Science.gov

Sample records for magnetic x-point oscillatory

  1. Nonlinear fast magnetoacoustic wave propagation in the neighbourhood of a 2D magnetic X-point: oscillatory reconnection

    NASA Astrophysics Data System (ADS)

    McLaughlin, J. A.; De Moortel, I.; Hood, A. W.; Brady, C. S.

    2009-01-01

    Context: This paper extends the models of Craig & McClymont (1991, ApJ, 371, L41) and McLaughlin & Hood (2004, A&A, 420, 1129) to include finite β and nonlinear effects. Aims: We investigate the nature of nonlinear fast magnetoacoustic waves about a 2D magnetic X-point. Methods: We solve the compressible and resistive MHD equations using a Lagrangian remap, shock capturing code (Arber et al. 2001, J. Comp. Phys., 171, 151) and consider an initial condition in {v}×{B} \\cdot {hat{z}} (a natural variable of the system). Results: We observe the formation of both fast and slow oblique magnetic shocks. The nonlinear wave deforms the X-point into a “cusp-like” point which in turn collapses to a current sheet. The system then evolves through a series of horizontal and vertical current sheets, with associated changes in connectivity, i.e. the system exhibits oscillatory reconnection. Our final state is non-potential (but in force balance) due to asymmetric heating from the shocks. Larger amplitudes in our initial condition correspond to larger values of the final current density left in the system. Conclusions: The inclusion of nonlinear terms introduces several new features to the system that were absent from the linear regime. A movie is available in electronic form at http://www.aanda.org

  2. Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Parnell, C. E.; De Moortel, I.; McClements, K. G.; Arber, T. D.

    2012-08-01

    Context. The highly dynamical, complex nature of the solar atmosphere naturally implies the presence of waves in a topologically varied magnetic environment. Here, the interaction of waves with topological features such as null points is inevitable and potentially important for energetics. The low resistivity of the solar coronal plasma implies that non-magnetohydrodynamic (MHD) effects should be considered in studies of magnetic energy release in this environment. Aims: This paper investigates the role of the Hall term in the propagation and dissipation of waves, their interaction with 2D magnetic X-points and the nature of the resulting reconnection. Methods: A Lagrangian remap shock-capturing code (Lare2d) was used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth (δi) in resistive Hall MHD. A magnetic null-point finding algorithm was also used to locate and track the evolution of the multiple null-points that are formed in the system. Results: Depending on the ratio of ion skin depth to system size, our model demonstrates that Hall effects can play a key role in the wave-null interaction. In particular, the initial fast-wave pulse now consists of whistler and ion-cyclotron components; the dispersive nature of the whistler wave leads to (i) earlier interaction with the null; (ii) the creation of multiple additional, transient nulls and, hence, an increased number of energy release sites. In the Hall regime, the relevant timescales (such as the onset of reconnection and the period of the oscillatory relaxation) of the system are reduced significantly, and the reconnection rate is enhanced.

  3. A discharge with a magnetic X-point as a negative hydrogen ion source

    SciTech Connect

    Tsankov, Tsanko; Czarnetzki, Uwe

    2011-09-26

    The study presents first results from investigations of a novel low-pressure plasma source, intended for a negative hydrogen ion production. The source utilizes a dc magnetic field, shaped to form a cusp with a magnetic null-point (X-point). Beside the common role of filtering out the high energy electrons, this magnetic field configuration ensures in the present case also an interesting mechanism of coupling the RF power to the plasma. Investigations performed using radio frequency modulation spectroscopy (RFMOS) reveal that the main power coupling to the electrons is confined in the region on one side of the X-point. The modulation of the light intensity indicates also the presence of a strong dc drift close to the plane of the X-point. Several hypothesises for its explanation are raised: an azimuthal diamagnetic drift due to strong axial gradients of the electron energy, the excitation of a standing helicon wave, which couples to the radial magnetic field in the plane of the X-point, or a Trivelpiece-Gould wave which is resonantly absorbed near the plane of the X-point.

  4. Magnetic Reconnection during Collisionless, Stressed, X-point Collapse using Particle-in-cell Simulation

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Haruki, T.

    2008-09-01

    Dungey's (1953) work on X-point collapse is the earliest analysis done on magnetic reconnection and predates the tearing mode, Sweet-Parker and Petcheck reconnection models. X-point collapse soon fell out of favour because in the collisional (MHD) regime, for the plausible space plasma parameters, it was found to be inefficient. We however show [Tsiklauri D. and T. Haruki, Phys. of Plasmas, 14, 112905, (2007)] that in the collisionless regime, which is indeed more applicable to space plasmas, the reconnection is efficient. We study magnetic reconnection during collisionless, stressed, X-point collapse using kinetic, 2.5D, fully electromagnetic, relativistic Particle-in-Cell numerical code. Two cases of weakly and strongly stressed X-point collapse were considered. Here descriptors weakly and strongly refer to 20% and 124% unidirectional spatial compression of the X-point, respectively. We found that within about one Alfven time, 2% and 20% of the initial magnetic energy is converted into heat and accelerated particle energy in the case of weak and strong stress, respectively. In the both cases, during the peak of the reconnection, the quadruple out-of-plane magnetic field is generated. These results strongly suggest the importance of the collisionless, stressed X-point collapse as an efficient mechanism of converting magnetic energy into heat and super-thermal particle energy. In the weakly stressed case, the reconnection rate, defined as the out-of-plane electric field in the X-point normalized by the product of external magnetic field and Alfven speeds, peaks at 0.11, with its average over 1.25 Alfven times being 0.04. Electron energy distribution in the current sheet, at the high-energy end of the spectrum, shows a power-law distribution with the index varying in time, attaining a maximal value of -4.1 at the final simulation time step (1.25 Alfven times). In the strongly stressed case, magnetic reconnection peak occurs 3.4 times faster and is more efficient

  5. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-06-15

    The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.

  6. Prompt particle acceleration around moving X-point magnetic field during impulsive phase of solar flares

    NASA Technical Reports Server (NTRS)

    Sakai, Jun-Ichi

    1992-01-01

    We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs around moving X-point magnetic field during the implosion phase of the current sheet. We derive the electromagnetic fields during the strong implosion phase of the current sheets, which is driven by the converging flow derived from the magnetohydrodynamic equations. It is shown that both protons and electrons can be promptly (within 1 second) accelerated to approximately 70 MeV and approximately 200 MeV, respectively. This acceleration mechanism can be applicable for the impulsive phase of the gradual gamma ray and proton flares (gradual GR/P flare), which have been called two-ribbon flares.

  7. The effect of guide-field and boundary conditions on the features and signatures of collisionless magnetic reconnection in a stressed X-point collapse

    NASA Astrophysics Data System (ADS)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2015-12-01

    Magnetic X-point collapse is investigated using a 2.5D fully relativistic particle-in-cell simulation, with varying strengths of guide-field as well as open and closed boundary conditions. In the zero guide-field case we discover a new signature of Hall-reconnection in the out-of-plane magnetic field, namely an octupolar pattern, as opposed to the well-studied quadrupolar out-of-plane field of reconnection. The emergence of the octupolar components was found to be caused by ion currents and is a general feature of X-point collapse. In a comparative study of tearing-mode reconnection, signatures of octupolar components are found only in the out-flow region. It is argued that space-craft observations of magnetic fields at reconnection sites may be used accordingly to identify the type of reconnection [1][2]. Further, initial oscillatory reconnection is observed, prior to reconnection onset, generating electro-magnetic waves at the upper-hybrid frequency, matching solar flare progenitor emission. When applying a guide-field, in both open and closed boundary conditions, thinner dissipation regions are obtained and the onset of reconnection is increasingly delayed. Investigations with open boundary conditions show that, for guide-fields close to the strength of the in-plane field, shear flows emerge, leading to the formation of electron flow vortices and magnetic islands [3]. Asymmetries in the components of the generalised Ohm's law across the dissipation region are observed. Extended in 3D geometry, it is shown that locations of magnetic islands and vortices are not constant along the height of the current-sheet. Vortices formed on opposite sites of the current-sheet travel in opposite directions along it, leading to a criss-cross vortex pattern. Possible instabilities resulting from this specific structure formation are to be investigated [4].[1] J. Graf von der Pahlen and D. Tsiklauri, Phys. Plasmas 21, 060705 (2014), [2] J. Graf von der Pahlen and D. Tsiklauri

  8. Modulation of cortical oscillatory activity during transcranial magnetic stimulation.

    PubMed

    Brignani, Debora; Manganotti, Paolo; Rossini, Paolo M; Miniussi, Carlo

    2008-05-01

    Transcranial magnetic stimulation (TMS) can transiently modulate cortical excitability, with a net effect depending on the stimulation frequency (< or =1 Hz inhibition vs. > or =5 Hz facilitation, at least for the motor cortex). This possibility has generated interest in experiments aiming to improve deficits in clinical settings, as well as deficits in the cognitive domain. The aim of the present study was to investigate the on-line effects of low frequency (1 Hz) TMS on the EEG oscillatory activity in the healthy human brain, focusing particularly on the outcome of these modulatory effects in relation to the duration of the TMS stimulation. To this end, we used the event-related desynchronization/synchronization (ERD/ERS) approach to determine the patterns of oscillatory activity during two consecutive trains of sham and real TMS. Each train of stimulation was delivered to the left primary motor cortex (MI) of healthy subjects over a period of 10 min, while EEG rhythms were simultaneously recorded. Results indicated that TMS induced an increase in the power of brain rhythms that was related to the period of the stimulation, i.e. the synchronization of the alpha band increased with the duration of the stimulation, and this increase was inversely correlated with motor-evoked potentials (MEPs) amplitude. In conclusion, low frequency TMS over primary motor cortex induces a synchronization of the background oscillatory activity on the stimulated region. This induced modulation in brain oscillations seems to increase coherently with the duration of stimulation, suggesting that TMS effects may involve short-term modification of the neural circuitry sustaining MEPs characteristics. PMID:17557296

  9. Oscillatory interlayer magnetic coupling of sputtered Fe/Nb superlattices

    SciTech Connect

    Mattson, J.E.; Fullerton, E.E.; Sowers, C.H.; Huang, Y.Y.; Felcher, G.P.; Bader, S.D.

    1992-09-01

    The saturation field of sputtered Fe/Nb superlattices oscillates as a function of the Nb thickness with a periodicity of [approximately]9 [Angstrom]. In contrast to the case of Fe/Cr superlattices, the concurrent magnetoresistance oscillations were found to be very weak. Yet polarized neutron reflection measurements confirm that the Fe/Nb superlattices with high saturation field possess a magnetic ground state of the [plus minus][plus minus] type. Neutron and x-ray measurements indicate that, while the crystalline and antiferromagnetic order is well developed along the thickness of the film, the average lateral size of the crystallites (as well as of the magnetic domains) is quite small. This effect (thought to be related to the gross mismatch of the iron and the niobium crystal lattices) may be the cause of the high overall resistance of the material, and its weak dependence on the magnetization.

  10. Oscillatory interlayer magnetic coupling of sputtered Fe/Nb superlattices

    SciTech Connect

    Mattson, J.E.; Fullerton, E.E.; Sowers, C.H.; Huang, Y.Y.; Felcher, G.P.; Bader, S.D.

    1992-09-01

    The saturation field of sputtered Fe/Nb superlattices oscillates as a function of the Nb thickness with a periodicity of {approximately}9 {Angstrom}. In contrast to the case of Fe/Cr superlattices, the concurrent magnetoresistance oscillations were found to be very weak. Yet polarized neutron reflection measurements confirm that the Fe/Nb superlattices with high saturation field possess a magnetic ground state of the {plus_minus}{plus_minus} type. Neutron and x-ray measurements indicate that, while the crystalline and antiferromagnetic order is well developed along the thickness of the film, the average lateral size of the crystallites (as well as of the magnetic domains) is quite small. This effect (thought to be related to the gross mismatch of the iron and the niobium crystal lattices) may be the cause of the high overall resistance of the material, and its weak dependence on the magnetization.

  11. Chemical spots and oscillatory diffusion modes in magnetic stars

    NASA Astrophysics Data System (ADS)

    Urpin, V.

    2016-07-01

    The stars of the middle main sequence often have spot-like chemical structures at their surfaces. We consider diffusion caused by electric currents and argue that such current-driven diffusion can form chemical inhomogeneities in a plasma. The considered mechanism can contribute to a formation of element spots in Hg-Mn and Ap-stars. Due to the Hall effect, diffusion in the presence of electric currents can be accompanied by the propagation of a particular type of magnetohydrodynamic modes in which only the impurity number density oscillates. Such modes exist if the magnetic pressure is much greater than the gas pressure and can be the reason for variations of the abundance peculiarities in stars.

  12. X -Point Effect on Plasma Blob Dynamics

    NASA Astrophysics Data System (ADS)

    Avino, F.; Fasoli, A.; Furno, I.; Ricci, P.; Theiler, C.

    2016-03-01

    Plasma blob dynamics on the high-field side in the proximity of a magnetic field null (X point) is investigated in TORPEX. A significant acceleration of the blobs towards the X point is observed. Close to the X point the blobs break apart. The E ×B drifts associated with the blobs are measured, isolating the background drift component from the fluctuating contribution of the blob internal potential dipole. The time evolution of the latter is consistent with the fast blob dynamics. An analytical model based on charge conservation is derived for the potential dipole, including ion polarization, diamagnetic, and parallel currents. In the vicinity of the X point, a crucial role in determining the blob motion is played by the decrease of the poloidal magnetic field intensity. This variation increases the connection length that short circuits the potential dipole of the blob. Good quantitative agreement is found between the model and the experimental data in the initial accelerating phase of the blob dynamics.

  13. Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Chen, Yudong; Li, Xiaoli

    2016-02-01

    A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (<2 mm) and a higher penetration depth than other noninvasive neuromodulation methods. The in vivo animal experimental results show that tFUMS can not only increase the power of local field potentials and the firing rate of the neurons, but also enhance the effect of transcranial focused ultrasound stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.

  14. Oscillatory magnetoconvective instability in a ferrofluid layer placed in an oblique external magnetic field

    NASA Astrophysics Data System (ADS)

    Suslov, Sergey A.; Rahman, Habibur; Bozhko, Aleksandra A.

    2014-11-01

    Magnetite-based ferrofluids are manufactured magneto-polarisable nanofluids that magnetize in an external magnetic field in a similar way to natural paramagnetic fluids(e.g. oxygen), however to a much higher degree. Paramagnetic and ferrofluid flows are described by similar equations and it is expected that they would exhibit a similar behaviour. Indeed we show that in both type of fluids the most prominent instability structures align with the in-layer field component and the onset of magnetoconvection is delayed by the field inclination. However we find that in contrast to paramagnetic fluids the instabilities arising in differentially heated ferrofluids placed in a uniform external oblique magnetic field are oscillatory. This is traced back to the nonlinearity of the magnetic field distribution induced inside the ferrofluid layer that arises whenever the direction of the applied magnetic field is not normal. Given that the magnetic field inclination with respect to the plane of the layer is inevitable near its edges the obtained stability results shed light on the possible reasons for the existnce of unsteady patterns that have been detected in the normal field experiments we reported previously.

  15. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram.

    PubMed

    Noh, Nor Azila

    2016-07-01

    Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP-/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses.

  16. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram.

    PubMed

    Noh, Nor Azila

    2016-07-01

    Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP-/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses. PMID:27660540

  17. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram

    PubMed Central

    Noh, Nor Azila

    2016-01-01

    Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP−/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses. PMID:27660540

  18. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram

    PubMed Central

    Noh, Nor Azila

    2016-01-01

    Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP−/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses.

  19. Somatotopic source arrangement of 600 Hz oscillatory magnetic fields at the human primary somatosensory hand cortex.

    PubMed

    Curio, G; Mackert, B M; Burghoff, M; Neumann, J; Nolte, G; Scherg, M; Marx, P

    1997-10-01

    Based on low-noise superconducting quantum interference devices (SQUIDs) magnetoencephalography allows the non-invasive detection of low-amplitude high-frequency brain responses evoked about 20 ms after electric hand nerve stimulation. The main spectral energy of these brief oscillatory bursts (near 600 Hz) is in the range typical for rapidly repeated action potentials. Here, the magnetic fields of median and ulnar nerve evoked 600 Hz bursts are shown to exhibit a somatotopic arrangement at the primary somatosensory hand cortex closely resembling that of the concomitant postsynaptic primary cortical response (¿N20m'). Two possible burst generators are discussed: (1) repetitive spike volleys conducted along the terminal segments of somatotopically arranged thalamocortical axons, and (2) early intracortical spike activity in nerve-specific subterritories of the 3b hand area.

  20. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length

    NASA Astrophysics Data System (ADS)

    Thomas, Luc; Hayashi, Masamitsu; Jiang, Xin; Moriya, Rai; Rettner, Charles; Parkin, Stuart S. P.

    2006-09-01

    Magnetic domain walls, in which the magnetization direction varies continuously from one direction to another, have long been objects of considerable interest. New concepts for devices based on such domain walls are made possible by the direct manipulation of the walls using spin-polarized electrical current through the phenomenon of spin momentum transfer. Most experiments to date have considered the current-driven motion of domain walls under quasi-static conditions, whereas for technological applications, the walls must be moved on much shorter timescales. Here we show that the motion of domain walls under nanosecond-long current pulses is surprisingly sensitive to the pulse length. In particular, we find that the probability of dislodging a domain wall, confined to a pinning site in a permalloy nanowire, oscillates with the length of the current pulse, with a period of just a few nanoseconds. Using an analytical model and micromagnetic simulations, we show that this behaviour is connected to a current-induced oscillatory motion of the domain wall. The period is determined by the wall's mass and the slope of the confining potential. When the current is turned off during phases of the domain wall motion when it has enough momentum, the domain wall is driven out of the confining potential in the opposite direction to the flow of spin angular momentum. This dynamic amplification effect could be exploited in magnetic nanodevices based on domain wall motion.

  1. Nonlinearity of dynamic magnetization in a superparamagnetic clustered-particle suspension with regard to particle rotatability under oscillatory field

    NASA Astrophysics Data System (ADS)

    Trisnanto, Suko Bagus; Kitamoto, Yoshitaka

    2016-02-01

    The magnetization induced by oscillatory magnetic-field in a polydispersive superparamagnetic-suspension shows a nonlinearity which strongly depends on the applied frequency. Referring to the initially-measured complex magnetic-susceptibility in function of field-strength, the highly-nonlinear curve of dynamic magnetization at low frequency tends to be linear at higher frequency. Likewise, the dynamic susceptibility appears to be less field-strength dependent at higher frequency, emphasizing a frequency-dependence of magnetically-induced particle-dynamics. This finding is attributable to the imaginary part of magnetization which saturates at lower field-strength of low-frequency magnetic-field. Hence, Brownian relaxation losses should be constant after the saturation due to a confinement of particle rotations.

  2. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    PubMed Central

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  3. Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Heedt, S.; Goerke, S.; Ibrahim, A.; Rupprecht, B.; Heyn, Ch; Hardtdegen, H.; Schäpers, Th; Wilde, M. A.; Grundler, D.

    2016-02-01

    We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas-van-Alphen-type oscillations in the magnetization M(B) for external magnetic fields B  >  2 T, measured by torque magnetometry at 0.3 K. We compare the experimental data to model calculations assuming different confinement potentials and including ensemble broadening effects. The comparison shows that a hard wall potential with an edge depletion width of 100 nm explains the magnetic behavior. Beating patterns induced by Rashba spin-orbit interaction (SOI) as measured in unpatterned and nanopatterned InGaAs/InP heterostructures are not observed for the quantum dots. From our model we predict that signatures of SOI in the magnetization could be observed in larger dots in tilted magnetic fields.

  4. The electronic state of underdoped YBCO at high magnetic fields and low temperatures: evidence from quantum oscillatory phenomena

    NASA Astrophysics Data System (ADS)

    Lonzarich, Gil

    2012-02-01

    Quantum oscillations in bulk and transport properties have been observed in underdoped YBa2Cu3O6+x via a range of techniques and by independent researchers in applied magnetic fields above 20T and temperatures below 10K. The consensus is that the oscillations are periodic in the reciprocal of the magnetic field and consist of a number of components with frequencies (fundamental or otherwise) of below 2kT, nearly an order of magnitude lower than that observed in the overdoped state of Tl2Ba2CuO6+x. Moreover, the temperature dependence of the amplitude of the strongest oscillatory components that can be measured accurately follows closely that expected for elementary excitations of fermionic character. I will discuss a model of the Fermi surface that can potentially account for each of the periodic components observed, and that appears to be consistent with a number of other known properties in the high-field low-temperature state.

  5. X-Point Reconnection from Shear Driving in Kinetic Simulations

    NASA Astrophysics Data System (ADS)

    Black, C.; Antiochos, S. K.; DeVore, C. R.; Germaschewski, K.; Bessho, N.; Karpen, J. T.

    2014-12-01

    The explosive energy release in solar eruptive phenomena such as CMEs/eruptive flares and coronal jets is believed to be due to magnetic reconnection. Magnetic free energy builds up slowly in the corona due to footpoint stressing by the photospheric motions. Along with the free energy, current sheets build up at coronal nulls, which eventually triggers fast reconnection and explosive energy release. This basic scenario has been modeled extensively by MHD simulations and applied to both CMEs/eruptive flares and jets, but the reconnection itself is well-known to be due to kinetic processes. Consequently, it is imperative that shear-driven X-point reconnection be modeled in a fully kinetic system so as to test and guide the MHD results. In MHD simulations, the application of a magnetic-field shear at the system boundary is a trivial matter, but this is definitely not the case for a kinetic system, because the electric currents need to be fully consistent with all the mass motions. We present the first results of reconnection in a 2D X-Point geometry due to a velocity shear driver perpendicular to the plane of reconnection. We compare the results to high-resolution MHD simulations and discuss the implications for coronal activity.

  6. Magnetorheological fluid based on submicrometric silica-coated magnetite particles under an oscillatory magnetic field

    NASA Astrophysics Data System (ADS)

    Agustín-Serrano, R.; Donado, F.; Rubio-Rosas, E.

    2013-06-01

    An experimental study conducted on the rheological properties of a magnetorheological fluid based on submicrometric silica-coated magnetite particles dispersed in silicone oil is presented. We investigated the rheological behaviour when the system is simultaneously exposed to a static field and a sinusoidal field used as a perturbation. The results show that the perturbation modifies the rheological behaviour of the system and can be used to control its physical properties; however, the changes that are induced are smaller than expected from previous results for the aggregation of particles under magnetic perturbations. We discussed this difference in terms of the ratio between the magnetic energy and the thermal energy. We observed that a threshold magnetic field exists; below it, the yield stress is practically zero, whereas above it, the yield stress grows quickly. We discuss this result in terms of a model based on chain length distribution.

  7. Bifurcation analysis in a vortex flow generated by an oscillatory magnetic obstacle.

    PubMed

    Beltrán, Alberto; Ramos, Eduardo; Cuevas, Sergio; Brøns, Morten

    2010-03-01

    A numerical simulation and a theoretical model of the two-dimensional flow produced by the harmonic oscillation of a localized magnetic field (magnetic obstacle) in a quiescent viscous, electrically conducting fluid are presented. Nonuniform Lorentz forces produced by induced currents interacting with the oscillating magnetic field create periodic laminar flow patterns that can be characterized by three parameters: the oscillation Reynolds number, Reomega, the Hartmann number, Ha, and the dimensionless amplitude of the magnetic obstacle oscillation, D. The analysis is restricted to oscillations of small amplitude and Ha=100. The resulting flow patterns are described and interpreted in terms of position and evolution of the critical points of the instantaneous streamlines. It is found that in most of the cycle, the flow is dominated by a pair of counter rotating vortices that switch their direction of rotation twice per cycle. The transformation of the flow field present in the first part of the cycle into the pattern displayed in the second half occurs via the generation of hyperbolic and elliptic critical points. The numerical solution of the flow indicates that for low frequencies (v.e. Reomega=1), two elliptic and two hyperbolic points are generated, while for high frequencies (v.e. Reomega=100), a more complex topology involving four elliptic and two hyperbolic points appear. The bifurcation map for critical points of the instantaneous streamline is obtained numerically and a theoretical model based on a local analysis that predicts most of the qualitative properties calculated numerically is proposed. PMID:20365856

  8. Evidence of electron acceleration around the reconnection X-point in a solar flare

    SciTech Connect

    Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro

    2014-06-01

    Particle acceleration is one of the most significant features that are ubiquitous among space and cosmic plasmas. It is most prominent during flares in the case of the Sun, with which huge amounts of electromagnetic radiation and high-energy particles are expelled into the interplanetary space through acceleration of plasma particles in the corona. Though it has been well understood that energies of flares are supplied by the mechanism called magnetic reconnection based on the observations in X-rays and EUV with space telescopes, where and how in the flaring magnetic field plasmas are accelerated has remained unknown due to the low plasma density in the flaring corona. We here report the first observational identification of the energetic non-thermal electrons around the point of the ongoing magnetic reconnection (X-point), with the location of the X-point identified by soft X-ray imagery and the localized presence of non-thermal electrons identified from imaging-spectroscopic data at two microwave frequencies. Considering the existence of the reconnection outflows that carries both plasma particles and magnetic fields out from the X-point, our identified non-thermal microwave emissions around the X-point indicate that the electrons are accelerated around the reconnection X-point. Additionally, the plasma around the X-point was also thermally heated up to 10 MK. The estimated reconnection rate of this event is ∼0.017.

  9. Magneto-optic characterizations of superlattices and wedged sandwiches with oscillatory interlayer magnetic coupling

    SciTech Connect

    Bader, S.D.

    1992-07-01

    Three examples of magnetic coupling across metallic spacer layers are considered. Fe/Nb sputtered superlattices are observed to have as many as five antiferromagnetic oscillations, but a weak magnetoresistive anomaly. Epitaxial trilayers of Fe/Mo/Fe grown on Mo(100) and Co/Cu/Co grown on Cu(100) are observed to have short- and long-period oscillations, respectively. The trilayers are grown with wedged spacer layers and characterized in-situ by means of the magneto-optic Kerr effect.

  10. Electron inertia modifications to X-point reconnection in solar flares

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Thyagaraja, A.; Ben Ayed, N.; Fletcher, L.

    The evolution of perturbations to a current-free magnetic X-point is studied as a paradigm for short timescale energy release in solar flares, taking into account electron inertia as well as resistivity. Electron inertia is found to have a negligible effect whenever the collisionless skin depth is less than the resistive scale length. Non-potential magnetic field energy in this resistive MHD limit initially reaches equipartition with flow energy, in accordance with ideal MHD, and is then dissipated extremely rapidly, on an Alfvénic timescale that is essentially independent of Lundquist number. In agreement with resistive MHD results obtained by previous authors [1], the magnetic field energy and kinetic energy are then observed to decay on a longer timescale and exhibit oscillatory behavior, reflecting the existence of discrete normal modes with finite real frequency. When the collisionless skin depth exceeds the resistive scale length, the field energy again decays on an Alfvénic timescale, while the kinetic energy (which is equally partitioned between ions and electrons in this case) decays on the electron collision timescale. In this regime filaments appear in the field and velocity profiles, suggesting the possibility of particle acceleration in oppositely-directed current channels and symmetrical precipitation out of the acceleration region. Both the rapid decay in field energy and the filamentation process arise from phase mixing associated with a continuous eigenmode spectrum that replaces the discrete resistive MHD spectrum [2]. Because of the Alfvénic timescale of the field decay, very modest perturbation amplitudes are sufficient for the corresponding inductive electric fields to produce hard X-ray emitting electrons on sub-second timescales. The model thus provides a framework for interpreting observations of short timescale energy release and particle acceleration in the impulsive phase of flares. This work was supported by the United Kingdom

  11. Oscillatory flow braking: inner magnetosphere observations

    NASA Astrophysics Data System (ADS)

    Panov, E. V.; Nakamura, R.; Baumjohann, W.; Angelopoulos, V.

    2013-12-01

    We search for damped oscillatory flow braking events observed by THEMIS/ARTEMIS in the near-Earth plasma sheet when their counterpart in the inner magnetosphere was observed. By comparing the particle and magnetic field data in the two locations we analyze the feedback of the inner magnetosphere to plasma sheet oscillatory flow braking. We discuss the possible role of the oscillatory flow events for plasma injection into the inner magnetosphere.

  12. X-point target divertor concept and the Alcator DX high power divertor test facility

    NASA Astrophysics Data System (ADS)

    Labombard, B.; Marmar, E.; Irby, J.; Vieria, R.; Wolfe, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as `Super X' and `X-point target' have the potential to solve all three challenges by producing a stable, fully detached, low temperature plasma in the divertor while maintaining a hot boundary layer around a clean plasma core. The X-point target divertor may be particularly effective. It places a second X-point in the pathway of the peak parallel heat flux with the intention of forming an X-point MARFE in the divertor volume, well away from the primary X-point that defines the last closed flux surface and at larger major radius, providing detachment front stability. Divertor heat dissipation is via volumetric processes (radiation, ion-neutral collisions), virtually eliminating erosion by ion bombardment and reducing peak heat flux and neutron fluence on remote divertor target components. Alcator DX is conceived as a national facility to test these ideas. It employs the high magnetic field technology of Alcator combined with high-power ICRH to investigate advanced divertors at reactor-level parallel heat flux densities.

  13. The flux-coordinate independent approach applied to X-point geometries

    SciTech Connect

    Hariri, F. Hill, P.; Ottaviani, M.; Sarazin, Y.

    2014-08-15

    A Flux-Coordinate Independent (FCI) approach for anisotropic systems, not based on magnetic flux coordinates, has been introduced in Hariri and Ottaviani [Comput. Phys. Commun. 184, 2419 (2013)]. In this paper, we show that the approach can tackle magnetic configurations including X-points. Using the code FENICIA, an equilibrium with a magnetic island has been used to show the robustness of the FCI approach to cases in which a magnetic separatrix is present in the system, either by design or as a consequence of instabilities. Numerical results are in good agreement with the analytic solutions of the sound-wave propagation problem. Conservation properties are verified. Finally, the critical gain of the FCI approach in situations including the magnetic separatrix with an X-point is demonstrated by a fast convergence of the code with the numerical resolution in the direction of symmetry. The results highlighted in this paper show that the FCI approach can efficiently deal with X-point geometries.

  14. Oscillatory behavior of the tunnel magnetoresistance due to thickness variations in Ta|CoFe|MgO magnetic tunnel junctions: A first-principles study

    NASA Astrophysics Data System (ADS)

    Sankaran, K.; Swerts, J.; Couet, S.; Stokbro, K.; Pourtois, G.

    2016-09-01

    To investigate the impact of both the CoFe ferromagnetic layer thickness and the capping paramagnetic layer on the tunnel magnetoresistance (TMR), we performed first-principles simulations on epitaxial magnetic tunnel junctions contacted with either CoFe or Ta paramagnetic capping layers. We observed a strong oscillation of the TMR amplitude with respect to the thickness of the ferromagnetic layer. The TMR is found to be amplified whenever the MgO spin tunnel barrier is thickened. Quantization of the electronic structure of the ferromagnetic layers is found to be at the origin of this oscillatory behavior. Metals such as Ta contacting the magnetic layer are found to enhance the amplitude of the oscillations due to the occurrence of an interface dipole. The latter drives the band alignment and tunes the nature of the spin channels that are active during the tunneling process. Subsequently, the regular transmission spin channels are modulated in the magnetic tunnel junction stack and other complex ones are being activated.

  15. The role of electron confinement in Pd films for the oscillatory magnetic anisotropy in an adjacent Co layer.

    PubMed

    Manna, Sujit; Przybylski, M; Sander, D; Kirschner, J

    2016-11-16

    We demonstrate the interplay between quantum well states in Pd and the magnetic anisotropy in Pd/Co/Cu (0 0 1) by combined scanning tunneling spectroscopy (STS) and magneto optical Kerr effect (MOKE) measurements. Low temperature scanning tunneling spectroscopy reveals occupied and unoccupied quantum well states (QWS) in atomically flat Pd films on Co/Cu (0 0 1). These states give rise to sharp peaks in the differential conductance spectra. A quantitative analysis of the spectra reveals the electronic dispersion of the Pd (0 0 1) d-band ([Formula: see text]-type) along the [Formula: see text]-X direction. In situ MOKE experiments on Pd/Co/Cu (1, 1, 13) uncover a periodic variation of the in-plane uniaxial magnetic anisotropy as a function of Pd thickness with a period of 6 atomic layers Pd. STS shows that QWS in Pd cross the Fermi level with the same periodicity of 6 atomic layers. Backed by previous theoretical work we ascribe the variation of the magnetic anisotropy in Co to QWS in the Pd overlayer. Our results suggest a novel venue towards tailoring uniaxial magnetic anisotropy of ferromagnetic films by exploiting QWS in an adjacent material with large spin-orbit coupling. PMID:27609044

  16. The role of electron confinement in Pd films for the oscillatory magnetic anisotropy in an adjacent Co layer

    NASA Astrophysics Data System (ADS)

    Manna, Sujit; Przybylski, M.; Sander, D.; Kirschner, J.

    2016-11-01

    We demonstrate the interplay between quantum well states in Pd and the magnetic anisotropy in Pd/Co/Cu (0 0 1) by combined scanning tunneling spectroscopy (STS) and magneto optical Kerr effect (MOKE) measurements. Low temperature scanning tunneling spectroscopy reveals occupied and unoccupied quantum well states (QWS) in atomically flat Pd films on Co/Cu (0 0 1). These states give rise to sharp peaks in the differential conductance spectra. A quantitative analysis of the spectra reveals the electronic dispersion of the Pd (0 0 1) d-band ({{ Δ }5} -type) along the Γ -X direction. In situ MOKE experiments on Pd/Co/Cu (1, 1, 13) uncover a periodic variation of the in-plane uniaxial magnetic anisotropy as a function of Pd thickness with a period of 6 atomic layers Pd. STS shows that QWS in Pd cross the Fermi level with the same periodicity of 6 atomic layers. Backed by previous theoretical work we ascribe the variation of the magnetic anisotropy in Co to QWS in the Pd overlayer. Our results suggest a novel venue towards tailoring uniaxial magnetic anisotropy of ferromagnetic films by exploiting QWS in an adjacent material with large spin-orbit coupling.

  17. Global Machine Design and Double X-point Equilibrium Configurations for Ignitor*

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Parodi, B.; Coppi, B.

    2008-11-01

    The detailed design of the Ignitor machine has been carried out by considering extended limiter plasma configurations that are up-down symmetric and whose outer magnetic surfaces follow closely the cavity of the toroidal magnet over most of the vertical cross section. This provision minimizes the out-of- plane forces produced by the plasma current and acting on the toroidal magnet. When, instead, the adopted plasma equilibrium configuration is of the double X-point type the out-of-plane forces increase, and a complete structural analysis to take this increase into account becomes appropriate. The reference maximum plasma current Ip, in order to maintain an acceptable magnetic safety factor, is reduced from 11 MA in the extended limiter to 9 MA in the double X-point configuration while the magnetic field on axis (R01.32 m) is maintained at BT13 T. The reduced scenario involving Ip6 MA and BT9 T does not present a problem. Both 3D and 2D drawings of each individual machine component are produced using the Dassault Systems CATIA-V software. After their integration into a single 3D CATIA model of the Core (Load Assembly), the electro-fluidic and fluidic lines which supply electrical currents and helium cooling gas to the coils are included and mechanically connected to the main machine components.^*Sponsored in part by ENEA of Italy and by the U.S. D.O.E.

  18. ExB CIRCULATION AT THE TOKAMAK DIVERTOR X-POINT

    SciTech Connect

    M.J. SCHAFFER; B.D. BRAY; J.A.BOEDO; T.N. CARLSTROM; R.J.COLCHIN; J.G. WATKINS

    2000-11-01

    Detailed measurements in two dimensions by probes and Thomson scattering reveal unexpected local electric potential and electron pressure (p{sub e}) maxima near the divertor X-point in L-mode plasmas in the DIII-D tokamak [J.L. Luxon and L.G. Davis, Fusion Technol. 8, 441 (1985)]. The potential drives E x B circulation about the X-point, thereby exchanging plasma between closed and open magnetic surfaces at rates that can be comparable to the total cross-separatrix transport. The potential is consistent with the classical parallel Ohm's law. A simple model is proposed to explain the pressure and potential hills in low power, nearly detached plasmas. Recent two-dimensional edge transport modeling with plasma drifts also shows X-point pressure and potential hills but by a different mechanism. These experimental and theoretical results demonstrate that low power tokamak plasmas can be far from poloidal uniformity in a boundary layer just inside the separatrix. Additional data, though preliminary and incomplete, suggest that E x B circulation across the separatrix might be a common feature of low confinement behavior.

  19. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  20. Oscillatory Magnetogasdynamic Slip Flow in a Microchannel

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    2009-11-01

    The problem of pressure driven Magnetogasdynamic (MGD) slip flow with small rarefaction through a long micro-channel is considered. The flow is driven by steady or oscillatory pressure gradient. The study of MGD flows in microchannels is of great interest since they occur in magnetic thin films and other electromagnetic micro-scale devices. In obtaining the micro-fluidic solutions in the presence of a magnetic field, some additional physical, mathematical and numerical issues need to be considered. These issues deal with the scaling laws for micro-scale MHD flows and the relevant parameters such as Mach number, Reynolds number, Hartmann number, magnetic Reynolds number, and Knudsen number. For planar constant area micro-channel, it is possible to obtain the analytical solutions for both steady and oscillatory pressure driven flows. As physically expected, the higher value of the magnetic field (higher Hartmann number) flattens the velocity profile in the channel.

  1. Role of electron inertia and reconnection dynamics in a stressed X-point collapse with a guide-field

    NASA Astrophysics Data System (ADS)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2016-11-01

    Aims: In previous simulations of collisionless 2D magnetic reconnection it was consistently found that the term in the generalised Ohm's law that breaks the frozen-in condition is the divergence of the electron pressure tensor's non-gyrotropic components. The motivation for this study is to investigate the effect of the variation of the guide-field on the reconnection mechanism in simulations of X-point collapse, and the related changes in reconnection dynamics. Methods: A fully relativistic particle-in-cell (PIC) code was used to model X-point collapse with a guide-field in two and three spatial dimensions. Results: We show that in a 2D X-point collapse with a guide-field close to the strength of the in-plane field, the increased induced shear flows along the diffusion region lead to a new reconnection regime in which electron inertial terms play a dominant role at the X-point. This transition is marked by the emergence of a magnetic island - and hence a second reconnection site - as well as electron flow vortices moving along the current sheet. The reconnection electric field at the X-point is shown to exceed all lower guide-field cases for a brief period, indicating a strong burst in reconnection. By extending the simulation to three spatial dimensions it is shown that the locations of vortices along the current sheet (visualised by their Q-value) vary in the out-of-plane direction, producing tilted vortex tubes. The vortex tubes on opposite sides of the diffusion region are tilted in opposite directions, similarly to bifurcated current sheets in oblique tearing-mode reconnection. The tilt angles of vortex tubes were compared to a theoretical estimation and were found to be a good match. Particle velocity distribution functions for different guide-field runs, for 2.5D and 3D simulations, are analysed and compared.

  2. Oscillatory blowing airfoil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    10' NACA 0015 with 30% chord trailing edge flap deflected 20 degrees. Used in 0.3 Meter Transonic Cryogenic Tunnel, this airfoil has a 0.44 mm slot at 70% chord. Oscillatory blowing out of slot used for separation control. Howard Price appears in side view shot, in building 1145, Studio.

  3. Generation of X-points and secondary islands in 2D magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Wan, M.; Matthaeus, W. H.; Servidio, S.; Oughton, S.

    2013-12-01

    We study the time development of the population of X-type critical points in a two-dimensional magnetohydrodynamic model during the early stages of freely decaying turbulence. At sufficiently high magnetic Reynolds number Re_m, we find that the number of neutral points increases as Re_m^3/2, while the rates of reconnection at the most active sites decrease. The distribution of rates remains approximately exponential. We focus in particular on delicate issues of accuracy, which arise in these numerical experiments, in that the proliferation of X-points is also a feature of under-resolved simulations. The 'splitting' of neutral points at high Reynolds number appears to be a fundamental feature of the cascade that has important implications for understanding the relationship between reconnection and turbulence, an issue of considerable importance for the Magnetospheric Multiscale and Solar Probe missions as well as observation of reconnection in the solar wind.

  4. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  5. A microwave dielectric resonant oscillatory circuit

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Shvartsburg, A. B.

    2016-07-01

    Bias currents in a thin dielectric nonconducting torus are investigated, and the resonant mode of excitation of these currents is established. The similarity of the frequency spectrum of such a dielectric element to the spectra of a classical Thomson oscillatory circuit and a metamaterial with negative permittivity is demonstrated. The resonant frequency of electromagnetic oscillations of the ring dielectric circuit and magnetic and electric fields of such a circuit under resonant excitation are determined.

  6. Physics of collisionless reconnection in a stressed X-point collapse

    SciTech Connect

    Tsiklauri, D.; Haruki, T.

    2008-10-15

    Recently, magnetic reconnection during collisionless, stressed, X-point collapse was studied using kinetic, 2.5-dimensional, fully electromagnetic, relativistic particle-in-cell numerical code [D. Tsiklauri and T. Haruki, Phys. Plasmas 14, 112905 (2007)]. Here we finalize the investigation of this topic by addressing key outstanding physical questions: (i) Which term in the generalized Ohm's law is responsible for the generation of the reconnection electric field? (ii) How does the time evolution of the reconnected flux vary with the ion-electron mass ratio? (iii) What is the exact energy budget of the reconnection process; i.e., in which proportion initial (mostly magnetic) energy is converted into other forms of energy? (iv) Are there any anisotropies in the velocity distribution of the accelerated particles? The following points have been established. (i) A reconnection electric field is generated by the electron pressure tensor off-diagonal terms, resembling to the case of tearing unstable Harris current sheet studied by the GEM reconnection challenge. (ii) For m{sub i}/m{sub e}>>1, the time evolution of the reconnected flux is independent of ion-electron mass ratio. In addition, in the case of m{sub i}/m{sub e}=1, we show that reconnection proceeds slowly as the Hall term is zero; when m{sub i}/m{sub e}>>1 (i.e., the Hall term is nonzero) reconnection is fast and we conjecture that this is due to magnetic field being frozen into electron fluid, which moves significantly faster than ion fluid. (iii) Within one Alfven time, somewhat less than half ({approx}40%) of the initial total (roughly magnetic) energy is converted into the kinetic energy of electrons, and somewhat more than half ({approx}60%) into kinetic energy of ions (similar to solar flare observations). (iv) In the strongly stressed X-point case, in about one Alfven time, a full isotropy in all three spatial directions of the velocity distribution is seen for superthermal electrons (also commensurate

  7. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  8. Oscillatory counter-centrifugation

    NASA Astrophysics Data System (ADS)

    Xu, Shujing; Nadim, Ali

    2016-02-01

    In ordinary centrifugation, a suspended particle that is heavier than the displaced fluid migrates away from the rotation axis when the fluid-filled container rotates steadily about that axis. In contrast a particle that is lighter than the displaced fluid (e.g., a bubble) migrates toward the rotation axis in a centrifuge. In this paper, we show theoretically that if a fluid-filled container rotates in an oscillatory manner as a rigid body about an axis, at high enough oscillation frequencies, the sense of migration of suspended particles is reversed. That is, in that case particles denser than the fluid migrate inward, while those that are lighter than the fluid move outward. We term this unusual phenomenon "Oscillatory Counter-Centrifugation" or OCC, for short. Through application of the method of averaging to the equations of motion, we derive a simple criterion to predict the occurrence of OCC. The analysis also reveals that the time-average of the Coriolis force in the radial direction is the term that is responsible for this effect. In addition, we analyze the effects of the Basset history force and the Rubinow-Keller lift force on particle trajectories and find that OCC persists even when these forces are active. The phenomenon awaits experimental verification.

