE Grant #1358991 supported the first author as an REU student.

  15. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe3O4@SA sponge and its application in oil-water separations.

    PubMed

    Tran, Viet-Ha Thi; Lee, Byeong-Kyu

    2017-12-13

    We report a novel superhydrophobic material based on commercially available polyurethane (PU) sponge with high porosity, low density and good elasticity. The fabrication of a superhydrophobic sponge capable of efficiently separating oil from water was achieved by imitating or mimicking nature's designs. The original PU sponge was coated with zinc oxide (ZnO), stearic acid (SA) and iron oxide particles (Fe 3 O 4 ) via a facile and environmentally friendly method. After each treatment, the properties of the modified sponge were characterized, and the changes in wettability were examined. Water contact angle (WCA) measurements confirmed the excellent superhydrophobicity of the material withhigh static WCA of 161° andlow dynamic WCA (sliding WCA of 7° and shedding WCA of 8°). The fabricated sponge showed high efficiency in separation (over 99%) of different oils from water. Additionally, the fabricated PU@ZnO@Fe 3 O 4 @SA sponge could be magnetically guided to quickly absorb oil floating on the water surface. Moreover, the fabricated sponge showed excellent stability and reusability in terms of superhydrophobicity and oil absorption capacity. The durable, magnetic and superhydrophobic properties of the fabricated sponge render it applicable to the cleanup of marine oil spills and other oil-water separation issues, with eco-friendly recovery of the oil by simple squeezing process.

  16. Nuclear magnetic resonance relaxation characterisation of water status of developing grains of maize (Zea mays L.) grown at different nitrogen levels.

    PubMed

    Krishnan, Prameela; Chopra, Usha Kiran; Verma, Ajay Pal Singh; Joshi, Devendra Kumar; Chand, Ishwar

    2014-04-01

    Changes in water status of developing grains of maize (Zea mays L.) grown under different nitrogen levels were characterized by nuclear magnetic resonance (NMR) spectroscopy. There were distinct changes in water status of grains due to the application of different levels of nitrogen (0, 120 and 180 kg N ha(-1)). A comparison of the grain developmental characteristics, composition and physical properties indicated that, not only the developmental characteristics like grain weight, grain number/ear, and rate of grain filling increased, but also bound water characterized by the T2 component of NMR relaxation increased with nitrogen application (50-70%) and developmental stages leading to maturation (10-60%). The consistency in the patterns of responses to free water and intermediate water to increasing levels of nitrogen application and grain maturity suggested that nitrogen application resulted in more proportion of water to both bound- and intermediate states and less in free state. These changes are further corroborated by the concomitant increases in protein and starch contents in grains from higher nitrogen treatments as macromolecules like protein and starch retain more amount of water in the bound state. The results of the changes in T2 showed that water status during grain development was not only affected by developmental processes but also by nitrogen supply to plants. This study strongly indicated a clear nutrient and developmental stage dependence of grain tissue water status in maize. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tessier, A. G.; Yahya, A.; Larocque, M. P.; Fallone, B. G.; Syme, A.

    2014-09-01

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm3 voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides supporting evidence that metabolite/water concentration ratios have the potential to be used as biomarkers for the assessment of the response to therapy.

  18. The Dynamics of Agglomerated Ferrofluid in Steady and Pulsatile Flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia; Stewart, Kelley; Vlachos, Pavlos

    2007-11-01

    Magnetic Drug Targeting (MDT) is a promising technique to deliver medication via functionalized magnetic particles to target sites in the treatment of diseases. In this work, the physics of steady and pulsatile flows laden with superparamagnetic nanoparticles in a square channel under the influence of a magnetic field induced by a 0.6 Tesla permanent magnet is studied. Herein, the dynamics of ferrofluid shedding from an initially accumulated mass in water are examined through shadowgraph imaging using two orthogonal cameras. Fundamental differences in the ferrofluid behavior occur between the steady and pulsatile flow cases, as expected. For steady flows, vortex ring shedding is visualized from the mass, and periodic shedding occurs only for moderate mass sizes where the shear forces in the flow interact with the magnetic forces. At Reynolds numbers below 500 with pulsatile flow, suction and roll up of the ferrofluid is seen during the low and moderate periods of flow, followed by the ejection of ferrofluid during high flow. These shadowgraphs illustrate the beauty and richness of ferrofluid dynamics, an understanding of which is instrumental to furthering MDT as an effective drug delivery device.

  19. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water

    NASA Astrophysics Data System (ADS)

    Yu, Liuhua; Hao, Gazi; Gu, Junjun; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-11-01

    In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core-shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection.

  20. Anisotropy and shape of hysteresis loop of frozen suspensions of iron oxide nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi

    2014-03-01

    Colloidal suspensions of nanoparticles in liquids have many uses in biomedical applications. We studied approximately 50 nm diameter iron oxide particles dispersed in H2O for magnetic nanoparticle hyperthermia cancer treatment. Interactions between nanoparticles have been indicated for increasing the heat output under application of an alternating magnetic field, as in hyperthermia. Interactions vary dynamically with an applied field as the nanoparticles reorient and rearrange within the liquid. Therefore, we studied the samples below the liquid freezing point in a range of magnetic field strengths to literally freeze in the effects of interactions. We found that the shape of the magnetic hysteresis loop is squarer (higher anisotropy) when the sample was cooled in a high field, and less square (lower anisotropy) when the sample was cooled in a low or zero field. The cause is most likely the formation of long chains of nanoparticles up to 500 μm, which we observe optically. This increase in anisotropy may indicate improved heating ability for these nanoparticles under an alternating magnetic field.

  1. The Action of a Magnetic Field on Water,

    DTIC Science & Technology

    The effect of a low intensity magnetic field on water as a flotation medium with the enrichment of coal and dressing of copper sulfied ore is studied...magnetic field with flotation is expressed. The imposition of an external magnetic field disturbs the energy state of water, which leads to a change in...intermolecular interaction, stability of hydrogen bonds, deterioration in the wettability of rigid surfaces, and a change in the technological indices of flotation enrichment. (Author)

  2. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  3. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  4. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery

    NASA Astrophysics Data System (ADS)

    Nui Pham, Xuan; Phuoc Nguyen, Tan; Nhung Pham, Tuyet; Thuy Nga Tran, Thi; Van Thi Tran, Thi

    2016-12-01

    In this work anti-cancer drug curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles was modified by chitosan (CS). The magnetic iron oxide nanoparticles were synthesized by using reverse micro-emulsion (water-in-oil) method. The magnetic nanoparticles without loaded drug and drug-loaded magnetic nanoparticles were characterized by XRD, FTIR, TG-DTA, SEM, TEM, and VSM techniques. These nanoparticles have almost spherical shape and their diameter varies from 8 nm to 17 nm. Measurement of VSM at room temperature showed that iron oxide nanoparticles have superparamagnetic properties. In vitro drug loading and release behavior of curcumin drug-loaded CS-Fe3O4 nanoparticles were studied by using UV-spectrophotometer. In addition, the cytotoxicity of the modified nanoparticles has shown anticancer activity against A549 cell with IC50 value of 73.03 μg/ml. Therefore, the modified magnetic nanoparticles can be used as drug delivery carriers on target in the treatment of cancer cells.

  5. Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso-macroporous nanospheres

    NASA Astrophysics Data System (ADS)

    Thomas, Bintu; Alexander, L. K.

    2018-02-01

    The overall effectiveness of a photocatalytic water treatment method strongly depends on various physicochemical factors. Superparamagnetic photocatalysts have incomparable advantage of easy separation using external magnetic fields. So, the synthesis of efficient superparamagnetic photocatalysts and the development of a deep understanding of the factors influencing their catalytic performances are important. Co x Zn1- x Fe2O4 ( x = 0, 0.5, 1) ferrite nanospheres were synthesized by the solvothermal route. The reduction of Cr(VI) and degradation of methyl orange (MO) impurities were carried out in single- and binary-component system under visible light irradiation. The adsorption experiments were done by the catalyst in the water solution containing the impurities. The magnetic and optical properties were studied by VSM and UV-Vis analysis. The nature of porosity was investigated using the BET method. 3D nanospheres of diameter about 5-10 nm were fabricated. The binary-contaminant system exhibited synergetic photocatalytic effect (80% improvement in activity rate) against the nanoparticles. The corresponding mechanism is discussed. CoFe2O4 exhibited better adsorption, photocatalytic and magnetic separation efficiency due to its higher surface area (50% higher), narrower band gap (25% lesser), smaller crystallite size, a strong magnetic strength (51.35 emu/g) and meso-macro hierarchical porous structure. The adsorption of Cr(VI) and MO can be approximated to the Langmuir and Freundlich model, respectively.

  6. Study of structural and magnetic properties of melt spun Nd2Fe13.6Zr0.4B ingot and ribbon

    NASA Astrophysics Data System (ADS)

    Amin, Muhammad; Siddiqi, Saadat A.; Ashfaq, Ahmad; Saleem, Murtaza; Ramay, Shahid M.; Mahmood, Asif; Al-Zaghayer, Yousef S.

    2015-12-01

    Nd2Fe13.6Zr0.4B hard magnetic material were prepared using arc-melting technique on a water-cooled copper hearth kept under argon gas atmosphere. The prepared samples, Nd2Fe13.6Zr0.4B ingot and ribbon are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) for crystal structure determination and morphological studies, respectively. The magnetic properties of the samples have been explored using vibrating sample magnetometer (VSM). The lattice constants slightly increased due to the difference in the ionic radii of Fe and that of Zr. The bulk density decreased due to smaller molar weight and low density of Zr as compared to that of Fe. Ingot sample shows almost single crystalline phase with larger crystallite sizes whereas ribbon sample shows a mixture of amorphous and crystalline phases with smaller crystallite sizes. The crystallinity of the material was highly affected with high thermal treatments. Magnetic measurements show noticeable variation in magnetic behavior with the change in crystallite size. The sample prepared in ingot type shows soft while ribbon shows hard magnetic behavior.

  7. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    NASA Astrophysics Data System (ADS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-11-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1°C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T2, since T2 increases linearly in fat during heating. T2-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T2. Calibration of T2-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T2 and temperature with a thermocouple. A positive T2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T2-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  8. Reversible assembly of magnetized particles: Application to water-borne pathogen enumeration

    NASA Astrophysics Data System (ADS)

    Ramadan, Qasem

    2009-12-01

    Reversible assembly of magnetized particles and cells has been proposed and implemented. The approach is based on magnetized particles or magnetically labeled cell immobilization in an array of individual particle/cell for optical counting. The device has been tested for few types of magnetic particles and one water-borne pathogen: Giardia Lamblia. An individual particle immobilization efficiency of 92% was achieved.

  9. Model for dynamic self-assembled magnetic surface structures

    NASA Astrophysics Data System (ADS)

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.

    2010-07-01

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  10. Low-field nuclear magnetic resonance for the in vivo study of water content in trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder, Jacob, E-mail: jlyoder@lanl.gov; Malone, Michael W.; Espy, Michelle A.

    2014-09-15

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (∼1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach – keeping the magnetic field low to produce a very light and inexpensive system, suitable formore » bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation.« less

  11. Magnetic Field Apparatus (MFA) Hardware Test

    NASA Technical Reports Server (NTRS)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  12. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOEpatents

    Viswanathan, Tito

    2015-10-27

    A method of separating a liquid hydrocarbon material from a body of water, includes: (a) mixing magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the magnetic carbon-metal nanocomposites each to be adhered by the liquid hydrocarbon material to form a mixture; (b) applying a magnetic force to the mixture to attract the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material; and (c) removing the body of water from the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material while maintaining the applied magnetic force. The magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material, for a period of time effective to allow the carbon-metal nanocomposites to be formed.

  13. [The efficacy of the combined rehabilitative treatment of the patients presenting with obesity, metabolic syndrome, and diseases of the hepatobiliary system].

    PubMed

    Cherchinian, A S

    2012-01-01

    A total of 80 patients presenting with exogenous constitutional obesity, metabolic syndrome, and diseases of the hepatobiliary system (including chronic non-calculous cholecystitis and fatty hepatosis) were enrolled to participate in the present study. The basal treatment consisted of the adequate reducing diet, remedial gymnastics, massage, reflexo-acupuncture, the application of galvanic muds, and controlled intake of chofitol. It was supplemented with magnetic laser irradiation of selected abdominal regions, and electrical stimulation of femoral, dorsal, and abdominal muscles. It was shown that the combination of the above procedures and physical factors significantly improves the overall outcome of the treatment. The patients suffering intestinal dysbacteriosis were prescribed the intake of probiotic Nor Narine together with Jermuk mineral water; they were found to benefit from such treatment due to normalization of intestinal biocenosis and improvement of their general condition. The clinical and paraclinical data obtained in this study give evidence of the therapeutic efficacy of certain physical factors and especially their combination used for the medical rehabilitation of the patients presenting with constitutional obesity, metabolic syndrome, and digestive disorders. Moreover, the well-apparent positive results were documented from the combined treatment with magnetic laser radiation and therapeutic muds.

  14. A magnetic carbon sorbent for radioactive material from the Fukushima nuclear accident.

    PubMed

    Yamaguchi, Daizo; Furukawa, Kazumi; Takasuga, Masaya; Watanabe, Koki

    2014-08-13

    Here we present the first report of a carbon-γ-Fe₂O₃ nanoparticle composite of mesoporous carbon, bearing COOH- and phenolic OH- functional groups on its surface, a remarkable and magnetically separable adsorbent, for the radioactive material emitted by the Fukushima Daiichi nuclear power plant accident. Contaminated water and soil at a level of 1,739 Bq kg(-1) ((134)Cs and (137)Cs at 509 Bq kg(-1) and 1,230 Bq kg(-1), respectively) and 114,000 Bq kg(-1) ((134)Cs and (137)Cs at 38,700 Bq kg(-1) and 75,300 Bq kg(-1), respectively) were decontaminated by 99% and 90% respectively with just one treatment carried out in Nihonmatsu city in Fukushima. Since this material is remarkably high performance, magnetically separable, and a readily applicable technology, it would reduce the environmental impact of the Fukushima accident if it were used.

  15. Magnetic Mineral diagenesis in changing water environments in the Black Sea since ˜41.6 ka

    NASA Astrophysics Data System (ADS)

    Liu, Jiabo; Nowaczyk, Norbert; Frank, Ute; Arz, Helge

    2017-04-01

    Magnetic mineral diagenesis plays a key role in the global iron cycle. To understand the authigenic magnetic mineral formation by diagenesis is also fundamentally important for the interpretation of environmental magnetic as well as paleomagnetic signals. Core MSM33-55-1, recovered from the SW Black Sea, was subjected to rock-magnetic and SEM studies. The results demonstrate that four different magnetic mineral assemblages associated to specific water conditions can be observed. Between ˜41.6 ka and ˜19 ka, magnetite and greigite are alternatively in dominance in the sediment. Due to low organic matter input during the late MIS 3 and the last glacial maximum (LGM), oxygenated bottom water in the Black Sea was favourable for preserving detrital magnetite. Greigite in this interval have irregular shapes and assemble in spots, which were formed in a micro environment with limited sulfate availability. Between ˜19 ka and ˜16.5 ka, black layers were deposited as a result of organic matter accumulation induced by productivity blooming and riverine discharge soaring after the LGM. Hence less oxygenated bottom water conditions developed, and more fine grained greigite was formed. After melt-water pulse (MWP) events (˜16.5 ka), both primary productivity and the sea level were continuously rising until ˜8.3 ka, leading to the depletion of oxygen in bottom water. In addition to greigite, pyrite was also formed and gradually in dominance as approaching the Holocene. The influx of salt water masses from the Mediterranean Sea after ˜8.3 ka contributed to the establishment of the anoxic Black Sea, which resulted in the formation of ubiquitous frambiods of pyrite. Additionally, bacterial magnetic minerals are likely present in the sediment younger than ˜8.3 ka as indicated by rock magnetic results. In this paper, four different magnetic mineral assemblages, reflecting gradual changes from an oxic to an anoix Black Sea, were identified, yielding insights into the relation between magnetic minerals diagenesis and bottom water conditions.

  16. A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption.

    PubMed

    Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia

    2013-01-01

    The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe(3)O(4) particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g(-1) by using the first derivative method. The adsorption capacities (q(m)) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g(-1), respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.

  17. Effect of magnetic field on seed germination and seedling growth of sunflower

    NASA Astrophysics Data System (ADS)

    Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S.

    2012-07-01

    The impact of a variable magnetic field, magnetically treated water and a combination of both these factors on the germination of seeds and the final mass at the initial stage of growth sunflower plants was presented. Investigations were carried out in pots filled with sand, tin an air-conditioned plant house with no access to daylight using fluorescent light as illumination. A statistical significance positive impact was achieved for the samples subjected to the interaction of both stimulating factors simultaneously, the magnetic field and the impact of treated water several times on the speed of seed germination and final plant mass. Negative impacts were obtained for the majority of the test cases, for the magnetically treated water, the short duration of activity of the magnetic field and for the connection of the magnetic field and low-flow times.

  18. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets

    NASA Astrophysics Data System (ADS)

    Rehman, Sajjad Ur; Ahmad, Zubair; Haq, A. ul; Akhtar, Saleem

    2017-11-01

    Alnico-8 permanent magnets were produced through casting and subsequent thermal treatment process. Magnetic alloy of nominal composition 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti were prepared by arc melting and casting technique. The Zr was added to 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti alloy ranging from 0.3 to 0.9 wt%. The magnets were developed by employing two different heat treatment cycles known as conventional treatment and thermo-magnetic annealing treatment. The samples were characterized by X-ray diffraction method, Scanning electron microscope and magnetometer by plotting magnetic hysteresis demagnetization curves. The results indicate that magnetic properties are strongly depended upon alloy chemistry and process. The 0.6 wt% Zr added alloys yielded the best magnetic properties among the studied alloys. The magnetic properties obtained through conventional heat treatment are Hc = 1.35 kOe, Br = 5.2 kG and (BH)max = 2 MGOe. These magnetic properties were enhanced to Hc = 1.64 kOe, Br = 6.3 kG and (BH)max = 3.7 MGOe by thermo-magnetic annealing treatment.

  19. An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning.

    PubMed

    Farace, P; Pontalti, R; Cristoforetti, L; Antolini, R; Scarpa, M

    1997-11-01

    This paper presents an automatic method to obtain tissue complex permittivity values to be used as input data in the computer modelling for hyperthermia treatment planning. Magnetic resonance (MR) images were acquired and the tissue water content was calculated from the signal intensity of the image pixels. The tissue water content was converted into complex permittivity values by monotonic functions based on mixture theory. To obtain a water content map by MR imaging a gradient-echo pulse sequence was used and an experimental procedure was set up to correct for relaxation and radiofrequency field inhomogeneity effects on signal intensity. Two approaches were followed to assign the permittivity values to fat-rich tissues: (i) fat-rich tissue localization by a segmentation procedure followed by assignment of tabulated permittivity values; (ii) water content evaluation by chemical shift imaging followed by permittivity calculation. Tests were performed on phantoms of known water content to establish the reliability of the proposed method. MRI data were acquired and processed pixel-by-pixel according to the outlined procedure. The signal intensity in the phantom images correlated well with water content. Experiments were performed on volunteers' healthy tissue. In particular two anatomical structures were chosen to calculate permittivity maps: the head and the thigh. The water content and electric permittivity values were obtained from the MRI data and compared to others in the literature. A good agreement was found for muscle, cerebrospinal fluid (CSF) and white and grey matter. The advantages of the reported method are discussed in the light of possible application in hyperthermia treatment planning.

  20. A magnetic fluid seal for rotary blood pumps: Behaviors of magnetic fluids in a magnetic fluid seal.

    PubMed

    Mitamura, Yoshinori; Yano, Tetsuya; Nakamura, Wataru; Okamoto, Eiji

    2013-01-01

    A magnetic fluid (MF) seal has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids (several days). We have developed an MF seal that has a shield mechanism. The seal was perfect for 275 days in water. To investigate the effect of a shield, behaviors of MFs in a seal in water were studied both experimentally and computationally. (a) Two kinds of MF seals, one with a shield and one without a shield, were installed in a centrifugal pump. Behaviors of MFs in the seals in water were observed with a video camera and high-speed microscope. In the seal without a shield, the surface of the water in the seal waved and the turbulent flow affected behaviors of the MFs. In contrast, MFs rotated stably in the seal with a shield in water even at high rotational speeds. (b) Computational fluid dynamics analysis revealed that a stationary secondary flow pattern in the seal and small velocity difference between magnetic fluid and water at the interface. These MF behaviors prolonged the life of an MF seal in water.

  1. Selective extraction of bisphenol A from water by one-monomer molecularly imprinted magnetic nanoparticles.

    PubMed

    Lin, Zhenkun; Zhang, Yanfang; Su, Yu; Qi, Jinxia; Jia, Yinhang; Huang, Changjiang; Dong, Qiaoxiang

    2018-01-15

    One-monomer molecularly imprinted magnetic nanoparticles were prepared as adsorbents for selective extraction of bisphenol A from water in this study. A single bi-functional monomer was adopted for preparation of the molecularly imprinted polymer, avoiding the tedious trial-and-error optimizations as traditional strategy. Moreover, bisphenol F was used as the dummy template for bisphenol A to avoid the interference from residual template molecules. These nanoparticles showed not only large adsorption capacity and good selectivity to the bisphenol A but also outstanding magnetic response performance. Furthermore, they were successfully used as magnetic solid-phase extraction adsorbents of bisphenol A from various water samples, including tap water, river water, and seawater. The developed method was found to be much more efficient, convenient, and economical for selective extraction of bisphenol A compared with the traditional solid-phase extraction. Separation of these nanoparticles can be easily achieved with an external magnetic field, and the optimized adsorption time was only 15 min. The recoveries of bisphenol A in different water samples ranged from 85.38 to 93.75%, with relative standard deviation lower than 7.47%. These results showed that one-monomer molecularly imprinted magnetic nanoparticles had the potential to be popular adsorbents for selective extraction of pollutants from water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The Influence of Magnetic Field on Electrokinetic Potential of Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Koshoridze, S. I.; Levin, Yu. K.

    2018-06-01

    The influence of a magnetic field on the electrokinetic potential of colloidal particles in a water flow oversaturated with deposited salts is reported. For the first time, the ionic hydration and dielectric permittivity of water in the double electrical layer are taken into consideration. It is demonstrated that the magnetic field influence is increased with the decreasing dielectric permittivity of water but is decreased due to ionic hydration.

  4. Optimizing the application of magnetic nanoparticles in Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Simeonidis, Konstantinos; Kaprara, Efthymia; Mitrakas, Manassis; Tziomaki, Magdalini; Angelakeris, Mavroidis; Vourlias, Georgios; Andritsos, Nikolaos

    2013-04-01

    The presence of heavy metals in aqueous systems is an intense health and environmental problem as implied by their harmful effects on human and other life forms. Among them, chromium is considered as an acutely hazardous compound contaminating the surface water from industrial wastes or entering the groundwater, the major source of drinking water, by leaching of chromite rocks. Chromium occurs in two stable oxidation states, Cr(III) and Cr(VI), with the hexavalent form being much more soluble and mobile in water having the ability to enter easily into living tissues or cells and thus become more toxic. Despite the established risks from Cr(VI)-containing water consumption and the increasing number of incidents, the E.U. tolerance limit for total chromium in potable water still stands at 50 μg/L. However, in the last years a worldwide debate concerning the establishment of a separate and very strict limit for the hexavalent form takes place. In practice, Cr(VI) is usually removed from water by various methods such as chemical coagulation/filtration, ion exchange, reverse osmosis and adsorption. Adsorption is considered as the simplest method which may become very effective if the process is facilitated by the incorporation of a Cr(VI) to Cr(III) reduction stage. This work studies the potential of using magnetic nanoparticles as adsorbing agents for Cr(VI) removal at the concentration levels met in contaminated drinking water. A variety of nanoparticles consisting of ferrites MFe2O4 (M=Fe, Co, Ni, Cu, Mn, Mg, Zn) were prepared by precipitating the corresponding bivalent or trivalent sulfate salts under controlled acidity and temperature. Electron microscopy and X-ray diffraction techniques were used to verify their crystal structure and determine the morphological characteristics. The mean particle size of the samples was found in the range 10-50 nm. Batch Cr(VI) removal tests were performed in aqueous nanoparticles dispersions showing the efficiency of ferrite nanoparticles to reduce Cr(VI) concentration below the regulation limit. The removal capacity is maximized for Fe3O4 nanoparticles due to the high reducing potential of the Fe2+ cations. Furthermore, their applicability was tested in a pilot-scale magnetic separator for the continuous flow removal of nanoparticles after water treatment that takes advantage of the magnetic properties. Acknowledgment This work was implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State.

  5. SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, K; Kadoya, N; Chiba, M

    2016-06-15

    Purpose: The aim of this study is to develop radiation treatment planning using magnetic susceptibility obtained from quantitative susceptibility mapping (QSM) via MR imaging. This study demonstrates the feasibility of a method for generating a substitute for a CT image from an MRI. Methods: The head of a healthy volunteer was scanned using a CT scanner and a 3.0 T MRI scanner. The CT imaging was performed with a slice thickness of 2.5 mm at 80 and 120 kV (dual-energy scan). These CT images were converted to relative electron density (rED) using the CT-rED conversion table generated by a previousmore » dual-energy CT scan. The CT-rED conversion table was generated using the conversion of the energy-subtracted CT number to rED via a single linear relationship. One T2 star-weighted 3D gradient echo-based sequence with four different echo times images was acquired using the MRI scanner. These T2 star-weighted images were used to estimate the phase data. To estimate the local field map, a Laplacian unwrapping of the phase and background field removal algorithm were implemented to process phase data. To generate a magnetic susceptibility map from the local field map, we used morphology enabled dipole inversion method. The rED map was resampled to the same resolution as magnetic susceptibility, and the magnetic susceptibility-rED conversion table was obtained via voxel-by-voxel mapping between the magnetic susceptibility and rED maps. Results: A correlation between magnetic susceptibility and rED is not observed through our method. Conclusion: Our results show that the correlation between magnetic susceptibility and rED is not observed. As the next step, we assume that the voxel of the magnetic susceptibility map comprises two materials, such as water (0 ppm) and bone (-2.2 ppm) or water and marrow (0.81ppm). The elements of each voxel were estimated from the ratio of the two materials.« less

  6. Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception.

    PubMed

    Ernst, David A; Lohmann, Kenneth J

    2016-06-15

    The Caribbean spiny lobster, Panulirus argus, is a migratory crustacean that uses Earth's magnetic field as a navigational cue, but how these lobsters detect magnetic fields is not known. Magnetic material thought to be magnetite has previously been detected in spiny lobsters, but its role in magnetoreception, if any, remains unclear. As a first step toward investigating whether lobsters might have magnetite-based magnetoreceptors, we subjected lobsters to strong, pulsed magnetic fields capable of reversing the magnetic dipole moment of biogenic magnetite crystals. Lobsters were subjected to a single pulse directed from posterior to anterior and either: (1) parallel to the horizontal component of the geomagnetic field (i.e. toward magnetic north); or (2) antiparallel to the horizontal field (i.e. toward magnetic south). An additional control group was handled but not subjected to a magnetic pulse. After treatment, each lobster was tethered in a water-filled arena located within 200 m of the capture location and allowed to walk in any direction. Control lobsters walked in seemingly random directions and were not significantly oriented as a group. In contrast, the two groups exposed to pulsed fields were significantly oriented in approximately opposite directions. Lobsters subjected to a magnetic pulse applied parallel to the geomagnetic horizontal component walked westward; those subjected to a pulse directed antiparallel to the geomagnetic horizontal component oriented approximately northeast. The finding that a magnetic pulse alters subsequent orientation behavior is consistent with the hypothesis that magnetoreception in spiny lobsters is based at least partly on magnetite-based magnetoreceptors. © 2016. Published by The Company of Biologists Ltd.

  7. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment.

    PubMed

    Inkinen, J; Jayaprakash, B; Ahonen, M; Pitkänen, T; Mäkinen, R; Pursiainen, A; Santo Domingo, J W; Salonen, H; Elk, M; Keinänen-Toivola, M M

    2018-02-01

    To study the stability of biofilms and water quality in pilot scale drinking water copper and PEX pipes in changing conditions (extra disinfection, magnetic water treatment, MWT). Next-generation sequencing (NGS) of 16S ribosomal RNA genes (rDNA) to describe total bacterial community and ribosomal RNA (rRNA) to describe active bacterial members in addition to traditional microbiological methods were applied. Biofilms from control copper and PEX pipes shared same most abundant bacteria (Methylobacterium spp., Sphingomonas spp., Zymomonas spp.) and average species diversities (Shannon 3·8-4·2) in rDNA and rRNA libraries, whereas few of the taxa differed by their abundance such as lower total Mycobacterium spp. occurrence in copper (<0·02%) to PEX (<0·2%) pipes. Extra disinfection (total chlorine increase from c. 0·5 to 1 mg l -1 ) affected total and active population in biofilms seen as decrease in many bacterial species and diversity (Shannon 2·7, P < 0·01, rRNA) and increase in Sphingomonas spp. as compared to control samples. Furthermore, extra-disinfected copper and PEX samples formed separate clusters in unweighted non-metric multidimensional scaling plot (rRNA) similarly to MWT-treated biofilms of copper (but not PEX) pipes that instead showed higher species diversity (Shannon 4·8, P < 0·05 interaction). Minor chlorine dose addition increased selection pressure and many species were sensitive to chlorination. Pipe material seemed to affect mycobacteria occurrence, and bacterial communities with MWT in copper but not in PEX pipes. This study using rRNA showed that chlorination affects especially active fraction of bacterial communities. Copper and PEX differed by the occurrence of some bacterial members despite similar community profiles. © 2017 The Society for Applied Microbiology.

  8. Magnetic stimulation of marigold seed

    NASA Astrophysics Data System (ADS)

    Afzal, I.; Mukhtar, K.; Qasim, M.; Basra, S. M. A.; Shahid, M.; Haq, Z.

    2012-10-01

    The effects of magnetic field treatments of French marigold seeds on germination, early seedling growth and biochemical changes of seedlings were studied under controlled conditions. For this purpose, seeds were exposed to five different magnetic seed treatments for 3 min each. Most of seed treatments resulted in improved germination speed and spread, root and shoot length, seed soluble sugars and a-amylase activity. Magnetic seed treatment with 100 mT maximally improved germination, seedling vigour and starch metabolism as compared to control and other seed treatments. In emergence experiment, higher emergence percentage (4-fold), emergence index (5-fold) and vigorous seedling growth were obtained in seeds treated with 100 mT. Overall, the enhancement of marigold seeds by magnetic seed treatment with 100 mT could be related to enhanced starch metabolism. The results suggest that magnetic field treatments of French marigold seeds have the potential to enhance germination, early growth and biochemical parameters of seedlings.

  9. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOEpatents

    Viswanathan, Tito

    2014-02-11

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  10. Highly magnetic Co nanoparticles fabricated by X-ray radiolysis

    NASA Astrophysics Data System (ADS)

    Clifford, Dustin M.; Castano, Carlos E.; Rojas, Jessika V.

    2018-03-01

    Advanced routes for the synthesis of nanomaterials, such as ferromagnetic nanoparticles, are being explored that are easy to perform using cost-effective and non-toxic precursors. Radiolytic syntheses based on the use of X-rays as ionizing radiation are promising towards this effort. X-rays were used to produce highly magnetic cobalt nanoparticles (NPs), stable in air up to 200 °C, from the radiolysis of water. Crystal structure analysis by XRD indicates a mixture of Cofcc, 63%, and Cohcp, 37%, phases. Magnetic analysis by VSM gave a saturation magnetization (Ms) 136 emu/g at 1 T and coercivity (Hc) = 325 Oe when the reaction solution was purged with N2 while an air-purged treatment resulted in Co NPs having 102 emu/g with a coercivity (Hc) 270 Oe. Overall, the reduction of Co2+ occurred in an aqueous reaction environment without addition of chemical reductants resulting in Co NPs with size distribution from 20 to 140 nm. This clean approach at ambient temperature produced highly magnetic Co NPs that may be used for switching devices (i.e. reed switches) or as additives for alloys that require high Curie points.

  11. Removal of Hg(II) from aqueous solution by resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet: Synthesis, adsorption mechanism and separation properties.

    PubMed

    Cui, Limei; Wang, Yaoguang; Gao, Liang; Hu, Lihua; Wei, Qin; Du, Bin

    2015-10-15

    Resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet (MCD-GO-R) was synthesized successfully and found to be an excellent adsorbent for Hg(II) removal. The as-prepared adsorbent was characterized by SEM, FTIR, BET, magnetization curve and zeta potential analysis respectively. Good magnetic performance made MCD-GO-R simply recover from aqueous solution at low magnetic field within 30s. And also, the rich functional groups and outstanding dispersity play an important role in the adsorption process. The maximum adsorption capacity was 88.43 mg g(-1) at 323 K and pH 7.1. The as-prepared adsorbent could perform well in a wide pH range from 4.0 to 10.0. Static adsorption experimental data showed good correlation with pseudo-second-order model and Freundlich isotherm models. It was found that the contaminant adsorption was accomplished mainly via chelation or ion exchange and come to equilibrium in only 30 min. All experimental results, especially the excellent reproducibility and resistance to ion interference, suggest that MCD-GO-R has promising applications in water treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    PubMed

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  13. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy.

    PubMed

    Tessier, A G; Yahya, A; Larocque, M P; Fallone, B G; Syme, A

    2014-09-07

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm(3) voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides supporting evidence that metabolite/water concentration ratios have the potential to be used as biomarkers for the assessment of the response to therapy.

  14. Application of 23Na MRI to Monitor Chemotherapeutic Response in RIF-1 Tumors1

    PubMed Central

    Babsky, Andriy M; Hekmatyar, Shahryar K; Zhang, Hong; Solomon, James L; Bansal, Navin

    2005-01-01

    Abstract Effects of an alkylating anticancer drug, cyclophosphamide (Cp), on 23Na signal intensity (23Na SI) and water apparent diffusion coefficient (ADC) were examined in subcutaneously-implanted radiation-induced fibrosarcoma (RIF-1) tumors by in vivo 23Na and 1H magnetic resonance imaging (MRI). MRI experiments were performed on untreated control (n = 5) and Cp-treated (n = 6) C3H mice, once before Cp injection (300 mg/kg) then daily for 3 days after treatment. Tumor volumes were significantly lower in treated animals 2 and 3 days posttreatment. At the same time points, MRI experiments showed an increase in both 23Na SI and water ADC in treated tumors, whereas control tumors did not show any significant changes. The correlation between 23Na SI and water ADC changes was dramatically increased in the Cp-treated group, suggesting that the observed increases in 23Na SI and water ADC were caused by the same mechanism. Histologic sections showed decreased cell density in the regions of increased 23Na and water ADC SI. Destructive chemical analysis showed that Cp treatment increased the relative extracellular space and tumor [Na+]. We conclude that the changes in water ADC and 23Na SI were largely due to an increase in extracellular space. 23Na MRI and 1H water ADC measurements may provide valuable noninvasive techniques for monitoring chemotherapeutic responses. PMID:16026645

  15. Sediment tracing by `customised' magnetic fingerprinting: from the sub-catchment to the ocean scale

    NASA Astrophysics Data System (ADS)

    Maher, B.

    2009-04-01

    Robust identification of catchment suspended sediment sources is a prerequisite both for understanding sediment delivery processes and targeting of effective mitigation measures. Fine sediment delivery can pose management problems, especially with regard to nutrient run-off and siltation of water courses and bodies. Suspended sediment load constitutes the dominant mode of particulate material loss from catchments but its transport is highly episodic. Identification of suspended sediment sources and fluxes is therefore a prerequisite both for understanding of fluvial geomorphic process and systems and for designing strategies to reduce sediment transport, delivery and yields. Here will be discussed sediment ‘fingerprinting', using the magnetic properties of soils and sediments to characterise sediment sources and transport pathways over a very wide variety of spatial scales, from Lake Bassenthwaite in the English Lake District to the Burdekin River in Queensland and even the North Atlantic Ocean during the last glacial maximum. The applicability of magnetic ‘fingerprinting' to such a range of scales and environments has been significantly improved recently through use of new and site-appropriate magnetic measurement techniques, statistical processing and sample treatment options.

  16. Diffusion-weighted magnetic resonance imaging using different b-value combinations for the evaluation of treatment results after volumetric MR-guided high-intensity focused ultrasound ablation of uterine fibroids.

    PubMed

    Ikink, Marlijne E; Voogt, Marianne J; van den Bosch, Maurice A A J; Nijenhuis, Robbert J; Keserci, Bilgin; Kim, Young-sun; Vincken, Koen L; Bartels, Lambertus W

    2014-09-01

    To assess the value of diffusion-weighted magnetic resonance imaging (DWI) and apparent diffusion coefficient (ADC) mapping using different b-value combinations for treatment evaluation after magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) of uterine fibroids. Fifty-six patients with 67 uterine fibroids were treated with volumetric MR-HIFU. Pre-treatment and post-treatment images were obtained using contrast-enhanced T1-weighted MRI (CE-T1WI) and DWI using b = 0, 200, 400, 600, 800 s/mm(2). ADC maps were generated using subsets of b-values to investigate the effects of tissue ablation on water diffusion and perfusion in fibroids treated with MR-HIFU. Four combinations of b-values were used: (1) all b-values; (2) b = 0, 200 s/mm(2); (3) b = 400, 600, 800 s/mm(2); and (4) b = 0, 800 s/mm(2). Using the lowest b-values (0 and 200 s/mm(2)), the mean ADC value in the ablated tissue reduced significantly (p < 0.001) compared with baseline. Calculating the ADC value with the highest b-values (400, 600, 800 s/mm(2)), the ADC increased significantly (p < 0.001) post-treatment. ADC maps calculated with the lowest b-values resulted in the best visual agreement of non-perfused fibroid tissue detected on CE images. Other b-value combinations and normal myometrium showed no difference in ADC after MR-HIFU treatment. A decrease in contrast agent uptake within the ablated region on CE-T1WI was correlated to a significantly decreased ADC when b = 0 and 200 s/mm(2) were used. DWI could be useful for treatment evaluation after MR-HIFU of uterine fibroids. The ADC in fibroid tissue is influenced by the choice of b- values. Low b-values seem the best choice to emphasise perfusion effects after MR-HIFU.

  17. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin.

    PubMed

    Cui, Yan-Na; Xu, Qing-Xing; Davoodi, Pooya; Wang, De-Ping; Wang, Chi-Hwa

    2017-06-01

    Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors.

  18. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin

    PubMed Central

    Cui, Yan-na; Xu, Qing-xing; Davoodi, Pooya; Wang, De-ping; Wang, Chi-Hwa

    2017-01-01

    Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors. PMID:28552909

  19. Retained Austenite in SAE 52100 Steel Post Magnetic Processing and Heat Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, Nathaniel R; Watkins, Thomas R; Cavin, Odis Burl

    2007-01-01

    Steel is an iron-carbon alloy that contains up to 2% carbon by weight. Understanding which phases of iron and carbon form as a function of temperature and percent carbon is important in order to process/manufacture steel with desired properties. Austenite is the face center cubic (fcc) phase of iron that exists between 912 and 1394 C. When hot steel is rapidly quenched in a medium (typically oil or water), austenite transforms into martensite. The goal of the study is to determine the effect of applying a magnetic field on the amount of retained austenite present at room temperature after quenching.more » Samples of SAE 52100 steel were heat treated then subjected to a magnetic field of varying strength and time, while samples of SAE 1045 steel were heat treated then subjected to a magnetic field of varying strength for a fixed time while being tempered. X-ray diffraction was used to collect quantitative data corresponding to the amount of each phase present post processing. The percentage of retained austenite was then calculated using the American Society of Testing and Materials standard for determining the amount of retained austenite for randomly oriented samples and was plotted as a function of magnetic field intensity, magnetic field apply time, and magnetic field wait time after quenching to determine what relationships exist with the amount of retained austenite present. In the SAE 52100 steel samples, stronger field strengths resulted in lower percentages of retained austenite for fixed apply times. The results were inconclusive when applying a fixed magnetic field strength for varying amounts of time. When applying a magnetic field after waiting a specific amount of time after quenching, the analyses indicate that shorter wait times result in less retained austenite. The SAE 1045 results were inconclusive. The samples showed no retained austenite regardless of magnetic field strength, indicating that tempering removed the retained austenite. It is apparent that applying a magnetic field after quenching will result in a lower amount of retained austenite but that the exact relationship, linear or other, is inconclusive. This project is a part of a larger, ongoing project investigating the application of a magnetic field during heat treatment and its influence on the iron-carbon phase-equilibria.« less

  20. [Investigation on contamination of Cryptosporidium and Giardia in drinking water and environmental water in Shanghai].

    PubMed

    Zhang, Xiao-Ping; He, Yan-Yan; Zhu, Qian; Ma, Xiao-Jiang; Cai, Li

    2010-12-30

    To understand the contamination status of Cryptosporidium sp. and Giardia lamblia in drinking water, source water and environmental water in Shanghai. All water samples collected from drinking water, source water and environmental water were detected by a procedure of micromembrane filtration, immune magnetic separation (IMS), and immunofluorescent assay (IFA). Cryptosporidium oocysts and Giardia cysts were not found in 156 samples of the drinking water including finished water, tap water, or pipe water for directly drinking in communities. Among 70 samples either source water of water plants (15 samples), environmental water from Huangpu River(25), canal water around animal sheds(15), exit water from waste-water treatment plants(9), or waste water due to daily life(6), Cryptosporidium oocysts were detected in 1(6.7%), 2(8.0%), 7(46.7%), 1(11.1%), and 1(16.7%) samples, respectively; and Giardia cysts were detected in 1(6.7%), 3(12.0%), 6 (40.0%), 2(22.2%), and 2(33.3%), respectively. The positive rate of Cryptosporidium oocysts and Giardia cysts was 17.1% (12/70) and 20.0% (14/70), respectively. No Cryptosporidium oocysts and Giardia cysts have been detected in drinking water, but found in source water and environmental water samples in Shanghai.

  1. Effect of Pantethine on Ovarian Tumor Progression and Choline Metabolism.

    PubMed

    Penet, Marie-France; Krishnamachary, Balaji; Wildes, Flonne; Mironchik, Yelena; Mezzanzanica, Delia; Podo, Franca; de Reggi, Max; Gharib, Bouchra; Bhujwalla, Zaver M

    2016-01-01

    Epithelial ovarian cancer remains the leading cause of death from gynecologic malignancy among women in developed countries. New therapeutic strategies evaluated with relevant preclinical models are urgently needed to improve survival rates. Here, we have assessed the effect of pantethine on tumor growth and metabolism using magnetic resonance imaging and high-resolution proton magnetic resonance spectroscopy (MRS) in a model of ovarian cancer. To evaluate treatment strategies, it is important to use models that closely mimic tumor growth in humans. Therefore, we used an orthotopic model of ovarian cancer where a piece of tumor tissue, derived from an ovarian tumor xenograft, is engrafted directly onto the ovary of female mice, to maintain the tumor physiological environment. Treatment with pantethine, the precursor of vitamin B5 and active moiety of coenzyme A, was started when tumors were ~100 mm 3 and consisted of a daily i.p. injection of 750 mg/kg in saline. Under these conditions, no side effects were observed. High-resolution 1 H MRS was performed on treated and control tumor extracts. A dual-phase extraction method based on methanol/chloroform/water was used to obtain lipid and water-soluble fractions from the tumors. We also investigated effects on metastases and ascites formation. Pantethine treatment resulted in slower tumor progression, decreased levels of phosphocholine and phosphatidylcholine, and reduced metastases and ascites occurrence. In conclusion, pantethine represents a novel potential, well-tolerated, therapeutic tool in patients with ovarian cancer. Further in vivo preclinical studies are needed to confirm the beneficial role of pantethine and to better understand its mechanism of action.