  9. Oscillatory growth for twisting crystals.

    PubMed

    Ibaraki, Shunsuke; Ise, Ryuta; Ishimori, Koichiro; Oaki, Yuya; Sazaki, Gen; Yokoyama, Etsuro; Tsukamoto, Katsuo; Imai, Hiroaki

    2015-05-18

    We demonstrate the oscillatory phenomenon for the twisting growth of a triclinic crystal through in situ observation of the concentration field around the growing tip of a needle by high-resolution phase-shift interferometry.

  10. X-point position dependence of edge intrinsic toroidal rotation on the Tokamak à Configuration Variable

    SciTech Connect

    Stoltzfus-Dueck, T.; Karpushov, A. N.; Sauter, O.; Duval, B. P.; Labit, B.; Reimerdes, H.; Vijvers, W. A. J.; Camenen, Y.

    2015-05-15

    Recent theoretical work predicts intrinsic toroidal rotation in the tokamak edge to depend strongly on the normalized major radial position of the X-point. With this motivation, we conducted a series of Ohmic L-mode shots on the Tokamak à Configuration Variable, moving the X-point from the inboard to the outboard edge of the last closed flux surface in both lower and upper single null configurations. The edge toroidal rotation evolved from strongly co-current for an inboard X-point to either vanishing or counter-current for an outboard X-point, in agreement with the theoretical expectations. The whole rotation profile shifted roughly rigidly with the edge rotation, resulting in variation of the peak core rotation by more than a factor of two. Core rotation reversals had little effect on the edge rotation. Edge rotation was slightly more counter-current for unfavorable than favorable ∇B drift discharges.

  11. Transport-driven scrape-off layer flows and the x-point dependence of the L-H power threshold in Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Rice, J. E.; Hubbard, A. E.; Hughes, J. W.; Greenwald, M.; Granetz, R. S.; Irby, J. H.; Lin, Y.; Lipschultz, B.; Marmar, E. S.; Marr, K.; Mossessian, D.; Parker, R.; Rowan, W.; Smick, N.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S. J.

    2005-05-01

    Factor of ˜2 higher power thresholds for low- to high-confinement mode transitions (L-H) with unfavorable x-point topologies in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are linked to flow boundary conditions imposed by the scrape-off layer (SOL). Ballooning-like transport drives flow along magnetic field lines from low- to high-field regions with toroidal direction dependent on upper/lower x-point balance; the toroidal rotation of the confined plasma responds, exhibiting a strong counter-current rotation when B ×∇B points away from the x point. Increased auxiliary heating power (rf, no momentum input) leads to an L-H transition at approximately twice the edge electron pressure gradient when B ×∇B points away. As gradients rise prior to the transition, toroidal rotation ramps toward the co-current direction; the H mode is seen when the counter-current rotation imposed by the SOL flow becomes compensated. Remarkably, L-H thresholds in lower-limited discharges are identical to lower x-point discharges; SOL flows are also found similar, suggesting a connection.

  12. Local Oscillatory Rheology from Echography

    NASA Astrophysics Data System (ADS)

    Saint-Michel, Brice; Gibaud, Thomas; Leocmach, Mathieu; Manneville, Sébastien

    2016-03-01

    Local oscillatory rheology from echography consists of a traditional rheology experiment synchronized with high-frequency ultrasonic imaging which gives access to the local material response to oscillatory shear. Besides classical global rheological quantities, this method provides quantitative time-resolved information on the local displacement across the entire gap of the rheometer. From the local displacement response, we compute and decompose the local strain in its Fourier components and measure the spatially resolved viscoelastic moduli. After benchmarking our method on homogeneous Newtonian fluids and soft solids, we demonstrate that this technique is well suited to characterize spatially heterogeneous samples, wall slip, and the emergence of nonlinearity under large-amplitude oscillatory stress in soft materials.

  13. Robustness of oscillatory α2 dynamos in spherical wedges

    NASA Astrophysics Data System (ADS)

    Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.

    2016-10-01

    Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells. Aims: We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos. Methods: We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates. Results: In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0. When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule. Conclusions: A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and

  14. X-Point-Position-Dependent Intrinsic Toroidal Rotation in the Edge of the TCV Tokamak.

    PubMed

    Stoltzfus-Dueck, T; Karpushov, A N; Sauter, O; Duval, B P; Labit, B; Reimerdes, H; Vijvers, W A J; Camenen, Y

    2015-06-19

    Edge intrinsic rotation was investigated in Ohmic L-mode discharges on the Tokamak à Configuration Variable, scanning the major radial position of the X point, R(X). Edge rotation decreased linearly with increasing R(X), vanishing or becoming countercurrent for an outboard X point, in agreement with theoretical expectations. The core rotation profile shifted fairly rigidly with the edge rotation, changing the central rotation speed by more than a factor of two. Core rotation reversals had little effect on the edge rotation velocity. Edge rotation was modestly more countercurrent in unfavorable than favorable ∇B shots.

  15. Dynamics of an Isolated Blob in the Presence of the X-Point

    SciTech Connect

    Cohen, R H; Ryutov, D D

    2005-10-10

    The interplay of X-point shearing and axial plasma redistribution along a moving flux tube is discussed. Blobs limited to the main scrape-off-layer and the blobs entirely confined in the divertor region are identified. A strong effect of the radial tilt of the divertor plate on ''divertor'' blobs is found.

  16. Oscillatory exchange coupling in all compound superlattice

    NASA Astrophysics Data System (ADS)

    Orozco, Antonio

    2000-03-01

    Oscillatory exchange coupling was observed in TiN/Fe_3O4 superlattices [1], similar to that found in metallic superlattices, with a coupling strength almost an order of magnitude stronger. In addition, a unique positive magnetoresistance effect is also seen. The dynamics of carriers in the modulated structures, responsible for the exchage coupling and the magnetotransport, are strongly influenced by the band structure matching and the available Fermi surface states [2]. The carriers quantum confinement effects, enhanced by the half metallicity of the magnetic layers, provides a physical picture for understanding these observations [1] A. Orozco et al., Phys. Rev. Lett. 83 (1999) 1680 [2] P. Bruno, Phys. Rev. B 52 (1995) 411

  17. Stimulus Presentation at Specific Neuronal Oscillatory Phases Experimentally Controlled with tACS: Implementation and Applications

    PubMed Central

    ten Oever, Sanne; de Graaf, Tom A.; Bonnemayer, Charlie; Ronner, Jacco; Sack, Alexander T.; Riecke, Lars

    2016-01-01

    In recent years, it has become increasingly clear that both the power and phase of oscillatory brain activity can influence the processing and perception of sensory stimuli. Transcranial alternating current stimulation (tACS) can phase-align and amplify endogenous brain oscillations and has often been used to control and thereby study oscillatory power. Causal investigation of oscillatory phase is more difficult, as it requires precise real-time temporal control over both oscillatory phase and sensory stimulation. Here, we present hardware and software solutions allowing temporally precise presentation of sensory stimuli during tACS at desired tACS phases, enabling causal investigations of oscillatory phase. We developed freely available and easy to use software, which can be coupled with standard commercially available hardware to allow flexible and multi-modal stimulus presentation (visual, auditory, magnetic stimuli, etc.) at pre-determined tACS-phases, opening up a range of new research opportunities. We validate that stimulus presentation at tACS phase in our setup is accurate to the sub-millisecond level with high inter-trial consistency. Conventional methods investigating the role of oscillatory phase such as magneto-/electroencephalography can only provide correlational evidence. Using brain stimulation with the described methodology enables investigations of the causal role of oscillatory phase. This setup turns oscillatory phase into an independent variable, allowing innovative, and systematic studies of its functional impact on perception and cognition. PMID:27803651

  18. Oscillatory phase shapes syllable perception

    PubMed Central

    ten Oever, Sanne; Sack, Alexander T.

    2015-01-01

    The role of oscillatory phase for perceptual and cognitive processes is being increasingly acknowledged. To date, little is known about the direct role of phase in categorical perception. Here we show in two separate experiments that the identification of ambiguous syllables that can either be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as measured with EEG and sensory entrainment to rhythmic stimuli. The measured phase difference in which perception is biased toward /da/ or /ga/ exactly matched the different temporal onset delays in natural audiovisual speech between mouth movements and speech sounds, which last 80 ms longer for /ga/ than for /da/. These results indicate the functional relationship between prestimulus phase and syllable identification, and signify that the origin of this phase relationship could lie in exposure and subsequent learning of unique audiovisual temporal onset differences. PMID:26668393

  19. Oscillatory phase shapes syllable perception.

    PubMed

    ten Oever, Sanne; Sack, Alexander T

    2015-12-29

    The role of oscillatory phase for perceptual and cognitive processes is being increasingly acknowledged. To date, little is known about the direct role of phase in categorical perception. Here we show in two separate experiments that the identification of ambiguous syllables that can either be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as measured with EEG and sensory entrainment to rhythmic stimuli. The measured phase difference in which perception is biased toward /da/ or /ga/ exactly matched the different temporal onset delays in natural audiovisual speech between mouth movements and speech sounds, which last 80 ms longer for /ga/ than for /da/. These results indicate the functional relationship between prestimulus phase and syllable identification, and signify that the origin of this phase relationship could lie in exposure and subsequent learning of unique audiovisual temporal onset differences. PMID:26668393

  20. Small-amplitude oscillatory shear magnetorheology of inverse ferrofluids.

    PubMed

    Ramos, Jose; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2010-06-15

    A comprehensive investigation is performed on highly monodisperse silica-based inverse ferrofluids under small-amplitude oscillatory shear in the presence of external magnetic fields up to 1 T. The effect of particle volume fraction and continuous medium Newtonian viscosity is thoroughly investigated. Experimental results for storage modulus are used to validate existing micromechanical magnetorheological models assuming different particle-level field-induced structures. PMID:20345105

  1. Oscillatory Flow Testing in a Sandbox - Towards Oscillatory Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Lim, D.; Cupola, F.; Cardiff, M. A.

    2014-12-01

    Detailed knowledge of subsurface hydraulic properties is important for predicting groundwater flow and contaminant transport. The spatial variation of hydraulic properties in the shallow subsurface has been extensively studied in the past two decades. A recent approach to characterize subsurface properties is hydraulic tomography, in which pressure data from multiple constant-rate pumping tests is inverted using a numerical model. Many laboratory sandbox studies have explored the performance of hydraulic tomography under different controlled conditions and shown that detailed heterogeneity information can be extracted (Liu et al., 2002, Illman et al., 2007, 2008, 2010a, 2010b, Liu et al., 2007, 2008, Xiang et al., 2009, Yin and Illman, 2009, Liu and Kitanidis, 2011, Berg and Illman, 2011a). Recently, Cardiff et al. (2013) proposed a modified approach of Oscillatory Hydraulic Tomography (OHT) - in which periodic pumping signals of different frequencies are used for aquifer stimulation - to characterize aquifer properties. The potential advantages of OHT over traditional hydraulic tomography include: 1) no net injection or extraction of water; 2) little movement of existing contamination; 3) minimal impact of model boundary conditions; and 4) robust extraction of oscillatory signals from noisy data. To evaluate the premise of OHT, we built a highly-instrumented 2-D laboratory sandbox and record pressure responses to periodic pumping tests. In our setup, the laboratory sandbox is filled with sand of known hydraulic properties, and we measure aquifer responses at a variety of testing frequencies. The signals recorded are processed using Fourier-domain analysis, and compared against expected results under linear (Darcian) theory. The responses are analyzed using analytical and numerical models, which provide key insights as to: 1) how "effective" hydraulic properties estimated using homogeneous models are associated with aquifer heterogeneity; and 2) how OHT is able to

  2. X-point Shallow Donors in GaAs under pressure

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Haller, E. E.

    1996-03-01

    Transitions from the ground to bound excited states associated with shallow donors in GaAs under large hydrostatic pressure are studied with IR absorption spectroscopy. A modified Merrill-Basset diamond anvil cell was used to apply hydrostatic pressures of several GPa to lightly doped ( 10^15 cm-3) n-type GaAs samples. At such pressures, the energy of the conduction band at the X point falls below that at the Γ point and the wavefunctions of donor impurities take on X-band character. The deep DX centers which exist at these pressures were converted to shallow donors by illumination at low temperature with a red LED. The X-band absorption spectra for Sn and Si show one line each at 50 and 61 meV, respectively. The spectrum for S shows a broad absorption starting at 90 meV, which shifts to lower energies with increasing pressure. The presence of only one line in the Si and Sn spectra can be explained by the non-parabolicity of the X-point conduction band minimum. The binding energies of these donors are estimated to be 74, 85, and 117 meV for Sn, Si, and S respectively. This work supported by USNSF DMR-94 17763.

  3. Collective phase description of oscillatory convection

    SciTech Connect

    Kawamura, Yoji; Nakao, Hiroya

    2013-12-15

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

  4. Intrinsic instabilities in X-point geometry: A tool to understand and predict the Scrape Off Layer transport in standard and advanced divertors

    NASA Astrophysics Data System (ADS)

    Militello, F.; Liu, Y.

    2015-08-01

    Intrinsic Scrape Off Layer (SOL) instabilities are studied using flute approximation and incorporating the appropriate sheath boundary conditions at the target. The linear growth rate and the structure of the modes are obtained. The associated diffusion is estimated using a γ / k⊥2 approach for the fastest growing modes. The model used includes curvature and sheath drives, finite Larmor radius effects and partial line tying at the target. The magnetic geometry is obtained using current carrying wires, representing the plasma current and the divertor coils, and naturally generates X-point geometry and magnetic shear effects. The calculation is performed for ITER relevant parameters and scans in SOL width and distance from the separatrix are presented. In addition to a standard Lower Single Null, Super-X and Snowflake configurations are examined in order to assess the importance of the geometry on the stability of the boundary plasma.

  5. Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures

    PubMed Central

    Thut, Gregor; Veniero, Domenica; Romei, Vincenzo; Miniussi, Carlo; Schyns, Philippe; Gross, Joachim

    2011-01-01

    Summary Background Neuronal elements underlying perception, cognition, and action exhibit distinct oscillatory phenomena, measured in humans by electro- or magnetoencephalography (EEG/MEG). So far, the correlative or causal nature of the link between brain oscillations and functions has remained elusive. A compelling demonstration of causality would primarily generate oscillatory signatures that are known to correlate with particular cognitive functions and then assess the behavioral consequences. Here, we provide the first direct evidence for causal entrainment of brain oscillations by transcranial magnetic stimulation (TMS) using concurrent EEG. Results We used rhythmic TMS bursts to directly interact with an MEG-identified parietal α-oscillator, activated by attention and linked to perception. With TMS bursts tuned to its preferred α-frequency (α-TMS), we confirmed the three main predictions of entrainment of a natural oscillator: (1) that α-oscillations are induced during α-TMS (reproducing an oscillatory signature of the stimulated parietal cortex), (2) that there is progressive enhancement of this α-activity (synchronizing the targeted, α-generator to the α-TMS train), and (3) that this depends on the pre-TMS phase of the background α-rhythm (entrainment of natural, ongoing α-oscillations). Control conditions testing different TMS burst profiles and TMS-EEG in a phantom head confirmed specificity of α-boosting to the case of synchronization between TMS train and neural oscillator. Conclusions The periodic electromagnetic force that is generated during rhythmic TMS can cause local entrainment of natural brain oscillations, emulating oscillatory signatures activated by cognitive tasks. This reveals a new mechanism of online TMS action on brain activity and can account for frequency-specific behavioral TMS effects at the level of biologically relevant rhythms. PMID:21723129

  6. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  7. Control of oscillatory thermocapillary convection in microgravity

    NASA Astrophysics Data System (ADS)

    Neitzel, G. Paul

    1994-08-01

    Laboratory and numerical experiments are underway to generate, and subsequently suppress, oscillatory thermocapillary convection in thin layer of silicone oil. The laboratory experiments have succeeded in characterizing the flow state in a limited range of Bond number-Marangoni number space of interest, identifying states of: (1) steady, unicellular, thermocapillary convection; (2) steady, multicellular, thermocapillary convection; and (3) oscillatory thermocapillary convection. Comparisons between experimental results and stability computations for a related basic state will be made.

  8. Control of oscillatory thermocapillary convection in microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1994-01-01

    Laboratory and numerical experiments are underway to generate, and subsequently suppress, oscillatory thermocapillary convection in thin layer of silicone oil. The laboratory experiments have succeeded in characterizing the flow state in a limited range of Bond number-Marangoni number space of interest, identifying states of: (1) steady, unicellular, thermocapillary convection; (2) steady, multicellular, thermocapillary convection; and (3) oscillatory thermocapillary convection. Comparisons between experimental results and stability computations for a related basic state will be made.

  9. Surface-Step-Induced Oscillatory Oxide Growth

    NASA Astrophysics Data System (ADS)

    Li, Liang; Luo, Langli; Ciston, Jim; Saidi, Wissam A.; Stach, Eric A.; Yang, Judith C.; Zhou, Guangwen

    2014-09-01

    We report in situ atomic-resolution transmission electron microscopy observations of the oxidation of stepped Cu surfaces. We find that the presence of surface steps both inhibits oxide film growth and leads to the oxide decomposition, thereby resulting in oscillatory oxide film growth. Using atomistic simulations, we show that the oscillatory oxide film growth is induced by oxygen adsorption on the lower terrace along the step edge, which destabilizes the oxide film formed on the upper terrace.

  10. Oscillatory-like relaxation behavior of light transmitted through ferrofluids.

    PubMed

    Li, Jian; Qiu, Xiaoyan; Lin, Yueqiang; Liu, Xiaodong; Fu, Jun; Miao, Hua; Zhang, Qingmei; Zhang, Tingzhen

    2011-10-20

    An oscillatory-like relaxation process in which there are two valleys in the T-t curve is observed when light is transmitted through binary ferrofluids composed of both ferrimagnetic CoFe(2)O(4) nanoparticles and paramagnetic p-MgFe(2)O(4) nanoparticles in the presence of a high magnetic field and through pure (single) CoFe(2)O(4) ferrofluids in a low magnetic field. This relaxation behavior is explained using a model of a bidispersed system based on both chained and unchained particles. In such a bidispersed system, the variation of the transmitted light results mainly from the motion of the chains, with the polarized unchained particles' gas producing the modulation effect. The oscillatory-like relaxation phenomenon depends on the features of both the chained and unchained particle systems. If either the particle volume fraction of chained particles or of unchained particles is very low, or the degree of polarization of the unchained particles gas is very weak, a simple nonlinear relaxation process, giving only a valley in the T-t curve, will appear for the transmitted light. For pure CoFe(2)O(4) ferrofluids, the number of chained and unchained particles does not remain constant under different values of the magnetic field. According to the analysis of the relaxation behavior of transmitted light, it is known that binary ferrofluids based on strong magnetic CoFe(2)O(4) particles and weak magnetic p-MgFe(2)O(4) particles can be much closer to the theoretical bidispersed system than single ferrofluids containing only strong magnetic particles. PMID:22015404

  11. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  12. Frequency-offset separated oscillatory fields

    NASA Astrophysics Data System (ADS)

    Vutha, A. C.; Hessels, E. A.

    2015-11-01

    A frequency-offset separated-oscillatory-field technique is presented. The technique is a modification of the Ramsey method of separated oscillatory fields [Phys. Rev. 76, 996 (1949), 10.1103/PhysRev.76.996], in which the frequencies of the two separated oscillatory fields are slightly offset from each other, so that the relative phase of the two fields varies continuously with time. With this technique, the detection signal oscillates in time at the offset frequency, and the resonance frequency is obtained by using a simple straight-line fit of the phase of this signal. The technique has the advantages of being insensitive to the frequency response of the experimental system, of being sensitive only to noise at the offset frequency, and of allowing systematic effects to be more cleanly resolved due to the simple lineshape.

  13. Design principles for robust oscillatory behavior.

    PubMed

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  14. Mechanisms for oscillatory true polar wander.

    PubMed

    Creveling, J R; Mitrovica, J X; Chan, N-H; Latychev, K; Matsuyama, I

    2012-11-01

    Palaeomagnetic studies of Palaeoproterozoic to Cretaceous rocks propose a suite of large and relatively rapid (tens of degrees over 10 to 100 million years) excursions of the rotation pole relative to the surface geography, or true polar wander (TPW). These excursions may be linked in an oscillatory, approximately coaxial succession about the centre of the contemporaneous supercontinent. Within the framework of a standard rotational theory, in which a delayed viscous adjustment of the rotational bulge acts to stabilize the rotation axis, geodynamic models for oscillatory TPW generally appeal to consecutive, opposite loading phases of comparable magnitude. Here we extend a nonlinear rotational stability theory to incorporate the stabilizing effect of TPW-induced elastic stresses in the lithosphere. We demonstrate that convectively driven inertia perturbations acting on a nearly prolate, non-hydrostatic Earth with an effective elastic lithospheric thickness of about 10 kilometres yield oscillatory TPW paths consistent with palaeomagnetic inferences. This estimate of elastic thickness can be reduced, even to zero, if the rotation axis is stabilized by long-term excess ellipticity in the plane of the TPW. We speculate that these sources of stabilization, acting on TPW driven by a time-varying mantle flow field, provide a mechanism for linking the distinct, oscillatory TPW events of the past few billion years. PMID:23135471

  15. Categorization of some oscillatory enzymatic reactions

    SciTech Connect

    Schreiber, I.; Hung, Y.F.; Ross, J.

    1996-05-16

    We investigate the categorization of two or more proposed reaction mechanisms for each of the following oscillatory enzymatic reactions: (1) the peroxidase-oxidase reaction; (2) glycolytic oscillations; (3) oscillations of cyclic AMP in smile mold cells; (4) enzymatic pH oscillations; (5) calcium spiking in cytosol. We use prior work in stoichiometric network analysis and categorization of oscillatory reactions to identify in each proposed reaction mechanism essential and nonessential species, the specific role of each essential species, the connectivity of the essential species, including the identification of the reactions leading to oscillatory instabilities, and the category. For each model, we predict the result of several experiments including relative amplitudes, quench amplitudes, phase shifts, and sign symbolic concentration shifts and compare them with those from available experiments. These and several other experiments such as bifurcation analysis, phase response curves, entrainment experiments, qualitative and quantitative pulsed species response, delay experiments, and external periodic perturbation provide stringent tests of proposed reaction mechanisms, and appropriate ones are suggested to discriminate among competing mechanisms for a given reaction. We find the necessity for introducing a new subcategory in our categorization of oscillatory reactions. 45 refs., 6 figs., 6 tabs.

  16. Acoustic oscillatory pressure control for ramjet

    SciTech Connect

    Brown, R.S.; Dunlap, R.

    1988-08-02

    A method for controlling the acoustic oscillatory pressures generated by gas flow at the combustor inlet to a ramjet engine, the inlet including a sudden geometry expansion is described characterized by; restricting the inlet at the sudden expansion geometry such that the gas flow separates upstream and has a vena contracta downstream of the restricted inlet.

  17. Computer-Assisted Experiments with Oscillatory Circuits

    ERIC Educational Resources Information Center

    Fernandes, J. C.; Ferraz, A.; Rogalski, M. S.

    2010-01-01

    A basic setup for data acquisition and analysis from an oscillatory circuit is described, with focus on its application as either low-pass, high-pass, band-pass or band-reject frequency filter. A homemade board containing the "RLC" elements allows for the interchange of some of them, in particular, for the easy change of the "R" value, and this…

  18. Suppression of the Oscillatory Modes of a Space Charge in the Magnetron Injection Guns of Technological Gyrotrons

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Kuntsevich, A. D.; Manuilov, V. N.

    2015-01-01

    We present the results of based on the PIC method numerical simulation of the dynamic processes of trapping of electrons into the adiabatic trap of a technological gyrotron for different configurations of the electric and magnetic fields in the electron beam formation region. The electrode geometry providing a low reflection coefficient of the magnetic mirror to suppress oscillatory modes in the space-charge cloud and ensure the stability of the electron beam with a high fraction of oscillatory energy in such a system has been found.

  19. Oscillatory flow around discs and through orifices

    NASA Astrophysics Data System (ADS)

    Debernardinis, B.; Graham, J. M. R.; Parker, K. H.

    1980-11-01

    Examples of unsteady, axisymmetric, separated flows are modeled, including unbounded oscillatory flow around a disk and bounded oscillatory flow through a sharp-edged orifice. Calculations are made, assuming that the flow is inviscid and that the shed vortex sheets can be represented by sequences of discrete vortex rings. The solid bodies, i.e., the disk or the orifice and bounding tube, are also represented by a distribution of bound discrete vortex rings whose strenghts are chosen to satisfy the Neumann or zero normal velocity boundary condition. The results of flow visualization experiments and, for the orifice, pressure drop measurements are reported. In general, the gross properties of the flows are predicted accurately.

  20. Stepwise oscillatory circuits of a DNA molecule.

    PubMed

    Xu, Kunming

    2009-08-01

    A DNA molecule is characterized by a stepwise oscillatory circuit where every base pair is a capacitor, every phosphate bridge is an inductance, and every deoxyribose is a charge router. The circuitry accounts for DNA conductivity through both short and long distances in good agreement with experimental evidence that has led to the identification of the so-called super-exchange and multiple-step hopping mechanisms. However, in contrast to the haphazard hopping and super-exchanging events, the circuitry is a well-defined charge transport mechanism reflecting the great reliability of the genetic substance in delivering electrons. Stepwise oscillatory charge transport through a nucleotide sequence that directly modulates the oscillation frequency may have significant biological implications.

  1. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.

    PubMed

    Soto-Aquino, D; Rosso, D; Rinaldi, C

    2011-11-01

    Ferrofluids are colloidal suspensions of magnetic nanoparticles that exhibit normal liquid behavior in the absence of magnetic fields but respond to imposed magnetic fields by changing their viscosity without loss of fluidity. The response of ferrofluids to constant shear and magnetic fields has received a lot of attention, but the response of ferrofluids to oscillatory shear remains largely unexplored. In the present work we used rotational Brownian dynamics to study the dynamic properties of ferrofluids with thermally blocked nanoparticles under oscillatory shear and constant magnetic fields. Comparisons between simulations and modeling using the ferrohydrodynamics equations were also made. Simulation results show that, for small rotational Péclet number, the in-phase and out-of-phase components of the complex viscosity depend on the magnitude of the magnetic field and frequency of the shear, following a Maxwell-like model with field-dependent viscosity and characteristic time equal to the field-dependent transverse magnetic relaxation time of the nanoparticles. Comparison between simulations and the numerical solution of the ferrohydrodynamic equations shows that the oscillatory rotational magnetoviscosity for an oscillating shear field obtained using the kinetic magnetization relaxation equation quantitatively agrees with simulations for a wide range of Péclet number and Langevin parameter but has quantitative deviations from the simulations at high values of the Langevin parameter. These predictions indicate an apparent elastic character to the rheology of these suspensions, even though we are considering the infinitely dilute limit in which there are negligible particle-particle interactions and, as such, chains do not form. Additionally, an asymptotic analytical solution of the ferrohydrodynamics equations, valid for Pe<2, was used to demonstrate that the Cox-Merz rule applies for dilute ferrofluids under conditions of small shear rates. At higher shear

  2. Oscillatory shear response of dilute ferrofluids: Predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rosso, D.; Rinaldi, C.

    2011-11-01

    Ferrofluids are colloidal suspensions of magnetic nanoparticles that exhibit normal liquid behavior in the absence of magnetic fields but respond to imposed magnetic fields by changing their viscosity without loss of fluidity. The response of ferrofluids to constant shear and magnetic fields has received a lot of attention, but the response of ferrofluids to oscillatory shear remains largely unexplored. In the present work we used rotational Brownian dynamics to study the dynamic properties of ferrofluids with thermally blocked nanoparticles under oscillatory shear and constant magnetic fields. Comparisons between simulations and modeling using the ferrohydrodynamics equations were also made. Simulation results show that, for small rotational Péclet number, the in-phase and out-of-phase components of the complex viscosity depend on the magnitude of the magnetic field and frequency of the shear, following a Maxwell-like model with field-dependent viscosity and characteristic time equal to the field-dependent transverse magnetic relaxation time of the nanoparticles. Comparison between simulations and the numerical solution of the ferrohydrodynamic equations shows that the oscillatory rotational magnetoviscosity for an oscillating shear field obtained using the kinetic magnetization relaxation equation quantitatively agrees with simulations for a wide range of Péclet number and Langevin parameter but has quantitative deviations from the simulations at high values of the Langevin parameter. These predictions indicate an apparent elastic character to the rheology of these suspensions, even though we are considering the infinitely dilute limit in which there are negligible particle-particle interactions and, as such, chains do not form. Additionally, an asymptotic analytical solution of the ferrohydrodynamics equations, valid for Pe≪2, was used to demonstrate that the Cox-Merz rule applies for dilute ferrofluids under conditions of small shear rates. At higher shear

  3. Modeling Stromatolite Growth Under Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Patel, H. J.; Gong, J.; Tice, M. M.

    2014-12-01

    Stromatolite growth models based on diffusion limited aggregation (DLA) has been fairly successful at producing features commonly recognized in stromatolitic structures in the rock record. These models generally require slow mixing of solutes at time scales comparable to the growth of organisms and largely ignore fluid erosions. Recent research on microbial mats suggests that fluid flow might have a dominant control on the formation, deformation and erosion of surface microbial structures, raising the possibility that different styles of fluid flow may influence the morphology of stromatolites. Many stromatolites formed in relatively high energy, shallow water environments under oscillatory currents driven by wind-induced waves. In order to investigate the potential role of oscillatory flows in shaping stromatolites, we are constructing a numerical model of stromatolite growth parameterized by flume experiments with cyanobacterial biofilms. The model explicitly incorporates reaction-diffusion processes, surface deformation and erosion, biomass growth, sedimentation and mineral precipitation. A Lattice-Boltzmann numerical scheme was applied to the reaction-diffusion equations in order to boost computational efficiency. A basic finite element method was employed to compute surface deformation and erosion. Growth of biomass, sedimentation and carbonate precipitation was based on a modified discrete cellular automata scheme. This model will be used to test an alternative hypothesis for the formation of stromatolites in higher energy, shallow and oscillatory flow environments.

  4. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments

    PubMed Central

    Leuchter, Andrew F.; Hunter, Aimee M.; Krantz, David E.; Cook, Ian A.

    2015-01-01

    Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD. PMID:25809789

  5. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments.

    PubMed

    Leuchter, Andrew F; Hunter, Aimee M; Krantz, David E; Cook, Ian A

    2015-05-01

    Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD.

  6. Coupled Coils, Magnets and Lenz's Law

    ERIC Educational Resources Information Center

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  7. Resistive reduced MHD modeling of multi-edge-localized-mode cycles in Tokamak X-point plasmas.

    PubMed

    Orain, F; Bécoulet, M; Huijsmans, G T A; Dif-Pradalier, G; Hoelzl, M; Morales, J; Garbet, X; Nardon, E; Pamela, S; Passeron, C; Latu, G; Fil, A; Cahyna, P

    2015-01-23

    The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X-point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements.

  8. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  9. Frequency-offset separated oscillatory fields technique

    NASA Astrophysics Data System (ADS)

    Bezginov, N.; Vutha, A. C.; Ferchichi, I.; Storry, C. H.; Hessels, E. A.

    2015-05-01

    Improved measurements in atomic hydrogen are needed to shed light on the proton radius puzzle. We are measuring the Lamb shift in hydrogen (n = 2 ,S1 / 2 -->P1 / 2) using a frequency-offset separated oscillatory fields (FOSOF) method. The advantages of this method include its insensitivity to atomic beam intensity fluctuations and the microwave-system frequency response. We present experimental results obtained with this method, towards a new measurement of the proton charge radius. We acknowledge funding from NSERC, CFI, CRC, ORF, and NIST.

  10. Dynamics of macroautophagy: Modeling and oscillatory behavior

    NASA Astrophysics Data System (ADS)

    Han, Kyungreem; Kwon, Hyun Woong; Kang, Hyuk; Kim, Jinwoong; Lee, Myung-Shik; Choi, M. Y.

    2012-02-01

    We propose a model for macroautophagy and study the resulting dynamics of autophagy in a system isolated from its extra-cellular environment. It is found that the intracellular concentrations of autophagosomes and autolysosomes display oscillations with their own natural frequencies. Such oscillatory behaviors, which are interrelated to the dynamics of intracellular ATP, amino acids, and proteins, are consistent with the very recent biological observations. Implications of this theoretical study of autophagy are discussed, with regard to the possibility of guiding molecular studies of autophagy.

  11. Enhancing Rotational Diffusion Using Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai

    2013-05-01

    Taylor dispersion—shear-induced enhancement of translational diffusion—is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle’s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids.

  12. Ketamine alters oscillatory coupling in the hippocampus

    PubMed Central

    Caixeta, Fábio V.; Cornélio, Alianda M.; Scheffer-Teixeira, Robson; Ribeiro, Sidarta; Tort, Adriano B. L.

    2013-01-01

    Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling. PMID:23907109

  13. Oscillatory responses to semantic and syntactic violations.

    PubMed

    Kielar, Aneta; Meltzer, Jed A; Moreno, Sylvain; Alain, Claude; Bialystok, Ellen

    2014-12-01

    EEG studies employing time-frequency analysis have revealed changes in theta and alpha power in a variety of language and memory tasks. Semantic and syntactic violations embedded in sentences evoke well-known ERPs, but little is known about the oscillatory responses to these violations. We investigated oscillatory responses to both kinds of violations, while monolingual and bilingual participants performed an acceptability judgment task. Both violations elicited power decreases (event-related desynchronization, ERD) in the 8-30 Hz frequency range, but with different scalp topographies. In addition, semantic anomalies elicited power increases (event-related synchronization, ERS) in the 1-5 Hz frequency band. The 1-5 Hz ERS was strongly phase-locked to stimulus onset and highly correlated with time domain averages, whereas the 8-30 Hz ERD response varied independently of these. In addition, the results showed that language expertise modulated 8-30 Hz ERD for syntactic violations as a function of the executive demands of the task. When the executive function demands were increased using a grammaticality judgment task, bilinguals but not monolinguals demonstrated reduced 8-30 Hz ERD for syntactic violations. These findings suggest a putative role of the 8-30 Hz ERD response as a marker of linguistic processing that likely represents a separate neural process from those underlying ERPs.

  14. Probing of field-induced structures and their dynamics in ferrofluids using oscillatory rheology.

    PubMed

    Felicia, Leona J; Philip, John

    2014-10-21

    We probe field-induced structures and their dynamics in ferrofluids using oscillatory rheology. The magnetic field dependence of the relaxation time and crossover modulus showed two distinct regions, indicating the different microstructures in those regions. The observed relaxation at various magnetic field strengths indicates that side chains are attached to the pinned single-sphere-width chains between the rheometer plates. Our results suggest that the ferrofluid under a magnetic field exhibits a soft solidlike behavior whose relaxation is governed by the imposed strain rate and the magnetic field. Using the scaling factors obtained from the frequency and modulus at the crossover point in the oscillatory rheological measurements, the constant strain-rate frequency sweep data is superimposed onto a single master curve. The frequency scaling factor increases with the strain rate as a power law with an exponent close to unity, whereas the amplitude scaling factor is almost strain-rate-independent at high magnetic field strengths. These findings are useful for a better understanding of field-induced ordering of nanoparticles in fluids and their optimization for practical applications.

  15. Probing of field-induced structures and their dynamics in ferrofluids using oscillatory rheology.

    PubMed

    Felicia, Leona J; Philip, John

    2014-10-21

    We probe field-induced structures and their dynamics in ferrofluids using oscillatory rheology. The magnetic field dependence of the relaxation time and crossover modulus showed two distinct regions, indicating the different microstructures in those regions. The observed relaxation at various magnetic field strengths indicates that side chains are attached to the pinned single-sphere-width chains between the rheometer plates. Our results suggest that the ferrofluid under a magnetic field exhibits a soft solidlike behavior whose relaxation is governed by the imposed strain rate and the magnetic field. Using the scaling factors obtained from the frequency and modulus at the crossover point in the oscillatory rheological measurements, the constant strain-rate frequency sweep data is superimposed onto a single master curve. The frequency scaling factor increases with the strain rate as a power law with an exponent close to unity, whereas the amplitude scaling factor is almost strain-rate-independent at high magnetic field strengths. These findings are useful for a better understanding of field-induced ordering of nanoparticles in fluids and their optimization for practical applications. PMID:25268053

  16. Control of Cavity Resonance Using Steady and Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Lamp, Alison M.; Chokani, Ndaona

    1999-01-01

    An experimental study to investigate the effect of steady and oscillatory (with zero net mass flux) blowing on cavity resonance is undertaken. The objective is to study the basic mechanisms of the control of cavity resonance. An actuator is designed and calibrated to generate either steady blowing or oscillatory blowing with A zero net mass flux. The results of the experiment show that both steady and oscillatory blowing are effective, and reduce the amplitude of the dominant resonant mode by 1OdB. The oscillatory blowing is however found to be more superior in that the same effectiveness could be accomplished with a momentum coefficient an order of magnitude smaller than for steady blowing. The experiment also confirms the results of previous computations that suggest the forcing frequency for oscillatory blowing must not be at harmonic frequencies of the cavity resonant modes.

  17. Oscillatory bending of a poroelastic beam

    NASA Astrophysics Data System (ADS)

    Zhang, Dajun; Cowin, Stephen C.

    1994-10-01

    An analytical solution of the oscillatory axial and bending loading of a poroelastic beam is presented. The pore pressure behavior in the beam is explored as a function of frequency of the applied load, the ratio of the bending to axial applied loading, and the leakage at the top and bottom of the beam. The conditions under which the pore pressure carries its largest fraction of the total applied loading are determined. The solution is illustrated using the values of the material parameters appropriate for living bone, which is a poroelastic medium. At high frequencies, in the free leakage case, our results are consistent with the notion that the percentage of the applied load carried by the pore fluid pressure is equal to the porosity of the medium.

  18. Automatic control of oscillatory penetration apparatus

    DOEpatents

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  19. Oscillatory wear tests of dental composites.

    PubMed

    Pilliar, R M; Smith, D C; Maric, B

    1984-09-01

    The wear behavior of 12 commercial restorative composites (conventional and microfilled) and an unfilled restorative material was evaluated using an in vitro wear test referred to as an oscillatory wear test. The effect of varying test conditions was evaluated in a series of preliminary experiments in order to define test conditions for material evaluation. The materials were tested after being aged in water at 37 degrees C for periods of from seven days to one year. The results indicated consistently lower wear rates for the microfilled materials as compared with those of the conventional composites. Aging did not result in significant differences in wear rates measured by this method. Scanning electron micrography of worn surfaces suggested a possible effect of filler particle shape and bonding to the matrix to explain this difference. Although the relevance of the results to clinical behavior is not yet known, the study indicated the importance of material variables on wear.

  20. Phase Slips in Oscillatory Hair Bundles

    PubMed Central

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-01-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production. PMID:25167040

  1. Phase slips in oscillatory hair bundles.

    PubMed

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production. PMID:25167040

  2. Spiking dynamics of interacting oscillatory neurons

    NASA Astrophysics Data System (ADS)

    Kazantsev, V. B.; Nekorkin, V. I.; Binczak, S.; Jacquir, S.; Bilbault, J. M.

    2005-06-01

    Spiking sequences emerging from dynamical interaction in a pair of oscillatory neurons are investigated theoretically and experimentally. The model comprises two unidirectionally coupled FitzHugh-Nagumo units with modified excitability (MFHN). The first (master) unit exhibits a periodic spike sequence with a certain frequency. The second (slave) unit is in its excitable mode and responds on the input signal with a complex (chaotic) spike trains. We analyze the dynamic mechanisms underlying different response behavior depending on interaction strength. Spiking phase maps describing the response dynamics are obtained. Complex phase locking and chaotic sequences are investigated. We show how the response spike trains can be effectively controlled by the interaction parameter and discuss the problem of neuronal information encoding.

  3. Root apex transition zone as oscillatory zone.

    PubMed

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.

  4. Vortex generation in oscillatory canopy flow

    NASA Astrophysics Data System (ADS)

    Ghisalberti, Marco; Schlosser, Tamara

    2013-03-01

    In this paper, we demonstrate for the first time the generation of coherent vortices at the top of a canopy in oscillatory (i.e., wave-dominated) flow. Through a series of flow visualization experiments, vortex formation is shown to occur when two conditions described by the Keulegan-Carpenter (KC) and Reynolds (Re) numbers are met. First, the wave period must be sufficiently long to allow the generation of the shear-driven instability at the top of the canopy; this occurs when KC ≳ 5. Second, the vortex instability must be able to overcome the stabilizing effects of viscosity; this occurs when Re ≳ 1000. The vortices greatly increase the rate of vertical mixing within the canopy, such that any prediction of residence time in a coastal canopy requires an understanding of whether vortex generation is occurring.

  5. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  6. Phase Slips in Oscillatory Hair Bundles

    NASA Astrophysics Data System (ADS)

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production.

  7. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1997-01-01

    In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.

  8. Multiphase patterns in periodically forced oscillatory systems

    SciTech Connect

    Elphick, C.; Hagberg, A.; Meron, E.

    1999-05-01

    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of {pi}/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: {pi} fronts separating states with a phase shift of {pi} and {pi}/2 fronts separating states with a phase shift of {pi}/2. We find a type of front instability where a stationary {pi} front {open_quotes}decomposes{close_quotes} into a pair of traveling {pi}/2 fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of {pi}/2 fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,{hor_ellipsis}) where stationary {pi} fronts decompose into {ital n} traveling {pi}/n fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased. {copyright} {ital 1999} {ital The American Physical Society}

  9. Droplet migration characteristics in confined oscillatory microflows.

    PubMed

    Chaudhury, Kaustav; Mandal, Shubhadeep; Chakraborty, Suman

    2016-02-01

    We analyze the migration characteristics of a droplet in an oscillatory flow field in a parallel plate microconfinement. Using phase field formalism, we capture the dynamical evolution of the droplet over a wide range of the frequency of the imposed oscillation in the flow field, drop size relative to the channel gap, and the capillary number. The latter two factors imply the contribution of droplet deformability, commonly considered in the study of droplet migration under steady shear flow conditions. We show that the imposed oscillation brings an additional time complexity in the droplet movement, realized through temporally varying drop shape, flow direction, and the inertial response of the droplet. As a consequence, we observe a spatially complicated pathway of the droplet along the transverse direction, in sharp contrast to the smooth migration under a similar yet steady shear flow condition. Intuitively, the longitudinal component of the droplet movement is in tandem with the flow continuity and evolves with time at the same frequency as that of the imposed oscillation, although with an amplitude decreasing with the frequency. The time complexity of the transverse component of the movement pattern, however, cannot be rationalized through such intuitive arguments. Towards bringing out the underlying physics, we further endeavor in a reciprocal identity based analysis. Following this approach, we unveil the time complexities of the droplet movement, which appear to be sufficient to rationalize the complex movement patterns observed through the comprehensive simulation studies. These results can be of profound importance in designing droplet based microfluidic systems in an oscillatory flow environment.