  2. Fighting fire with fire: the revival of thermotherapy for gliomas.

    PubMed

    Lee Titsworth, William; Murad, Greg J A; Hoh, Brian L; Rahman, Maryam

    2014-02-01

    In 1891, an orthopedic surgeon in New York noted the disappearance of an inoperable sarcoma in a patient after a febrile illness. This observation resulted in experiments assessing the utility of heat therapy or thermotherapy for the treatment of cancer. While it initially fell from favor, thermotherapy has recently made a resurgence, sparking investigations into its anticancer properties. This therapy is especially attractive for glioblastoma multiforme (GBM) which is difficult to target due to the blood-brain barrier and recalcitrant to treatment. Here we briefly review the history of thermotherapy and then more methodically present the current literature as it relates to central nervous system malignancies. Recent developments show that heat is preferentially cytotoxic to tumor cells and induces cellular pathways which result in apoptotic and non-apoptotic death. Techniques to induce hyperthermia include regional hyperthermia by water bath, focused ultrasound, radiofrequency microwaves, laser-induced interstitial thermotherapy, and magnetic energy. The recent revival of these therapeutic approaches and their preliminary outcomes in the treatment of GBM is reviewed. From bacterial toxins to infusion of magnetic nanoparticles, hyperthermia has the potential to be an effective and easy-to-execute adjuvant therapy for GBM. Hyperthermia for GBM is a promising therapy as part of a growing armamentarium for malignant glioma treatment.

  3. Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants

    NASA Astrophysics Data System (ADS)

    Nadejde, C.; Neamtu, M.; Hodoroaba, V.-D.; Schneider, R. J.; Paul, A.; Ababei, G.; Panne, U.

    2015-12-01

    The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method.

  4. Magnetic hyperthermia in magnetic nanoemulsions: Effects of polydispersity, particle concentration and medium viscosity

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Zaibudeen, A. W.; Philip, John

    2017-11-01

    Magnetic fluid hyperthermia (MFH) is a promising cancer treatment modality where alternating magnetic field is used for heating cancerous cells loaded with magnetic nanofluids. Of late, it is realized that magnetic nano-carriers in the size range ∼100-200 nm (e.g. magnetic nanocomposites, magnetic liposomes and magnetic nanoemulsions) are ideal candidates for multimodal MFH coupled with drug delivery or photodynamic therapy due to enhanced permeation and retention (EPR) in the leaky vasculature of cancerous tissues. Here, we study the radiofrequency alternating magnetic field induced heating in magnetically polarizable oil-in-water nanoemulsions of hydrodynamic diameter ∼200 nm, containing single domain superparamagnetic nanoparticles of average diameter ∼10 nm in the oil phase. We probe the effects of size polydispersity of the droplets and medium viscosity on the field induced heating efficiency. The contribution of Neel and Brown relaxation of the magnetic nanoparticles on specific absorption rate (SAR) of the magnetic nanoemulsions, was found to increase linearly with the square of the applied field, with a maximum value of 164.4 ± 4.3 W/gFe. In magnetic nanoemulsions, the heating is induced by the Neel-Brown relaxation of the MNP over a length scale of 10 nm, and the whole scale Brownian relaxation of the emulsion droplets has over a length scale of 200 nm. The magnetic nanoemulsion sample with lower polydispersity (σ = 0.2) exhibited a significantly higher SAR value (3.3 times higher) as compared to the sample with larger polydispersity (σ = 0.4). The SAR values of the samples with 4.6 and 1.7 wt.% of MNP loading with σ values 0.4 a 0.3, respectively were comparable, suggesting a higher heating efficiency in nanofluid containing particles of lower size polydispersity even at lower particle loading. The emulsion droplets, immobilized in an agar matrix (4 wt.%), gave a maximum SAR value of 41.7 ± 2.4 W/gFe as compared to 111.8 ± 3.4 W/gFe in the case of droplets dispersed in water, which indicate a ∼40-50% drop in SAR due to abrogation of whole scale Brownian relaxation of the emulsion droplets. This suggests the need for improving the heating efficiency during actual therapy in tissues. The residual SAR of the immobilized sample correlates well with the SAR of the magnetic nanofluid, albeit under a lower external field amplitude due to demagnetization effect of the clusters of MNP loaded inside the droplets. The observed heating efficiency of larger sized magnetic nanoemulsion offer new possibilities for multimodal therapy due to availability of large volume for loading anti-cancer drug or photodynamic agents.

  5. An 11-Channel Radio Frequency Phased Array Coil for Magnetic Resonance Guided High Intensity Focused Ultrasound of the Breast

    PubMed Central

    Minalga, E.; Payne, A.; Merrill, R.; Todd, N.; Vijayakumar, S.; Kholmovski, E.; Parker, D. L.; Hadley, J. R.

    2012-01-01

    In this study, a radio-frequency (RF) phased array coil was built to image the breast in conjunction with a Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11-channels. The RF coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise-ratio (SNR) profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in SNR, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. PMID:22431301

  6. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.

    PubMed

    Alvarez-Berríos, Merlis P; Castillo, Amalchi; Rinaldi, Carlos; Torres-Lugo, Madeline

    2014-01-01

    The proteasome inhibitor bortezomib (BZ) has shown promising results in some types of cancer, but in others it has had minimal activity. Recent studies have reported enhanced efficacy of BZ when combined with hyperthermia. However, the use of magnetic nanoparticles to induce hyperthermia in combination with BZ has not been reported. This novel hyperthermia modality has shown better potentiation of chemotherapeutics over other types of hyperthermia. We hypothesized that inducing hyperthermia via magnetic nanoparticles (MFH) would enhance the cytotoxicity of BZ in BZ-sensitive and BZ-resistant cancer cells more effectively than hyperthermia using a hot water bath (HWH). Studies were conducted using BZ in combination with MFH in two BZ-sensitive cell lines (MDA-MB-468, Caco-2), and one BZ-resistant cell line (A2780) at two different conditions, ie, 43°C for 30 minutes and 45°C for 30 minutes. These experiments were compared with combined application of HWH and BZ. The results indicate enhanced potentiation between hyperthermic treatment and BZ. MFH combined with BZ induced cytotoxicity in sensitive and resistant cell lines to a greater extent than HWH under the same treatment conditions. The observation that MFH sensitizes BZ-resistant cell lines makes this approach a potentially effective anticancer therapy platform.

  7. Production, deformation and mechanical investigation of magnetic alginate capsules

    NASA Astrophysics Data System (ADS)

    Zwar, Elena; Kemna, Andre; Richter, Lena; Degen, Patrick; Rehage, Heinz

    2018-02-01

    In this article we investigated the deformation of alginate capsules in magnetic fields. The sensitivity to magnetic forces was realised by encapsulating an oil in water emulsion, where the oil droplets contained dispersed magnetic nanoparticles. We solved calcium ions in the aqueous emulsion phase, which act as crosslinking compounds for forming thin layers of alginate membranes. This encapsulating technique allows the production of flexible capsules with an emulsion as the capsule core. It is important to mention that the magnetic nanoparticles were stable and dispersed throughout the complete process, which is an important difference to most magnetic alginate-based materials. In a series of experiments, we used spinning drop techniques, capsule squeezing experiments and interfacial shear rheology in order to determine the surface Young moduli, the surface Poisson ratios and the surface shear moduli of the magnetically sensitive alginate capsules. In additional experiments, we analysed the capsule deformation in magnetic fields. In spinning drop and capsule squeezing experiments, water droplets were pressed out of the capsules at elevated values of the mechanical load. This phenomenon might be used for the mechanically triggered release of water-soluble ingredients. After drying the emulsion-filled capsules, we produced capsules, which only contained a homogeneous oil phase with stable suspended magnetic nanoparticles (organic ferrofluid). In the dried state, the thin alginate membranes of these particles were rather rigid. These dehydrated capsules could be stored at ambient conditions for several months without changing their properties. After exposure to water, the alginate membranes rehydrated and became flexible and deformable again. During this swelling process, water diffused back in the capsule. This long-term stability and rehydration offers a great spectrum of different applications as sensors, soft actuators, artificial muscles or drug delivery systems.

  8. [Diagnosis and treatment of adipsic diabetes insipidus accompanied with intracranial calcification].

    PubMed

    Hu, Ming-ming; Liu, Min; Liu, Wei

    2013-04-01

    To summarize our experience in the management of adipsic central diabetes insipidus(ADI) accompanied with intracranial calcification. The clinical data of one ADI patient accompanied with intracranial calcification who was treated in our hospital since December 2011 were retrospectively summarized. The 24-hour urine volume was 800 ml. She didn't feel thirsty even with increased plasma sodium concentration(153 mmol/L) and blood osmotic pressure(333 mmol/L) . Combined water deprivation and vasopressin test revealed the diagnosis of central diabetes insipidus. The high intensity signal(on T1-weighted magnetic resonance imaging) in the posterior lobe of pituitary gland was found. Computed tomography showed calcifications in the bilateral basal ganglia.Serum cytomegalovirus IgG was positive. She was treated with desmopressin and asked for regular water intake regardless of the adipsia. The plasma sodium concentration was still below 150 mmol/L during the 4-month follow-up. Routine adipsia evaluation and combined water deprivation and vasopressin test are critical for the diagnosis and treatment of ADI. Past insidious intracranial cytomegalovirus infection may explain the cause of ADI and calcification.

  9. Determination of ultraviolet filters in bathing waters by stir bar sorptive-dispersive microextraction coupled to thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Benedé, Juan L; Chisvert, Alberto; Giokas, Dimosthenis L; Salvador, Amparo

    2016-01-15

    In this work, a new approach that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive solid phase extraction (DSPE), i.e. stir bar sorptive-dispersive microextraction (SBSDµE), is employed as enrichment and clean-up technique for the sensitive determination of eight lipophilic UV filters in water samples. The extraction is accomplished using a neodymium stir bar magnetically coated with oleic acid-coated cobalt ferrite magnetic nanoparticles (MNPs) as sorbent material, which are detached and dispersed into the solution at high stirring rate. When stirring is stopped, MNPs are magnetically retrieved onto the stir bar, which is subjected to thermal desorption (TD) to release the analytes into the gas chromatography-mass spectrometry (GC-MS) system. The SBSDµE approach allows for lower extraction time than SBSE and easier post-extraction treatment than DSPE, while TD allows for an effective and solvent-free injection of the entire quantity of desorbed analytes into GC-MS, and thus achieving a high sensitivity. The main parameters involved in TD, as well as the extraction time, were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ngL(-1) range and good intra- and inter-day repeatability (RSD<12%). This accurate and sensitive analytical method was applied to the determination of trace amounts of UV filters in three bathing water samples (river, sea and swimming pool) with satisfactory relative recovery values (80-116%). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Beyond Traditional Hyperthermia: In Vivo Cancer Treatment with Magnetic-Responsive Mesoporous Silica Nanocarriers.

    PubMed

    Guisasola, Eduardo; Asín, Laura; Beola, Lilianne; de la Fuente, Jesús M; Baeza, Alejandro; Vallet-Regí, María

    2018-04-18

    In this study, we present an innovation in the tumor treatment in vivo mediated by magnetic mesoporous silica nanoparticles. This device was built with iron oxide magnetic nanoparticles embedded in a mesoporous silica matrix and coated with an engineered thermoresponsive polymer. The magnetic nanoparticles act as internal heating sources under an alternating magnetic field (AMF) that increase the temperature of the surroundings, provoking the polymer transition and consequently the release of a drug trapped inside the silica pores. By a synergic effect between the intracellular hyperthermia and chemotherapy triggered by AMF application, significant tumor growth inhibition was achieved in 48 h after treatment. Furthermore, the small magnetic loading used in the experiments indicates that the treatment is carried out without a global temperature rise of the tissue, which avoids the problem of the necessity to employ large amounts of magnetic cores, as is common in current magnetic hyperthermia.

  11. Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench

    NASA Astrophysics Data System (ADS)

    Kawamura, N.; Kawamura, K.; Ishikawa, N.

    2008-03-01

    Magnetic minerals in marine sediments are often dissolved or formed with burial depth, thereby masking the primary natural remanent magnetization and paleoclimate signals. In order to clarify the present sedimentary environment and the progressive changes with burial depth in the magnetic properties, we studied seven cores collected from the Ryukyu Trench, southwest Japan. Magnetic properties, organic geochemistry, and interstitial water chemistry of seven cores are described. Bottom water conditions at the landward slope, trench floor, and seaward slope are relatively suboxic, anoxic, and oxic, respectively. The grain size of the sediments become gradually finer with the distance from Okinawa Island and finer with increasing water depth. The magnetic carriers in the sediments are predominantly magnetite and maghemized magnetite, with minor amounts of hematite. In the topmost sediments from the landward slope, magnetic minerals are diluted by terrigenous materials and microfossils. The downcore variations in magnetic properties and geochemical data provided evidence for the dissolution of fine-grained magnetite with burial depth under an anoxic condition.

  12. Navy’s N-Layer Magnetic Model with Application to Naval Magnetic Demining

    DTIC Science & Technology

    2010-09-01

    and Safety ( MACAS ) surveys are used to obtain ED/AD and Q values. This is done by measuring voltages in the water produced by a pulsing magnetic...model The sweep type can be: STRAIGHT = 1, SINGLE JIG = 2, DOUBLE JIG = 3, or MACAS = 4 SWEEP TYPE = 4 The actual water depth in meters WATER...CABLE LENGTH = 238.6584 MINE DEPTH = xx Depth of the electrodes (meters) ELECTRODE DEPTH = 0.5 MACAS Potentiometer depth (meters) POTENTIOMETER

  13. Application of hyperthermia for cancer treatment: recent patents review.

    PubMed

    Soares, Paula I P; Ferreira, Isabel M M; Igreja, Rui A G B N; Novo, Carlos M M; Borges, Joao P M R

    2012-01-01

    Cancer is one of the main causes of death in the world and its incidence increases every day. Current treatments are insufficient and present many breaches. Hyperthermia is an old concept and since early it was established as a cancer treatment option, mainly in superficial cancers. More recently the concept of intracellular hyperthermia emerged wherein magnetic particles are concentrated at the tumor site and remotely heated using an applied magnetic field to achieve hyperthermic temperatures (42-45°C). Many patents have been registered in this area since the year 2000. This review presents the most relevant information, organizing them according to the hyperthermic method used: 1) external Radio-Frequency devices; 2) hyperthermic perfusion; 3) frequency enhancers; 4) apply heating to the target site using a catheter; 5) injection of magnetic and ferroelectric particles; 6) injection of magnetic nanoparticles that may carry a pharmacological active drug. The use of magnetic nanoparticles is a very promising treatment approach since it may be used for diagnostic and treatment. An ideal magnetic nanoparticle would be able to detect and diagnose the tumor, carry a pharmacological active drug to be delivered in the tumor site, apply hyperthermia through an external magnetic field and allow treatment monitoring by magnetic resonance imaging.

  14. A charge-driven molecular water pump.

    PubMed

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

  15. Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination.

    PubMed

    Razmjou, Amir; Barati, Mohammad Reza; Simon, George P; Suzuki, Kiyonori; Wang, Huanting

    2013-06-18

    Freshwater shortage is one of the most pressing global issues. Forward osmosis (FO) desalination technology is emerging for freshwater production from saline water, which is potentially more energy-efficient than the current reverse osmosis process. However, the lack of a suitable draw solute is the major hurdle for commercial implementation of the FO desalination technology. We have previously reported that thermoresponsive hydrogels can be used as the draw agent for a FO process, and this new hydrogel-driven FO process holds promise for further development for practical application. In the present work, magnetic field-induced heating is explored for the purpose of developing a more effective way to recover water from swollen hydrogel draw agents. The composite hydrogel particles are prepared by copolymerization of sodium acrylate and N-isopropylacrylamide in the presence of magnetic nanoparticles (γ-Fe2O3, <50 nm). The results indicate that the magnetic heating is an effective and rapid method for dewatering of hydrogels by generating the heat more uniformly throughout the draw agent particles, and thus, a dense skin layer commonly formed via conventional heating from the outside of the particle is minimized. The FO dewatering performance is affected by the loading of magnetic nanoparticles and magnetic field intensity. Significantly enhanced liquid water recovery (53%) is achieved under magnetic heating, as opposed to only around 7% liquid water recovery obtained via convection heating. Our study shows that the magnetic heating is an attractive alternative stimulus for the extraction of highly desirable liquid water from the draw agent in the polymer hydrogel-driven forward osmosis process.

  16. Comparative study of ¹³C composition in ethanol and bulk dry wine using isotope ratio monitoring by mass spectrometry and by nuclear magnetic resonance as an indicator of vine water status.

    PubMed

    Guyon, Francois; van Leeuwen, Cornelis; Gaillard, Laetitia; Grand, Mathilde; Akoka, Serge; Remaud, Gérald S; Sabathié, Nathalie; Salagoïty, Marie-Hélène

    2015-12-01

    The potential of wine (13)C isotope composition (δ(13)C) is presented to assess vine water status during grape ripening. Measurements of δ(13)C have been performed on a set of 32 authentic wines and their ethanol recovered after distillation. The data, obtained by isotope ratio monitoring by mass spectrometry coupled to an elemental analyser (irm-EA/MS), show a high correlation between δ(13)C of the bulk wine and its ethanol, indicating that the distillation step is not necessary when the wine has not been submitted to any oenological treatment. Therefore, the ethanol/wine δ(13)C correlation can be used as an indicator of possible enrichment of the grape must or the wine with exogenous organic compounds. Wine ethanol δ(13)C is correlated to predawn leaf water potential (R(2) = 0.69), indicating that this parameter can be used as an indicator of vine water status. Position-specific (13)C analysis (PSIA) of ethanol extracted from wine, performed by isotope ratio monitoring by nuclear magnetic resonance (irm-(13)C NMR), confirmed the non-homogenous repartition of (13)C on ethanol skeleton. It is the δ(13)C of the methylene group of ethanol, compared to the methyl moiety, which is the most correlated to predawn leaf water potential, indicating that a phase of photorespiration of the vine during water stress period is most probably occurring due to stomata closure. However, position-specific (13)C analysis by irm-(13)C NMR does not offer a greater precision in the assessment of vine water status compared to direct measurement of δ(13)C on bulk wine by irm-EA/MS.

  17. Dynamics, magnetic properties, and electron binding energies of H2O2 in water.

    PubMed

    C Cabral, Benedito J

    2017-06-21

    Results for the magnetic properties and electron binding energies of H 2 O 2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H 2 O 2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H 2 O 2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H 2 O 2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H 2 O 2 protons in water (δ∼11.8 ppm) is in good agreement with experimental information (δ=11.2 ppm). The two lowest electron binding energies of H 2 O 2 in water (10.7±0.5 and 11.2±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ∼1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ( 17 O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H 2 O 2 .

  18. Magnetic properties and core electron binding energies of liquid water

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Cabral, Benedito J. C.

    2018-01-01

    The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.

  19. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.

    PubMed

    Phillips, John B; Youmans, Paul W; Muheim, Rachel; Sloan, Kelly A; Landler, Lukas; Painter, Michael S; Anderson, Christopher R

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.

  20. Rapid Learning of Magnetic Compass Direction by C57BL/6 Mice in a 4-Armed ‘Plus’ Water Maze

    PubMed Central

    Phillips, John B.; Youmans, Paul W.; Muheim, Rachel; Sloan, Kelly A.; Landler, Lukas; Painter, Michael S.; Anderson, Christopher R.

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds. PMID:24023673

  1. ADVANCED DESIGNS OF MAGNETIC JACK-TYPE CONTROL ROD DRIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, J.N.

    1959-11-01

    The magnetic jack is a device for positioning the control rods In a nuclear reactor, especially in a reactor containing water under pressure. Magnetic actuation precludes the need for shaft seals and eliminates the problems associated with mechanisms operating in water. It consists of a pressure shell, four sets of external stationary magnet coils (hold, grip, lift, pull down), and one Internal moving part (ammature) that impants linear motion to a cluster of rods. (W.L.H.)

  2. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.

    PubMed

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-04-30

    Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting-water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Shorter Life Span of Microorganisms and Plants as a Consequence of Shielded Magnetic Environment

    NASA Astrophysics Data System (ADS)

    Dobrota, C.; Piso, I. M.; Bathory, D.

    The geomagnetic field is an essential environmental factor for life and health on this planet. In order to survey how magnetic fields affect the life span and the nitrogenase (an iron-sulphur enzyme) activity of Azotobacter chroococcum as well as the life span, the main organic synthesis and the water balance of plants (22 species), the biological tests were incubated under shielded magnetic field and also in normal geo-magnetic environment. The shielding level was about 10-6 of the terrestrial magnetic field.Life cycles of all organisms require the co-ordinated control of a complex set of interlocked physiological processes and metabolic pathways. Such processes are likely to be regulated by a large number of genes. Our researches suggest that the main point in biological structures, which seems to be affected by the low magnetic environment, is the water molecule. Magnetic field induces a molecular alignment. Under shielded conditions, unstructured water molecules with fewer hydrogen bonds, which are producing a more reactive environment, are occurring. As compared to control, the life span of both microorganisms and plants was shorter in shielded environment. A higher nitrogenase affinity for the substrate was recorded in normal geo-magnetic field compared to low magnetic field. The synthesis of carbohydrates, lipids, proteins and enzymes was modified under experimental conditions. The stomatal conductance was higher between 158 and 300% in shielded environment indicating an important water loss from the plant cells.Our results support the idea that the shielded magnetic environment induces different reactions depending on the time of exposure and on the main metabolic pathways of the cells.

  4. Preparing and Testing a Magnetic Antimicrobial Silver Nanocomposite for Water Disinfection To Gain Experience at the Nanochemistry–Microbiology Interface

    DOE PAGES

    Furlan, Ping Y.; Fisher, Adam J.; Melcer, Michael E.; ...

    2017-03-29

    In this article, we describe a 2 h introductory laboratory procedure that prepares a novel magnetic antimicrobial activated carbon nanocomposite in which nanoscale sized magnetite and silver particles are incorporated (MACAg). The MACAg nanocomposite has achieved the synergistic properties derived from its components and demonstrated its applicability as an effective and recoverable antimicrobial agent for water disinfection. The principle is successfully illustrated by a significant reduction in the number of microbes in an Escherichia coli (E. coli) solution of 2 × 10 6 colony forming units following its treatment with MACAg for 10 min. The exercise allows the college studentsmore » to (1) be introduced to an exciting class of advanced materials, known as nanocomposites, at an early stage, (2) gain working experiences at nanochemistry–microbiology interface, and (3) see the use and experience the fun of chemistry. The experiment uses readily available materials, can be run in a general or introductory chemistry laboratory environment, and is well received and enjoyed by the students. Lastly, the experiment is also suitable for advanced high school students.« less

  5. Preparing and Testing a Magnetic Antimicrobial Silver Nanocomposite for Water Disinfection To Gain Experience at the Nanochemistry–Microbiology Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furlan, Ping Y.; Fisher, Adam J.; Melcer, Michael E.

    In this article, we describe a 2 h introductory laboratory procedure that prepares a novel magnetic antimicrobial activated carbon nanocomposite in which nanoscale sized magnetite and silver particles are incorporated (MACAg). The MACAg nanocomposite has achieved the synergistic properties derived from its components and demonstrated its applicability as an effective and recoverable antimicrobial agent for water disinfection. The principle is successfully illustrated by a significant reduction in the number of microbes in an Escherichia coli (E. coli) solution of 2 × 10 6 colony forming units following its treatment with MACAg for 10 min. The exercise allows the college studentsmore » to (1) be introduced to an exciting class of advanced materials, known as nanocomposites, at an early stage, (2) gain working experiences at nanochemistry–microbiology interface, and (3) see the use and experience the fun of chemistry. The experiment uses readily available materials, can be run in a general or introductory chemistry laboratory environment, and is well received and enjoyed by the students. Lastly, the experiment is also suitable for advanced high school students.« less

  6. Constructing the magnetic bifunctional graphene/titania nanosheet-based composite photocatalysts for enhanced visible-light photodegradation of MB and electrochemical ORR from polluted water.

    PubMed

    Zhang, Qian; Zhang, Yihe; Meng, Zilin; Tong, Wangshu; Yu, Xuelian; An, Qi

    2017-09-25

    Photocatalysis is a promising strategy to address the global environmental and energy challenges. However, the studies on the application of the photocatalytically degraded dye-polluted water and the multi-purpose use of one type of catalyst have remained sparse. In this report, we try to demonstrate a concept of multiple and cyclic application of materials and resources in environmentally relevant catalyst reactions. A magnetic composite catalyst prepared from exfoliated titania nanosheets, graphene, the magnetic iron oxide nanoparticles, and a polyelectrolyte enabled such a cyclic application. The composite catalyst decomposed a methylene blue-polluted water under visible light, and then the catalyst was collected and removed from the treated water using a magnet. The photocatalytically treated water was then used to prepare the electrolyte in electrochemical reductive reactions and presented superior electrochemical performance compared with the dye-polluted water. The composite catalyst was once again used as the cathode catalyst in the electrochemical reaction. Each component in the composite catalyst was indispensable in its catalytic activity, but each component played different roles in the photochemical, magnetic recycling, and electrochemical processes. We expect the report inspire the study on the multi-functional catalyst and cyclic use of the catalytically cleaned water, which should contribute for the environmental and energy remedy from a novel perspective.

  7. Continuous flow Overhauser dynamic nuclear polarization of water in the fringe field of a clinical magnetic resonance imaging system for authentic image contrast

    PubMed Central

    Lingwood, Mark D.; Siaw, Ting Ann; Sailasuta, Napapon; Ross, Brian D.; Bhattacharya, Pratip; Han, Songi

    2016-01-01

    We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed −15 fold DNP signal enhancement with respect to the unenhanced 1H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP hyperpolarization of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 Tesla. PMID:20541445

  8. Micromagnetic evaluation of the dissipated heat in cylindrical magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Fernandez-Roldan, Jose Angel; Serantes, David; del Real, Rafael P.; Vazquez, Manuel; Chubykalo-Fesenko, Oksana

    2018-05-01

    Magnetic nanowires (NWs) are promising candidates for heat generation under AC-field application due to their large shape anisotropy. They may be used for catalysis, hyperthermia, or water purification treatments. In the present work, we theoretically evaluate the heat dissipated by a single magnetic nanowire, originated from the domain wall (DW) dynamics under the action of an AC-field. We compare the Permalloy NWs (which demagnetize via the transverse wall propagation) with the Co fcc NWs whose reversal mode is via a vortex domain wall. The average hysteresis loop areas—which are proportional to the Specific Absorption Rate (SAR)—as a function of the field frequency have a pronounced maximum in the range 200 MHz-1 GHz. This maximum frequency is smaller in Permalloy than that in Co and depends on the nanowire length. A simple model related to the nucleation and propagation time and DW velocity (higher for the vortex than for the transverse domain wall) is proposed to explain the non-monotonic SAR dependence on the frequency.

  9. A Magnetic Carbon Sorbent for Radioactive Material from the Fukushima Nuclear Accident

    PubMed Central

    Yamaguchi, Daizo; Furukawa, Kazumi; Takasuga, Masaya; Watanabe, Koki

    2014-01-01

    Here we present the first report of a carbon-γ-Fe2O3 nanoparticle composite of mesoporous carbon, bearing COOH- and phenolic OH- functional groups on its surface, a remarkable and magnetically separable adsorbent, for the radioactive material emitted by the Fukushima Daiichi nuclear power plant accident. Contaminated water and soil at a level of 1,739 Bq kg−1 (134Cs and 137Cs at 509 Bq kg−1 and 1,230 Bq kg−1, respectively) and 114,000 Bq kg−1 (134Cs and 137Cs at 38,700 Bq kg−1 and 75,300 Bq kg−1, respectively) were decontaminated by 99% and 90% respectively with just one treatment carried out in Nihonmatsu city in Fukushima. Since this material is remarkably high performance, magnetically separable, and a readily applicable technology, it would reduce the environmental impact of the Fukushima accident if it were used. PMID:25116650

  10. Water confined in carbon nanotubes: Magnetic response and proton chemical shieldings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, P; Schwegler, E; Galli, G

    2008-11-14

    We study the proton nuclear magnetic resonance ({sup 1}H-NMR) of a model system consisting of liquid water in infinite carbon nanotubes (CNT). Chemical shieldings are evaluated from linear response theory, where the electronic structure is derived from density functional theory (DFT) with plane-wave basis sets and periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions, for water confined in (14,0) and (19,0) CNTs with diameters d = 11 {angstrom} and 14.9 {angstrom}, respectively. We find that confinement within the CNT leads to a large ({approx} -23 ppm) upfield shift relative tomore » bulk liquid water. This shift is a consequence of strongly anisotropic magnetic fields induced in the CNT by an applied magnetic field.« less

  11. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loginova, T. P., E-mail: tlg@ineos.ac.ru; Timofeeva, G. I.; Lependina, O. L.

    2016-01-15

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  12. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal.

    PubMed

    Liu, Xiaowang; Hu, Qiyan; Fang, Zhen; Zhang, Xiaojun; Zhang, Beibei

    2009-01-06

    Magnetic chitosan nanocomposites have been synthesized on the basis of amine-functionalized magnetite nanoparticles. These nanocomposites can be removed conveniently from water with the help of an external magnet because of their exceptional properties. The nanocomposites were applied to remove heavy metal ions from water because chitosan that is inactive on the surface of the magnetic nanoparticles is coordinated with them. The interaction between chitosan and heavy metal ions is reversible, which means that those ions can be removed from chitosan in weak acidic deionized water with the assistance of ultrasound radiation. On the basis of the reasons referred to above, synthesized magnetic chitosan nanocomposites were used as a useful recyclable tool for heavy metal ion removal. This work provides a potential platform for developing a unique route for heavy metal ion removal from wastewater.

  13. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Niether, Christiane; Faure, Stéphane; Bordet, Alexis; Deseure, Jonathan; Chatenet, Marian; Carrey, Julian; Chaudret, Bruno; Rouet, Alain

    2018-06-01

    Water electrolysis enables the storage of renewable electricity via the chemical bonds of hydrogen. However, proton-exchange-membrane electrolysers are impeded by the high cost and low availability of their noble-metal electrocatalysts, whereas alkaline electrolysers operate at a low power density. Here, we demonstrate that electrocatalytic reactions relevant for water splitting can be improved by employing magnetic heating of noble-metal-free catalysts. Using nickel-coated iron carbide nanoparticles, which are prone to magnetic heating under high-frequency alternating magnetic fields, the overpotential (at 20 mA cm-2) required for oxygen evolution in an alkaline water-electrolysis flow-cell was decreased by 200 mV and that for hydrogen evolution was decreased by 100 mV. This enhancement of oxygen-evolution kinetics is equivalent to a rise of the cell temperature to 200 °C, but in practice it increased by 5 °C only. This work suggests that, in the future, water splitting near the equilibrium voltage could be possible at room temperature, which is currently beyond reach in the classic approach to water electrolysis.

  14. A clinical repetitive transcranial magnetic stimulation service in Australia: 6 years on.

    PubMed

    Galletly, Cherrie A; Clarke, Patrick; Carnell, Benjamin L; Gill, Shane

    2015-11-01

    There is considerable research evidence for the effectiveness of repetitive transcranial magnetic stimulation in the treatment of depression. However, there is little information about its acceptability and outcomes in clinical settings. This naturalistic study reports on a clinical repetitive transcranial magnetic stimulation service that has been running in Adelaide, South Australia (SA), for 6 years. During this time, 214 complete acute courses were provided to patients with treatment-resistant Major Depressive Disorder. Patients received either sequential bilateral or right unilateral repetitive transcranial magnetic stimulation treatment involving either 18 or 20 sessions given over 6 or 4 weeks respectively. Data included patient demographic details, duration of depression, and medication at the beginning of their repetitive transcranial magnetic stimulation course. The Hamilton Depression Rating Scale was used to assess response to repetitive transcranial magnetic stimulation. Of those undergoing a first-time acute treatment course of repetitive transcranial magnetic stimulation (N = 167), 28% achieved remission, while a further 12% met the criteria for a response to treatment. Most patients (N = 123, 77%) had previously been treated with five or more antidepressant medications, and 77 (47%) had previously received electroconvulsive therapy. Referral rates remained high over the 6 years, indicating acceptance of the treatment by referring psychiatrists. There were no significant adverse events, and the treatment was generally well tolerated. In all, 41 patients (25%) had a second course of repetitive transcranial magnetic stimulation and 6 (4%) patients had a third course; 21 patients subsequently received maintenance repetitive transcranial magnetic stimulation. This naturalistic study showed that repetitive transcranial magnetic stimulation was well accepted by both psychiatrists and patients, and has good efficacy and safety. Furthermore, repetitive transcranial magnetic stimulation can provide a useful treatment alternative as part of outpatient mental health services for people with depression. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  15. Facile synthesis of poly(ionic liquid)-bonded magnetic nanospheres as a high-performance sorbent for the pretreatment and determination of phenolic compounds in water samples.

    PubMed

    Bi, Wentao; Wang, Man; Yang, Xiaodi; Row, Kyung Ho

    2014-07-01

    Poly(ionic liquid)-bonded magnetic nanospheres were easily synthesized and applied to the pretreatment and determination of phenolic compounds in water samples, which have detrimental effects on water quality and the health of living beings. The high affinity of poly(ionic liquid)s toward the target compounds as well as the magnetic behavior of Fe3 O4 were combined in this material to provide an efficient and simple magnetic solid-phase extraction approach. The adsorption behavior of the poly(ionic liquid)-bonded magnetic nanospheres was examined to optimize the synthesis. Different parameters affecting the magnetic solid-phase extraction of phenolic compounds were assessed in terms of adsorption and recovery. Under the optimal conditions, the proposed method showed excellent detection sensitivity with limits of detection in the range of 0.3-0.8 ng/mL and precision in the range of 1.2-3.3%. This method was also applied successfully to the analysis of real water samples; good spiked recoveries over the range of 82.5-99.2% were obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. ["Podmoskovie"--health resort institution of the Federal Drug Control Service of the Russian Federation celebrates the 20th anniversary].

    PubMed

    Bondar', I V; Minaev, D Iu; Nasretdinov, I N; Petukhov, A E

    2014-12-01

    The article is dedicated to the 20th anniversary of the Federal government health resort institution of the Federal Drug Control Service of the Russian Federation (FGI "Health resort "Podmoskovie" of the Federal Drug Control Service of the Russian Federation). In this health resort were developed treatment programs for patients with abnormalities of the cardiovascular, respiratory and digestive systems; methods of ultrasonic, laser and magnetic therapy, atmospheric hypoxic, herbal medicine, speleotherapy are employed. Widely used natural healing factors of Ruza district of the Moscow region such as climate therapy, treatment with mineral water group of X type of Smolensk from own wells and balneo-mudtherapy. Over the past 20 years 70 000 patients received an appropriate treatment in this health resort.

  17. Magnetism in graphene oxide induced by epoxy groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com; Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371; Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, whichmore » are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.« less

  18. Magnetism in graphene oxide induced by epoxy groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local Density Approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, whichmore » is generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.« less

  19. A magnetic fluid seal for rotary blood pumps: image and computational analyses of behaviors of magnetic fluids.

    PubMed

    Mitamura, Yoshinori; Yano, Tetsuya; Okamoto, Eiji

    2013-01-01

    A magnetic fluid (MF) seal has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids (several days). We have developed an MF seal that has a shield mechanism. The seal was perfect for 275 days in water. To investigate the effect of a shield, behaviors of MFs in a seal in water were studied both experimentally and computationally. (a) Two kinds of MF seals, one with a shield and one without a shield, were installed in a centrifugal pump. Behaviors of MFs in the seals in water were observed with a video camera and high-speed microscope. In the seal without a shield, the surface of the water in the seal waved and the turbulent flow affected behaviors of the MFs. In contrast, MFs rotated stably in the seal with a shield in water even at high rotational speeds. (b) Computational fluid dynamics analysis revealed that a stationary secondary flow pattern in the seal and small velocity difference between magnetic fluid and water at the interface. These MF behaviors prolonged the life of an MF seal in water.

  20. Biodegradable Chitosan Magnetic Nanoparticle Carriers for Sub-Cellular Targeting Delivery of Artesunate for Efficient Treatment of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Subramanian, Natesan; Abimanyu, Sugumaran; Vinoth, Jeevanesan; Sekar, Ponnusamy Chandra

    2010-12-01

    Artesunate is a semi-synthetic derivative of artemisinin, the active principle extracted from Artemisia annua. It possesses good anti-proliferative activity and anti-angiogenic activity with very low toxicity to normal healthy cells. The drawback of most cancer drugs is their inability to accumulate selectively in the cancerous cells. So, large quantities of doses have to be administered to get the required therapeutic concentration in the target site and it resulted in many serious side effects due to the exposure of healthy cells to higher concentrations of cytotoxic drugs. The problem may be solved by selectively and quantitatively accumulating the drug at target site using magnetic nanoparticles guided by an externally applied magnetic field. A modest attempt has been made in this present study, the artesunate magnetic nanoparticle was successfully formulated using two forms of chitosan and evaluated for its in-vitro characteristics like surface morphology, particle size and distribution, zeta potential, magnetic susceptibility, encapsulation efficiency, loading capacity and in-vitro drug release. The synthesized magnetite size was 73 nm and the size of developed magnetic nanoparticles of artesunate was in the range of 90 to 575 nm. Acetic acid soluble chitosan at low concentration exhibit highest encapsulation efficiency and drug loading whereas increase in water soluble chitosan concentration increases the encapsulation efficiency and drug loading in formulations. The developed chitosan magnetic nanoparticles of artesunate shows better release characteristics and may be screened for its in-vivo breast cancer activity.

  1. Enhancement of simultaneous algicidal and denitrification of immobilized Acinetobacter sp. J25 with magnetic Fe3O4 nanoparticles.

    PubMed

    Su, Jun Feng; Liang, Dong Hui; Huang, Ting Lin; Wei, Li; Ma, Min; Lu, Jinsuo

    2017-07-01

    In this study, immobilization technique was employed to improve simultaneous algicidal and denitrification of immobilized Acinetobacter sp. J25 with magnetic Fe 3 O 4 in eutrophic landscape water. After 7 days of operation, the maximum superoxide dismutase (SOD) activity (54.43 U mg -1 ), nitrate removal efficiency (100% (0.2127 mg L -1  h -1 )), and chlorophyll-a removal efficiency (89.71%) were obtained from the immobilized J25 with magnetic Fe 3 O 4 . The results suggest that immobilized J25 with magnetic Fe 3 O 4 had better nitrogen removal efficiency and algicidal activity in eutrophic landscape water. High-throughput sequencing data profiled the strain J25 that was immobilized with magnetic Fe 3 O 4 which changed the composition of the microbial community. The results indicated a novel concept of enhancing the algicidal and denitrification property of immobilized bacteria with magnetic Fe 3 O 4 in eutrophic landscape water.

  2. Magnetic-mediated hyperthermia for cancer treatment: Research progress and clinical trials

    NASA Astrophysics Data System (ADS)

    Zhao, Ling-Yun; Liu, Jia-Yi; Ouyang, Wei-Wei; Li, Dan-Ye; Li, Li; Li, Li-Ya; Tang, Jin-Tian

    2013-10-01

    Research progress and frontiers of magnetic-mediated hyperthermia (MMH) are presented, along with clinical trials in Germany, the US, Japan, and China. Special attention is focused on MMH mediated by magnetic nanoparticles, and multifunctional magnetic devices for cancer multimodality treatment are also introduced.

  3. Eddy current characterization of magnetic treatment of nickel 200

    NASA Technical Reports Server (NTRS)

    Chern, E. J.

    1993-01-01

    Eddy current methods have been applied to characterize the effect of magnetic treatments on component service-life extension. Coil impedance measurements were acquired and analyzed on nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in electromagnetic properties of nickel 200 that then exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic field processing effect on machine-tool service life.

  4. Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments

    Treesearch

    Mingtao Wang; Melvin T. Tyree; Roderick E. Wasylishen

    2013-01-01

    Temporal and spatial information about water refilling of embolized xylem vessels and the rate of water ascent in these vessels is critical for understanding embolism repair in intact living vascular plants. High-resolution 1H magnetic resonance imaging (MRI) experiments have been performed on embolized grapevine stem segments while they were...

  5. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings.

    PubMed

    Chen, Yi-ping; Li, Ran; He, Jun-Min

    2011-06-01

    To alleviate toxicological effect induced by cadmium in mungbean seedlings, seeds were divided into four groups: The controls groups (CK, without treatment), magnetic field treated groups (MF), cadmium treated groups (CS), and magnetic field treated followed by cadmium treated groups (MF + CS).The results showed: (i) Compared with the controls, cadmium stress resulted in enhancing in the concentration of malondialdehyde, H(2)O(2) and O(2-), and the conductivity of electrolyte leakage while decreasing in the nitrice oxide synthase (NOS) activity, the concentration of nitrice oxide (NO), chlorophyll and total carbon and nitrogen, the net photosynthetic rate, the stomatal conductance, the transpiration rate, the water use efficiency, the lateral number and seedlings growth except for intercellular CO(2) concentration increase. However, the seedlings treated with 600 mT magnetic field followed by cadmium stress the concentration of malondialdehyde, H(2)O(2) and O(2-), and the conductivity of electrolyte leakage decreased, while the above mentioned NO concentration, NOS activity, photosynthesis and growth parameters increased compared to cadmium stress alone. (ii) Compared with the cadmium stress (CS), the seedling growth were inhibited when the seeds were treated with NO scavenger (hemoglobin, HB) and inhibition of NO generating enzyme (sodium tungstate, ST), conversely, the seedling growth were improved by the NO donor sodium nitroprusside (SNP) and CaCl(2). In the case of the HB and ST treatment followed by magnetic field and then the seedling subjected to CS, the seedlings growth was better than that of hemoglobin (HB) followed by CS and ST followed by CS. The seeds were treated with SNP and CaCl(2) followed by MF, and then subjected to CS, the seedlings growth were better than that of SNP followed by CS, and CaCl(2) followed by CS. These results suggested that magnetic field compensates for the toxicological effects of cadmium exposure are related to NO signal.

  6. Diffusion magnetic resonance imaging: A molecular imaging tool caught between hope, hype and the real world of “personalized oncology”

    PubMed Central

    Mahajan, Abhishek; Deshpande, Sneha S; Thakur, Meenakshi H

    2017-01-01

    “Personalized oncology” is a multi-disciplinary science, which requires inputs from various streams for optimal patient management. Humongous progress in the treatment modalities available and the increasing need to provide functional information in addition to the morphological data; has led to leaping progress in the field of imaging. Magnetic resonance imaging has undergone tremendous progress with various newer MR techniques providing vital functional information and is becoming the cornerstone of “radiomics/radiogenomics”. Diffusion-weighted imaging is one such technique which capitalizes on the tendency of water protons to diffuse randomly in a given system. This technique has revolutionized oncological imaging, by giving vital qualitative and quantitative information regarding tumor biology which helps in detection, characterization and post treatment surveillance of the lesions and challenging the notion that “one size fits all”. It has been applied at various sites with different clinical experience. We hereby present a brief review of this novel functional imaging tool, with its application in “personalized oncology”. PMID:28717412

  7. Design and Analysis of Nano-Pulse Generator for Industrial Wastewater Application

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Duck; Son, Yoon-Kyoo; Cho, Moo-Hyun; Norov, Enkhbat

    2018-05-01

    Recently, the application of a pulsed power system is being extended to environmental and industrial fields. The non-dissolution wastewater pollutants from industrial plants can be processed by applying high-voltage pulses with a fast rising time (a few nanoseconds) and short duration (nano to microseconds) in a pulsed corona discharge reactor. The high-voltage nano-pulse generator with a magnetic switch has been developed. It can be used for a spray type water treatment facility. Its corona current in load can be adjusted by pulse width and repetition rate. We investigated the performance of the nano-pulse generator by using the dummy load that is composed of resistor and capacitor equivalent to the actual reactor. In this paper, the results of design, construction and characterization of a high-voltage nano-pulse generator for an industrial wastewater treatment are reported. Consequently, a pulse width of 1.1 μs at the repetition rate of 200 pps, a peak voltage of 41 kV for the nano-pulse generator were achieved across a 640 Ω load. The simulation results on magnetic switch show reasonable agreement with experimental ones.

  8. [Effects of quantum nonlocality in the water activation process].

    PubMed

    Zatsepina, O V; Stekhin, A A; Yakovleva, G V

    2014-01-01

    The dynamic alterations of the magnetic flux density of the water volume, activated with structurally stressed calcium carbonate in micellar form have been investigated. The phase of the associated water was established to exhibit electrical and magnetic properties, recorded by in B&E meter in the frequency range of 5Hz - 2kHz. Alterations in water Eh (redox) potential and the magnetic flux density B testify to synchronous auto-oscillatory changes. This gives evidence of non-linearity of the relationship between auto-oscillatory processes excited in the water; and reflects the nonlocal in time the relationship between the states of water, manifesting in a change of water activity on the 1st and 2nd day in negative time. The mechanism of action of associated water phase is shown to be described by de Broglie concept of matter waves with taking into account delocalized in time states of phase of electron wave packet in accordance with the transactional interpretation of quantum physics.

  9. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles.

    PubMed

    Qu, Song; Huang, Fei; Yu, Shaoning; Chen, Gang; Kong, Jilie

    2008-12-30

    The Fe2O3 nanoparticles have been introduced into the multi-walled carbon nanotubes (MWCNTs) via wet chemical method. The resulting products are characterized by TEM, EDX, XRD and VSM. The magnetic MWCNTs have been employed as adsorbent for the magnetic separation of dye contaminants from water. The adsorption test of dyes (Methylene Blue and Neutral Red) demonstrates that it only takes 60min to attain equilibrium and the adsorption capacities for Methylene Blue and Neutral Red in the concentration range studied are 42.3 and 77.5mg/g, respectively. The magnetic MWCNTs can be easily manipulated in magnetic field for desired separation, leading to the removal of dyes from polluted water. The integration of MWCNTs with Fe2O3 nanoparticles has great potential application to remove organic dyes from polluted water.

  10. Colloidal layers in magnetic fields and under shear flow

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Messina, R.; Hoffmann, N.; Likos, C. N.; Eisenmann, C.; Keim, P.; Gasser, U.; Maret, G.; Goldberg, R.; Palberg, T.

    2005-11-01

    The behaviour of colloidal mono- and bilayers in external magnetic fields and under shear is discussed and recent progress is summarized. Superparamagnetic colloidal particles form monolayers when they are confined to a air-water interface in a hanging water droplet. An external magnetic field allows us to tune the strength of the mutual dipole-dipole interaction between the colloids and the anisotropy of the interaction can be controlled by the tilt angle of the magnetic field relative to the surface normal of the air-water interface. For sufficiently large magnetic field strength crystalline monolayers are found. The role of fluctuations in these two-dimensional crystals is discussed. Furthermore, clustering phenomena in binary mixtures of superparamagnetic particles forming fluid monolayers are predicted. Finally, we address sheared colloidal bilayers and find that the orientation of confined colloidal crystals can be tailored by a previously applied shear direction.

  11. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    NASA Astrophysics Data System (ADS)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-03-01

    Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3- groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  12. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack

    2011-03-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

  13. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    NASA Astrophysics Data System (ADS)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  14. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    NASA Astrophysics Data System (ADS)

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-03-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources.

  15. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    PubMed Central

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-01-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources. PMID:26964502

  16. [Treatment effects of magnetic Twin-block appliance for class II cases].

    PubMed

    Wu, Jian-Yong; Liu, Jian; Li, Qi-Shun; Xu, Tian-Min; Lin, Jiu-Xiang

    2007-09-01

    To evaluate the effects of magnetic Twin-block appliance in the treatment of skeletal class II cases. The magnetic Twin-block appliance was embedded with two pairs of neodymium-iron-boron (Nd(2)Fe(14)B) rare earth permanent magnets in the upper and lower inclined planes of Twin-block appliance. The sample comprised of 13 skeletal class II patients in the late mixed or early permanent dentition treated by magnetic Twin-block appliance. Cephalometric films were taken before and after treatment. Helix CT images of the temporomandibular joint (TMJ) in all patients were examined before treatment (T1), during treatment (4 months after appliance placement, T2), after treatment (T3) and one year after treatment (T4). A double contour image was detected in the superior posterior part of the condylar head on the pseudo-sagittal reconstruction plane pictures of T2 in 11 patients. The double contour image could be observed in most patients as well. This image also exhibited on the pictures of T3 in several patients. On the pictures of T2 and T3 in some patients, interruption of cortical bone and "bifurcation phenomenon" of condyles were shown. Pictures of T1 and T4 were similar and no signs of remodeling of TMJ were observed. Cephalometric analysis revealed significant changes in the maxillofacial structure after treatment. The profile of patients improved. Bone remodeling of condyle occurred during the magnetic Twin-block treatment in class II patients. Magnetic Twin-block appliance was effective in the treatment of the growing skeletal class II patients.

  17. Magnetic fingerprint of the sediment load in a meander bend section of the Seine River (France)

    NASA Astrophysics Data System (ADS)

    Kayvantash, D.; Cojan, I.; Kissel, C.; Franke, C.

    2017-06-01

    This study aims to evaluate the potential of magnetic methods to determine the composition of the sediment load in a cross section of an unmanaged meander in the upstream stretch of the Seine River (Marnay-sur-Seine). Suspended particulate matter (SPM) was collected based on a regular sampling scheme along a cross section of the river, at two different depth levels: during a low-water stage (May 2014) and a high-water stage (February 2015). Riverbed sediments (RBS) were collected during the low-water stage and supplementary samples were taken from the outer and inner banks. Magnetic properties of the dry bulk SPM and sieved RBS and bank sediments were analysed. After characterizing the main magnetic carrier as magnetite, hysteresis parameters were measured, giving access to the grain size and the concentration of these magnetite particles. The results combined with sedimentary grain size data were compared to the three-dimensional velocity profile of the river flow. In the RBS where the magnetic grain size is rather uniform, the concentration of magnetite is inversely proportional to the mean grain size of the total sediment indicating that magnetite is strongly associated with the fine sedimentary fraction. The same pattern is observed in the samples from the outer and inner banks. During the low-water stage, the uniformly fine SPM grain size distribution characterizes the wash load. The magnetic fraction is also relatively fine (within the pseudo single domain range) with concentration similar to that of the fine RBS fraction. During the high-water stage, SPM samples correspond to mixtures of wash load and resuspended sediment from the bedload and riverbanks. Here, the grain size distribution is heterogeneous across the section showing coarser particles compared to those in the low-water stage and more varying magnetite concentrations while the magnetic grain size is like that of the low-water stage. The magnetite concentration in the high-water SPM can be modelled based on a mixing of the magnetite concentrations of the different grain size fractions, thus quantifying the impact of resuspension in the cross section.

  18. Repetitive transcranial magnetic stimulation improves consciousness disturbance in stroke patients: A quantitative electroencephalography spectral power analysis.

    PubMed

    Xie, Ying; Zhang, Tong

    2012-11-05

    Repetitive transcranial magnetic stimulation is a noninvasive treatment technique that can directly alter cortical excitability and improve cerebral functional activity in unconscious patients. To investigate the effects and the electrophysiological changes of repetitive transcranial magnetic stimulation cortical treatment, 10 stroke patients with non-severe brainstem lesions and with disturbance of consciousness were treated with repetitive transcranial magnetic stimulation. A quantitative electroencephalography spectral power analysis was also performed. The absolute power in the alpha band was increased immediately after the first repetitive transcranial magnetic stimulation treatment, and the energy was reduced in the delta band. The alpha band relative power values slightly decreased at 1 day post-treatment, then increased and reached a stable level at 2 weeks post-treatment. Glasgow Coma Score and JFK Coma Recovery Scale-Revised score were improved. Relative power value in the alpha band was positively related to Glasgow Coma Score and JFK Coma Recovery Scale-Revised score. These data suggest that repetitive transcranial magnetic stimulation is a noninvasive, safe, and effective treatment technology for improving brain functional activity and promoting awakening in unconscious stroke patients.

  19. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    PubMed Central

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  20. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    NASA Astrophysics Data System (ADS)

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-04-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.

  1. Sodium citrate functionalized reusable Fe3O4@TiO2 photocatalyst for water purification

    NASA Astrophysics Data System (ADS)

    Li, Wenyu; Wu, Haoyi

    2017-10-01

    Easy-recycle photocatalysts are new materials for water treatment technologies. In order to improve the recyclable ability, we employed Fe3O4 particles, which were functionalized by sodium citrate, to serve as a substrate core to attract the deposition of a shell of TiO2 particles. When compared to the calcining process for preparing the composite, the TiO2 distributed homogeneously on the sodium citrate treated Fe3O4, forming a mesoporous shell layer. Due to the mesoporous structure, this Fe3O4@TiO2 exhibited high photocatalytic degradation activity to Rhodamine B, and it was easily recycled using a magnetic field to recover the catalyst from solution.

  2. Magnetic iron oxide nanoparticles for the collection and direct measurement of adsorbed alpha-emitting radionuclides from environmental waters by liquid scintillation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Matthew J.; Addleman, R. Shane

    Radioactive contamination in the environment, be it from accidental or intentional release, can create an urgent need to assess water and food supplies, the environment, and monitor human health. Alpha-emitting radionuclides represent the most ionizing, and therefore the most damaging, form of radiation when internalized. Additionally, because of its ease of energy attenuation in solids or liquids, alpha emissions cannot be reliably monitored using non-destructive means. In the event of such an emergency, rapid and efficient methods will be needed to screen scores of samples (food, water, and human excreta) within a short time window. Unfortunately, the assay of alpha-emittingmore » radionuclides using traditional radioanalytical methods is typically labor intensive and time consuming. The creation of analytical counting sources typically requires a series of chemical treatment steps to achieve well performing counting sources. In an effort to devise radioanalytical methods that are fast, require little labor, and minimize the use of toxic or corrosive agents, researchers at PNNL have evaluated magnetite (Fe3O4) nanoparticles as extracting agents for alpha-emitting radionuclides from chemically unmodified aqueous systems. It is demonstrated that bare magnetic nanoparticles exhibit high affinity for representative α-emitting radionuclides (241Am and 210Po) from representative aqueous matrices: river and ground water. Furthermore, use of the magnetic properties of these materials to concentrate the sorbed analyte from the bulk aqueous solution has been demonstrated. The nanoparticle concentrate can be either directly dispensed into scintillation cocktail, or first dissolved and then added to scintillation cocktail as a solution for alpha emission assay by liquid scintillation analysis. Despite the extreme quench caused by the metal oxide suspensions, the authors have demonstrated that quench correction features available on modern liquid scintillation analyzers can be employed to assure that quench-induced analytical biases can be avoided.« less

  3. Structural elucidation of main ozonation products of the artificial sweeteners cyclamate and acesulfame.

    PubMed

    Scheurer, Marco; Godejohann, Markus; Wick, Arne; Happel, Oliver; Ternes, Thomas A; Brauch, Heinz-Jürgen; Ruck, Wolfgang K L; Lange, Frank Thomas

    2012-05-01

    The two artificial sweeteners cyclamate (CYC) and acesulfame (ACE) have been detected in wastewater and drinking water treatment plants. As in both facilities ozonation might be applied, it is important to find out if undesired oxidation products (OPs) are formed. For the separation and detection of the OPs, several analytical techniques, including nuclear magnetic resonance experiments, were applied. In order to distinguish between direct ozone reaction and a radical mechanism, experiments were carried out at different pH values with and without scavenging OH radicals. Kinetic experiments were used for confirmation that the OPs are formed during short ozone contact time applied in waterworks. Samples from a waterworks using bank filtrate as raw water were analyzed in order to prove that the identified OPs are formed in real and full-scale ozone applications. In the case of CYC, oxidation mainly occurs at the carbon atom, where the sulfonamide moiety is bound to the cyclohexyl ring. Consequently, amidosulfonic acid and cyclohexanone are formed as main OPs of CYC. When ozone reacts at another carbon atom of the ring a keto moiety is introduced into the CYC molecule. Acetic acid and the product ACE OP170, an anionic compound with m/z=170 and an aldehyde hydrate moiety, were identified as the main OPs for ACE. The observed reaction products suggest an ozone reaction according to the Criegee mechanism due to the presence of a C=C double bond. ACE OP170 was also detected after the ozonation unit of a full-scale drinking water treatment plant which uses surface water-influenced bank filtrate as raw water. Acesulfame can be expected to be found in anthropogenic-influenced raw water used for drinking water production. However, when ACE OP170 is formed during ozonation, it is not expected to cause any problem for drinking water suppliers, because the primary findings suggest its removal in subsequent treatment steps, such as activated carbon filters.

  4. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field.

    PubMed

    Yang, Y M; Bednarz, B

    2013-02-21

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

  5. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Bednarz, B.

    2013-02-01

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

  6. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles.

    PubMed

    Hyder, Fahmeed; Manjura Hoque, S

    2017-01-01

    Ferrite nanoparticles (F-NPs) can transform both cancer diagnostics and therapeutics. Superparamagnetic F-NPs exhibit high magnetic moment and susceptibility such that in presence of a static magnetic field transverse relaxation rate of water protons for MRI contrast is augmented to locate F-NPs (i.e., diagnostics) and exposed to an alternating magnetic field local temperature is increased to induce tissue necrosis (i.e., thermotherapy). F-NPs are modified by chemical synthesis of mixed spinel ferrites as well as their size, shape, and coating. Purposely designed drug-containing nanoparticles (D-NPs) can slowly deliver drugs (i.e., chemotherapy). Convection-enhanced delivery (CED) of D-NPs with MRI guidance improves glioblastoma multiforme (GBM) treatment. MRI monitors the location of chemotherapy when D-NPs and F-NPs are coadministered with CED. However superparamagnetic field gradients produced by F-NPs complicate MRI readouts (spatial distortions) and MRS (extensive line broadening). Since extracellular pH (pH e ) is a cancer hallmark, pH e imaging is needed to screen cancer treatments. Biosensor imaging of redundant deviation in shifts (BIRDS) extrapolates pH e from paramagnetically shifted signals and the pH e accuracy remains unaffected by F-NPs. Hence effect of both chemotherapy and thermotherapy can be monitored (by BIRDS), whereas location of F-NPs is revealed (by MRI). Smarter tethering of nanoparticles and agents will impact GBM theranostics.

  7. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation

    PubMed Central

    Hu, Lihua; Li, Yan; Zhang, Xuefei; Wang, Yaoguang; Cui, Limei; Wei, Qin; Ma, Hongmin; Yan, Liangguo; Du, Bin

    2016-01-01

    Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. MWHPO-GO exhibited excellent adsorption performance for the removal of synthetic dyes (methylene blue (MB) and methyl violet (MV)) and heavy metal (Pb(II)). Moreover, MWHPO-GO could be simply recovered from water with magnetic separation. The pseudo-second order equation and the Langmuir model exhibited good correlation with the adsorption kinetic and isotherm data, respectively, for these three pollutants. The thermodynamic results (ΔG < 0, ΔH < 0, ΔS < 0) implied that the adsorption process of MB, MV and Pb(II) was feasible, exothermic and spontaneous in nature. A possible adsorption mechanism has been proposed where π-π stacking interactions, H-bonding interaction and electrostatic attraction dominated the adsorption of MB/MV and chelation and electrostatic attraction dominated the adsorption of Pb(II). In addition, the excellent reproducibility endowed MWHPO-GO with the potential for application in water remediation. PMID:27354318

  8. Influence of Heat Treatments on Microstructure and Magnetic Domains in Duplex Stainless Steel S31803

    NASA Astrophysics Data System (ADS)

    Dille, Jean; Pacheco, Clara Johanna; Camerini, Cesar Giron; Malet, Loic Charles; Nysten, Bernard; Pereira, Gabriela Ribeiro; De Almeida, Luiz Henrique; Alcoforado Rebello, João Marcos

    2018-06-01

    The influence of heat treatments on microstructure and magnetic domains in duplex stainless steel S31803 is studied using an innovative structural characterization protocol. Electron backscatter diffraction (EBSD) maps as well as magnetic force microscopy (MFM) images acquired on the same region of the sample, before and after heat treatment, are compared. The influence of heat treatments on the phase volumetric fractions is studied, and several structural modifications after heat treatment are highlighted. Three different mechanisms for the decomposition of ferrite into sigma phase and secondary austenite are observed during annealing at 800 °C. MFM analysis reveals that a variety of magnetic domain patterns can exist in one ferrite grain.

  9. Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples.

    PubMed

    Ren, Ji-Yun; Wang, Xiao-Li; Li, Xiao-Li; Wang, Ming-Lin; Zhao, Ru-Song; Lin, Jin-Ming

    2018-02-01

    Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted great interest because of their large surface area and high chemical and thermal stability. However, to the best of our knowledge, no work has reported the use of magnetic COFs as adsorbents for magnetic solid-phase extraction (MSPE) to enrich and determine environmental pollutants. This work aims to investigate the feasibility of using covalent triazine-based framework (CTF)/Fe 2 O 3 composites as MSPE adsorbents to enrich and analyze perfluorinated compounds (PFCs) at trace levels in water samples. Under the optimal conditions, the method developed exhibited low limits of detection (0.62-1.39 ng·L -1 ), a wide linear range (5-4000 ng L -1 ), good repeatability (1.12-9.71%), and good reproducibility (2.45-7.74%). The new method was successfully used to determine PFCs in actual environmental water samples. MSPE based on CTF/Fe 2 O 3 composites exhibits potential for analysis of PFCs at trace levels in environmental water samples. Graphical abstract Magnetic covalent triazine-based frameworks (CTFs) were used as magnetic solid-phase extraction adsorbents for the sensitive determination of perfluorinated compounds in environmental water samples. PFBA perfluorobutyric acid, PFBS perfluorobutane sulfonate, PFDA perfluorodecanoic acid, PFDoA perfluorododecanoic acid, PFHpA perfluoroheptanoic acid, PFHxA perfluorohexanoic acid, PFHxS perfluorohexane sulfonate, PFNA perfluorononanoic acid, PFOA perfluorooctanoic acid, PFPeA perfluoropentanoic acid, PFUdA Perfluoroundecanoic acid.

  10. In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment.

    PubMed

    Zhao, Lingyun; Huo, Meijun; Liu, Jiayi; Yao, Zhu; Li, Danye; Zhao, Zhiwei; Tang, Jintian

    2013-02-01

    Cancer comprehensive treatment has been fully recognized as it can provide an effective multimodality approach for fighting cancers. In therapeutic oncology, hyperthermic adjuvant chemotherapy termed as thermochemotherapy plays an increasing role in multimodality cancer treatment. Currently, targeted nanothermotherapy is one of the effective hyperthermia approach based on magnetic nanoparticles (MNPs), which can be achieved by applying biocompatible nanoscaled metallic particles that convert electromagnetic energy into heat, for instance, magnetic fluid hyperthermia (MFH) mediated by superparamagnetic iron oxide nanoparticles (SPIONs). Upon exposure under alternative magnetic field (AMF), SPIONs can generate heat through oscillation of their magnetic moment. Nowadays, clinical trials at phase II are now under investigations for MFH on patients in Germany and Japan and demonstrate very inspiring for cancer therapy. In this work we explore the feasibility and effectiveness of magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate, an anti-cancer drug, for breast cancer comprehensive treatment. Amino silane coated MNPs as agent of MFH were prepared by the chemical precipitation method. Physiochemical characterizations on MNPs have been systematically carried out by various instrumental analyses. Inductive heating property of the MNPs was evaluated by monitoring the temperature increase of the MNPs suspension under AMF. The in-vitro cytotoxicity results on human breast cancer cell MCF-7 by CCK-8 assay indicated the bi-modal cancer treatment approach for combined MFH and chemotherapy is more effective than mono-modal treatment, indicating a thermal enhancement effect of hyperthermia on drug cytocoxicity. The magnetic thermochemotherapy mediated by MNPs combined with methotrexate can realize cancer comprehensive treatment thus has great potential in clinical application.

  11. Effects of heat treatment on crystallographic and magnetic properties of magnetic steels

    NASA Astrophysics Data System (ADS)

    Battistini, L.; Benasciutti, R.; Tassi, A.

    1994-05-01

    The keeper and the head of a modern electrovalve for electronic injection can be succesfully realized using AISI 430 ferromagnetic steel. Important improvements in the performance of the device, mainly in terms of its regularity and energy savings, are possible by means of a better comprehension of the origins of the steel's magnetic properties. The magnetic behaviour of the AISI 430 steel upon different heat treatments was investigated, looking for the best compromise between time saving in the heat treatments and the ensuing magnetic properties of the material. In particular, the relationships between the structural effects of the heat treatments and the magnetic behaviour of the samples were studied. Values of the coercive force Hc, residual induction Br, maximum permeability μ max and the approach to saturation values for H and B were determined by mean of a computerized permeameter, based on a Sanford-Bennet closed yoke for differently shaped samples.

  12. A new magnetic coupling pump of residual pressure energy

    NASA Astrophysics Data System (ADS)

    Tong, Junjie; Ma, Xiaoqian; Fang, Yunhui

    2017-10-01

    A new method of magnetic coupling pump based on residual pressure is designed and the theoretical analysis and design calculation are carried out. The magnetic coupling pump device based on residual pressure is developed to achieve zero leakage during the energy conversion of two kinds of fluids. The results show that under the same displacement condition, the pressure head of the feed water is reduced with the increase of the feed water flow rate, the rotation speed of the axial impeller decreases gradually with the increase of the diameter of the drain pipe. In the case of the same water supply flow, the impeller speed increases with the increase of the displacement. When the available drainage increases, the pressure of the feed water supply increases.

  13. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    PubMed Central

    Efthimiadou, Aspasia; Katsenios, Nikolaos; Papastylianou, Panayiota; Triantafyllidis, Vassilios; Travlos, Ilias; Bilalis, Dimitrios J.

    2014-01-01

    The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT) has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences. PMID:25097875

  14. A preliminary magnetic study of Sawa lake sediments, Southern Iraq

    NASA Astrophysics Data System (ADS)

    Ameen, Nawrass

    2016-04-01

    A preliminary magnetic study combined with chemical analyses was carried out in Sawa Lake in Al-Muthanna province, southern Iraq, about 22 km south west of Samawa city (31°18'48.80"N, 45°0'25.25"E). The lake is about 4.74 km length, 1.75 km width and 5.5 m height, it is surrounded by a salt rim which is higher than the lake water by about 2.8 m and sea water by about 18.5 m (Naqash et al., 1977 in Hassan, 2007). The lake is an elongated closed basin with no surface water available to it, it may be fed by groundwater of the Euphrates and Dammam aquifers through system of joints and cracks. This study aims to investigate the concentrations of selected heavy metals as pollutants and magnetic susceptibility (MS) and other magnetic properties of sediment samples from fifty sites collected from the bottom of the lake, the study area lies in an industrial area. The results show spatial variations of MS with mean value of about 4.58 x 10-8 m3 kg-1. Scanning electron microscopy and magnetic mineralogy parameters indicate the dominance of soft magnetic phase like magnetite and presence of hard magnetic phase like hematite. Spatial variations of MS combined with the concentrations of heavy metals suggests the efficiency of magnetic methods as effective, inexpensive and non-time consuming method to outlining the heavy metal pollution. References: Hassan W.F., 2007. The Physio-chemical characteristic of Sawa lake water in Samawa city-Iraq. Marine Mesopotamica, 22(2), 167-179.

  15. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification.

    PubMed

    Rajapaksha, Anushka Upamali; Chen, Season S; Tsang, Daniel C W; Zhang, Ming; Vithanage, Meththika; Mandal, Sanchita; Gao, Bin; Bolan, Nanthi S; Ok, Yong Sik

    2016-04-01

    The use of biochar has been suggested as a means of remediating contaminated soil and water. The practical applications of conventional biochar for contaminant immobilization and removal however need further improvements. Hence, recent attention has focused on modification of biochar with novel structures and surface properties in order to improve its remediation efficacy and environmental benefits. Engineered/designer biochars are commonly used terms to indicate application-oriented, outcome-based biochar modification or synthesis. In recent years, biochar modifications involving various methods such as, acid treatment, base treatment, amination, surfactant modification, impregnation of mineral sorbents, steam activation and magnetic modification have been widely studied. This review summarizes and evaluates biochar modification methods, corresponding mechanisms, and their benefits for contaminant management in soil and water. Applicability and performance of modification methods depend on the type of contaminants (i.e., inorganic/organic, anionic/cationic, hydrophilic/hydrophobic, polar/non-polar), environmental conditions, remediation goals, and land use purpose. In general, modification to produce engineered/designer biochar is likely to enhance the sorption capacity of biochar and its potential applications for environmental remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution.

    PubMed

    Xin, Ouyang; Yitong, Han; Xi, Cao; Jiawei, Chen

    2017-03-01

    Biochar has been developed in recent years for the removal of contaminants such as Cr (VI) in water. The enhancement of the adsorption capacity of biochar and its recyclable use are still challenges. In this study, magnetic biochar derived from corncobs and peanut hulls was synthesized under different pyrolysis temperatures after pretreating the biomass with a low concentration of 0.5 M FeCl 3 solution. The morphology, specific surface area, saturation magnetization and Fourier transform infrared spectroscopy (FT-IR) spectra were characterized for biochar. The magnetic biochar performed well in combining adsorption and separation recycle for the removal of Cr (VI) in water. The Cr (VI) adsorbance of the biochar was increased with the increase in pyrolysis temperature, and the magnetic biochar derived from corncobs showed better performance for both magnetization and removal of Cr (VI) than that from peanut hulls. The Langmuir model was used for the isothermal adsorption and the maximum Cr (VI) adsorption capacity of corncob magnetic biochar pyrolyzed at 650 °C reached 61.97 mg/g. An alkaline solution (0.1 M NaOH) favored the desorption of Cr (VI) from the magnetic biochar, and the removal of Cr (VI) still remained around 77.6% after four cycles of adsorption-desorption. The results showed that corncob derived magnetic biochar is a potentially efficient and recoverable adsorbent for remediation of heavy metals in water.

  17. Magnetic-Nanoflocculant-Assisted Water-Nonpolar Solvent Interface Sieve for Microalgae Harvesting.

    PubMed

    Lee, Kyubock; Na, Jeong-Geol; Seo, Jung Yoon; Shim, Tae Soup; Kim, Bohwa; Praveenkumar, Ramasamy; Park, Ji-Yeon; Oh, You-Kwan; Jeon, Sang Goo

    2015-08-26

    Exploitation of magnetic flocculants is regarded as a very promising energy-saving approach to microalgae harvesting. However, its practical applicability remains limited, mainly because of the problem of the postharvest separation of magnetic flocculants from microalgal flocs, which is crucial both for magnetic-flocculant recycling and high-purity microalgal biomasses, but which is also a very challenging and energy-consuming step. In the present study, we designed magnetic nanoflocculants dually functionalizable by two different organosilane compounds, (3-aminopropyl)triethoxysilane (APTES) and octyltriethoxysilane (OTES), which flocculate negatively charged microalgae and are readily detachable at the water-nonpolar organic solvent (NOS) interface only by application of an external magnetic field. APTES functionalization imparts a positive zeta potential charge (29.6 mV) to magnetic nanoflocculants, thereby enabling microalgae flocculation with 98.5% harvesting efficiency (with a dosage of 1.6 g of dMNF/g of cells). OTES functionalization imparts lipophilicity to magnetic nanoflocculants to make them compatible with NOS, thus effecting efficient separation of magnetic flocculants passing through the water-NOS interface sieve from hydrophilic microalgae. Our new energy-saving approach to microalgae harvesting concentrates microalgal cultures (∼1.5 g/L) up to 60 g/L, which can be directly connected to the following process of NOS-assisted wet lipid extraction or biodiesel production, and therefore provides, by simplifying multiple downstream processes, a great potential cost reduction in microalgae-based biorefinement.

  18. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    PubMed

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  19. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.

    PubMed

    Johannsen, M; Gneveckow, U; Eckelt, L; Feussner, A; Waldöfner, N; Scholz, R; Deger, S; Wust, P; Loening, S A; Jordan, A

    2005-11-01

    The aim of this pilot study was to evaluate whether the technique of magnetic fluid hyperthermia can be used for minimally invasive treatment of prostate cancer. This paper presents the first clinical application of interstitial hyperthermia using magnetic nanoparticles in locally recurrent prostate cancer. Treatment planning was carried out using computerized tomography (CT) of the prostate. Based on the individual anatomy of the prostate and the estimated specific absorption rate (SAR) of magnetic fluids in prostatic tissue, the number and position of magnetic fluid depots required for sufficient heat deposition was calculated while rectum and urethra were spared. Nanoparticle suspensions were injected transperineally into the prostate under transrectal ultrasound and flouroscopy guidance. Treatments were delivered in the first magnetic field applicator for use in humans, using an alternating current magnetic field with a frequency of 100 kHz and variable field strength (0-18 kA m(-1)). Invasive thermometry of the prostate was carried out in the first and last of six weekly hyperthermia sessions of 60 min duration. CT-scans of the prostate were repeated following the first and last hyperthermia treatment to document magnetic nanoparticle distribution and the position of the thermometry probes in the prostate. Nanoparticles were retained in the prostate during the treatment interval of 6 weeks. Using appropriate software (AMIRA), a non-invasive estimation of temperature values in the prostate, based on intra-tumoural distribution of magnetic nanoparticles, can be performed and correlated with invasively measured intra-prostatic temperatures. Using a specially designed cooling device, treatment was well tolerated without anaesthesia. In the first patient treated, maximum and minimum intra-prostatic temperatures measured at a field strength of 4.0-5.0 kA m(-1) were 48.5 degrees C and 40.0 degrees C during the 1st treatment and 42.5 degrees C and 39.4 degrees C during the 6th treatment, respectively. These first clinical experiences prompted us to initiate a phase I study to evaluate feasibility, toxicity and quality of life during hyperthermia using magnetic nanoparticles in patients with biopsy-proven local recurrence of prostate cancer following radiotherapy with curative intent. To the authors' knowledge, this is the first report on clinical application of interstitial hyperthermia using magnetic nanoparticles in the treatment of human cancer.

  20. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    PubMed

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  1. Spherical porous hydroxyapatite granules containing composites of magnetic and hydroxyapatite nanoparticles for the hyperthermia treatment of bone tumor.

    PubMed

    Kamitakahara, Masanobu; Ohtoshi, Naohiro; Kawashita, Masakazu; Ioku, Koji

    2016-05-01

    Spherical porous granules of hydroxyapatite (HA) containing magnetic nanoparticles would be suitable for the hyperthermia treatment of bone tumor, because porous HA granules act as a scaffold for bone regeneration, and magnetic nanoparticles generate sufficient heat to kill tumor cells under an alternating magnetic field. Although magnetic nanoparticles are promising heat generators, their small size makes them difficult to support in porous HA ceramics. We prepared micrometer-sized composites of magnetic and HA nanoparticles, and then supported them in porous HA granules composed of rod-like particles. The spherical porous HA granules containing the composites of magnetic and HA nanoparticle were successfully prepared using a hydrothermal process without changing the crystalline phase and heat generation properties of the magnetic nanoparticles. The obtained granules generated sufficient heat for killing tumor cells under an alternating magnetic field (300 Oe at 100 kHz). The obtained granules are expected to be useful for the hyperthermia treatment of bone tumors.

  2. Magnetic Fluids--Part 2.

    ERIC Educational Resources Information Center

    Hoon, S. B.; Tanner, B. K.

    1985-01-01

    Continues a discussion of magnetic fluids by providing background information on and procedures for conducting several demonstrations. Indicates that, with a little patience and ingenuity, only modest magnetic fields and about 20 ml of low-viscosity, commercial magnetite-water-based magnetic fluid are required. (JN)

  3. Evaluation of mineral oil as an acoustic coupling medium in clinical MRgFUS.

    PubMed

    Gorny, K R; Hangiandreou, N J; Hesley, G K; Felmlee, J P

    2007-01-07

    We empirically evaluate mineral oil as an alternative to the mixture of de-gassed water and ultrasound gel, which is currently used as an acoustic coupling medium in clinical magnetic resonance guided focused ultrasound (MRgFUS) treatments. The tests were performed on an ExAblate 2000 MRgFUS system (InSightec Inc., Haifa, Israel) using a clinical patient set-up. Acoustic reflections, treatment temperatures, sonication spot dimensions and position with respect to target location were measured, using both coupling media, in repeated sonications in a tissue mimicking gel phantom. In comparison with the water-gel mix, strengths of acoustic reflections from coupling layers prepared with mineral oil were on average 39% lower and the difference was found to be statistically significant (p = 3.3 x 10(-8)). The treatment temperatures were found to be statistically equivalent for both coupling media, although temperatures corresponding to mineral oil tended to be somewhat higher (on average 1.9 degrees C) and their standard deviations were reduced by about 1 degrees C. Measurements of sonication spot dimensions and positions with respect to target location did not reveal systematic differences. We conclude that mineral oil may be used as an effective non-evaporating acoustic coupling medium for clinical MRgFUS treatments.

  4. Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination.

    PubMed

    Wang, Xiangqing; Ou, Gang; Wang, Ning; Wu, Hui

    2016-04-13

    Today's scientific advances in water desalination dramatically increase our ability to transform seawater into fresh water. As an important source of renewable energy, solar power holds great potential to drive the desalination of seawater. Previously, solar assisted evaporation systems usually relied on highly concentrated sunlight or were not suitable to treat seawater or wastewater, severely limiting the large scale application of solar evaporation technology. Thus, a new strategy is urgently required in order to overcome these problems. In this study, we developed a solar thermal evaporation system based on reduced graphene oxide (rGO) decorated with magnetic nanoparticles (MNPs). Because this material can absorb over 95% of sunlight, we achieved high evaporation efficiency up to 70% under only 1 kW m(-2) irradiation. Moreover, it could be separated from seawater under the action of magnetic force by decorated with MNPs. Thus, this system provides an advantage of recyclability, which can significantly reduce the material consumptions. Additionally, by using photoabsorbing bulk or layer materials, the deposition of solutes offen occurs in pores of materials during seawater desalination, leading to the decrease of efficiency. However, this problem can be easily solved by using MNPs, which suggests this system can be used in not only pure water system but also high-salinity wastewater system. This study shows good prospects of graphene-based materials for seawater desalination and high-salinity wastewater treatment.

  5. Adsorption performance and mechanism of magnetic reduced graphene oxide in glyphosate contaminated water.

    PubMed

    Li, Yajuan; Zhao, Chuanqi; Wen, Yujuan; Wang, Yuanyuan; Yang, Yuesuo

    2018-05-16

    In this study, the magnetic reduced graphene oxide (RGO/Fe 3 O 4 ), with easy separation and high adsorption performance, was prepared and used to treat glyphosate (GLY) contaminated water. GLY adsorption performance of RGO/Fe 3 O 4 was investigated, and influences of pH, adsorption time, temperature, contaminant concentration, and competing anions were analyzed. Moreover, the adsorption mechanism was discussed in the light of several characterization methods, including scanning electron microscopy (SEM), energy dispersive spectrum (EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the RGO/Fe 3 O 4 presented a significant GLY adsorption capacity and acid condition was beneficial for this adsorption. The pseudo-second-order kinetic model and the Langmuir model correlated satisfactorily to the experimental data, indicating that this process was controlled by chemical adsorption and monolayer adsorption. Thermodynamic studies revealed that the adsorption of glyphosate onto RGO/Fe 3 O 4 was spontaneous, endothermic, and feasible process. High temperatures were beneficial to GLY adsorption. The GLY adsorption mechanism of RGO/Fe 3 O 4 was mainly attributed to hydrogen-bond interaction, electrostatic interaction, and coordination. Therefore, the RGO/Fe 3 O 4 investigated in this research may offer an attractive adsorbent candidate for treatment of glyphosate contaminated water and warrant further study as a mechanism for glyphosate efficient removal.

  6. Study on industrial wastewater treatment using superconducting magnetic separation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  7. Tailored Magnetic Nanoparticles for Optimizing Magnetic Fluid Hyperthermia

    PubMed Central

    Khandhar, Amit; Ferguson, R. Matthew; Simon, Julian A.; Krishnan, Kannan M.

    2011-01-01

    Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ~ 10–25 nm), size distribution and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (σ ~ 0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, Ho = 14 kA/m); however, with a broader size distribution (σ ~ 0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment. PMID:22213652

  8. Tailoring the magnetic properties of new Fe-Ni-Co-Al-(Ta,Nb)-B superelastic rapidly quenched microwires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borza, F., E-mail: fborza@phys-iasi.ro; Lupu, N.; Dobrea, V.

    2015-05-07

    Ferromagnetic Fe-Ni-Co-Al-(Ta,Nb)-B microwires with diameters from 170 μm to 50 μm, which possess both superelastic and good magnetic properties, have been prepared by rapid quenching from the melt using the in rotating water spinning technique followed by cold-drawing and ageing. The cold-drawing and annealing processes lead to the initialization of premartensitic phases as confirmed by the X-ray diffraction and scanning transmission electron microscopic investigations, more significantly in the 50 μm cold-drawn microwires. An increase in the coercive field and in the saturation magnetization has been obtained by annealing, more importantly in the case of Nb-containing alloy. Ageing by thermal or current annealing ledmore » to the initialization of the superelastic effect. High values of strain of up to 1.8%, very good repeatability under successive loading, and values of superelastic effect of up to 1.2% have been achieved. The structural analysis coupled with the stress-strain data suggests that these materials annealed at 800 °C have superelastic potential at reduced ageing times. The magnetic behavior was found to be easily tailored through both thermal and thermomagnetic treatments with changes in the magnetic parameters which can be contactless detected. The results are important for future applications where both mechanical and magnetic properties matter, i.e., sensing/actuating systems.« less

  9. Environmentally friendly chitosan/PEI-grafted magnetic gelatin for the highly effective removal of heavy metals from drinking water

    PubMed Central

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2017-01-01

    The development of environmentally friendly sorbents with a high adsorption capacity is an essential problem in the removal of heavy metals from drinking water. In this study, magnetic gelatin was prepared using transglutaminase as a cross-linker, which could only catalyze an acyl-transfer reaction between lysine and glutamine residues of the gelatin and not affect other amino groups. Therefore, it was beneficial for the further modification based on the amino groups, and did not affect the spatial structure of gelatin, which can effectively prevent the embedding of active sites in the polymer matrix. After modification with the chitosan/polyethylenimine copolymers, the numbers of amino groups was greatly increased, and the magnetic composites exhibited a high adsorption capacity, excellent water compatibility and simple magnetic separation. The adsorption capacities of lead and cadmium were 341 mg g−1 and 321 mg g−1, respectively, which could be used for the removal of metal ions in drinking water. PMID:28225082

  10. Environmentally friendly chitosan/PEI-grafted magnetic gelatin for the highly effective removal of heavy metals from drinking water

    NASA Astrophysics Data System (ADS)

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2017-02-01

    The development of environmentally friendly sorbents with a high adsorption capacity is an essential problem in the removal of heavy metals from drinking water. In this study, magnetic gelatin was prepared using transglutaminase as a cross-linker, which could only catalyze an acyl-transfer reaction between lysine and glutamine residues of the gelatin and not affect other amino groups. Therefore, it was beneficial for the further modification based on the amino groups, and did not affect the spatial structure of gelatin, which can effectively prevent the embedding of active sites in the polymer matrix. After modification with the chitosan/polyethylenimine copolymers, the numbers of amino groups was greatly increased, and the magnetic composites exhibited a high adsorption capacity, excellent water compatibility and simple magnetic separation. The adsorption capacities of lead and cadmium were 341 mg g-1 and 321 mg g-1, respectively, which could be used for the removal of metal ions in drinking water.

  11. Determination of Ultramicro Quantities of Elemental Phosphorus in Water by Neutron Activation Analysis.

    DTIC Science & Technology

    1977-06-10

    HYPOPHOSPHITE :80x I0O4 PHOSPHITE I1.8 x 10- PHOSPHATE 8.0 x 1- SODIUM SALTS: 10 mg/I 16 mad NSWC/WOL TR 77-49 TABLE 3 RECOVERY OF PHOSPHORUS IN NITRIC ACID...of the benzene extract by shaking with aqueous nitric acid resulted in nitric acid oxidation of P4 to phosphate ion. which then nassed into the...aqueous phase. The treatment was carrie out in a mechanical shaker or magnetic stirrer. The aqueous layer, containing phosphate , was isolated in a

  12. Waterborne Pathogens: The Protozoans.

    PubMed

    Moss, Joseph Anthony

    2016-09-01

    Waterborne diseases associated with polluted recreational and potable waters have been documented for more than a century. Key microbial protozoan parasites, such as Cryptosporidium and Giardia, are causative agents for gastrointestinal disease worldwide. Although not a first-line diagnostic approach for these diseases, medical imaging, such as radiography, computed tomography, magnetic resonance imaging, ultrasonography, and nuclear medicine technologies, can be used to evaluate patients with long-term effects. This article describes protozoan pathogens that affect human health, treatment of common waterborne pathogen-related diseases, and associated medical imaging. ©2016 American Society of Radiologic Technologists.

  13. Electrochemical Detection of E. coli O157:H7 in Water after Electrocatalytic and Ultraviolet Treatments Using a Polyguanine-Labeled Secondary Bead Sensor.

    PubMed

    Beeman, Michael G; Nze, Ugochukwu C; Sant, Himanshu J; Malik, Hammad; Mohanty, Swomitra; Gale, Bruce K; Carlson, Krista

    2018-05-10

    The availability of clean drinking water is a significant problem worldwide. Many technologies exist for purifying drinking water, however, many of these methods require chemicals or use simple methods, such as boiling and filtering, which may or may not be effective in removing waterborne pathogens. Present methods for detecting pathogens in point-of-use (POU) sterilized water are typically time prohibitive or have limited ability differentiating between active and inactive cells. This work describes a rapid electrochemical sensor to differentially detect the presence of active Escherichia coli (E. coli) O157:H7 in samples that have been partially or completely sterilized using a new POU electrocatalytic water purification technology based on superradicals generated by defect laden titania (TiO₂) nanotubes. The sensor was also used to detect pathogens sterilized by UV-C radiation for a comparison of different modes of cell death. The sensor utilizes immunomagnetic bead separation to isolate active bacteria by forming a sandwich assay comprised of antibody functionalized secondary magnetic beads, E. coli O157:H7, and polyguanine (polyG) oligonucleotide functionalized secondary polystyrene beads as an electrochemical tag. The assay is formed by the attachment of antibodies to active receptors on the membrane of E. coli , allowing the sensor to differentially detect viable cells. Ultravioloet (UV)-C radiation and an electrocatalytic reactor (ER) with integrated defect-laden titania nanotubes were used to examine the sensors’ performance in detecting sterilized cells under different modes of cell death. Plate counts and flow cytometry were used to quantify disinfection efficacy and cell damage. It was found that the ER treatments shredded the bacteria into multiple fragments, while UV-C treatments inactivated the bacteria but left the cell membrane mostly intact.

  14. Effect of Bilateral Prefrontal rTMS on Left Prefrontal NAA and Glx Levels in Schizophrenia Patients with Predominant Negative Symptoms: An Exploratory Study.

    PubMed

    Dlabac-de Lange, Jozarni J; Liemburg, Edith J; Bais, Leonie; van de Poel-Mustafayeva, Aida T; de Lange-de Klerk, Elly S M; Knegtering, Henderikus; Aleman, André

    Prefrontal repetitive Transcranial Magnetic Stimulation (rTMS) may improve negative symptoms in patients with schizophrenia, but few studies have investigated the underlying neural mechanism. This study aims to investigate changes in the levels of glutamate and glutamine (Glx, neurotransmitter and precursor) and N-Acetyl Aspartate (NAA) in the left dorsolateral prefrontal cortex of patients with schizophrenia treated with active bilateral prefrontal rTMS as compared to sham-rTMS, as measured with 1 H-Magnetic Resonance Spectroscopy ( 1 H-MRS). Patients were randomized to a 3-week course of active or sham high-frequency rTMS. Pre-treatment and post-treatment 1 H-MRS data were available for 24 patients with schizophrenia with moderate to severe negative symptoms (Positive and Negative Syndrome Scale (PANSS) negative subscale ≥ 15). Absolute metabolite concentrations were calculated using LCModel with the water peak as reference. To explore the association between treatment condition and changes in concentration of Glx and NAA, we applied a linear regression model. We observed an increase of Glx concentration in the active treatment group and a decrease of Glx concentration in the group receiving sham treatment. The association between changes in Glx concentration and treatment condition was significant. No significant associations between changes in NAA and treatment condition were found. Noninvasive neurostimulation with high-frequency bilateral prefrontal rTMS may influence Glx concentration in the prefrontal cortex of patients with schizophrenia. Larger studies are needed to confirm these findings and further elucidate the underlying neural working mechanism of rTMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Fundamentals and advances in magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Périgo, E. A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F. J.