  10. Complementarity with neutron two-path interferences and separated-oscillatory-field resonances

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    1993-07-01

    The implications of complementarity on two-path neutron interferences and on separated-oscillatory-field resonances are discussed. The studies are extensions of those by Furry and Ramsey [Phys. Rev. 118, 623 (1960)] on two-path electron interferences which showed that an apparatus used to determine the electron path introduces uncertainties in the scalar and vector potentials which in turn disturb the phase of the electron wave function so much through the Aharonov-Bohm effects [Phys. Rev. 115, 485 (1959)] that the interference fringes disappear. A similar result is derived here for the neutron, but with the phase uncertainties coming from the magnetic moment's motion through an electric field as discussed by Anandan [Phys. Rev. Lett. 48, 1660 (1982)], and Aharonov and Casher [Phys. Rev. Lett. 53, 319 (1984)]. A corresponding result is also obtained for separated-oscillatory-fields resonances, which can be interpreted as an interference between two different paths in spin space. An interesting difference between the separated-path and separated-oscillatory-field experiments is that the latter may be interpreted classically.

  11. Age-related changes to oscillatory dynamics in hippocampal and neocortical networks.

    PubMed

    Rondina, Renante; Olsen, Rosanna K; McQuiggan, Douglas A; Fatima, Zainab; Li, Lingqian; Oziel, Esther; Meltzer, Jed A; Ryan, Jennifer D

    2016-10-01

    Recent models of hippocampal function have emphasized its role in relational binding - the ability to form lasting representations regarding the relations among distinct elements or items which can support memory performance, even over brief delays (e.g., several seconds). The present study examined the extent to which aging is associated with changes in the recruitment of oscillatory activity within hippocampal and neocortical regions to support relational binding performance on a short delay visuospatial memory task. Structural magnetic resonance imaging and MEG were used to characterize potential age-related changes in hippocampal volume, oscillatory activity, and subsequent memory performance, and the relationships among them. Participants were required to bind the relative visuospatial positions of objects that were presented singly across time. Subsequently, the objects were re-presented simultaneously, and participants were required to indicate whether the relative spatial positions among the objects had been maintained. Older and younger adults demonstrated similar task accuracy, and older adults had preserved hippocampal volumes relative to younger adults. Age-group differences were found in pre-stimulus theta (∼5Hz) and beta (∼20Hz) oscillations, and this pre-stimulus activity was related to hippocampal volumes in younger adults. Age-group differences were also found in the recruitment of oscillatory activity from the pre-stimulus period to the task. Only younger adults showed a task-related change in theta power that was predictive of memory performance. In contrast, older adults demonstrated task-related alpha (∼10Hz) oscillatory power changes that were not observed in younger adults. These findings provide novel evidence for the role of the hippocampus and functionally connected regions in relational binding that is disrupted in aging. The present findings are discussed in the context of current models regarding the cognitive neuroscience of

  12. Age-related changes to oscillatory dynamics in hippocampal and neocortical networks.

    PubMed

    Rondina, Renante; Olsen, Rosanna K; McQuiggan, Douglas A; Fatima, Zainab; Li, Lingqian; Oziel, Esther; Meltzer, Jed A; Ryan, Jennifer D

    2016-10-01

    Recent models of hippocampal function have emphasized its role in relational binding - the ability to form lasting representations regarding the relations among distinct elements or items which can support memory performance, even over brief delays (e.g., several seconds). The present study examined the extent to which aging is associated with changes in the recruitment of oscillatory activity within hippocampal and neocortical regions to support relational binding performance on a short delay visuospatial memory task. Structural magnetic resonance imaging and MEG were used to characterize potential age-related changes in hippocampal volume, oscillatory activity, and subsequent memory performance, and the relationships among them. Participants were required to bind the relative visuospatial positions of objects that were presented singly across time. Subsequently, the objects were re-presented simultaneously, and participants were required to indicate whether the relative spatial positions among the objects had been maintained. Older and younger adults demonstrated similar task accuracy, and older adults had preserved hippocampal volumes relative to younger adults. Age-group differences were found in pre-stimulus theta (∼5Hz) and beta (∼20Hz) oscillations, and this pre-stimulus activity was related to hippocampal volumes in younger adults. Age-group differences were also found in the recruitment of oscillatory activity from the pre-stimulus period to the task. Only younger adults showed a task-related change in theta power that was predictive of memory performance. In contrast, older adults demonstrated task-related alpha (∼10Hz) oscillatory power changes that were not observed in younger adults. These findings provide novel evidence for the role of the hippocampus and functionally connected regions in relational binding that is disrupted in aging. The present findings are discussed in the context of current models regarding the cognitive neuroscience of

  13. Low frequency oscillatory flow in a rotating curved pipe.

    PubMed

    Chen, Hua-Jun; Zhang, Ben-Zhao; Su, Xiao-Yan

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of biparameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient. PMID:12861615

  14. Effects of transverse oscillatory waves on turbulent boundary waves

    NASA Technical Reports Server (NTRS)

    Matulevich, Jonathan; Jacobs, Harold R.

    1994-01-01

    Studies of the interaction of unsteady (oscillatory) flows with the growth of a turbulent boundary layer on a flat plate have primarily dealt with an oscillatory component in the primary flow direction. Past studies of the 2-D flow have shown little or no increase in the time averaged heat transfer. The present paper deals with a steady axial and an oscillatory transverse flow. It is shown that for such flows the temporal variation for both the turbulent skin friction and heat transfer are such as to yield increased time averaged values.

  15. Resonant alignment of microswimmer trajectories in oscillatory shear flows

    NASA Astrophysics Data System (ADS)

    Hope, Alexander; Croze, Ottavio A.; Poon, Wilson C. K.; Bees, Martin A.; Haw, Mark D.

    2016-09-01

    Oscillatory flows are commonly experienced by swimming micro-organisms in the environment, industrial applications, and rheological investigations. We characterize experimentally the response of the alga Dunaliella salina to oscillatory shear flows and report the surprising discovery that algal swimming trajectories orient perpendicular to the flow-shear plane. The ordering has the characteristics of a resonance in the driving parameter space. The behavior is qualitatively reproduced by a simple model and simulations accounting for helical swimming, suggesting a mechanism for ordering and criteria for the resonant amplitude and frequency. The implications of this work for active oscillatory rheology and industrial algal processing are discussed.

  16. Processing Oscillatory Signals by Incoherent Feedforward Loops

    PubMed Central

    Zhang, Carolyn; You, Lingchong

    2016-01-01

    From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs—the ability to process oscillatory signals. Our results indicate that the system’s ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal “counting”. We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. PMID:27623175

  17. Processing Oscillatory Signals by Incoherent Feedforward Loops.

    PubMed

    Zhang, Carolyn; Tsoi, Ryan; Wu, Feilun; You, Lingchong

    2016-09-01

    From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs-the ability to process oscillatory signals. Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal "counting". We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. PMID:27623175

  18. Exercise oscillatory ventilation: Mechanisms and prognostic significance

    PubMed Central

    Dhakal, Bishnu P; Lewis, Gregory D

    2016-01-01

    Alteration in breathing patterns characterized by cyclic variation of ventilation during rest and during exercise has been recognized in patients with advanced heart failure (HF) for nearly two centuries. Periodic breathing (PB) during exercise is known as exercise oscillatory ventilation (EOV) and is characterized by the periods of hyperpnea and hypopnea without interposed apnea. EOV is a non-invasive parameter detected during submaximal cardiopulmonary exercise testing. Presence of EOV during exercise in HF patients indicates significant impairment in resting and exercise hemodynamic parameters. EOV is also an independent risk factor for poor prognosis in HF patients both with reduced and preserved ejection fraction irrespective of other gas exchange variables. Circulatory delay, increased chemosensitivity, pulmonary congestion and increased ergoreflex signaling have been proposed as the mechanisms underlying the generation of EOV in HF patients. There is no proven treatment of EOV but its reversal has been noted with phosphodiesterase inhibitors, exercise training and acetazolamide in relatively small studies. In this review, we discuss the mechanistic basis of PB during exercise and the clinical implications of recognizing PB patterns in patients with HF. PMID:27022457

  19. Processing oscillatory signals by incoherent feedforward loops

    NASA Astrophysics Data System (ADS)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  20. Onset of oscillatory instabilities under stochastic modulation

    SciTech Connect

    Drolet, F.; Vinals, J.; Vinals, J.

    1997-09-01

    We study the effect of external stochastic modulation on a system with O(2) symmetry that exhibits a Hopf or oscillatory instability in the absence of modulation. The study includes a random component in both the control parameter of the bifurcation and in the modulation amplitude. Stability boundaries are computed by either solving the stationary Fokker-Planck equation on the center manifold of the underlying deterministic system whenever possible, or by direct numerical solution otherwise. If the modulation amplitude has a stochastic component, the primary bifurcation is always to standing waves at a value of the control parameter that depends on the intensity of the fluctuations. More precisely, and to contrast our results with the case of a deterministic periodic forcing, the onset of instability in the standing-wave regime is shifted from its deterministic location, and the region of primary bifurcation to traveling waves disappears, yielding instead standing waves at negative values of the control parameter. {copyright} {ital 1997} {ital The American Physical Society}

  1. Control of Oscillatory Thermocapillary Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Skarda, Ray

    1998-01-01

    This project focused on the generation and suppression of oscillatory thermocapillary convection in a thin liquid layer. The bulk of the research was experimental in nature, some theoretical work was also done. ne first phase of this research generated, for the first time, the hydrothermal-wave instability predicted by Smith and Davis in 1983. In addition, the behavior of the fluid layer under a number of conditions was investigated and catalogued. A transition map for the instability of buoyancy-thermocapillary convection was prepared which presented results in terms of apparatus-dependent and apparatus-independent parameters, for ease of comparison with theoretical results. The second phase of this research demonstrated the suppression of these hydrothermal waves through an active, feed-forward control strategy employing a CO2 laser to selectively heat lines of negative disturbance temperature on the free surface of the liquid layer. An initial attempt at this control was only partially successful, employing a thermocouple inserted slightly below the free surface of the liquid to generate the control scheme. Subsequent efforts, however, were completely successful in suppressing oscillations in a portion of the layer by utilizing data from an infrared image of the free surface to compute hydrothermal-wave phase speeds and, using these, to tailor the control scheme to each passing wave.

  2. Computer-assisted experiments with oscillatory circuits

    NASA Astrophysics Data System (ADS)

    Fernandes, J. C.; Ferraz, A.; Rogalski, M. S.

    2010-03-01

    A basic setup for data acquisition and analysis from an oscillatory circuit is described, with focus on its application as either low-pass, high-pass, band-pass or band-reject frequency filter. A homemade board containing the RLC elements allows for the interchange of some of them, in particular, for the easy change of the R value, and this makes apparent for the student its influence on the damping factor. The function generator operates in the swap frequency mode over a suitable frequency range and all the circuit parameters are chosen to provide a reasonable set of data for all the electronic filters studied. The output data are acquired through a commercially available DAQ board and data analysis is performed using a graphing and fitting workspace. The main objective is to develop a methodology of teaching the laboratory material through a computer-based environment devised to help students to appreciate how the governing equations work and to visualize their practical applications.

  3. Parameters Determination of Oscillatory Impulse Current Waveform

    NASA Astrophysics Data System (ADS)

    Sato, Shuji; Nishimura, Seisuke; Seki, Shingo

    This paper proposes numerical techniques to distil waveform parameters out of digitally measured data of oscillatory impulse current. The first method, to be used for liner circuit, based on a curve-fitting technique in which a smooth analytical curve is defined to fit the noise-superposed measured data. The waveform parameters are derived from the curve. The algorithm is examined its performance using a measured waveform data which is obtained from a circuit composed of linear elements only. It is not rare when impulse current is measured in a circuit with non-linear element, namely an arrester. After carefully observed behaviours of the circuit current when the non-linear element turns on and off, authors developed two algorithms capable to determine the parameters from the recorded data obtained from a circuit having a ZnO arrester. The developed algorithm processed the waveform data generated by TDG which is to be issued in 2009 as a part of IEC 61083-2. The details of the algorithm are to be demonstrated in the paper.

  4. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    NASA Astrophysics Data System (ADS)

    Yao, Xingan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan

    2016-04-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates.

  5. Oscillatory flow through submerged canopies: 1. Velocity structure

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Koseff, Jeffrey R.; Monismith, Stephen G.

    2005-10-01

    Many benthic organisms form very rough surfaces on the seafloor that can be described as submerged canopies. Recent evidence has shown that, compared with a unidirectional current, an oscillatory flow driven by surface waves can significantly enhance biological processes such as nutrient uptake. However, to date, the physical mechanisms responsible for this enhancement have not been established. This paper presents a theoretical model to estimate flow inside a submerged canopy driven by oscillatory flow. To reduce the complexity of natural canopies, an idealized canopy consisting of an array of vertical cylinders is used. The attenuation of the in-canopy oscillatory flow is shown to be governed by three dimensionless parameters defined on the basis of canopy geometry and flow parameters. The model predicts that an oscillatory flow will always generate a higher in-canopy flow when compared to a unidirectional current of the same magnitude, and specifically that the attenuation will monotonically increase as the wave orbital excursion length is increased. A series of laboratory experiments are conducted for a range of different unidirectional and oscillatory flow conditions, and the results confirm that oscillatory flow increases water motion inside a canopy. It is hypothesized that this higher in-canopy flow will enhance rates of mass transfer from the canopy elements, a problem formally investigated in a companion paper (Lowe et al., 2005b).

  6. Extraction and modeling of the Oscillatory Potential: signal conditioning to obtain minimally corrupted Oscillatory Potentials.

    PubMed

    Derr, Peter H; Meyer, Andrew U; Haupt, Edward J; Brigell, Mitchell G

    2002-01-01

    A method of extracting a temporally bounded component of a composite signal has been developed which minimizes data corruption in signal processing. The composite signal is windowed in the time domain, padding signals are attached, and finally, the conditioned signal is filtered to extract the component of interest. The method has been utilized to extract the Oscillatory Potential (OP) from the Electroretinogram (ERG). ERGs can contain impulse like transients, including flash artifacts and a-b wave transition, which may not be related to the Oscillatory Potential. Such transients will stimulate a filter, yielding its natural (filter) response and thus distort the actual OP signal. To avoid this effect, time-domain windowing and signal conditioning is used to extract the OP from the ERG. The extraction and modeling approach is applied to ERGs obtained from patients with recent monocular central retinal vein occlusion (CRVO). Model parameters clearly differentiate affected from fellow eyes and show subtle differences between eyes with benign and complicated outcomes.

  7. Robust Concentration and Frequency Control in Oscillatory Homeostats

    PubMed Central

    Thorsen, Kristian; Agafonov, Oleg; Selstø, Christina H.; Jolma, Ingunn W.; Ni, Xiao Y.; Drengstig, Tormod; Ruoff, Peter

    2014-01-01

    Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable. Integral feedback is a control theoretic concept which has long been known to keep a controlled variable robustly (i.e. perturbation-independent) at a given set-point by feeding the integrated error back into the process that generates . The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators (“oscillatory homeostats”) to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and p53 signaling, and the involvement of circadian rhythms in homeostatic regulation. PMID:25238410

  8. Possibility of oscillatory tidal heating of Enceladus

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Hussmann, H.; Sohl, F.; Kurita, K.

    2012-12-01

    Enceladus radiates ~16 GW of heat from its surface [1]. One efficient heat source of Enceladus is tidal heating which is maintained by the orbital resonance with Dione. However, assuming that the current eccentricity of Enceladus is in equilibrium with the resonance, tidal heating can generate only 1.1 GW of heat [2]. In the case of a non-equilibrium state, tidal heating rate and eccentricity evolve by interacting with each other. For homogeneous model of Enceladus, corresponding coupling calculations have been conducted by Meyer and Wisdom [3]. In their calculations, generated heat and eccentricity reach equilibrium state soon. In this work, we have performed coupling calculation among tidal heating rate, eccentricity and the interior structure of Enceladus. We constructed spherical shell Maxwell model for simplicity. Conventionally, dissipation factor (Q-value) of Saturn is estimated to more than 18,000 [2]. However, the latest observation implies a Q-value of Saturn that is one of order of magnitude less than conventional values [4]. We performed the calculation with different values of the Saturnian dissipation factor. In addition to the tidal heat, we took 7 GW of shear heat into consideration as an additional heat source[5]. In our calculation, if water-ice mixture (~10^9 Pa s in viscosity) exists between convective ice and silicate core instead of liquid ocean, eccentricity and heating rate oscillate with an 50-million-years cycle when the Q-value of Saturn is assumed around 3800. Minimum value of eccentricity is 0.005, which is comparable to the current value (0.0047). Generated tidal heat oscillates between 3 GW and 10 GW. Combined with shear heat, 17 GW of heat is generated at maximum. Although conditions for oscillatory heating are hard to fulfill and more consideration is needed, current large heat radiation of Enceladus may be remnant of episodically large tidal heating. Enceladus has divergent surface conditions, which might be related to episodic

  9. Brain oscillatory signatures of motor tasks.

    PubMed

    Ramos-Murguialday, Ander; Birbaumer, Niels

    2015-06-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  10. Brain oscillatory signatures of motor tasks

    PubMed Central

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  11. Oscillatory flow through submerged canopies: 2. Canopy mass transfer

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Koseff, Jeffrey R.; Monismith, Stephen G.; Falter, James L.

    2005-10-01

    Mass transfer rates from submerged canopies constructed from arrays of vertical cylinders were investigated for a range of different cylinder spacings under both unidirectional and oscillatory flow. Individual canopy elements made from gypsum were dissolved in fresh water to simulate the mass transfer of dissolved metabolites to and from canopies of living benthic organisms. Mass transfer rates under oscillatory flow were up to three times higher than values measured for a comparable unidirectional current. This enhancement was shown to be a strong function of the canopy element spacing. A model was developed to predict canopy mass transfer rates on the basis of the in-canopy flow speed and was generalized to incorporate either unidirectional or oscillatory flow. Agreement between the modeled and experimentally measured mass transfer rates indicate that enhanced mass transfer to/from living benthic canopies under oscillatory flow is driven primarily by the higher in-canopy water motion generated by the oscillatory flow, as detailed in the companion paper (Lowe et al., 2005).

  12. Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew J.; Rossmanith, James A.; Tang, Qi

    2014-07-01

    In this work we develop a class of high-order finite difference weighted essentially non-oscillatory (FD-WENO) schemes for solving the ideal magnetohydrodynamic (MHD) equations in 2D and 3D. The philosophy of this work is to use efficient high-order WENO spatial discretizations with high-order strong stability-preserving Runge-Kutta (SSP-RK) time-stepping schemes. Numerical results have shown that with such methods we are able to resolve solution structures that are only visible at much higher grid resolutions with lower-order schemes. The key challenge in applying such methods to ideal MHD is to control divergence errors in the magnetic field. We achieve this by augmenting the base scheme with a novel high-order constrained transport approach that updates the magnetic vector potential. The predicted magnetic field from the base scheme is replaced by a divergence-free magnetic field that is obtained from the curl of this magnetic potential. The non-conservative weakly hyperbolic system that the magnetic vector potential satisfies is solved using a version of FD-WENO developed for Hamilton-Jacobi equations. The resulting numerical method is endowed with several important properties: (1) all quantities, including all components of the magnetic field and magnetic potential, are treated as point values on the same mesh (i.e., there is no mesh staggering); (2) both the spatial and temporal orders of accuracy are fourth-order; (3) no spatial integration or multidimensional reconstructions are needed in any step; and (4) special limiters in the magnetic vector potential update are used to control unphysical oscillations in the magnetic field. Several 2D and 3D numerical examples are presented to verify the order of accuracy on smooth test problems and to show high-resolution on test problems that involve shocks.

  13. Synchronization of oscillatory chemiluminescence with pulsed light irradiation

    NASA Astrophysics Data System (ADS)

    Takayama, Shunsuke; Okano, Kunihiko; Asakura, Kouichi

    2013-01-01

    A chemical oscillator, the H2O2-KSCN-CuSO4-NaOH system, generates an oscillatory chemiluminescence when luminol is added to this system. Attempts were made to synchronize the oscillatory chemiluminescence with pulsed light irradiation. A period of the chemical oscillation became shorter by the irradiation of white and blue color light, while the oscillatory behavior was scarcely influenced by the irradiation of red light. Pulsed red and white or blue lights were irradiated on either the non-luminol or luminol-added H2O2-KSCN-CuSO4-NaOH system. Synchronization of the chemical oscillation was achieved for 25-30 min in the luminol-added system.

  14. Linked and knotted chimera filaments in oscillatory systems.

    PubMed

    Lau, Hon Wai; Davidsen, Jörn

    2016-07-01

    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets.

  15. Linked and knotted chimera filaments in oscillatory systems

    NASA Astrophysics Data System (ADS)

    Lau, Hon Wai; Davidsen, Jörn

    2016-07-01

    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets.

  16. Vortex shedding from a circular cylinder in oscillatory flow

    NASA Astrophysics Data System (ADS)

    Barbi, C.; Favier, D.; Maresca, C.

    Vortex shedding from a cylinder in oscillatory flows has been investigated by measuring the skin friction on the cylinder surface, the lift and drag forces, and the wake velocity and then deducing the power spectrum of these fluctuating quantities. Lift and drag variations below and in the locking-on regime are discussed. In particular, it is shown that the lift oscillates, both in stationary and oscillatory flows, at the frequency of vortex shedding with high amplitude in steady flow and in the locking-on regime. The drag oscillates at a frequency that is twice the shedding frequency in stationary flows; it oscillates at the frequency of oscillatory flow even in the locking-on regime where a strong second harmonic appears.

  17. Linked and knotted chimera filaments in oscillatory systems.

    PubMed

    Lau, Hon Wai; Davidsen, Jörn

    2016-07-01

    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets. PMID:27575065

  18. Pattern formation in oscillatory complex networks consisting of excitable nodes

    NASA Astrophysics Data System (ADS)

    Liao, Xuhong; Xia, Qinzhi; Qian, Yu; Zhang, Lisheng; Hu, Gang; Mi, Yuanyuan

    2011-05-01

    Oscillatory dynamics of complex networks has recently attracted great attention. In this paper we study pattern formation in oscillatory complex networks consisting of excitable nodes. We find that there exist a few center nodes and small skeletons for most oscillations. Complicated and seemingly random oscillatory patterns can be viewed as well-organized target waves propagating from center nodes along the shortest paths, and the shortest loops passing through both the center nodes and their driver nodes play the role of oscillation sources. Analyzing simple skeletons we are able to understand and predict various essential properties of the oscillations and effectively modulate the oscillations. These methods and results will give insights into pattern formation in complex networks and provide suggestive ideas for studying and controlling oscillations in neural networks.

  19. Resting-State Oscillatory Activity in Autism Spectrum Disorders

    PubMed Central

    Cornew, Lauren; Blaskey, Lisa; Edgar, J. Christopher

    2013-01-01

    Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier Transform was applied and oscillatory activity examined from 1 to 120 Hz at 15 regional sources. Associations between oscillatory anomalies and symptom severity were probed. Children with ASD exhibited regionally specific elevations in delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and high frequency (20–120 Hz) power, supporting an imbalance of neural excitation/inhibition as a neurobiological feature of ASD. Increased temporal and parietal alpha power was associated with greater symptom severity and thus is of particular interest. PMID:22207057

  20. Spatial structure of scrape-off-layer filaments near the midplane and X-point regions of Alcator C-Mod

    SciTech Connect

    Terry, J L; Zweben, S J; Umansky, M V; Cziegler, I; Grulke, O; LaBombard, B; Stotler, D P

    2008-05-22

    Movies of edge turbulence at both the outboard midplane and the region outboard of the typical lower X-point location in C-Mod have been obtained using Gas-Puff-Imaging together with fast-framing cameras. Intermittent turbulent structures, typically referred to as blobs or filaments, are observed in both locations. Near the midplane the filaments are roughly circular in cross-section, while in the X-point region they are highly elongated. Filament velocities in this region are {approx}3x faster than the radial velocities at the midplane, in a direction roughly normal to the local flux surfaces. The observations are consistent with the picture that the filaments arise in outboard region and, as a consequence of the rapid parallel diffusion of the potential perturbations, map along field lines. A simulation using the 3D BOUT turbulence code has been made, with the result that reproduces many of the spatial features observed in the experiment.

  1. Oscillatory pairing of fermions in spin-split traps

    SciTech Connect

    Sun Kuei; Vishveshwara, Smitha; Meyer, Julia S.; Sheehy, Daniel E.

    2011-03-15

    As a means of realizing oscillatory pairing between fermions, we study superfluid pairing between two fermion ''spin'' species that are confined to adjustable spin-dependent trapping potentials. Focusing on the one-dimensional limit, we find that with increasing separation between the spin-dependent traps, the fermions exhibit distinct phases, including a fully paired phase, a spin-imbalanced phase with oscillatory pairing, and an unpaired fully spin-polarized phase. We obtain the phase diagram of fermions in such a spin-split trap and discuss signatures of these phases in cold-atom experiments.

  2. Generation of directional EOF by interactive oscillatory zeta potential.

    PubMed

    Kuo, Chih-Yu; Wang, Chang-Yi; Chang, Chien-Cheng

    2008-11-01

    A steady directional EOF due to a nonlinear interaction between oscillatory axial electrical fields and oscillatory wall potentials (zeta potentials) is presented. This is a new mechanism to produce such a mean flow. It is found that the flow velocity depends not on the external driving frequency but on the phase angle difference between the electric fields and the zeta potentials. The formulation can also be reduced to the static EOF straightforwardly. For the purpose of theoretical demonstration, we use the Debye-Huckel approximation for the zeta potential. Results of planar and cylindrical capillaries are given.

  3. Self-organized alternating chimera states in oscillatory media

    PubMed Central

    Haugland, Sindre W.; Schmidt, Lennart; Krischer, Katharina

    2015-01-01

    Oscillatory media can exhibit the coexistence of synchronized and desynchronized regions, so-called chimera states, for uniform parameters and symmetrical coupling. In a phase-balanced chimera state, where the totals of synchronized and desynchronized regions, respectively, are of the same size, the symmetry of the system predicts that interchanging both phases still gives a solution to the underlying equations. We observe this kind of interchange as a self-emerging phenomenon in an oscillatory medium with nonlinear global coupling. An interplay between local and global couplings renders the formation of these alternating chimeras possible. PMID:25928860

  4. Oscillatory/chaotic thermocapillary flow induced by radiant heating

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Thompson, Robert L.; Vanzandt, David; Dewitt, Kenneth; Nash, Jon

    1994-01-01

    The objective of this paper is to conduct ground-based experiments to measure the onset conditions of oscillatory Marangoni flow in laser-heated silicone oil in a cylindrical container. For a single fluid, experimental data are presented using the aspect ratio and the dynamic Bond number. It is found that for a fixed aspect ratio, there seems to be an asymptotic limit of the dynamic Bond number beyond which no onset of flow oscillation could occur. Experimental results also suggested that there could be a lower limit of the aspect ratio below which there is no onset of oscillatory flow.

  5. Self-organized alternating chimera states in oscillatory media.

    PubMed

    Haugland, Sindre W; Schmidt, Lennart; Krischer, Katharina

    2015-04-30

    Oscillatory media can exhibit the coexistence of synchronized and desynchronized regions, so-called chimera states, for uniform parameters and symmetrical coupling. In a phase-balanced chimera state, where the totals of synchronized and desynchronized regions, respectively, are of the same size, the symmetry of the system predicts that interchanging both phases still gives a solution to the underlying equations. We observe this kind of interchange as a self-emerging phenomenon in an oscillatory medium with nonlinear global coupling. An interplay between local and global couplings renders the formation of these alternating chimeras possible.

  6. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  7. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  8. Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: Experimental tests and modelling

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun

    2016-03-01

    This paper presents an experimental investigation on the behavior of magnetorheological (MR) fluids in high-frequency oscillatory squeeze mode and proposes a mathematical model to reveal the MR mechanism. A specific MR squeeze structure avoiding the cavitation effect is designed for the experimental tests. The magnetic field- and gap distance-dependent damping force of the MR squeeze structure is presented and compared with the dramatically large damping force under quasi-static excitations, a moderate damping force is observed at high frequencies. Subsequently, in order to interpret the behavior of MR fluids at high frequencies, employing the continuum media theory, a mathematical model is established with consideration of the fluid inertia and hysteresis property. The damping force comparison between the model and experimental tests indicates that in high-frequency oscillatory squeeze mode, the squeeze-strengthen effect does not work and the shear yield stress can be applied well to characterize the flow property of MR fluids. In addition, the hysteresis property has a significant influence on the damping performance.

  9. Automated Coronal Seismology: Curvelet Characterization of Probability Maps of Image Data with Oscillatory Signal

    NASA Astrophysics Data System (ADS)

    Young, C.; Ireland, J.

    2010-12-01

    Automated coronal seismology will require measurements of the structure that supports an oscillatory signal; for example, a measurement of the loop length of a transversely oscillating loop can be used to estimate the coronal magnetic field (Nakariakov& Ofman 2001). One of the results from the recently published Bayesian probability based automated oscillation detection algorithm (Ireland et al., 2010) is a probability map. This is an image of the probability that each pixel from a set of images contains an oscillatory signal. A map from a significant detection contains one or more clusters of high probability pixels dispersed amongst mostly pixels of low probability. These low probability pixels amount to noise while the clusters of high probability are the desired signal. A visual inspection of the probability maps that contain significant signal reveal that the clusters of pixels contain structure that corresponds to physical regions in the original images i.e. oscillating loops. A necessary step for using these oscillation probability maps is to extract and characterize these high probability regions. A natural choice for an appropriate representation of these structures especially given their corresponds to real extended features such as loops is the curvelet transform (Candes and Donoho, 1999 and Candes et al., 2005). In this work we present a preliminary analysis of these probability maps using curvelets to isolate and characterize regions of high probability. The suitability of this technique for the pipeline processing of Solar Dynamics Observatory data is also discussed.

  10. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response. PMID:20850237

  11. Resting-State Oscillatory Activity in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Cornew, Lauren; Roberts, Timothy P. L.; Blaskey, Lisa; Edgar, J. Christopher

    2012-01-01

    Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier…

  12. Bed Morphology and Sediment Transport under Oscillatory Flow

    ERIC Educational Resources Information Center

    Pedocchi Miljan, Francisco

    2009-01-01

    Recent laboratory and field experiments have shown the inability of existing oscillatory flow ripple predictors to accurately predict both ripple size and planform geometry. However, at this time, only partial adaptations of these predictors have been proposed in the literature to account for the observed discrepancies with experimental data…

  13. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

  14. Non-oscillatory behaviour in vacuum Kaluza-Klein cosmologies

    NASA Astrophysics Data System (ADS)

    Demaret, J.; Henneaux, M.; Spindel, P.; Taormina, A.; Hanquin, J.-L.

    The generic behavior of vacuum inhomogeneous Kaluza-Klein cosmologies is studied in the vicinity of the cosmological singularity. It is argued that, in spacetime dimensions equal to or greater than 11, the generalized Kasner solution, with monotonic power-law behavior of the spatial distances, becomes a general solution of the Einstein vacuum field equations and, moreover, the chaotic oscillatory behavior disappears.

  15. Oscillatory Dynamics Related to the Unagreement Pattern in Spanish

    ERIC Educational Resources Information Center

    Perez, Alejandro; Molinaro, Nicola; Mancini, Simona; Barraza, Paulo; Carreiras, Manuel

    2012-01-01

    Unagreement patterns consist in a person feature mismatch between subject and verb that is nonetheless grammatical in Spanish. The processing of this type of construction gives new insights into the understanding of agreement processes during language comprehension. Here, we contrasted oscillatory brain activity triggered by Unagreement in…

  16. Frontal Oscillatory Dynamics Predict Feedback Learning and Action Adjustment

    ERIC Educational Resources Information Center

    van de Vijver, Irene; Ridderinkhof, K. Richard; Cohen, Michael X.

    2011-01-01

    Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after…

  17. Oscillatory control of Delta-like1 in somitogenesis and neurogenesis: A unified model for different oscillatory dynamics.

    PubMed

    Shimojo, Hiromi; Kageyama, Ryoichiro

    2016-01-01

    During somite segmentation, mRNA expression of the mouse Notch ligand Delta-like1 (Dll1) oscillates synchronously in the presomitic mesoderm (PSM). However, the dynamics of Dll1 protein expression were rather controversial, and their functional significance was not known. Recent live-imaging analysis showed that Dll1 protein expression also oscillates synchronously in the PSM. Interestingly, accelerated or delayed Dll1 expression by shortening or elongating the Dll1 gene, respectively, dampens or quenches Dll1 oscillation at intermediate levels, a phenomenon known as "amplitude/oscillation death" of coupled oscillators in mathematical modeling. Under this condition, oscillation of the Notch effector Hes7 is also dampened, leading to severe fusion of somites and their derivatives, such as vertebrae and ribs. Thus, the appropriate timing of Dll1 expression is critical for its oscillatory expression, pointing to the functional significance of Dll1-mediated oscillatory cell-cell interactions in the segmentation clock. In neural stem cells, Dll1 expression is also oscillatory, but non-synchronous, and when Dll1 oscillation is dampened, oscillation of another Notch effector, Hes1, is also dampened, leading to defects of neural development. In this review, we discuss the underlying mechanism for the different oscillatory dynamics (synchronous versus non-synchronous) in the PSM and neural stem cells in a unified manner.

  18. Oscillatory spin asymmetric scattering of low-energy He+ ions on Sn surfaces

    NASA Astrophysics Data System (ADS)

    Suzuki, T. T.; Sakai, O.

    2016-09-01

    Spin-polarized He+ ion scattering spectroscopy (SP-ISS) study on a polycrystalline Sn target surface is reported. We observed substantial spin dependent He+ ion scattering on the non-magnetic Sn target. It is not due to He+ ion neutralization, but it is attributed to spin-orbit coupling (SOC) that acts transiently on the He+ 1 s electron spin in the He+-Sn atom binary collision. We found that the spin dependent scattering quantified as the spin asymmetry exhibits periodic oscillation with the reciprocal of the He+ ion velocity. The oscillation originates from the SOC induced-slight energy difference of the [He+-Sn] and [He0-Sn+] systems which are involved in the quasi-resonant charge transfer. The oscillatory spin asymmetry shows that SOC arises from collision induced intermediate state.

  19. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity

    PubMed Central

    Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834

  20. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity.

    PubMed

    Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity ("frequency-tuning"). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834

  1. Direct observations of L-I-H and H-I-L transitions with the X-point reciprocating probe in ASDEX Upgrade

    SciTech Connect

    Müller, S. H.; Manz, P.; Stroth, U.; Tsalas, M.; Tynan, G. R.

    2014-04-15

    A reciprocating Langmuir probe was used to directly measure the behavior of turbulence and flows in the X-point region during transitions between low-(L) and high-confinement (H) mode in ASDEX Upgrade. The probe traverses the divertor horizontally in 140 ms, typically 2–5 cm below the X-point. Toroidal Mach number, density, floating potential (ϕ{sub f}), and electron temperature (T{sub e}) are measured. In the regime accessible to the probe (P{sub inj}<1.5 MW, line-integrated core density <4×10{sup 19} m{sup −2}), the L-H transition features an intermediate phase (I-phase), characterized by limit-cycle oscillations at 0.5–3 kHz [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)]. The probe measurements reveal that this pulsing affects both the density and the toroidal Mach number. It is present in both the low-(LFS) and high-field sides (HFS) of the scrape-off layer, while high-amplitude broadband turbulence usually dominates the private-flux region. Profile comparisons between L-mode and I-phase show lower density in pulsing regions and small shifts in T{sub e}, directed oppositely on LFS and HFS, which are compensated by shifts in ϕ{sub f} to yield a surprisingly unchanged plasma potential profile. Directly observed L-I-phase transitions reveal that the onset of the pulsing is preceded by a fast 50% density drop in the HFS X-point region. Back transitions to L-mode occur essentially symmetrically, with the pulsing stopping first, followed by a fast recovery to L-mode density levels in the divertor.

  2. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  3. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  4. Recording the oscillatory potentials of the electroretinogram with the DTL electrode.

    PubMed

    Lachapelle, P; Benoit, J; Little, J M; Lachapelle, B

    1993-01-01

    Suprathreshold photopic oscillatory potentials recorded with a DTL electrode were compared to those obtained with a Lovac corneal electrode. The overall oscillatory potential response (sum of oscillatory potentials) recorded with the DTL electrode was half of that obtained with the Lovac electrode. However, there was no evidence of a selective attenuation (or amplification) of any given oscillatory potential with the DTL electrode. Similarly, the oscillatory potential relative amplitude ratios and the peak times of the oscillatory potentials were identical for both electrodes. Our findings clearly indicate that the DTL electrode is adequate to record the high-frequency oscillatory potentials. Given the low cost and ease of use, as well as the disposable nature of the DTL electrode, we believe that electroretinographic specialists should seriously consider a wider utilization.

  5. Uniformly high order accurate essentially non-oscillatory schemes 3

    NASA Technical Reports Server (NTRS)

    Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R.

    1986-01-01

    In this paper (a third in a series) the construction and the analysis of essentially non-oscillatory shock capturing methods for the approximation of hyperbolic conservation laws are presented. Also presented is a hierarchy of high order accurate schemes which generalizes Godunov's scheme and its second order accurate MUSCL extension to arbitrary order of accuracy. The design involves an essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is derived from a new interpolation technique that when applied to piecewise smooth data gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses an adaptive stencil of grid points and consequently the resulting schemes are highly nonlinear.

  6. Low frequency entrainment of oscillatory bursts in hair cells.

    PubMed

    Shlomovitz, Roie; Fredrickson-Hemsing, Lea; Kao, Albert; Meenderink, Sebastiaan W F; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-16

    Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states. PMID:23601313

  7. Low Frequency Entrainment of Oscillatory Bursts in Hair Cells

    PubMed Central

    Shlomovitz, Roie; Fredrickson-Hemsing, Lea; Kao, Albert; Meenderink, Sebastiaan W.F.; Bruinsma, Robijn; Bozovic, Dolores

    2013-01-01

    Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states. PMID:23601313

  8. Oscillatory motion of a viscous fluid in a porous medium

    SciTech Connect

    Siraev, R. R.

    2015-08-15

    An oscillatory flow of an incompressible fluid in a saturated porous medium in the presence of a solid inclusion has been theoretically studied. Unsteady filtration has been described by the Brinkman–Forchheimer equation, where inertial effects and terms with acceleration characteristic of high filtration rates and the presence of pulsations are taken into account. The convective part of the acceleration is responsible for nonlinear effects near macroinhomogeneities. These effects can play a noticeable role in unsteady flows in the porous medium, as is shown for the problem of a solid ball streamed by an oscillatory flow having a given velocity at infinity. The results indicate that a secondary averaged flow appears in the case of high frequencies and cannot be described by Darcy’s or Forchheimer’s filtration laws.

  9. Light scattering studies of an electrorheological fluid in oscillatory shear

    SciTech Connect

    Martin, J.E.; Odinek, J.

    1995-12-31

    We have conducted a real time, two-dimensional light scattering study of the nonlinear dynamics of field-induced structures in an electrorheological fluid subjected to oscillatory shear. We have developed a kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This structural theory is then used to describe the nonlinear rheology of ER fluids.

  10. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  11. From ballistic to brownian vortex motion in complex oscillatory media.

    PubMed

    Davidsen, Jörn; Erichsen, Ronaldo; Kapral, Raymond; Chaté, Hugues

    2004-07-01

    We show that the breaking of the rotation symmetry of spiral waves in two-dimensional complex (period-doubled or chaotic) oscillatory media by synchronization defect lines (SDLs) is accompanied by an intrinsic drift of the pattern. Single vortex motion changes from ballistic flights at a well-defined angle from the SDLs to Brownian-like diffusion when the turbulent character of the medium increases. It gives rise, in nonturbulent multispiral regimes, to a novel "vortex liquid."

  12. Wavelet-based localization of oscillatory sources from magnetoencephalography data.

    PubMed

    Lina, J M; Chowdhury, R; Lemay, E; Kobayashi, E; Grova, C

    2014-08-01

    Transient brain oscillatory activities recorded with Eelectroencephalography (EEG) or magnetoencephalography (MEG) are characteristic features in physiological and pathological processes. This study is aimed at describing, evaluating, and illustrating with clinical data a new method for localizing the sources of oscillatory cortical activity recorded by MEG. The method combines time-frequency representation and an entropic regularization technique in a common framework, assuming that brain activity is sparse in time and space. Spatial sparsity relies on the assumption that brain activity is organized among cortical parcels. Sparsity in time is achieved by transposing the inverse problem in the wavelet representation, for both data and sources. We propose an estimator of the wavelet coefficients of the sources based on the maximum entropy on the mean (MEM) principle. The full dynamics of the sources is obtained from the inverse wavelet transform, and principal component analysis of the reconstructed time courses is applied to extract oscillatory components. This methodology is evaluated using realistic simulations of single-trial signals, combining fast and sudden discharges (spike) along with bursts of oscillating activity. The method is finally illustrated with a clinical application using MEG data acquired on a patient with a right orbitofrontal epilepsy.

  13. Variable-amplitude oscillatory shear response of amorphous materials

    NASA Astrophysics Data System (ADS)

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  14. [Recent results in research on oscillatory chemical reactions].

    PubMed

    Poros, Eszter; Kurin-Csörgei, Krisztina

    2014-01-01

    The mechanisms of the complicated periodical phenomenas in the nature (e.g. hearth beat, sleep cycle, circadian rhythms, etc) could be understood with using the laws of nonlinear chemical systems. In this article the newest result in the research of the subfield of nonlinear chemical dynamics aimed at constructing oscillatory chemical reactions, which are novel either in composition or in configuration, are presented. In the introductory part the concept of chemical periodicity is defined, then the forms as it can appear in time and space and the methods of their study are discussed. Detailed description of the experimental work that has resulted in two significant discoveries is provided. A method was developed to design pH-oscillators which are capable of operating under close conditions. The batch pH-oscillators are more convenient to use in some proposed applications than the equivalent CSTR variant. A redox oscillator that is new in composition was found. The permanganate oxidation of some amino acids was shown to take place according to oscillatory kinetics in a narrow range of the experimental parameters. The KMnO4 - glycine - Na2HPO4 system represents the first example in the family of manganese based oscillators where amino acids is involved. In the conclusion formal analogies between the simple chemical and some more complicated biological oscillatory phenomena are mentioned and the possibility of modeling periodic processes with the use of information gained from the studies of chemical oscillations is pointed out.

  15. A generalized locomotion CPG architecture based on oscillatory building blocks.

    PubMed

    Yang, Zhijun; França, Felipe M G

    2003-07-01

    Neural oscillation is one of the most extensively investigated topics of artificial neural networks. Scientific approaches to the functionalities of both natural and artificial intelligences are strongly related to mechanisms underlying oscillatory activities. This paper concerns itself with the assumption of the existence of central pattern generators (CPGs), which are the plausible neural architectures with oscillatory capabilities, and presents a discrete and generalized approach to the functionality of locomotor CPGs of legged animals. Based on scheduling by multiple edge reversal (SMER), a primitive and deterministic distributed algorithm, it is shown how oscillatory building block (OBB) modules can be created and, hence, how OBB-based networks can be formulated as asymmetric Hopfield-like neural networks for the generation of complex coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also shown that the resulting Hopfield-like network possesses the property of reproducing the whole spectrum of different gaits intrinsic to the target locomotor CPGs. Although the new approach is not restricted to the understanding of the neurolocomotor system of any particular animal, hexapodal and quadrupedal gait patterns are chosen as illustrations given the wide interest expressed by the ongoing research in the area.

  16. Mechanism of the Ferrocyanide-Iodate-Sulfite Oscillatory Chemical Reaction.

    PubMed

    Horváth, Viktor; Epstein, Irving R; Kustin, Kenneth

    2016-03-31

    Existing models of the ferrocyanide-iodate-sulfite (FIS) reaction seek to replicate the oscillatory pH behavior that occurs in open systems. These models exhibit significant differences in the amplitudes and waveforms of the concentration oscillations of such intermediates as I(-), I3(-), and Fe(CN)6(3-) under identical conditions and do not include several experimentally found intermediates. Here we report measurements of sulfite concentrations during an oscillatory cycle. Knowing the correct concentration of sulfite over the course of a period is important because sulfite is the main component that determines the buffer capacity, the pH extrema, and the amount of oxidizer (iodate) required for the transition to low pH. On the basis of this new result and recent experimental findings on the rate laws and intermediates of component processes taken from the literature, we propose a mass action kinetics model that attempts to faithfully represent the chemistry of the FIS reaction. This new comprehensive mechanism reproduces the pH oscillations and the periodic behavior in [Fe(CN)6(3-)], [I3(-)], [I(-)], and [SO3(2-)]T with characteristics similar to those seen in experiments in both CSTR and semibatch arrangements. The parameter ranges at which stationary and oscillatory behavior is exhibited also show good agreement with those of the experiments.

  17. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  18. A generalized locomotion CPG architecture based on oscillatory building blocks.

    PubMed

    Yang, Zhijun; França, Felipe M G

    2003-07-01

    Neural oscillation is one of the most extensively investigated topics of artificial neural networks. Scientific approaches to the functionalities of both natural and artificial intelligences are strongly related to mechanisms underlying oscillatory activities. This paper concerns itself with the assumption of the existence of central pattern generators (CPGs), which are the plausible neural architectures with oscillatory capabilities, and presents a discrete and generalized approach to the functionality of locomotor CPGs of legged animals. Based on scheduling by multiple edge reversal (SMER), a primitive and deterministic distributed algorithm, it is shown how oscillatory building block (OBB) modules can be created and, hence, how OBB-based networks can be formulated as asymmetric Hopfield-like neural networks for the generation of complex coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also shown that the resulting Hopfield-like network possesses the property of reproducing the whole spectrum of different gaits intrinsic to the target locomotor CPGs. Although the new approach is not restricted to the understanding of the neurolocomotor system of any particular animal, hexapodal and quadrupedal gait patterns are chosen as illustrations given the wide interest expressed by the ongoing research in the area. PMID:12836031

  19. Cerebral oscillatory activity during simulated driving using MEG

    PubMed Central

    Sakihara, Kotoe; Hirata, Masayuki; Ebe, Kazutoshi; Kimura, Kenji; Yi Ryu, Seong; Kono, Yoshiyuki; Muto, Nozomi; Yoshioka, Masako; Yoshimine, Toshiki; Yorifuji, Shiro

    2014-01-01

    We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG) during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a non-parametric permutation test. Oscillatory differences were calculated by comparison between “passive viewing” and “active driving.” “Passive viewing” was the baseline, and oscillatory differences during “active driving” showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG) during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL), left postcentral gyrus (PoCG), middle temporal gyrus (MTG), and posterior cingulate gyrus (PCiG) during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition. PMID:25566017

  20. Dynamic modes of red blood cells in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2010-06-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ , and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (TB): θ rotates while the shape and ϕ oscillate. (iii) intermediate motion: both ϕ and θ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean shear rate with small shear oscillation, the shape and θ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.

  1. The evolution of oscillatory behavior in age-structured species.

    PubMed

    Greenman, J V; Benton, T G; Boots, M; White, A R

    2005-07-01

    A major challenge in ecology is to explain why so many species show oscillatory population dynamics and why the oscillations commonly occur with particular periods. The background environment, through noise or seasonality, is one possible driver of these oscillations, as are the components of the trophic web with which the species interacts. However, the oscillation may also be intrinsic, generated by density-dependent effects on the life history. Models of structured single-species systems indicate that a much broader range of oscillatory behavior than that seen in nature is theoretically possible. We test the hypothesis that it is selection that acts to constrain the range of periods. We analyze a nonlinear single-species matrix model with density dependence affecting reproduction and with trade-offs between reproduction and survival. We show that the evolutionarily stable state is oscillatory and has a period roughly twice the time to maturation, in line with observed patterns of periodicity. The robustness of this result to variations in trade-off function and density dependence is tested.

  2. Pharmacological characterization of the involvement of protein kinase C in oscillatory and non-oscillatory calcium increases in astrocytes.

    PubMed

    Morita, Mitsuhiro; Nakane, Akira; Maekawa, Shohei; Kudo, Yoshihisa

    2015-09-01

    Evidence increasingly shows that astrocytes play a pivotal role in brain physiology and pathology via calcium dependent processes, thus the characterization of the calcium dynamics in astrocytes is of growing importance. We have previously reported that the epidermal growth factor and basic fibroblast growth factor up-regulate the oscillation of the calcium releases that are induced by stimuli, including glutamate in cultured astrocytes. This calcium oscillation is assumed to involve protein kinase C (PKC), which is activated together with the calcium releases as a consequence of inositol phospholipid hydrolysis. In the present study, this issue has been investigated pharmacologically by using astrocytes cultured with and without the growth factors. The pharmacological activation of PKC largely reduced the glutamate-induced oscillatory and non-oscillatory calcium increases. Meanwhile, PKC inhibitors increased the total amounts of both calcium increases without affecting the peak amplitudes and converted the calcium oscillations to non-oscillatory sustained calcium increases by abolishing the falling phases of the repetitive calcium increases. Furthermore, the pharmacological effects were consistent between both glutamate- and histamine-induced calcium oscillations. These results suggest that PKC up-regulates the removal of cytosolic calcium in astrocytes, and this up-regulation is essential for calcium oscillation in astrocytes cultured with growth factors.

  3. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  4. Point spread function of the optical needle super-oscillatory lens

    SciTech Connect

    Roy, Tapashree; Rogers, Edward T. F.; Yuan, Guanghui; Zheludev, Nikolay I.

    2014-06-09

    Super-oscillatory optical lenses are known to achieve sub-wavelength focusing. In this paper, we analyse the imaging capabilities of a super-oscillatory lens by studying its point spread function. We experimentally demonstrate that a super-oscillatory lens can generate a point spread function 24% smaller than that dictated by the diffraction limit and has an effective numerical aperture of 1.31 in air. The object-image linear displacement property of these lenses is also investigated.

  5. Single Polymer Dynamics under Large Amplitude Oscillatory Extensional (LAOE) Flow

    NASA Astrophysics Data System (ADS)

    Zhou, Yuecheng; Schroeder, Charles M.

    Over the past two decades, advances in fluorescence imaging and particle manipulation have enabled the direct observation of single polymer dynamics in model flows such as shear flow and planar extensional flow. The vast majority of single polymer studies, however, has focused on chain dynamics using simple transient step forcing functions. In order to study single polymer dynamics in non-idealized model flows, there is a clear need to implement more complicated transient flow forcing functions. In bulk rheology, large amplitude oscillatory shear (LAOS) was widely used to study the linear and nonlinear viscoelasticity of materials, but not yet been applied to molecular rheology. In this work, we directly probe single polymer dynamics using oscillatory extensional flow in precisely controlled microfluidic devices. We are able to generate large and small amplitude sinusoidal oscillatory extensional flow in a cross-slot microfluidic device while imaging the conformational dynamics of a single polymer trapped at the stagnation point. In this flow, polymer chains are stretched, squeezed, and rotated between extensional/compressional axes in a highly dynamic and transient manner. Using this technique, we studied the dynamics and coil-stretch transition of a single λ-DNA as a function of the Weissenberg number (Wi) and Deborah number (De). Moreover, we use Brownian dynamics simulation to map a wide range of Pipkin space for polymers from linear steady-state conditions to non-linear unsteady-states. Our results reveal a critical Wi at the coil-stretch transition that is function of the De in LAOE flow. Department of Materials Science and Engineering.

  6. Oscillatory correlates of the primacy effect in episodic memory.

    PubMed

    Sederberg, Per B; Gauthier, Lynne V; Terushkin, Vitaly; Miller, Jonathan F; Barnathan, Julia A; Kahana, Michael J

    2006-09-01

    Both intracranial and scalp EEG studies have demonstrated that oscillatory activity, especially in the gamma band (28 to 100 Hz), can differentiate successful and unsuccessful episodic encoding [Sederberg, P.B., Kahana, M.J., Howard, M.W., Donner, E.J., Madsen, J.R., 2003. Theta and gamma oscillations during encoding predict subsequent recall. Journal of Neuroscience, 23(34), 10809-10814; Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C.E., Fernandez, G., 2001. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience, 4 (12), 1259-1264; Gruber, T., Tsivilis, D., Montaldi, D., and Müller, M. (2004). Induced gamma band responses: An early marker of memory encoding and retrieval. Neuroreport, 15, 1837-1841; Summerfield, C., Mangels, J.A., in press. Dissociable neural mechanisms for encoding predictable and unpredictable events. Journal of Cognitive Neuroscience]. Although the probability of recalling an item varies as a function of where it appeared in the list, the relation between the oscillatory dynamics of successful encoding and serial position remains unexplored. We recorded scalp EEG as participants studied lists of common nouns in a delayed free-recall task. Because early list items were recalled better than items from later serial positions (the primacy effect), we analyzed encoding-related changes in 2 to 100 Hz oscillatory power as a function of serial position. Increases in gamma power in posterior regions predicted successful encoding at early serial positions; widespread low-frequency (4-14 Hz) power decreases predicted successful memory formation for later serial positions. These results suggest that items in early serial positions receive an encoding boost due to focused encoding without having to divide resources among numerous list items. Later in the list, as memory load increases, encoding is divided between multiple items.

  7. A self-regulating biomolecular comparator for processing oscillatory signals

    PubMed Central

    Agrawal, Deepak K.; Franco, Elisa; Schulman, Rebecca

    2015-01-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  8. Single polymer dynamics under large amplitude oscillatory extension

    NASA Astrophysics Data System (ADS)

    Zhou, Yuecheng; Schroeder, Charles M.

    2016-09-01

    Understanding the conformational dynamics of polymers in time-dependent flows is of key importance for controlling materials properties during processing. Despite this importance, however, it has been challenging to study polymer dynamics in controlled time-dependent or oscillatory extensional flows. In this work, we study the dynamics of single polymers in large-amplitude oscillatory extension (LAOE) using a combination of experiments and Brownian dynamics (BD) simulations. Two-dimensional LAOE flow is generated using a feedback-controlled stagnation point device known as the Stokes trap, thereby generating an oscillatory planar extensional flow with alternating principal axes of extension and compression. Our results show that polymers experience periodic cycles of compression, reorientation, and extension in LAOE, and dynamics are generally governed by a dimensionless flow strength (Weissenberg number Wi) and dimensionless frequency (Deborah number De). Single molecule experiments are compared to BD simulations with and without intramolecular hydrodynamic interactions (HI) and excluded volume (EV) interactions, and good agreement is obtained across a range of parameters. Moreover, transient bulk stress in LAOE is determined from simulations using the Kramers relation, which reveals interesting and unique rheological signatures for this time-dependent flow. We further construct a series of single polymer stretch-flow rate curves (defined as single molecule Lissajous curves) as a function of Wi and De, and we observe qualitatively different dynamic signatures (butterfly, bow tie, arch, and line shapes) across the two-dimensional Pipkin space defined by Wi and De. Finally, polymer dynamics spanning from the linear to nonlinear response regimes are interpreted in the context of accumulated fluid strain in LAOE.

  9. Oscillatory synchrony as a mechanism of attentional processing.

    PubMed

    Gregoriou, Georgia G; Paneri, Sofia; Sapountzis, Panagiotis

    2015-11-11

    The question of how the brain selects which stimuli in our visual field will be given priority to enter into perception, to guide our actions and to form our memories has been a matter of intense research in studies of visual attention. Work in humans and animal models has revealed an extended network of areas involved in the control and maintenance of attention. For many years, imaging studies in humans constituted the main source of a systems level approach, while electrophysiological recordings in non-human primates provided insight into the cellular mechanisms of visual attention. Recent technological advances and the development of sophisticated analytical tools have allowed us to bridge the gap between the two approaches and assess how neuronal ensembles across a distributed network of areas interact in visual attention tasks. A growing body of evidence suggests that oscillatory synchrony plays a crucial role in the selective communication of neuronal populations that encode the attended stimuli. Here, we discuss data from theoretical and electrophysiological studies, with more emphasis on findings from humans and non-human primates that point to the relevance of oscillatory activity and synchrony for attentional processing and behavior. These findings suggest that oscillatory synchrony in specific frequencies reflects the biophysical properties of specific cell types and local circuits and allows the brain to dynamically switch between different spatio-temporal patterns of activity to achieve flexible integration and selective routing of information along selected neuronal populations according to behavioral demands. This article is part of a Special Issue entitled SI: Prediction and Attention.

  10. Oscillatory cellular patterns in three-dimensional directional solidification.

    PubMed

    Tourret, D; Debierre, J-M; Song, Y; Mota, F L; Bergeon, N; Guérin, R; Trivedi, R; Billia, B; Karma, A

    2015-10-01

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted onboard the International Space Station have allowed us to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 min. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (i.e., low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exists, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both

  11. Oscillatory surface relaxations in Ni, Al, and their ordered alloys

    SciTech Connect

    Chen, S.P.; Voter, A.F.; Srolovitz, D.J.

    1986-09-15

    Results from simulations of Ni, Al, Ni/sub 3/Al, and NiAl show long-range, oscillatory surface relaxations that decay exponentially into the bulk. Pure fcc Ni and Al have oscillation periods that are close to the nearest-neighbor distance, independent of crystal face. This is shown to be due to surface smoothing and steric effects. In Ni/sub 3/Al and NiAl, the surface planes are rippled, with the Ni-Ni and Al-Al interlayer spacings oscillating 180/sup 0/ out of phase. Very good agreement between our results and experimentally measured atomic relaxations is obtained.

  12. In situ observation of oscillatory growth of bismuth nanoparticles.

    PubMed

    Xin, Huolin L; Zheng, Haimei

    2012-03-14

    We study the growth of Bi nanoparticles in an engineered precursor-scarce environment in a liquid cell at an elevated temperature (180 °C) using transmission electron microscopy. Observation reveals dynamics of oscillatory growth of individual nanoparticles, pairwise Ostwald ripening and anti-Ostwald ripening and a global collective oscillation. The experimental results suggest a mass-transport zone is present around each particle, which couples to the observed growth kinetics. This study shed light on a new route for system engineering to reverse particle coursing by Ostwald ripening.

  13. Efficient implementation of essentially non-oscillatory shock capturing schemes

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Osher, Stanley

    1987-01-01

    In the computation of discontinuous solutions of hyperbolic conservation laws, TVD (total-variation-diminishing), TVB (total-variation-bounded) and the recently developed ENO (essentially non-oscillatory) schemes have proven to be very useful. In this paper two improvements are discussed: a simple TVD Runge-Kutta type time discretization, and an ENO construction procedure based on fluxes rather than on cell averages. These improvements simplify the schemes considerably -- especially for multi-dimensional problems or problems with forcing terms. Preliminary numerical results are also given.

  14. Oscillatory cellular patterns in three-dimensional directional solidification

    SciTech Connect

    Tourret, D.; Debierre, J. -M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guerin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-09-11

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is

  15. Oscillatory cellular patterns in three-dimensional directional solidification

    DOE PAGESBeta

    Tourret, D.; Debierre, J. -M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guerin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-09-11

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelatedmore » at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global

  16. Oscillatory nonhmic current drive for maintaining a plasma current

    DOEpatents

    Fisch, Nathaniel J.

    1986-01-01

    Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  17. Oscillatory nonohomic current drive for maintaining a plasma current

    DOEpatents

    Fisch, N.J.

    1984-01-01

    Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  18. Adaptive wavelet-based recognition of oscillatory patterns on electroencephalograms

    NASA Astrophysics Data System (ADS)

    Nazimov, Alexey I.; Pavlov, Alexey N.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Sitnikova, Evgenija Y.

    2013-02-01

    The problem of automatic recognition of specific oscillatory patterns on electroencephalograms (EEG) is addressed using the continuous wavelet-transform (CWT). A possibility of improving the quality of recognition by optimizing the choice of CWT parameters is discussed. An adaptive approach is proposed to identify sleep spindles (SS) and spike wave discharges (SWD) that assumes automatic selection of CWT-parameters reflecting the most informative features of the analyzed time-frequency structures. Advantages of the proposed technique over the standard wavelet-based approaches are considered.

  19. Oscillatory behaviour in Type IA FBG: ruling out chemical complexity

    NASA Astrophysics Data System (ADS)

    Simpson, George; Kalli, Kyriacos; Canning, John; Lacraz, Amedee

    2015-09-01

    Type IA FBG are regenerated gratings that appear in hydrogenated germanosilicate fibre of all types during prolonged UV exposure. The gratings are characterised by a large Bragg wavelength shift and a concomitant increase in the mean fibre core index. Modulated index changes are complex by comparison and significantly weaker, often characterised by oscillatory growth behaviour. Low thermal stability of Type IA gratings suggests a possible chemical role similar to thermally processed optical fibres where autocatalysis has been observed. We show that GeOH and SiOH formation are not out-of-phase and follow each other, with no evidence of autocatalysis, ruling out a chemical origin.

  20. Oscillatory dynamics in nanocavities with noninstantaneous Kerr response

    SciTech Connect

    Armaroli, Andrea; Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano; Rossi, Alfredo de; Combrie, Sylvain

    2011-11-15

    We investigate the impact of a finite response time of Kerr nonlinearities over the onset of spontaneous oscillations (self-pulsing) occurring in a nanocavity. The complete characterization of the underlying Hopf bifurcation in the full parameter space allows us to show the existence of a critical value of the response time and to envisage different regimes of competition with bistability. The transition from a stable oscillatory state to chaos is found to occur only in cavities which are detuned far off-resonance, which turns out to be mutually exclusive with the region where the cavity can operate as a bistable switch.

  1. Oscillatory tank-treading motion of erythrocytes in shear flows

    PubMed Central

    Dodson, W. R.; Dimitrakopoulos, P.

    2013-01-01

    In this paper, we investigate the oscillatory dynamics of the tank-treading motion of healthy human erythrocytes in shear flows with capillary number Ca = O(1) and small to moderate viscosity ratios 0.01 ≤ λ ≤ 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4 to 600 mPa s) and shear flow rates (2 to 560 s−1), and match those used in ektacytometry systems. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically. In addition, the flow rate increase dampens the oscillatory erythrocyte inclination but not its lengths oscillations (which show relative variations of about 5–8%). For a given flow rate, as the viscosity ratio increases, the erythrocyte length L contracts while its depth W increases (i.e. the cell becomes less deformed) with small decrease in the lengths variations. The average orientation angle of the erythrocyte shows a significant decrease with the viscosity ratio as does the angle oscillation while the oscillation period increases. These trends continue in higher viscosity ratios resulting eventually in the transition from a (weakly oscillatory) tank-treading motion to a tumbling motion. Our computations show that the erythrocyte width S, which exists in the shear plane, is practically invariant in time, capillary number and viscosity ratio, and corresponds to a real cell thickness of about 2.5 μm. Comparison of our computational results with the predictions of (low degree-of-freedom) theoretical models and experimental findings, suggests that the energy dissipation due to the shape-memory effects is more significant than the energy dissipation due to the membrane viscosity. Our work shows that the oscillatory tank-treading motion can account for more than 50% of the variations found in ektacytometry systems; thus, researchers who wish to study inherent

  2. Oscillatory flow in a cone-and-plate bioreactor.

    PubMed

    Chung, C A; Tzou, M R; Ho, R W

    2005-08-01

    Motivated by biometric applications, we analyze oscillatory flow in a cone-and-plate geometry. The cone is rotated in a simple harmonic way on a stationary plate. Based on assuming that the angle between the cone and plate is small, we describe the flow analytically by a perturbation method in terms of two small parameters, the Womersley number and the Reynolds number, which account for the influences of the local acceleration and centripetal force, respectively. Working equations for the shear stresses induced both by laminar primary and secondary flows on the plate surface are presented. PMID:16121530

  3. Bray-Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Stanisavljev, Dragomir R.; Velikić, Zoran; Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C.

    2014-09-01

    Oscillatory Bray-Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60-110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.

  4. Interhemispheric Synchronization of Oscillatory Neuronal Responses in Cat Visual Cortex

    NASA Astrophysics Data System (ADS)

    Engel, Andreas K.; Konig, Peter; Kreiter, Andreas K.; Singer, Wolf

    1991-05-01

    Neurons in area 17 of cat visual cortex display oscillatory responses that can synchronize across spatially separate columns in a stimulus-specific way. Response synchronization has now been shown to occur also between neurons in area 17 of the right and left cerebral hemispheres. This synchronization was abolished by section of the corpus callosum. Thus, the response synchronization is mediated by corticocortical connections. These data are compatible with the hypothesis that temporal synchrony of neuronal discharges serves to bind features within and between the visual hemifields.

  5. Oscillatory tank-treading motion of erythrocytes in shear flows.

    PubMed

    Dodson, W R; Dimitrakopoulos, P

    2011-07-01

    In this paper, we investigate the oscillatory dynamics of the tank-treading motion of healthy human erythrocytes in shear flows with capillary number Ca = O(1) and small to moderate viscosity ratios 0.01 ≤ λ ≤ 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4-600 m Pa s) and shear flow rates (2-560 s(-1)), and match those used in ektacytometry systems. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically. In addition, the flow rate increase dampens the oscillatory erythrocyte inclination but not its length oscillations (which show relative variations of about 5-8%). For a given flow rate, as the viscosity ratio increases, the erythrocyte length L contracts while its depth W increases (i.e., the cell becomes less deformed) with a small decrease in the length variations. The average orientation angle of the erythrocyte shows a significant decrease with the viscosity ratio as does the angle oscillation while the oscillation period increases. These trends continue in higher viscosity ratios resulting eventually in the transition from a (weakly oscillatory) tank-treading motion to a tumbling motion. Our computations show that the erythrocyte width S, which exists in the shear plane, is practically invariant in time, capillary number, and viscosity ratio, and corresponds to a real cell thickness of about 2.5 μm. Comparison of our computational results with the predictions of (low degree-of-freedom) theoretical models and experimental findings, suggests that the energy dissipation due to the shape-memory effects is more significant than the energy dissipation due to the membrane viscosity. Our work shows that the oscillatory tank-treading motion can account for more than 50% of the variations found in ektacytometry systems; thus, researchers who wish to study inherent

  6. Oscillatory cellular patterns in three-dimensional directional solidification

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Debierre, J.-M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guérin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-10-01

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted onboard the International Space Station have allowed us to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 min. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (i.e., low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exists, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both

  7. Oscillatory cellular patterns in three-dimensional directional solidification.

    PubMed

    Tourret, D; Debierre, J-M; Song, Y; Mota, F L; Bergeon, N; Guérin, R; Trivedi, R; Billia, B; Karma, A

    2015-10-01

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted onboard the International Space Station have allowed us to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 min. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (i.e., low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exists, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both

  8. Dynamical quorum sensing and synchronization in collections of excitable and oscillatory catalytic particles

    NASA Astrophysics Data System (ADS)

    Tinsley, M. R.; Taylor, A. F.; Huang, Z.; Wang, F.; Showalter, K.

    2010-06-01

    We present experimental studies of interacting excitable and oscillatory catalytic particles in well-stirred and spatially distributed systems. A number of distinct paths to synchronized oscillatory behavior are described. We present an example of a Kuramoto type transition in a well-stirred system with a collective rhythm emerging on increasing the number density of oscillatory particles. Groups of spatially distributed oscillatory particles become entrained to a common frequency by organizing centers. Quorum sensing type transitions are found in populations of globally and locally coupled excitable particles, with a sharp transition from steady state to fully synchronized behavior at a critical density or group size.

  9. VINETA II: a linear magnetic reconnection experiment.

    PubMed

    Bohlin, H; Von Stechow, A; Rahbarnia, K; Grulke, O; Klinger, T

    2014-02-01

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

  10. VINETA II: A linear magnetic reconnection experiment

    SciTech Connect

    Bohlin, H. Von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.

    2014-02-15

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

  11. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits.

    PubMed

    Gérard, Claude; Goldbeter, Albert

    2010-12-01

    We previously proposed an integrated computational model for the network of cyclin-dependent kinases (Cdks) that controls the dynamics of the mammalian cell cycle [C. Gérard and A. Goldbeter, "Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle," Proc. Natl. Acad. Sci. U.S.A. 106, 21643 (2009)]. The model contains four Cdk modules regulated by reversible phosphorylation, Cdk inhibitors, protein synthesis or degradation, and the balance between antagonistic effects of the tumor suppressor pRB and the transcription factor E2F. Increasing the level of a growth factor above a critical threshold triggers the transition from a quiescent, stable steady state to self-sustained oscillations in the Cdk network. These oscillations correspond to the repetitive, transient activation of cyclin D/Cdk4-6 in G1, cyclin E/Cdk2 at the G1/S transition, cyclin A/Cdk2 in S and at the S/G2 transition, and cyclin B/Cdk1 at the G2/M transition. This periodic, ordered activation of the various cyclin/Cdk complexes can be associated with cell proliferation. The multiplicity of feedback loops within the Cdk network is such that it contains at least four distinct circuits capable of producing oscillations. The tight coupling of these oscillatory circuits generally results in simple periodic behavior associated with repetitive cycles of mitosis or with endoreplication. The latter corresponds to multiple passages through the phase of DNA replication without mitosis. We show here that, as a result of the interaction between the multiple oscillatory circuits, particularly when attenuating the strength of the oscillatory module involving cyclin B/Cdk1, the model for the Cdk network can also produce complex periodic oscillations, quasiperiodic oscillations, and chaos. Numerical simulations based on limited explorations in parameter space nevertheless suggest that these complex modes of oscillatory behavior remain less common than the evolution to simple periodic

  12. Propulsion of micro-structures in Oscillatory Stokes Flow

    NASA Astrophysics Data System (ADS)

    Jo, Ikhee; Huang, Yangyang; Zimmerman, Walter; Kanso, Eva

    2015-11-01

    Drug delivery often necessitates specific site-targeting within the human body. The use of micro and/or nano devices swimming through the bloodstream provides an attractive mechanism for targeted drug targeting, however the design and practical implementation of such devices remain very challenging. Inspired by flapping wings, we construct a two-dimensional wedge-like device, consisting of two links connected by a linear torsional spring and released in an oscillatory Stokes flow. We vary the stiffness and rest angle of the linear spring and the oscillation amplitude and frequency of the background flow to explore the behavior of the device. We find that the device achieves a net displacement, or propulsion, in oscillatory flows even when no elastic energy is stored initially, thus breaking Purcell's scallop's theorem. More importantly, the vehicle tends to align with the background flow under perturbations. We conclude by commenting on how to control the parameters of the device and the fluid to achieve desired behavior of the device. These findings may have significant implications on the design of micro devices in viscous fluids.

  13. Anxiety, depression, and oscillatory dynamics in a social interaction model.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Rimareva, Julia M

    2016-08-01

    Although anxiety and depression frequently co-occur and share a substantial part of genetic vulnerability and other risk factors, they are distinct disorders and their effect on social functioning and accompanying cognitive and emotional processing could be different. In this study, in a nonclinical sample, we compared effects of trait anxiety and depressive symptoms on oscillatory dynamics accompanying perception of emotional facial expressions in the context of social interactions. Anxiety was associated with a longer reaction time, with preference of avoidance behavior, and with enhanced event-related alpha desynchronization and diminished theta synchronization. Depression did not show significant behavioral effects and was associated with diminished alpha desynchronization and augmented delta and theta synchronization in prefrontal cortical regions. Thus, in spite of frequent comorbidity, anxiety and depression show opposite patterns of associations with oscillatory dynamics accompanying social interactions. These patterns imply that anxiety is associated with hyper-reactive attentional system, whereas depression show signs of diminished cognitive reactivity. Depression-related enhancement of low-frequency synchronization in prefrontal cortex may reflect a compensatory mechanism of cognitive and emotional upregulation, which depression-prone individuals engage in the process of social interactions.

  14. Human oscillatory activity in near-miss events.

    PubMed

    Alicart, Helena; Cucurell, David; Mas-Herrero, Ernest; Marco-Pallarés, Josep

    2015-10-01

    Near-miss events are situations in which an action yields a negative result but is very close to being successful. They are known to influence behavior, especially in gambling scenarios. Previous neuroimaging studies have described an 'anomalous' activity of brain reward areas following these events. The goal of the present research was to study electrophysiological correlates of near-misses in the expectation and outcome phases. Electroencephalography was recorded while participants were playing a simplified version of a slot machine. Four possible outcomes (gain, near-miss, loss and no-information) were presented in a pseudorandom order to ensure fixed proportions. Results from the time-frequency analysis for the theta (4-8 Hz), alpha (9-13 Hz), low beta (15-22 Hz) and beta-gamma (25-35 Hz) frequency-bands presented larger power increases for wins and near-misses compared with losses. In the anticipation phase, power changes were lower than in the resolution phase. The current results are in agreement with previous studies showing that near-miss events recruit brain areas of the reward network. Likewise, the oscillatory activity in near-misses is very similar to the one elicited in the gain condition. In addition, present findings suggest that oscillatory activity in the expectation phase does not play a crucial role in near-miss events.

  15. Asymptotically Correct Finite Difference Schemes for Highly Oscillatory ODEs

    SciTech Connect

    Arnold, Anton; Geier, Jens

    2010-09-30

    We are concerned with the numerical integration of ODE-initial value problems of the form {epsilon}{sup 2{phi}}{sub xx}+a(x){phi} = 0 with given a(x){>=}a{sub 0}>0 in the highly oscillatory regime 0<{epsilon}(appearing as a stationary Schroedinger equation, e.g.). In two steps we derive an accurate finite difference scheme that does not need to resolve each oscillation: With a WKB-ansatz the dominant oscillations are ''transformed out'', yielding a much smoother ODE. For the resulting oscillatory integrals we devise an asymptotic expansion both in {epsilon} and h. The resulting scheme typically has a step size restriction of h = o({radical}({epsilon})). If the phase of the WKB-transformation can be computed explicitly, then the scheme is asymptotically correct with an error bound of the order o({epsilon}{sup 3}h{sup 2}). As an application we present simulations of a 1D-model for ballistic quantum transport in a MOSFET (metal oxide semiconductor field-effect transistor).

  16. Yielding of colloidal gels under steady and oscillatory shear

    NASA Astrophysics Data System (ADS)

    Petekidis, George; Moghimi, Esmaeel; Koumakis, Nick; Forth Team

    2015-03-01

    The structural and rheological properties of intermediate volume fraction colloid polymer gels are examined during and after steady and oscillatory shear flow using rheometry, confocal microscopy, light scattering and Brownian Dynamics simulations. Our main objective is to rationalize the microscopic mechanisms through which one can tune the mechanical properties of such metastable colloidal gels by imposing different types of external shear and flow. Experimentally, the gels consist of model hard sphere particle dispersions of φ = 0.44 with the addition of non-adsorbing linear chains, while BD simulations are conducted for hard spheres with the superposition of an AO potential for depletion attractions. Structural analysis shows that variation of the applied shear rate produces strong changes in the structure of the gels both when under shear and during gel reformation at cessation. Larger rates are characterized by disperse particles and the total breakage of structures at rest, which after cessation evolve with time into strong solids with relatively homogeneous structures. However, smaller rates show large inhomogeneous structures under flow, which do not evolve after cessation and additionally exhibit reduced elasticity and as such are weaker solids. Furthermore oscillatory shear is far more efficient than steady shear creating gels with stronger differences in their elastic modulus. Thus by tuning the way a gel is sheared, one may vary the final strength and structure of the resulting gel. Work in collaboration with R. Besseling, W. C. K. Poon and J. F. Brady

  17. Oscillatory correlates of moral decision-making: Effect of personality.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E

    2016-01-01

    The role of emotion in moral decision-making is still a matter of debate. Greene, Sommerville, Nystrom, Darley, and Cohen (2001) argue that 'personal' moral judgments are driven by emotional responses, while 'impersonal' judgments are largely driven by cognitive processes. In this study, oscillatory correlates of decision-making were compared in moral personal, moral impersonal, and nonmoral conditions, as well as in trials associated with utilitarian (i.e., favoring the 'greater good' over individual rights) and non-utilitarian choices. Event-related synchronization in delta and theta bands was greater in the right temporal lobe in personal than in both nonmoral and impersonal moral condition. Graph-theoretical analysis of connectivity patterns showed the prominent role of the orbitofrontal and cingulate cortices in personal moral decision-making, implying greater emotional and self-processing. Higher conscientiousness and intellect and lower behavioral activation were associated with greater difference in oscillatory responses between utilitarian and non-utilitarian choices in personal than in impersonal condition, indicating that sensitivity to moral issues and the ability to grasp the nuances of moral situation are essential for understanding the implications of utilitarian choices in personal and impersonal conditions. PMID:26167937

  18. Propulsion of a microsubmarine using a thermally oscillatory approach

    NASA Astrophysics Data System (ADS)

    Qiao, Lei; Luo, Cheng

    2013-10-01

    In this paper, motivated by the driving mechanism of a putt-putt toy boat, we explore the feasibility to propel a microsubmarine using a thermally oscillatory approach, which only requires a simple design and does not involve any complicated propulsive systems. We investigate the design, fabrication, actuation and horizontal motions of the corresponding microsubmarines. Based on the understanding gained through preliminary tests on two manually fabricated putt-putt boats, we designed and fabricated the prototype of a microsubmarine. Similar to a putt-putt boat, the prototype also uses a thermally oscillatory process for propulsion. In a cyclic period of this process, due to the expansion and shrinkage of a vapor bubble inside the reservoir of the submarine, liquid is first ejected outside and then sucked into the reservoir. Due to the difference in liquid flow directions between ejection and suction stages, a thrust is produced to propel the submarine. At an applied voltage of 16 V and pulse frequency of 100 Hz, the submarine was found to have the highest speed of 1.8 mm s-1 and longest travel distance of 12.6 mm. The corresponding thrust was estimated to be 67.6 nN.

  19. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  20. Oscillatory shearing behavior of rocket leaves powder incorporated dough

    NASA Astrophysics Data System (ADS)

    Almusallam, Abdulwahab Salem; Ahmed, Jasim; Nahar, Shamsun; Chacko, Siby

    2016-05-01

    Dough blended with rocket leaves powder was subjected to small and large amplitude oscillatory shears. Small amplitude oscillatory shear data were fitted to a discrete relaxation model of elastic solids and to a critical gel model. The small amplitude relaxation spectrum was thereafter used to calculate the LAOS predictions of various large deformation models. The LAOS theoretical calculations using the Phan-Thien model showed good agreement with the first harmonic stress data, and only qualitative agreement with the third and the fifth harmonic stress values. Lissajous curves showed dissimilarity in shape between the experimental data and Phan-Thien model. The network model of Sim et al. (2003). Did not have the butterfly shape displayed in the Phan-Thien model, but it provided a worse fit to stress harmonics than the Phan-Thien model. An improved damage function was proposed, where time effect on network damage was taken into consideration, and fits to stress harmonics and to Lissajous stress-strain curves were significantly improved.

  1. Oscillatory correlates of moral decision-making: Effect of personality.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E

    2016-01-01

    The role of emotion in moral decision-making is still a matter of debate. Greene, Sommerville, Nystrom, Darley, and Cohen (2001) argue that 'personal' moral judgments are driven by emotional responses, while 'impersonal' judgments are largely driven by cognitive processes. In this study, oscillatory correlates of decision-making were compared in moral personal, moral impersonal, and nonmoral conditions, as well as in trials associated with utilitarian (i.e., favoring the 'greater good' over individual rights) and non-utilitarian choices. Event-related synchronization in delta and theta bands was greater in the right temporal lobe in personal than in both nonmoral and impersonal moral condition. Graph-theoretical analysis of connectivity patterns showed the prominent role of the orbitofrontal and cingulate cortices in personal moral decision-making, implying greater emotional and self-processing. Higher conscientiousness and intellect and lower behavioral activation were associated with greater difference in oscillatory responses between utilitarian and non-utilitarian choices in personal than in impersonal condition, indicating that sensitivity to moral issues and the ability to grasp the nuances of moral situation are essential for understanding the implications of utilitarian choices in personal and impersonal conditions.

  2. Oscillatory characteristics of metallic nanoparticles inside lipid nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, Fatemeh; Ansari, Reza; Darvizeh, Mansour

    2015-12-01

    This study is concerned with the oscillatory behavior of metallic nanoparticles, and in particular silver and gold nanoparticles, inside lipid nanotubes (LNTs) using the continuum approximation along with the 6-12 Lennard-Jones (LJ) potential function. The nanoparticle is modeled as a dense sphere and the LNT is assumed to be comprised of six layers including two head groups, two intermediate layers and two tail groups. To evaluate van der Waals (vdW) interactions, analytical expressions are first derived through undertaking surface and volume integrals which are then validated by a fully numerical scheme based on the differential quadrature (DQ) technique. Using the actual force distribution between the two interacting molecules, the equation of motion is directly solved utilizing the Runge-Kutta numerical integration scheme to arrive at the time history of displacement and velocity of the inner core. Also, a semi-analytical expression incorporating both geometrical parameters and initial conditions is introduced for the precise evaluation of oscillation frequency. A comprehensive study is conducted to gain an insight into the influences of nanoparticle radius, LNT length, head and tail group thicknesses and initial conditions on the oscillatory behavior of the metallic nanoparticles inside LNTs. It is found that the escape velocity and oscillation frequency of silver nanoparticles are higher than those of gold ones. It is further shown that the oscillation frequency is less affected by the tail group thickness when compared to the head group thickness.

  3. Unconscious errors enhance prefrontal-occipital oscillatory synchrony.

    PubMed

    Cohen, Michael X; van Gaal, Simon; Ridderinkhof, K Richard; Lamme, Victor A F

    2009-01-01

    The medial prefrontal cortex (MFC) is critical for our ability to learn from previous mistakes. Here we provide evidence that neurophysiological oscillatory long-range synchrony is a mechanism of post-error adaptation that occurs even without conscious awareness of the error. During a visually signaled Go/No-Go task in which half of the No-Go cues were masked and thus not consciously perceived, response errors enhanced tonic (i.e., over 1-2 s) oscillatory synchrony between MFC and occipital cortex (OCC) leading up to and during the subsequent trial. Spectral Granger causality analyses demonstrated that MFC --> OCC directional synchrony was enhanced during trials following both conscious and unconscious errors, whereas transient stimulus-induced occipital --> MFC directional synchrony was independent of errors in the previous trial. Further, the strength of pre-trial MFC-occipital synchrony predicted individual differences in task performance. Together, these findings suggest that synchronous neurophysiological oscillations are a plausible mechanism of MFC-driven cognitive control that is independent of conscious awareness. PMID:19956401

  4. In silico evolution of oscillatory dynamics in biochemical networks

    NASA Astrophysics Data System (ADS)

    Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2015-03-01

    We are studying in silico evolution of complex, oscillatory network dynamics within the framework of a minimal mutational model of protein-protein interactions. In our model we consider two different types of proteins, kinase (activator) and phosphatase(inhibitor). In our model. each protein can either be phosphorylated(active) or unphospphorylated (inactive), represented by binary strings. Active proteins can modify their target based on the Michaelis-Menten kinetics of chemical equation. Reaction rate constants are directly related to sequence dependent protein-protein interaction energies. This model can be stuided for non-trivial behavior e.g. oscillations, chaos, multiple stable states. We focus here on biochemical oscillators; some questions we will address within our framework include how the oscillatory dynamics depends on number of protein species, connectivity of the network, whether evolution can readily converge on a stable oscillator if we start with random intitial parameters, neutral evolution with additional protein components and general questions of robustness and evolavability.

  5. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    PubMed

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity.

  6. 3D LDV Measurements in Oscillatory Boundary Layers

    NASA Astrophysics Data System (ADS)

    Mier, J. M.; Garcia, M. H.

    2012-12-01

    The oscillatory boundary layer represents a particular case of unsteady wall-bounded flows in which fluid particles follow a periodic sinusoidal motion. Unlike steady boundary layer flows, the oscillatory flow regime and bed roughness character change in time along the period for every cycle, a characteristic that introduces a high degree of complexity in the analysis of these flows. Governing equations can be derived from the general Navier-Stokes equations for the motion of fluids, from which the exact solution for the laminar oscillatory boundary layer is obtained (also known as the 2nd Stokes problem). No exact solution exists for the turbulent case, thus, understanding of the main flow characteristics comes from experimental work. Several researchers have reported experimental work in oscillatory boundary layers since the 1960's; however, larger scale facilities and the development of newer measurement techniques with improved temporal and spatial resolution in recent years provides a unique opportunity to achieve a better understanding about this type of flows. Several experiments were performed in the Large Oscillatory Water and Sediment Tunnel (LOWST) facility at the Ven Te Chow Hydrosystems Laboratory, for a range of Reynolds wave numbers between 6x10^4 < Rew < 6x10^6 over a flat and smooth bottom. A 3D Laser Doppler Velocimetry (LDV) system was used to measure instantaneous flow velocities with a temporal resolution up to ~ 1,000 Hz. It was mounted on a 3-axis traverse with a spatial resolution of 0.01 mm in all three directions. The closest point to the bottom was measured at z = 0.2 mm (z+ ≈ 4), which allowed to capture boundary layer features with great detail. In order to achieve true 3D measurements, 2 probes were used on a perpendicular configuration, such that u and w components were measured from a probe on the side of the flume and v component was measured from a probe pointing down through and access window on top of the flume. The top probe

  7. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    PubMed Central

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  8. Diffusive feed of reactants and Hopf bifurcations in an oscillatory reaction-diffusion model

    NASA Astrophysics Data System (ADS)

    von Haeften, B.; Izús, G. G.

    1999-01-01

    We study an oscillatory chemical model (the "Brusselator") with the aim of analyzing the effect of a controlled diffusive feed of reactants in the appearance of chemical oscillations. The reflectivities of the boundary, which adjust the external fluxes, act as control parameters capable to alter the attractive basin of the thermodynamic branch, leading to oscillatory behavior.

  9. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  10. Secondary Flow Augmentation during Intermittent Oscillatory Flow in Model Human Central Airways

    NASA Astrophysics Data System (ADS)

    Tanaka, Gaku; Oka, Kotaro; Tanishita, Kazuo

    The efficiency of axial gas dispersion during ventilation with high-frequency oscillations (HFO) can be improved by manipulating the oscillatory flow waveform such that intermittent oscillatory flow occurs. To clarify the augmentation of axial gas transfer during intermittent oscillatory flow, we measured the axial and secondary velocity profiles during intermittent oscillatory flow through a model human central airway. We used a rigid model of human airways consisting of asymmetrical bifurcations up to third generation. Velocities in the axial and radial directions were measured with two-color laser-Doppler velocimetry. Secondary flow was accelerated at the beginning of the stationary period, particularly in the trachea, which resulted in enhanced gas transport during intermittent oscillatory flow.