    2015-12-01

    Nowadays, magnetic hyperthermia constitutes a complementary approach to cancer treatment. The use of magnetic particles as heating mediators, proposed in the 1950s, provides a novel strategy for improving tumor treatment and, consequently, patient's quality of life. This review reports a broad overview about several aspects of magnetic hyperthermia addressing new perspectives and the progress on relevant features such as the ad hoc preparation of magnetic nanoparticles, physical modeling of magnetic heating, methods to determine the heat dissipation power of magnetic colloids including the development of experimental apparatus and the influence of biological matrices on the heating efficiency.

  16. SU-E-J-201: Investigation of MRI Guided Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, JS

    2015-06-15

    Purpose: Image-guided radiation therapy has been employed for cancer treatment to improve the tumor localization accuracy. Radiation therapy with proton beams requires more on this accuracy because the proton beam has larger uncertainty and dramatic dose variation along the beam direction. Among all the image modalities, magnetic-resonance image (MRI) is the best for soft tissue delineation and real time motion monitoring. In this work, we investigated the behavior of the proton beam in magnetic field with Monte Carlo simulations. Methods: A proton Monte Carlo platform, TOPAS, was used for this investigation. Dose calculations were performed with this platform in amore » 30cmx30cmx30cm water phantom for both pencil and broad proton beams with different energies (120, 150 and 180MeV) in different magnetic fields (0.5T, 1T and 3T). The isodose distributions, dose profiles in lateral and beam direction were evaluated. The shifts of the Bragg peak in different magnetic fields for different proton energies were compared and the magnetic field effects on the characters of the dose distribution were analyzed. Results: Significant effects of magnetic field have been observed on the proton beam dose distributions, especially for magnetic field of 1T and up. The effects are more significant for higher energy proton beam because higher energy protons travel longer distance in the magnetic field. The Bragg peak shift in the lateral direction is about 38mm for 180MeV and 11mm for 120MeV proton beams in 3T magnetic field. The peak positions are retracted back for 6mm and 2mm, respectively. The effect on the beam penumbra and dose falloff at the distal edge of the Bragg peak is negligible. Conclusion: Though significant magnetic effects on dose distribution have been observed for proton beams, MRI guided proton therapy is feasible because the magnetic effects on dose is predictable and can be considered in patient dose calculation.« less

  17. Neuroendovascular magnetic navigation: clinical experience in ten patients.

    PubMed

    Dabus, Guilherme; Gerstle, Ronald J; Cross, Dewitte T; Derdeyn, Colin P; Moran, Christopher J

    2007-04-01

    The magnetic navigation system consists of an externally generated magnetic field that is used to control and steer a magnetically tipped microguidewire. The goal of this study was to demonstrate that the use of the magnetic navigation system and its magnetic microguidewire is feasible and safe in all types of neuroendovascular procedures. A magnetic navigation system is an interventional workstation that combines a biplanar fluoroscopy system with a computer-controlled magnetic field generator to provide both visualization and control of a magnetically activated endovascular microguidewire. Ten consecutive patients underwent a variety of neuroendovascular procedures using the magnetic guidance system and magnetic microguidewire. All patients presented with a neurovascular disease that was suitable for endovascular treatment. Multiple different devices and embolic agents were used. Of the ten patients, three were male and seven female. Their mean age was 53.9 years. The predominant neurovascular condition was the presence of intracranial aneurysm (nine patients). One patient had a left mandibular arteriovenous malformation. All treatments were successfully performed on the magnetic navigation system suite. The magnetic navigation system and the magnetic microguidewire allowed safe and accurate endovascular navigation allowing placement of the microcatheters in the desired location. There were no neurological complications or death in our series. The use of the magnetic navigation system and the magnetic microguidewire in the endovascular treatment of patients with neurovascular diseases is feasible and safe.

  18. Properties of magnetic iron oxides used as materials for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Matei, E.; Predescu, A.; Vasile, E.; Predescu, A.

    2011-07-01

    The paper describes the properties of some nanopowders obtained by coprecipitation and used as adsorbent for wastewater treatment. The Fe3O4 and γ-Fe2O3 nanopowders were obtained using iron salts and NaOH as precipitation agents. D-sorbitol was used to prevent the agglomeration between the nanoparticles. The particle size and distribution were detected using a transmission electron microscopy (TEM) and a scanning electron microscope (SEM) equipped with dispersive analyze system in X radiation energy (EDS). The structure of the iron oxide nanoparticles was characterized by X-ray powder diffraction. Thus, the nanoparticles were characterized and compare in terms of particle size and chemical composition and used for adsorption studies in order to removal hexavalent chromium from waste waters.

  19. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering

    PubMed Central

    Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; D'Alessandro, T.; Sandri, M.; Bañobre-López, M.; Piñeiro-Redondo, Y.; Uhlarz, M.; Tampieri, A.; Rivas, J.; Herrmannsdörfer, T.; Dediu, V. A.; Ambrosio, L.; De Santis, R.

    2013-01-01

    In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation. PMID:23303218

  20. Monitoring Ecological Impacts of Environmental Surface ...

    EPA Pesticide Factsheets

    Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cell-based metabolomics is used to investigate the impacts of contaminants in surface waters on biological pathways in human and ecologically relevant cell lines. Water samples were collected from stream sites nationwide, where significant impacts have been estimated from the most potentially contaminated sources (i.e. waste water treatment plants, concentrated animal feeding operations, mining operations, and plant-based agricultural operations that use intensive chemical applications). Zebrafish liver cells (ZFL) were used to study exposure impacts on in vitro metabolomes. In addition, a small number of water samples were studied using two human cell lines (liver cells, HepG2 and brain cells, LN229). The cellular metabolites were profiled by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Detailed methods and results will be reported. Presented at SETAC North America 37th Annual Meeting

  1. Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III).

    PubMed

    Gu, Wei; Li, Xiaodi; Xing, Mingchao; Fang, Wenkan; Wu, Deyi

    2018-04-01

    Eutrophication has become a worldwide environmental problem and removing phosphorus from water/wastewater before discharge is essential. The purpose of our present study was to develop an efficient material in terms of both phosphate adsorption capacity and magnetic separability. To this end, we first compared the performances of four spinel ferrites, including magnesium, zinc, nickel and copper ferrites. Then we developed a copper ferrite-based novel magnetic adsorbent, by synthesizing 1,6-hexamethylenediamine-functionalized copper ferrite(CuFe 2 O 4 ) via a single solvothermal synthesis process followed by LaCl 3 treatment. The materials were characterized with X-ray diffraction, transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra and N 2 adsorption-desorption. The maximum adsorption capacity of our material, calculated from the Langmuir adsorption isotherm model, attained 32.59mg/g with a saturation magnetization of 31.32emu/g. Data of adsorption kinetics were fitted well to the psuedo-second-order model. Effects of solution pH and coexisting anions (Cl - , NO 3 - , SO 4 2- ) on phosphate adsorption were also investigated, showing that our material had good selectivity for phosphate. But OH - competed efficiently with phosphate for adsorption sites. Furthermore, increasing both NaOH concentration and temperature resulted in an enhancement of desorption efficiency. Thus NaOH solution could be used to desorb phosphate adsorbed on the material for reuse, by adopting a high NaOH concentration and/or a high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Barreto, A. C. H.; Santiago, V. R.; Mazzetto, S. E.; Denardin, J. C.; Lavín, R.; Mele, Giuseppe; Ribeiro, M. E. N. P.; Vieira, Icaro G. P.; Gonçalves, Tamara; Ricardo, N. M. P. S.; Fechine, P. B. A.

    2011-12-01

    Quercetin belongs to the chemical class of flavonoids and can be found in many common foods, such as apples, nuts, berries, etc. It has been demonstrated that quercetin has a wide array of biological effects that are considered beneficial to health treatment, mainly as anticancer. However, therapeutic applications of quercetin have been restricted to oral administration due to its sparing solubility in water and instability in physiological medium. A drug delivery methodology was proposed in this work to study a new quercetin release system in the form of magnetite-quercetin-copolymer (MQC). These materials were characterized through XRD, TEM, IR, and Thermal analysis. In addition, the magnetization curves and quercetin releasing experiments were performed. It was observed a nanoparticle average diameter of 11.5 and 32.5 nm at Fe3O4 and MQC, respectively. The presence of magnetic nanoparticles in this system offers the promise of targeting specific organs within the body. These results indicate the great potential for future applications of the MQC to be used as a new quercetin release system.

  3. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  4. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages.

    PubMed

    Asghar, Tehseen; Jamil, Yasir; Iqbal, Munawar; Zia-Ul-Haq; Abbas, Mazhar

    2016-12-01

    Laser and magnetic field bio-stimulation attracted the keen interest of scientific community in view of their potential to enhance seed germination, seedling growth, physiological, biochemical and yield attributes of plants, cereal crops and vegetables. Present study was conducted to appraise the laser and magnetic field pre-sowing seed treatment effects on soybean sugar, protein, nitrogen, hydrogen peroxide (H 2 O 2 ) ascorbic acid (AsA), proline, phenolic and malondialdehyde (MDA) along with chlorophyll contents (Chl "a" "b" and total chlorophyll contents). Specific activities of enzymes such as protease (PRT), amylase (AMY), catalyst (CAT), superoxide dismutase (SOD) and peroxides (POD) were also assayed. The specific activity of enzymes (during germination and early growth), biochemical and chlorophyll contents were enhanced significantly under the effect of both laser and magnetic pre-sowing treatments. Magnetic field treatment effect was slightly higher than laser treatment except PRT, AMY and ascorbic acid contents. However, both treatments (laser and magnetic field) effects were significantly higher versus control (un-treated seeds). Results revealed that laser and magnetic field pre-sowing seed treatments have potential to enhance soybean biological moieties, chlorophyll contents and metabolically important enzymes (degrade stored food and scavenge reactive oxygen species). Future study should be focused on growth characteristics at later stages and yield attributes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Magnetic levitation in the analysis of foods and water.

    PubMed

    Mirica, Katherine A; Phillips, Scott T; Mace, Charles R; Whitesides, George M

    2010-06-09

    This paper describes a method and a sensor that use magnetic levitation (MagLev) to characterize samples of food and water on the basis of measurements of density. The sensor comprises two permanent NdFeB magnets positioned on top of each other in a configuration with like poles facing and a container filled with a solution of paramagnetic ions. Measurements of density are obtained by suspending a diamagnetic object in the container filled with the paramagnetic fluid, placing the container between the magnets, and measuring the vertical position of the suspended object. MagLev was used to estimate the salinity of water, to compare a variety of vegetable oils on the basis of the ratio of polyunsaturated fat to monounsaturated fat, to compare the contents of fat in milk, cheese, and peanut butter, and to determine the density of grains.

  6. Inhalable Magnetic Nanoparticles for Targeted Hyperthermia in Lung Cancer Therapy

    PubMed Central

    Sadhukha, Tanmoy; Wiedmann, Timothy Scott; Panyam, Jayanth

    2015-01-01

    Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia. PMID:23591395

  7. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy.

    PubMed

    Sadhukha, Tanmoy; Wiedmann, Timothy S; Panyam, Jayanth

    2013-07-01

    Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    NASA Astrophysics Data System (ADS)

    de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.

    2015-04-01

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.

  9. A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect.

    PubMed

    Chen, Dianzhong; Liu, Xiaowei; Zhang, Haifeng; Li, Hai; Weng, Rui; Li, Ling; Rong, Wanting; Zhang, Zhongzhao

    2018-01-31

    Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h.

  10. Preparation of C₁₈-functionalized magnetic polydopamine microspheres for the enrichment and analysis of alkylphenols in water samples.

    PubMed

    Wang, Xianying; Deng, Chunhui

    2016-02-01

    In this work, C18-functionalized magnetic polydopamine microspheres (Fe3O4@PDA@C18) were successfully synthesized and applied to the analysis of alkylphenols in water samples. The magnetic Fe3O4 particles coated with hydrophilic surface were synthesized via a solvothermal reaction and the self-polymerization of dopamine. And then the C18 groups were fabricated by a silylanization method. Benefit from the merits of Fe3O4 particles, polydopamine coating and C18 groups, the Fe3O4@PDA@C18 material possessed several properties of super magnetic responsiviness, good water dispersibility, π-electron system and hydrophobic C18 groups. Thus, the materials had great potential to be developed as the adsorbent for the magnetic solid-phase extraction (MSPE) technique. Here, we selected three kinds of alkylphenols (4-tert-octylphenol, 4-n-nonylphenol, 4-n-octylphenol) to be the target analyst for evaluating the performance of the prepared material. In this study, various extraction parameters were investigated and optimized, such as pH values of water sample solution, amount of adsorbents, adsorption and desorption time, the species of desorption solution. Meanwhile, the method validations were studied, including linearity, limit of detection and method precision. From the results, Fe3O4@PDA@C18 composites were successfully applied as the adsorbents for the extraction of alkylphenols in water samples. The proposed material provided an approach for a simple, rapid magnetic solid-phase extraction for hydrophobic compounds in environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Magnetic porous carbon derived from a metal-organic framework as a magnetic solid-phase extraction adsorbent for the extraction of sex hormones from water and human urine.

    PubMed

    Ma, Ruiyang; Hao, Lin; Wang, Junmin; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2016-09-01

    An iron-embedded porous carbon material (MIL-53-C) was fabricated by the direct carbonization of MIL-53. The MIL-53-C possesses a high surface area and good magnetic behavior. The structure, morphology, magnetic property, and porosity of the MIL-53-C were studied by scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and N2 adsorption. With the use of MIL-53-C as the magnetic solid-phase extraction adsorbent, a simple and efficient method was developed for the magnetic solid-phase extraction of three hormones from water and human urine samples before high-performance liquid chromatography with UV detection. The developed method exhibits a good linear response in the range of 0.02-100 ng/mL for water and 0.5-100 ng/mL for human urine samples, respectively. The limit of detection (S/N = 3) for the analytes was 0.005-0.01 ng/mL for water sample and 0.1-0.3 ng/mL for human urine sample. The limit of quantification (S/N = 10) of the analytes were in the range of 0.015-0.030 and 0.3-0.9 ng/mL, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Magnetic solid-phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples.

    PubMed

    Lian, Lili; Lv, Jinyi; Wang, Xiyue; Lou, Dawei

    2018-01-26

    A novel magnetic solid-phase extraction approach was proposed for extraction of potential residues of tetracyclines (TCs) in tap and river water samples, based on Fe 3 O 4 @SiO 2 @FeO magnetic nanocomposite. Characterized results showed that the received Fe 3 O 4 @SiO 2 @FeO had distinguished magnetism and core-shell structure. Modified FeO nanoparticles with an ∼5 nm size distribution were homogeneously dispersed on the surface of the silica shell. Owing to the strong surface affinity of Fe (II) toward TCs, the magnetic nanocomposite could be applied to efficiently extract three TCs antibiotics, namely, oxytetracycline, tetracycline and chlortetracycline from water samples. Several factors, such as sorbent amount, pH condition, adsorption and desorption time, desorption solvent, selectivity and sample volume, influencing the extraction performance of TCs were investigated and optimized. The developed method showed excellent linearity (R > 0.9992) in the range of 0.133-333 μg L -1 , under optimized conditions. The limits of detection were between 0.027 and 0.107 μg L -1 for oxytetracycline, tetracycline and chlortetracycline, respectively. The feasibility of this method was evaluated by analysis of tap and river water samples. The recoveries at the spiked concentration levels ranged from 91.0% to 104.6% with favorable reproducibility (RSD < 4%). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Quality Evaluation of Pork with Various Freezing and Thawing Methods

    PubMed Central

    2014-01-01

    In this study, the physicochemical and sensory quality characteristics due to the influence of various thawing methods on electro-magnetic and air blast frozen pork were examined. The packaged pork samples, which were frozen by air blast freezing at −45℃ or electro-magnetic freezing at −55℃, were thawed using 4 different methods: refrigeration (4±1℃), room temperature (RT, 25℃), cold water (15℃), and microwave (2450 MHz). Analyses were carried out to determine the drip and cooking loss, water holding capacity (WHC), moisture content and sensory evaluation. Frozen pork thawed in a microwave indicated relatively less thawing loss (0.63-1.24%) than the other thawing methods (0.68-1.38%). The cooking loss after electro-magnetic freezing indicated 37.4% by microwave thawing, compared with 32.9% by refrigeration, 36.5% by RT, and 37.2% by cold water in ham. The thawing of samples frozen by electro-magnetic freezing showed no significant differences between the methods used, while the moisture content was higher in belly thawed by microwave (62.0%) after electro-magnetic freezing than refrigeration (54.8%), RT (61.3%), and cold water (61.1%). The highest overall acceptability was shown for microwave thawing after electro-magnetic freezing but there were no significant differences compared to that of the other samples. PMID:26761493

  14. Image Guided Focal Therapy for Magnetic Resonance Imaging Visible Prostate Cancer: Defining a 3-Dimensional Treatment Margin Based on Magnetic Resonance Imaging Histology Co-Registration Analysis.

    PubMed

    Le Nobin, Julien; Rosenkrantz, Andrew B; Villers, Arnauld; Orczyk, Clément; Deng, Fang-Ming; Melamed, Jonathan; Mikheev, Artem; Rusinek, Henry; Taneja, Samir S

    2015-08-01

    We compared prostate tumor boundaries on magnetic resonance imaging and radical prostatectomy histological assessment using detailed software assisted co-registration to define an optimal treatment margin for achieving complete tumor destruction during image guided focal ablation. Included in study were 33 patients who underwent 3 Tesla magnetic resonance imaging before radical prostatectomy. A radiologist traced lesion borders on magnetic resonance imaging and assigned a suspicion score of 2 to 5. Three-dimensional reconstructions were created from high resolution digitalized slides of radical prostatectomy specimens and co-registered to imaging using advanced software. Tumors were compared between histology and imaging by the Hausdorff distance and stratified by the magnetic resonance imaging suspicion score, Gleason score and lesion diameter. Cylindrical volume estimates of treatment effects were used to define the optimal treatment margin. Three-dimensional software based registration with magnetic resonance imaging was done in 46 histologically confirmed cancers. Imaging underestimated tumor size with a maximal discrepancy between imaging and histological boundaries for a given tumor of an average ± SD of 1.99 ± 3.1 mm, representing 18.5% of the diameter on imaging. Boundary underestimation was larger for lesions with an imaging suspicion score 4 or greater (mean 3.49 ± 2.1 mm, p <0.001) and a Gleason score of 7 or greater (mean 2.48 ± 2.8 mm, p = 0.035). A simulated cylindrical treatment volume based on the imaging boundary missed an average 14.8% of tumor volume compared to that based on the histological boundary. A simulated treatment volume based on a 9 mm treatment margin achieved complete histological tumor destruction in 100% of patients. Magnetic resonance imaging underestimates histologically determined tumor boundaries, especially for lesions with a high imaging suspicion score and a high Gleason score. A 9 mm treatment margin around a lesion visible on magnetic resonance imaging would consistently ensure treatment of the entire histological tumor volume during focal ablative therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  16. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  17. Novel insights into the mechanism of the ortho/para spin conversion of hydrogen pairs: implications for catalysis and interstellar water.

    PubMed

    Limbach, Hans-Heinrich; Buntkowsky, Gerd; Matthes, Jochen; Gründemann, Stefan; Pery, Tal; Walaszek, Bernadeta; Chaudret, Bruno

    2006-03-13

    The phenomenon of exchange coupling is taken into account in the description of the magnetic nuclear spin conversion between bound ortho- and para-dihydrogen. This conversion occurs without bond breaking, in contrast to the chemical spin conversion. It is shown that the exchange coupling needs to be reduced so that the corresponding exchange barrier can increase and the given magnetic interaction can effectively induce a spin conversion. The implications for related molecules such as water are discussed. For ice, a dipolar magnetic conversion and for liquid water a chemical conversion are predicted to occur within the millisecond timescale. It follows that a separation of water into its spin isomers, as proposed by Tikhonov and Volkov (Science 2002, 296, 2363), is not feasible. Nuclear spin temperatures of water vapor in comets, which are smaller than the gas-phase equilibrium temperatures, are proposed to be diagnostic for the temperature of the ice or the dust surface from which the water was released.

  18. 1H NMR Detection of superparamagnetic nanoparticles at 1 T using a microcoil and novel tuning circuit

    NASA Astrophysics Data System (ADS)

    Sillerud, Laurel O.; McDowell, Andrew F.; Adolphi, Natalie L.; Serda, Rita E.; Adams, David P.; Vasile, Michael J.; Alam, Todd M.

    2006-08-01

    Magnetic beads containing superparamagnetic iron oxide nanoparticles (SPIONs) have been shown to measurably change the nuclear magnetic resonance (NMR) relaxation properties of nearby protons in aqueous solution at distances up to ˜50 μm. Therefore, the NMR sensitivity for the in vitro detection of single cells or biomolecules labeled with magnetic beads will be maximized with microcoils of this dimension. We have constructed a prototype 550 μm diameter solenoidal microcoil using focused gallium ion milling of a gold/chromium layer. The NMR coil was brought to resonance by means of a novel auxiliary tuning circuit, and used to detect water with a spectral resolution of 2.5 Hz in a 1.04 T (44.2 MHz) permanent magnet. The single-scan SNR for water was 137, for a 200 μs π/2 pulse produced with an RF power of 0.25 mW. The nutation performance of the microcoil was sufficiently good so that the effects of magnetic beads on the relaxation characteristics of the surrounding water could be accurately measured. A solution of magnetic beads (Dynabeads MyOne Streptavidin) in deionized water at a concentration of 1000 beads per nL lowered the T1 from 1.0 to 0.64 s and the T2∗ from 110 to 0.91 ms. Lower concentrations (100 and 10 beads/nL) also resulted in measurable reductions in T2∗, suggesting that low-field, microcoil NMR detection using permanent magnets can serve as a high-sensitivity, miniaturizable detection mechanism for very low concentrations of magnetic beads in biological fluids.

  19. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI-LINAC systems.

    PubMed

    Gargett, Maegan; Oborn, Brad; Metcalfe, Peter; Rosenfeld, Anatoly

    2015-02-01

    MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named "magic plate," for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. geant4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm(3)) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm(2) area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm(2) photon field size. The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI-linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.

  20. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gargett, Maegan, E-mail: mg406@uowmail.edu.au; Rosenfeld, Anatoly; Oborn, Brad

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-linemore » and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI–linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.« less

  1. Electropermanent magnet actuation for droplet ferromicrofluidics

    PubMed Central

    Padovani, José I.; Jeffrey, Stefanie S.; Howe, Roger T.

    2016-01-01

    Droplet actuation is an essential mechanism for droplet-based microfluidic systems. On-demand electromagnetic actuation is used in a ferrofluid-based microfluidic system for water droplet displacement. Electropermanent magnets (EPMs) are used to induce 50 mT magnetic fields in a ferrofluid filled microchannel with gradients up to 6.4 × 104 kA/m2. Short 50 µs current pulses activate the electropermanent magnets and generate negative magnetophoretic forces that range from 10 to 70 nN on 40 to 80 µm water-in-ferrofluid droplets. Maximum droplet displacement velocities of up to 300 µm/s are obtained under flow and no-flow conditions. Electropermanent magnet-activated droplet sorting under continuous flow is demonstrated using a split-junction microfluidic design. PMID:27583301

  2. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation.

    PubMed

    Liu, Xiaojie; Marangon, Iris; Melinte, Georgian; Wilhelm, Claire; Ménard-Moyon, Cécilia; Pichon, Benoit P; Ersen, Ovidiu; Aubertin, Kelly; Baaziz, Walid; Pham-Huu, Cuong; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Bégin, Dominique

    2014-11-25

    Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs.

  3. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment.

    PubMed

    Espinosa, Ana; Di Corato, Riccardo; Kolosnjaj-Tabi, Jelena; Flaud, Patrice; Pellegrino, Teresa; Wilhelm, Claire

    2016-02-23

    The pursuit of innovative, multifunctional, more efficient, and safer treatments is a major challenge in preclinical nanoparticle-mediated thermotherapeutic research. Here, we report that iron oxide nanoparticles have the dual capacity to act as both magnetic and photothermal agents. We further explore every key aspect of this magnetophotothermal approach, choosing iron oxide nanocubes for their high efficiency for the magnetic hyperthermia modality itself. In aqueous suspension, the nanocubes' exposure to both: an alternating magnetic field and near-infrared laser irradiation (808 nm), defined as the DUAL-mode, amplifies the heating effect 2- to 5-fold by comparison with magnetic stimulation alone, yielding unprecedented heating powers (specific loss powers) up to 5000 W/g. In cancer cells, the laser excitation restores the optimal efficiency of magnetic hyperthermia, otherwise inhibited by intracellular confinement, resulting in a remarkable heating efficiency in the DUAL-mode (up to 15-fold amplification), with respect to the magnetophotothermal mode. As a consequence, the dual action yielded complete apoptosis-mediated cell death. In solid tumors in vivo, single-mode treatments (magnetic or laser hyperthermia) reduced tumor growth, while DUAL-mode treatment resulted in complete tumor regression, mediated by heat-induced tumoral cell apoptosis and massive denaturation of the collagen fibers, and a long-lasting thermal efficiency over repeated treatments.

  4. Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Tian; Lin, Bo; Jiang, Li-Wang; Lin, En-Chao; Chen, Jian; Zhang, Shi-Jie; Tang, Yi-Wen; He, Fu-An; Li, De-Hao

    2018-01-01

    Fe3O4 nanoparticles were modified by tetraethoxysilane and different amounts of trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane in sequence to obtain the magnetic nanoparticles with low surface energy, which could be used to construct the superhydrophobic surfaces for PU sponge, cotton fabric, and filter paper by a simple drop-coating method. Particularly, all the resultant Fe3O4/PU sponges containing different fluoroalkylsilane-modified Fe3O4 nanoparticles possessed both high water repellency with contact angle in the range of 150.2-154.7° and good oil affinity, which could not only effectively remove oil from water followed by convenient magnetic recovery but also easily realize the oil-water separation as a filter only driven by gravity. The Fe3O4/PU sponges showed high absorption capability of peanut oil, pump oil, and silicone oil with the maximum absorptive capacities of 40.3, 39.3, and 46.3 g/g, respectively. Such novel sponges might be a potential candidate for oil-water separation as well as oil absorption and transportation accompanied by the advantages of simple process, remote control by magnetic field, and low energy consumption.

  5. Synthesis of FeCoB amorphous nanoparticles and application in ferrofluids

    NASA Astrophysics Data System (ADS)

    Zhao, Shuchun; Bian, Xiufang; Yang, Chuncheng; Yu, Mengchun; Wang, Tianqi

    2018-03-01

    Magnetic FeCoB amorphous nanoparticles were successfully synthesized by borohydride reduction in water/n-hexane (W/He) microemulsions. The as-prepared FeCoB alloys are amorphous and spherical nanoparticles with an average particle size about 10.7 nm, compared to FeCoB alloys with an average particle size about 304.2 nm which were synthesized by a conventional aqua-solution method. Furthermore, three kinds of FeCoB ferrofluids (FFs) were prepared by dispersing FeCoB particles into W/He microemulsion, water and silicone oil respectively. Results show that the W/He-based FeCoB FFs are superparamagnetic with saturation magnetization (Ms) reaching to 12.4 emu/g. Besides, compared to water-based and silicone oil-based FFs, W/He-based FeCoB FFs exhibit high stability, with magnetic weights decreasing slightly even under the magnetic field intensity of H = 210 mT. In the W/He-based FeCoB FFs, interfacial tensions of water phase and oil phase are supposed to prevent the agglomeration and sedimentation of FeCoB nanoparticles dispersed in different water droplets of the microemulsion, compared to the current stabilizing method of directly modifying the surface of particles.

  6. Design and Test of Magnetic Wall Decoupling for Dipole Transmit/Receive Array for MR Imaging at the Ultrahigh Field of 7T.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong

    2015-01-01

    Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.

  7. Synthesis of nanostructured iron oxides dispersed in carbon materials and in situ XRD study of the changes caused by thermal treatment

    NASA Astrophysics Data System (ADS)

    Gonçalves, Gustavo R.; Schettino, Miguel A.; Morigaki, Milton K.; Nunes, Evaristo; Cunha, Alfredo G.; Emmerich, Francisco G.; Passamani, Edson C.; Baggio-Saitovitch, Elisa; Freitas, Jair C. C.

    2015-07-01

    Carbon-based magnetic nanocomposites are of large interest for applications in catalysis, magnetic separation, water cleaning, and magnetic resonance imaging, among others. This work describes the synthesis of nanocomposites consisting of iron oxides dispersed into a char (obtained from the carbonization at 700 °C of a lignocellulosic precursor) and the study of the thermal transformations occurring in these materials as a consequence of heat treatments. The materials were prepared by impregnation of the char with iron nitrate in the presence of ammonium hydroxide in aqueous suspension. X-ray diffraction experiments performed using synchrotron radiation and Mössbauer spectroscopy showed that the as-prepared material was composed of amorphous Fe3+ oxides. Scanning electron microscopy images combined with energy-dispersive X-ray spectrometry indicated a homogeneous dispersion of iron oxides and of silica particles (naturally present in the lignocellulosic precursor) throughout the char. X-ray diffractograms recorded in situ during the heat treatment of the as-prepared material showed the presence of small hematite crystallites (average size 22 nm) starting from ca. 300 °C. Further heating caused a progressive growth of the hematite crystallites up to ca. 500 °C, when the conversion to magnetite (Fe3O4) started to take place. At higher temperatures, wüstite (Fe1-xO) was detected as an intermediate phase and austenitic iron (γ-Fe) became the dominant phase at temperatures from 900 °C. A steep weight loss was observed in the TG curve accompanying this last reduction stage; upon cooling, γ-Fe was converted into α-Fe (ferrite), which was the dominant phase at room temperature in this heat-treated sample.

  8. Static Magnetic Field Therapy: A Critical Review of Treatment Parameters

    PubMed Central

    Wahbeh, Helané; Harling, Noelle; Connelly, Erin; Schiffke, Heather C.; Forsten, Cora; Gregory, William L.; Markov, Marko S.; Souder, James J.; Elmer, Patricia; King, Valerie

    2009-01-01

    Static magnetic field (SMF) therapy, applied via a permanent magnet attached to the skin, is used by people worldwide for self-care. Despite a lack of established SMF dosage and treatment regimens, multiple studies are conducted to evaluate SMF therapy effectiveness. Our objectives in conducting this review are to:(i) summarize SMF research conducted in humans; (ii) critically evaluate reporting quality of SMF dosages and treatment parameters and (iii) propose a set of criteria for reporting SMF treatment parameters in future clinical trials. We searched 27 electronic databases and reference lists. Only English language human studies were included. Excluded were studies of electromagnetic fields, transcranial magnetic stimulation, magnets placed on acupuncture points, animal studies, abstracts, posters and editorials. Data were extracted on clinical indication, study design and 10 essential SMF parameters. Three reviewers assessed quality of reporting and calculated a quality assessment score for each of the 10 treatment parameters. Fifty-six studies were reviewed, 42 conducted in patient populations and 14 in healthy volunteers. The SMF treatment parameters most often and most completely described were site of application, magnet support device and frequency and duration of application. Least often and least completely described were characteristics of the SMF: magnet dimensions, measured field strength and estimated distance of the magnet from the target tissue. Thirty-four (61%) of studies failed to provide enough detail about SMF dosage to permit protocol replication by other investigators. Our findings highlight the need to optimize SMF dosing parameters for individual clinical conditions before proceeding to a full-scale clinical trial. PMID:18955243

  9. Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Osteoid Osteoma: A Case Series Report.

    PubMed

    Rovella, Marcello S; Martins, Guilherme L P; Cavalcanti, Conrado F A; Bor-Seng-Shu, Edson; Camargo, Olavo P; Cerri, Giovanni G; Menezes, Marcos R

    2016-04-01

    Osteoid osteoma is painful benign tumor. The aim of this study was to report our initial experience using magnetic resonance-guided focused ultrasound to treat osteoid osteomas. This retrospective single-center study included four patients treated with magnetic resonance-guided focused ultrasound. They presented with severe pain with reduced quality of life and a poor response to clinical treatment. The pre- and post-treatment evaluation comprised computed tomography and magnetic resonance imaging and focused on quality of life and the impact of pain on daily activities. After treatment, three patients had complete pain resolution with no recurrence. One patient had a recurrence of symptoms after 2 wk and underwent a new successful treatment with increased energy levels. On average, 13 sonications were administered (8-18 sonications/treatment) with an average energy of 2,003 J (range: 1,063-3,522 J). Magnetic resonance-guided focused ultrasound appears to be a feasible, tolerable and effective treatment in selected patients with osteoid osteomas. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Deformation of Water by a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, Zijun; Dahlberg, E. Dan

    2011-03-01

    After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.

  11. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  12. Effects of freezing conditions on quality changes in blueberries.

    PubMed

    Cao, Xuehui; Zhang, Fangfang; Zhao, Dongyu; Zhu, Danshi; Li, Jianrong

    2018-03-12

    Freezing preservation is one of the most effective methods used to maintain the flavour and nutritional value of fruit. This research studied the effects of different freezing conditions, -20 °C, -40 °C, -80 °C, and immersion in liquid nitrogen, on quality changes of freeze-thawed blueberries. The water distribution estimates of blueberries were measured based on low-field nuclear magnetic resonance (LF-NMR) analysis. The pectin content, drip loss, and fruit texture were also detected to evaluate quality changes in samples. The freezing curves of blueberry showed super-cooling points at -20 °C and - 40 °C, whereas super-cooling points were not observed at -80 °C or in liquid nitrogen. After freeze-thaw treatment, the relaxation time of the cell wall water (T 21 ), cytoplasm water and extracellular space (T 22 ), and vacuole water (T 23 ) were significantly shortened compared to fresh samples, which suggested a lower liquidity. Although the freezing speed for samples immersed in liquid nitrogen was faster than other treatments, samples treated at -80 °C showed better quality regarding vacuole water holding, drip loss, and original pectin content retention. This study contributed to understanding how freezing temperature affects the qualities of blueberries. The super-fast freezing rate might injure fruit, and an appropriate freezing rate could better preserve blueberries. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. A mathematical model of extremely low frequency ocean induced electromagnetic noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dautta, Manik, E-mail: manik.dautta@anyeshan.com; Faruque, Rumana Binte, E-mail: rumana.faruque@anyeshan.com; Islam, Rakibul, E-mail: rakibul.islam@anyeshan.com

    2016-07-12

    Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signalsmore » in the midst of these low-frequency interfering signals. Both the Range of Detection (R{sub d}) and the Probability of Detection (P{sub d}) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.« less

  14. Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar.

    PubMed

    Qin, Yong; Wang, Haoshu; Li, Xiangru; Cheng, Jay Jiayang; Wu, Weixiang

    2017-12-01

    Magnetic biochar is a potential economical anaerobic digestion (AD) additive. To better understand the possible role of magnetic biochar for the improvement of biomethanization performance and the retention of methanogens, magnetic biochar fabricated under different precursor concentrations were introduced into organic fraction of municipal solid waste (OFMSW) slurry AD system. Results showed that methane production in AD treatment with magnetic biochar fabricated under 3.2g FeCl 3 :100g rice-straw ratio increased by 11.69% compared with control treatment without biochar addition, due to selective enrichment of microorganisms participating in anaerobic digestion on magnetic biochar. AD treatment with magnetic biochar fabricated under 32g FeCl 3 :100g rice-straw ratio resulted in 38.34% decreasement of methane production because of the competition of iron oxide for electron. Furthermore, 25% of total methanogens were absorbed on magnetic biochar and can be harvested with magnet, which can offer a potential solution for preventing the methanogens loss in the anaerobic digesters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Whole body vibration versus magnetic therapy on bone mineral density in elderly osteoporotic individuals.

    PubMed

    Shanb, Alsayed Abdelhameed; Youssef, Enas Fawzy; Muaidi, Qassim Ibrahim; Alothman, Abdullah Ahmed

    2017-08-03

    Osteoporosis usually develops gradually and progresses without significant signs and symptoms. It is one of the most common musculoskeletal conditions associated with aging. To evaluate the effects of whole body vibration (WBV) or magnetic therapy in addition to standard pharmacological treatment on bone mineral density (BMD) in elderly individuals being treated for osteoporosis. Eighty-five participants, 60-75 years of age, were randomly divided into three groups. All three groups received the same standard pharmacological treatment comprised of vitamin D, calcium, and alendronate sodium. In Group I, thirty participants were also exposed to WBV for 25 minutes in each session with two sessions per week for 4 months. In Group II, thirty participants were exposed to magnetic therapy for 50 minutes in each session with two sessions per week for 4 months. In Group III, twenty-five participants received only pharmacological treatment. Dual-energy X-ray absorptiometry was used to measure BMD of the lumbar spine and femoral heads before and after interventions. Venus blood sample was drawn for analysis of calcium and vitamin D. An ANOVA test detected significant (p< 0.05) differences in BMD after treatment among the three groups with no significant difference was detected between patients receiving WBV and magnetic therapy. Statistical t-tests detected significant (p< 0.05) increases in BMD after application of WBV or magnetic therapy in combination with pharmacological treatment, but no significant increase after pharmacological treatment alone. Addition of either WBV or magnetic therapy to standard pharmacological treatment for osteoporosis significantly increased BMD in elderly subjects. No significant difference in effectiveness was detected between these two alternative therapy modalities. Consequently, either WBV or magnetic therapy could be effectively applied in conjunction with pharmacological treatment to increase BMD in elderly osteoporotic patients.

  16. Over-hydration detection in brain by magnetic induction spectroscopy

    NASA Astrophysics Data System (ADS)

    González, César A.; Pérez, María; Hevia, Nidiyare; Arámbula, Fernándo; Flores, Omar; Aguilar, Eliot; Hinojosa, Ivonne; Joskowicz, Leo; Rubinsky, Boris

    2010-04-01

    Detection and continuous monitoring of edema in the brain in early stages is useful for assessment of medical condition and treatment. We have proposed a solution in which the bulk measurements of the tissue electrical properties to detect edema or in general accumulation of fluids are made through measurement of the magnetic induction phase shift between applied and measured currents at different frequencies (Magnetic Induction Spectroscopy; MIS). Magnetic Resonant Imaging (MRI) has been characterized because its capability to detect different levels of brain tissue hydration by differences in diffusion-weighted (DW) sequences and it's involve apparent diffusion coefficient (ADC). The objective of this study was to explore the viability to use measurements of the bulk tissue electrical properties to detect edema or in general accumulation of fluids by MIS. We have induced a transitory and generalized tissue over-hydration condition in ten volunteers ingesting 1.5 to 2 liters of water in ten minutes. Basal and over-hydration conditions were monitored by MIS and MRI. Changes in the inductive phase shift at certain frequencies were consistent with changes in the brain tissue hydration level observed by DW-ADC. The results suggest that MIS has the potential to detect pathologies associated to changes in the content of fluids in brain tissue such as edema and hematomas.

  17. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

    PubMed

    Iacovita, Cristian; Florea, Adrian; Dudric, Roxana; Pall, Emoke; Moldovan, Alin Iulian; Tetean, Romulus; Stiufiuc, Rares; Lucaciu, Constantin Mihai

    2016-10-13

    Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe₃O₄-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/g MNP for the small monocrystalline MNPs and only 400 W/g MNP for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism.

  18. Sorption and desorption of arsenic to ferrihydrite in a sand filter.

    PubMed

    Jessen, Soren; Larsen, Flemming; Koch, Christian Bender; Arvin, Erik

    2005-10-15

    Elevated arsenic concentrations in drinking water occur in many places around the world. Arsenic is deleterious to humans, and consequently, As water treatment techniques are sought. To optimize arsenic removal, sorption and desorption processes were studied at a drinking water treatment plant with aeration and sand filtration of ferrous iron rich groundwater at Elmevej Water Works, Fensmark, Denmark. Filter sand and pore water were sampled along depth profiles in the filters. The sand was coated with a 100-300 microm thick layer of porous Si-Ca-As-contaning iron oxide (As/Fe = 0.17) with locally some manganese oxide. The iron oxide was identified as a Si-stabilized abiotically formed two-line ferrihydrite with a magnetic hyperfine field of 45.8 T at 5 K. The raw water has an As concentration of 25 microg/L, predominantly as As(II). As the water passes through the filters, As(III) is oxidized to As(V) and the total concentrations drop asymptotically to a approximately 15 microg/L equilibrium concentration. Mn is released to the pore water, indicating the existence of reactive manganese oxides within the oxide coating, which probably play a role for the rapid As(III) oxidation. The As removal in the sand filters appears controlled by sorption equilibrium onto the ferrihydrite. By addition of ferrous chloride (3.65 mg of Fe(II)/L) to the water stream between two serially connected filters, a 3 microg/L As concentration is created in the water that infiltrates into the second sand filter. However, as water flow is reestablished through the second filter, As desorbs from the ferrihydrite and increases until the 15 microg/L equilibrium concentration. Sequential chemical extractions and geometrical estimates of the fraction of surface-associated As suggest that up to 40% of the total As can be remobilized in response to changes in the water chemistry in the sand filter.

  19. Note: High turn density magnetic coils with improved low pressure water cooling for use in atom optics.

    PubMed

    McKay Parry, Nicholas; Baker, Mark; Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina

    2014-08-01

    We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 μm Kapton backing and 127 μm thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ~5 mm(-1) and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW.

  20. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    PubMed Central

    Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob

    2007-01-01

    The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primary purpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960. A magnetic map of the survey area (3.5 km2 on a 0.5 m grid) was created revealing the anomalies at sub-meter accuracy. For each investigated target location a corresponding ferro-metallic item was dug out, one of which turned to be very similar to a part of the crashed airplane. The accuracy of location was confirmed by matching the position of the actual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m. PMID:28903191

  1. Study on magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys

    NASA Astrophysics Data System (ADS)

    Tan, G. S.; Xu, H.; Yu, L. Y.; Tan, X. H.; Zhang, Q.; Gu, Y.; Hou, X. L.

    2017-09-01

    In the present work, (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH)max) and remanence (Br) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 < x ≤ 0.6. It is found that the optimum magnetic properties are obtained at x = 0.4: Hci = 4.9 kOe, Br = 10.1 kG, (BH)max = 13.7 MGOe. Specifically, magnetic field heat treatment below the Curie temperature is applied for (Nd0.8Ce0.2)1.6Fe12Co2B (x = 0.4) annealed ribbons. The magnetic properties Br, (BH)max and squareness are all enhanced after the magnetic field heat treatment. The (BH)max shows a substantial increase from 13.7 MGOe to 16.0 MGOe after the heat treatment at 623 K with a magnetic field of 1 T, which gets 17% improvement compared with that of the sample without a magnetic field heat treatment. We demonstrate that the magnetic field heat treatment plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd0.8Ce0.2)1.6Fe12Co2B alloy.

  2. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.

    2012-10-01

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by "direct" techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.