  11. Explicit solutions of normal form of driven oscillatory systems

    NASA Astrophysics Data System (ADS)

    Tsarouhas, George E.; Ross, John

    1987-12-01

    We consider an oscillatory dissipative system driven by external sinusoidal perturbations of given amplitude Q and frequency ω. The kinetic equations are transformed to normal form and solved for small Q, near a Hopf bifurcation to oscillations in the autonomous system, for ratios ωn to the autonomous frequency of irrational so that the response of the system is quasiperiodic. The system is assumed to have either two variables or is adequately described by two variables near the bifurcation, and we obtain explicit solutions for this general case. The equations show interesting effects of external perturbations on limit cycles, both stable and unstable. Next we treat a specific model (Brusselator) and show by comparison with results of numerical integration that the theory predicts well the shape of the perturbed limit cycle, its variation with changes in constraints and parameters, and the point of transition from quasiperiodic to periodic response.

  12. Waves spontaneously generated by heterogeneity in oscillatory media.

    PubMed

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-05-04

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.

  13. Collective Decision-Making and Oscillatory Behaviors in Cell Populations

    NASA Astrophysics Data System (ADS)

    Fujimoto, Koichi; Sawai, Satoshi

    2013-12-01

    Many examples of oscillations are known in multicellular dynamics, however how properties of individual cells can account for the collective rhythmic behaviors at the tissue level remain elusive. Recently, studies in chemical reactions, synthetic gene circuits, yeast and social amoeba Dictyostelium have greatly enhanced our understanding of collective oscillations in cell populations. From these relatively simple systems, a unified view of how excitable and oscillatory regulations could be tuned and coupled to give rise to tissue-level oscillations is emerging. This chapter reviews recent progress in these and other experimental systems and highlight similarities and differences. We will show how group-level information can be encoded in the oscillations depending on degree of autonomy of single cells and discuss some of their possible biological roles.

  14. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  15. Oscillatory Flows Induced by Swimming Microorganisms in Two-dimensions

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey S.; Johnson, Karl A.; Gollub, J. P.

    2010-11-01

    We present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga Chlamydomonas reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The phase-resolved velocity field reveals complex time-dependent flow structures, which evolve throughout the beat cycle of the organism, and the fluid velocity scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields via the viscous dissipation and scales with the square of the swimmer speed. The peak power is about 15 fW, and the dissipation per cycle is more than four times what steady swimming would require. These observations carry important implications for the interpretation and modeling of transport processes, locomotion, and flagellar mechanics.

  16. Resonances and oscillatory behavior near multi-species plasma equilibria

    SciTech Connect

    Núñez, Manuel

    2014-03-15

    We consider dynamic multi-species plasma equilibria whose variables depend on a single spatial coordinate and linear perturbations of these. The linearized system may be reduced to a second-order one satisfied by the respective fluid streamfunctions. For the two-species case, the electron mass is a parameter small enough for a WKB asymptotic analysis to be justified. It turns out that the points where either the ion or electron equilibrium velocity equals the ratio between the temporal and transversal frequencies of the perturbation are turning or singular points of the system, connecting exponentially increasing or decreasing solutions to oscillatory ones. The crucial role of singular points in the balance between the different contributions to the electron kinetic energy is explored.

  17. Reversible plastic events during oscillatory deformation of amorphous solids.

    PubMed

    Priezjev, Nikolai V

    2016-01-01

    The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that become comparable with the system size near the yield strain. Along with reversible displacements there exist a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements during one cycle increases, which leads to permanent structural relaxation of the material.

  18. Oscillatory burning of solid propellants including gas phase time lag.

    NASA Technical Reports Server (NTRS)

    T'Ien, J. S.

    1972-01-01

    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  19. Oscillatory convection and limitations of the Boussinesq approximation

    NASA Astrophysics Data System (ADS)

    Wood, T. S.; Bushby, P. J.

    2016-09-01

    We determine the asymptotic conditions under which the Boussinesq approximation is valid for oscillatory convection in a rapidly rotating fluid. In the astrophysically relevant parameter regime of small Prandtl number, we show that the Boussinesq prediction for the onset of convection is valid only under much more restrictive conditions than those that are usually assumed. In the case of an ideal gas, we recover the Boussinesq results only if the ratio of the domain height to a typical scale height is much smaller than the Prandtl number. This requires an extremely shallow domain in the astrophysical parameter regime. Other commonly-used "sound-proof" approximations generally perform no better than the Boussinesq approximation. The exception is a particular implementation of the pseudo-incompressible approximation, which predicts the correct instability threshold beyond the range of validity of the Boussinesq approximation.

  20. Asymptotic expansions for oscillatory integrals using inverse functions.

    SciTech Connect

    Lyness, J. N.; Lottes, J. W.

    2009-05-01

    We treat finite oscillatory integrals of the form {integral}{sub a}{sup b} F(x)e{sup ikG(x)} dx in which both F and G are real on the real line, are analytic over the open integration interval, and may have algebraic singularities at either or both interval end points. For many of these, we establish asymptotic expansions in inverse powers of k. No appeal to the theories of stationary phase or steepest descent is involved. We simply apply theory involving inverse functions and expansions for a Fourier coefficient {integral}{sub a}{sup b} {phi}(t)e{sup ikt} dt. To this end, we have assembled several results involving inverse functions. Moreover, we have derived a new asymptotic expansion for this integral, valid when {phi}(t) = {Sigma}a{sub j}t{sup {sigma}}j, -1 < {sigma}{sub 1} < {sigma}{sub 2} < {hor_ellipsis}.

  1. Waves spontaneously generated by heterogeneity in oscillatory media

    PubMed Central

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-01-01

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated. PMID:27142730

  2. Model of transient oscillatory synchronization in the locust antennal lobe.

    PubMed

    Bazhenov, M; Stopfer, M; Rabinovich, M; Huerta, R; Abarbanel, H D; Sejnowski, T J; Laurent, G

    2001-05-01

    Transient pairwise synchronization of locust antennal lobe (AL) projection neurons (PNs) occurs during odor responses. In a Hodgkin-Huxley-type model of the AL, interactions between excitatory PNs and inhibitory local neurons (LNs) created coherent network oscillations during odor stimulation. GABAergic interconnections between LNs led to competition among them such that different groups of LNs oscillated with periodic Ca(2+) spikes during different 50-250 ms temporal epochs, similar to those recorded in vivo. During these epochs, LN-evoked IPSPs caused phase-locked, population oscillations in sets of postsynaptic PNs. The model shows how alternations of the inhibitory drive can temporally encode sensory information in networks of neurons without precisely tuned intrinsic oscillatory properties.

  3. Minimum energy paths for optimal oscillatory movements of PUMA arm

    SciTech Connect

    Olgac, N.; Zhou, S.

    1988-08-01

    This paper employs a geometric approach in reducing the number of time-consuming iterations necessary for the numerical solution of an optimal energy consumption problem for small amplitude oscillatory motions of robot manipulators. A general objective function in joint space is given for the energy needs in the drives, and specific applications for a commercially available manipulator, Unimation-PUMA 560, are carried out by separating the manipulator motions into two parallel segments: arm and wrist. This process, in general, leads to a highly nonlinear and transcendental optimization problem. The geometric study is presented, and the shortened numerical optimization is carried out. For any given point in the workspace, optimal directions of oscillations and their corresponding energy levels are found. This information is translated into a map of minimum energy levels across the workspace. The map will comprise a section of an intelligent control mechanism of larger scope which is conceived for ultimate use in space and subsea robotic operations. 6 references.

  4. Diffusion of Brownian Particles under Oscillatory Shear Flow

    NASA Astrophysics Data System (ADS)

    Takikawa, Yoshinori; Orihara, Hiroshi

    2012-12-01

    Brownian motion has been investigated in oscillatory flows. A number of polystyrene spheres dispersed in water were traced with a confocal scanning laser microscope, and the time dependences of their coordinates were obtained. From the trajectories of the particles observed, mean-square displacements (MSDs) were calculated. We found that although the MSD in the vorticity direction is independent of the amplitude of shear strain, that of MSD in the flow direction increases as the amplitude of shear strain is increased, and that the effective diffusion constant depends on both the amplitude and initial phase of the applied sinusoidal shear strains. All experimental results are in good agreement with the theoretical results derived from the Langevin equation.

  5. Multigrid methods for differential equations with highly oscillatory coefficients

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  6. Oscillatory athermal quasistatic deformation of a model glass

    NASA Astrophysics Data System (ADS)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2013-08-01

    We report computer simulations of oscillatory athermal quasistatic shear deformation of dense amorphous samples of a three-dimensional model glass former. A dynamical transition is observed as the amplitude of the deformation is varied: For large values of the amplitude the system exhibits diffusive behavior and loss of memory of the initial conditions, whereas localization is observed for small amplitudes. Our results suggest that the same kind of transition found in driven colloidal systems is present in the case of amorphous solids (e.g., metallic glasses). The onset of the transition is shown to be related to the onset of energy dissipation. Shear banding is observed for large system sizes, without, however, affecting qualitative aspects of the transition.

  7. Carreau model for oscillatory blood flow in a tube

    NASA Astrophysics Data System (ADS)

    Tabakova, S.; Nikolova, E.; Radev, St.

    2014-11-01

    The analysis of the blood flow dynamics (hemodynamics) in tubes is crucial when investigating the rupture of different types of aneurysms. The blood viscosity nonlinear dependence on the flow shear rate creates complicated manifestations of the blood pulsations. Although a great number of studies exists, experimental and numerical, this phenomenon is still not very well understood. The aim of the present work is to propose a numerical model of the oscillatory blood flow in a tube on the basis of the Carreau model of the blood viscosity (nonlinear model with respect to the shear rate). The obtained results for the flow velocity and tangential stress on the tube wall are compared well with other authors' results.

  8. Reversible plastic events during oscillatory deformation of amorphous solids.

    PubMed

    Priezjev, Nikolai V

    2016-01-01

    The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that become comparable with the system size near the yield strain. Along with reversible displacements there exist a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements during one cycle increases, which leads to permanent structural relaxation of the material. PMID:26871146

  9. Dissolution of a Colloidal Particle in an Oscillatory Fluid Medium

    NASA Astrophysics Data System (ADS)

    Ye, Dezhuang; Li, Ji-Qin; Bogner, Robin; Fan, Tai-Hsi

    Understanding dissolution kinetics of a colloidal particle in an aqueous solution is of great importance in many pharmaceutical and biochemical applications. We present theoretical analysis of low Reynolds number transient dynamics and mass transfer of a dissolving spherical particle in a unidirectional oscillatory flow. The coupling of fluid flow and passive motion of the particle are resolved analytically, and the transient mass transfer associated with the oscillation of the particle is numerically computed. The flow patterns, diffusive and convective transport phenomena, and the dissolution kinetics under various saturation concentrations and flow conditions are characterized by the frequency parameter, Schmidt number, and Peclet number. The result severs as a basic case in determining the efficiency of drug dissolution or reconstitution that depends on various shaking methods.

  10. Some observations on the oscillatory behavior of carbon monoxide oxidation

    NASA Technical Reports Server (NTRS)

    Mccaffrey, B. J.; Berlad, A. L.

    1976-01-01

    The oscillatory behavior of the oxidation of carbon monoxide was experimentally studied in an attempt to further elucidate the reaction at low pressure. The phenomenon is observed as multiple explosions and involves successive flashes of light accompanying the slow reaction in a static system, including over 450 flashes in one case. Electronically excited hydroxyl radicals (water impurity) and carbon dioxide have been identified as components of the emission. The phase difference between the two was seen to be negligible. The nature of the temperature and pressure changes during a cycle indicates that the oscillation is purely kinetic rather than thermokinetic. A procedure is presented whereby sustained oscillations can be obtained for particular regions in the pressure-temperature plane, vessel surface pretreatments, and H2O-containing reactants.

  11. Waves spontaneously generated by heterogeneity in oscillatory media

    NASA Astrophysics Data System (ADS)

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-05-01

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.

  12. Oscillatory motion: quantum whistling in superfluid helium-4.

    PubMed

    Hoskinson, E; Packard, R E; Haard, Thomas M

    2005-01-27

    Fundamental considerations predict that macroscopic quantum systems such as superfluids and the electrons in superconductors will undergo oscillatory motion when forced through a small constriction. Here we induce these oscillations in superfluid helium-4 (4He) by pushing it through an array of nanometre-sized apertures. The oscillations, which are detected as an audible whistling sound, obey the so-called Josephson frequency relation and occur coherently among all the apertures. The discovery of this property in 4He at the relatively high temperature of 2 K (2,000 times higher than the temperature at which a related but different phenomenon occurs in 3He) may pave the way for a new class of practical rotation sensors of unprecedented precision. PMID:15674281

  13. Effectiveness of oscillatory gutter brushes in removing street sweeping waste.

    PubMed

    Vanegas-Useche, Libardo V; Abdel-Wahab, Magd M; Parker, Graham A

    2015-09-01

    In this paper, the novel concept of oscillatory gutter brushes of road sweepers is studied experimentally. Their effectiveness in removing different debris types is studied by means of a brushing test rig. The debris types dealt with are medium-size gravel, small and fine particles, wet thin debris, and compacted debris. The performance of two types of brushes, cutting and F128, under diverse operating conditions is investigated. The purpose of the tests is to ascertain whether brush oscillations superimposed onto brush rotation improve sweeping effectiveness. According to the results, brush oscillations seem to be useful for increasing brushing effectiveness in the case of bonded particles and wet thin debris, especially for bonded debris, but they seem to be of no value for other loosed debris. Also, appropriate values of brush penetration, sweeper speed, brush angle of attack, rotational speed, and frequency of brush speed oscillations, for the debris types studied are provided.

  14. Oscillatory EEG Correlates of Arithmetic Strategies: A Training Study

    PubMed Central

    Grabner, Roland H.; De Smedt, Bert

    2012-01-01

    There has been a long tradition of research on mathematics education showing that children and adults use different strategies to solve arithmetic problems. Neurophysiological studies have recently begun to investigate the brain correlates of these strategies. The existing body of data, however, reflect static end points of the learning process and do not provide information on how brain activity changes in response to training or intervention. In this study, we explicitly address this issue by training participants in using fact retrieval strategies. We also investigate whether brain activity related to arithmetic fact learning is domain-specific or whether this generalizes to other learning materials, such as the solution of figural-spatial problems. Twenty adult students were trained on sets of two-digit multiplication problems and figural-spatial problems. After the training, they were presented with the trained and untrained problems while their brain activity was recorded by means of electroencephalography (EEG). In both problem types, the training resulted in accuracies over 90% and significant decreases in solution times. Analyses of the oscillatory EEG data also revealed training effects across both problem types. Specifically, we observed training-related activity increases in the theta band (3–6 Hz) and decreases in the lower alpha band (8–10 Hz), especially over parietooccipital and parietal brain regions. These results provide the first evidence that a short-term fact retrieval training results in significant changes in oscillatory EEG activity. These findings further corroborate the role of the theta band in the retrieval of semantic information from memory and suggest that theta activity is sensitive to fact retrieval not only in mental arithmetic but also in other domains. PMID:23162495

  15. Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics.

    PubMed

    Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Schnitzler, Alfons; Dalal, Sarang S

    2016-01-01

    Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson's patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23-35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8-12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24-40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling demanding

  16. Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics

    PubMed Central

    Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Schnitzler, Alfons; Dalal, Sarang S.

    2016-01-01

    Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23–35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8–12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24–40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling

  17. Oscillatory EEG correlates of arithmetic strategies: a training study.

    PubMed

    Grabner, Roland H; De Smedt, Bert

    2012-01-01

    There has been a long tradition of research on mathematics education showing that children and adults use different strategies to solve arithmetic problems. Neurophysiological studies have recently begun to investigate the brain correlates of these strategies. The existing body of data, however, reflect static end points of the learning process and do not provide information on how brain activity changes in response to training or intervention. In this study, we explicitly address this issue by training participants in using fact retrieval strategies. We also investigate whether brain activity related to arithmetic fact learning is domain-specific or whether this generalizes to other learning materials, such as the solution of figural-spatial problems. Twenty adult students were trained on sets of two-digit multiplication problems and figural-spatial problems. After the training, they were presented with the trained and untrained problems while their brain activity was recorded by means of electroencephalography (EEG). In both problem types, the training resulted in accuracies over 90% and significant decreases in solution times. Analyses of the oscillatory EEG data also revealed training effects across both problem types. Specifically, we observed training-related activity increases in the theta band (3-6 Hz) and decreases in the lower alpha band (8-10 Hz), especially over parietooccipital and parietal brain regions. These results provide the first evidence that a short-term fact retrieval training results in significant changes in oscillatory EEG activity. These findings further corroborate the role of the theta band in the retrieval of semantic information from memory and suggest that theta activity is sensitive to fact retrieval not only in mental arithmetic but also in other domains.

  18. Extracting Independent Local Oscillatory Geophysical Signals by Geodetic Tropospheric Delay

    NASA Technical Reports Server (NTRS)

    Botai, O. J.; Combrinck, L.; Sivakumar, V.; Schuh, H.; Bohm, J.

    2010-01-01

    Zenith Tropospheric Delay (ZTD) due to water vapor derived from space geodetic techniques and numerical weather prediction simulated-reanalysis data exhibits non-linear and non-stationary properties akin to those in the crucial geophysical signals of interest to the research community. These time series, once decomposed into additive (and stochastic) components, have information about the long term global change (the trend) and other interpretable (quasi-) periodic components such as seasonal cycles and noise. Such stochastic component(s) could be a function that exhibits at most one extremum within a data span or a monotonic function within a certain temporal span. In this contribution, we examine the use of the combined Ensemble Empirical Mode Decomposition (EEMD) and Independent Component Analysis (ICA): the EEMD-ICA algorithm to extract the independent local oscillatory stochastic components in the tropospheric delay derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) over six geodetic sites (HartRAO, Hobart26, Wettzell, Gilcreek, Westford, and Tsukub32). The proposed methodology allows independent geophysical processes to be extracted and assessed. Analysis of the quality index of the Independent Components (ICs) derived for each cluster of local oscillatory components (also called the Intrinsic Mode Functions (IMFs)) for all the geodetic stations considered in the study demonstrate that they are strongly site dependent. Such strong dependency seems to suggest that the localized geophysical signals embedded in the ZTD over the geodetic sites are not correlated. Further, from the viewpoint of non-linear dynamical systems, four geophysical signals the Quasi-Biennial Oscillation (QBO) index derived from the NCEP/NCAR reanalysis, the Southern Oscillation Index (SOI) anomaly from NCEP, the SIDC monthly Sun Spot Number (SSN), and the Length of Day (LoD) are linked to the extracted signal components from ZTD. Results from the synchronization

  19. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    PubMed Central

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611

  20. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths.

    PubMed

    Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation 'needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology.

  1. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    NASA Astrophysics Data System (ADS)

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-09-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation `needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology.

  2. Genetic effects on source level evoked and induced oscillatory brain responses in a visual oddball task.

    PubMed

    Antonakakis, Marios; Zervakis, Michalis; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; De Geus, Eco J C; Micheloyannis, Sifis; Smit, Dirk J A

    2016-02-01

    Stimuli in simple oddball target detection paradigms cause evoked responses in brain potential. These responses are heritable traits, and potential endophenotypes for clinical phenotypes. These stimuli also cause responses in oscillatory activity, both evoked responses phase-locked to stimulus presentation and phase-independent induced responses. Here, we investigate whether phase-locked and phase-independent oscillatory responses are heritable traits. Oscillatory responses were examined in EEG recordings from 213 twin pairs (91 monozygotic and 122 dizygotic twins) performing a visual oddball task. After group Independent Component Analysis (group-ICA) and time-frequency decomposition, individual differences in evoked and induced oscillatory responses were compared between MZ and DZ twin pairs. Induced (phase-independent) oscillatory responses consistently showed the highest heritability (24-55%) compared to evoked (phase-locked) oscillatory responses and spectral energy, which revealed lower heritability at 1-35.6% and 4.5-32.3%, respectively. Since the phase-independent induced response encodes functional aspects of the brain response to target stimuli different from evoked responses, we conclude that the modulation of ongoing oscillatory activity may serve as an additional endophenotype for behavioral phenotypes and psychiatric genetics.

  3. Multiple Independent Oscillatory Networks in the Degenerating Retina.

    PubMed

    Euler, Thomas; Schubert, Timm

    2015-01-01

    During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina's first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O'Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self

  4. Oscillatory behavior of fine AP/HTPB composite propellants

    NASA Astrophysics Data System (ADS)

    Hickman, Scott Ralston

    1998-12-01

    The steady and oscillatory combustion of wide distribution AP/HTPB composite propellants containing coarse AP and fuel-rich, fine-AP/HTPB pocket regions has been investigated experimentally and theoretically. These propellants are of special interest because they are similar to many wide distribution bi-modal tailorable plateau propellants. The unsteady combustion response was measured using the laser-recoil method. It was found that at 1 atm monomodal fuel rich propellants containing fine AP (representative of the pocket propellant in the bimodal propellants) exhibit both a low frequency combustion response peak (˜10 Hz) due to the thermal relaxation in the solid and a secondary peak at a higher frequency (50--300 Hz). The frequency of this second peak has a strong correlation with particle size; it only appears for small AP (≤ 50 mum) and its frequency increases with decreasing AP size, even down to the smallest size tested to date (2 mum). The addition of coarse AP (which results in a nearly stoichiometric overall mixture but still has a reasonably large Peclet number, of order 10) suppresses the second peak. The frequency of the second peak was found to scale linearly with mean burning rate to AP particle size ratio (rb/d) except in the case of very fuel rich propellants. At 2 atm, it was found that the frequency of the second peak for the pocket propellant formulation doubled in frequency with very little change in mean bum rate. Also, the weak second peak found at 1 atm for a bimodal formulation was larger, on the order of the magnitude of the thermal relaxation peak, at 2 atm. Microthermocouple tests at 1 atm in pocket propellant formulations showed oscillatory flame temperatures in the gas phase with a frequency that corresponded to that of the second peak in the combustion recoil response function. An investigation of the mechanism of the second peak in the response function was conducted. The mechanism of the second peak in the response function was

  5. Computational heat transfer analysis for oscillatory channel flows

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Kannapareddy, Mohan

    1993-01-01

    An accurate finite-difference scheme has been utilized to investigate oscillatory, laminar and incompressible flow between two-parallel-plates and in circular tubes. The two-parallel-plates simulate the regenerator of a free-piston Stirling engine (foil type regenerator) and the channel wall was included in the analysis (conjugate heat transfer problem). The circular tubes simulate the cooler and heater of the engine with an isothermal wall. The study conducted covered a wide range for the maximum Reynolds number (from 75 to 60,000), Valensi number (from 2.5 to 700), and relative amplitude of fluid displacement (0.714 and 1.34). The computational results indicate a complex nature of the heat flux distribution with time and axial location in the channel. At the channel mid-plane we observed two thermal cycles (out of phase with the flow) per each flow cycle. At this axial location the wall heat flux mean value, amplitude and phase shift with the flow are dependent upon the maximum Reynolds number, Valensi number and relative amplitude of fluid displacement. At other axial locations, the wall heat flux distribution is more complex.

  6. Oscillatory dynamics track motor performance improvement in human cortex.

    PubMed

    Dürschmid, Stefan; Quandt, Fanny; Krämer, Ulrike M; Hinrichs, Hermann; Heinze, Hans-Jochen; Schulz, Reinhard; Pannek, Heinz; Chang, Edward F; Knight, Robert T

    2014-01-01

    Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta ([Formula: see text]; 4-8 Hz) phase and high gamma (HG; 80-180 Hz) amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45) were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the [Formula: see text] and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice. PMID:24586885

  7. Oscillatory Dynamics Track Motor Performance Improvement in Human Cortex

    PubMed Central

    Dürschmid, Stefan; Quandt, Fanny; Krämer, Ulrike M.; Hinrichs, Hermann; Heinze, Hans-Jochen; Schulz, Reinhard; Pannek, Heinz; Chang, Edward F.; Knight, Robert T.

    2014-01-01

    Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta (; 4–8 Hz) phase and high gamma (HG; 80–180 Hz) amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45) were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice. PMID:24586885

  8. The Voice of Anger: Oscillatory EEG Responses to Emotional Prosody.

    PubMed

    Del Giudice, Renata; Blume, Christine; Wislowska, Malgorzata; Wielek, Tomasz; Heib, Dominik P J; Schabus, Manuel

    2016-01-01

    Emotionally relevant stimuli and in particular anger are, due to their evolutionary relevance, often processed automatically and able to modulate attention independent of conscious access. Here, we tested whether attention allocation is enhanced when auditory stimuli are uttered by an angry voice. We recorded EEG and presented healthy individuals with a passive condition where unfamiliar names as well as the subject's own name were spoken both with an angry and neutral prosody. The active condition instead, required participants to actively count one of the presented (angry) names. Results revealed that in the passive condition the angry prosody only elicited slightly stronger delta synchronization as compared to a neutral voice. In the active condition the attended (angry) target was related to enhanced delta/theta synchronization as well as alpha desynchronization suggesting enhanced allocation of attention and utilization of working memory resources. Altogether, the current results are in line with previous findings and highlight that attention orientation can be systematically related to specific oscillatory brain responses. Potential applications include assessment of non-communicative clinical groups such as post-comatose patients.

  9. Four-phase patterns in forced oscillatory systems

    SciTech Connect

    Lin, A. L.; Hagberg, A.; Ardelea, A.; Swinney, H. L.; Meron, E.

    2000-09-01

    We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation. Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturbation frequency for certain values of the forcing frequency and amplitude. We focus on the subharmonic resonant case where the system locks at one-fourth the driving frequency, and four-phase rotating spiral patterns are observed at low forcing amplitudes. The spiral patterns are studied using an amplitude equation for periodically forced oscillating systems. The analysis predicts a bifurcation (with increasing forcing) from rotating four-phase spirals to standing two-phase patterns. This bifurcation is also found in periodically forced reaction-diffusion equations, the FitzHugh-Nagumo and Brusselator models, even far from the onset of oscillations where the amplitude equation analysis is not strictly valid. In a Belousov-Zhabotinsky chemical system periodically forced with light we also observe four-phase rotating spiral wave patterns. However, we have not observed the transition to standing two-phase patterns, possibly because with increasing light intensity the reaction kinetics become excitable rather than oscillatory. (c) 2000 The American Physical Society.

  10. Four-phase patterns in forced oscillatory systems

    PubMed

    Lin; Hagberg; Ardelea; Bertram; Swinney; Meron

    2000-09-01

    We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation. Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturbation frequency for certain values of the forcing frequency and amplitude. We focus on the subharmonic resonant case where the system locks at one-fourth the driving frequency, and four-phase rotating spiral patterns are observed at low forcing amplitudes. The spiral patterns are studied using an amplitude equation for periodically forced oscillating systems. The analysis predicts a bifurcation (with increasing forcing) from rotating four-phase spirals to standing two-phase patterns. This bifurcation is also found in periodically forced reaction-diffusion equations, the FitzHugh-Nagumo and Brusselator models, even far from the onset of oscillations where the amplitude equation analysis is not strictly valid. In a Belousov-Zhabotinsky chemical system periodically forced with light we also observe four-phase rotating spiral wave patterns. However, we have not observed the transition to standing two-phase patterns, possibly because with increasing light intensity the reaction kinetics become excitable rather than oscillatory. PMID:11088896

  11. Four-phase patterns in forced oscillatory systems

    NASA Astrophysics Data System (ADS)

    Lin, A. L.; Hagberg, A.; Ardelea, A.; Bertram, M.; Swinney, H. L.; Meron, E.

    2000-09-01

    We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation. Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturbation frequency for certain values of the forcing frequency and amplitude. We focus on the subharmonic resonant case where the system locks at one-fourth the driving frequency, and four-phase rotating spiral patterns are observed at low forcing amplitudes. The spiral patterns are studied using an amplitude equation for periodically forced oscillating systems. The analysis predicts a bifurcation (with increasing forcing) from rotating four-phase spirals to standing two-phase patterns. This bifurcation is also found in periodically forced reaction-diffusion equations, the FitzHugh-Nagumo and Brusselator models, even far from the onset of oscillations where the amplitude equation analysis is not strictly valid. In a Belousov-Zhabotinsky chemical system periodically forced with light we also observe four-phase rotating spiral wave patterns. However, we have not observed the transition to standing two-phase patterns, possibly because with increasing light intensity the reaction kinetics become excitable rather than oscillatory.

  12. Acoustic noise improves visual perception and modulates occipital oscillatory states.

    PubMed

    Gleiss, Stephanie; Kayser, Christoph

    2014-04-01

    Perception is a multisensory process, and previous work has shown that multisensory interactions occur not only for object-related stimuli but also for simplistic and apparently unrelated inputs to the different senses. We here compare the facilitation of visual perception induced by transient (target-synchronized) sounds to the facilitation provided by continuous background noise like sounds. Specifically, we show that continuous acoustic noise improves visual contrast detection by systematically shifting psychometric curves in an amplitude-dependent manner. This multisensory benefit was found to be both qualitatively and quantitatively similar to that induced by a transient and target synchronized sound in the same paradigm. Studying the underlying neural mechanisms using electric neuroimaging (EEG), we found that acoustic noise alters occipital alpha (8-12 Hz) power and decreases beta-band (14-20 Hz) coupling of occipital and temporal sites. Task-irrelevant and continuous sounds thereby have an amplitude-dependent effect on cortical mechanisms implicated in shaping visual cortical excitability. The same oscillatory mechanisms also mediate visual facilitation by transient sounds, and our results suggest that task-related sounds and task-irrelevant background noises could induce perceptually and mechanistically similar enhancement of visual perception. Given the omnipresence of sounds and noises in our environment, such multisensory interactions may affect perception in many everyday scenarios. PMID:24236698

  13. [Emotional intelligence and oscillatory responses on the emotional facial expressions].

    PubMed

    Kniazev, G G; Mitrofanova, L G; Bocharov, A V

    2013-01-01

    Emotional intelligence-related differences in oscillatory responses to emotional facial expressions were investigated in 48 subjects (26 men and 22 women) in age 18-30 years. Participants were instructed to evaluate emotional expression (angry, happy and neutral) of each presented face on an analog scale ranging from -100 (very hostile) to + 100 (very friendly). High emotional intelligence (EI) participants were found to be more sensitive to the emotional content of the stimuli. It showed up both in their subjective evaluation of the stimuli and in a stronger EEG theta synchronization at an earlier (between 100 and 500 ms after face presentation) processing stage. Source localization using sLORETA showed that this effect was localized in the fusiform gyrus upon the presentation of angry faces and in the posterior cingulate gyrus upon the presentation of happy faces. At a later processing stage (500-870 ms) event-related theta synchronization in high emotional intelligence subject was higher in the left prefrontal cortex upon the presentation of happy faces, but it was lower in the anterior cingulate cortex upon presentation of angry faces. This suggests the existence of a mechanism that can be selectively increase the positive emotions and reduce negative emotions.

  14. Combining power spectrum and bispectrum measurements to detect oscillatory features

    NASA Astrophysics Data System (ADS)

    Fergusson, J. R.; Gruetjen, H. F.; Shellard, E. P. S.; Liguori, M.

    2015-01-01

    The simplest inflationary models present us with few observable parameters to discriminate between them. A detection of features in the spectra of primordial density perturbations could provide valuable insights and lead to stringent tests of models of the early Universe. So far, searches for oscillatory features have not produced statistically significant results. In this work we consider a combined search for features in the power spectrum and bispectrum. We show that possible dependencies between the estimates of feature model amplitudes based on the two- and three-point correlators are largely statistically independent under the assumption of the null hypothesis of a nearly Gaussian featureless cosmic microwave background. Building on this conclusion we propose an optimal amplitude estimator for a combined search and study the look-elsewhere effect in feature model surveys. In particular we construct analytic models for the distribution of amplitude estimates that allow for a reliable assessment of the significance of potential findings. We also propose a well-behaved integrated statistic that is designed to detect evidence for models exhibiting features at multiple frequencies.

  15. Peripheral sensory coding through oscillatory synchrony in weakly electric fish

    PubMed Central

    Baker, Christa A; Huck, Kevin R; Carlson, Bruce A

    2015-01-01

    Adaptations to an organism's environment often involve sensory system modifications. In this study, we address how evolutionary divergence in sensory perception relates to the physiological coding of stimuli. Mormyrid fishes that can detect subtle variations in electric communication signals encode signal waveform into spike-timing differences between sensory receptors. In contrast, the receptors of species insensitive to waveform variation produce spontaneously oscillating potentials. We found that oscillating receptors respond to electric pulses by resetting their phase, resulting in transient synchrony among receptors that encodes signal timing and location, but not waveform. These receptors were most sensitive to frequencies found only in the collective signals of groups of conspecifics, and this was correlated with increased behavioral responses to these frequencies. Thus, different perceptual capabilities correspond to different receptor physiologies. We hypothesize that these divergent mechanisms represent adaptations for different social environments. Our findings provide the first evidence for sensory coding through oscillatory synchrony. DOI: http://dx.doi.org/10.7554/eLife.08163.001 PMID:26238277

  16. The Voice of Anger: Oscillatory EEG Responses to Emotional Prosody

    PubMed Central

    del Giudice, Renata; Blume, Christine; Wislowska, Malgorzata; Wielek, Tomasz; Heib, Dominik P. J.; Schabus, Manuel

    2016-01-01

    Emotionally relevant stimuli and in particular anger are, due to their evolutionary relevance, often processed automatically and able to modulate attention independent of conscious access. Here, we tested whether attention allocation is enhanced when auditory stimuli are uttered by an angry voice. We recorded EEG and presented healthy individuals with a passive condition where unfamiliar names as well as the subject’s own name were spoken both with an angry and neutral prosody. The active condition instead, required participants to actively count one of the presented (angry) names. Results revealed that in the passive condition the angry prosody only elicited slightly stronger delta synchronization as compared to a neutral voice. In the active condition the attended (angry) target was related to enhanced delta/theta synchronization as well as alpha desynchronization suggesting enhanced allocation of attention and utilization of working memory resources. Altogether, the current results are in line with previous findings and highlight that attention orientation can be systematically related to specific oscillatory brain responses. Potential applications include assessment of non-communicative clinical groups such as post-comatose patients. PMID:27442445

  17. Alpha oscillatory correlates of motor inhibition in the aged brain

    PubMed Central

    Bönstrup, Marlene; Hagemann, Julian; Gerloff, Christian; Sauseng, Paul; Hummel, Friedhelm C.

    2015-01-01

    Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time—early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains. PMID:26528179

  18. Oscillatory dynamics in rock-paper-scissors games with mutations.

    PubMed

    Mobilia, Mauro

    2010-05-01

    We study the oscillatory dynamics in the generic three-species rock-paper-scissors games with mutations. In the mean-field limit, different behaviors are found: (a) for high mutation rate, there is a stable interior fixed point with coexistence of all species; (b) for low mutation rates, there is a region of the parameter space characterized by a limit cycle resulting from a Hopf bifurcation; (c) in the absence of mutations, there is a region where heteroclinic cycles yield oscillations of large amplitude (not robust against noise). After a discussion on the main properties of the mean-field dynamics, we investigate the stochastic version of the model within an individual-based formulation. Demographic fluctuations are therefore naturally accounted and their effects are studied using a diffusion theory complemented by numerical simulations. It is thus shown that persistent erratic oscillations (quasi-cycles) of large amplitude emerge from a noise-induced resonance phenomenon. We also analytically and numerically compute the average escape time necessary to reach a (quasi-)cycle on which the system oscillates at a given amplitude.

  19. Multistability of oscillatory thermocapillary convection in a liquid bridge.

    PubMed

    Shevtsova, V M; Melnikov, D E; Legros, J C

    2003-12-01

    A parametric investigation of the onset of chaos in a liquid bridge was numerically carried out for a medium Prandtl number liquid, Pr = 4, and unit aspect ratio under zero-gravity conditions. Spatiotemporal patterns of thermocapillary flow were successively studied beginning from the onset of instability up to the appearance of the nonperiodic flow and further on. Well-tested numerical code is used for solving the three-dimensional time-dependent Navier-Stokes equations in cylindrical coordinate system. Two-dimensional steady flow becomes oscillatory with azimuthal wave number m=2 as a result of Hopf bifurcation at Re(cr)(1)=630. A second independent solution with wave number m=3 was found to appear at Reynolds number Re(cr)(2) approximately 810. Two branches of three-dimensional periodic orbits, traveling waves with m=2 and m=3, coexist for Re>Re(cr)(2). Additional stable branches do not connect them. The different flow organizations reveal different behaviors in the supercritical area. The m=2 traveling wave always remains periodic, but the mode m=3 starts exhibiting chaotic features at Re approximately 4200. The onset of temporal nonperiodicity was shown to be associated with development of broadband noise in spectra and preceded by a quasiperiodicity. The flow stabilizes back to periodic with single frequency when Re exceeds a value Re approximately 5100. The window of periodicity exists up to at least Re=6000, the largest investigated value of the Reynolds number. PMID:14754319

  20. Oscillatory and steady shear rheology of gellan/dextran blends.

    PubMed

    Ahmad, Nurul Hawa; Ahmed, Jasim; Hashim, Dzulkifly M; Manap, Yazid Abdul; Mustafa, Shuhaimi

    2015-05-01

    Oscillatory and steady shear rheology of gellan (G) and dextran (D) solution individually, and in blends (G/D ratio 1:1, 1:2, and 1:3 w/v) with a total hydrocolloid concentration of 3 % (w/v) were studied at 25 °C. Individually, 1.5 % dextran and 1.5 % gellan in solution exhibited Newtonian and non-Newtonian behavior, respectively. A blend of equal proportion of dextran and gellan (G/D = 1:1) exhibits a distinct gel point (G' = G″), and further addition of dextran in the blend (G/D = 1:2 and 1:3) resulted predominating liquid-like (G″ > G') behavior. A plot of G' vs G″ distinctly showed the gradual transition of the blend. Shear stress (τ)-shear rate ([Formula: see text]) data fitted well the Herschel-Bulkley model. The G/D blend exhibited shear thinning behavior with flow behavior index less than unity. The Cox-Merz rule did not fit well for the complex shear viscosity (η*) and apparent viscosity (η) of the blend. PMID:25892789

  1. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    SciTech Connect

    Juan M. Restrepo

    2008-09-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers en- compassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation is boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundry conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.

  2. Biological processing in oscillatory baffled reactors: operation, advantages and potential

    PubMed Central

    Abbott, M. S. R.; Harvey, A. P.; Perez, G. Valente; Theodorou, M. K.

    2013-01-01

    The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing ‘long’ processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509

  3. Microstructure characterization of Cu processed by compression with oscillatory torsion

    SciTech Connect

    Rodak, K.; Pawlicki, J.

    2014-08-15

    High purity Cu (99.9%) was subjected to severe plastic deformation up to a total effective strain ε{sub ft} = 130 through compression with the oscillatory torsion method at room temperature. This method produces an ultrafine grain microstructure. The microstructure evolution was investigated with respect to the value of the total effective strain using a scanning electron microscope with an electron-backscattered diffraction technique and a scanning transmission electron microscope. The results of the structural analyses show that increasing ε{sub ft} from 2 to 50 causes progress in the grain refinement. A quantitative study of the microstructure parameters, such as fraction of high angle boundaries, grain and subgrain diameter, and the area fraction of grains up to 1 μm, shows that deformation at ε{sub ft} = 45 guaranteed the best conditions for refining the microstructure of Cu. Using high values of ε{sub ft} in the range 60 to 130 restricts grain refinement because intensive recovery begins to dominate in the microstructure. - Highlights: • Cu was processed by SPD metodto an effective strain 130. • The microstructure evolution has been investigated. • The method allows to produce an ultrafine grain microstructure.

  4. Ott-Antonsen attractiveness for parameter-dependent oscillatory systems

    NASA Astrophysics Data System (ADS)

    Pietras, Bastian; Daffertshofer, Andreas

    2016-10-01

    The Ott-Antonsen (OA) ansatz [Ott and Antonsen, Chaos 18, 037113 (2008); Chaos 19, 023117 (2009)] has been widely used to describe large systems of coupled phase oscillators. If the coupling is sinusoidal and if the phase dynamics does not depend on the specific oscillator, then the macroscopic behavior of the systems can be fully described by a low-dimensional dynamics. Does the corresponding manifold remain attractive when introducing an intrinsic dependence between an oscillator's phase and its dynamics by additional, oscillator specific parameters? To answer this, we extended the OA ansatz and proved that parameter-dependent oscillatory systems converge to the OA manifold given certain conditions. Our proof confirms recent numerical findings that already hinted at this convergence. Furthermore, we offer a thorough mathematical underpinning for networks of so-called theta neurons, where the OA ansatz has just been applied. In a final step, we extend our proof by allowing for time-dependent and multi-dimensional parameters as well as for network topologies other than global coupling. This renders the OA ansatz an excellent starting point for the analysis of a broad class of realistic settings.

  5. The Voice of Anger: Oscillatory EEG Responses to Emotional Prosody.

    PubMed

    Del Giudice, Renata; Blume, Christine; Wislowska, Malgorzata; Wielek, Tomasz; Heib, Dominik P J; Schabus, Manuel

    2016-01-01

    Emotionally relevant stimuli and in particular anger are, due to their evolutionary relevance, often processed automatically and able to modulate attention independent of conscious access. Here, we tested whether attention allocation is enhanced when auditory stimuli are uttered by an angry voice. We recorded EEG and presented healthy individuals with a passive condition where unfamiliar names as well as the subject's own name were spoken both with an angry and neutral prosody. The active condition instead, required participants to actively count one of the presented (angry) names. Results revealed that in the passive condition the angry prosody only elicited slightly stronger delta synchronization as compared to a neutral voice. In the active condition the attended (angry) target was related to enhanced delta/theta synchronization as well as alpha desynchronization suggesting enhanced allocation of attention and utilization of working memory resources. Altogether, the current results are in line with previous findings and highlight that attention orientation can be systematically related to specific oscillatory brain responses. Potential applications include assessment of non-communicative clinical groups such as post-comatose patients. PMID:27442445

  6. Oscillatory Brain Activity Reveals Linguistic Prints in the Quantity Code

    PubMed Central

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words. PMID:25875210

  7. Oscillatory brain activity reveals linguistic prints in the quantity code.

    PubMed

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words.

  8. Oscillatory dynamics track motor performance improvement in human cortex.

    PubMed

    Dürschmid, Stefan; Quandt, Fanny; Krämer, Ulrike M; Hinrichs, Hermann; Heinze, Hans-Jochen; Schulz, Reinhard; Pannek, Heinz; Chang, Edward F; Knight, Robert T

    2014-01-01

    Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta ([Formula: see text]; 4-8 Hz) phase and high gamma (HG; 80-180 Hz) amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45) were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the [Formula: see text] and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice.