  3. A multi-controlled drug delivery system based on magnetic mesoporous Fe3O4 nanopaticles and a phase change material for cancer thermo-chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Liu, Jian; Yuan, Kunjie; Zhang, Zhengguo; Zhang, Xiaowen; Fang, Xiaoming

    2017-10-01

    Herein a novel multi-controlled drug release system for doxorubicin (DOX) was developed, in which monodisperse mesoporous Fe3O4 nanoparticles were combined with a phase change material (PCM) and polyethylene glycol 2000 (PEG2000). It is found that the PCM/PEG/DOX mixture containing 20% PEG could be dissolved into water at 42 °C. The mesoporous Fe3O4 nanoparticles prepared by the solvothermal method had sizes of around 25 nm and exhibited a mesoporous microstructure. A simple solvent evaporation process was employed to load the PCM/PEG/DOX mixture on the mesoporous Fe3O4 nanoparticles completely. In the Fe3O4@PCM/PEG/DOX system, the pores of the Fe3O4 nanoparticles were observed to be filled with the mixture of PCM/PEG/DOX. The Fe3O4@PCM/PEG/DOX system showed a saturation magnetization value of 50.0 emu g-1, lower than 71.1 emu g-1 of the mesoporous Fe3O4 nanoparticles, but it was still high enough for magnetic targeting and hyperthermia application. The evaluation on drug release performance indicated that the Fe3O4@PCM/PEG/DOX system achieved nearly zero release of DOX in vitro in body temperature, while around 80% of DOX could be released within 1.5 h at the therapeutic threshold of 42 °C or under the NIR laser irradiation for about 4 h. And a very rapid release of DOX was achieved by this system when applying an alternating magnetic field. By comparing the systems with and without PEG2000, it is revealed that the presence of PEG2000 makes DOX easy to be released from 1-tetradecanol to water, owing to its functions of increasing the solubility of DOX in 1-tetradecanol as well as decreasing the surface tension between water and 1-tetradecanol. The novel drug release system shows great potential for the development of thermo-chemotherapy of cancer treatment.

  4. Propulsion Velocity and ETT on Biomagnetic Assessment of the Human Esophagus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordova-Fraga, T.; Cano, E.; Bravo-Miranda, C.

    Esophagus transit time measurement is a common clinical practical. Biomagnetic techniques and modern instrumentation can perform non invasive and functional assessments of the gastrointestinal tract. This study presents the evaluation of the esophagus transit time and propulsion velocity of a magnetic marker from the mouth to stomach using water vs. a swallow easy substance recently patented. A group of ten healthy subjects from 45 to 55 years, were evaluated in identical conditions for two times, they ingested randomly a magnetic marker in an anatomical body position of 45 deg., one times with water and the other one with a patentedmore » substance developed in order to help the subjects to swallow pills. The esophagus transit time was shorter when the subjects ingested the magnetic marker with the swallow easy substance than they ingested the magnetic marker with same quantity of water.« less

  5. Water bag modeling of a multispecies plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, P.; Gravier, E.; Besse, N.

    2011-03-15

    We report in the present paper a new modeling method to study multiple species dynamics in magnetized plasmas. Such a method is based on the gyrowater bag modeling, which consists in using a multistep-like distribution function along the velocity direction parallel to the magnetic field. The choice of a water bag representation allows an elegant link between kinetic and fluid descriptions of a plasma. The gyrowater bag model has been recently adapted to the context of strongly magnetized plasmas. We present its extension to the case of multi ion species magnetized plasmas: each ion species being modeled via a multiwatermore » bag distribution function. The water bag modelization will be discussed in details, under the simplification of a cylindrical geometry that is convenient for linear plasma devices. As an illustration, results obtained in the linear framework for ion temperature gradient instabilities are presented, that are shown to agree qualitatively with older works.« less

  6. Mechanisms of perianeurysmal edema following endovascular embolization of aneurysms.

    PubMed

    Tomokiyo, M; Kazekawa, K; Onizuka, M; Aikawa, H; Tsutsumi, M; Ikoh, M; Kodama, T; Nii, K; Matsubara, S; Tanaka, A

    2007-03-15

    After coil embolization for an aneurysm, edema surrounding the aneurysm revealed by magnetic resonance imaging (MRI) is rarely seen and is usually associated with neurological symptoms. Perianeurysmal edema was found by postoperative MRI in three out of 182 patients with cerebral aneurysm, which was treated with Guglielmi Detachable Coil (GDC), and neurological symptoms developed simultaneously. In cases where neurological symptoms improved with conservative medical treatment, a temporary increase in the volume of an aneurysm, due to coil and thrombus formation, may result in edema. In cases where symptoms were not alleviated with conservative medical treatment, persistent water-hammer effect against the residual lumen of the aneurysm as well as an increase in the volume of aneurysm by hemorrhage in the aneurysmal wall may contribute to the development of perianeurysmal edema. Consideration of the mechanism of edema development by neurological symptoms, MRI findings, and angiographic findings is needed in order to select appropriate treatment.

  7. Mechanisms of Perianeurysmal Edema Following Endovascular Embolization of Aneurysms

    PubMed Central

    Tomokiyo, M.; K., Kazekawa; Onizuka, M.; Aikawa, H.; Tsutsumi, M.; Ikoh, M.; Kodama, T.; Nii, K.; Matsubara, S.; Tanaka, A.

    2007-01-01

    Summary After coil embolization for an aneurysm, edema surrounding the aneurysm revealed by magnetic resonance imaging (MRI) is rarely seen and is usually associated with neurological symptoms. Perianeurysmal edema was found by postoperative MRI in three out of 182 patients with cerebral aneurysm, which was treated with Guglielmi Detachable Coil (GDC), and neurological symptoms developed simultaneously. In cases where neurological symptoms improved with conservative medical treatment, a temporary increase in the volume of an aneurysm, due to coil and thrombus formation, may result in edema. In cases where symptoms were not alleviated with conservative medical treatment, persistent water-hammer effect against the residual lumen of the aneurysm as well as an increase in the volume of aneurysm by hemorrhage in the aneurysmal wall may contribute to the development of perianeurysmal edema. Consideration of the mechanism of edema development by neurological symptoms, MRI findings, and angiographic findings is needed in order to select appropriate treatment. PMID:20566093

  8. Fabrication, characterization and in-vitro cytotoxicity of magnetic nanocomposite polymeric film for multi-functional medical application

    NASA Astrophysics Data System (ADS)

    Zhao, Lingyun; Xu, Xiaoyu; Wang, Xiaowen; Zhang, Xiaodong; Gao, Fuping; Tang, Jintian

    2009-07-01

    Cancer comprehensive treatment has been fully acknowledged as it can provide an effective multimodality approach for fighting cancers. In this study, various innovative technologies for cancer treatment including cancer nanotechnology, chemotherapy by sustainable release, as well as magnetic induction hyperthermia (MIH) have been integrated for the purpose of cancer comprehensive treatment. Briefly, such kind of treatment can be realized by applying of the tailored magnetic nanoparticles (MNPs) composite polymeric film. Fe3O4 MNPs acting as the agent for MIH, and anti-cancer drug docetaxel as chemotherapeutic agent were incorporated within the biodegradable polymeric film. Physiochemical characterizations on MNPs and the film have been systematically carried out by various instrumental analyses. Our results demonstrated that the film has been successfully fabricated by the solvent cast method. Hyperthermia could be induced by stimulating the nanocomposite film under an alternative magnetic field (AMF). The incorporation of MNPs, as well as hyperthermia would facilitate the drug release from the polymeric film. The in-vitro cytotoxicity results indicated the bi-modal cancer treatment approach for combined MIH and chemotherapy is more effective than the mono-modal treatment by docetaxel treatment. The magnetic nanocomposite film can realize cancer comprehensive treatment thus has great potential in clinical application.

  9. Anisotropic Magnetic Nanostructures For Enhanced Hyperthermia

    NASA Astrophysics Data System (ADS)

    Torres, D.; Das, R.; Alonso, J.; Phan, M. H.; Srikanth, H.

    Magnetic nanoparticles assisted hyperthermia is one of the most promising techniques for cancer treatment. By the use of magnetic nanoparticles in an external AC magnetic field, one can target a specific tumor location and deliver toxic doses of heat to the tumor area without damaging the surrounding healthy tissue. Magnetite is typically used in biomedical applications due to its biocompatibility, but the heating efficiency of the commonly used magnetite nanoparticles is not enough to obtain the best results in cancer treatment. Therefore, novel magnetic nanostructures are required in order to improve the heating efficiency. Recently, it has been proposed by different groups that it is possible to increase the heating efficiency of the nanoparticles by tuning their effective anisotropy. Considering this, we have synthesized high aspect ratio magnetic nanorods with increased effective anisotropy. A thorough structural and magnetic characterization has revealed high crystallinity and optimal magnetic properties of these nanorods. The hyperthermia response shows that by increasing the aspect ratio from 5 to 11, their heating efficiency is increased by 150%. In addition, we have observed that a good alignment of the nanorods with the magnetic field ensures the best heating results. Hence, these nanorods appear to be promising candidates for cancer treatment with magnetic hyperthermia.

  10. Magnetically driven floating foams for the removal of oil contaminants from water.

    PubMed

    Calcagnile, Paola; Fragouli, Despina; Bayer, Ilker S; Anyfantis, George C; Martiradonna, Luigi; Cozzoli, P Davide; Cingolani, Roberto; Athanassiou, Athanassia

    2012-06-26

    In this study, we present a novel composite material based on commercially available polyurethane foams functionalized with colloidal superparamagnetic iron oxide nanoparticles and submicrometer polytetrafluoroethylene particles, which can efficiently separate oil from water. Untreated foam surfaces are inherently hydrophobic and oleophobic, but they can be rendered water-repellent and oil-absorbing by a solvent-free, electrostatic polytetrafluoroethylene particle deposition technique. It was found that combined functionalization of the polytetrafluoroethylene-treated foam surfaces with colloidal iron oxide nanoparticles significantly increases the speed of oil absorption. Detailed microscopic and wettability studies reveal that the combined effects of the surface morphology and of the chemistry of the functionalized foams greatly affect the oil-absorption dynamics. In particular, nanoparticle capping molecules are found to play a major role in this mechanism. In addition to the water-repellent and oil-absorbing capabilities, the functionalized foams exhibit also magnetic responsivity. Finally, due to their light weight, they float easily on water. Hence, by simply moving them around oil-polluted waters using a magnet, they can absorb the floating oil from the polluted regions, thereby purifying the water underneath. This low-cost process can easily be scaled up to clean large-area oil spills in water.

  11. Simulation of therapeutic electron beam tracking through a non-uniform magnetic field using finite element method

    PubMed Central

    Tahmasebibirgani, Mohammad Javad; Maskani, Reza; Behrooz, Mohammad Ali; Zabihzadeh, Mansour; Shahbazian, Hojatollah; Fatahiasl, Jafar; Chegeni, Nahid

    2017-01-01

    Introduction In radiotherapy, megaelectron volt (MeV) electrons are employed for treatment of superficial cancers. Magnetic fields can be used for deflection and deformation of the electron flow. A magnetic field is composed of non-uniform permanent magnets. The primary electrons are not mono-energetic and completely parallel. Calculation of electron beam deflection requires using complex mathematical methods. In this study, a device was made to apply a magnetic field to an electron beam and the path of electrons was simulated in the magnetic field using finite element method. Methods A mini-applicator equipped with two neodymium permanent magnets was designed that enables tuning the distance between magnets. This device was placed in a standard applicator of Varian 2100 CD linear accelerator. The mini-applicator was simulated in CST Studio finite element software. Deflection angle and displacement of the electron beam was calculated after passing through the magnetic field. By determining a 2 to 5cm distance between two poles, various intensities of transverse magnetic field was created. The accelerator head was turned so that the deflected electrons became vertical to the water surface. To measure the displacement of the electron beam, EBT2 GafChromic films were employed. After being exposed, the films were scanned using HP G3010 reflection scanner and their optical density was extracted using programming in MATLAB environment. Displacement of the electron beam was compared with results of simulation after applying the magnetic field. Results Simulation results of the magnetic field showed good agreement with measured values. Maximum deflection angle for a 12 MeV beam was 32.9° and minimum deflection for 15 MeV was 12.1°. Measurement with the film showed precision of simulation in predicting the amount of displacement in the electron beam. Conclusion A magnetic mini-applicator was made and simulated using finite element method. Deflection angle and displacement of electron beam were calculated. With the method used in this study, a good prediction of the path of high-energy electrons was made before they entered the body. PMID:28607652

  12. Demagnetization Treatment of Remanent Composite Microspheres Studied by Alternating Current Susceptibility Measurements

    PubMed Central

    van Berkum, Susanne; Erné, Ben H.

    2013-01-01

    The magnetic remanence of silica microspheres with a low concentration of embedded cobalt ferrite nanoparticles is studied after demagnetization and remagnetization treatments. When the microspheres are dispersed in a liquid, alternating current (AC) magnetic susceptibility spectra reveal a constant characteristic frequency, corresponding to the rotational diffusion of the microparticles; this depends only on particle size and liquid viscosity, making the particles suitable as a rheological probe and indicating that interactions between the microspheres are weak. On the macroscopic scale, a sample with the dry microparticles is magnetically remanent after treatment in a saturating field, and after a demagnetization treatment, the remanence goes down to zero. The AC susceptibility of a liquid dispersion, however, characterizes the remanence on the scale of the individual microparticles, which does not become zero after demagnetization. The reason is that an individual microparticle contains only a relatively small number of magnetic units, so that even if they can be reoriented magnetically at random, the average vector sum of the nanoparticle dipoles is not negligible on the scale of the microparticle. In contrast, on the macroscopic scale, the demagnetization procedure randomizes the orientations of a macroscopic number of magnetic units, resulting in a remanent magnetization that is negligible compared to the saturation magnetization of the entire sample. PMID:24009021

  13. FOREWORD: Focus on Magneto-Science

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yoshifumi; Beaugnon, Eric; Kimura, Tsunehisa; Ozeki, Sumio

    2008-06-01

    Magnetite, a natural magnetic material, was discovered in China several thousand years ago. Since then, many ancient people have been fascinated by the interesting properties of magnetite. Similarly, many scientists have dreamed of manipulating chemical, physical and biological phenomena using magnetic fields. Despite the long time that has passed since the discovery of magnetite, this dream has only recently been accomplished. Magnetism, an important physical property of materials, is of three types: diamagnetism, paramagnetism and ferromagnetism. The magnetic susceptibilities of diamagnetic, paramagnetic and ferromagnetic materials are in the order of -10-10, +10-8 and +10-2 m3 mol-1, respectively. Note that most commonly used materials such as water and benzene are diamagnetic; air is paramagnetic. The magnetic energy of diamagnetic and paramagnetic (magnetically weak) materials under a magnetic field of 1 T, which is the maximum field generated by a tabletop electromagnet, is very small compared with the thermal energy at room temperature. Therefore, it is difficult to believe that a magnetic field less than 1 T markedly affects the chemical and physical phenomena of magnetically weak materials. Recently, the progress of superconducting magnet manufacturing technology has enabled us to freely use strong magnetic fields of 10 T or more in our laboratories. Because magnetic energy is proportional to the square of the magnetic flux density, the magnetic energy at 10 T, for example, is 100 times greater than that at 1 T, indicating that the effect of a 10 T magnetic field on magnetically weak materials becomes so great that magnetic phenomena, which cannot be observed in a 1 T field, are very clear in a 10 T field. Consequently, many interesting phenomena have been observed. For example, it was demonstrated that water in a vessel could be separated into two parts by applying strong horizontal magnetic fields to create the so-called Moses effect. Reportedly, diamagnetic materials such as water and wood can be levitated by applying vertical magnetic fields: magnetic levitation. These phenomena are interpreted in terms of magnetic force. Although the effect of a magnetic force has been well investigated both theoretically and experimentally, before these reports it was difficult to imagine that water could be separated or levitated using magnetic fields, simply because the magnetic force generated by a tabletop electromagnet is not strong enough to demonstrate these phenomena clearly. The magnetic phenomena occurring under a 10 T field markedly differ from those under a 1 T field: strong magnetic fields of approximately 10 T present researchers with a new interdisciplinary field of science, encompassing physics, chemistry and biology, which will also be useful for technological development. Taking these benefits into account, we adopted the term 'magneto-science' (basic and applied), to refer to the investigation of magnetic field effects (MFEs) on physical, chemical and biological phenomena in order to differentiate this new interdisciplinary field from traditional ones. In consideration of the important role of magneto-science in the 21st century, this focus issue contains 16 articles selected from the International Conference on Magneto-Science (ICMS2007), which was held in Hiroshima, Japan in November 2007. The selected papers describe various studies of MFEs (≤ 16 T) in hard, soft and biological materials. Topics such as the magnetic processing of alloys or hard materials, spin chemistry and spin dynamics, magneto-electrochemistry, the magnetic processing of soft materials, the applications of magnetic fields to analysis, and magneto-biology are addressed to delineate the frontiers of magneto-science. We hope that this focus issue will help readers to understand several aspects of the frontiers of magneto-science.

  14. Year 3 ASK/FOSS Efficacy Study. CRESST Report 782

    ERIC Educational Resources Information Center

    Osmundson, Ellen; Dai, Yunyun; Herman, Joan

    2011-01-01

    This efficacy study was designed to examine the traditional FOSS curriculum (Delta Publishing, Full Option Science System/FOSS, magnetism and electricity, structures of life, and water modules, 2005), and the new ASK/FOSS curriculum (magnetism and electricity, structures of life, and water modules, 2005), a revised version of the original FOSS…

  15. Quantitative magnetic resonance (QMR) measurement of changes in body composition of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    The survival of low birth weight pigs in particular may depend on energy stores in the body. QMR (quantitative magnetic resonance) is a new approach to measuring total body fat, lean and water. These measurements are based on quantifying protons associated with lipid and water molecules in the body...

  16. Removal of sudan dyes from water with C18-functional ultrafine magnetic silica nanoparticles.

    PubMed

    Jiang, Chunzhu; Sun, Ying; Yu, Xi; Zhang, Lei; Sun, Xiumin; Gao, Yan; Zhang, Hanqi; Song, Daqian

    2012-01-30

    In this study, the new C(18)-functionalized ultrafine magnetic silica nanoparticles (C(18)-UMS NPs) were successfully synthesized and applied for extraction of sudan dyes in water samples based on the magnetic solid-phase extraction (MSPE). The extraction and concentration were carried out in one step by blending C(18)-UMS NPs and water samples. The sudan dyes adsorbed C(18)-UMS NPs were isolated from the matrix easily with an external magnetic field. After desorption the quantitation of sudan dyes was done by ultra fast liquid chromatography (UFLC). Satisfactory extraction recovery can be obtained with only 50 mg C(18)-UMS NPs. The effects of experimental parameters, including the amount of the nanoparticles, extraction time, pH value, desorption solvent, volume of desorption solvent and desorption time were investigated. The limits of detection for sudan I, II, III and IV were 0.066, 0.070, 0.12 and 0.12 ng mL(-1), respectively. Recoveries obtained by analyzing the six spiked water samples were between 68% and 103%. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Pitfalls and Limitations of Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Urinary Bladder Cancer

    PubMed Central

    Lin, Wei-Ching; Chen, Jeon-Hor

    2015-01-01

    Adequately selecting a therapeutic approach for bladder cancer depends on accurate grading and staging. Substantial inaccuracy of clinical staging with bimanual examination, cystoscopy, and transurethral resection of bladder tumor has facilitated the increasing utility of magnetic resonance imaging to evaluate bladder cancer. Diffusion-weighted imaging (DWI) is a noninvasive functional magnetic resonance imaging technique. The high tissue contrast between cancers and surrounding tissues on DWI is derived from the difference of water molecules motion. DWI is potentially a useful tool for the detection, characterization, and staging of bladder cancers; it can also monitor posttreatment response and provide information on predicting tumor biophysical behaviors. Despite advancements in DWI techniques and the use of quantitative analysis to evaluate the apparent diffusion coefficient values, there are some inherent limitations in DWI interpretation related to relatively poor spatial resolution, lack of cancer specificity, and lack of standardized image acquisition protocols and data analysis procedures that restrict the application of DWI and reproducibility of apparent diffusion coefficient values. In addition, inadequate bladder distension, artifacts, thinness of bladder wall, cancerous mimickers of normal bladder wall and benign lesions, and variations in the manifestation of bladder cancer may interfere with diagnosis and monitoring of treatment. Recognition of these pitfalls and limitations can minimize their impact on image interpretation, and carefully applying the analyzed results and combining with pathologic grading and staging to clinical practice can contribute to the selection of an adequate treatment method to improve patient care. PMID:26055180

  18. Magnetic Properties of Hard Magnetic Alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si

    NASA Astrophysics Data System (ADS)

    Vompe, T. A.; Milyaev, I. M.; Yusupov, V. S.

    2017-01-01

    The method of regression analysis is used to obtain equations describing the dependences of magnetic hysteresis properties of magnetically hard powder alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si on regimes of thermomagnetic treatment (the temperatures of the start of the treatment and the rates of cooling in magnetic field). The determined treatment modes make it possible to obtain in an alloy with a coercive force H c up to 40 kA/m, a residual induction B r up to 1.2 T, and a maximum energy product ( BH)max up to 25 kJ/m3. The alloy may find application in the production of rotors of synchronous hysteresis-reluctance motors.

  19. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  20. A low-temperature scanning tunneling microscope capable of microscopy and spectroscopy in a Bitter magnet at up to 34 T.

    PubMed

    Tao, W; Singh, S; Rossi, L; Gerritsen, J W; Hendriksen, B L M; Khajetoorians, A A; Christianen, P C M; Maan, J C; Zeitler, U; Bryant, B

    2017-09-01

    We present the design and performance of a cryogenic scanning tunneling microscope (STM) which operates inside a water-cooled Bitter magnet, which can attain a magnetic field of up to 38 T. Due to the high vibration environment generated by the magnet cooling water, a uniquely designed STM and a vibration damping system are required. The STM scan head is designed to be as compact and rigid as possible, to minimize the effect of vibrational noise as well as fit the size constraints of the Bitter magnet. The STM uses a differential screw mechanism for coarse tip-sample approach, and operates in helium exchange gas at cryogenic temperatures. The reliability and performance of the STM are demonstrated through topographic imaging and scanning tunneling spectroscopy on highly oriented pyrolytic graphite at T = 4.2 K and in magnetic fields up to 34 T.

  1. Plumbing the depths of Yellowstone's hydrothermal system from helicopter magnetic and electromagnetic data

    NASA Astrophysics Data System (ADS)

    Finn, C.; Bedrosian, P.; Holbrook, W. S.; Auken, E.; Lowenstern, J. B.; Hurwitz, S.; Sims, K. W. W.; Carr, B.; Dickey, K.

    2017-12-01

    Although Yellowstone's iconic hydrothermal systems and lava flows are well mapped at the surface, their groundwater flow systems and thickness are almost completely unknown. In order to track the geophysical signatures of geysers, hot springs, mud pots, steam vents, hydrothermal explosion craters and lava flows at depths to hundreds of meters, we collected helicopter electromagnetic and magnetic (HEM) data. The data cover significant portions of the caldera including a majority of the known thermal areas. HEM data constrain electrical resistivity which is sensitive to groundwater salinity and temperature, phase distribution (liquid-vapor), and clay formed during chemical alteration of rocks. The magnetic data are sensitive to variations in the magnetization of lava flows, faults and hydrothermal alteration. The combination of electromagnetic and magnetic data is ideal for mapping zones of cold fresh water, hot saline water, steam, clay, and altered and unaltered rock. Preliminary inversion of the HEM data indicates very low resistivity directly beneath the northern part of Yellowstone Lake, intersecting with the lake bottom in close correspondence with mapped vents, fractures and hydrothermal explosion craters and are also associated with magnetic lows. Coincident resistivity and magnetic lows unassociated with mapped alteration occur, for example, along the southeast edge of the Mallard Lake dome and along the northeastern edge of Sour Creek Dome, suggesting the presence of buried alteration. Low resistivities unassociated with magnetic lows may relate to hot and/or saline groundwater or thin (<50 m) layers of early lake sediments to which the magnetic data are insensitive. Resistivity and magnetic lows follow interpreted caldera boundaries in places, yet deviate in others. In the Norris-Mammoth Corridor, NNE-SSW trending linear resistivity and magnetic lows align with mapped faults. This pattern of coincident resistivity and magnetic lows may reflect fractures along which water is flowing. In addition, low resistivities underlie highly resistive and magnetic rhyolite flows, indicating the old lake sediments at the base of flows and in several cases, suggest interconnection between the different thermal areas.

  2. A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue.

    PubMed

    Zhu, Suiyi; Fang, Shuai; Huo, Mingxin; Yu, Yang; Chen, Yu; Yang, Xia; Geng, Zhi; Wang, Yi; Bian, Dejun; Huo, Hongliang

    2015-07-15

    Iron sludge, produced from filtration and backwash of groundwater treatment plant, has long been considered as a waste for landfill. In this study, iron sludge was reused to synthesize Fe3O4 magnetic particles (MPs) by using a novel solvothermal process. Iron sludge contained abundant amounts of silicon, iron, and aluminum and did not exhibit magnetic properties. After treatment for 4h, the amorphous Fe in iron sludge was transformed into magnetite Fe3O4, which could be easily separated from aqueous solution with a magnet. The prepared particles demonstrated the intrinsic properties of soft magnetic materials and could aggregate into a size of 1 μm. MPs treated for 10h exhibited excellent magnetic properties and a saturation magnetization value of 9 emu/g. The obtained particles presented the optimal adsorption of methylene blue under mild conditions, and the maximum adsorption capacity was 99.4 mg/g, which was higher than that of granular active carbon. The simple solvothermal method can be used to prepare Fe3O4 MPs from iron sludge, and the products could be applied to treatment of dyeing wastewater. Copyright © 2015. Published by Elsevier B.V.

  3. Airborne Magnetic and Electromagnetic Data map Rock Alteration and Water Content at Mount Adams, Mount Baker and Mount Rainier, Washington: Implications for Lahar Hazards and Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Finn, C. A.; Deszcz-Pan, M.; Horton, R.; Breit, G.; John, D.

    2007-12-01

    High resolution helicopter-borne magnetic and electromagnetic (EM) data flown over the rugged, ice-covered, highly magnetic and mostly resistive volcanoes of Mount Rainier, Mount Adams and Mount Baker, along with rock property measurements, reveal the distribution of alteration, water and hydrothermal fluids that are essential to evaluating volcanic landslide hazards and understanding hydrothermal systems. Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Intense hydrothermal alteration significantly reduces the magnetization and resistivity of volcanic rock resulting in clear recognition of altered rock by helicopter magnetic and EM measurements. Magnetic and EM data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region, in the central core of Mount Adams north of the summit, and in much of the central cone of Mount Baker. We identify the Sunset Amphitheater region and steep cliffs at the western edge of the central altered zone at Mount Adams as likely sources for future debris flows. In addition, the EM data identified water-saturated rocks in the upper 100-200 m of the three volcanoes. The water-saturated zone could extend deeper, but is beyond the detection limits of the EM data. Water in hydrothermal fluids reacts with the volcanic rock to produce clay minerals. The formation of clay minerals and presence of free water reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of water is also important for hazard assessments. Finally, modeling requires extremely low resistivities (< 20 ohm-m) that laboratory electrical resistivity measurements indicate are most easily explained by sulfuric acid solutions permeating altered rocks. The acid is the result of oxidation of magmatic H2S to sulfuric acid and highlights the continued alteration of volcanoes during periods of relative quiescence. Our results demonstrate that high resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock and shallow pore water and hydrothermal fluids within active stratovolcanoes.

  4. A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect

    PubMed Central

    Chen, Dianzhong; Liu, Xiaowei; Li, Hai; Li, Ling; Rong, Wanting; Zhang, Zhongzhao

    2018-01-01

    Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h. PMID:29385105

  5. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang

    2017-06-01

    Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid flooding is a large potential method for enhanced oil recovery in the future.

  6. Peptide-functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Hauser, Anastasia Kruse

    Lung cancer is one of the leading causes of cancer deaths in the United States. Radiation and chemotherapy are conventional treatments, but they result in serious side effects and the probability of tumor recurrence remains high. Therefore, there is an increasing need to enhance the efficacy of conventional treatments. Magnetic nanoparticles have been previously studied for a variety of applications such as magnetic resonance imaging contrast agents, anemia treatment, magnetic cell sorting and magnetically mediated hyperthermia (MMH). In this work, dextran coated iron oxide nanoparticles were developed and functionalized with peptides to target the nanoparticles to either the extracellular matrix (ECM) of tumor tissue or to localize the nanoparticles in subcellular regions after cell uptake. The magnetic nanoparticles were utilized for a variety of applications. First, heating properties of the nanoparticles were utilized to administer hyperthermia treatments combined with chemotherapy. The nanoparticles were functionalized with peptides to target fibrinogen in the ECM and extensively characterized for their physicochemical properties, and MMH combined with chemotherapy was able to enhance the toxicity of chemotherapy. The second application of the nanoparticles was magnetically mediated energy delivery. This treatment does not result in a bulk temperature rise upon actuation of the nanoparticles by an alternating magnetic field (AMF) but rather results in intracellular damage via friction from Brownian rotation or nanoscale heating effects from Neel relaxations. The nanoparticles were functionalized with a cell penetrating peptide to facilitate cell uptake and lysosomal escape. The intracellular effects of the internalized nanoparticles alone and with activation by an AMF were evaluated. Iron concentrations in vivo are highly regulated as excess iron can catalyze the formation of the hydroxyl radical through Fenton chemistry. Although often a concern of using iron oxide nanoparticles for therapeutic applications, these inherent toxicities were harnessed and utilized to enhance radiation therapy. Therefore, the third application of magnetic nanoparticles was their ability to catalyze reactive oxygen species formation and increase efficacy of radiation. Overall, iron oxide nanoparticles have a variety of cancer therapy applications and are a promising class of materials for increasing efficacy and reducing the side effects of conventional cancer treatments. Keywords: iron oxide nanoparticles, peptides, magnetically mediated hyperthermia, magnetically mediated energy delivery, reactive oxygen species.

  7. Development of a Split Bitter-type Magnet System for Dusty Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Bates, Evan; Romero-Talamas, Carlos A.; Birmingham, William J.; Rivera, William F.

    2014-10-01

    A 10 Tesla Bitter-type magnetic system is under development at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County (UMBC). We present here an optimization technique that uses differential evolution to minimize the omhic heating produced by the coils, while constraining the magnetic field in the experimental volume. The code gives us the optimal dimensions for the coil system including: coil length, turn thickness, disks radii, resistance, and total current required for a constant magnetic field. Finite element parametric optimization is then used to establish the optimal design for water cooling holes. Placement of the cooling holes will also take into consideration the magnetic forces acting on the copper alloy disks to ensure the material strength is not compromised during operation. The proposed power and cooling water delivery subsystems for the coils are also presented. Upon completion and testing of the magnet system, planned experiments include the propagation of magnetized waves in dusty plasma crystals under various boundary conditions, and viscosity in rotational shear flow, among others.

  8. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir.

    PubMed

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-09-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Stimuli responsive magnetic nanogels for biomedical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craciunescu, I.; Petran, A.; Turcu, R.

    2013-11-13

    We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated withmore » pNIPA, pAAc and the Fe{sub 3}O{sub 4} magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application.« less

  10. Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on Poly(N-isopropylacrylamide) for anti-cancer drug delivery.

    PubMed

    Davaran, Soodabeh; Alimirzalu, Samira; Nejati-Koshki, Kazem; Nasrabadi, Hamid Tayef; Akbarzadeh, Abolfazl; Khandaghi, Amir Ahmad; Abbasian, Mojtaba; Alimohammadi, Somayeh

    2014-01-01

    Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles (Fe3O4) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA- VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at 37 °C. Magnetic iron oxide nanoparticles (Fe3O4) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at 40 °C and in acidic pH compared to that 37 °C and basic pH. This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.

  11. Clinical applications of magnetic nanoparticles for hyperthermia.

    PubMed

    Thiesen, Burghard; Jordan, Andreas

    2008-09-01

    Magnetic fluids are increasingly used for clinical applications such as drug delivery, magnetic resonance imaging and magnetic fluid hyperthermia. The latter technique that has been developed as a cancer treatment for several decades comprises the injection of magnetic nanoparticles into tumors and their subsequent heating in an alternating magnetic field. Depending on the applied temperature and the duration of heating this treatment either results in direct tumor cell killing or makes the cells more susceptible to concomitant radio- or chemotherapy. Numerous groups are working in this field worldwide, but only one approach has been tested in clinical trials so far. Here, we summarize the clinical data gained in these studies on magnetic fluid induced hyperthermia.

  12. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.

    PubMed

    Khandhar, Amit P; Ferguson, R Matthew; Simon, Julian A; Krishnan, Kannan M

    2012-03-01

    Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ∼10 to 25 nm), size distribution, and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life, and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (σ-0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, H₀ = 14 kA/m); however, with a broader size distribution (σ-0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment. Copyright © 2011 Wiley Periodicals, Inc.

  13. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells.

    PubMed

    Lin, Ta-Chun; Lin, Feng-Huei; Lin, Jui-Che

    2012-07-01

    Hyperthermia has been reported to be an effective cancer treatment modality, as tumor cells are more temperature-sensitive than their normal counterparts. Since the ambient temperature can be increased by placing magnetic nanoparticles in an alternating magnetic field it has become of interest to incorporate these magnetic nanoparticles into biodegradable nanofibers for possible endoscopic hyperthermia treatment of malignant tumors. In this preliminary investigation we have explored various characteristics of biodegradable electrospun chitosan nanofibers containing magnetic nanoparticles prepared by different methods. These methods included: (1) E-CHS-Fe(3)O(4), with electrospun chitosan nanofibers directly immersed in a magnetic nanoparticle solution; (2) E-CHS-Fe(2+), with the electrospun chitosan nanofibers initially immersed in Fe(+2)/Fe(+3) solution, followed by chemical co-precipitation of the magnetic nanoparticles. The morphology and crystalline phase of the magnetic electrospun nanofiber matrices were determined by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray diffraction spectroscopy. The magnetic characteristics were measured using a superconducting quantum interference device. The heating properties of these magnetic electrospun nanofiber matrices in an alternating magnetic field were investigated at a frequency of 750 kHz and magnetic intensity of 6.4 kW. In vitro cell incubation experiments indicated that these magnetic electrospun nanofiber matrices are non-cytotoxic and can effectively reduce tumor cell proliferation upon application of a magnetic field. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Advances in Imaging Approaches to Fracture Risk Evaluation

    PubMed Central

    Manhard, Mary Kate; Nyman, Jeffry S.; Does, Mark D.

    2016-01-01

    Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density (BMD) at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high resolution HR-peripheral QCT (HR-pQCT) and micro-magnetic resonance imaging (μMRI) assess the micro-architecture of trabecular bone; quantitative ultrasound (QUS) measures the modulus or tissue stiffness of cortical bone; and quantitative ultra-short echo time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions. PMID:27816505

  15. Enhancements of magnetic properties and planar magnetoresistance by electric fields in γ-Fe{sub 2}O{sub 3}/MgO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Bin; Qin, Hongwei; Pei, Jinliang

    2016-05-23

    The treatment of perpendicular electric field upon γ-Fe{sub 2}O{sub 3}/MgO film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity, and saturation magnetizing field) of the film. The enhancement of saturation magnetization after the treatment of electric field may be connected with the combined shift effects of Mg ions from MgO to γ-Fe{sub 2}O{sub 3} and O{sup 2−} ions from γ-Fe{sub 2}O{sub 3} to MgO. The negative magnetoresistance of the γ-Fe{sub 2}O{sub 3}/MgO film also enhances with the treatment of perpendicular electric field at room temperature, possibly due to the increasing of electron hopping rate betweenmore » Fe{sup 2+} and Fe{sup 3+}.« less

  16. Clinical Applications of Transcranial Magnetic Stimulation in Pediatric Neurology.

    PubMed

    Narayana, Shalini; Papanicolaou, Andrew C; McGregor, Amy; Boop, Frederick A; Wheless, James W

    2015-08-01

    Noninvasive brain stimulation is now an accepted technique that is used as a diagnostic aid and in the treatment of neuropsychiatric disorders in adults, and is being increasingly used in children. In this review, we will discuss the basic principles and safety of one noninvasive brain stimulation method, transcranial magnetic stimulation. Improvements in the spatial accuracy of transcranial magnetic stimulation are described in the context of image-guided transcranial magnetic stimulation. The article describes and provides examples of the current clinical applications of transcranial magnetic stimulation in children as an aid in the diagnosis and treatment of neuropsychiatric disorders and discusses future potential applications. Transcranial magnetic stimulation is a noninvasive tool that is safe for use in children and adolescents for functional mapping and treatment, and for many children it aids in the preoperative evaluation and the risk-benefit decision making. © The Author(s) 2014.

  17. Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination.

    PubMed

    Zhang, Xiaolin; Qian, Jieshu; Pan, Bingcai

    2016-01-19

    Efficient and powerful water purifiers are in increasing need because we are facing a more and more serious problem of water pollution. Here, we demonstrate the design of versatile magnetic nanoadsorbents (M-QAC) that exhibit excellent disinfection and adsorption performances at the same time. The M-QAC is constructed by a Fe3O4 core surrounded by a polyethylenimine-derived corona. When dispersed in water, the M-QAC particles are able to interact simultaneously with multiple contaminants, including pathogens and heavy metallic cations and anions, in minutes. Subsequently, the M-QACs along with those contaminants can be easily removed and recollected by using a magnet. Meanwhile, the mechanisms of disinfection are investigated by using TEM and SEM, and the adsorption mechanisms are analyzed by XPS. In a practical application, M-QACs are applied to polluted river water 8000-fold greater in mass, producing clean water with the concentrations of all major pollutants below the drinking water standard of China. The adsorption ability of M-QAC could be regenerated for continuous use in a facile manner. With more virtues, such as low-cost fabrication and easy scaling up, the M-QAC have been shown to be a very promising multifunctional water purifier with rational design and to have great potential for real water purification applications.

  18. Magnetic Particle Technology

    ERIC Educational Resources Information Center

    Oliveira, Luiz C.A.; A. Rios, Rachel V.R.; Fabris, Jose D.; Lago, Rachel M.; Sapag, Karim

    2004-01-01

    An exciting laboratory environment is activated by the preparation and novel use of magnetic materials to decontaminate water through adsorption and magnetic removal of metals and organics. This uncomplicated technique is also adaptable to the possible application of adsorbents to numerous other environmental substances.

  19. Effects of repetitive transcranial magnetic stimulation in performing eye-hand integration tasks: four preliminary studies with children showing low-functioning autism.

    PubMed

    Panerai, Simonetta; Tasca, Domenica; Lanuzza, Bartolo; Trubia, Grazia; Ferri, Raffaele; Musso, Sabrina; Alagona, Giovanna; Di Guardo, Giuseppe; Barone, Concetta; Gaglione, Maria P; Elia, Maurizio

    2014-08-01

    This report, based on four studies with children with low-functioning autism, aimed at evaluating the effects of repetitive transcranial magnetic stimulation delivered on the left and right premotor cortices on eye-hand integration tasks; defining the long-lasting effects of high-frequency repetitive transcranial magnetic stimulation; and investigating the real efficacy of high-frequency repetitive transcranial magnetic stimulation by comparing three kinds of treatments (high-frequency repetitive transcranial magnetic stimulation, a traditional eye-hand integration training, and both treatments combined). Results showed a significant increase in eye-hand performances only when high-frequency repetitive transcranial magnetic stimulation was delivered on the left premotor cortex; a persistent improvement up to 1 h after the end of the stimulation; better outcomes in the treatment combining high-frequency repetitive transcranial magnetic stimulation and eye-hand integration training. Based on these preliminary findings, further evaluations on the usefulness of high-frequency repetitive transcranial magnetic stimulation in rehabilitation of children with autism are strongly recommended. © The Author(s) 2013.

  20. Magnetic solid-phase extraction using nanoporous three dimensional graphene hybrid materials for high-capacity enrichment and simultaneous detection of nine bisphenol analogs from water sample.

    PubMed

    Wang, Lingling; Zhang, Zhenzhen; Zhang, Jing; Zhang, Lei

    2016-09-09

    The synthesis of a magnetic nanoporous three dimensional graphene (3DG)/ZnFe2O4 composite has been achieved. Through formation of graphene hydrogel, ZnFe2O4 magnetic particles was successfully introduced into the nanoporous 3DG, resulting in a magnetic porous carbon material. The morphology, structure, and magnetic behavior of the as-prepared 3DG/ZnFe2O4 were characterized by using the techniques of SEM, XRD, BET, VSM, FTIR, Raman and TGA. The 3DG/ZnFe2O4 has a high specific surface area and super paramagnetism. Its performance was evaluated by the magnetic solid-phase extraction of nine bisphenol analogs (BPs) from water samples followed by HPLC analysis, and showed excellent adsorption capability for the nine target compounds. Under optimized condition, the lower method detection limits (0.05-0.18ngmL(-1)), the higher enrichment factors (800 fold) and good recoveries (95.1-103.8%) with relative standard deviation (RSD) values less than 6.2% were achieved. The results indicated that the developed method based on the use of 3DG/ZnFe2O4 as the magnetic adsorbent has the advantages of convenience and high efficiency, and can be successfully applied to detect the nine BPs in real water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    NASA Astrophysics Data System (ADS)

    Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.

    2014-07-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.

  2. Modeling the Efficiency of a Magnetic Needle for Collecting Magnetic Cells

    PubMed Central

    Butler, Kimberly S; Adolphi, Natalie L.; Bryant, H C; Lovato, Debbie M; Larson, Richard S; Flynn, Edward R

    2014-01-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in 1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and 2) water in which 3, 5, 10 and 100 % of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency vs. time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium. PMID:24874577

  3. Performance analysis of a microfluidic mixer based on high gradient magnetic separation principles

    NASA Astrophysics Data System (ADS)

    Liu, Mengyu; Han, Xiaotao; Cao, Quanliang; Li, Liang

    2017-09-01

    To achieve a rapid mixing between a water-based ferrofluid and DI water in a microfluidic environment, a magnetically actuated mixing system based on high gradient magnetic separation principles is proposed in this work. The microfluidic system consists of a T-shaped mirochannel and an array of integrated soft-magnetic elements at the sidewall of the channel. With the aid of an external magnetic bias field, these elements are magnetized to produce a magnetic volume force acting on the fluids containing magnetic nanoparticles, and then to induce additional flows for improving the mixing performance. The mixing process is numerically investigated through analyzing the concentration distribution of magnetic nanoparticles using a coupled particle-fluid transport model, and mixing performances under different parametrical conditions are investigated in detail. Numerical results show that a high mixing efficiency around 97.5% can be achieved within 2 s under an inlet flow rate of 1 mm s-1 and a relatively low magnetic bias field of 50 mT. Meanwhile, it has been found that there is an optimum number of magnetic elements used for obtaining the best mixing performance. These results show the potential of the proposed mixing method in lab-on-a-chip system and could be helpful in designing and optimizing system performance.

  4. A Two-Magnet System to Push Therapeutic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

    2010-12-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically "inject", or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier.

  5. Magnetically recyclable Bi/Fe-based hierarchical nanostructures via self-assembly for environmental decontamination

    NASA Astrophysics Data System (ADS)

    Hu, Zhong-Ting; Chen, Zhong; Goei, Ronn; Wu, Weiyi; Lim, Teik-Thye

    2016-06-01

    Pristine bismuth ferrite usually possesses weak magnetic properties (e.g., saturation magnetization Ms < 3 emu g-1) for practical magnetic separation applications. Herein, a superparamagnetic bismuth ferrite with coral-like hierarchical morphology (BFO-M) was fabricated through methanol solvothermal treatment of the as-prepared Bi2Fe4O9 nanoclusters (P-BFO). The BFO-M shows a higher Ms of ~31 emu g-1 compared to that of P-BFO treated in water (BFO-A), in ethanol (BFO-E) and in ethylene glycol (BFO-G). Compared to single-crystalline Bi2Fe4O9 (PS) and Bi2Fe4O9 clusters (NSP), BFO-M shows an excellent organic pollutant removal rate by virtue of its high adsorption capacity and catalytic activity when methyl orange (MO) is used as the model organic pollutant. BFO-M also exhibits good visible light photo-Fenton oxidation rates for pharmaceuticals and pesticides. Even at a low catalyst loading of 0.12 g L-1, the removal rate of organic pollutants (e.g., 5-fluorouracil, isoproturon) can be ~99% in 100 min under visible light irradiation. Besides, BFO-M is also a good adsorbent for different kinds of heavy metal ions (Pb(ii), Cr(iii), Cu(ii), As(v), etc.). For example, its maximal adsorption capacity for Pb(ii) is 214.5 mg g-1. The used BFO-M can be recovered via magnetic separation. The outstanding performances of BFO-M can be ascribed to its coral-like hierarchical morphology which consists of the self-assembly of 1D nanowires (~6 nm in diameter) and 2D ultrathin nanoflakes (~4.5 nm in thickness). A schematic illustration of its morphology formation is proposed.Pristine bismuth ferrite usually possesses weak magnetic properties (e.g., saturation magnetization Ms < 3 emu g-1) for practical magnetic separation applications. Herein, a superparamagnetic bismuth ferrite with coral-like hierarchical morphology (BFO-M) was fabricated through methanol solvothermal treatment of the as-prepared Bi2Fe4O9 nanoclusters (P-BFO). The BFO-M shows a higher Ms of ~31 emu g-1 compared to that of P-BFO treated in water (BFO-A), in ethanol (BFO-E) and in ethylene glycol (BFO-G). Compared to single-crystalline Bi2Fe4O9 (PS) and Bi2Fe4O9 clusters (NSP), BFO-M shows an excellent organic pollutant removal rate by virtue of its high adsorption capacity and catalytic activity when methyl orange (MO) is used as the model organic pollutant. BFO-M also exhibits good visible light photo-Fenton oxidation rates for pharmaceuticals and pesticides. Even at a low catalyst loading of 0.12 g L-1, the removal rate of organic pollutants (e.g., 5-fluorouracil, isoproturon) can be ~99% in 100 min under visible light irradiation. Besides, BFO-M is also a good adsorbent for different kinds of heavy metal ions (Pb(ii), Cr(iii), Cu(ii), As(v), etc.). For example, its maximal adsorption capacity for Pb(ii) is 214.5 mg g-1. The used BFO-M can be recovered via magnetic separation. The outstanding performances of BFO-M can be ascribed to its coral-like hierarchical morphology which consists of the self-assembly of 1D nanowires (~6 nm in diameter) and 2D ultrathin nanoflakes (~4.5 nm in thickness). A schematic illustration of its morphology formation is proposed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03677e

  6. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology.

    PubMed

    Yang, Miyi; Wu, Xiaoling; Jia, Yuhan; Xi, Xuefei; Yang, Xiaoling; Lu, Runhua; Zhang, Sanbing; Gao, Haixiang; Zhou, Wenfeng

    2016-02-04

    In this work, a novel effervescence-assisted microextraction technique was proposed for the detection of four fungicides. This method combines ionic liquid-based dispersive liquid-liquid microextraction with the magnetic retrieval of the extractant. A magnetic effervescent tablet composed of Fe3O4 magnetic nanoparticles, sodium carbonate, sodium dihydrogen phosphate and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonimide) was used for extractant dispersion and retrieval. The main factors affecting the extraction efficiency were screened by a Plackett-Burman design and optimized by a central composite design. Under the optimum conditions, good linearity was obtained for all analytes in pure water model and real water samples. Just for the pure water, the recoveries were between 84.6% and 112.8%, the limits of detection were between 0.02 and 0.10 μg L(-1) and the intra-day precision and inter-day precision both are lower than 4.9%. This optimized method was successfully applied in the analysis of four fungicides (azoxystrobin, triazolone, cyprodinil, trifloxystrobin) in environmental water samples and the recoveries ranged between 70.7% and 105%. The procedure promising to be a time-saving, environmentally friendly, and efficient field sampling technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Enhancement of Lipid Production of Chlorella Pyrenoidosa Cultivated in Municipal Wastewater by Magnetic Treatment.

    PubMed

    Han, Songfang; Jin, Wenbiao; Chen, Yangguang; Tu, Renjie; Abomohra, Abd El-Fatah

    2016-11-01

    Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the feasibility of using magnetic treatment for enhancement of algal lipid production and wastewater treatment in outdoor-cultivated Chlorella pyrenoidosa. Results confirmed that magnetic treatment significantly enhances biomass and lipid productivity of C. pyrenoidosa by 12 and 10 %, respectively. Application of magnetic field in a semi-continuous culture resulted in highly treated wastewater with total nitrogen maintained under 15 mg L -1 , ammonia nitrogen below 5 mg L -1 , total phosphorus less than 0.5 mg L -1 , and COD Cr less than 50 mg L -1 . In addition, magnetic treatment resulted in a decrease of wastewater turbidity, an increase of bacterial numbers, and an increase of active oxygen in wastewater which might be attributed to the enhancement of growth and lipid production of C. pyrenoidosa.

  8. Hybrid magnet program at the Francis Bitter National Magnet Laboratory MIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leupold, M.J.; Weggel, R.J.

    1992-01-01

    Resistive water-cooled magnets can generate field according to how much power is available. The authors have developed the hybrid concept for generating fields beyond a power limit, up to 45 T. Along the way the authors have progressed through five successively more adventurous designs. This paper chronicles the evolution of hybrid magnets built at the Francis Bitter National Magnet Laboratory.

  9. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Tianyi; Zhao, Zhiwei; Liang, Zhijie; Liu, Jie; Shi, Wenxin; Cui, Fuyi

    2017-09-01

    Bifunctional ZrO2-Fe3O4 magnetic nanoparticles were synthesized and characterized, to remove As(III) through photocatalyic oxidation and adsorption. With a saturation magnetization of 27.39 emu/g, ZrO2-Fe3O4 nanoparticles with size of 10-30 nm could be easily separated from solutions with a simple magnetic process. Under UV light, As(III) could be completely oxidized to less toxic As(V) by ZrO2-Fe3O4 nanoparticles within 40 min in the photocatalytic reaction. Simultaneously, As(V) could be adsorbed onto the surface of nanoparticles with high efficiency. The adsorption of As(V) was well fitted by the pseudo-second-order model and the Freundlich isotherm model, respectively, and the maximum adsorption capacities of the nanoparticles was 133.48 mg/g at pH 7.0. As(III) could be effectively removed by ZrO2-Fe3O4 nanoparticles at initial pH range from 4 to 8. Among all the common coexisting ions investigated, except for chloride and sulfate, carbonate, silicate and phosphate decreased the As(III) removal by competing with arsenic species for adsorption sites. The synthesized magnetic ZrO2-Fe3O4 combined the photocatalytic oxidation property of ZrO2 and the high adsorption capacity of both ZrO2 and Fe3O4, which make it have significant potential applications in the As(III)-contaminated water treatment.

  10. Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles

    NASA Astrophysics Data System (ADS)

    Baeza, A.; Arcos, D.; Vallet-Regí, M.

    2013-12-01

    The development of magnetic materials for interstitial hyperthermia treatment of cancer is an ever evolving research field which provides new alternatives to antitumoral therapies. The development of biocompatible magnetic materials has resulted in new biomaterials with multifunctional properties, which are able to adapt to the complex scenario of tumoral processes. Once implanted or injected in the body, magnetic materials can behave as thermoseeds under the effect of AC magnetic fields. Magnetic bioceramics aimed to treat bone tumors and magnetic nanoparticles are among the most studied thermoseeds, and supply different solutions for the different scenarios in cancerous processes. This paper reviews some of the biomaterials used for bone cancer treatment and skeletal reinforcing, as well as the more complex topic of magnetic nanoparticles for intracellular targeting and hyperthermia.

  11. Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles.

    PubMed

    Baeza, A; Arcos, D; Vallet-Regí, M

    2013-12-04

    The development of magnetic materials for interstitial hyperthermia treatment of cancer is an ever evolving research field which provides new alternatives to antitumoral therapies. The development of biocompatible magnetic materials has resulted in new biomaterials with multifunctional properties, which are able to adapt to the complex scenario of tumoral processes. Once implanted or injected in the body, magnetic materials can behave as thermoseeds under the effect of AC magnetic fields. Magnetic bioceramics aimed to treat bone tumors and magnetic nanoparticles are among the most studied thermoseeds, and supply different solutions for the different scenarios in cancerous processes. This paper reviews some of the biomaterials used for bone cancer treatment and skeletal reinforcing, as well as the more complex topic of magnetic nanoparticles for intracellular targeting and hyperthermia.

  12. Mineral of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2005-01-01

    Manganese is one of the most important ferrous metals and one of the few for which the United States is totally dependent on imports. It is a black, brittle element predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production, which together provide the largest market for manganese (about 83 percent). It is also used as an alloy with nonferrous metals such as aluminum and copper. Nonmetallurgical applications of manganese include battery cathodes, soft ferrite magnets used in electronics, micronutrients found in fertilizers and animal feed, water treatment chemicals, and a colorant for bricks and ceramics.

  13. The correlation study of temperature distribution with the immunology response under laser radiation

    NASA Astrophysics Data System (ADS)

    Chen, Yichao; Nordquist, Robert E.; Naylor, Mark F.; Wu, Feng; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.

    2008-02-01

    The 3-D, in vivo temperature distributions within tumor-bearing rats were measured using Magnetic Resonance Imaging (MRI) technique. The in vivo thermal distributions of rats were measured using MRI chemical shift of water proton density. DMBA-4 tumor bearing rats are treated using laser photothermal therapy combined with immunoadjuvant under the observation of MRI. The thermal images and the immunological responses were studied and their relationships were investigated. The study of thermal distribution and correlation with the immunological response under laser treatment provided rich information with potential guidance for thermal-immunological therapy.

  14. Water Flow Investigation on Quartz Sand with 13-interval Stimulated Echo Multi Slice Imaging

    NASA Astrophysics Data System (ADS)

    Spindler, Natascha; Pohlmeier, Andreas; Galvosas, Petrik

    2011-03-01

    Understanding root water uptake in soils is of high importance for securing nutrition in the context of climate change and linked phenomena like stronger varying weather conditions (draught, strong rain). One step to understand how root water uptake occurs is the knowledge of the water flow in soil towards plant roots. Magnetic Resonance Imaging (MRI) in combination with q-space imaging is potentially the most powerful analytical tool for non-invasive three dimensional visualization of flow and transport in porous media. Numerous attempts have been made to measure local velocity in porous media by combining velocity phase encoding with fast imaging methods, where flow velocities in the vascular bundles of plant stems were investigated. In contrast to water situated in the cellular structure of plants, NMR signal arising from water in the pore space in soil may be much more affected by the presence of internal magnetic field gradients. In this work we account for the existence of these gradients by employing bipolar pulsed field magnetic gradients for velocity encoding. This enables one to study flow through sand (as a model system for soil) at flow rates relevant for the water uptake of plant roots.

  15. [Removal and Recycle of Phosphor from Water Using Magnetic Core/Shell Structured Fe₃O₄ @ SiO₂Nanoparticles Functionalized with Hydrous Aluminum Oxide].

    PubMed

    Lai, Li; Xie, Qiang; Fang, Wen-kan; Xing, Ming-chao; Wu, De-yi

    2016-04-15

    A novel magnetic core/shell structured nano-particle Fe₃O₄@ SiO₂phosphor-removal ahsorbent functionalized with hydrous aluminum oxides (Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O) was synthesized. Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O was characterized by XRD, TEM, VSM and BET nitrogen adsorption experiment. The XRD and TEM results demonstrated the presence of the core/shell structure, with saturated magnetization and specific surface area of 56.00 emu · g⁻¹ and 47.27 m² · g⁻¹, respectively. In batch phosphor adsorption experiment, the Langmuir adsorption maximum capacity was 12.90 mg · g⁻¹ and nearly 96% phosphor could be rapidly removed within a contact time of 40 mm. Adsorption of phosphor on Fe₃O₄@ SiO₂@ Al₂O₃ · nH₂O was highly dependent on pH condition, and the favored pH range was 5-9 in which the phosphor removal rate was above 90%. In the treatment of sewage water, the recommended dosage was 1.25 kg · t⁻¹. In 5 cycles of adsorption-regeneration-desorption experiment, over 90% of the adsorbed phosphor could be desorbed with 1 mol · L⁻¹ NaOH, and Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O could be reused after regeneration by pH adjustment with slightly decreased phosphor removal rate with increasing recycling number, which proved the recyclability of Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O and thereby its potential in recycling of phosphor resources.

  16. Magnetic therapy is ineffective for the treatment of snoring and obstructive sleep apnea syndrome.

    PubMed

    Dexter, D

    1997-03-01

    Snoring and the obstructive sleep apnea syndrome are common and chronic ailments with potentially serious medical complications. There are several accepted treatments, but these can be uncomfortable, inconvenient, and expensive. A number of alternative treatments have been reported to be beneficial in the treatment of obstructive sleep apnea and snoring. They are advertised in magazines, on the radio and television, and on the Internet. The lay press is reporting about the effectiveness of these treatments without the benefit of clinical trials or scientific studies. Among the therapies currently being promoted for the treatment of snoring and sleep apnea is biomagnetic therapy. Unlike many of the other treatments which have not undergone scientific evaluation, biomagnetic therapy has been evaluated in the past. In fact, the evaluation of biomagnetic therapy is one of the first controlled scientific investigations found in the literature. This report showed that magnet therapy had no medicinal value. Despite this clear evidence, magnetic therapy continues to be utilized today and currently is being promoted for the treatment of snoring and sleep apnea. At out Sleep Disorder Center, we have had the opportunity to evaluate a patient with severe obstructive sleep apnea both before and after treatment with magnetic therapy, as well as with conventional therapy. Our study clearly indicates there was no benefit from magnetic therapy in this case. While alternative therapy may be helpful in the treatment of certain medical conditions, extreme care must be exercised to prevent inappropriate treatment or undertreat-ment of significant medical problems. Close clinical follow-up and controlled studies are important in determining the effectiveness of therapies.

  17. The characteristic of evaporative cooling magnet for ECRIS

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Ruan, L.; Gu, G. B.; Lu, W.; Zhang, X. Z.; Zhan, W. L.

    2016-02-01

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm2. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.

  18. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    PubMed

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  19. The characteristic of evaporative cooling magnet for ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, B., E-mail: xiongbin@mail.iee.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Ruan, L.

    2016-02-15

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquidmore » coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm{sup 2}. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.« less

  20. Preparation and characterization of magnetic core-shell iron oxide@glycyrrhizic acid nanoparticles in ethanol-water mixed solvent

    NASA Astrophysics Data System (ADS)

    Saeedi, Mostafa; Vahidi, Omid

    2018-06-01

    In this research, we used the co-precipitation method to synthesize glycyrrhizic acid coated iron oxide magnetic nanoparticles. The aim of this study is to investigate how different amounts of glycyrrhizic acid affect the structural, biological, magnetic, and hyperthermic characteristics of the synthesized magnetic nanoparticles. The synthesis was conducted under different glycyrrhizic acid concentrations in water with the presence of ethanol to generate coated nanoparticles with different amounts of coating agent. The characteristics of the synthesized nanoparticles were examined by several devices including X-ray diffractometer, transmission electron microscope, field-emission scanning electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra, and thermal gravimetric analyzer. The cytotoxicity of synthesized nanoparticles was examined by MTT assay using L929 fibroblast cell line. The results indicated the enhanced biocompatibility of the coated iron oxide nanoparticles due to the presence of glycyrrhizic acid. The comparison of the coated samples shows that the samples with higher amounts of coating agent were more biocompatible. The possibility of using the synthesized magnetic nanoparticles for medical hyperthermia was examined by performing hyperthermia process on a nanofluid made up of the nanoparticles dispersed in water using a high-frequency alternating magnetic field generator and the results confirm the effectiveness of the synthesized nanoparticles in the elevation of the solutions temperature.

  1. Direct spectroscopic evidence for competition between thermal molecular agitation and magnetic field in a tetrameric protein in aqueous solution

    NASA Astrophysics Data System (ADS)

    Calabrò, Emanuele; Magazù, Salvatore

    2018-05-01

    Samples of a typical tetrameric protein, the hemoglobin, at the concentration of 150 mg/ml in bidistilled water solution, were exposed to a uniform magnetic field at 200 mT at different temperatures of 15∘C, 40∘C and 65∘C. Fourier Transform Infrared Spectroscopy was used to analyze the response of the secondary structure of the protein to both stress agents, heating and static magnetic field. The most relevant result which was observed was the significant increasing in intensity of the Amide I band after exposure to the uniform magnetic field at the room temperature of 15∘C. This result can be explained assuming that protein's α-helices aligned along the direction of the applied magnetic field due to their large dipole moment, inducing the alignment of the entire protein. Increasing of temperature up to 40∘C and 65∘C induced a significant reduction of the increasing in intensity of the Amide I band. This effect may be easily explained assuming that Brownian motion of the protein in water solution caused by thermal molecular agitation increased with increasing of temperature, contrasting the effect of the torque of the magnetic field applied to the protein in water solution.

  2. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  3. Eddy current characterization of magnetic treatment of materials

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1992-01-01

    Eddy current impedance measuring methods have been applied to study the effect that magnetically treated materials have on service life extension. Eddy current impedance measurements have been performed on Nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in a material's electromagnetic properties and does exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic-field processing effect on machine tool service life.

  4. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    PubMed

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Dynamics of paramagnetic agents by off-resonance rotating frame technique in the presence of magnetization transfer effect

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2007-02-01

    The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constable, S.A.; Orange, Arnold S.; Hoversten, G. Michael

    Induction in electrically conductive seawater attenuates themagnetotelluric (MT) fields and, coupled with a minimum around 1 Hz inthe natural magnetic field spectrum, leads to a dramatic loss of electricand magnetic field power on the sea floor at periods shorter than 1000 s,For this reason the marine MT method traditionally has been used only atperiods of 10(3) to 10(5) s to probe deep mantle structure; rarely does asea-floor MT response extend to a 100-s period. To be useful for mappingcontinental shelf structure at depths relevant to petroleum exploration,however, MT measurements need to be made at periods between 1 and 1000 s.Thismore » can be accomplished using ac-coupled sensors, induction coils forthe magnetic field, and an electric field amplifier developed for marinecontrolled-source applications. The electrically quiet sea floor allowsthe attenuated electric field to be amplified greatly before recording;in deep (l-km) water, motional noise in magnetic field sensors appearsnot to be a problem. In shallower water, motional noise does degrade themagnetic measurement, but sea-floor magnetic records can be replaced byland recordings, producing an effective sea-surface MT response. Fieldtrials of such equipment in l-km-deep water produced good-quality MTresponses at periods of 3 to 1000 s: in shallower water, responses to afew hertz can be obtained. Using an autonomous sea-floor data loggerdeveloped at Scripps Institution of Oceanography, marine surveys of 50 to100 sites are feasible.« less

  7. Assessment methods in human body composition.

    PubMed

    Lee, Seon Yeong; Gallagher, Dympna

    2008-09-01

    The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth.

  8. Assessment methods in human body composition

    PubMed Central

    Lee, Seon Yeong; Gallagher, Dympna

    2009-01-01

    Purpose of review The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Recent findings Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. Summary There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth. PMID:18685451

  9. Therapeutic Magnets Do Not Affect Tissue Temperatures

    PubMed Central

    Sweeney, Kathleen B.; Ingersoll, Christopher D.; Swez, John A.

    2001-01-01

    Objective: Manufacturers of commercially available “therapeutic” magnets claim that these magnets cause physiologic thermal effects that promote tissue healing. We conducted this study to determine if skin or intramuscular temperatures differed among magnet, sham, and control treatments during 60 minutes of application to the quadriceps muscle. Design and Setting: A 3 × 3 mixed-model, factorial design with repeated measures on both independent variables was used. The first independent variable, application duration, had 3 random levels (20, 40, and 60 minutes). The second independent variable, treatment, had 3 fixed levels (magnet, sham, and control). The dependent variable was tissue temperature (°C). Measurement depth served as a control variable, with 2 levels: skin and 1 cm below the fat layer. Data were collected in a thermoneutral laboratory setting and analyzed using a repeated-measures analysis of variance. Subjects: The study included 13 healthy student volunteers (8 men, 5 women; age, 20.5 ± 0.9 years; height, 176.8 ± 10.4 cm; weight, 73.8 ± 11.8 kg; anterior thigh skinfold thickness, 16.9 ± 6.5 mm). Measurements: Temperatures were measured at 30-second intervals using surface and implantable thermocouples. Temperature data at 20, 40, and 60 minutes were used for analysis. Each subject received all 3 treatments on different days. Results: Neither skin nor intramuscular temperatures were different across the 3 treatments at any time. For both skin and intramuscular temperatures, a statistically significant but not clinically meaningful temperature increase (less than 1°C), was observed over time within treatments, but this increase was similar in all treatment groups. Conclusions: No meaningful thermal effect was observed with any treatment over time, and treatments did not differ from each other. We conclude that flexible therapeutic magnets were not effective for increasing skin or deep temperatures, contradicting one of the fundamental claims made by magnet distributors. PMID:12937511

  10. Investigation of coastal areas in Northern Germany using airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Siemon, Bernhard; Wiederhold, Helga; Steuer, Annika; Ibs-von Seht, Malte; Voß, Wolfgang; Meyer, Uwe

    2014-05-01

    Since 2000, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out several airborne geophysical surveys in Northern Germany to investigate the coastal areas of the North Sea and some of the North and East Frisian Islands. Several of those surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). Two helicopter-borne geophysical systems were used, namely the BGR system, which collects simultaneously frequency-domain electromagnetic, magnetic and radiometric data, and the SkyTEM system, a time-domain electromagnetic system developed by the University of Aarhus. Airborne geophysical surveys enable to investigate huge areas almost completely with high lateral resolution in a relatively short time at economic cost. In general, the results can support geological and hydrogeological mapping. Of particular importance are the airborne electromagnetic results, as the surveyed parameter - the electrical conductivity - depends on both lithology and groundwater status. Therefore, they can reveal buried valleys and the distribution of sandy and clayey sediments as well as salinization zones and fresh-water occurrences. The often simultaneously recorded magnetic and radiometric data support the electromagnetic results. Lateral changes of Quaternary and Tertiary sediments (shallow source - several tens of metres) as well as evidences of the North German Basin (deep source - several kilometres) are revealed by the magnetic results. The radiometric data indicate the various mineral compositions of the soil sediments. This BGR/LIAG project aims to build up a geophysics data base (http://geophysics-database.de/) which contains all airborne geophysical data sets. However, the more significant effort is to create a reference data set as basis for monitoring climate or man-made induced changes of the salt-water/fresh-water interface at the German North Sea coast. The significance of problems for groundwater extraction and treatment caused by groundwater salinization is more and more increasing and particularly coastal areas are affected by a latent risk for the sustainable usage of aquifers.

  11. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    NASA Astrophysics Data System (ADS)

    Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.

    2010-11-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb3Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb3Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B × ∂Bz/∂z) of 4500 T2/m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb3Sn layer and its large diameter formed on Nb-barrier component in Nb3Sn wires.

  12. Determination of the magnetic contribution to the heat capacity of cobalt oxide nanoparticles and the thermodynamic properties of the hydration layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.

    2011-01-01

    We present low temperature (11 K) inelastic neutron scattering (INS) data on four hydrated nanoparticle systems: 10 nm CoO 0.10H2O (1), 16 nmCo3O4 0.40H2O (2), 25 nm Co3O4 0.30H2O (3) and 40 nmCo3O4 0.026H2O (4). The vibrational densities of states were obtained for all samples and from these the isochoric heat capacity and vibrational energy for the hydration layers confined to the surfaces of these nanoparticle systems have been elucidated. The results show that water on the surface of CoO nanoparticles is more tightly bound than water confined to the surface of Co3O4, and this is reflected in the reducedmore » heat capacity and vibrational entropy for water on CoO relative to water on Co3O4 nanoparticles. This supports the trend, seen previously, for water to be more tightly bound in materials with higher surface energies. The INS spectra for the antiferromagnetic Co3O4 particles (2 4) also show sharp and intense magnetic excitation peaks at 5 meV, and from this the magnetic contribution to the heat capacity of Co3O4 nanoparticles has been calculated; this represents the first example of use of INS data for determining the magnetic contribution to the heat capacity of any magnetic nanoparticle system.« less

  13. Tooth-supported, magnet-retained overdentures: a review.

    PubMed

    Vere, Joe; Deans, Robert F

    2009-06-01

    There has been an increase in the provision of implant-supported prostheses in patients unable to tolerate conventional dentures. Unfortunately, many patients are unable to benefit from this treatment option because of anatomical, medical or financial constraints. Magnet-retained overdentures represent a potential treatment option in many of these cases. This article describes the development, advantages, complications and clinical procedures associated with the provision of tooth-supported, magnet-retained overdentures. Conventional overdenture retention can be enhanced by the use of dental magnets. Clinical procedures are straightforward and magnets offer a number of advantages over other forms of precision attachment.

  14. Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs).

    PubMed

    Villar-Navarro, Mercedes; Martín-Valero, María Jesús; Fernández-Torres, Rut Maria; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel

    2017-02-15

    An easy and environmental friendly method, based on the use of magnetic molecular imprinted polymers (mag-MIPs) is proposed for the simultaneous extraction of the 16 U.S. EPA polycyclic aromatic hydrocarbons (PAHs) priority pollutants. The mag-MIPs based extraction protocol is simple, more sensitive and low organic solvent consuming compared to official methods and also adequate for those PAHs more retained in the particulate matter. The new proposed extraction method followed by HPLC determination has been validated and applied to different types of water samples: tap water, river water, lake water and mineral water. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Rapid micromixer via ferrofluids

    NASA Astrophysics Data System (ADS)

    Fu, L. M.; Tsai, C. H.; Leong, K. P.; Wen, C. Y.

    Performances of a micromixer based on ferrofluids are predicted numerically. A permanent magnet is used to induce transient interactive flows between a water-based ferrofluid and water. The external magnetic field causes the ferrofluid to expand significantly and uniformly toward miscible water, associated with a great number of extremely fine fingering structures on the interface in the upstream and downstream regions of the microchannel. These pronounced fingering patterns, which mimic the experimental observations of Wen et al. (2009), increase the mixing interfacial length dramatically. Along with the dominant diffusion effects occurring around the circumferential regions of the fine finger structures, the mixing efficiency increases significantly. The mixing efficiency can be as high as 95% within 2.0 s and a distance of 3.0 mm from the inlet of the mixing channel, when the applied peak magnetic field is 145.8 Oe. The proposed mixing scheme not only provides an excellent mixing, even in simple microchannel, but also can be easily applied to lab-on-a-chip applications with an external permanent magnet.

  16. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    PubMed

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.

  17. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    PubMed

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  18. Electromagnetic fields in medicine - The state of art.

    PubMed

    Pasek, Jarosław; Pasek, Tomasz; Sieroń-Stołtny, Karolina; Cieślar, Grzegorz; Sieroń, Aleksander

    2016-01-01

    Intense development of methods belonging to physical medicine has been noted recently. There are treatment methods, which in many cases lead to reduction treatment time and positively influence on quality of life treatment patients. The present physical medicine systematically extends their therapeutic possibilities. This above applies to illnesses and injuries of locomotor system, diseases affecting of soft tissues, as well as chronic wounds. The evidence on this are the results of basic and clinical examinations relating the practical use of electromagnetic fields in medicine. In this work the authors introduced the procedure using the current knowledge relating to physical characteristic and biological effects of the magnetic fields. In the work the following methods were used: static magnetic fields, spatial magnetic fields, the variable magnetic fields both with laser therapy (magnetolaserotherapy) and variable magnetic fields both with light optical non-laser (magnetoledtherapy) talked.

  19. Implantable magnetic nanocomposites for the localized treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Soboyejo, Wole

    2014-12-01

    This paper explores the potential of implantable magnetic nanocomposites for the localized treatment of breast cancer via hyperthermia. Magnetite (Fe3O4)-reinforced polydimethylsiloxane composites were fabricated and characterized to determine their structural, magnetic, and thermal properties. The thermal properties and degree of optimization were shown to be strongly dependent on material properties of magnetic nanoparticles (MNPs). The in-vivo temperature profiles and thermal doses were investigated by the use of a 3D finite element method (FEM) model to simulate the heating of breast tissue. Heat generation was calculated using the linear response theory model. The 3D FEM model was used to investigate the effects of MNP volume fraction, nanocomposite geometry, and treatment parameters on thermal profiles. The implications of the results were then discussed for the development of implantable devices for the localized treatment of breast cancer.

  20. Study on the effect of magnetic field treatment of newly isolated Paenibacillus sp.

    PubMed

    Li, Jie; Yi, Yanli; Cheng, Xilei; Zhang, Dageng; Irfan, Muhammad

    2015-12-01

    Symbiotic nitrogen fixation in plants occurs in roots with the help of some bacteria which help in soil nitrogen fertility management. Isolation of significant environment friendly bacteria for nitrogen fixation is very important to enhance yield in plants. In this study effect of different magnetic field intensity and treatment time was studied on the morphology, physiology and nitrogen fixing capacity of newly isolated Paenibaccilus sp. from brown soil. The bacterium was identified by 16S rDNA sequence having highest similarity (99%) with Paenibacillus sp as revealed by BLAST. Different magnetic intensities such as 100mT, 300mT and 500mT were applied with processing time of 0, 5, 10, 20 and 30 minutes. Of all these treatment 300mT with processing time of 10 minutes was found to be most suitable treatment. Results revealed that magnetic treatment improve the growth rate with shorter generation time leading to increased enzyme activities (catalase, peroxidase and superoxide dismutase) and nitrogen fixing efficiencies. High magnetic field intensity (500mT) caused ruptured cell morphology and decreased enzyme activities which lead to less nitrogen fixation. It is concluded that appropriate magnetic field intensity and treatment time play a vital role in the growth of soil bacteria which increases the nitrogen fixing ability which affects the yield of plant. These results were very helpful in future breading programs to enhance the yield of soybean.

  1. Near "real" time magnetic resonance images as a monitoring system for interstitial laser therapy: experimental protocols

    NASA Astrophysics Data System (ADS)

    Castro, Dan J.; Farahani, Keyvan; Soudant, Jacques; Zwarun, Andrew A.; Lufkin, Robert B.

    1992-06-01

    The failure rate of cancer treatment remains unacceptably high, still being a leading cause of mortality in adults and children despite major advances over the past 50 years in the fields of surgery, radiation therapy and, more recently, chemo and immunotherapy. Surgical access to some deep tumors of the head and neck and other areas often require extensive dissections with residual functional and cosmetic deformities. Repeated treatment is not possible after maximum dose radiotherapy and chemotherapy is still limited by its systemic toxicity. An attractive solution to these problems would be the development of a new adjunctive method combining the best features of interstitial laser therapy for selective tumor destruction via minimally invasive techniques for access and 3-D magnetic resonance imaging (MRI) as a monitoring system for laser-tissue interactions. Interstitial laser therapy (ILT) via fiberoptics allow laser energy to be delivered directly into deeper tissues. However, this concept will become clinically useful only when noninvasive, accurate, and reproducible monitoring methods are developed to measure energy delivery to tissues. MRI has numerous advantages in evaluating the irreversible effects of laser treatment in tissues, since laser energy includes changes not only in the thermal motions of hydrogen protons within the tissue, but also in the distribution and mobility of water and lipids. These techniques should greatly improve the use of ILT in combination with MRI to allow treatment of deeper, more difficult to reach tumors of head and neck and other anatomical areas with a single needle stick.

  2. A Water Rehabilitation Program in Patients with Hip Osteoarthritis Before and After Total Hip Replacement.

    PubMed

    Łyp, Marek; Kaczor, Ryszard; Cabak, Anna; Tederko, Piotr; Włostowska, Ewa; Stanisławska, Iwona; Szypuła, Jan; Tomaszewski, Wiesław

    2016-07-25

    BACKGROUND Pain associated with coxarthrosis, typically occurring in middle-aged and elderly patients, very commonly causes considerable limitation of motor fitness and dependence on pharmacotherapy. This article provides an assessment of a rehabilitation program with tailored water exercises in patients with osteoarthritis before and after total hip replacement. MATERIAL AND METHODS A total of 192 patients (the mean age 61.03±10.89) suffering from hip osteoarthritis (OA) were evaluated before and after total hip replacement (THR). The clinical study covered measurements of hip active ranges of motion (HAROM) and the forces generated by pelvis stabilizer muscles. Pain intensity was assessed according to analogue-visual scale of pain (VAS) and according to the Modified Laitinen Questionnaire. The patients were divided into 6 groups (4 treatment and 2 control). We compared 2 rehabilitation programs using kinesitherapy and low-frequency magnetic field. One of them also had specially designed exercises in the water. Statistical analysis was carried out at the significance level α=0.05. This was a cross-sectional study. RESULTS A positive effect of water exercises on a number of parameters was found in patients with OA both before and after total hip replacement surgery. We noted a significant reduction of pain (p<0.001), increased ranges of motion and muscle strength, and reduced use of medicines (NASAIDs) (p<0.001). A correlation was found between the degree of degenerative deforming lesions and the effects of the treatment process (p<0.01). CONCLUSIONS 1. The rehabilitation program including water exercises most significantly reduced pain in patients with OA before and after total hip replacement surgery. 2. Inclusion of water exercises in a rehabilitation program can reduce the use of medicines in patient with OA and after THR.

  3. Tailoring magnetostriction with various directions for directional solidification Fe82Ga15Al3 alloy by magnetic field heat treatment

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Bao, Xiaoqian; Liu, Yangyang; Yu, Linhua; Li, Jiheng; Gao, Xuexu

    2017-10-01

    The magnetostriction of the Fe82Ga15Al3 alloy, along the length and width, can be tailored by applying a magnetic field heat treatment. In this work, the Fe82Ga15Al3 sheet was cut from the directional solidified Fe82Ga15Al3 alloy with the ⟨100⟩ preferred orientation and was annealed at 720 °C for 30 min under a magnetic field of 800 Oe along the length direction with a heating and cooling rate of 100 °C/min. The magnetostrictive properties along the length and width directions were modified to λ// = 7 ppm and λ⊥ = -210 ppm from λ// = 210 ppm and λ⊥ = -10 ppm for the initial sample prior to the magnetic field heat treatment. The cellular-like magnetic domain structure was composed of parallel 180° stripe domains and vertical 90° domains observed using a magnetic-force microscope. The change in magnetostriction along parallel and perpendicular directions was mainly resulted from the rotation of the magnetic domain units.

  4. Sustainable utility of magnetically recyclable nano-catalysts in water: Applications in organic synthesis

    EPA Science Inventory

    Magnetically recyclable nano-catalysts and their use in aqueous media is a perfect combination for the development of greener sustainable methodologies in organic synthesis. It is well established that magnetically separable nano-catalysts avoid waste of catalysts or reagents and...

  5. Nano-catalysts with Magnetic Core: Sustainable Options for Greener Synthesis

    EPA Science Inventory

    Author’s perspective on nano-catalysts with magnetic core is summarized with recent work from his laboratory. Magnetically recyclable nano-catalysts and their use in benign media is an ideal blend for the development of sustainable methodologies in organic synthesis. Water or pol...

  6. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    PubMed

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-05

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  7. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  8. Phase states and thermomorphologic, thermotropic, and magnetomorphologic properties of lyotropic mesophases: Sodium lauryl sulphate-water-1-decanol liquid-crystalline system

    NASA Astrophysics Data System (ADS)

    Özden, Pınar; Nesrullajev, Arif; Oktik, Şener

    2010-12-01

    Phase states in sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system have been investigated for different temperature ranges. The dependence of triangle phase diagram types, phase boundaries, and sequence of lyotropic mesophases vs temperature has been found. The thermomorphologic, thermotropic, and magnetomorphologic properties of hexagonal E, lamellar D, nematic-calamitic NC , nematic-discotic ND , and biaxial nematic Nbx mesophases have been studied in detail. Dynamics of transformations of magnetically induced textures has been investigated. Peculiarities of typical and magnetically induced textures have been investigated in detail. Triangle phase diagrams of sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system for different temperatures and typical and magnetically induced textures of E, D, NC , ND , and Nbx mesophases are presented.

  9. Communication: Heterogeneous water dynamics on a clathrate hydrate lattice detected by multidimensional oxygen nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Adjei-Acheamfour, Mischa; Storek, Michael; Böhmer, Roland

    2017-05-01

    Previous deuteron nuclear magnetic resonance studies revealed conflicting evidence regarding the possible motional heterogeneity of the water dynamics on the hydrate lattice of an ice-like crystal. Using oxygen-17 nuclei as a sensitive quadrupolar probe, the reorientational two-time correlation function displays a clear nonexponentiality. To check whether this dispersive behavior is a consequence of dynamic heterogeneity or rather of an intrinsic nonexponentiality, a multidimensional, four-time magnetic resonance experiment was devised that is generally applicable to strongly quadrupolarly perturbed half-integer nuclei such as oxygen-17. Measurements of an appropriate four-time function demonstrate that it is possible to select a subensemble of slow water molecules. Its mean time scale is compared to theoretical predictions and evidence for significant motional heterogeneity is found.

  10. [Effects of pulsed magnetic field on insulin-like growth factor-1 (IGF-1) in cerebrospinal fluid and effects of IGF-1 on functional recovery].

    PubMed

    Song, Cheng-xian; Fan, Jian-zhong; Wu, Hong-ying; Wei, Yi; Zhen, Jian-rong

    2010-10-01

    To study the effects of pulsed magnetic field on insulin-like growth factor-1 (IGF-1) level in the cerebrospinal fluid (CSF) and the association of IGF-1 alterations with the activities of daily living (ADL) of patients with brain injury. Sixty-five patients with brain injury were divided randomly into the control group (n=30) and magnetic therapy group (n=35), both receiving conventional therapy and in the latter group, daily pulsed magnetic field treatment (20-40 mT, 50 Hz, 20 min per time, 1 time per day) for 14 consecutive days were administered. On the first and 14th days of the treatment, 2 ml CSF was collected from the cases patients for IGF-1 measurement by radioimmunoassay, and Barthel index (BI) was used to assess the ADL of the patients. After a 14-day treatment, IGF-1 level in the CSF were significantly increased in the magnetic group in comparison with the level before the treatment and with those in the control group (P<0.05). IGF-1 in the CSF underwent no significant changes in the control group (P>0.05). The scores of BI increased significantly in both groups after the treatment (P<0.01), but the increment was more obvious in the magnetic therapy group (P<0.05). A significant positive correlation was found between IGF-1 level in the CSF and BI in these patients (r=0.283, P=0.022). Pulsed magnetic field might increase IGF-1 level in the CSF of patients with brain injury to promote the recovery of the patients ADL, suggesting its potential clinical value in the treatment of brain injury.

  11. Influence of Fabrication Conditions on the Structural and the Magnetic Properties of Co-doped BaFe12O19 Hexaferrites

    NASA Astrophysics Data System (ADS)

    Tran, Ngo; Kim, Deok Hyeon; Lee, Bo Wha

    2018-03-01

    BaFe11CoO19 hexaferrites were prepared by using a co-precipitation method and heat treatment. By changing the ion molar ratio of (Fe + Co)/Ba = ( x + 1)/1, we found a clear difference in the crystalline structural and magnetic properties. Particularly, the magnetic properties became optimal at x = 11 - 13 based on the saturation magnetization and coercivity values. The effects of heat treatment on the morphological, structural and magnetic properties were assessed. With the results of thermal gravimetric analyses, X-ray diffraction patterns, and magnetic-field-dependent magnetization, we found that M-type hexaferrite nanocrystals start being formed at a temperature of 650°C, which was much lower than temperatures reported previously.

  12. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst

    NASA Astrophysics Data System (ADS)

    Li, Wenhui; Wu, Xiaofeng; Li, Shuangde; Tang, Wenxiang; Chen, Yunfa

    2018-04-01

    The synthesis of effective and recyclable Fenton-like catalyst is still a key factor for advanced oxidation processes. Herein, magnetic porous Fe3O4/carbon octahedra were constructed by a two-step controlled calcination of iron-based metal organic framework. The porous octahedra were assembled by interpenetrated Fe3O4 nanoparticles coated with graphitic carbon layer, offering abundant mesoporous channels for the solid-liquid contact. Moreover, the oxygen-containing functional groups on the surface of graphitic carbon endow the catalysts with hydrophilic nature and well-dispersion into water. The porous Fe3O4/carbon octahedra show efficiently heterogeneous Fenton-like reactions for decomposing the organic dye methylene blue (MB) with the help of H2O2, and nearly 100% removal efficiency within 60 min. Furthermore, the magnetic catalyst retains the activity after ten cycles and can be easily separated by external magnetic field, indicating the long-term catalytic durability and recyclability. The good Fenton-like catalytic performance of the as-synthesized Fe3O4/carbon octahedra is ascribed to the unique mesoporous structure derived from MOF-framework, as well as the sacrificial role and stabilizing effect of graphitic carbon layer. This work provides a facile strategy for the controllable synthesis of integrated porous octahedral structure with graphitic carbon layer, and thereby the catalyst holds significant potential for wastewater treatment.

  13. Local hyperthermia for esophageal cancer in a rabbit tumor model: Magnetic stent hyperthermia versus magnetic fluid hyperthermia

    PubMed Central

    LIU, JIAYI; LI, NING; LI, LI; LI, DANYE; LIU, KAI; ZHAO, LINGYUN; TANG, JINTIAN; LI, LIYA

    2013-01-01

    Magnetic-mediated hyperthermia (MMH) is a promising local thermotherapy approach for cancer treatment. The present study investigated the feasibility and effectiveness of MMH in esophageal cancer using a rabbit tumor model. The therapeutic effect of two hyperthermia approaches, magnetic stent hyperthermia (MSH), in which heat is induced by the clinical stent that is placed inside the esophagus, and magnetic fluid hyperthermia (MFH), where magnetic nanoparticles are applied as the agent, was systematically evaluated. A rabbit esophageal tumor model was established by injecting VX2 carcinoma cells into the esophageal submucosa. The esophageal stent was deployed perorally into the tumor segment of the esophagus. For the MFH, magnetic nanoparticles (MNPs) were administered to the rabbits by intratumoral injection. The rabbits were exposed under a benchtop applicator using an alternative magnetic field (AMF) with 300 kHz frequency for the hyperthermia treatment. The results demonstrated that esophageal stents and MNPs had ideal inductive heating properties upon exposure under an AMF of 300 kHz. MSH, using a thermal dose of 46°C with a 10-min treatment time, demonstrated antitumor effects on the rabbit esophageal cancer. However, the rabbit esophageal wall is not heat-resistant. Therefore, a higher temperature or longer treatment time may lead to necrosis of the rabbit esophagus. MFH has a significant antitumor effect by confining the heat within the tumor site without damaging the adjacent normal tissues. The present study indicates that the two hyperthermia procedures have therapeutic effects on esophageal cancer, and that MFH may be more specific than MSH in terms of temperature control during the treatment. PMID:24260045

  14. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders: A meta-analysis.

    PubMed

    Zhang, Yingli; Liang, Wei; Yang, Shichang; Dai, Ping; Shen, Lijuan; Wang, Changhong

    2013-10-05

    This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hallucination of patients with schizophrenia spectrum disorders. Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Controlled Trials databases from January 1985 to May 2012. Key words were "transcranial magnetic stimulation", "TMS", "repetitive transcranial magnetic stimulation", and "hallucination". Selected studies were randomized controlled trials assessing therapeutic efficacy of repetitive transcranial magnetic stimulation for hallucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hallucination in schizophrenia spectrum disorders. Control groups received sham stimulation. The primary outcome was total scores of Auditory Hallucinations Rating Scale, Auditory Hallucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hallucination item, and Hallucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. All data were completely effective, involving 398 patients. Overall mean weighted effect size for repetitive transcranial magnetic stimulation versus sham stimulation was statistically significant (MD = -0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P = 0.005). No significant differences were found between active repetitive transcranial magnetic stimulation and sham stimulation for positive or negative symptoms. Compared with sham stimulation, active repetitive transcranial magnetic stimulation had equivocal outcome in cognitive function and commonly caused headache and facial muscle twitching. Repetitive transcranial magnetic stimulation is a safe and effective treatment for auditory hallucination in schizophrenia spectrum disorders.