  9. Biological processing in oscillatory baffled reactors: operation, advantages and potential.

    PubMed

    Abbott, M S R; Harvey, A P; Perez, G Valente; Theodorou, M K

    2013-02-01

    The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing 'long' processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509

  10. Increased oscillatory theta activation evoked by violent digital game events.

    PubMed

    Salminen, Mikko; Ravaja, Niklas

    2008-04-11

    The authors examined electroencephalographic (EEG) oscillatory responses to two violent events, the player character wounding and killing an opponent character with a gun, in the digital game James Bond 007: NightFire. EEG was recorded from 25 (16 male) right-handed healthy young adults. EEG data were segmented into one 1-s baseline epoch before each event and two 1-s epochs after event onset. Power estimates (microV(2)) were derived with the fast Fourier transform (FFT) for each artefact free event. Both of the studied events evoked increased occipital theta (4-6Hz) responses as compared to the pre-event baseline. The wounding event evoked also increased occipital high theta (6-8Hz) response and the killing event evoked low alpha (8-10Hz) asymmetry over the central electrodes, both relative to the pre-event baseline. The results are discussed in light of facial electromyographic and electrodermal activity responses evoked by these same events, and it is suggested that the reported EEG responses may be attributable to affective processes related to these violent game events. PMID:18325669

  11. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks

    NASA Astrophysics Data System (ADS)

    Hata, Shigefumi; Nakao, Hiroya; Mikhailov, Alexander S.

    2014-01-01

    As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory Turing instability does not lead to wave patterns in networks, but to spontaneous development of heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all possible food webs with three predator or prey species, under various assumptions about the mobility of individual species and nonlinear interactions between them. Hence, the oscillatory Turing instability should be generic and must play a fundamental role in metapopulation dynamics, providing a common mechanism for dispersal-induced destabilization of ecosystems.

  12. More than spikes: common oscillatory mechanisms for content specific neural representations during perception and memory.

    PubMed

    Watrous, Andrew J; Fell, Juergen; Ekstrom, Arne D; Axmacher, Nikolai

    2015-04-01

    Although previous research into the mechanisms underlying sensory and episodic representations has primarily focused on changes in neural firing rate, more recent evidence suggests that neural oscillations also contribute to these representations. Here, we argue that multiplexed oscillatory power and phase contribute to neural representations at the mesoscopic scale, complementary to neuronal firing. Reviewing recent studies which used oscillatory activity to decipher content-specific neural representations, we identify oscillatory mechanisms common to both sensory and episodic memory representations and incorporate these into a model of episodic encoding and retrieval. This model advances the idea that oscillations provide a reference frame for phase-coded item representations during memory encoding and that shifts in oscillatory frequency and phase coordinate ensemble activity during memory retrieval.

  13. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks.

    PubMed

    Hata, Shigefumi; Nakao, Hiroya; Mikhailov, Alexander S

    2014-01-07

    As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory Turing instability does not lead to wave patterns in networks, but to spontaneous development of heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all possible food webs with three predator or prey species, under various assumptions about the mobility of individual species and nonlinear interactions between them. Hence, the oscillatory Turing instability should be generic and must play a fundamental role in metapopulation dynamics, providing a common mechanism for dispersal-induced destabilization of ecosystems.

  14. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks.

    PubMed

    Hata, Shigefumi; Nakao, Hiroya; Mikhailov, Alexander S

    2014-01-01

    As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory Turing instability does not lead to wave patterns in networks, but to spontaneous development of heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all possible food webs with three predator or prey species, under various assumptions about the mobility of individual species and nonlinear interactions between them. Hence, the oscillatory Turing instability should be generic and must play a fundamental role in metapopulation dynamics, providing a common mechanism for dispersal-induced destabilization of ecosystems. PMID:24394959

  15. A NON-OSCILLATORY SCHEME FOR OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the ...

  16. Detection and integration of oscillatory differential equations with initial stepsize, order and method selection

    SciTech Connect

    Gallivan, K. A.

    1980-12-01

    Within any general class of problems there typically exist subclasses possessed of characteristics that can be exploited to create techniques more efficient than general methods applied to these subclasses. Two such subclasses of initial-value problems in ordinary differential equations are stiff and oscillatory problems. Indeed, the subclass of oscillatory problems can be further refined into stiff and nonstiff oscillatory problems. This refinement is discussed in detail. The problem of developing a method of detection for nonstiff and stiff oscillatory behavior in initial-value problems is addressed. For this method of detection a control structure is proposed upon which a production code could be based. An experimental code using this control structure is described, and results of numerical tests are presented. 3 figures.

  17. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks

    PubMed Central

    Hata, Shigefumi; Nakao, Hiroya; Mikhailov, Alexander S.

    2014-01-01

    As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory Turing instability does not lead to wave patterns in networks, but to spontaneous development of heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all possible food webs with three predator or prey species, under various assumptions about the mobility of individual species and nonlinear interactions between them. Hence, the oscillatory Turing instability should be generic and must play a fundamental role in metapopulation dynamics, providing a common mechanism for dispersal-induced destabilization of ecosystems. PMID:24394959

  18. Kinetics, mechanism and efficiency of oscillatory reactions. Final technical report, May 1, 1980-April 30, 1983

    SciTech Connect

    Ross, J.

    1983-11-01

    The project is concerned with the efficiency of thermal engines with power output, the response of oscillatory reactions to external periodic perturbations, and oscillations and control features in glycolysis. Theory predicts entrainment, resonance effects, phase locking and phase slippage.

  19. Strategies for avoiding errors and ambiguities in the analysis of oscillatory pumping tests

    NASA Astrophysics Data System (ADS)

    Cardiff, Michael; Sayler, Claire

    2016-09-01

    Oscillatory pumping tests have recently seen a resurgence in interest as a strategy for aquifer characterization. In a cross-well pumping test, measured responses to oscillatory pumping tests consist of the amplitude and phase delay of pressure changes at an observation well. This information can be used to obtain estimates of effective aquifer parameters (conductivity and storage coefficients), by fitting field data with an analytical model through parameter estimation. Alternately, multiple pumping tests can be fit simultaneously through tomographic analyses. However, in both cases, analysis of obtained test results may be ambiguous if "phase wrapping" occurs, i.e. if signals are delayed by more than one period. In this work, we demonstrate scenarios under which phase wrapping can make analysis of oscillatory testing difficult, and present guidelines for avoiding ambiguity in oscillatory testing results.

  20. On the oscillatory Marangoni instability in a thin film heated from below

    NASA Astrophysics Data System (ADS)

    Samoilova, A. E.; Lobov, N. I.

    2014-06-01

    We consider the classical problem of the Marangoni instability in a liquid layer with a deformable free surface atop a substrate heated from below. The linear stability analysis is performed numerically in order to extend the recent asymptotic results [S. Shklyaev, M. Khenner, and A. A. Alabuzhev, "Oscillatory and monotonic modes of long-wave Marangoni convection in a thin film," Phys. Rev. E 82, 025302 (2010)] to finite-wavenumber perturbations. In spite of detailed analyses by many researchers, we have obtained novel computational results confirming the existence of the oscillatory mode for heating from below. Moreover, numerical simulations indicate that the oscillatory mode is critical in a wider range of parameters, than it is predicted by the asymptotic analysis. Additionally, we provide guiding data for the experimental observation of the oscillatory regime.

  1. Autocatalytic model of oscillatory zoning in experimentally grown (Ba,Sr)SO4 solid solution.

    PubMed

    Katsev, Sergei; L'Heureux, Ivan

    2002-12-01

    Oscillatory zoning (OZ) is a phenomenon common to many natural minerals whereby the mineral composition varies more or less regularly from the core of the crystal to its rim. Oscillatory zoned barite-celestite (Ba,Sr)SO4 crystals are one of the very few examples of the OZ phenomenon that were obtained under controlled laboratory conditions. It is known that such crystals can be synthesized by precipitation from an aqueous solution during counterdiffusion in a gel column connecting two reservoirs. We present here a model of oscillatory zoning in such a binary solid solution grown from an aqueous solution. By expanding on a previously suggested model, we obtain oscillatory dynamical solutions for two limit cases: the growth of a flat crystal face and the growth of a spherical crystallite. We consider an autocatalytic dependence between the crystal growth rate and the crystal surface composition. The oscillatory patterns then arise as a kinetic effect due to the coupling between the diffusion field around the crystal and the fast crystal growth under far-from-equilibrium conditions. The effects of fluctuations in the aqueous solution concentrations are also considered. It is shown that they may lead to noisy oscillatory patterns.

  2. Autocatalytic model of oscillatory zoning in experimentally grown (Ba,Sr)SO4 solid solution

    NASA Astrophysics Data System (ADS)

    Katsev, Sergei; L'Heureux, Ivan

    2002-12-01

    Oscillatory zoning (OZ) is a phenomenon common to many natural minerals whereby the mineral composition varies more or less regularly from the core of the crystal to its rim. Oscillatory zoned barite-celestite (Ba,Sr)SO4 crystals are one of the very few examples of the OZ phenomenon that were obtained under controlled laboratory conditions. It is known that such crystals can be synthesized by precipitation from an aqueous solution during counterdiffusion in a gel column connecting two reservoirs. We present here a model of oscillatory zoning in such a binary solid solution grown from an aqueous solution. By expanding on a previously suggested model, we obtain oscillatory dynamical solutions for two limit cases: the growth of a flat crystal face and the growth of a spherical crystallite. We consider an autocatalytic dependence between the crystal growth rate and the crystal surface composition. The oscillatory patterns then arise as a kinetic effect due to the coupling between the diffusion field around the crystal and the fast crystal growth under far-from-equilibrium conditions. The effects of fluctuations in the aqueous solution concentrations are also considered. It is shown that they may lead to noisy oscillatory patterns.

  3. Oscillatory Pattern Generation of the Olfactory Center Using Pulse-Type Hardware Chaotic Neuron Models

    NASA Astrophysics Data System (ADS)

    Saito, Ken; Hatano, Hirokazu; Saito, Minoru; Sekine, Yoshifumi

    Oscillatory patterns of electrical activity are a ubiquitous feature in nervous systems. Oscillatory patterns play an important role in the processing of sensory information pattern recognition. For example, earlier reports describe that the oscillatory patterns in the olfactory center of the land slug are changed by odor stimuli to the tentacles. Olfactory processing has also been studied in relation to rabbits and land slugs through the construction and use of mathematical neural network models. However, a large-scale model is necessary for the study of a model which has sensory information recognition by the oscillatory pattern. Therefore, the construction of a hardware model that can generate oscillatory patterns is desired because nonlinear operations can be processed at higher speeds than the mathematical model. We are studying about the neural network using hardware neuron models to construct the olfactory center model of the living organisms. In the present study, we discuss about the oscillatory pattern generation of the olfactory center using pulse-type hardware chaotic neuron models. Our model shows periodic, quasi-periodic and chaotic oscillations such as the olfactory center of living organisms by changing the synaptic connection weights.

  4. Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention.

    PubMed

    Taylor, K; Mandon, S; Freiwald, W A; Kreiter, A K

    2005-09-01

    Attention serves to select objects from often complex scenes for enhanced processing and perception. In particular, the perception of shape depends critically on attention for integrating the various parts of the selected object into a coherent representation of object shape. To study whether oscillatory neuronal synchrony may serve as a mechanism of attention in shape perception, we introduced a novel shape-tracking task requiring sustained attention to a morphing shape. Attention was found to strongly increase oscillatory currents underlying the recorded field potentials in the gamma-frequency range, thus indicating enhanced neuronal synchrony within the population of V4 neurons representing the attended stimulus. Errors indicating a misdirection of attention to the distracter instead of the target were preceded by a corresponding shift of oscillatory activity from the target's neuronal representation to that of the distracter. No such effect was observed for errors unrelated to attention. Modulations of the attention-dependent enhancement of oscillatory activity occurred in correspondence with changing attentional demands during the course of a trial. The specificity of the effect of attentional errors together with the close coupling between attentional demand and oscillatory activity support the hypothesis that oscillatory neuronal synchrony serves as a mechanism of attention.

  5. The inhibition/excitation ratio related to task-induced oscillatory modulations during a working memory task: A multtimodal-imaging study using MEG and MRS.

    PubMed

    Takei, Yuichi; Fujihara, Kazuyuki; Tagawa, Minami; Hironaga, Naruhito; Near, Jamie; Kasagi, Masato; Takahashi, Yumiko; Motegi, Tomokazu; Suzuki, Yusuke; Aoyama, Yoshiyuki; Sakurai, Noriko; Yamaguchi, Miho; Tobimatsu, Shozo; Ujita, Koichi; Tsushima, Yoshito; Narita, Kosuke; Fukuda, Masato

    2016-03-01

    Detailed studies on the association between neural oscillations and the neurotransmitters gamma-aminobutyric acid (GABA) and glutamate have been performed in vitro. In addition, recent functional magnetic resonance imaging studies have characterized these neurotransmitters in task-induced deactivation processes during a working memory (WM) task. However, few studies have investigated the relationship between these neurotransmitters and task-induced oscillatory changes in the human brain. Here, using combined magnetoencephalography (MEG) and magnetic resonance spectroscopy (MRS), we investigated the modulation of GABA and glutamate + glutamine (Glx) concentrations related to task-induced oscillations in neural activity during a WM task. We first acquired resting-state MRS and MEG data from 20 healthy male volunteers using the n-back task. Time-frequency analysis was employed to determine the power induced during the encoding and retention phases in perigenual anterior cingulate cortex (pg-ACC), mid-ACC, and occipital cortex (OC). Statistical analysis showed that increased WM load was associated with task-induced oscillatory modulations (TIOMs) of the theta-gamma band relative to the zero-back condition (TIOM0B) in each volume of interest during the encoding phase of the n-back task. The task-induced oscillatory modulations in the two-back condition relative to the zero-back condition (TIOM2B-0B) were negatively correlated with the percent rate change of the correct hit rate for 2B-0B, but positively correlated with GABA/Glx. The positive correlation between TIOM2B-0B and GABA/Glx during the WM task indicates the importance of the inhibition/excitation ratio. In particular, a low inhibition/excitation ratio is essential for the efficient inhibition of irrelevant neural activity, thus producing precise task performance. PMID:26780573

  6. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.

    PubMed

    Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M

    2016-09-28

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  7. Surface Instability of Liquid Propellant under Vertical Oscillatory Forcing

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    Fluid motion in a fuel tank produced during thrust oscillations can circulate sub-cooled hydrogen near the liquid-vapor interface resulting in increased condensation and ullage pressure collapse. The first objective of this study is to validate the capabilities of a Computational Fluid Dynamics (CFD) tool, CFD-ACE+, in modeling the fundamental interface transition physics occurring at the propellant surface. The second objective is to use the tool to assess the effects of thrust oscillations on surface dynamics. Our technical approach is to first verify the CFD code against known theoretical solutions, and then validate against existing experiments for small scale tanks and a range of transition regimes. A 2D axisymmetric, multi-phase model of gases, liquids, and solids is used to verify that CFD-ACE+ is capable of modeling fluid-structure interaction and system resonance in a typical thrust oscillation environment. Then, the 3D mode is studied with an assumed oscillatory body force to simulate the thrust oscillating effect. The study showed that CFD modeling can capture all of the transition physics from solid body motion to standing surface wave and to droplet ejection from liquid-gas interface. Unlike the analytical solutions established during the 1960 s, CFD modeling is not limited to the small amplitude regime. It can extend solutions to the nonlinear regime to determine the amplitude of surface waves after the onset of instability. The present simulation also demonstrated consistent trends from numerical experiments through variation of physical properties from low viscous fluid to high viscous fluids, and through variation of geometry and input forcing functions. A comparison of surface wave patterns under various forcing frequencies and amplitudes showed good agreement with experimental observations. It is concluded that thrust oscillations can cause droplet formation at the interface, which results in increased surface area and enhanced heat transfer

  8. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    NASA Technical Reports Server (NTRS)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  9. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  10. Rheological changes of polyamide 12 under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Mielicki, C.; Gronhoff, B.; Wortberg, J.

    2014-05-01

    Changes in material properties as well as process deviation prevent Laser Sintering (LS) technology from manufacturing of quality assured parts in a series production. In this context, the viscosity of Polyamide 12 (PA12) is assumed to possess the most significant influence, as it determines the sintering velocity, the resistance towards melt formation and the bonding strength of sintered layers. Moreover, the viscosity is directly related to the structure of the molten polymer. In particular, it has been recently reported that LS process conditions lead to structural changes of PA12 affecting viscosity and coalescence of adjacent polymer particles, i.e. melt formation significantly. Structural change of PA12 was understood as a post condensation. Its influence on viscosity was described by a time and temperature depending rheological model whereas time dependence was considered by a novel structural change shift factor which was derived from melt volume rate data. In combination with process data that was recorded using online thermal imaging, the model is suitable to control the viscosity (processability of the material) as result of material and process properties. However, as soon as laser energy is exposed to the powder bed PA12 undergoes a phase transition from solid to molten state. Above the melting point, structural change is expected to occur faster due to a higher kinetic energy and free volume of the molten polymer. Oscillatory shear results were used to study the influence of aging time and for validation of the novel structural change shift factor and its model parameters which were calibrated based on LS processing condition.

  11. Jacobi elliptic functions: A review of nonlinear oscillatory application problems

    NASA Astrophysics Data System (ADS)

    Kovacic, Ivana; Cveticanin, Livija; Zukovic, Miodrag; Rakaric, Zvonko

    2016-10-01

    This review paper is concerned with the applications of Jacobi elliptic functions to nonlinear oscillators whose restoring force has a monomial or binomial form that involves cubic and/or quadratic nonlinearity. First, geometric interpretations of three basic Jacobi elliptic functions are given and their characteristics are discussed. It is shown then how their different forms can be utilized to express exact solutions for the response of certain free conservative oscillators. These forms are subsequently used as a starting point for a presentation of different quantitative techniques for obtaining an approximate response for free perturbed nonlinear oscillators. An illustrative example is provided. Further, two types of externally forced nonlinear oscillators are reviewed: (i) those that are excited by elliptic-type excitations with different exact and approximate solutions; (ii) those that are damped and excited by harmonic excitations, but their approximate response is expressed in terms of Jacobi elliptic functions. Characteristics of the steady-state response are discussed and certain qualitative differences with respect to the classical Duffing oscillator excited harmonically are pointed out. Parametric oscillations of the oscillators excited by an elliptic-type forcing are considered as well, and the differences with respect to the stability chart of the classical Mathieu equation are emphasized. The adjustment of the Melnikov method to derive the general condition for the onset of homoclinic bifurcations in a system parametrically excited by an elliptic-type forcing is provided and compared with those corresponding to harmonic excitations. Advantages and disadvantages of the use of Jacobi elliptic functions in nonlinear oscillatory application problems are discussed and some suggestions for future work are given.

  12. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.

    PubMed

    Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M

    2016-01-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  13. Fluid mechanics experiments in oscillatory flow. Volume 1

    SciTech Connect

    Seume, J.; Friedman, G.; Simon, T.W.

    1992-03-01

    Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).

  14. Analytical and Semi-Analytical Tools for the Design of Oscillatory Pumping Tests.

    PubMed

    Cardiff, Michael; Barrash, Warren

    2015-01-01

    Oscillatory pumping tests-in which flow is varied in a periodic fashion-provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant-rate pumping tests. During oscillatory testing, pressure data collected at non-pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing helps to validate the methodology. Second, we develop a semi-analytical method for computing the sensitivity of oscillatory signals to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the "sensed" extent of an aquifer at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize design of oscillatory pumping test campaigns. PMID:25535805

  15. Dynamics of Oscillatory Vortex Multipoles Generated by Electromagnetic Forcing

    NASA Astrophysics Data System (ADS)

    Figueroa, Aldo; Cuevas, Sergio; Ramos, Eduardo

    2010-11-01

    Vortices formed by the concurrent effect on a localized magnetic field distribution and two alternate electric currents perpendicular to each other in a shallow (4mm) layer of an electrolyte are analyzed. Alternate currents with frequencies and amplitude in the range of 1-500 mHz and 80 mA, respectively, are explored. For a single dipolar magnetic field and a single electric current, the dominant structure of the flow is a pair of alternating lobes located co-linear with the generated Lorenz force. The flow presents a resonant behavior when the forcing frequency is around 10 mHz. When multipoles are used to generate the magnetic field, more complicated lobe distributions are obtained. The flow patterns were successfully described using a quasi-two-dimensional numerical model. A tridimensional numerical models corroborates the theoretical results. Flow visualization and numerical Lagrangian particle tracking indicate that multipolar flows present symmetries according to the magnetic field distributions. Although in some regions the flow patterns efficiently mix the fluid, the mixing is inhomogeneous due to symmetry conditions of the flows. Mixing is enhanced when symmetries are destroyed by the use of a random array of magnets or by injecting two electric currents.

  16. A space test plan of a magnetically suspended flywheel

    NASA Astrophysics Data System (ADS)

    Murakami, C.; Nakajima, A.; Oguchi, M.; Toda, S.; Kibe, S.

    The mounting and testing of a magnetically suspended flywheel on the H-I rocket developed by NASDA are discussed. The main experimental items are: (1) testing of the launch lock system of the rotor part of the flywheel; (2) identification of the oscillatory characteristics of the magnetic bearing under zero g condition. The experimental apparatus consists of magnetic bearing flywheel, TT&C(VHF), and attitude monitors and power source sections.

  17. Quantitative analysis of numerical solvers for oscillatory biomolecular system models

    PubMed Central

    Quo, Chang F; Wang, May D

    2008-01-01

    Background This article provides guidelines for selecting optimal numerical solvers for biomolecular system models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010, the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular system models, which makes it difficult to experimentally validate the modeling results. To address this problem, we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system model. Solving this model, we have illustrated that different answers may result from different numerical solvers. We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We have also conducted a systematic study of numerical solver performances by using qualitative and quantitative measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers when solving biomolecular system models. Results The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance conditions. Conclusions For any given biomolecular model, by building a library of numerical solvers with quantitative performance assessment metric, we show that it is possible

  18. Dynamics of an unconstrained oscillatory flicking brush for road sweeping

    NASA Astrophysics Data System (ADS)

    Vanegas Useche, L. V.; Abdel Wahab, M. M.; Parker, G. A.

    2007-11-01

    This article studies the dynamics of a freely rotating flicking brush by means of a mathematical model. The bristles are treated as cantilever prismatic beams subjected to small deflections. A solution of the equation of motion for their forced transverse vibration is obtained through the normal-mode method. A novel oscillatory motion is superimposed onto the rotary motion of the brush. Two functions of oscillation are investigated: a sinusoidal angular velocity and a novel function, named after the authors 'VAP' (Vanegas Useche, Abdel Wahab, Parker), developed to provide small shaft accelerations. The VAP function may be a square wave, a triangle wave, or a smooth wave between them, depending on the value of a smoothness parameter, b. The results indicate that the maximum bending moment, stress, and deflection are independent of the mean angular velocity, are proportional to its alternating component, and increase linearly with the mount radius and the sine of the mount angle. In addition, the behaviour of the brush is strongly affected by the frequency of oscillation, the type of function, the value of b, and bristle wear, amongst other parameters. For the sinusoidal and VAP function, resonance occurs at the bristle natural frequencies. Moreover, the VAP function tends to produce a condition similar to resonance also at odd fractions of the natural frequencies. This phenomenon may be accentuated or reduced, by adjusting the value of b, and be expedited or impeded, by the selection of the frequency. The results of this work may also be applied to the case of a small-deflection cantilever beam, when the transverse external force is a sinusoidal, square, or triangle wave or when it is given by the new VAP function. Finally, the VAP wave may enable to excite a condition similar to resonance not only at the natural frequencies of the beam, but also at odd fractions of them. Small frequencies may be required to achieve a resonant behaviour of a high-frequency mode

  19. Decision-making ability of Physarum polycephalum enhanced by its coordinated spatiotemporal oscillatory dynamics.

    PubMed

    Iwayama, Koji; Zhu, Liping; Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki

    2016-06-01

    An amoeboid unicellular organism, a plasmodium of the true slime mold Physarum polycephalum, exhibits complex spatiotemporal oscillatory dynamics and sophisticated information processing capabilities while deforming its amorphous body. We previously devised an 'amoeba-based computer (ABC),' that implemented optical feedback control to lead this amoeboid organism to search for a solution to the traveling salesman problem (TSP). In the ABC, the shortest TSP route (the optimal solution) is represented by the shape of the organism in which the body area (nutrient absorption) is maximized while the risk of being exposed to aversive light stimuli is minimized. The shortness of the TSP route found by ABC, therefore, serves as a quantitative measure of the optimality of the decision made by the organism. However, it remains unclear how the decision-making ability of the organism originates from the oscillatory dynamics of the organism. We investigated the number of coexisting traveling waves in the spatiotemporal patterns of the oscillatory dynamics of the organism. We show that a shorter TSP route can be found when the organism exhibits a lower number of traveling waves. The results imply that the oscillatory dynamics are highly coordinated throughout the global body. Based on the results, we discuss the fact that the decision-making ability of the organism can be enhanced not by uncorrelated random fluctuations, but by its highly coordinated oscillatory dynamics. PMID:27070463

  20. How brain oscillations form memories--a processing based perspective on oscillatory subsequent memory effects.

    PubMed

    Hanslmayr, Simon; Staudigl, Tobias

    2014-01-15

    Brain oscillations are increasingly recognized by memory researchers as a useful tool to unravel the neural mechanisms underlying the formation of a memory trace. However, the increasing numbers of published studies paint a rather complex picture of the relation between brain oscillations and memory formation. Concerning oscillatory amplitude, for instance, increases as well as decreases in various frequency bands (theta, alpha, beta and gamma) were associated with memory formation. These results cast doubt on frameworks putting forward the idea of an oscillatory signature that is uniquely related to memory formation. In an attempt to clarify this issue we here provide an alternative perspective, derived from classic cognitive frameworks/principles of memory. On the basis of Craik's levels of processing framework and Tulving's encoding specificity principle we hypothesize that brain oscillations during encoding might primarily reflect the perceptual and cognitive processes engaged by the encoding task. These processes may then lead to later successful retrieval depending on their overlap with the processes engaged by the memory test. As a consequence, brain oscillatory correlates of memory formation could vary dramatically depending on how the memory is encoded, and on how it is being tested later. Focusing on oscillatory amplitude changes and on theta-to-gamma cross-frequency coupling, we here review recent evidence showing how brain oscillatory subsequent memory effects can be modulated, and sometimes even be reversed, by varying encoding tasks, and the contextual overlap between encoding and retrieval.

  1. Monitoring of oscillatory characteristics of pulverized coal flames through image processing and spectral analysis

    SciTech Connect

    Lu, G.; Yan, Y.; Colechin, M.; Hill, R.

    2006-02-15

    This paper presents the monitoring of the oscillatory characteristics of pulverized coal flames using image processing and spectral analysis techniques. The instrumentation system employed in this investigation is an integral part of a multifunctional flame monitoring system, being capable of monitoring the oscillatory frequency of a flame on a two-dimensional and concurrent basis. A quantitative flicker frequency is defined as the power-density-weighted mean frequency over the spectral range to represent the oscillatory characteristics of a specific region of the flame. Digital filtering techniques incorporating direct gray-level thresholding and wavelet shrinkage algorithms are employed to reduce background noise from flame images and white noise from the resulting flame frequency signal. A series of tests was undertaken on an industrial-scale coal-fired combustion test facility (CTF) under a range of operating conditions. Relationships between the measured flame oscillatory frequency and the process data including emissions are identified. Results obtained demonstrate that the flame oscillatory frequency responds in predictable ways to the effects of operating conditions on the dynamic nature of the flame.

  2. Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal.

    PubMed

    Wen, Haiguang; Liu, Zhongming

    2016-01-01

    Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the irregular-resampling auto-spectral analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography and human magnetoencephalography data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions.

  3. GENERATING OSCILLATORY BURSTS FROM A NETWORK OF REGULAR SPIKING NEURONS WITHOUT INHIBITION

    PubMed Central

    Shao, Jing; Lai, Dihui; Meyer, Ulrike; Luksch, Harald; Wessel, Ralf

    2010-01-01

    Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the layer 10 (L10) neurons in the optic tectum and respond with oscillatory bursts to visual stimulation. Our in vitro experiments show that both neuron types respond with regular spiking to somatic current injection and that the feedforward and feedback synaptic connections are excitatory, but of different strength and time course. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation. A scan through the model parameter volume reveals that Ipc oscillatory burst generation can be caused by strong and brief feedforward synaptic conductance changes. The mechanism is sensitive to the parameter values of spike-rate adaptation. In conclusion, we show that a network of regular-spiking neurons with feedforward excitation and spike-rate adaptation can generate oscillatory bursting in response to a constant input. PMID:19572191

  4. Enhanced mixing and plume containment in porous media under time-dependent oscillatory flow.

    PubMed

    Zhang, Pengfei; Devries, Stephanie L; Dathe, Annette; Bagtzoglou, Amvrossios C

    2009-08-15

    Solute transport experiments were conducted in a decimeter scale flow cell packed with sand to study the potential for enhanced mixing of solutes in porous media and improved containment of injected plumes under multiple pumping-well driven, time-dependent oscillatory flow with respect to constant flow. Real-time imaging of the colorimetric reaction of Tiron (1,2-dihydroxybenzene-3,5-disulfonic acid) and molybdate was used to quantify mixing, whereas fluorescein was used to better examine plume size. Results from the small scale experiments clearly demonstrated the enhanced mixing of solutes under low Reynolds number oscillatory flow (a factor of 2 with respect to constant flow in homogeneous sand and a factor of 3 in layered sand), as the result of increased contact interface for solute diffusion. Further, the injected solute plume was better contained under oscillatory flow (25% less area with respect to constant flow in homogeneous sand) due to the cancellation of advective transport at each well over time. Enhanced mixing under oscillatory flow may enhance the processes of chemical and biological remediation. Furthermore, improved plume containment under oscillatory flow may require smaller amounts of chemicals to be injected during aquifer remediation.

  5. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  6. Resonant behavior of trapped Brownian particles in an oscillatory shear flow.

    PubMed

    Kählert, Hanno; Löwen, Hartmut

    2012-10-01

    The response of harmonically trapped Brownian particles to an externally imposed oscillatory shear flow is explored by theory and computer simulation. The special case of a single trapped particle is solved analytically. We present explicit results for the time-dependent density and the velocity distribution. The response of the many-body problem is studied by computer simulations. In particular, we investigate the influence of oscillatory shear flow on the internal modes of the cluster. As a function of the shear oscillation frequency, we find resonant behavior for certain (antisymmetric) normal modes, implying that they can be efficiently excited by oscillatory shear. Our results are verifiable in experiments on dusty plasmas and trapped colloidal dispersions.

  7. Not so different after all: The same oscillatory processes support different types of attention.

    PubMed

    Frey, Julia Natascha; Ruhnau, Philipp; Weisz, Nathan

    2015-11-11

    Scientific research from the last two decades has provided a vast amount of evidence that brain oscillations reflect physiological activity enabling diverse cognitive processes. The goal of this review is to give a broad empirical and conceptual overview of how ongoing oscillatory activity may support attention processes. Keeping in mind that definitions of cognitive constructs like attention are prone to being blurry and ambiguous, the present review focuses mainly on the neural correlates of 'top-down' attention deployment. In particular, we will discuss modulations of (ongoing) oscillatory activity during spatial, temporal, selective, and internal attention. Across these seemingly distinct attentional domains, we will summarize studies showing the involvement of two oscillatory processes observed during attention deployment: power modulations mainly in the alpha band, and phase modulations in lower frequency bands. This article is part of a Special Issue entitled SI: Prediction and Attention.

  8. Oscillatory Notch-pathway activity in a delay model of neuronal differentiation

    NASA Astrophysics Data System (ADS)

    Momiji, Hiroshi; Monk, Nicholas A. M.

    2009-08-01

    Lateral inhibition resulting from a double-negative feedback loop underlies the assignment of different fates to cells in many developmental processes. Previous studies have shown that the presence of time delays in models of lateral inhibition can result in significant oscillatory transients before patterned steady states are reached. We study the impact of local feedback loops in a model of lateral inhibition based on the Notch signaling pathway, elucidating the roles of intracellular and intercellular delays in controlling the overall system behavior. The model exhibits both in-phase and out-of-phase oscillatory modes and oscillation death. Interactions between oscillatory modes can generate complex behaviors such as intermittent oscillations. Our results provide a framework for exploring the recent observation of transient Notch-pathway oscillations during fate assignment in vertebrate neurogenesis.

  9. Determination of Temporal Order among the Components of an Oscillatory System

    PubMed Central

    Barragán, Sandra; Rueda, Cristina; Fernández, Miguel A.; Peddada, Shyamal D.

    2015-01-01

    Oscillatory systems in biology are tightly regulated process where the individual components (e.g. genes) express in an orderly manner by virtue of their functions. The temporal order among the components of an oscillatory system may potentially be disrupted for various reasons (e.g. environmental factors). As a result some components of the system may go out of order or even cease to participate in the oscillatory process. In this article, we develop a novel framework to evaluate whether the temporal order is unchanged in different populations (or experimental conditions). We also develop methodology to estimate the order among the components with a suitable notion of “confidence.” Using publicly available data on S. pombe, S. cerevisiae and Homo sapiens we discover that the temporal order among the genes cdc18; mik1; hhf1; hta2; fkh2 and klp5 is evolutionarily conserved from yeast to humans. PMID:26151635

  10. Not so different after all: The same oscillatory processes support different types of attention.

    PubMed

    Frey, Julia Natascha; Ruhnau, Philipp; Weisz, Nathan

    2015-11-11

    Scientific research from the last two decades has provided a vast amount of evidence that brain oscillations reflect physiological activity enabling diverse cognitive processes. The goal of this review is to give a broad empirical and conceptual overview of how ongoing oscillatory activity may support attention processes. Keeping in mind that definitions of cognitive constructs like attention are prone to being blurry and ambiguous, the present review focuses mainly on the neural correlates of 'top-down' attention deployment. In particular, we will discuss modulations of (ongoing) oscillatory activity during spatial, temporal, selective, and internal attention. Across these seemingly distinct attentional domains, we will summarize studies showing the involvement of two oscillatory processes observed during attention deployment: power modulations mainly in the alpha band, and phase modulations in lower frequency bands. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25721788

  11. Effect of oscillatory high hydrostatic pressure treatments on Byssochlamys nivea ascospores suspended in fruit juice concentrates.

    PubMed

    Palou, E; López-Malo, A; Barbosa-Cánovas, G V; Welti-Chanes, J; Davidson, P M; Swanson, B G

    1998-12-01

    The effect of continuous (689 MPa with holding times of 5, 15 or 25 min) and oscillatory (one, three or five cycles at 689 MPa with holding times of 1 s) high hydrostatic pressure treatments on the viability of Byssochlamys nivea ascospores suspended in apple and cranberry juice concentrates adjusted by dilution to water activities (aw) of 0.98 and 0.94 was evaluated at 21 and 60 degrees C. Inactivation of the initial spore inocula was achieved after three or five cycles of oscillatory pressurization at 60 degrees C when the aw was 0.98 in both fruit juices. With aw 0.94, the initial inocula were reduced by less than 1 log-cycle after five pressure cycles. Inactivation was not observed within 25 min with continuous pressurization at 60 degrees C. In treatments at 21 degrees C, no effect on spore viability was observed with continuous or oscillatory treatments. PMID:9871357

  12. A comparative analysis on different nanofluid models for the oscillatory stagnation point flow

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Khan, A. U.; Saleem, S.

    2016-08-01

    In this study we have presented the comparative analysis of the oscillatory stagnation point flow of nanofluids. Both the phase flow model and Buongiorno model are discussed for oscillatory stagnation point flows and a comparison between experimental model and theoretical model is presented. The resulting partial differential equations for oscillatory two-dimensional flows are simplified in a fixed frame and a moving frame of reference subject to the assumed form of solutions. The homotopy analysis method is used to solve the reduced system of coupled nonlinear ordinary differential equations. The consequences are examined through graphs and tables. It is also found that comparatively both the Boungiorno nanofluid model and phase flow model are of compatible order for a special set of parameters but generally such results do not hold.

  13. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function

    PubMed Central

    Kembro, Jackelyn M.; Cortassa, Sonia; Aon, Miguel A.

    2014-01-01

    The time-keeping properties bestowed by oscillatory behavior on functional rhythms represent an evolutionarily conserved trait in living systems. Mitochondrial networks function as timekeepers maximizing energetic output while tuning reactive oxygen species (ROS) within physiological levels compatible with signaling. In this work, we explore the potential for timekeeping functions dependent on mitochondrial dynamics with the validated two-compartment mitochondrial energetic-redox (ME-R) computational model, that takes into account (a) four main redox couples [NADH, NADPH, GSH, Trx(SH)2], (b) scavenging systems (glutathione, thioredoxin, SOD, catalase) distributed in matrix and extra-matrix compartments, and (c) transport of ROS species between them. Herein, we describe that the ME-R model can exhibit highly complex oscillatory dynamics in energetic/redox variables and ROS species, consisting of at least five frequencies with modulated amplitudes and period according to power spectral analysis. By stability analysis we describe that the extent of steady state—as against complex oscillatory behavior—was dependent upon the abundance of Mn and Cu, Zn SODs, and their interplay with ROS production in the respiratory chain. Large parametric regions corresponding to oscillatory dynamics of increasingly complex waveforms were obtained at low Cu, Zn SOD concentration as a function of Mn SOD. This oscillatory domain was greatly reduced at higher levels of Cu, Zn SOD. Interestingly, the realm of complex oscillations was located at the edge between normal and pathological mitochondrial energetic behavior, and was characterized by oxidative stress. We conclude that complex oscillatory dynamics could represent a frequency- and amplitude-modulated H2O2 signaling mechanism that arises under intense oxidative stress. By modulating SOD, cells could have evolved an adaptive compromise between relative constancy and the flexibility required under stressful redox

  14. Non-axisymmetric magnetic modes of neutron stars with purely poloidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Asai, Hidetaka; Lee, Umin; Yoshida, Shijun

    2016-01-01

    We calculate non-axisymmetric oscillations of neutron stars magnetized by purely poloidal magnetic fields. We use polytropes of index n = 1 and 1.5 as a background model, where we ignore the equilibrium deformation due to the magnetic field. Since separation of variables is not possible for the oscillation of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. Solving the oscillation equations as the boundary and eigenvalue problem, we find two kinds of discrete magnetic modes, that is, stable (oscillatory) magnetic modes and unstable (monotonically growing) magnetic modes. For isentropic models, the frequency or the growth rate of the magnetic modes is exactly proportional to BS, the strength of the field at the surface. The oscillation frequency and the growth rate are affected by the buoyant force in the interior, and the stable stratification tends to stabilize the unstable magnetic modes.

  15. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  16. Domain of oscillatory growth in directional solidification of dilute binary alloys.

    PubMed

    Babushkina, Evgenia; Bessonov, Nicholas M; Korzhenevskii, Alexander L; Bausch, Richard; Schmitz, Rudi

    2013-04-01

    The oscillatory growth of a dilute binary alloy has recently been described by a nonlinear oscillator equation that applies to small temperature gradients and large growth velocities in the setup of directional solidification. Based on a one-dimensional stability analysis of stationary solutions of this equation, we explore in the present paper the complete region where the solidification front propagates in an oscillatory way. The boundary of this region is calculated exactly, and the nature of the oscillations is evaluated numerically in several segments of the region.

  17. From simple to complex oscillatory behavior in metabolic and genetic control networks

    NASA Astrophysics Data System (ADS)

    Goldbeter, Albert; Gonze, Didier; Houart, Gérald; Leloup, Jean-Christophe; Halloy, José; Dupont, Geneviève

    2001-03-01

    We present an overview of mechanisms responsible for simple or complex oscillatory behavior in metabolic and genetic control networks. Besides simple periodic behavior corresponding to the evolution toward a limit cycle we consider complex modes of oscillatory behavior such as complex periodic oscillations of the bursting type and chaos. Multiple attractors are also discussed, e.g., the coexistence between a stable steady state and a stable limit cycle (hard excitation), or the coexistence between two simultaneously stable limit cycles (birhythmicity). We discuss mechanisms responsible for the transition from simple to complex oscillatory behavior by means of a number of models serving as selected examples. The models were originally proposed to account for simple periodic oscillations observed experimentally at the cellular level in a variety of biological systems. In a second stage, these models were modified to allow for complex oscillatory phenomena such as bursting, birhythmicity, or chaos. We consider successively (1) models based on enzyme regulation, proposed for glycolytic oscillations and for the control of successive phases of the cell cycle, respectively; (2) a model for intracellular Ca2+ oscillations based on transport regulation; (3) a model for oscillations of cyclic AMP based on receptor desensitization in Dictyostelium cells; and (4) a model based on genetic regulation for circadian rhythms in Drosophila. Two main classes of mechanism leading from simple to complex oscillatory behavior are identified, namely (i) the interplay between two endogenous oscillatory mechanisms, which can take multiple forms, overt or more subtle, depending on whether the two oscillators each involve their own regulatory feedback loop or share a common feedback loop while differing by some related process, and (ii) self-modulation of the oscillator through feedback from the system's output on one of the parameters controlling oscillatory behavior. However, the latter

  18. Design principle of multi-cluster and desynchronized states in oscillatory media via nonlinear global feedback

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuaki; Kori, Hiroshi

    2009-03-01

    A theoretical framework is developed for the precise control of spatial patterns in oscillatory media using nonlinear global feedback, where a proper form of the feedback function corresponding to a specific pattern is predicted through the analysis of a phase diffusion equation with global coupling. In particular, feedback functions that generate the following spatial patterns are analytically given: (i) 2-cluster states with an arbitrary population ratio, (ii) equally populated multi-cluster states and (iii) a desynchronized state. Our method is demonstrated numerically by using the Brusselator model in the oscillatory regime. Experimental realization is also discussed.

  19. On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1992-01-01

    A few years ago, the class of Essentially Non-Oscillatory Schemes for the numerical simulation of hyperbolic equations and systems was constructed. Since then, some extensions have been made to multidimensional simulations of compressible flows, mainly in the context of very regular structured meshes. In this paper, we first recall and improve the results of an earlier paper about non-oscillatory reconstruction on unstructured meshes, emphasizing the effective calculation of the reconstruction. Then we describe a class of numerical schemes on unstructured meshes and give some applications for its third order version. This demonstrates that a higher order of accuracy is indeed obtained, even on very irregular meshes.

  20. FEL and Optical Klystron Gain for an Electron Beam with Oscillatory Energy Distribution

    SciTech Connect

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2009-12-09

    If the energy spread of a beam is larger then the Pierce parameter, the FEL gain length increases dramatically and the FEL output gets suppressed. We show that if the energy distribution of such a beam is made oscillatory on a small scale, the gain length can be considerably decreased. Such an oscillatory energy distribution is generated by first modulating the beam energy with a laser via the mechanism of inverse FEL, and then sending it through a strong chicane. We show that this approach also works for the optical klystron enhancement scheme. Our analytical results are corroborated by numerical simulations.

  1. Evaluation of write error rate for voltage-driven dynamic magnetization switching in magnetic tunnel junctions with perpendicular magnetization

    NASA Astrophysics Data System (ADS)

    Shiota, Yoichi; Nozaki, Takayuki; Tamaru, Shingo; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Suzuki, Yoshishige

    2016-01-01

    We investigated the write error rate (WER) for voltage-driven dynamic switching in magnetic tunnel junctions with perpendicular magnetization. We observed a clear oscillatory behavior of the switching probability with respect to the duration of pulse voltage, which reveals the precessional motion of magnetization during voltage application. We experimentally demonstrated WER as low as 4 × 10-3 at the pulse duration corresponding to a half precession period (˜1 ns). The comparison between the results of the experiment and simulation based on a macrospin model shows a possibility of ultralow WER (<10-15) under optimum conditions. This study provides a guideline for developing practical voltage-driven spintronic devices.