  15. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders: A meta-analysis

    PubMed Central

    Zhang, Yingli; Liang, Wei; Yang, Shichang; Dai, Ping; Shen, Lijuan; Wang, Changhong

    2013-01-01

    Objective: This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hallucination of patients with schizophrenia spectrum disorders. Data Sources: Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Controlled Trials databases from January 1985 to May 2012. Key words were “transcranial magnetic stimulation”, “TMS”, “repetitive transcranial magnetic stimulation”, and “hallucination”. Study Selection: Selected studies were randomized controlled trials assessing therapeutic efficacy of repetitive transcranial magnetic stimulation for hallucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hallucination in schizophrenia spectrum disorders. Control groups received sham stimulation. Main Outcome Measures: The primary outcome was total scores of Auditory Hallucinations Rating Scale, Auditory Hallucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hallucination item, and Hallucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. Results: Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. All data were completely effective, involving 398 patients. Overall mean weighted effect size for repetitive transcranial magnetic stimulation versus sham stimulation was statistically significant (MD = –0.42, 95%CI: –0.64 to –0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P = 0.005). No significant differences were found between active repetitive transcranial magnetic stimulation and sham stimulation for positive or negative symptoms. Compared with sham stimulation, active repetitive transcranial magnetic stimulation had equivocal outcome in cognitive function and commonly caused headache and facial muscle twitching. Conclusion: Repetitive transcranial magnetic stimulation is a safe and effective treatment for auditory hallucination in schizophrenia spectrum disorders. PMID:25206578

  16. Spectroscopic properties of vitamin E models in solution

    NASA Astrophysics Data System (ADS)

    Oliveira, L. B. A.; Colherinhas, G.; Fonseca, T. L.; Castro, M. A.

    2015-05-01

    We investigate the first absorption band and the 13C and 17O magnetic shieldings of vitamin E models in chloroform and in water using the S-MC/QM methodology in combination with the TD-DFT and GIAO approaches. The results show that the solvent effects on these spectroscopic properties are small but a proper description of the solvent shift for 17O magnetic shielding of the hydroxyl group in water requires the use of explicit solute-solvent hydrogen bonds. In addition, the effect of the replacement of hydrogen atoms by methyl groups in the vitamin E models only affects magnetic shieldings.

  17. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    PubMed

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  18. Rheological and Magnetorheological Behaviour of Some Magnetic Fluids on Polar and Nonpolar Carrier Liquids

    NASA Astrophysics Data System (ADS)

    Bălău, Oana; Bica, Doina; Koneracka, Martina; Kopčansky, Peter; Susan-Resiga, Daniela; Vékás, Ladislau

    Rheological and magnetorheological behaviour of monolayer and double layer sterically stabilized magnetic fluids, with transformer oil (UTR), diloctilsebacate (DOS), heptanol (Hept), pentanol (Pent) and water (W) as carrier liquids, were investigated. The data for volumic concentration dependence of dynamic viscosity of high colloidal stability UTR, DOS, Hept and Pent samples are particularly well fitted by the formulas given by Vand (1948) and Chow (1994). The Chow type dependence proved its universal character as the viscosity data for dilution series of various magnetic fluids are well fitted by the same curve, regardless the nonpolar or polar charcater of the sample. The magnetorheological effect measured for low and medium concentration water based magnetic fluids is much higher, due to agglomerate formation process, than the corresponding values obtained for the well stabilized UTR, DOS, Hept and Pent samples, even at very high volumic fraction of magnetic nanoparticles.

  19. Immunomagnetic separation for MEMS-based biosensor of waterborne pathogens detection

    NASA Astrophysics Data System (ADS)

    Guo, Jianjiang; Zhang, Rongbiao

    2017-07-01

    Rapid isolation and detection of special pathogens present in environmental drinking water is critical for water quality monitoring. Numerical analysis and experimental investigations on immunomagnetic capture and isolation of waterborne pathogens with magnetic nanoparticles (MNPs) in microfluidic channel are performed. A finite-element COMSOL-based model is established to demonstrate the novel method of on-chip capturing pathogens using MNPs together with periodic pulse magnetic field. Simulation results determine the optimum magnetic pole current and switching frequency for magnetic separation. With the magnetic isolation experiment platform built up, as a pathogen example of Escherichia coli O157:H7, the performance of the method is experimentally verified. Both numerical and experimental results are found to agree reasonably well. Results of these investigations show that the capture efficiency of the immunomagnetic separation method is more than 92%, which could be encouraging for the design and optimization of MEMS-based biosensor of waterborne pathogen detection.

  20. Numerical analysis of the effect of non-uniformity of the magnetic field produced by a solenoid on temperature distribution during magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Tang, Yun-dong; Flesch, Rodolfo C. C.; Zhang, Cheng; Jin, Tao

    2018-03-01

    Magnetic hyperthermia ablates malignant cells by the heat produced by power dissipation of magnetic nanoparticles (MNPs) under an alternating magnetic field. Most of the works in literature consider a uniform magnetic field for solving numerical models to estimate the temperature field during a hyperthermia treatment, however this assumption is generally not true in real circumstances. This paper considers the magnetic field produced by a solenoid and analyzes its effects on the treatment temperature. To that end, a set of partial differential equations is numerically solved for a specific tumor model using the finite element method and the obtained results are analyzed to draw general conclusions. The magnetic field inside the solenoid is obtained by using Maxwell's theory, and the treatment temperature of the tumor model is determined by using Rosensweig's theory and Pennes bio-heat transfer equation. Simulation results demonstrate that the temperature field obtained using a solenoid model is similar to that obtained considering a uniform magnetic field if tumor is centered with respect to solenoid and if the physical characteristics of solenoid are properly defined based on tumor volume. As the distance of tumor from the solenoid center is increased, the effects of non-uniformity of magnetic field become more evident and the adoption of the proposed model is necessary to obtain accurate results.

  1. Headaches: Treatment Depends on Your Diagnosis and Symptoms

    MedlinePlus

    ... Depakote ER, Depakote Sprinkle) or topiramate (Topamax) Transcranial magnetic stimulation (therapy using electrical currents to stimulate nerve ... 2015. Bhola R, et al. Single-pulse transcranial magnetic stimulation (sTMS) for the acute treatment of migraine: ...

  2. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K

    2015-11-01

    One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    PubMed

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  4. O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system

    EPA Science Inventory

    Allylic ethers were synthesized in water using magnetically recoverable heterogeneous Pd catalyst via O-allylation of phenols with allylic acetates under ambient conditions. Aqueous reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling, and ...

  5. [Effectiveness of transcranial magnetic therapy in the complex treatment of alcohol abstinent syndrome].

    PubMed

    Staroverov, A T; Zhukov, O B; Raĭgorodskiĭ, Iu M

    2008-01-01

    Fifty-four abstinent alcohol-dependent patients have been studied. Twenty-nine patients (a main group) received, along with basic therapy, a physiotherapeutic treatment (transcranial dynamic magnetic therapy) and 25 patients (a control group) received only basic therapy. The comparison of the efficacy of treatment in patients of the main and control groups revealed the benefits of transcranial dynamic magnetic therapy in CNS function, performance on memory and attention tests, state of autonomic nervous system and psychoemotional state of patients (the reduction of anxiety and depression).

  6. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  7. Effect of heat treatment and ball milling on MnBi magnetic materials

    NASA Astrophysics Data System (ADS)

    Li, Chunhong; Guo, Donglin; Shao, Bin; Li, Kejian; Li, Bingbing; Chen, Dengming

    2018-01-01

    MnBi alloy was prepared using arc melting, and was then heated at various temperatures and times. The alloy was ball milled for various lengths of time, following a heat treatment at 573 K for 20 h. The effects of the heat treatment and the ball milling on the magnetic performances of the material were investigated by analyzing the phases, the particle sizes, and the grain sizes. Results showed that the mass percentage of the LTP MnBi phase increased as the heat treatment time increased. The mass percentage initially increased and then decreased as the heat treatment temperature increased. The saturation magnetization increased quickly as the mass percentage of the LTP MnBi increased following the heat treatment. The value rose as high as 71.39 emu g-1 at 573 K for 30 h. The magnetization decreased, due to the decomposition of MnBi phases after ball milling. The coercivity increased simultaneously, due to the grain refinement, the presence of stresses, defects, and an amorphous phase. This value was improved from 0.09 to 14.65 KOe after ball milling for 24 h.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, A; Tailor, R; Melancon, A

    Purpose: To simulate and measure magnetic-field-induced radiation dose effects in a mouse lung phantom. This data will be used to support pre-clinical experiments related to MRI-guided radiation therapy systems. Methods: A mouse lung phantom was constructed out of 1.5×1.5×2.0-cm{sup 3} lung-equivalent material (0.3 g/cm{sup 3}) surrounded by a 0.6-cm solid water shell. EBT3 film was inserted into the phantom and the phantom was placed between the poles of an H-frame electromagnet. The phantom was irradiated with a cobalt-60 beam (1.25 MeV) with the electromagnet set to various magnetic field strengths (0T, 0.35T, 0.9T, and 1.5T). These magnetic field strengths correspondmore » to the range of field strengths seen in MRI-guided radiation therapy systems. Dose increases at the solid-water-to-lung-interface and dose decreases at the lung-to-solid-water interface were compared with results of Monte Carlo simulations performed with MCNP6. Results: The measured dose to lung at the solid-water-to-lung interface increased by 0%, 16%, and 29% with application of the 0.35T, 0.9T, and 1.5T magnetic fields, respectively. The dose to lung at the lung-to-solid-water interface decreased by 4%, 18%, and 24% with application of the 0.35T, 0.9T, and 1.5T magnetic fields, respectively. Monte Carlo simulations showed dose increases of 0%, 16%, and 31% and dose decreases of 4%, 16%, and 25%. Conclusion: Only small dose perturbations were observed at the lung-solid-water interfaces for the 0.35T case, while more substantial dose perturbations were observed for the 0.9T and 1.5T cases. There is good agreement between the Monte Carlo calculations and the experimental measurements (within 2%). These measurements will aid in designing pre-clinical studies which investigate the potential biological effects of radiation therapy in the presence of a strong magnetic field. This work was partially funded by Elekta.« less

  9. Archaeogeophysical Investigation of Water Tower Region on Enez (Ainos) Ancient City

    NASA Astrophysics Data System (ADS)

    Deniz, Hazel; Ahmet Yüksel, Fethi; Başaran, Sait

    2017-04-01

    Archaeogeophysical (geomagnetics) surveys have been made in two locations which are, Enez Entry Region and Water Tower Necropolis.The objective of geophysical mesurements is to reach the informations such as detailed depths, orientations and locations of achaeological structure remnants. Enez (Ainos) is located in the Northwestern coastal side of the Aegean Sea in which Meriç (Maritza-Hebros) River flows down to the sea. The city displaced due to alluvium accumulate which are drifted by Meriç River in contrast with its former location. Existing of settlements of Enez and its surrounding in Neolithic times has been proved. Enez has a castle ambient acropolis apex which is built on Miocene limestone rocks rise about 25 m above the sea level. The castle walls are 740 m long and are thought to have been built in the middle ages. three different cultural phases form the 2nd building level of the archaeological excavations representing the ancient Greek cultures, Archaic, Classical and Hellenistic bottom to top. In all of the openings made on the acropolis, a thick layer dated to the Hellenistic era is located just above The Classical Age layer. The 3rd cultural floor dated from the Roman Age is represented by a thin layer and whose boundaries can not be determined with certain lines. In this study, Proton Magnetometer has been used for magnetic measurements. Across Water Tower Region, total magnetic field has been measured by magnetometer equipment on 592 m2 site. Existing of remarkable regular and irregular anomalies have been detected when magnetic maps produced from magnetic measurements are examined. It is determined from excavations after measurements that regular anomalies refer to water structures of old times or current electrical cables and dispersed anomalies to graves, sarcophagus and pithos burials. During excavations in locations where notable anomalies are found in Magnetic maps derived from magnetic measurements applied on Water Tower Necropolis, brick-walled, rock and roof-tile covered buried graves have been found. Many, solid Lekythos and skeletons were found from the graves opened. 15 sarcophagi and 59 tombs emerged from the graves opened in the Water Tower Necropolis. Keywords: Enez, Ainos ,Necropolis, Proton Magnetometer, Turkey.

  10. Magnetic susceptibility and dielectric properties of peat in Central Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Budi, Pranitha Septiana; Zulaikah, Siti; Hidayat, Arif; Azzahro, Rosyida

    2017-07-01

    Peatlands dominate almost all regions of Borneo, yet its utilization has not been developed optimally. Any information in this field could be obtained using soil magnetization methods by determining the magnetic succeptibility in terms of magnetic susceptibility value that could describe the source and type of magnetic minerals which could describe the source and type of magnetic minerals. Moreover, the dielectric properties of peat soil were also investigated to determine the level of water content by using the dielectric constant value. Samples was taken at six different locations along Pulang pisau to Berengbengkel. Magnetic susceptibility mass value at these locations ranged between -0.0009 - 0.712 (×10-6 m3/kg). Based on the average magnetic susceptibility value, samples that were taken from T1, T3 and T5 belonged to the type of paramagnetic mineral, while samples which were taken from T2, T4 and T6 belonged to the group of diamagnetic mineral. The low value of magnetic susceptibility of peat was probably derived from the pedogenic process. The average value of peat soil in six locations has a large dielectric constant value that is 28.2 which indicated that there was considerable moisture content due to the hydrophilic nature of peatland which means that the ability of peat in water binding is considerably high.

  11. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.

    PubMed

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-03-01

    Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  13. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  14. Magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) prepared by various heat treatments

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Katsuyama, Shigeru; Yoshimura, Kazuyoshi; Kosuge, Koji

    1991-02-01

    The magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) specimens was measured following a standard heat treatment and a special heat treament stabilizing the orthorhombic phase to higher Fe concentrations. The values of the effective magnetic moment per Fe in the Cu1 site, estimated from the magnetic susceptibility and Mossbauer effect measurements, were 4.4 and 2.2 muB for the standard and specially treated specimens, respectively. The smaller effective magnetic moment in the case of specially treated specimens is attributed to the antiferromagnetic coupling between Fe spins at high temperatures.

  15. New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI).

    PubMed

    Ahmed, Naveed; Jaafar-Maalej, Chiraz; Eissa, Mohamed Mahmoud; Fessi, Hatem; Elaissari, Abdelhamid

    2013-09-01

    Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI). In this study, a new oil-in-water magnetic emulsion was used as contrast agent in MRI, after being characterized in terms of particle size, iron oxide content, magnetic properties and colloidal stability using dynamic light scattering (DLS), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM) and zeta potential measurement techniques, respectively. The hydrodynamic size and magnetic content of the magnetic colloidal particles were found to be 250 nm and 75 wt%, respectively. In addition, the used magnetic emulsion possesses superparamagentic properties and high colloidal stability in aqueous medium. Then, the magnetic emulsion was highly diluted and administered intravenously to the Sprague dawley rats to be tested as contrast agent for in vivo MRI. In this preliminary study, MRI images showed significant enhancement in contrast, especially for T2 (relaxation time) contrast enhancement, indicating the distribution of magnetic colloidal nanoparticles within organs, like liver, spleen and kidneys of the Sprague dawley rats. In addition, it was found that 500 microL of the highly diluted magnetic emulsion (0.05 wt%) was found adequate for MRI analysis. This seems to be useful for further investigations especially in theranostic applications of magnetic emulsion.

  16. Migration of Water in Litopenaeus Vannamei Muscle Following Freezing and Thawing.

    PubMed

    Deng, Qi; Wang, Yaling; Sun, Lijun; Li, Jianrong; Fang, Zhijia; Gooneratne, Ravi

    2018-06-15

    Water and protein are major constituents of shrimp, any changes in protein and the state of water influence the quality of shrimp. Therefore, a study to examine the law of moisture migration and protein denaturation under different freezing and thawing conditions is important. The proton density images of thawed frozen-shrimp revealed that the water loss during quick-freezing was much greater than that during slow freezing or microfreezing. At room temperature (25 °C), the water loss from brine-thawing was more than still-water thawing and still-water thawing was more than thawing spontaneously. Freezing-thawing resulted in uniform water redistribution in shrimp muscle. Nuclear magnetic resonance technology (low field magnetic imaging) was used to directly monitor the dynamic processes of fluidity state in shrimp and indirectly monitor protein denaturation and thereby determine the optimal method of freezing-thawing shrimp. Our research showed that microfreezing preservation minimized weight loss, juice leakage and protein denaturation in shrimp muscle during thawing. Water is one of the major components in most organs and is an important factor that influences the shrimp muscle quality. Water migration patterns and subsequent effects on the shrimp muscle under different freezing and thawing conditions were examined using low field nuclear magnetic resonance (NMR) technology. This research provides a theoretical foundation for shrimp processing plants to improve the freezing and thawing process to obtain optimal quality and flavor of shrimp products. © 2018 Institute of Food Technologists®.

  17. Effect of sintering in a hydrogen atmosphere on the density and coercivity of (Sm,Zr)(Co,Cu,Fe)Z permanent magnets

    NASA Astrophysics Data System (ADS)

    Burkhanov, G. S.; Dormidontov, N. A.; Kolchugina, N. B.; Dormidontov, A. G.

    2018-04-01

    The effect of heat treatments in manufacturing (Sm,Zr)(Co,Cu,Fe)Z-based permanent magnets sintered in a hydrogen atmosphere on their properties has been studied. It was shown that the dynamics of the magnetic hardening of the studied magnets during heat treatments, in whole, corresponds to available concepts of phase transformations in five-component precipitation-hardened SmCo-based alloys. Peculiarities of the studied compositions consist in the fact that the coercive force magnitude of magnets quenched from the isothermal aging temperature is higher by an order of magnitude than those available in the literature. It was noted that, in using the selected manufacturing procedure, the increase in the density of samples does not finish at the sintering stage but continues in the course of solid-solution heat treatment.

  18. [Acupuncture combined with magnetic therapy for treatment of temple-jaw joint dysfunction].

    PubMed

    Wang, Xiao-Hui; Zhang, Wen

    2009-04-01

    To compare clinical therapeutic effects of acupuncture combined with magnetic therapy and simple magnetic therapy on temple-jaw joint dysfunction. Eighty-two cases were randomly divided into an observation group (n = 52) and a control group (n = 30). The observation group was treated with acupuncture at Xiaguan (ST 7), Jiache (ST 6), Hegu (LI 4), etc. and AL-2 low frequency electromagnetic comprehensive treatment instrument; the control group was treated with AL-2 low frequency electromagnetic comprehensive treatment instrument. The cured and markedly effective rate of 90.4% in the observation group was significantly better than 66.7% in the control group (P < 0.01), and the total effective rate of 98.1% in the observation group was significantly better than 86.7% in the control group (P < 0.05). The therapeutic effect of acupuncture combined with magnetic therapy is significantly better than that of the simple magnetic therapy on temple-jaw joint dysfunction.

  19. Idiopathic scoliosis, growth zones, magnetic therapy.

    PubMed

    Arsenev, A; Dudin, M; Lednev, V; Belova, N; Mikhailov, V; Sokolov, G

    2012-01-01

    The study has been performed to investigate the influence of pulsed magnetic field on the bone growth plates to get new grounds of magneto therapy in AIS treatment. Were used methods of "strong" and "weak" pulsed magnetic fields influence. Application of pulsed magnetic field causes an authentic inhibition of chondrocytes' active proliferation processes, decreases the index of labeled nuclei, indicating the suppression of DNA synthesis, takes place an increase in the unit weight of the more "mature" differentiated chondrocytes. The final result of these effects is the accelerated synostosis of bones' growth plates. Regardless of the reasons that cause growth infringements, the operating organ in the chain is the body's growth plate. Therefore, the appliance of magnetic fields in AIS treatment can be considered as a perspective one concerning growth plates' functional activity local management. To our point of view, the potential of magneto therapy methods in child's orthopedic treatment is significantly higher compared with modern practice.

  20. A review on hyperthermia via nanoparticle-mediated therapy.

    PubMed

    Sohail, Ayesha; Ahmad, Zaki; Bég, O Anwar; Arshad, Sarmad; Sherin, Lubna

    2017-05-01

    Hyperthermia treatment, generated by magnetic nanoparticles (MNPs) is promising since it is tumour-focused, minimally invasive and uniform. The most unique feature of magnetic nanoparticles is its reaction and modulation by a magnetic force basically responsible for enabling its potential as heating mediators for cancer therapy. In magnetic nanoparticle hyperthermia, a tumour is preferentially loaded with systemically administered nanoparticles with high-absorption cross-section for transduction of an extrinsic energy source to heat. To maximize the energy deposited in the tumour while limiting the exposure to healthy tissues, the heating is achieved by exposing the region of tissue containing magnetic nanoparticles to an alternating magnetic field. The magnetic nanoparticles dissipate heat from relaxation losses thereby heating localized tissue above normal physiological ranges. Besides thermal efficiency, the biocompatibility of magnetite nanoparticles assisted its deployment as efficient drug carrier for targeted therapeutic regimes. In the present article, we provide a state-of-the-art review focused on progress in nanoparticle induced hyperthermia treatments that have several potential advantages over both global and local hyperthermia treatments achieved without nanoparticles. Green bio-nanotechnology has attracted substantial attention and has demonstrable abilities to improve cancer therapy. Furthermore, we have listed the challenges associated with this treatment along with future prospective that could attract the interest of biomedical engineers, biomaterials scientists, medical researchers and pharmacological research groups. Copyright © 2017 Société Française du Cancer. All rights reserved.

  1. Efficacy and Safety of Low-field Synchronized Transcranial Magnetic Stimulation (sTMS) for Treatment of Major Depression.

    PubMed

    Leuchter, Andrew F; Cook, Ian A; Feifel, David; Goethe, John W; Husain, Mustafa; Carpenter, Linda L; Thase, Michael E; Krystal, Andrew D; Philip, Noah S; Bhati, Mahendra T; Burke, William J; Howland, Robert H; Sheline, Yvette I; Aaronson, Scott T; Iosifescu, Dan V; O'Reardon, John P; Gilmer, William S; Jain, Rakesh; Burgoyne, Karl S; Phillips, Bill; Manberg, Paul J; Massaro, Joseph; Hunter, Aimee M; Lisanby, Sarah H; George, Mark S

    2015-01-01

    Transcranial Magnetic Stimulation (TMS) customarily uses high-field electromagnets to achieve therapeutic efficacy in Major Depressive Disorder (MDD). Low-field magnetic stimulation also may be useful for treatment of MDD, with fewer treatment-emergent adverse events. To examine efficacy, safety, and tolerability of low-field magnetic stimulation synchronized to an individual's alpha frequency (IAF) (synchronized TMS, or sTMS) for treatment of MDD. Six-week double-blind sham-controlled treatment trial of a novel device that used three rotating neodymium magnets to deliver sTMS treatment. IAF was determined from a single-channel EEG prior to first treatment. Subjects had baseline 17-item Hamilton Depression Rating Scale (HamD17) ≥ 17. 202 subjects comprised the intent-to-treat (ITT) sample, and 120 subjects completed treatment per-protocol (PP). There was no difference in efficacy between active and sham in the ITT sample. Subjects in the PP sample (N = 59), however, had significantly greater mean decrease in HamD17 than sham (N = 60) (-9.00 vs. -6.56, P = 0.033). PP subjects with a history of poor response or intolerance to medication showed greater improvement with sTMS than did treatment-naïve subjects (-8.58 vs. -4.25, P = 0.017). Efficacy in the PP sample reflects exclusion of subjects who received fewer than 80% of scheduled treatments or were inadvertently treated at the incorrect IAF; these subgroups failed to separate from sham. There was no difference in adverse events between sTMS and sham, and no serious adverse events attributable to sTMS. Results suggest that sTMS may be effective, safe, and well tolerated for treating MDD when administered as intended. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Synthesis and properties of magnetic molecularly imprinted polymers based on multiwalled carbon nanotubes for magnetic extraction of bisphenol A from water.

    PubMed

    Zhang, Zhaohui; Chen, Xing; Rao, Wei; Chen, Hongjun; Cai, Rong

    2014-08-15

    Novel magnetic molecularly imprinted polymers based on multiwalled carbon nanotubes (MWNTs@MMIPs) with specific selectivity toward bisphenol A were synthesized using bisphenol A as the template molecule, methacrylic acid, and β-cyclodextrin as binary functional monomers and ethylene glycol dimethacrylate as the cross-linker. The MWNTs@MMIPs were characterized by Fourier transform infrared, vibrating sample magnetometer, and transmission electron microscopy. Batch mode adsorption experiment was carried out to investigate the specific adsorption equilibrium and kinetics of the MWNTs@MMIPs. The MWNTs@MMIPs exhibited good affinity with a maximum adsorption capacity of 49.26 μmol g(-1) and excellent selectivity toward bisphenol A. Combined with high-performance liquid chromatography analysis, the MWNTs@MMIPs were employed to extract bisphenol A in tap water, rain water, and lake water successfully with the recoveries of 89.8-95.4, 89.9-93.4, and 87.3-94.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effects of pH and Magnetic Material on Immunomagnetic Separation of Cryptosporidium Oocysts from Concentrated Water Samples

    PubMed Central

    Kuhn, Ryan C.; Rock, Channah M.; Oshima, Kevin H.

    2002-01-01

    In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered from samples that were not at optimal pH. The results indicate that the buffers in the IMS kit did not adequately maintain an optimum pH in some water samples. By adjusting the pH of concentrated environmental water samples to 7.0, recoveries of oocysts increased by 26.4% compared to recoveries from samples where the pH was not adjusted. PMID:11916735

  4. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications.

    PubMed

    Kobayashi, Atsuko; Horikawa, Masamoto; Kirschvink, Joseph L; Golash, Harry N

    2018-05-22

    In supercooled water, ice nucleation is a stochastic process that requires ∼250-300 molecules to transiently achieve structural ordering before an embryonic seed crystal can nucleate. This happens most easily on crystalline surfaces, in a process termed heterogeneous nucleation; without such surfaces, water droplets will supercool to below -30 °C before eventually freezing homogeneously. A variety of fundamental processes depends on heterogeneous ice nucleation, ranging from desert-blown dust inducing precipitation in clouds to frost resistance in plants. Recent experiments have shown that crystals of nanophase magnetite (Fe 3 O 4 ) are powerful nucleation sites for this heterogeneous crystallization of ice, comparable to other materials like silver iodide and some cryobacterial peptides. In natural materials containing magnetite, its ferromagnetism offers the possibility that magneto-mechanical motion induced by external oscillating magnetic fields could act to disrupt the water-crystal interface, inhibiting the heterogeneous nucleation process in subfreezing water and promoting supercooling. For this to act, the magneto-mechanical rotation of the particles should be higher than the magnitude of Brownian motions. We report here that 10-Hz precessing magnetic fields, at strengths of 1 mT and above, on ∼50-nm magnetite crystals dispersed in ultrapure water, meet these criteria and do indeed produce highly significant supercooling. Using these rotating magnetic fields, we were able to elicit supercooling in two representative plant and animal tissues (celery and bovine muscle), both of which have detectable, natural levels of ferromagnetic material. Tailoring magnetic oscillations for the magnetite particle size distribution in different tissues could maximize this supercooling effect. Copyright © 2018 the Author(s). Published by PNAS.

  5. Synthesis of a novel polyurethane-based-magnetic imprinted polymer for the selective optical detection of 1-naphthylamine in drinking water.

    PubMed

    Valero-Navarro, Angel; Medina-Castillo, Antonio L; Fernandez-Sanchez, Jorge F; Fernández-Gutiérrez, Alberto

    2011-07-15

    The first polyurethane based magnetic-MIP for the selective detection of 1-naphthylamine (1-NA) in drinking water has been synthesised. The synthesis has been carried out in a two-step process: first,the incorporation of magnetite-coated-oleic acid nanoparticles (-Fe₃O₄-OA) into a lipophilic polymeric matrix (poly-MMA-co-EDMA) and second, the encapsulation of these magnetic seeds into the MIP structure by precipitation polymerisation. The mag-MIP was first RHTEM imaged showing a well-organised material with magnetite within the material and the imprinted polymer coating the magnetic core. Thereafter,it was evaluated by batch rebinding analysis and the derived Freundlich isotherm, calculating the number of binding sites (N(K(min)-K(max))=2.63 and 0.79 mmol g⁻¹, for mag-MIP and mag-NIP, respectively)and apparent average adsorption constant (K(K(min)-K(max))=3.31 and 3.06 mmol⁻¹, for mag-MIP and mag-NIP, respectively) showing a very effective imprinting process.We have also developed a magnetic optical sensor MIP by using an optical fiber coupled with a magnetic separator. An unexpected selectivity for 1-NA was revealed allowing the detection of this molecule in water, even in the presence of 4 structurally related compounds (2-naphthylamine, 1-naphthol, 2-naphthol and 1-naphthalenemethylamine), with a low limit of detection (LOD) = 18 ng mL⁻¹. Finally, we applied this new hybrid material to the analysis of 1-NA in tap and mineral waters, obtaining a 91.6%average recovery rate. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. [Magnetic therapy for complex treatment of chronic periodontal disease].

    PubMed

    P'yanzina, A V

    The aim of the study was to elaborate the methodology of magnetic therapy for complex treatment of chronic periodontal disease (CPD). The study included 60 patients aged 35 to 65 years with moderate CPD divided in 2 groups. Patients in group 1 (controls) received impulse carbonate irrigation for 12 min №10, group 2 additionally received magnetic therapy for 5 min №10 in maxillary and mandibular areas. periodontal and rheological indices proved magnetic therapy to be useful tool for eradication of inflammation, periodontal tissue functional recovery and stabilization.

  7. A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid

    NASA Astrophysics Data System (ADS)

    Wang, N.; Prodanovic, M.

    2017-12-01

    Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic field transverse to the channel direction may likely provide the best elongation along the channel direction for the non-wetting blob. The pore-throat size ratio has an impact on the deformation of the non-wetting blob.

  8. Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.

    PubMed

    Andreozzi, Jacqueline M; Mooney, Karen E; Brůža, Petr; Curcuru, Austen; Gladstone, David J; Pogue, Brian W; Green, Olga

    2018-06-01

    Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. A 40 × 30.5 × 37.5 cm 3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm 2 , 10.5 × 10.5 cm 2 , and 14.7 × 14.7 cm 2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.60%, 0.56%, and 0.65% for the 4.2, 10.5, and 14.7 cm square beams, respectively. The relationships between pPDDs and central axis PDDs derived from the TPS were used to apply a weighting factor to the Cherenkov pPDD, so that the Cherenkov data could be directly compared to IC PDDs (average error of -0.07%, 0.10%, and -0.01% for the same sized beams, respectively). Finally, the composite image of the TG-119 C4 treatment plan achieved a 95.1% passing rate using 4%/4 mm gamma index agreement criteria between Cherenkov intensity and TPS dose volume data. This is the first examination of Cherenkov-generated pPDDs and pCBPs in an MR-IGRT system. Cherenkov imaging measurements were fast to acquire, and minimal error was observed overall. Cherenkov imaging also provided novel real-time data for IMRT QA. The strengths of this imaging are the rapid data capture ability providing real-time, high spatial resolution data, combined with the remote, noncontact nature of imaging. The biggest limitation of this method is the two-dimensional (2D) projection-based imaging of three-dimensional (3D) dose distributions through the transparent water tank. © 2018 American Association of Physicists in Medicine.

  9. Nuclear Magnetic Resonance-Based Metabolomics Approach to Evaluate the Prevention Effect of Camellia nitidissima Chi on Colitis-Associated Carcinogenesis

    PubMed Central

    Li, Ming-Hui; Du, Hong-Zhi; Kong, Gui-Ju; Liu, Li-Bao; Li, Xin-Xin; Lin, Sen-Sen; Jia, Ai-Qun; Yuan, Sheng-Tao; Sun, Li; Wang, Jun-Song

    2017-01-01

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, occurring in the colon or rectum portion of large intestine. With marked antioxidant, anti-inflammation and anti-tumor activities, Camellia nitidissima Chi has been used as an effective treatment of cancer. The azoxymethane/dextran sodium sulfate (AOM/DSS) induced CRC mice model was established and the prevention effect of C. nitidissima Chi extracts on the evolving of CRC was evaluated by examination of neoplastic lesions, histopathological inspection, serum biochemistry analysis, combined with nuclear magnetic resonance (NMR)-based metabolomics and correlation network analysis. C. nitidissima Chi extracts could significantly inhibit AOM/DSS induced CRC, relieve the colonic pathology of inflammation and ameliorate the serum biochemistry, and could significantly reverse the disturbed metabolic profiling toward the normal state. Moreover, the butanol fraction showed a better efficacy than the water-soluble fraction of C. nitidissima Chi. Further development of C. nitidissima Chi extracts as a potent CRC inhibitor was warranted. PMID:28744216

  10. Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Gang Ho; Chang, Yongmin

    2015-07-01

    In this mini review, magnetic resonance imaging (MRI) contrast agents based on lanthanideoxide (Ln2O3) nanoparticles are described. Ln2O3 (Ln = Gd, Dy, Ho, and Er) nanoparticles are paramagnetic, but show appreciable magnetic moments at room temperature and even at ultrasmall particle diameters. Among Ln2O3 nanoparticles, Gd2O3 nanoparticles show larger longitudinal water proton relaxivity (r1) values than Gd-chelates because of the large amount of Gd in the nanoparticle, and the other Ln2O3 nanoparticles (Ln = Dy, Ho, and Er) show appreciable transverse water proton relaxivity (r2) values. Therefore, Gd2O3 nanoparticles are potential T1 MRI contrast agents while the other Ln2O3 nanoparticles are potential T2 MRI contrast agents at high MR fields.

  11. Magnetically recoverable TiO2-WO3 photocatalyst to oxidize bisphenol A from model wastewater under simulated solar light.

    PubMed

    Dominguez, S; Huebra, M; Han, C; Campo, P; Nadagouda, M N; Rivero, M J; Ortiz, I; Dionysiou, D D

    2017-05-01

    A novel magnetically recoverable, visible light active TiO 2 -WO 3 composite (Fe 3 O 4 @SiO 2 @TiO 2 -WO 3 ) was prepared to enable the photocatalyst recovery after the degradation of bisphenol A (BPA) under simulated solar light. For comparison, the photocatalytic activity of other materials such as non-magnetic TiO 2 -WO 3 , Fe 3 O 4 @SiO 2 @TiO 2 , TiO 2 , and the commercial TiO 2 P25 was also evaluated under the studied experimental conditions. The structure and morphology of the synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and electron dispersion spectroscopy (EDS). Moreover, Brunauer-Emmett-Teller (BET) surface area and magnetic properties of the samples were determined. The Fe 3 O 4 @SiO 2 @TiO 2 -WO 3 and TiO 2 -WO 3 led to a BPA degradation of 17.50 and 27.92 %, respectively, after 2 h of the simulated solar light irradiation. Even though their activity was lower than that of P25, which degraded completely BPA after 1 h, our catalysts were magnetically separable for their further reuse in the treatment. Furthermore, the influence of the water matrix in the photocatalytic activity of the samples was studied in municipal wastewater. Finally, the identification of reaction intermediates was performed and a possible BPA degradation pathway was proposed to provide a better understanding of the degradation process. Graphical abstract ᅟ.

  12. Radiation enhanced efficiency of combined electromagnetic hyperthermia and chemotherapy of lung carcinoma using cisplatin functionalized magnetic nanoparticles.

    PubMed

    Babincová, M; Kontrisova, K; Durdík, S; Bergemann, C; Sourivong, P

    2014-02-01

    The effect of trimodality treatment consisting of hyperthermia, cisplatin and radiation was investigated in two non-small lung carcinoma cell lines with different sensitivities to cisplatin. Hyperthermia treatment was performed using heat released via Neél and Brown relaxation of magnetic nanoparticles in an alternating magnetic field. Radiation with dose 1.5 Gy was performed after 15 min electromagnetic hyperthermia and cisplatin treatment. Electromagnetic hyperthermia enhanced cisplatin-induced radiosensitization in both the cisplatin-sensitive H460 (viability 11.2 +/- 1.8 %) and cisplatin-resistant A549 (viability 14.5 +/- 2.3 %) lung carcinoma cell line. Proposed nanotechnology based trimodality cancer treatment may have therefore important clinical applications.

  13. Magnetic Coulomb phase in the spin ice Ho2Ti2O7.

    PubMed

    Fennell, T; Deen, P P; Wildes, A R; Schmalzl, K; Prabhakaran, D; Boothroyd, A T; Aldus, R J; McMorrow, D F; Bramwell, S T

    2009-10-16

    Spin-ice materials are magnetic substances in which the spin directions map onto hydrogen positions in water ice. Their low-temperature magnetic state has been predicted to be a phase that obeys a Gauss' law and supports magnetic monopole excitations: in short, a Coulomb phase. We used polarized neutron scattering to show that the spin-ice material Ho2Ti2O7 exhibits an almost perfect Coulomb phase. Our result proves the existence of such phases in magnetic materials and strongly supports the magnetic monopole theory of spin ice.

  14. Methotrexate-coupled nanoparticles and magnetic nanochemothermia for the relapse-free treatment of T24 bladder tumors

    PubMed Central

    Stapf, Marcus; Teichgräber, Ulf; Hilger, Ingrid

    2017-01-01

    Heat-based approaches have been considered as promising tools due to their ability to directly eradicate tumor cells and/or increase the sensitivity of tumors to radiation- or chemotherapy. In particular, the heating of magnetic nanoparticles (MNPs) via an alternating magnetic field can provide a handy alternative for a localized tumor treatment. To amplify the efficacy of magnetically induced thermal treatments, we elucidated the superior tumor-destructive effect of methotrexate-coupled MNPs (MTX/MNPs) in combination with magnetic heating (nanochemothermia) over the thermal treatment alone. Our studies in a murine bladder xenograft model revealed the enormous potential of nanochemothermia for a localized and relapse-free destruction of tumors which was superior to the thermal treatment alone. Nanochemothermia remarkably fostered the reduction of tumor volume. It impaired proapoptotic signaling (eg, p-p53), cell survival (eg, p-ERK1/2), and cell cycle (cyclins) pathways. Additionally, heat shock proteins (eg, HSP70) were remarkably affected. Moreover, nanochemothermia impaired the induction of angiogenic signaling by decreasing, for example, the levels of VEGF-R1 and MMP9, although an increasing tumor hypoxia was indicated by elevated Hif-1α levels. In contrast, tumor cells were able to recover after the thermal treatments alone. In conclusion, nanochemothermia on the basis of MTX/MNPs was superior to the thermal treatment due to a modification of cellular pathways, particularly those associated with the cellular survival and tumor vasculature. This allowed very efficient and relapse-free destruction of tumors. PMID:28435259

  15. Methotrexate-coupled nanoparticles and magnetic nanochemothermia for the relapse-free treatment of T24 bladder tumors.

    PubMed

    Stapf, Marcus; Teichgräber, Ulf; Hilger, Ingrid

    2017-01-01

    Heat-based approaches have been considered as promising tools due to their ability to directly eradicate tumor cells and/or increase the sensitivity of tumors to radiation- or chemotherapy. In particular, the heating of magnetic nanoparticles (MNPs) via an alternating magnetic field can provide a handy alternative for a localized tumor treatment. To amplify the efficacy of magnetically induced thermal treatments, we elucidated the superior tumor-destructive effect of methotrexate-coupled MNPs (MTX/MNPs) in combination with magnetic heating (nanochemothermia) over the thermal treatment alone. Our studies in a murine bladder xenograft model revealed the enormous potential of nanochemothermia for a localized and relapse-free destruction of tumors which was superior to the thermal treatment alone. Nanochemothermia remarkably fostered the reduction of tumor volume. It impaired proapoptotic signaling (eg, p-p53), cell survival (eg, p-ERK1/2), and cell cycle (cyclins) pathways. Additionally, heat shock proteins (eg, HSP70) were remarkably affected. Moreover, nanochemothermia impaired the induction of angiogenic signaling by decreasing, for example, the levels of VEGF-R1 and MMP9, although an increasing tumor hypoxia was indicated by elevated Hif-1α levels. In contrast, tumor cells were able to recover after the thermal treatments alone. In conclusion, nanochemothermia on the basis of MTX/MNPs was superior to the thermal treatment due to a modification of cellular pathways, particularly those associated with the cellular survival and tumor vasculature. This allowed very efficient and relapse-free destruction of tumors.

  16. Synthesis and in vitro evaluation of methotrexate conjugated O, N-carboxymethyl chitosan via peptidyl spacers

    NASA Astrophysics Data System (ADS)

    Li, Dan; Lu, Bo; Zhang, Hong; Huang, Zhijun; Xu, Peihu; Zheng, Hua; Yin, Yihua; Xu, Haixing; Liu, Xia; Lou, Yiceng; Zhang, Xueqiong; Xiong, Fuliang

    2014-09-01

    The use of methotrexate (MTX), an anticancer drug for the treatment of hematologic malignancies, has been limited in the clinical application due to its poor water solubility, high clearance rate, and lack of target specificity. To solve these problems, O, N-carboxymethyl chitosan-dipeptide-MTX conjugates have been synthesized and characterized by fourier transform infrared radiation spectroscopy and proton nuclear magnetic resonance (1H NMR). All polymeric conjugates showed satisfactory water solubility. The results of the study revealed that drug release and toxicity were affected by employing polymeric conjugation strategy and dipeptide spacers [glycylglycine (Gly-Gly), glycyl- l-phenylalanine (Gly-Phe), glycyl- l-tyrosine (Gly-Tyr)]. It has been found that drugs could be effectively loaded and released when polymeric prodrugs were combined with a dipeptide spacer. In conclusion, O, N-CMCS-dipeptide-MTX polymeric prodrugs could potentially be used as responsive drug delivery systems.

  17. Interaction of bacteria and ion-exchange particles and its potential in separation for matrix-assisted laser desorption/ionization mass spectrometric identification of bacteria in water.

    PubMed

    Guo, Zhongxian; Liu, Ying; Li, Shuping; Yang, Zhaoguang

    2009-12-01

    Identification of microbial contaminants in drinking water is a challenge to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) due to low levels of microorganisms in fresh water. To avoid the time-consuming culture step of obtaining enough microbial cells for subsequent MALDI-MS analysis, a combination of membrane filtration and nanoparticles- or microparticles-based magnetic separation is a fast and efficient approach. In this work, the interaction of bacteria and fluidMAG-PAA, a cation-exchange superparamagnetic nanomaterial, was investigated by MALDI-MS analysis and transmission electron microscopy. FluidMAG-PAA selectively captured cells of Salmonella, Bacillus, Enterococcus and Staphylococcus aureus. This capture was attributed to the aggregation of negatively charged nanoparticles on bacterial cell regional surfaces that bear positive charges. Three types of non-porous silica-encapsulated anion-exchange magnetic microparticles (SiMAG-Q, SiMAG-PEI, SiMAG-DEAE) were capable of concentrating a variety of bacteria, and were compared with silica-free, smaller fluidMAG particles. Salmonella, Escherichia coli, Enterococcus and other bacteria spiked in aqueous solutions, tap water and reservoir water were separated and concentrated by membrane filtration and magnetic separation based on these ion-exchange magnetic materials, and then characterized by whole cell MALDI-MS. By comparing with the mass spectra of the isolates and pure cells, bacteria in fresh water can be rapidly detected at 1 x 10(3) colony-forming units (cfu)/mL. Copyright 2009 John Wiley & Sons, Ltd.