  2. Rheological behavior of magnetic powder mixtures for magnetic PIM

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hun; Kim, See Jo; Park, Seong Jin; Mun, Jun Ho; Kang, Tae Gon; Park, Jang Min

    2012-06-01

    Powder injection molding (PIM) is a promising manufacturing technology for the net-shape production of small, complex, and precise metal or ceramic components. In order to manufacture high quality magnets using PIM, the magneto-rheological (MR) properties of the PIM feedstock, i.e. magnetic powder-binder mixture, should be investigated experimentally and theoretically. The current research aims at comprehensive understanding of the rheological characteristics of the PIM feedstock. The feedstock used in the experiment consists of strontium ferrite powder and paraffin wax. Steady and oscillatory shear tests have been carried out using a plate-and-plate rheometer, under the influence of a uniform magnetic field applied externally. Rheological properties of the PIM feedstock have been measured and characterized for various conditions by changing the temperature, the powder fraction and the magnetic flux density.

  3. Determination of the Neutron Magnetic Moment

    DOE R&D Accomplishments Database

    Greene, G. L.; Ramsey, N. F.; Mampe, W.; Pendlebury, J. M.; Smith, K.; Dress, W. B.; Miller, P. D.; Perrin, P.

    1981-06-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H{sub 2}O), we find ..mu..{sub n}/..mu..{sub p} = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units.

  4. Spontaneous oscillatory activity in rd1 mouse retina is transferred from ON pathway to OFF pathway via glycinergic synapse.

    PubMed

    Poria, Deepak; Dhingra, Narender K

    2015-01-15

    Retinal ganglion cells (RGCs) spike randomly in the dark and carry information about visual stimuli to the brain via specific spike patterns. However, following photoreceptor loss, both ON and OFF type of RGCs exhibit spontaneous oscillatory spike activity, which reduces the quality of information they can carry. Furthermore, it is not clear how the oscillatory activity would interact with the experimental treatment approaches designed to produce artificial vision. The oscillatory activity is considered to originate in ON-cone bipolar cells, AII amacrine cells, and/or their synaptic interactions. However, it is unknown how the oscillatory activity is generated in OFF RGCs. We tested the hypothesis that oscillatory activity is transferred from the ON pathway to the OFF pathway via the glycinergic AII amacrine cells. Using extracellular loose-patch and whole cell patch recordings, we recorded oscillatory activity in ON and OFF RGCs and studied their response to strychnine, a specific glycine receptor blocker. The cells were labeled with a fluorescent dye, and their dendritic stratification in inner plexiform layer was studied using confocal microscopy. Application of strychnine resulted in abolition of the oscillatory burst activity in OFF RGCs but not in ON RGCs, implying that oscillatory activity is generated in ON pathway and is transferred to OFF pathway, likely via the glycinergic AII amacrine cells. We found oscillatory activity in RGCs as early as postnatal day 12 in rd1 mouse, when rod degeneration has started but cones are still intact. This suggests that the oscillatory activity in rd1 mouse retina originates in rod pathway.

  5. Oscillatory Critical Amplitudes in Hierarchical Models and the Harris Function of Branching Processes

    NASA Astrophysics Data System (ADS)

    Costin, Ovidiu; Giacomin, Giambattista

    2013-02-01

    Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).

  6. Stationary and oscillatory fronts in a two-component genetic regulatory network model

    NASA Astrophysics Data System (ADS)

    Hardway, Heather; Li, Yue-Xian

    2010-09-01

    We investigate a two-component gene network model, originally used to describe the spatiotemporal patterning of the gene products in early Drosophila development. By considering a particular mode of interaction between the two gene products, denoted proteins A and B, we find both stable stationary and time-oscillatory fronts can occur in the reaction-diffusion system. We reduce the system by replacing B with its spatial average (shadow system) and assume an abrupt “on-and-off” switch for the genes. In doing so, explicit formula are obtained for all steady-state solutions and their linear eigenvalues. Using the diffusion of A,Da, and the basal production rate, r, as bifurcation parameters, we explore ranges in which a monotone, stationary front is stable, and show it can lose stability through a Hopf bifurcation, giving rise to oscillatory fronts. We also discuss the existence and stability of steady-state and time-oscillatory solutions with multiple extrema. An intuitive explanation for the occurrence of stable stationary and oscillatory front solutions is provided based on the behavior of A in the absence of B and the opposite regulation between A and B. Such behavior is also interpreted in terms of the biological parameters in the model, including those governing the connection of the gene network.

  7. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation

    PubMed Central

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S.

    2016-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties. PMID:26793063

  8. Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.

    PubMed

    Herrmann, Björn; Henry, Molly J; Grigutsch, Maren; Obleser, Jonas

    2013-10-01

    Neural oscillatory dynamics are a candidate mechanism to steer perception of time and temporal rate change. While oscillator models of time perception are strongly supported by behavioral evidence, a direct link to neural oscillations and oscillatory entrainment has not yet been provided. In addition, it has thus far remained unaddressed how context-induced illusory percepts of time are coded for in oscillator models of time perception. To investigate these questions, we used magnetoencephalography and examined the neural oscillatory dynamics that underpin pitch-induced illusory percepts of temporal rate change. Human participants listened to frequency-modulated sounds that varied over time in both modulation rate and pitch, and judged the direction of rate change (decrease vs increase). Our results demonstrate distinct neural mechanisms of rate perception: Modulation rate changes directly affected listeners' rate percept as well as the exact frequency of the neural oscillation. However, pitch-induced illusory rate changes were unrelated to the exact frequency of the neural responses. The rate change illusion was instead linked to changes in neural phase patterns, which allowed for single-trial decoding of percepts. That is, illusory underestimations or overestimations of perceived rate change were tightly coupled to increased intertrial phase coherence and changes in cerebro-acoustic phase lag. The results provide insight on how illusory percepts of time are coded for by neural oscillatory dynamics. PMID:24089487

  9. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation.

    PubMed

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S

    2015-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

  10. On the local stability of multiple solutions and oscillatory dynamics of spatially distributed flames

    SciTech Connect

    Bui, P.A.; Vlachos, D.G.; Westmoreland, P.R.

    1999-04-01

    A new methodology is developed to study the stability of multiple solutions and the onset of oscillations of distributed flames modeled with detailed chemistry and multicomponent transport. This methodology is applied to premixed hydrogen/air mixtures impinging onto an inert isothermal surface. In particular, the local stability of the extinguished, ignited, partially ignited, and intermediate branches is determined on-the-fly as stationary solutions are computed. Hopf bifurcation points appear only in the fuel-lean and fuel-rich regime, near the edges of a nonextinction regime. Harmonic, relaxation, and complex mode self-sustained oscillations can occur depending on surface temperature, and multistage ignitions are found, varying from three-stage to six-stage ignitions. In the presence of a Hopf bifurcation, it is found that ignition can be oscillatory, and extinction can be oscillatory at an infinite period saddle-loop bifurcation or coincident with a Hopf bifurcation has a kinetic origin but is affected by the heat of reactions as the composition approaches a thermally nonextinction regime. For strong flames, thermal feedback destroys oscillatory dynamics. Sensitivity analysis of Hopf bifurcation shows that the termination reaction H + O{sub 2} + M {r_arrow} HO{sub 2} + M plays an important role in the birth of oscillatory dynamics and that diffusion of H{sub 2}O is also significant.

  11. Task-sensitive reconfiguration of corticocortical 6-20 Hz oscillatory coherence in naturalistic human performance.

    PubMed

    Saarinen, Timo; Jalava, Antti; Kujala, Jan; Stevenson, Claire; Salmelin, Riitta

    2015-07-01

    Electrophysiological oscillatory coherence between brain regions has been proposed to facilitate functional long-range connectivity within neurocognitive networks. This notion is supported by intracortical recordings of coherence in singled-out corticocortical connections in the primate cortex. However, the manner in which this operational principle manifests in the task-sensitive connectivity that supports human naturalistic performance remains undercharacterized. Here, we demonstrate task-sensitive reconfiguration of global patterns of coherent connectivity in association with a set of easier and more demanding naturalistic tasks, ranging from picture comparison to speech comprehension and object manipulation. Based on whole-cortex neuromagnetic recording in healthy behaving individuals, the task-sensitive component of long-range corticocortical coherence was mapped at spectrally narrow-band oscillatory frequencies between 6 and 20 Hz (theta to alpha and low-beta bands). This data-driven cortical mapping unveiled markedly distinct and topologically task-relevant spatiospectral connectivity patterns for the different tasks. The results demonstrate semistable oscillatory states relevant for neurocognitive processing. The present findings decisively link human behavior to corticocortical coherence at oscillatory frequencies that are widely thought to convey long-range, feedback-type neural interaction in cortical functional networks.

  12. On oscillatory convection with the Cattaneo–Christov hyperbolic heat-flow model

    PubMed Central

    Bissell, J. J.

    2015-01-01

    Adoption of the hyperbolic Cattaneo–Christov heat-flow model in place of the more usual parabolic Fourier law is shown to raise the possibility of oscillatory convection in the classic Bénard problem of a Boussinesq fluid heated from below. By comparing the critical Rayleigh numbers for stationary and oscillatory convection, Rc and RS respectively, oscillatory convection is found to represent the preferred form of instability whenever the Cattaneo number C exceeds a threshold value CT≥8/27π2≈0.03. In the case of free boundaries, analytical approaches permit direct treatment of the role played by the Prandtl number P1, which—in contrast to the classical stationary scenario—can impact on oscillatory modes significantly owing to the non-zero frequency of convection. Numerical investigation indicates that the behaviour found analytically for free boundaries applies in a qualitatively similar fashion for fixed boundaries, while the threshold Cattaneo number CT is computed as a function of P1∈[10−2,10+2] for both boundary regimes. PMID:25792960

  13. Brain Oscillatory Activity during Spatial Navigation: Theta and Gamma Activity Link Medial Temporal and Parietal Regions

    ERIC Educational Resources Information Center

    White, David J.; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B.

    2012-01-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town…

  14. Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh-Nagumo System

    NASA Astrophysics Data System (ADS)

    Carter, Paul; de Rijk, Björn; Sandstede, Björn

    2016-10-01

    The FitzHugh-Nagumo equations are known to admit fast traveling pulses that have monotone tails and arise as the concatenation of Nagumo fronts and backs in an appropriate singular limit, where a parameter ɛ goes to zero. These pulses are known to be nonlinearly stable with respect to the underlying PDE. Recently, the existence of fast pulses with oscillatory tails was proved for the FitzHugh-Nagumo equations. In this paper, we prove that the fast pulses with oscillatory tails are also nonlinearly stable. Similar to the case of monotone tails, stability is decided by the location of a nontrivial eigenvalue near the origin of the PDE linearization about the traveling pulse. We prove that this real eigenvalue is always negative. However, the expression that governs the sign of this eigenvalue for oscillatory pulses differs from that for monotone pulses, and we show indeed that the nontrivial eigenvalue in the monotone case scales with ɛ, while the relevant scaling in the oscillatory case is ɛ ^{2/3}.

  15. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    NASA Astrophysics Data System (ADS)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2011-08-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell-cell junctions and spatial cues provided by the anterior-posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells.

  16. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation.

    PubMed

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S

    2015-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties. PMID:26793063

  17. Analysis of Wind Tunnel Longitudinal Static and Oscillatory Data of the F-16XL Aircraft

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.; Curry, Timothy J.; Brandon, Jay M.

    1997-01-01

    Static and oscillatory wind tunnel data are presented for a 10-percent-scale model of an F-16XL aircraft. Static data include the effect of angle of attack, sideslip angle, and control surface deflections on aerodynamic coefficients. Dynamic data from small-amplitude oscillatory tests are presented at nominal values of angle of attack between 20 and 60 degrees. Model oscillations were performed at five frequencies from 0.6 to 2.9 Hz and one amplitude of 5 degrees. A simple harmonic analysis of the oscillatory data provided Fourier coefficients associated with the in-phase and out-of-phase components of the aerodynamic coefficients. A strong dependence of the oscillatory data on frequency led to the development of models with unsteady terms in the form of indicial functions. Two models expressing the variation of the in-phase and out-of-phase components with angle of attack and frequency were proposed and their parameters estimated from measured data.

  18. An Extended Motor Network Generates Beta and Gamma Oscillatory Perturbations during Development

    ERIC Educational Resources Information Center

    Wilson, Tony W.; Slason, Erin; Asherin, Ryan; Kronberg, Eugene; Reite, Martin L.; Teale, Peter D.; Rojas, Donald C.

    2010-01-01

    This study examines the time course and neural generators of oscillatory beta and gamma motor responses in typically-developing children. Participants completed a unilateral flexion-extension task using each index finger as whole-head magnetoencephalography (MEG) data were acquired. These MEG data were imaged in the frequency-domain using spatial…

  19. Information-geometric measures estimate neural interactions during oscillatory brain states

    PubMed Central

    Nie, Yimin; Fellous, Jean-Marc; Tatsuno, Masami

    2014-01-01

    The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG), a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain. PMID:24605089

  20. Shadows of Music-Language Interaction on Low Frequency Brain Oscillatory Patterns

    ERIC Educational Resources Information Center

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-01-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations…

  1. Positive and Negative Symptoms in Schizophrenia Relate to Distinct Oscillatory Signatures of Sensory Gating

    PubMed Central

    Keil, Julian; Roa Romero, Yadira; Balz, Johanna; Henjes, Melissa; Senkowski, Daniel

    2016-01-01

    Oscillatory activity in neural populations and temporal synchronization within these populations are important mechanisms contributing to perception and cognition. In schizophrenia, perception and cognition are impaired. Aberrant gating of irrelevant sensory information, which has been related to altered oscillatory neural activity, presumably contributes to these impairments. However, the link between schizophrenia symptoms and sensory gating deficits, as reflected in oscillatory activity, is not clear. In this electroencephalography study, we used a paired-stimulus paradigm to investigate frequency-resolved oscillatory activity in 22 schizophrenia patients and 22 healthy controls. We found sensory gating deficits in patients compared to controls, as reflected in reduced gamma-band power and alpha-band phase synchrony difference between the first and the second auditory stimulus. We correlated these markers of neural activity with a five-factor model of the Positive and Negative Syndrome Scale. Gamma-band power sensory gating was positively correlated with positive symptoms. Moreover, alpha-band phase synchrony sensory gating was negatively correlated with negative symptoms. A cluster analysis revealed three schizophrenia phenotypes, characterized by (i) aberrant gamma-band power and high positive symptoms, (ii) aberrant alpha-band phase synchrony, low positive, and low negative symptom scores or (iii) by intact sensory gating and high negative symptoms. Our study demonstrates that aberrant neural synchronization, as reflected in gamma-band power and alpha-band phase synchrony, relates to the schizophrenia psychopathology. Different schizophrenia phenotypes express distinct levels of positive and negative symptoms as well as varying degrees of aberrant oscillatory neural activity. Identifying the individual phenotype might improve therapeutic interventions in schizophrenia. PMID:27014035

  2. Effect of a cardiac rehabilitation program on exercise oscillatory ventilation in Japanese patients with heart failure.

    PubMed

    Yamauchi, Fumitake; Adachi, Hitoshi; Tomono, Jun-Ichi; Toyoda, Shigeru; Iwamatsu, Koichi; Sakuma, Masashi; Nakajima, Toshiaki; Oshima, Shigeru; Inoue, Teruo

    2016-10-01

    Although exercise oscillatory ventilation has emerged as a potent independent risk factor for adverse prognosis in heart failure, it is not well known whether cardiac rehabilitation can improve oscillatory ventilation. In this study, we investigated the magnitude of oscillations in ventilation before and after cardiac rehabilitation in chronic heart failure patients with exercise oscillatory ventilation. Cardiac rehabilitation (5-month program) was performed in 26 patients with chronic heart failure who showed an oscillatory ventilation pattern during cardiopulmonary exercise testing (CPX). After the 5-month rehabilitation program was completed, the patients again underwent CPX. To determine the magnitude of oscillations in ventilation, the amplitude and cycle length of the oscillations were calculated and compared with several other parameters, including biomarkers that have established prognostic value in heart failure. At baseline before cardiac rehabilitation, both oscillation amplitude (R = 0.625, P < 0.01) and cycle length (R = 0.469, P < 0.05) were positively correlated with the slope of minute ventilation vs. carbon dioxide production. Plasma BNP levels were positively correlated with amplitude (R = 0.615, P < 0.01) but not cycle length (R = 0.371). Cardiac rehabilitation decreased oscillation amplitude (P < 0.01) but failed to change cycle length. The change in amplitude was positively correlated with the change in BNP levels (R = 0.760, P < 0.01). Multiple regression analysis showed that only the change in amplitude was an independent predictor of the change in BNP levels (R = 0.717, P < 0.01). A 5-month cardiac rehabilitation program improves exercise oscillatory ventilation in chronic heart failure patients by reducing the oscillation amplitude. This effect is associated with a reduction of plasma BNP levels, potentially contributing to an improvement of heart failure.

  3. Resistance of mucus-lined tubes to steady and oscillatory airflow.

    PubMed

    King, M; Chang, H K; Weber, M E

    1982-05-01

    We examined the effects of quantity and physical properties of mucus on resistance to steady and oscillatory flows in a circular tube. Gels with similar rheological properties to canine tracheal mucus were prepared from hog gastric mucin or locust bean gum cross-linked with Na2B4O7. A horizontal straight tube (D 1.85 cm) was lined with these mucus simulants to depths ranging from 0.3 to 1.0 mm. The pressure difference over a 50-cm portion of the tube and the volumetric flow rate were determined simultaneously. Low-amplitude oscillatory flow were generated with a modified Harvard pump. For steady flow, the resistance at low Reynolds number (Re) increased with increasing gel depth only to the extent expected for simple constriction of the tube cross-sectional area. The same was true for oscillatory (0.25--6 Hz) flow resistance at low flow amplitude (corresponding to Re less than 4,000). No effect of gel cross-link density at low Re was observed. At high steady-flow rates, and for high-amplitude oscillatory flow, resistance increased beyond that predicted for simple constriction. Plots of friction factor (f) vs. Re showed a critical point (Recrit) of the order of 1.5 x 10(4), at which f increased sharply. Recrit, which corresponded to the onset of wave formation in the lining layer, was insensitive to changes in gel depth. However, gel cross-link density did affect the onset of wave formation: in oscillatory flow Recrit was shifted to higher Re, and the rise in f in steady flow was blunted with high degrees of cross-linking. The existence of Recrit and its association with wave formation are consistent with predictions based on two-phase flow theory.

  4. Assessment of language dominance by event-related oscillatory changes in an auditory language task: magnetoencephalography study.

    PubMed

    Lee, Seo-Young; Kim, June Sic; Chung, Chun Kee; Lee, Sang Kun; Kim, Won Sup

    2010-08-01

    The authors investigated the oscillatory changes induced by auditory language task to assess hemispheric dominance of language. Magnetoencephalography studies were conducted during word listening in 6 normal right-handed volunteers and 13 epilepsy patients who underwent Wada test. We carried out a time-frequency analysis of event-related desynchronization (ERD)/event-related synchronization (ERS) and intertrial coherence. We localized ERD/ERS on each subject's magnetic resonance images using beamformer. We compared ERD/ERS values between the left and right side of regions of interest in inferior frontal and superior temporal areas. We assessed the target frequency range that correlated best with the Wada test results. In all normal subjects, gamma ERD was lateralized to the left side in both the inferior frontal and superior temporal areas. In epilepsy patients, the concordance rate of gamma ERD and the Wada test results was 76.9% for the inferior frontal area and 69.2% for the superior temporal area. Gamma ERD can be considered as an indicator of language function, although it was not sufficient to replace the Wada test in the evaluation of epilepsy patients. The gamma ERD value of the inferior frontal area was more reliable for the assessment of language dominance compared with that obtained in the superior temporal area. PMID:20634707

  5. Non-parametric permutation thresholding for adaptive nonlinear beamformer analysis on MEG revealed oscillatory neuronal dynamics in human brain.

    PubMed

    Ishii, Ryouhei; Canuet, Leonides; Aoki, Yasunori; Ikeda, Shunichiro; Hata, Masahiro; Iwase, Masao; Takeda, Masatoshi

    2013-01-01

    Adaptive nonlinear beamformer technique for analyzing magnetoencephalography (MEG) data has been proved to be powerful tool for both brain research and clinical applications. A general method of analyzing multiple subject data with a formal statistical treatment for the group data has been developed and applied for various types of MEG data. Our latest application of this method was frontal midline theta rhythm (Fmθ), which indicates focused attention and appears widely distributed over medial prefrontal areas in EEG recordings. To localize cortical generators of the magnetic counterpart of Fmθ precisely and identify cortical sources and underlying neural activity associated with mental calculation processing (i.e., arithmetic subtraction), we applied adaptive nonlinear beamformer and permutation analysis on MEG data. As a result, it was indicated that Fmθ is generated in the dorsal anterior cingulate and adjacent medial prefrontal cortex. Gamma event-related synchronization is as an index of activation in right parietal regions subserving mental subtraction associated with basic numerical processing and number-based spatial attention. Gamma desynchronization appeared in the right lateral prefrontal cortex, likely representing a mechanism to interrupt neural activity that can interfere with the ongoing cognitive task. We suggest that the combination of adaptive nonlinear beamformer and permutation analysis on MEG data is quite powerful tool to reveal the oscillatory neuronal dynamics in human brain. PMID:24110810

  6. Micromechanical measurement of beating patterns in the quantum oscillatory chemical potential of InGaAs quantum wells due to spin-orbit coupling

    SciTech Connect

    Herzog, Florian Wilde, Marc A.; Heyn, Christian; Hardtdegen, Hilde; Schäpers, Thomas; Grundler, Dirk

    2015-08-31

    The quantum oscillatory magnetization M(B) and chemical potential μ(B) of a two-dimensional (2D) electron system provide important and complementary information about its ground state energy at low temperature T. We developed a technique that provides both quantities in the same cool-down process via a decoupled static operation and resonant excitation of a micromechanical cantilever. On InGaAs/InP heterostructures, we observed beating patterns in both M(B) and μ(B) attributed to spin-orbit interaction. A significantly enhanced sensitivity in μ enabled us to extract Rashba and Dresselhaus parameters with high accuracy. The technique is powerful for detailed investigations on the electronic properties of 2D materials.

  7. Nanomechanical control of properties of biological membranes achieved by rodlike magnetic nanoparticles in a superlow-frequency magnetic field

    NASA Astrophysics Data System (ADS)

    Golovin, Yu. I.; Klyachko, N. L.; Gribanovskii, S. L.; Golovin, D. Yu.; Samodurov, A. A.; Majouga, A. G.; Sokolsky-Papkov, M.; Kabanov, A. V.

    2015-05-01

    It is proposed to use single-domain rodlike magnetic nanoparticles (MNPs) as mediators for nanomechanical control of properties of biological membranes and cells on the molecular or cellular level by exposing them to a homogeneous nonheating low-frequency magnetic field (AC MF). The trigger effect is achieved due to rotatory-oscillatory motion of MNPs in the AC MF, which causes the needed deformations in macromolecules of the membrane interacting with these MNPs.

  8. Microwave-assisted magnetization reversal using transient precession of magnetization in permalloy hexagons

    NASA Astrophysics Data System (ADS)

    Okano, Genki; Nozaki, Yukio

    2016-06-01

    Microwave-assisted magnetization reversal utilizing a transient precession of magnetization was demonstrated in a permalloy hexagon by applying a 25-ns-wide microwave field and a 500-ps-wide pulsed field with a tunable delay to the microwave field. The switching field in a combination of these two fields becomes smaller than that in only the microwave field, and this additional reduction in switching field oscillates relative to the delay time. From the comparison with the results of micromagnetic simulations, we found that the oscillatory behavior is attributed to the beats in transient precession that occurs in the early stage of microwave-field-induced magnetization excitation.

  9. Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment

    NASA Astrophysics Data System (ADS)

    Nakata, S.; Yoshii, M.; Matsuda, Y.; Suematsu, N. J.

    2015-06-01

    A self-propelled camphor boat on water was investigated from the viewpoint of characteristic features of motion and mode-bifurcation depending on the diffusion length of camphor molecules. When a camphor disk was connected to the bottom of a larger plastic plate and then was placed on water, either oscillatory motion (repetition between rest and motion) or continuous motion was observed. In this paper, we report the novel features of this motion and mode-bifurcation as a function of the diffusion length of camphor molecules, e.g., multiple accelerations during oscillation, period-2 or irregular oscillatory motion, and reciprocating oscillation. These characteristic motion and mode-bifurcation are discussed in relation to the diffusion length of camphor molecules under the camphor boat and the development of camphor molecules from the camphor boat on water.

  10. Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires

    SciTech Connect

    Oh, Sang Ho; Chisholm, Matthew F; Kauffmann, Yaron; Kaplan, Prof. Wayne D.; Luo, Weidong; Ruhle, M.; Scheu, Christina

    2010-01-01

    In vapor-liquid-solid (VLS) growth, the liquid phase plays a pivotal role in mediating mass transport from the vapor source to the growth front of a nanowire. Such transport often takes place through the liquid phase. However, we observed by in situ transmission electron microscopy a different behavior for self-catalytic VLS growth of sapphire nanowires. The growth occurs in a layer-by-layer fashion and is accomplished by interfacial diffusion of oxygen through the ordered liquid aluminum atoms. Oscillatory growth and dissolution reactions at the top rim of the nanowires occur and supply the oxygen required to grow a new (0006) sapphire layer. A periodic modulation of the VLS triple-junction configuration accompanies these oscillatory reactions.

  11. Beta oscillations and reward processing: Coupling oscillatory activity and hemodynamic responses.

    PubMed

    Mas-Herrero, Ernest; Ripollés, Pablo; HajiHosseini, Azadeh; Rodríguez-Fornells, Antoni; Marco-Pallarés, Josep

    2015-10-01

    Diverse cortical and subcortical regions are synergically engaged during reward processing. Previous studies using time-frequency decomposition of Electroencephalography (EEG) data have revealed an increase of mid-frontal beta oscillatory activity (BOA) after reward delivery, which could be a potential mechanism in the coordination of the different areas engaged during reward processing. In order to evaluate this hypothesis, twenty subjects performed a monetary gambling paradigm in two separate sessions (EEG and fMRI). Time-frequency oscillatory EEG data and fMRI activity were fused using Joint Independent Component Analysis (ICA). The present results showed that mid-frontal BOA elicited by monetary gains is associated with the engagement of a fronto-striatal-hippocampal network previously involved in reward-related memory enhancement, supporting the role of this activity during reward processing.

  12. Counting of oscillatory modes of valence quarks forming q-q¯ mesons

    NASA Astrophysics Data System (ADS)

    Kabana, Sonia; Minkowski, Peter

    2016-03-01

    We present the unique properties of oscillatory modes of valence quarks (u,d,s) and antiquarks in mesons and the mass spectrum of associated mesons. The mesonic multiplets are shown to emerge from the picture of oscillating quarks and antiquarks in three space dimensions in the center of mass system of the mesons. All oscillatory modes are fully relativistic with a finite number of oscillators and this is forming the unique harmonic oscillator with these properties. The density of states as a function of masssquare is calculated. Since it is known that there are missing states of unobserved hadrons this estimate is of relevance for the accounting of the latter, as the here estimated mesonic multiplets include both the observed and the unobserved (or “missing”) hadrons. The estimate is conceptually different from Hagedorn’s model and is based on field theory of QCD.

  13. Oscillatory barrier-assisted Langmuir-Blodgett deposition of large-scale quantum dot monolayers

    NASA Astrophysics Data System (ADS)

    Xu, Shicheng; Dadlani, Anup L.; Acharya, Shinjita; Schindler, Peter; Prinz, Fritz B.

    2016-03-01

    Depositing continuous, large-scale quantum dot films with low pinhole density is an inevitable but nontrivial step for studying their properties for applications in catalysis, electronic devices, and optoelectronics. This rising interest in high-quality quantum dot films has provided research impetus to improve the deposition technique. We show that by incorporating oscillatory barriers in the commonly used Langmuir-Blodgett method, large-scale monolayers of quantum dots with full coverage up to several millimeters have been achieved. With assistance of perturbation provided by the oscillatory barriers, the film has been shown to relax towards thermal equilibrium, and this physical process has been supported by molecular dynamics simulation. In addition, time evolution of dilatational moduli has been shown to give a clear indication of the film morphology and its stability.

  14. Critical dynamics at a Hopf bifurcation to oscillatory Rayleigh-Benard convection

    SciTech Connect

    Ecke, R.E.; Haucke, H.; Maeno, Y.; Wheatley, J.C.

    1986-03-01

    The steady-state and dynamic properties of the transition to oscillatory convection in a low-Prandtl-number fluid, dilute /sup 3/He in superfluid /sup 4/He, are presented. Critical slowing down is observed and characterized by a phenomenological Landau-Hopf equation in analogy with equilibrium mean-field critical phenomena. In contrast to the onset of classical time-independent Rayleigh-Benard convection, where appreciable rounding is typically observed, there is no measurable rounding at the oscillatory onset down to a reduced Rayleigh number of 3 x 10/sup -4/. Possible reasons for this are discussed. Different functional singularities are observed for the rms amplitudes of the fundamental and first harmonic spectral components of the oscillation. Finally, the Prandtl-number dependence of the parameters of the dynamics is presented.

  15. A New Linear Oscillatory Actuator with Variable Characteristics Using Two Sets of Coils

    PubMed Central

    Kitayama, Fumiya; Hirata, Katsuhiro; Niguchi, Noboru; Kobayashi, Masashi

    2016-01-01

    Nowadays, electromagnetic linear oscillatory actuators are used as vibration control devices because of their high controllability. However, there is a problem that thrust and vibration are small at a wide drive frequency range. In order to improve this problem, we propose a new linear oscillatory actuator that can easily change its own characteristics by using two sets of coils. Through finite element analysis, large vibration was observed at 100 Hz in a series connection, and large vibration and high thrust were observed at 70 Hz and 140 Hz in a parallel connection. From these results, we verified that the actuator had two different characteristics due to switchable connections, and could generate high thrust and large vibration by smaller currents at a wide drive frequency range. PMID:26999136

  16. Lower mass limit of an evolving interstellar cloud and chemistry in an evolving oscillatory cloud

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.

    1986-01-01

    Simultaneous solution of the equation of motion, equation of state and energy equation including heating and cooling processes for interstellar medium gives for a collapsing cloud a lower mass limit which is significantly smaller than the Jeans mass for the same initial density. The clouds with higher mass than this limiting mass collapse whereas clouds with smaller than critical mass pass through a maximum central density giving apparently similar clouds (i.e., same Av, size and central density) at two different phases of its evolution (i.e., with different life time). Preliminary results of chemistry in such an evolving oscillatory cloud show significant difference in abundances of some of the molecules in two physically similar clouds with different life times. The problems of depletion and short life time of evolving clouds appear to be less severe in such an oscillatory cloud.

  17. Memory effects in schematic models of glasses subjected to oscillatory deformation.

    PubMed

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2015-05-20

    We consider two schematic models of glasses subjected to oscillatory shear deformation, motivated by the observations, in computer simulations of a model glass, of a nonequilibrium transition from a localized to a diffusive regime as the shear amplitude is increased, and of persistent memory effects in the localized regime. The first of these schematic models is the NK model, a spin model with disordered multi-spin interactions previously studied as a model for sheared amorphous solids. The second model, a transition matrix model, is an abstract formulation of the manner in which occupancy of local energy minima evolves under oscillatory deformation cycles. In both of these models, we find a behavior similar to that of an atomic model glass studied earlier. We discuss possible further extensions of the approaches outlined.

  18. Memory effects in schematic models of glasses subjected to oscillatory deformation

    NASA Astrophysics Data System (ADS)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2015-05-01

    We consider two schematic models of glasses subjected to oscillatory shear deformation, motivated by the observations, in computer simulations of a model glass, of a nonequilibrium transition from a localized to a diffusive regime as the shear amplitude is increased, and of persistent memory effects in the localized regime. The first of these schematic models is the NK model, a spin model with disordered multi-spin interactions previously studied as a model for sheared amorphous solids. The second model, a transition matrix model, is an abstract formulation of the manner in which occupancy of local energy minima evolves under oscillatory deformation cycles. In both of these models, we find a behavior similar to that of an atomic model glass studied earlier. We discuss possible further extensions of the approaches outlined.

  19. Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth.

    PubMed

    Kroeger, Jens H; Zerzour, Rabah; Geitmann, Anja

    2011-01-01

    Turgor generates the stress that leads to the expansion of plant cell walls during cellular growth. This has been formalized by the Lockhart equation, which can be derived from the physical laws of the deformation of viscoelastic materials. However, the experimental evidence for such a direct correlation between growth rate and turgor is inconclusive. This has led to challenges of the Lockhart model. We model the oscillatory growth of pollen tubes to investigate this relationship. We couple the Lockhart equation to the dynamical equations for the change in material properties. We find that the correct implementation of the Lockhart equation within a feedback loop leading to low amplitude oscillatory growth predicts that in this system changes in the global turgor do not influence the average growth rate in a linear manner, consistent with experimental observations. An analytic analysis of our model demonstrates in which regime the average growth rate becomes uncorrelated from the turgor pressure.

  20. Velocity and shear rate estimates of some non-Newtonian oscillatory flows in tubes

    NASA Astrophysics Data System (ADS)

    Kutev, N.; Tabakova, S.; Radev, S.

    2016-10-01

    The two-dimensional Newtonian and non-Newtonian (Carreau viscosity model used) oscillatory flows in straight tubes are studied theoretically and numerically. The corresponding analytical solution of the Newtonian flow and the numerical solution of the Carreau viscosity model flow show differences in velocity and shear rate. Some estimates for the velocity and shear rate differences are theoretically proved. As numerical examples the blood flow in different type of arteries and the polymer flow in pipes are considered.

  1. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  2. Aging modulates the oscillatory dynamics underlying successful working memory encoding and maintenance.

    PubMed

    Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-06-01

    Working memory is central to the execution of many daily functions and is typically divided into three phases: encoding, maintenance, and retrieval. While working memory performance has been repeatedly shown to decline with age, less is known regarding the underlying neural processes. We examined age-related differences in the neural dynamics that serve working memory by recording high-density magnetoencephalography (MEG) in younger and older adults while they performed a modified, high-load Sternberg working memory task with letters as stimuli. MEG data were evaluated in the time-frequency domain and significant oscillatory responses were imaged using a beamformer. A hierarchical regression was performed to investigate whether age moderated the relationship between oscillatory activity and accuracy on the working memory task. Our results indicated that the spatiotemporal dynamics of oscillatory activity in language-related areas of the left fronto-temporal cortices were similar across groups. Age-related differences emerged during early encoding in the right-hemispheric homologue of Wernicke's area. Slightly later, group differences emerged in the homologue of Broca's area and these persisted throughout memory maintenance. Additionally, occipital alpha activity during maintenance was stronger, occurred earlier, and involved more cortical tissue in older adults. Finally, age significantly moderated the relationship between accuracy and neural activity in the prefrontal cortices. In younger adults, as prefrontal activity decreased, accuracy tended to increase. Our results are consistent with predictions of the compensation-related utilization of neural circuits hypothesis (CRUNCH). Such differences in the oscillatory dynamics could reflect compensatory mechanisms, which would aid working memory performance in older age. Hum Brain Mapp 37:2348-2361, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991358

  3. Oscillatory behavior in the size dependence of cluster mobility on metal surfaces: Rh on Rh(100)

    SciTech Connect

    Kellogg, G.L. )

    1994-09-26

    The mobility of Rh clusters containing two to twelve atoms adsorbed on the Rh(100) plane is examined by field ion microscopy. The activation energy of surface diffusion exhibits an interesting, oscillatory behavior as a function of cluster size. Compact geometric structures (squares and rectangles) have a consistently higher activation energy than structures with extra atoms at the periphery. The atomic-level mechanism involved in cluster diffusion is inferred from a comparison of the measured activation energies to previous theoretical calculations.

  4. Scalp-recorded oscillatory potentials evoked by transient pattern-reversal visual stimulation in man.

    PubMed

    Sannita, W G; Lopez, L; Piras, C; Di Bon, G

    1995-05-01

    Replicable oscillatory potentials, time-locked to pattern stimuli (9.0 degrees central; counterphase reversal at 2.13 Hz) were dissociated from conventional, broad-band VEPs recorded in healthy volunteers at occipital scalp locations by high-pass digital filtering at 17.0-20.0 Hz. Nine consecutive wavelets were identified with a 56.4 +/- 8.4 msec mean latency of the first replicable wavelet and mean peak-to-peak amplitude varying between 0.9 and 2.0 muV. The first 2 wavelets had significantly shorter latencies than wave N70 of unfiltered VEP, whereas the last 2 wavelets had longer latencies than N145. Latency and amplitude values varied as a function of contrast and spatial frequency of the stimulus, with shorter latencies and larger amplitudes at 60-90% contrast level and tuning of amplitude at 5.0 c/deg. All wavelets were correlated with wave P100 of unfiltered VEP, while a correlation with N70 of VEP was observed only for those wavelets with latencies in the range of wave P100. Two patients with documented brain lesions involving the visual system are described as examples of oscillatory responses occurring irrespective of filter bandpass and instead of the expected conventional VEP when the generation of these is interfered with by brain pathology. A substantial cortical contribution to the origin of the oscillatory response is conceivable. It is suggested that the oscillatory response to pattern-reversal stimulation reflects events in the visual system that are parallel to, and partly independent of, the conventional VEP, with potential application in research or for clinical purposes. PMID:7750446

  5. Calcium Response in Osteocytic Networks under Steady and Oscillatory Fluid Flow

    PubMed Central

    Lu, X. Lucas; Huo, Bo; Park, Miri; Guo, X. Edward

    2012-01-01

    The fluid flow in the lacunar-canalicular system of bone is an essential mechanical stimulation on the osteocyte networks. Due to the complexity of human physical activities, the fluid shear stress on osteocyte bodies and processes consists of both steady and oscillatory components. In this study, we investigated and compared the intracellular calcium ([Ca2+]i) responses of osteocytic networks under steady and oscillatory fluid flows. An in vitro osteocytic network was built with MLO-Y4 osteocyte-like cells using micro-patterning techniques to simulate the in vivo orderly organization of osteocyte networks. Sinusoidal oscillating fluid flow or unidirectional steady flow was applied on the cell surface with 20 dyne/cm2 peak shear stress. It was found that the osteocytic networks were significantly more responsive to steady flow than to oscillatory flow. The osteocytes can release more calcium peaks with higher magnitudes at a faster speed under steady flow stimulation. The [Ca2+]i signaling transients under the steady and oscillatory flows have significantly different spatiotemporal characters, but a similar responsive percentage of cells. Further signaling pathway studies using inhibitors showed that endoplasmic reticulum (ER) calcium store, extracellular calcium source, ATP, PGE2 and NO related pathways play similar roles in the [Ca2+]i signaling of osteocytes under either steady or oscillating flow. The spatiotemporal characteristics of [Ca2+]i transients under oscillating fluid flow are affected more profoundly by pharmacological treatments than under the steady flow. Our findings support the hypothesis that the [Ca2+]i responses of osteocytic networks are significantly dependent on the profiles of fluid flow. PMID:22750013

  6. Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device

    SciTech Connect

    Cheung, Yin Nee E-mail: mtnwong@ntu.edu.sg; Wong, Teck Neng E-mail: mtnwong@ntu.edu.sg; Nguyen, Nam Trung

    2014-10-06

    This letter reports a low frequency acoustic atomization technique with oscillatory extensional flow around micropillars. Large droplets passing through two micropillars are elongated. Small droplets are then produced through the pinch-off process at the spindle-shape ends. As the actuation frequency increases, the droplet size decreases with increasing monodispersity. This method is suitable for in-situ mass production of fine droplets in a multi-phase environment without external pumping. Small particles encapsulation was demonstrated with the current technique.

  7. Frequency-dependent spatiotemporal distribution of cerebral oscillatory changes during silent reading: a magnetoencephalograhic group analysis.

    PubMed

    Goto, Tetsu; Hirata, Masayuki; Umekawa, Yuka; Yanagisawa, Takufumi; Shayne, Morris; Saitoh, Youichi; Kishima, Haruhiko; Yorifuji, Shirou; Yoshimine, Toshiki

    2011-01-01

    The frequency profiles and time courses of oscillatory changes when reading words are not fully understood, although there have been many reports that oscillatory dynamics reflect local brain function. In order to clarify oscillatory dynamics, we investigated the frequency and spatiotemporal distributions of neuromagnetic activities during silent reading of words in 23 healthy subjects. Individual data were divided into the following frequency bands: theta (5-8 Hz), alpha (8-13 Hz), beta (13-25 Hz), low gamma (25-50 Hz), and high gamma (50-100 Hz), and were analyzed by synthetic aperture magnetometry (SAM). The time window was consecutively moved in steps of 50 ms. Group analysis was performed to delineate common areas of brain activation. A transient power increase in the theta band occurred first in the bilateral occipital cortices, and then rapidly propagated to the left temporo-occipital areas, left inferior and middle frontal gyri, bilateral medial prefrontal cortices, and finally to the left anterior temporal cortices, which possibly reflects a serial cognitive process. This serial propagation of the transient power increase in the theta band was followed by sustained power decreases in the alpha, beta and low gamma bands. These results suggest that the transient power increase in the theta bands may be associated with priming and propagation of local activities, while sustained power decreases in the alpha, beta and low gamma bands reflect parallel neural processes related to silent reading words. Our results showed a relationship between frequency bands of oscillatory changes and locations. This may have implications in the relationship between frequency bands and functions.

  8. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.

    PubMed

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces. PMID:25768592

  9. Analysis of an oscillatory oil squeeze film containing a central gas bubble

    NASA Technical Reports Server (NTRS)

    Haber, S.; Etsion, I.

    1985-01-01

    A squeeze-film damper, consisting of two circular plates, having only normal oscillatory relative motion is considered. The liquid lubricant between the plates is assumed to contain a single central gas bubble. The effect of the bubble on the damper performance is analyzed. Comparison is made with the performance of a pure liquid damper. Substantial deviations in peak dynamic pressures are predicted which explain discrepancies between experimental and theoretical results reported in the literature.

  10. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.

    PubMed

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  11. Optimized fourth-order Runge-Kutta method for solving oscillatory problems

    NASA Astrophysics Data System (ADS)

    Hussain, Kasim; Ismail, Fudziah; Senu, Norazak; Rabiei, Faranak

    2016-06-01

    In this article, we develop a Runge-Kutta method with invalidation of phase lag, phase lag's derivatives and amplification error to solve second-order initial value problem (IVP) with oscillating solutions. The new method depends on the explicit Runge-Kutta method of algebraic order four. Numerical tests from its implementation to well-known oscillatory problems illustrate the robustness and competence of the new method as compared to the well-known Runge-Kutta methods in the scientific literature.

  12. Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Wang, Meng; Gedeon, David

    2005-01-01

    A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.