  18. The high squareness Sm-Co magnet having Hcb=10.6 kOe at 150°C

    NASA Astrophysics Data System (ADS)

    Machida, Hiroaki; Fujiwara, Teruhiko; Kamada, Risako; Morimoto, Yuji; Takezawa, Masaaki

    2017-05-01

    The relationship between magnetic properties and magnetic domain structures of Sm(Fe, Cu, Zr, Co)7.5 magnet was investigated. The developed Sm-Co magnet, which is conducted homogenization heat treatment at ingot state, high temperature short time sintering and long time solid solution heat treatment showed the maximum energy product, [BH]m of 34.0 MGOe and the coercivity, Hcb of 11.3 kOe at 20°C respectively. Moreover, Hcb of 10.6 kOe at 150°C was achieved. Heat treated ingot has clear 1-7 phase in mother phase from optical microscope observation. Kerr effect microscope with magnetic field applied was used to investigate magnetic domain structure. Reverse magnetic domains were generated evenly but generation of them from inside grain were not observed. Cell structure was observed by scanning transmission electron microscope and composition analysis was conducted by energy dispersive X-ray spectroscopy. Cell size was approximately 150 ˜ 300 nm, Fe and Cu were clearly separated and concentrated to 2-17 phase and 1-5 phase respectively. Moreover, Cu concentration went up to 40 at% in 1-5 phase. That means the gap of domain wall energy between 1-5 phase and 2-17 phase was increased due to microstructure control by conducting heat treatment for compositional homogeneity.

  19. Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography-mass spectrometry for UV-filter determination in water samples.

    PubMed

    Román, Iván P; Chisvert, Alberto; Canals, Antonio

    2011-05-06

    A sensitive analytical method to concentrate and determine extensively used UV filters in cosmetic products at (ultra)trace levels in water samples is presented. The method is based on a sample treatment using dispersive solid-phase extraction (dSPE) with laboratory-made chemisorbed oleic acid-coated cobalt ferrite (CoFe(2)O(4)@oleic acid) magnetic nanoparticles (MNPs) as optimized sorbent for the target analytes. The variables involved in dSPE were studied and optimized in terms of sensitivity, and the optimum conditions were: mass of sorbent, 100mg; donor phase volume, 75 mL; pH, 3; and sodium chloride concentration, 30% (w/v). After dSPE, the MNPs were eluted twice with 1.5 mL of hexane, and then the eluates were evaporated to dryness and reconstituted with 50 μL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) for the injection into the gas chromatography-mass spectrometry (GC-MS). Under the optimized experimental conditions the method provided good levels of repeatability with relative standard deviations below 16% (n=5, at 100 ng L(-1) level). Limit of detection values ranged between 0.2 and 6.0 ng L(-1), due to the high enrichment factors achieved (i.e., 453-748). Finally, the proposed method was applied to the analysis of water samples of different origin (tap, river and sea). Recovery values showed that the matrices under consideration do not significantly affect the extraction process. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Health technology assessment of magnet therapy for relieving pain.

    PubMed

    Arabloo, Jalal; Hamouzadeh, Pejman; Eftekharizadeh, Fereshteh; Mobinizadeh, Mohammadreza; Olyaeemanesh, Alireza; Nejati, Mina; Doaee, Shila

    2017-01-01

    Background: Magnet therapy has been used increasingly as a new method to alleviate pain. Magnetic products are marketed with claims of effectiveness for reducing pain of various origins. However, there are inconsistent results from a limited number of randomized controlled trials (RCTs) testing the analgesic efficacy of magnet therapy. This study aimed to evaluate the safety and effectiveness of magnet therapy on reliving various types of pain. Methods: A systematic search of two main medical databases (Cochrane Library and Ovid Medline) was conducted from 1946 to May 2014. Only English systematic reviews that compared magnet therapy with other conventional treatments in patients with local pain in terms of pain relieving measures were included. The results of the included studies were thematically synthesized. Results: Eight studies were included. Magnet therapy could be used to alleviate pain of various origins including pain in various organs, arthritis, myofascial muscle pain, lower limb muscle cramps, carpal tunnel syndrome and pelvic pain. Results showed that the effectiveness of magnetic therapy was only approved in muscle pains, but its effectiveness in other indications and its application as a complementary treatment have not been established. Conclusion: According to the results, it seems that magnet therapy could not be an effective treatment for relieving different types of pain. Our results highlighted the need for further investigations to be done in order to support any recommendations about this technology.

  1. Health technology assessment of magnet therapy for relieving pain

    PubMed Central

    Arabloo, Jalal; Hamouzadeh, Pejman; Eftekharizadeh, Fereshteh; Mobinizadeh, Mohammadreza; Olyaeemanesh, Alireza; Nejati, Mina; Doaee, Shila

    2017-01-01

    Background: Magnet therapy has been used increasingly as a new method to alleviate pain. Magnetic products are marketed with claims of effectiveness for reducing pain of various origins. However, there are inconsistent results from a limited number of randomized controlled trials (RCTs) testing the analgesic efficacy of magnet therapy. This study aimed to evaluate the safety and effectiveness of magnet therapy on reliving various types of pain. Methods: A systematic search of two main medical databases (Cochrane Library and Ovid Medline) was conducted from 1946 to May 2014. Only English systematic reviews that compared magnet therapy with other conventional treatments in patients with local pain in terms of pain relieving measures were included. The results of the included studies were thematically synthesized. Results: Eight studies were included. Magnet therapy could be used to alleviate pain of various origins including pain in various organs, arthritis, myofascial muscle pain, lower limb muscle cramps, carpal tunnel syndrome and pelvic pain. Results showed that the effectiveness of magnetic therapy was only approved in muscle pains, but its effectiveness in other indications and its application as a complementary treatment have not been established. Conclusion: According to the results, it seems that magnet therapy could not be an effective treatment for relieving different types of pain. Our results highlighted the need for further investigations to be done in order to support any recommendations about this technology. PMID:29445660

  2. A Trans-disciplinary Hydrogeological Systems Analysis Approach for Identifying and Assessing Managed Aquifer Recharge Options: Example from the Darling River Floodplain, N.S.W., Australia

    NASA Astrophysics Data System (ADS)

    Lawrie, K.; Brodie, R. S.; Tan, K. P.; Halas, L.; Magee, J.; Gow, L.; Christensen, N. B.

    2013-12-01

    Surface water availability and quality generally limits managed aquifer recharge (MAR) opportunities in inland Australia's highly salinized landscapes and groundwater systems. Economic factors also commonly limit MAR investigations to shallow freshwater groundwater systems near existing infrastructure. Aquifer opportunities lie mainly in zones of fresh groundwater in relatively thin fluvial sedimentary aquifer systems with highly variable hydraulic properties. As part of a broader strategy to identify water savings in the Murray-Darling Basin, the Broken Hill Managed Aquifer Recharge (BHMAR) project was tasked with identifying and assessing MAR and/or groundwater extraction options to reduce evaporative losses from existing surface water storages, secure Broken Hill's water supply, protect the local environment and heritage, and return water to the river system. A trans-disciplinary research approach was used to identify and assess MAR options across a broad area of the Darling River floodplain. This methodology enabled the team to recognise fundamental problems in discipline approaches, helped identify critical data gaps, led to significant innovation across discipline boundaries, was critical in the development of a new hydrogeological conceptual model, facilitated development of new models of landscape, geological and tectonic evolution of the study area, and enabled completion of pre-commissioning maximal and residual MAR risk assessments. An airborne electromagnetics (AEM) survey, acquired over a large (>7,500 sq km) area of the Darling Floodplain, enabled rapid identification of a multi-layer sequence of aquifers and aquitards, while a phased assessment methodology was developed to rapidly identify and assess over 30 potential MAR targets (largely in fresh groundwater zones within palaeochannels and at palaeochannel confluences). Hydraulic properties were confirmed by a 7.5 km drilling program (100 sonic and rotary mud holes), and complementary field (including limited pump tests) and laboratory measurements. Recognition of significant Neogene-to-Present faulting, warping and tilting of the unconsolidated sediments (using AEM, airborne magnetics, regional gravity, LiDAR and drilling data) was critical to understanding recharge, inter-aquifer leakage and potential environmental impacts of MAR options. A program of borehole Nuclear Magnetic Resonance (NMR) logging provided a record of near-continuous variations in K through the saturated sedimentary sequence, with the NMR data integrated with other borehole and AEM data to produce 3D maps of aquifer transmissivity. A priority site was identified where aquifer storage and recovery (ASR) options were assessed. Maximal and residual risk assessments of 12 hazard types included hydrogeological modelling, laboratory column clogging studies and geochemical assessment to identify source water treatment requirements. The study found that the residual scientific/technical risks for ASR at the priority site are low if the supplementary water treatment trains are included.

  3. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Lee, Nohyun; Kang, Hyun Wook; Oh, Junghwan

    2016-03-01

    Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.

  4. Manifestation of Central Diabetes Insipidus in a Patient with Thyroid Storm.

    PubMed

    Nakamichi, Akiko; Ocho, Kazuki; Oka, Kosuke; Yasuda, Miho; Hasegawa, Kou; Iwamuro, Masaya; Obika, Mikako; Rai, Kammei; Otsuka, Fumio

    2018-02-28

    We herein report a case of central diabetes insipidus complicated with thyroid storm. A middle-aged woman who was receiving treatment for Graves' disease suddenly complained of polydipsia, polyuria and general fatigue. Laboratory tests showed hyperthyroidism, hypernatremia, hypoosmolar urine and a decreased plasma vasopressin level. The occurrence of central diabetes insipidus with hyperthyroidism was revealed on the basis of pituitary magnetic resonance imaging, a water deprivation test and a desmopressin test. The clinical co-existence of diabetes insipidus and hyperthyroidism is very rare; however, the complication should be considered when hypernatremia and/or dehydration progress in patients with Graves's disease as a common autoimmune-related etiology.

  5. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications

    NASA Astrophysics Data System (ADS)

    Yeap, Swee Pin; Lim, JitKang; Ooi, Boon Seng; Ahmad, Abdul Latif

    2017-11-01

    Magnetic nanoparticles (MNPs) which exhibit magnetic and catalytic bifunctionalities have been widely accepted as one of the most promising nanoagents used in water purification processes. However, due to the magnetic dipole-dipole interaction, MNPs can easily lose their colloidal stability and tend to agglomerate. Thus, it is necessary to enhance their colloidal stability in order to maintain the desired high specific surface area. Meanwhile, in order to successfully utilize MNPs for environmental engineering applications, an effective magnetic separation technology has to be developed. This step is to ensure the MNPs that have been used for pollutant removal can be fully reharvested back. Unfortunately, it was recently highlighted that there exists a conflicting role between colloidal stability and magnetic separability of the MNPs, whereby the more colloidally stable the particle is, the harder for it to be magnetically separated. In other words, attaining a win-win scenario in which the MNPs possess both good colloidal stability and fast magnetic separation rate becomes challenging. Such phenomenon has to be thoroughly understood as the colloidal stability and the magnetic separability of MNPs play a pivotal role on affecting their effective implementation in water purification processes. Accordingly, it is the aim of this paper to provide reviews on (i) the colloidal stability and (ii) the magnetic separation of MNPs, as well as to provide insights on (iii) their conflicting relationship based on recent research findings. [Figure not available: see fulltext.

  6. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert.

    PubMed

    Chen, W G; Chen, Z M; Chen, Z Y; Huang, P C; He, P; Zhu, J W

    2011-10-01

    The heat treatment of Nb(3)Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  7. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert

    NASA Astrophysics Data System (ADS)

    Chen, W. G.; Chen, Z. M.; Chen, Z. Y.; Huang, P. C.; He, P.; Zhu, J. W.

    2011-10-01

    The heat treatment of Nb3Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  8. Technical Note: Magnetic field effects on Gafchromic-film response in MR-IGRT.

    PubMed

    Reynoso, Francisco J; Curcuru, Austen; Green, Olga; Mutic, Sasa; Das, Indra J; Santanam, Lakshmi

    2016-12-01

    Magnetokinetic changes may affect crystal orientation and polymerization within the active layer of radiochromic film (RCF). This effect is investigated in a magnetic resonance image-guided radiotherapy unit within the context of film dosimetry. Gafchromic EBT2 RCF was irradiated in a 30 × 30 × 30 cm 3 solid water phantom using a Co-60 MRI guided radiotherapy system (B = 0.35 T) under normal operating conditions, and under the exact conditions and setup without a magnetic field. Fifteen 20.3 × 25.4 cm 2 EBT2 film sheets were placed at three different depths (d = 0.5, 5, and 10 cm) using five different treatment plans. The plans were computed using the MRIdian (ViewRay, Inc.) treatment planning system to deliver doses between 0 and 17.6 Gy. Films were analyzed before and after irradiation to obtain the net optical density (netOD) for each color channel separately. Scanning electron microscope (SEM) images were obtained to compare the active layer of selected samples. The results indicated that the red channel netOD decreased between 0.013 and 0.123 (average of 0.060 ± 0.033) for doses above 2.8 Gy, with a linear increase in this effect for higher doses. Green channel netOD showed similar results with a decrease between 0.012 and 0.105 (average of 0.041 ± 0.027) for doses above 3.5 Gy. The blue channel showed the weakest effect with a netOD decrease between 0.013 and 0.029 (average of 0.020 ± 0.006) for doses above 8.0 Gy. SEM images show changes in crystal orientation within active layer in RCF exposed in a magnetic field. The presence of a magnetic field affects crystal orientation and polymerization during irradiation, where netOD decreased by an average of 8.7%, 8.0%, and 4.3% in the red, green, and blue channels, respectively. The under response was dependent on dose and differed by up to 15% at 17.6 Gy.

  9. Nuclear magnetic resonance relaxation and diffusion measurements as a proxy for soil properties

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Pohlmeier, Andreas; Galvosas, Petrik; Vereecken, Harry

    2013-04-01

    Nuclear Magnetic Resonance (NMR) relaxation and NMR diffusion measurements are two of a series of fast and non-invasive NMR applications widely used e.g. as well logging tools in petroleum exploration [1]. For experiments with water, NMR relaxation measures the relaxation behaviour of former excited water molecules, and NMR diffusion evaluates the self-diffusion of water. Applied in porous media, both relaxation and diffusion measurements depend on intrinsic properties of the media like pore size distribution, connectivity and tortuosity of the pores, and water saturation [2, 3]. Thus, NMR can be used to characterise the pore space of porous media not only in consolidated sediments but also in soil. The physical principle behind is the relaxation of water molecules in an external magnetic field after excitation. In porous media water molecules in a surface layer of the pores relax faster than the molecules in bulk water because of interactions with the pore wall. Thus, the relaxation in smaller pores is generally faster than in bigger pores resulting in a relaxation time distribution for porous media with a range of pore sizes like soil [4]. In NMR diffusion experiments, there is an additional encoding of water molecules by application of a magnetic field gradient. Subsequent storage of the magnetization and decoding enables the determination of the mean square displacement and therefore of the self-diffusion of the water molecules [5]. Employing various relaxation and diffusion experiments, we get a measure of the surface to volume ratio of the pores and the tortuosity of the media. In this work, we show the characterisation of a set of sand and soil samples covering a wide range of textural classes by NMR methods. Relaxation times were monitored by the Carr-Purcell-Meiboom-Gill sequence and analysed using inverse Laplace transformation. Apparent self-diffusion constants were detected by a 13-intervall pulse sequence and variation of the storage time. We correlated the results with various soil properties like texture, water retention parameters, and hydraulic conductivity. This way we show that we can predict soil properties by NMR measurements and that we are able use results of NMR measurements as a proxy without the need of direct measurements. [1] Song, Y.-Q., Vadose Zone Journal, 9 (2010) [2] Stingaciu, L. R., et al., Water Resources Research, 46 (2010) [3] Vogt, C., et al., Journal of Applied Geophysics, 50 (2002) [4] Barrie, P. J., Annual Reports on NMR Spectroscopy, 41 (2000) [5] Stallmach, F., Galvosas, P., Annual Reports on NMR Spectroscopy, 61 (2007)

  10. Magnetic Separation Using HTS Bulk Magnet for Cs-Bearing Fe precipitates

    NASA Astrophysics Data System (ADS)

    Oka, T.; Ichiju, K.; Sasaki, S.; Ogawa, J.; Fukui, S.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Aoki, S.; Ohnishi, N.

    2017-09-01

    A peculiar magnetic separation technique has been examined in order to remove the Cs-bearing Fe precipitates formed of the waste ash from the withdrawn incinerator furnaces in Fukushima. The separation system was constructed in combination with high temperature superconducting bulk magnets which generates the intensive magnetic field over 2 T, which was activated by the pulsed field magnetization process. The separation experiment has been operated with use of the newly-built alternating channel type magnetic separating device, which followed the high-gradient magnetic separation technique. The magnetic stainless steel filters installed in the water channels are magnetized by the applied magnetic fields, and are capable of attracting the precipitates bearing the Fe compound and thin Cs contamination. The experimental results clearly exhibited the positive feasibility of HTS bulk magnets.

  11. Lorentz force in water: evidence that hydronium cyclotron resonance enhances polymorphism.

    PubMed

    D'Emilia, E; Giuliani, L; Lisi, A; Ledda, M; Grimaldi, S; Montagnier, L; Liboff, A R

    2015-01-01

    There is an ongoing question regarding the structure forming capabilities of water at ambient temperatures. To probe for different structures, we studied effects in pure water following magnetic field exposures corresponding to the ion cyclotron resonance of H3O(+). Included were measurements of conductivity and pH. We find that under ion cyclotron resonance (ICR) stimulation, water undergoes a transition to a form that is hydroxonium-like, with the subsequent emission of a transient 48.5 Hz magnetic signal, in the absence of any other measurable field. Our results indicate that hydronium resonance stimulation alters the structure of water, enhancing the concentration of EZ-water. These results are not only consistent with Del Giudice's model of electromagnetically coherent domains, but they can also be interpreted to show that these domains exist in quantized spin states.

  12. Strategies for Optimizing Water-Exchange Rates of Lanthanide-Based Contrast Agents for Magnetic Resonance Imaging

    PubMed Central

    Siriwardena-Mahanama, Buddhima N.; Allen, Matthew J.

    2013-01-01

    This review describes recent advances in strategies for tuning the water-exchange rates of contrast agents for magnetic resonance imaging (MRI). Water-exchange rates play a critical role in determining the efficiency of contrast agents; consequently, optimization of water-exchange rates, among other parameters, is necessary to achieve high efficiencies. This need has resulted in extensive research efforts to modulate water-exchange rates by chemically altering the coordination environments of the metal complexes that function as contrast agents. The focus of this review is coordination-chemistry-based strategies used to tune the water-exchange rates of lanthanide(III)-based contrast agents for MRI. Emphasis will be given to results published in the 21st century, as well as implications of these strategies on the design of contrast agents. PMID:23921796

  13. [The water content reference material of water saturated octanol].

    PubMed

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan

    2011-03-01

    The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.

  14. Influence of Molecular Oxygen on Ortho-Para Conversion of Water Molecules

    NASA Astrophysics Data System (ADS)

    Valiev, R. R.; Minaev, B. F.

    2017-07-01

    The mechanism of influence of molecular oxygen on the probability of ortho-para conversion of water molecules and its relation to water magnetization are considered within the framework of the concept of paramagnetic spin catalysis. Matrix elements of the hyperfine ortho-para interaction via the Fermi contact mechanism are calculated, as well as the Maliken spin densities on water protons in H2O and O2 collisional complexes. The mechanism of penetration of the electron spin density into the water molecule due to partial spin transfer from paramagnetic oxygen is considered. The probability of ortho-para conversion of the water molecules is estimated by the quantum chemistry methods. The results obtained show that effective ortho-para conversion of the water molecules is possible during the existence of water-oxygen dimers. An external magnetic field affects the ortho-para conversion rate given that the wave functions of nuclear spin sublevels of the water protons are mixed in the complex with oxygen.

  15. Prototype continuous flow ventricular assist device supported on magnetic bearings.

    PubMed

    Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B

    1996-06-01

    This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.

  16. Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals.

    PubMed

    Cresci, Alessandro; De Rosa, Rosario; Putman, Nathan F; Agnisola, Claudio

    2017-02-01

    Rheotaxis, the unconditioned orienting response to water currents, is a main component of fish behavior. Rheotaxis is achieved using multiple sensory systems, including visual and tactile cues. Rheotactic orientation in open or low-visibility waters might also benefit from the stable frame of reference provided by the geomagnetic field, but this possibility has not been explored before. Zebrafish (Danio rerio) form shoals living in freshwater systems with low visibility, show a robust positive rheotaxis, and respond to geomagnetic fields. Here, we investigated whether a static magnetic field in the Earth-strength range influenced the rheotactic threshold of zebrafish in a swimming tunnel. The direction of the horizontal component of the magnetic field relative to water flow influenced the rheotactic threshold of fish as part of a shoal, but not of fish tested alone. Results obtained after disabling the lateral line of shoaling individuals with Co 2+ suggest that this organ system is involved in the observed magneto-rheotactic response. These findings constitute preliminary evidence that magnetic fields influence rheotaxis and suggest new avenues for further research. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-12-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained.

  18. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    PubMed Central

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-01-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained. PMID:27922060

  19. Static magnetotherapy for the treatment of insomnia.

    PubMed

    Shieh, Yao Y; Tsai, Fong Y

    2008-01-01

    Magnets have been used for centuries to treat a number of physical disorders. The vast majority of research, however, on static magnet therapy for insomnia has been confined to the auricular type of therapy, with publications limited to Chinese journals. Most of these studies have depended on the subjective self-assessment of participants rather than objective scientific measurements. In this study, the authors report the positive preliminary results of insomnia treatment using pillows with embedded magnets, magnetic insoles and TriPhase bracelets. The analysis is based on objective actigraphic and polysomnographic data. A theory of accelerated transition from wakefulness to sleep is proposed to explain the process of insomnia relief through low-strength static magnetic fields. Analysis by functional Magnetic Resonance Imaging (fMRI) is used to further investigate the theory.

  20. [Individual parameters of general low-frequency magnetic therapy as a possibility for improving the clinical efficacy of the combined treatment of patients with essential arterial hypertension].

    PubMed

    Fedotov, V D; Maslov, A G; Lobkaeva, E P; Krylov, V N; Obukhova, E O

    2012-01-01

    A new approach is proposed for the choice of low-frequency magnetic therapy on an individual basis using the results of analysis of heart rhythm variability. The clinical efficiency of low-frequency magnetic therapy incorporated in the combined treatment of 65 patients aged between 25 and 45 years with essential arterial hypertension was estimated. The statistically significant positive effects of the treatment included normalization of blood pressure and characteristics of heart rhythm variability as well as resolution of clinical symptoms of vegetative dysregulation.

  1. Clinical evaluation of neodymium-iron-boron (Ne2Fe14B) rare earth magnets in the treatment of mid line diastemas

    PubMed Central

    Manoj-Kumar, Mitta; Gowri-Sankar, Singaraju; Chaitanya, Nellore; Vivek-Reddy, Ganugapanta; Venkatesh, Nettam

    2016-01-01

    Background To evaluate the closure of midline diastema using the Neodymium-Iron-Boron magnets and to compare the treatment duration of midline diastemas with the use of magnets compared to regular orthodontic treatment. Material and Methods Thirty patients with age group 12 to 30 years with the midline diastema ranging from 0.5 to 3mm were selected. These patients were divided into two groups. Diastema closure in one group was accomplished by conventional method, in other group was done with Ne2Fe14B magnets. These magnets were fitted to the labial surfaces of the maxillary central incisors such a way that the opposite poles of the magnets face each other. At each appointment, study models and radiographs were taken for study subjects and the midline diastema was measured using digital vernier calipers on the study models obtained. Descriptive statistics carried out using Paired t-test. Results Subjects treated with Ne2Fe14B magnets showed a significant difference compared to fixed orthodontic appliance subjects with respect to time of closure, rate of space closure and incisal inclination. Significant difference between 2 groups with reduction of 64.6 days in time to diastema closure in subjects treated with Ne2Fe14B magnets (P<0.05). Conclusions Ne2Fe14B magnets more efficient in complete closure of mid line diastema in less duration of time. Key words:Midline diastema, Ne2Fe14B magnets, rare earth magnets, space closure. PMID:27034757

  2. Two-stage preparation of magnetic sorbent based on exfoliated graphite with ferrite phases for sorption of oil and liquid hydrocarbons from the water surface

    NASA Astrophysics Data System (ADS)

    Pavlova, Julia A.; Ivanov, Andrei V.; Maksimova, Natalia V.; Pokholok, Konstantin V.; Vasiliev, Alexander V.; Malakho, Artem P.; Avdeev, Victor V.

    2018-05-01

    Due to the macropore structure and the hydrophobic properties, exfoliated graphite (EG) is considered as a perspective sorbent for oil and liquid hydrocarbons from the water surface. However, there is the problem of EG collection from the water surface. One of the solutions is the modification of EG by a magnetic compound and the collection of EG with sorbed oil using the magnetic field. In this work, the method of the two-stage preparation of exfoliated graphite with ferrite phases is proposed. This method includes the impregnation of expandable graphite in the mixed solution of iron (III) chloride and cobalt (II) or nickel (II) nitrate in the first stage and the thermal exfoliation of impregnated expandable graphite with the formation of exfoliated graphite containing cobalt and nickel ferrites in the second stage. Such two-stage method makes it possible to obtain the sorbent based on EG modified by ferrimagnetic phases with high sorption capacity toward oil (up to 45-51 g/g) and high saturation magnetization (up to 42 emu/g). On the other hand, this method allows to produce the magnetic sorbent in a short period of time (up to 10 s) during which the thermal exfoliation is carried out in the air atmosphere.

  3. Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids

    PubMed Central

    Sundar, L. Syam; Singh, Manoj K.; Ramana, E. Venkata; Singh, Budhendra; Grácio, José; Sousa, Antonio C. M.

    2014-01-01

    We report a new type of magnetic nanofluids, which is based on a hybrid composite of nanodiamond and nickel (ND-Ni) nanoparticles. We prepared the nanoparticles by an in-situ method involving the dispersion of caboxylated nanodiamond (c-ND) nanoparticles in ethylene glycol (EG) followed by mixing of nickel chloride and, at the reaction temperature of 140°C, the use of sodium borohydrate as the reducing agent to form the ND-Ni nanoparticles. We performed their detailed surface and magnetic characterization by X-ray diffraction, micro-Raman, high-resolution transmission electron microscopy, and vibrating sample magnetometer. We prepared stable magnetic nanofluids by dispersing ND-Ni nanoparticles in a mixture of water and EG; we conducted measurements to determine the thermal conductivity and viscosity of the nanofluid with different nanoparticles loadings. The nanofluid for a 3.03% wt. of ND-Ni nanoparticles dispersed in water and EG exhibits a maximum thermal conductivity enhancement of 21% and 13%, respectively. For the same particle loading of 3.03% wt., the viscosity enhancement is 2-fold and 1.5-fold for water and EG nanofluids. This particular magnetic nanofluid, beyond its obvious usage in heat transfer equipment, may find potential applications in such diverse fields as optics and magnetic resonance imaging. PMID:24509508

  4. Performance of biological magnetic powdered activated carbon for drinking water purification.

    PubMed

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2016-06-01

    Combining the high adsorption capacity of powdered activated carbon (PAC) with magnetic properties of iron oxide nanoparticles (NPs) leads to a promising composite material, magnetic PAC or MPAC, which can be separated from water using magnetic separators. We propose MPAC as an alternative adsorbent in the biological hybrid membrane process and demonstrate that PAC covered with magnetic NPs is suitable as growth support for heterotrophic and nitrifying bacteria. MPAC with mass fractions of 0; 23; 38 and 54% maghemite was colonized in small bioreactors for over 90 days. Although the bacterial community composition (16s rRNA analysis) was different on MPAC compared to PAC, NPs neither inhibited dissolved organic carbon and ammonia biological removals nor contributed to significant adsorption of these compounds. The same amount of active heterotrophic biomass (48 μg C/cm(3)) developed on MPAC with a mass fraction of 54% NPs as on the non-magnetic PAC control. While X-ray diffraction confirmed that size and type of iron oxides did not change over the study period, a loss in magnetization between 10% and 34% was recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Magnetic Eigenmodes in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, M. D.; Bayliss, R. A.; Forest, C. B.; Kendrick, R. D.; O'Connell, R.; Spence, E. J.

    2002-11-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is only possible for specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from the water experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities of 15 m/s. A gaussian grid of 66 Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. A pair of magnetic field coils produce a roughly uniform field inside the sphere with a centerline field strength of 100 gauss. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  6. Magnetically Attached Multifunction Maintenance Rover

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces that could be adjusted to maximize or minimize the overall attractive magnetic force. Even with a paint thickness of 2 mm, a preliminary design provides a safety factor of 5 in the magnetic force in the upside- down, water-jets-operating condition, in which the total load (including the weight of the MAGMER and cables and the water-jet force) would be about 260 lb (the weight of 118 kg). Optionally, the MAGMER could carry magnetic shielding and/or could be equipped with a demagnetizing module to remove residual magnetism from the structure. The MAGMER would carry four charge-coupled-device cameras for visual inspection, monitoring of operation, navigation, and avoidance of collisions with obstacles. The control system of the MAGMER would include navigation and collision-avoidance subsystems that would utilize surface features as landmarks, in addition to direct images of obstacles.

  7. Optimization of pre-sowing magnetic field doses through RSM in pea

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Ahmad, I.; Hussain, S. M.; Khera, R. A.; Bokhari, T. H.; Shehzad, M. A.

    2013-09-01

    Seed pre-sowing magnetic field treatment was reported to induce biochemical and physiological changes. In the present study, response surface methodology was used for deduction of optimal magnetic field doses. Improved growth and yield responses in the pea cultivar were achieved using a rotatable central composite design and multivariate data analysis. The growth parameters such as root and shoot fresh masses and lengths as well as yield were enhanced at a certain magnetic field level. The chlorophyll contents were also enhanced significantly vs. the control. The low magnetic field strength for longer duration of exposure/ high strength for shorter exposure were found to be optimal points for maximum responses in root fresh mass, chlorophyll `a' contents, and green pod yield/plant, respectively and a similar trend was observed for other measured parameters. The results indicate that the magnetic field pre-sowing seed treatment can be used practically to enhance the growth and yield in pea cultivar and response surface methodology was found an efficient experimental tool for optimization of the treatment level to obtain maximum response of interest.

  8. Newly developed central diabetes insipidus following kidney transplantation: a case report.

    PubMed

    Kim, K M; Kim, S M; Lee, J; Lee, S Y; Kwon, S K; Kim, H-Y

    2013-09-01

    Polyuria after kidney transplantation is a common, usually self-limiting disorder. However, persistent polyuria can cause not only patient discomfort, including polyuria and polydipsia, but also volume depletion that can produce allograft dysfunction. Herein, we have report a case of central diabetes insipidus newly diagnosed after kidney transplantation. A 45-year-old woman with end-stage kidney disease underwent deceased donor kidney transplantation. Two months after the transplantation, she was admitted for persistent polyuria, polydipsia, and nocturia with urine output of more than 4 L/d. Urine osmolarity was 100 mOsm/kg, which implied that the polyuria was due to water rather than solute diuresis. A water deprivation test was compatible with central diabetes insipidus; desmopressin treatment resulted in immediate symptomatic relief. Brain magnetic resonance imaging (MRI) demonstrated diffuse thickening of the pituitary stalk, which was considered to be nonspecific finding. MRI 12 months later showed no change in the pituitary stalk, although the patient has been in good health without polyuria or polydipsia on desmopressin treatment. The possibility of central diabetes insipidus should be considered in patients presenting with persistent polyuria after kidney transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Characterization by optical and magnetic spectroscopy of a synthesized SiO2 thin film used for radiation detector

    NASA Astrophysics Data System (ADS)

    Abdelaziz, T. D.; Ezz-Eldin, F. M.

    2017-09-01

    This work reports the synthesis and characterization of silica glass prepared by sol-gel procedure and finds out the effects of doses of gamma irradiation on the steps route of the heat-treated sample at 600 and 1100 °C. Combined characterizations of the glassy samples have been carried out by optical absorption and electron paramagnetic resonance. Also, FT infrared absorption spectra have been measured for both the heat-treated samples before and after gamma irradiation. Optical absorption spectra have identified an absorption band at 212-215 nm beside a broad band at 230-265 nm and the correlation of E' center with heat-treatment and gamma irradiation have been followed. FT infrared absorption spectra indicate the bands within near IR region representing the vibrational modes due to water, OH and SiOH within the wavenumber range 2500-3700 cm-1 are affected by heat treatment due to the elimination of organic residue and amount of OH and water. ESR investigations confirm the results obtained from optical and FTIR measurements. It is concluded from the collective data that sol-gel silica glass can serve as acceptable candidate for gamma-rays irradiator and gamma chamber dosimetry.

  10. Project scientists discover magnetic phenomenon under Bermuda Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-05-01

    Drilling results in water depths of 18,000 ft between Puerto Rico and Bermuda indicate strong magnetic reverses occur in the rocks underlying the seabed. These and other findings during a cruise of the Glomar Challenger are reported. Information is included on the location of magnetic anomalies, sedimentation, and open-sea drilling. (JRD)

  11. Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction.

    PubMed

    Huo, Shu-Hui; An, Hai-Yan; Yu, Jing; Mao, Xue-Feng; Zhang, Zhe; Bai, Lei; Huang, Yan-Feng; Zhou, Peng-Xin

    2017-09-29

    In this study, we report a facile, environmental friendly fabrication of a type of magnetic metal-organic framework (MOF) MIL-100 that can be used for magnetic solid-phase extraction (MSPE). The magnetic MOF composites were fabricated using in situ calcination method. The as-synthesized materials exhibited both high porosity and magnetic characteristics. They used for the MSPE of polycyclic aromatic hydrocarbons (PAHs) from water samples. Such MOF-based magnetic solid-phase extraction in combination with gas chromatography equipped with a flame ionization detector (GC-FID), exhibited wide linearity (0.02-250μgL -1 ), low detection limits (4.6-8.9ngL -1 ), and high enrichment factors (452-907) for PAHs. The relative standard deviations (RSDs) for intra- and inter-day extractions of PAHs were ranging from 1.7% to 9.8% and 3.8% to 9.2%, respectively. The recoveries for spiked PAHs (1μgL -1 ) in water samples were in the range of 88.5% to 106.6%. The results showed that the special anion-π orbital (electron donor-acceptor) interaction and π-π stacking between magnetic MIL-100 and PAHs play an important role in the adsorption of PAHs. Copyright © 2017. Published by Elsevier B.V.

  12. EFFECT OF IONIC STRENGTH ON ACID-BASE PROPERTIES OF VICINAL WATER

    EPA Science Inventory

    Surface research over the past 75 years has clearly shown that water under the influence of electrical and magnetic force fields (vicinal water) does not have the same properties as bulk water. Vicinal water is vital in influencing and maintaining the critical spatial and confor...

  13. Transport phenomena of carbon nanotubes and bioconvection nanoparticles on stagnation point flow in presence of induced magnetic field

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.

    2017-07-01

    This article is a numerical study of stagnation point flow of carbon nanotubes over an elongating sheet in presence of induced magnetic field submerged in bioconvection nanoparticles. Two types of carbon nanotubes are considered i.e. single wall carbon nanotube and multi wall carbon nanotube mixed in based fluid taken to be water as well as kerosene-oil. The emphasis of present study is to examine effect of induced magnetic field on boundary layer flows along with influence of SWCNT and MWCNT. Physical problem is mathematically modeled and simplified by using appropriate similarity transformations. Shooting method with Runge-Kutta of order 5 is employed to compute numerical results for non-dimensional velocity, induced magnetic field and temperature. The effects of pertinent parameters are portrayed through graphs. Numerical values of skinfriction coefficient and Nusselt number are tabulated to study the behaviors at the stretching surface. It is depicted that induced magnetic field is an increasing function of solid nanoparticles volumetric fraction. Moreover, MWCNT contributes in rising induced magnetic field more as compared to SWCNT for both water and kerosene-oil based fluids.

  14. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases.

    PubMed

    El-Sherbiny, Ibrahim M; Elbaz, Nancy M; Sedki, Mohammed; Elgammal, Abdulaziz; Yacoub, Magdi H

    2017-02-01

    Magnetic nanoparticles (MNPs) have gained much attention due to their unique properties such as biocompatibility and biodegradability as well as magnetic and heat-medicated characteristics. Due to these inherent properties, MNPs have been widely used in various biomedical applications including targeted drug delivery and hyperthermia-based therapy. Hyperthermia is a promising approach for the thermal activation therapy of several diseases, including pulmonary diseases. Additionally, due to their large loading capacity and controlled release ability, several MNP-based drug delivery systems have been emerged for treatment of cystic fibrosis and lung cancer. This review provides an overview on the unique properties of MNPs and magnetic-mediated hyperthermia with emphasis on the recent biomedical applications of MNPs in treatment of both lung cancer and cystic fibrosis.

  15. Noninvasive Shock Wave Treatment for Capsular Contractures After Breast Augmentation: A Rabbit Study.

    PubMed

    Chen, Po Chou; Kuo, Shyh Ming; Jao, Jo Chi; Yang, Shiou Wen; Hsu, Ching Wen; Wu, Yu Chiuan

    2016-06-01

    Capsular contracture is the most common complication of breast augmentation. Although numerous procedures are intended to prevent capsular contracture, their efficacy does not satisfy surgeons or patients. In the present study, we used shock waves to develop innovative protocols to treat capsular contracture in rabbits. We used shock waves to treat capsular contracture in a rabbit model. Six clinical parameters were evaluated to determine the treatment efficacy of shock waves on the pathological histology of capsular contracture. Dual-flip-angle T1-mapping magnetic resonance imaging was used to confirm the pathological findings. Among the parameters, myxoid change, vascular proliferation, and lymphoplasma cell infiltration around the capsule increased more after treatment than they did in a control group. Capsular thickness, inner thinner collagen layer, and capsule wall collagen deposition decreased after shock wave treatment; only the inner thinner collagen layer and capsule wall collagen deposition changed significantly. The MRI findings for both scar thickness and water content were consistent with pathological biology findings. This was the first pilot study and trial to treat capsular contractures using shock waves. We found that shock waves can cause changes in the structure or the composition of capsular contracture. We conclude that the treatment could decrease water content, loosen structure, decrease collagen deposition, and might alleviate scar formation from capsular contracture. We believe that the treatment could be a viable remedy for capsular contractures. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  16. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Zhai, Fuqiang; Wang, Jin; Zhang, Qian; Xu, Wenhuan; Logan, Philip; Volinsky, Alex A.

    2012-03-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites.

  17. Open-source, small-animal magnetic resonance-guided focused ultrasound system.

    PubMed

    Poorman, Megan E; Chaplin, Vandiver L; Wilkens, Ken; Dockery, Mary D; Giorgio, Todd D; Grissom, William A; Caskey, Charles F

    2016-01-01

    MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus visualization was achieved with acoustic radiation force imaging. We developed an MRgFUS platform for small-animal treatments that robustly delivers accurate, precise, and controllable sonications over extended time periods. This system is an open source and could increase the availability of low-cost small-animal systems to interdisciplinary researchers seeking to develop new MRgFUS applications and technology.

  18. Magnetic resonance image guided transurethral ultrasound prostate ablation: a preclinical safety and feasibility study with 28-day followup.

    PubMed

    Burtnyk, Mathieu; Hill, Tracy; Cadieux-Pitre, Heather; Welch, Ian

    2015-05-01

    We determine the safety and feasibility of magnetic resonance image guided transurethral ultrasound prostate ablation using active temperature feedback control in a preclinical canine model with 28-day followup. After a long acclimatization period we performed ultrasound treatment in 8 subjects using the magnetic resonance image guided TULSA-PRO™ transurethral ultrasound prostate ablation system. Comprehensive examinations and observations were done before and throughout the 28-day followup, including assessment of clinically significant treatment related adverse events. In addition to gross pathology evaluation, extensive histopathological analysis was done to assess cell kill inside and outside the prostate. We evaluated prostate conformal heating by comparing the spatial difference between the treatment plan and the 55C isotherm measured on magnetic resonance imaging thermometry acquired during treatment. These findings were confirmed on contrast enhanced magnetic resonance imaging immediately after treatment and at 28 days. Clinically there were no adverse events in any of the 8 subjects throughout the 28-day followup. All subjects had normal urinary and bowel function. Gross necropsy and histology confirmed that the intended thermal cell kill was confined to the prostate. No surrounding tissue was damaged, including the rectum and the external urinary sphincter. Conformal heating was achieved with an average -0.9 mm accuracy and 0.9 mm precision. Contrast enhanced magnetic resonance imaging and histological analysis confirmed tissue ablation in targeted areas of the prostate. Urethral tissue was spared from thermal damage. Magnetic resonance image guided transurethral ultrasound is a safe, feasible procedure for accurate and precise conformal thermal ablation of prostate tissue, as demonstrated in a preclinical model with 28-day followup. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Repetitive transcranial magnetic stimulation as an alternative therapy for dysphagia after stroke: a systematic review and meta-analysis.

    PubMed

    Liao, Xiang; Xing, Guoqiang; Guo, Zhiwei; Jin, Yu; Tang, Qing; He, Bin; McClure, Morgan A; Liu, Hua; Chen, Huaping; Mu, Qiwen

    2017-03-01

    A meta-analysis and systematic review was conducted to investigate the potential effects of repetitive transcranial magnetic stimulation on dysphagia in patients with stroke, including different parameters of frequency and stimulation site. PubMed, Embase, MEDLINE databases and the Cochrane Library, were searched for randomized controlled studies of repetitive transcranial magnetic stimulation treatment of dysphagia published before March 2016. Six clinical randomized controlled studies of a total of 163 stroke patients were included in this meta-analysis. A significant effect size of 1.24 was found for dysphagic outcome (mean effect size, 1.24; 95% confidence interval (CI), 0.67-1.81). A subgroup analysis based on frequency showed that the clinical scores were significantly improved in dysphagic patients with low frequency repetitive transcranial magnetic stimulation treatment ( P < 0.05) as well as high frequency repetitive transcranial magnetic stimulation treatment ( P < 0.05). A stimulation site stratified subgroup analysis implied significant changes in stroke patients with dysphagia for the unaffected hemisphere ( P < 0.05) and the bilateral hemisphere stimulation ( P < 0.05), but not for the affected hemisphere ( P > 0.05). The analysis of the follow-up data shows that patients in the repetitive transcranial magnetic stimulation groups still maintained the therapeutic benefit of repetitive transcranial magnetic stimulation four weeks after the last session of repetitive transcranial magnetic stimulation therapy ( P < 0.05). This meta-analysis indicates that repetitive transcranial magnetic stimulation has a positive effect on dysphagia after stroke. Compared with low-frequency repetitive transcranial magnetic stimulation, high-frequency repetitive transcranial magnetic stimulation may be more beneficial to the patients. This meta-analysis also supports that repetitive transcranial magnetic stimulation on an unaffected - or bilateral - hemisphere has a significant therapeutic effect on dysphagia.

  20. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Toyohisa, E-mail: tfujita@sys.t.u-tokyo.ac.jp; Ono, Hiroyuki; Dodbiba, Gjergj

    Highlights: • The parts mounted on printed circuit board (PCB) were liberated by underwater explosion and mechanical crushing. • The crushed PCB without surface-mounted parts was carbonized under inert atmosphere at 873 K to recover copper. • The multi-layered ceramic capacitors including nickel was carbonized at 873 K to recover nickel by the magnetic separation. • The tantalum powders were recovered from the molded resins by heat treatment at 723 and 823 K in air atmosphere and screening. • Energy and treatment cost of new process increased, however, the environmental burden decreased comparing conventional one. - Abstract: Printed circuit boardsmore » (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin. In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873–1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment. As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1 T and then at 0.8 T. In the +0.5 mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%. The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins by heat treatment at 723–773 K in air atmosphere and screening of 0.5 mm. Silica was removed and 70% of tantalum grade was obtained after more than 823 K heating and separation. Next, the evaluation of Cu recycling in PCB is estimated. Energy consumption of new process increased and the treatment cost becomes 3 times higher comparing the conventional process, while the environmental burden of new process decreased comparing conventional process. The nickel recovery process in fine ground particles increased energy and energy cost comparing those of the conventional process. However, the environmental burden decreased than the conventional one. The process for recovering tantalum used more heat for the treatment and therefore the energy consumption increased by 50%, when comparing with conventional process. However, the market price for tantalum is very large; the profit for tantalum recovery is added. Also the environmental burden decreased by the recycling of tantalum recovery. Therefore, the tantalum recovery is very important step in the PCB recycling. If there is no tantalum, the consumed energy and treatment cost increase in the new process, though the environmental burden decreases.« less

Top