  13. A hybrid oscillatory interference/continuous attractor network model of grid cell firing.

    PubMed

    Bush, Daniel; Burgess, Neil

    2014-04-01

    Grid cells in the rodent medial entorhinal cortex exhibit remarkably regular spatial firing patterns that tessellate all environments visited by the animal. Two theoretical mechanisms that could generate this spatially periodic activity pattern have been proposed: oscillatory interference and continuous attractor dynamics. Although a variety of evidence has been cited in support of each, some aspects of the two mechanisms are complementary, suggesting that a combined model may best account for experimental data. The oscillatory interference model proposes that the grid pattern is formed from linear interference patterns or "periodic bands" in which velocity-controlled oscillators integrate self-motion to code displacement along preferred directions. However, it also allows the use of symmetric recurrent connectivity between grid cells to provide relative stability and continuous attractor dynamics. Here, we present simulations of this type of hybrid model, demonstrate that it generates intracellular membrane potential profiles that closely match those observed in vivo, addresses several criticisms aimed at pure oscillatory interference and continuous attractor models, and provides testable predictions for future empirical studies. PMID:24695724

  14. A gene regulatory motif that generates oscillatory or multiway switch outputs

    PubMed Central

    Panovska-Griffiths, Jasmina; Page, Karen M.; Briscoe, James

    2013-01-01

    The pattern of gene expression in a developing tissue determines the spatial organization of cell type generation. We previously defined regulatory interactions between a set of transcription factors that specify the pattern of gene expression in progenitors of different neuronal subtypes of the vertebrate neural tube. These transcription factors form a circuit that acts as a multistate switch, patterning the tissue in response to a gradient of Sonic Hedgehog. Here, by simplifying aspects of the regulatory interactions, we found that the topology of the circuit allows either switch-like or oscillatory behaviour depending on parameter values. The qualitative dynamics appear to be controlled by a simpler sub-circuit, which we term the AC–DC motif. We argue that its topology provides a natural way to implement a multistate gene expression switch and we show that the circuit is readily extendable to produce more distinct stripes of gene expression. Our analysis also suggests that AC–DC motifs could be deployed in tissues patterned by oscillatory mechanisms, thus blurring the distinction between pattern-formation mechanisms relying on temporal oscillations or graded signals. Furthermore, during evolution, mechanisms of gradient interpretation might have arisen from oscillatory circuits, or vice versa. PMID:23235261

  15. Mechanical Properties of AN ER Fluid in Tensile, Compression and Oscillatory Squeeze Tests

    NASA Astrophysics Data System (ADS)

    Vieira, S. L.; Nakano, M.; Oke, R.; Nagata, T.

    In this work, the mechanical properties of an anhydrous electrorheological fluid made of carbonaceous particles dispersed in silicone oil were determined in tensile, compression and oscillatory squeeze tests. The mechanical tests were carried out on a Mechanical Testling Machine and the device developed for measuring the ER properties was composed of two parallel steel electrodes between which the ER fluid was placed. The mechanical properties were measured for different DC electric field strengths, velocity and initial gap between the electrodes, and the ERF was tested in two different ways: (a) the fluid was placed between the electrodes (configuration 1) and (b) the electrodes were immersed inside the ERF (configuration 2). The results showed that the ER fluid is more resistant to compression than to tensile, and that the shape of the tensile stress-strain curve and the tensile strength varies with the electric field strength and the initial gap between the electrodes. The compressive stress increased with the increase of the electric field strength and with the decrease of the gap size and upper electrode velocity. In oscillatory test, for both configurations 1 and 2, increasing the oscillation frequency f and the number of cycles N produced a decrease of the damping performance of the ER fluid. Besides this, the damping force of each cycle in oscillatory tests increased with N. The electric field also played an important role on the shape of the hysteresis loop (stress as a function of fluid strain) for both configurations.

  16. Dissociation of the functional relevance of different pre-stimulus oscillatory activity for memory formation.

    PubMed

    Salari, Neda; Rose, Michael

    2016-01-15

    The state of a neural assembly preceding an incoming stimulus modulates the processing of that subsequently presented stimuli. For human memory formation, the role of oscillatory brain activity within different frequency ranges has been discussed but a more functional relation could not be established. In the present Experiment I, an increase of pre-stimulus theta- (3-7Hz) and beta- (13-17Hz) band oscillations during encoding for later remembered stimuli was observed. To establish a more direct functional relation, we adopted a novel brain-computer-interface (BCI) method to selectively detect oscillatory activity in real-time combined with an adaptive stimulus presentation at different levels of activity. Therefore, in the second experiment the BCI was used to present the visual stimuli with a high temporal resolution directly within defined brain states of beta- or theta-band activity. The quality of the subsequent processing of the stimuli was assessed at the behavioral level with a surprise recognition task. Results revealed a variation of memory performance in direct relation to the amount of pre-stimulus beta- but not theta-band oscillations, suggesting a functional relevance of beta-band oscillations for memory encoding. Thus, the BCI method enabled a more functional differentiation of the effective role of ongoing oscillatory activity.

  17. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation.

    PubMed

    Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M

    2016-01-01

    Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.

  18. Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear.

    PubMed

    Dang, M T; Denisov, D; Struth, B; Zaccone, A; Schall, P

    2016-04-01

    The mechanical response of glasses remains challenging to understand. Recent results indicate that the oscillatory rheology of soft glasses is accompanied by a sharp non-equilibrium transition in the microscopic dynamics. Here, we use simultaneous x-ray scattering and rheology to investigate the reversibility and hysteresis of the sharp symmetry change from anisotropic solid to isotropic liquid dynamics observed in the oscillatory shear of colloidal glasses (D. Denisov, M.T. Dang, B. Struth, A. Zaccone, P. Schall, Sci. Rep. 5 14359 (2015)). We use strain sweeps with increasing and decreasing strain amplitude to show that, in analogy with equilibrium transitions, this sharp symmetry change is reversible and exhibits systematic frequency-dependent hysteresis. Using the non-affine response formalism of amorphous solids, we show that these hysteresis effects arise from frequency-dependent non-affine structural cage rearrangements at large strain. These results consolidate the first-order-like nature of the oscillatory shear transition and quantify related hysteresis effects both via measurements and theoretical modelling. PMID:27106107

  19. Global and local oscillatory entrainment of visual behavior across retinotopic space.

    PubMed

    Sokoliuk, Rodika; VanRullen, Rufin

    2016-01-01

    Ongoing brain oscillations (7-10 Hz) modulate visual perception; in particular, their precise phase can predict target perception. Here, we employ this phase-dependence of perception in a psychophysical experiment to track spatial properties of entrained oscillations of visual perception across the visual field. Is this entrainment local, or a more global phenomenon? If the latter, does oscillatory phase synchronize over space, or vary with increasing distance from the oscillatory source? We presented a disc stimulus in the upper left quadrant, oscillating in luminance at different frequencies (individual alpha frequency (IAF), 5 Hz, and 15 Hz) to entrain an oscillation with specific frequency and spatial origin. Observers fixated centrally, while flash stimuli at perceptual threshold appeared at different positions and times with respect to the oscillating stimulus. IAF and 5 Hz luminance oscillations modulated detection performance at all tested positions, whereas at 15 Hz, the effect was weaker and less consistent. Furthermore, for IAF and 5 Hz entrainment, preferred phases for target detection differed significantly between spatial locations, suggesting "local" entrainment of detection performance next to the oscillatory source, whereas more distant target locations shared a "global" effect with a significantly different phase. This unexpected global component of entrainment is tentatively attributed to widespread connectivity from thalamic nuclei such as the pulvinar. PMID:27126642

  20. Global and local oscillatory entrainment of visual behavior across retinotopic space

    PubMed Central

    Sokoliuk, Rodika; VanRullen, Rufin

    2016-01-01

    Ongoing brain oscillations (7–10 Hz) modulate visual perception; in particular, their precise phase can predict target perception. Here, we employ this phase-dependence of perception in a psychophysical experiment to track spatial properties of entrained oscillations of visual perception across the visual field. Is this entrainment local, or a more global phenomenon? If the latter, does oscillatory phase synchronize over space, or vary with increasing distance from the oscillatory source? We presented a disc stimulus in the upper left quadrant, oscillating in luminance at different frequencies (individual alpha frequency (IAF), 5 Hz, and 15 Hz) to entrain an oscillation with specific frequency and spatial origin. Observers fixated centrally, while flash stimuli at perceptual threshold appeared at different positions and times with respect to the oscillating stimulus. IAF and 5 Hz luminance oscillations modulated detection performance at all tested positions, whereas at 15 Hz, the effect was weaker and less consistent. Furthermore, for IAF and 5 Hz entrainment, preferred phases for target detection differed significantly between spatial locations, suggesting “local” entrainment of detection performance next to the oscillatory source, whereas more distant target locations shared a “global” effect with a significantly different phase. This unexpected global component of entrainment is tentatively attributed to widespread connectivity from thalamic nuclei such as the pulvinar. PMID:27126642

  1. Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses

    PubMed Central

    van Dijk, Hanneke; van der Werf, Jurrian; Mazaheri, Ali; Medendorp, W. Pieter; Jensen, Ole

    2009-01-01

    Event-related responses and oscillatory activity are typically regarded as manifestations of different neural processes. Recent work has nevertheless revealed a mechanism by which slow event-related responses are created as a direct consequence of modulations in brain oscillations with nonsinusoidal properties. It remains unknown if this mechanism applies to cognitively relevant event-related responses. Here, we investigated whether sustained event-related fields (ERFs) measured during working memory maintenance can be explained by modulations in oscillatory power. In particular, we focused on contralateral delayed activity (CDA) typically observed in working memory tasks in which hemifield specific attention is manipulated. Using magnetoencephalography, we observed sustained posterior ERFs following the presentation of the memory target. These ERFs were systematically lateralized with respect to the hemisphere in which the target was presented. A strikingly similar pattern emerged for modulations in alpha (9–13 Hz) power. The alpha power and ERF lateralization were strongly correlated over subjects. Based on a mechanistic argument pertaining to the nonsinusoidal properties of the alpha activity, we conclude that the ERFs modulated by working memory are likely to be directly produced by the modulations in oscillatory alpha activity. Given that posterior alpha activity typically reflects disengagement, we conclude that the CDA is not attributable to an additive process reflecting memory maintenance per se but, rather, is a consequence of how attentional resources are allocated. PMID:20080773

  2. Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear.

    PubMed

    Dang, M T; Denisov, D; Struth, B; Zaccone, A; Schall, P

    2016-04-01

    The mechanical response of glasses remains challenging to understand. Recent results indicate that the oscillatory rheology of soft glasses is accompanied by a sharp non-equilibrium transition in the microscopic dynamics. Here, we use simultaneous x-ray scattering and rheology to investigate the reversibility and hysteresis of the sharp symmetry change from anisotropic solid to isotropic liquid dynamics observed in the oscillatory shear of colloidal glasses (D. Denisov, M.T. Dang, B. Struth, A. Zaccone, P. Schall, Sci. Rep. 5 14359 (2015)). We use strain sweeps with increasing and decreasing strain amplitude to show that, in analogy with equilibrium transitions, this sharp symmetry change is reversible and exhibits systematic frequency-dependent hysteresis. Using the non-affine response formalism of amorphous solids, we show that these hysteresis effects arise from frequency-dependent non-affine structural cage rearrangements at large strain. These results consolidate the first-order-like nature of the oscillatory shear transition and quantify related hysteresis effects both via measurements and theoretical modelling.

  3. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia.

    PubMed

    Stone, David B; Coffman, Brian A; Bustillo, Juan R; Aine, Cheryl J; Stephen, Julia M

    2014-01-01

    Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and healthy controls (N = 57) using magnetoencephalography (MEG). Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia. PMID:25414652

  4. Dissociation of the functional relevance of different pre-stimulus oscillatory activity for memory formation.

    PubMed

    Salari, Neda; Rose, Michael

    2016-01-15

    The state of a neural assembly preceding an incoming stimulus modulates the processing of that subsequently presented stimuli. For human memory formation, the role of oscillatory brain activity within different frequency ranges has been discussed but a more functional relation could not be established. In the present Experiment I, an increase of pre-stimulus theta- (3-7Hz) and beta- (13-17Hz) band oscillations during encoding for later remembered stimuli was observed. To establish a more direct functional relation, we adopted a novel brain-computer-interface (BCI) method to selectively detect oscillatory activity in real-time combined with an adaptive stimulus presentation at different levels of activity. Therefore, in the second experiment the BCI was used to present the visual stimuli with a high temporal resolution directly within defined brain states of beta- or theta-band activity. The quality of the subsequent processing of the stimuli was assessed at the behavioral level with a surprise recognition task. Results revealed a variation of memory performance in direct relation to the amount of pre-stimulus beta- but not theta-band oscillations, suggesting a functional relevance of beta-band oscillations for memory encoding. Thus, the BCI method enabled a more functional differentiation of the effective role of ongoing oscillatory activity. PMID:26484828

  5. Redox Signaling in an In Vivo Murine Model of Low Magnitude Oscillatory Wall Shear Stress

    PubMed Central

    Willett, Nick J.; Kundu, Kousik; Knight, Sarah F.; Dikalov, Sergey; Murthy, Niren

    2011-01-01

    Abstract Wall Shear Stress (WSS) has been identified as an important factor in the pathogenesis of atherosclerosis. We utilized a novel murine aortic coarctation model to acutely create a region of low magnitude oscillatory WSS in vivo. We employed this model to test the hypothesis that acute changes in WSS in vivo induce upregulation of inflammatory proteins, mediated by reactive oxygen species (ROS). Superoxide generation and VCAM-1 expression both increased in regions of low magnitude oscillatory WSS. WSS-dependent superoxide formation was attenuated by tempol treatment, but was unchanged in p47 phox knockout (ko) mice. However, in both the p47 phox ko mice and the tempol-treated mice, low magnitude oscillatory WSS produced an increase in VCAM-1 expression comparable to control mice. Additionally, this same VCAM-1 expression was observed in ebselen-treated mice and catalase overexpressing mice. These results suggest that although the redox state is important to the overall pathogenesis of atherosclerosis, the initial WSS-dependent inflammatory response leading to lesion localization is not dependent on ROS. Antioxid. Redox Signal. 15, 1369–1378. PMID:20712414

  6. Bench test assessment of mainstream capnography during high frequency oscillatory ventilation.

    PubMed

    Hartdorff, Caroline M; van Heerde, Marc; Markhorst, Dick G

    2014-02-01

    To assess the feasibility, stability and predictability of pCO2 measurement (PETCO2) using a main stream capnograph in a high frequency oscillatory ventilation circuit. A commercially available capnograph was mounted into a high frequency oscillatory ventilator patient circuit, adjustable CO2 flow was introduced into an artificial lung and the output of the CO2 sensor assessed under varying ventilator settings. Influence of oxygen content, pressures, heat and moisture were recorded. A linear relationship between CO2 flow rate and PETCO2 was found. Varying ventilator settings influenced the measurements, but the results for PETCO2 remained within a range of 1.5 mmHg above or under then mean measurement value. Measurements remained stable despite humidification, heat, pressure amplitudes or mean airway pressure changes. From this bench test, we conclude it is feasible to measure PETCO2 using a main stream capnograph during high frequency oscillatory conditions, these measurements were stable during the experiment. Changes in CO2 production or output can be detected. The system may prove to be of clinical value, but further in vivo measurements are warranted. PMID:23974630

  7. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    PubMed Central

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory. PMID:25002840

  8. Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects.

    PubMed

    Gendelman, O V; Zolotarevskiy, V; Savin, A V; Bergman, L A; Vakakis, A F

    2016-03-01

    We describe and explore accelerating oscillatory fronts in sonic vacua with nonlocal interactions. As an example, a chain of particles oscillating in the plane and coupled by linear springs, with fixed ends, is considered. When one end of this system is harmonically excited in the transverse direction, one observes accelerated propagation of the excitation front, accompanied by an almost monochromatic oscillatory tail. Position of the front obeys the scaling law l(t) ∼ t(4/3). The frequency of the oscillatory tail remains constant, and the wavelength scales as λ ∼ t(1/3). These scaling laws result from the nonlocal effects; we derive them analytically (including the scaling coefficients) from a continuum approximation. Moreover, a certain threshold excitation amplitude is required in order to initiate the front propagation. The initiation threshold is evaluated on the basis of a simplified discrete model, further reduced to a completely integrable nonlinear system. Given their simplicity, nonlinear sonic vacua of the type considered herein should be common in periodic lattices. PMID:27078353

  9. Loss of regular oscillatory insulin secretion in islet cell antibody positive non-diabetic subjects.

    PubMed

    Bingley, P J; Matthews, D R; Williams, A J; Bottazzo, G F; Gale, E A

    1992-01-01

    Basal insulin secretion was compared in nine islet-cell antibody positive, non-diabetic first-degree relatives of children with Type 1 (insulin-dependent) diabetes mellitus and nine normal control subjects matched for age, sex and weight. Acute insulin responses to a 25 g intravenous glucose tolerance test were similar in the two groups (243 (198-229) vs 329 (285-380) mU.l-1 x 10 min-1, mean (+/- SE), p = 0.25). Fasting plasma insulin was assayed in venous samples taken at one min intervals for 2 h. Time series analysis was used to demonstrate oscillatory patterns in plasma insulin. Autocorrelation showed that regular oscillatory activity was generally absent in the islet-cell antibody-positive group, whereas a regular 13 min cycle was shown in control subjects (p less than 0.0001). Fourier transformation did, however, show a 13 min spectral peak in the islet-cell antibody positive group, consistent with intermittent pulsatility. We conclude that overall oscillatory patterns of basal insulin secretion are altered in islet-cell antibody positive subjects even when the acute insulin response is within the normal range. PMID:1541379

  10. An active damping control of robot manipulators with oscillatory bases by singular perturbation approach

    NASA Astrophysics Data System (ADS)

    Lin, J.; Huang, Z. Z.; Huang, P. H.

    2007-07-01

    This paper deals with active damping control problems of robot manipulators with oscillatory bases. A first investigation of two-time scale fuzzy logic controller with vibration stabilizer for such structures has been proposed, where the dynamics of a robotic system is strongly affected by disturbances due to the base oscillation. Under the assumption of two-time scale, its stability and design procedures are presented for a multiple link manipulator with multiple dimension oscillation. The fast-subsystem controller will damp out the vibration of the oscillatory bases using a PD control method. Hence, the slow-subsystem fuzzy logic controller dominates the trajectory tracking. It can be guaranteed the stability of the internal dynamics by adding a boundary-layer correction based on singular perturbations approach. Experimental results have shown that the proposed control model offers several implementation advantages such as reduced effect of overshoot and chattering, smaller steady state error, and a fast convergent rate. The results of this study can be feasible to various mechanical systems, such as mobile robot, gantry cranes, underwater robot, and other dynamic systems mounted on oscillatory bases.

  11. Aquifer Characterization of the Boise Hydrogeophysical Research Site using 3-D Oscillatory Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Bakhos, T.; Cardiff, M. A.; Hochstetler, D. L.; Zhou, Y.; Barrash, W.; Kitanidis, P. K.

    2014-12-01

    Hydraulic Tomography is a method of aquifer characterization that estimates hydraulic parameters related to the subsurface, such as hydraulic conductivity and storage, from measurements of hydraulic heads at numerous observation locations during a series of hydrologic tests, commonly pumping tests. Characterizing the subsurface is important for many hydrogeologic projects such as site remediation and groundwater resource exploration. Oscillatory Hydraulic Tomography (OHT) is a method of imaging that uses a tomographic analysis of periodic signals. These signals are generated at distinct locations by oscillatory pumping tests in which fluid is extracted for half a period then re-injected. The transmitted effects of these signals are recorded at observation wells. The resulting measurements can be used to reconstruct the spatial variation of hydraulic parameters by solving a nonlinear inverse problem, which we solve using the geostatistical approach. Oscillatory pumping test data were collected in the summer of 2013 in an extensive field campaign at the Boise Hydrogeophysical Research Site (BHRS), a moderately heterogeneous unconfined aquifer. We present results of OHT applied to the BHRS.

  12. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  13. Oscillatory MHD Convective Flow of Second Order Fluid Through Porous Medium in a Vertical Rotating Channel in Slip-Flow Regime with Heat Radiation

    NASA Astrophysics Data System (ADS)

    Garg, B. P.; Singh, K. D.; Bansal, A. K.

    2015-02-01

    An analysis of an oscillatory magnetohydrodynamic (MHD) convective flow of a second order (viscoelastic), incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter λ , Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation ω .

  14. Quantitative assessment of oscillatory components in blood circulation: classification of the effect of aging, diabetes, and acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Bernjak, Alan; Stefanovska, Aneta; Urbancic-Rovan, Vilma; Azman-Juvan, Katja

    2005-04-01

    The human cardiovascular system is a complex system with the pumping activity of the heart as the main generator of oscillations. Besides the heartbeat there are several other oscillatory components which determine its dynamics. Their nonlinear nature and a weak coupling between them both require special treatment while studying this system. A particular characteristic of the oscillatory components is their frequency fluctuations in time. Consequently, their interactions also fluctuate in time. Therefore the wavelet transform is applied to trace the oscillatory components in time, and specific quantitative measures are introduced to quantify the contribution of each of the oscillatory components involved on the time scale of up to three minutes. Oscillatory components are then analysed from signals obtained by simultaneous measurements of blood flow in the microcirculation, ECG, respiration and blood pressure. Based on quantitative evaluation of the oscillatory components related to (I) the heart beat (0.6-2Hz), (II) respiration (0.145-0.6Hz), (III) intrinsic myogenic activity (0.052-0.145Hz), (IV) sympathetic activity (0.021-0.052Hz), (V, VI) endothelial related activity (0.0095-0.021Hz, 0.005 - 0.0095 Hz), 30-minutes recording taken on 109 healthy subjects, 75 patients with diabetes, and 82 patients after acute myocardial infarction (AMI) were analysed. Classification of the effect of ageing, diabetes and AMI from blood flow signals simultaneously recorded in the skin of four extremities, the heart rate and heart rate variability from R-R intervals will be presented and discussed.

  15. The dynamics of magnetic flux rings

    NASA Technical Reports Server (NTRS)

    Deluca, E. E.; Fisher, G. H.; Patten, B. M.

    1993-01-01

    The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.

  16. Laboratory Experiments of Sand Ripples with Bimodal Size Distributions Under Asymmetric Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Landry, B. J.

    2010-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the

  17. ON THE DISTRIBUTION OF PARTICLE ACCELERATION SITES IN PLASMOID-DOMINATED RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Nalewajko, Krzysztof; Cerutti, Benoit; Begelman, Mitchell C.

    2015-12-20

    We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.

  18. Fast fMRI can detect oscillatory neural activity in humans

    PubMed Central

    Lewis, Laura D.; Setsompop, Kawin; Rosen, Bruce R.; Polimeni, Jonathan R.

    2016-01-01

    Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity. We hypothesized that the recent development of fast fMRI techniques, combined with the extra sensitivity afforded by ultra-high-field systems, could enable precise localization of neural oscillations. We tested whether fMRI can detect neural oscillations using human visual cortex as a model system. We detected small oscillatory fMRI signals in response to stimuli oscillating at up to 0.75 Hz within single scan sessions, and these responses were an order of magnitude larger than predicted by canonical linear models. Simultaneous EEG–fMRI and simulations based on a biophysical model of the hemodynamic response to neuronal activity suggested that the blood oxygen level-dependent response becomes faster for rapidly varying stimuli, enabling the detection of higher frequencies than expected. Accounting for phase delays across voxels further improved detection, demonstrating that identifying vascular delays will be of increasing importance with higher-frequency activity. These results challenge the assumption that the hemodynamic response is slow, and demonstrate that fMRI has the potential to map neural oscillations directly throughout the brain. PMID:27729529

  19. A novel cost function to estimate parameters of oscillatory biochemical systems

    PubMed Central

    2012-01-01

    Oscillatory pathways are among the most important classes of biochemical systems with examples ranging from circadian rhythms and cell cycle maintenance. Mathematical modeling of these highly interconnected biochemical networks is needed to meet numerous objectives such as investigating, predicting and controlling the dynamics of these systems. Identifying the kinetic rate parameters is essential for fully modeling these and other biological processes. These kinetic parameters, however, are not usually available from measurements and most of them have to be estimated by parameter fitting techniques. One of the issues with estimating kinetic parameters in oscillatory systems is the irregularities in the least square (LS) cost function surface used to estimate these parameters, which is caused by the periodicity of the measurements. These irregularities result in numerous local minima, which limit the performance of even some of the most robust global optimization algorithms. We proposed a parameter estimation framework to address these issues that integrates temporal information with periodic information embedded in the measurements used to estimate these parameters. This periodic information is used to build a proposed cost function with better surface properties leading to fewer local minima and better performance of global optimization algorithms. We verified for three oscillatory biochemical systems that our proposed cost function results in an increased ability to estimate accurate kinetic parameters as compared to the traditional LS cost function. We combine this cost function with an improved noise removal approach that leverages periodic characteristics embedded in the measurements to effectively reduce noise. The results provide strong evidence on the efficacy of this noise removal approach over the previous commonly used wavelet hard-thresholding noise removal methods. This proposed optimization framework results in more accurate kinetic parameters that

  20. Influence of torque on the lift and drag of a particle in an oscillatory flow.

    SciTech Connect

    Fischer, P. F.; Leaf, G. K.; Restrepo, J. M.; Mathematics and Computer Science; Univ. of Arizona

    2008-10-01

    In the work of Fischer et al. (2002, 'Forces on Particles in an Oscillatory Boundary Layer', J. Fluid Mech., 468, pp. 327-347, 2005; 'Influence of Wall Proximity on the Lift and Drag of a Particle in an Oscillatory Flow', ASME J. Fluids Eng., 127, pp. 583-594) we computed the lift and drag forces on a sphere, subjected to a wall-bounded oscillatory flow. The forces were found as a function of the Reynolds number, the forcing frequency, and the gap between the particle and the ideally smooth rigid bounding wall. Here we investigate how the forces change as a function of the above parameters and its moment of inertia if the particle is allowed to freely rotate. Allowing the particle to rotate does not change appreciably the drag force, as compared to the drag experienced by the particle when it is held fixed. Lift differences between the rotating and nonrotating cases are shown to be primarily dominated in the mean by the pressure component. The lift of the rotating particle varies significantly from the fixed-particle case and depends strongly on the Reynolds number, the forcing frequency, and the gap; much less so on the moment of inertia. Of special significance is that the lift is enhanced for small Reynolds numbers and suppressed for larger ones, with a clear transition point. We also examine how the torque changes when the particle is allowed to rotate as compared to when it is held fixed. As a function of the Reynolds number the torque of the fixed sphere is monotonically decreasing in the range Re=5 to Re=400. The rotating-sphere counterpart experiences a smaller and more complex torque, synchronized with the lift transition mentioned before. As a function of the gap, the torque is significantly larger in the fixed particle case.

  1. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor

    NASA Astrophysics Data System (ADS)

    Dideriksen, Jakob L.; Gallego, Juan A.; Holobar, Ales; Rocon, Eduardo; Pons, Jose L.; Farina, Dario

    2015-08-01

    Objective. Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Approach. Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson’s disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. Main results. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. Signficance. The results indicate that the neural drive in pathological tremor is compatible with one central network

  2. Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow

    PubMed Central

    Giacomin, A. J.; Gilbert, P. H.; Schmalzer, A. M.

    2015-01-01

    In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ˙0 is above unity), (ii) nonlinear viscoelasticity (where both λω and λγ˙0 exceed unity), and (iii) linear viscoelasticity (where λω exceeds unity and where λγ˙0 approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion. PMID:26798789

  3. Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow.

    PubMed

    Giacomin, A J; Gilbert, P H; Schmalzer, A M

    2015-03-01

    In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number [Formula: see text] is zero and the Weissenberg number [Formula: see text] is above unity), (ii) nonlinear viscoelasticity (where both [Formula: see text] and [Formula: see text] exceed unity), and (iii) linear viscoelasticity (where [Formula: see text] exceeds unity and where [Formula: see text] approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion. PMID:26798789

  4. Audio-visual congruency alters power and coherence of oscillatory activity within and between cortical areas.

    PubMed

    Lange, Joachim; Christian, Nadine; Schnitzler, Alfons

    2013-10-01

    Dynamic communication between functionally specialized, but spatially distributed areas of the brain is essential for effective brain functioning. A candidate mechanism for effective neuronal communication is oscillatory neuronal synchronization. Here, we used magnetoencephalography (MEG) to study the role of oscillatory neuronal synchronization in audio-visual speech perception. Subjects viewed congruent audio-visual stimuli of a speaker articulating the vowels /a/ or /o/. In addition, we presented modified, incongruent versions in which visual and auditory signals mismatched. We identified a left hemispheric network for processing congruent audio-visual speech as well as network interaction between areas: low frequency (4-12 Hz) power was suppressed for congruent stimuli at auditory onset around auditory cortex, while power in the high gamma (120-140 Hz)-band was enhanced in the Broca's area around auditory offset. In addition, beta-power (20-30 Hz) was suppressed in supramarginal gyrus for incongruent stimuli. Interestingly, coherence analysis revealed a functional coupling between auditory cortex and Broca's area for congruent stimuli demonstrated by an increase of coherence. In contrast, coherence decreased for incongruent stimuli, suggesting a decoupling of auditory cortex and Broca's area. In addition, the increase of coherence was positively correlated with the increase of high gamma-power. The results demonstrate that oscillatory power in several frequency bands correlates with the processing of matching audio-visual speech on a large spatio-temporal scale. The findings provide evidence that coupling of neuronal groups can be mediated by coherence in the theta/alpha band and that low frequency coherence and high frequency power modulations are correlated in audio-visual speech perception.

  5. The impact of the perception of rhythmic music on self-paced oscillatory movements

    PubMed Central

    Peckel, Mathieu; Pozzo, Thierry; Bigand, Emmanuel

    2014-01-01

    Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping) while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20 s before a 2 s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced) while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with the task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e., motor/perceptual resonance). In general, our results give support to the notion that rhythmic music is processed in a motoric

  6. Aberrant Oscillatory Activity during Simple Movement in Task-Specific Focal Hand Dystonia

    PubMed Central

    Hinkley, Leighton B. N.; Dolberg, Rebecca; Honma, Susanne; Findlay, Anne; Byl, Nancy N.; Nagarajan, Srikantan S.

    2012-01-01

    In task-specific focal hand dystonia (tspFHD), the temporal dynamics of cortical activity in the motor system and how these processes are related to impairments in sensory and motor function are poorly understood. Here, we use time-frequency reconstructions of magnetoencephalographic (MEG) data to elaborate the temporal and spatial characteristics of cortical activity during movement. A self-paced finger tapping task during MEG recording was performed by 11 patients with tspFHD and 11 matched healthy controls. In both groups robust changes in beta (12–30 Hz) and high gamma (65–90 Hz) oscillatory activity were identified over sensory and motor cortices during button press. A significant decrease [p < 0.05, 1% False Discovery Rate (FDR) corrected] in high gamma power during movements of the affected hand was identified over ipsilateral sensorimotor cortex in the period prior to (−575 ms) and following (725 ms) button press. Furthermore, an increase (p < 0.05, 1% FDR corrected) in beta power suppression following movement of the affected hand was identified over visual cortex in patients with tspFHD. For movements of the unaffected hand, a significant (p < 0.05, 1% FDR corrected) increase in beta power suppression was identified over secondary somatosensory cortex (S2) in the period following button press in patients with tspFHD. Oscillatory activity within in the tspFHD group was however not correlated with clinical measures. Understanding these aberrant oscillatory dynamics can provide the groundwork for interventions that focus on modulating the timing of this activity. PMID:23226140

  7. Saccadic reaction times to audiovisual stimuli show effects of oscillatory phase reset.

    PubMed

    Diederich, Adele; Schomburg, Annette; Colonius, Hans

    2012-01-01

    Initiating an eye movement towards a suddenly appearing visual target is faster when an accessory auditory stimulus occurs in close spatiotemporal vicinity. Such facilitation of saccadic reaction time (SRT) is well-documented, but the exact neural mechanisms underlying the crossmodal effect remain to be elucidated. From EEG/MEG studies it has been hypothesized that coupled oscillatory activity in primary sensory cortices regulates multisensory processing. Specifically, it is assumed that the phase of an ongoing neural oscillation is shifted due to the occurrence of a sensory stimulus so that, across trials, phase values become highly consistent (phase reset). If one can identify the phase an oscillation is reset to, it is possible to predict when temporal windows of high and low excitability will occur. However, in behavioral experiments the pre-stimulus phase will be different on successive repetitions of the experimental trial, and average performance over many trials will show no signs of the modulation. Here we circumvent this problem by repeatedly presenting an auditory accessory stimulus followed by a visual target stimulus with a temporal delay varied in steps of 2 ms. Performing a discrete time series analysis on SRT as a function of the delay, we provide statistical evidence for the existence of distinct peak spectral components in the power spectrum. These frequencies, although varying across participants, fall within the beta and gamma range (20 to 40 Hz) of neural oscillatory activity observed in neurophysiological studies of multisensory integration. Some evidence for high-theta/alpha activity was found as well. Our results are consistent with the phase reset hypothesis and demonstrate that it is amenable to testing by purely psychophysical methods. Thus, any theory of multisensory processes that connects specific brain states with patterns of saccadic responses should be able to account for traces of oscillatory activity in observable behavior. PMID

  8. Neuro-oscillatory phase alignment drives speeded multisensory response times: an electro-corticographic investigation.

    PubMed

    Mercier, Manuel R; Molholm, Sophie; Fiebelkorn, Ian C; Butler, John S; Schwartz, Theodore H; Foxe, John J

    2015-06-01

    Even simple tasks rely on information exchange between functionally distinct and often relatively distant neuronal ensembles. Considerable work indicates oscillatory synchronization through phase alignment is a major agent of inter-regional communication. In the brain, different oscillatory phases correspond to low- and high-excitability states. Optimally aligned phases (or high-excitability states) promote inter-regional communication. Studies have also shown that sensory stimulation can modulate or reset the phase of ongoing cortical oscillations. For example, auditory stimuli can reset the phase of oscillations in visual cortex, influencing processing of a simultaneous visual stimulus. Such cross-regional phase reset represents a candidate mechanism for aligning oscillatory phase for inter-regional communication. Here, we explored the role of local and inter-regional phase alignment in driving a well established behavioral correlate of multisensory integration: the redundant target effect (RTE), which refers to the fact that responses to multisensory inputs are substantially faster than to unisensory stimuli. In a speeded detection task, human epileptic patients (N = 3) responded to unisensory (auditory or visual) and multisensory (audiovisual) stimuli with a button press, while electrocorticography was recorded over auditory and motor regions. Visual stimulation significantly modulated auditory activity via phase reset in the delta and theta bands. During the period between stimulation and subsequent motor response, transient synchronization between auditory and motor regions was observed. Phase synchrony to multisensory inputs was faster than to unisensory stimulation. This sensorimotor phase alignment correlated with behavior such that stronger synchrony was associated with faster responses, linking the commonly observed RTE with phase alignment across a sensorimotor network. PMID:26041921

  9. Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow

    SciTech Connect

    Giacomin, A. J.; Gilbert, P. H.; Schmalzer, A. M.

    2015-03-19

    In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ 0 is above unity), (ii) nonlinear viscoelasticity (where both λω and λγ 0 exceed unity), and (iii) linear viscoelasticity (where λω exceeds unity and where λγ 0 approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion.

  10. Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method

    PubMed Central

    Anupindi, Kameswararao; Lai, Weichen; Frankel, Steven

    2014-01-01

    In the present work, lattice Boltzmann method (LBM) is applied for simulating flow in a three-dimensional lid driven cubic and deep cavities. The developed code is first validated by simulating flow in a cubic lid driven cavity at 1000 and 12000 Reynolds numbers following which we study the effect of cavity depth on the steady-oscillatory transition Reynolds number in cavities with depth aspect ratio equal to 1, 2 and 3. Turbulence modeling is performed through large eddy simulation (LES) using the classical Smagorinsky sub-grid scale model to arrive at an optimum mesh size for all the simulations. The simulation results indicate that the first Hopf bifurcation Reynolds number correlates negatively with the cavity depth which is consistent with the observations from two-dimensional deep cavity flow data available in the literature. Cubic cavity displays a steady flow field up to a Reynolds number of 2100, a delayed anti-symmetry breaking oscillatory field at a Reynolds number of 2300, which further gets restored to a symmetry preserving oscillatory flow field at 2350. Deep cavities on the other hand only attain an anti-symmetry breaking flow field from a steady flow field upon increase of the Reynolds number in the range explored. As the present work involved performing a set of time-dependent calculations for several Reynolds numbers and cavity depths, the parallel performance of the code is evaluated a priori by running the code on up to 4096 cores. The computational time required for these runs shows a close to linear speed up over a wide range of processor counts depending on the problem size, which establishes the feasibility of performing a thorough search process such as the one presently undertaken. PMID:24587561

  11. Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow

    DOE PAGESBeta

    Giacomin, A. J.; Gilbert, P. H.; Schmalzer, A. M.

    2015-03-19

    In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of themore » polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ 0 is above unity), (ii) nonlinear viscoelasticity (where both λω and λγ 0 exceed unity), and (iii) linear viscoelasticity (where λω exceeds unity and where λγ 0 approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion.« less

  12. Cosine Directional Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory Interference

    PubMed Central

    Welday, Adam C.; Shlifer, I. Gary; Bloom, Matthew L.; Zhang, Kechen

    2011-01-01

    The rodent septohippocampal system contains “theta cells,” which burst rhythmically at 4–12 Hz, but the functional significance of this rhythm remains poorly understood (Buzsáki, 2006). Theta rhythm commonly modulates the spike trains of spatially tuned neurons such as place (O'Keefe and Dostrovsky, 1971), head direction (Tsanov et al., 2011a), grid (Hafting et al., 2005), and border cells (Savelli et al., 2008; Solstad et al., 2008). An “oscillatory interference” theory has hypothesized that some of these spatially tuned neurons may derive their positional firing from phase interference among theta oscillations with frequencies that are modulated by the speed and direction of translational movements (Burgess et al., 2005, 2007). This theory is supported by studies reporting modulation of theta frequency by movement speed (Rivas et al., 1996; Geisler et al., 2007; Jeewajee et al., 2008a), but modulation of theta frequency by movement direction has never been observed. Here we recorded theta cells from hippocampus, medial septum, and anterior thalamus of freely behaving rats. Theta cell burst frequencies varied as the cosine of the rat's movement direction, and this directional tuning was influenced by landmark cues, in agreement with predictions of the oscillatory interference theory. Computer simulations and mathematical analysis demonstrated how a postsynaptic neuron can detect location-dependent synchrony among inputs from such theta cells, and thereby mimic the spatial tuning properties of place, grid, or border cells. These results suggest that theta cells may serve a high-level computational function by encoding a basis set of oscillatory signals that interfere with one another to synthesize spatial memory representations. PMID:22072668

  13. Potential energy, force distribution and oscillatory motion of chloride ion inside electrically charged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-06-01

    In this research, a continuum-based model is presented to explore potential energy, force distribution and oscillatory motion of ions, and in particular chloride ion, inside carbon nanotubes (CNTs) decorated by functional groups at two ends. To perform this, van der Waals (vdW) interactions between ion and nanotube are modeled by the 6-12 Lennard-Jones (LJ) potential, whereas the electrostatic interactions between ion and functional groups are modeled by the Coulomb potential and the total interactions are analytically derived by summing the vdW and electrostatic interactions. Making the assumption that carbon atoms and charge of functional groups are all uniformly distributed over the nanotube surface and the two ends of nanotube, respectively, a continuum approach is utilized to evaluate the related interactions. Based on the actual force distribution, the equation of motion is also solved numerically to arrive at the time history of displacement and velocity of inner core. With respect to the proposed formulations, comprehensive studies on the variations of potential energy and force distribution are carried out by varying functional group charge and nanotube length. Moreover, the effects of these parameters together with initial conditions on the oscillatory behavior of system are studied and discussed in detail. It is found out that chloride ion escapes more easily from negatively charged CNTs which is followed by uncharged and positively charged ones. It is further shown that the presence of functional groups leads to enhancing the operating frequency of such oscillatory systems especially when the electric charges of ion and functional groups have different signs.

  14. Oscillatory structural forces due to nonionic surfactant micelles: data by colloidal-probe AFM vs theory.

    PubMed

    Christov, Nikolay C; Danov, Krassimir D; Zeng, Yan; Kralchevsky, Peter A; von Klitzing, Regine

    2010-01-19

    Micellar solutions of nonionic surfactants Brij 35 and Tween 20 are confined between two surfaces in a colloidal-probe atomic-force microscope (CP-AFM). The experimentally detected oscillatory forces due to the layer-by-layer expulsion of the micelles agree very well with the theoretical predictions for hard-sphere fluids. While the experiment gives parts of the stable branches of the force curve, the theoretical model allows reconstruction of the full oscillatory curve. Therewith, the strength and range of the ordering could be determined. The resulting aggregation number from the fits of the force curves for Brij 35 is close to 70 and exhibits a slight tendency to increase with the surfactant concentration. The last layer of micelles cannot be pressed out. The measured force-vs-distance curve has nonequilibrium portions, which represent "jumps" from one to another branch of the respective equilibrium oscillatory curve. In the case of Brij 35, at concentrations <150 mM spherical micelles are present and the oscillation period is close to the micelle diameter, slightly decreasing with the rise of concentration. For elongated micelles (at concentration 200 mM), no harmonic oscillations are observed anymore; instead, the period increases with the decrease of film thickness. In the case of Tween 20, the force oscillations are almost suppressed, which implies that the micelles of this surfactant are labile and are demolished by the hydrodynamic shear stresses due to the colloidal-probe motion. The comparison of the results for the two surfactants demonstrates that in some cases the micelles can be destroyed by the CP-AFM, but in other cases they can be stable and behave as rigid particles. This behavior correlates with the characteristic times of the slow micellar relaxation process for these surfactants.

  15. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  16. Spatiotemporal dynamics of oscillatory cellular patterns in three-dimensional directional solidification.

    PubMed

    Bergeon, N; Tourret, D; Chen, L; Debierre, J-M; Guérin, R; Ramirez, A; Billia, B; Karma, A; Trivedi, R

    2013-05-31

    We report results of directional solidification experiments conducted on board the International Space Station and quantitative phase-field modeling of those experiments. The experiments image for the first time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal the existence of oscillatory breathing modes with time periods of several 10's of minutes. Oscillating cells are usually noncoherent due to array disorder, with the exception of small areas where the array structure is regular and stable.

  17. Energy Characteristics of Electric Drive of Oscillatory Motion at the Shock-Free Start

    NASA Astrophysics Data System (ADS)

    Payuk, L. A.; Voronina, N. A.; Galtseva, O. V.

    2016-01-01

    The peculiarity of operation of oscillatory electric drive with doubly-fed motor at realization of algorithm of shock-free start was considered. The method of evaluating of energy parameters of such motors operating at the resonance mode with yueTOM of quantitative and qualitative components of the process of energy conversion by an electric motor (doubly-fed motor) is proposed. The calculation of energy characteristics of electric drive of this type was made, the results of calculation show an increase of energy efficiency (an average, generalized efficiency coefficient nE increased by 10%), which confirms the practical significance of the research object.

  18. Longwave oscillatory patterns in liquids: outside the world of the complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Nepomnyashchy, Alexander; Shklyaev, Sergey

    2016-02-01

    The main subject of the present review is longwave oscillatory patterns in systems with conservation laws, that cannot be described by the complex Ginzburg-Landau equation. As basic examples, we consider nonlinear patterns created by Marangoni and buoyancy instabilities in pure and binary liquids, where the longwave nature of instabilities is related to conservation of the liquid volume, conservation of mass or approximate conservation of the mean temperature. Also, we discuss the excitation of longwave instabilities by a time-periodic parameter modulation.

  19. Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling

    SciTech Connect

    Schmidt, Lennart; García-Morales, Vladimir; Schönleber, Konrad; Krischer, Katharina

    2014-03-15

    We report a novel mechanism for the formation of chimera states, a peculiar spatiotemporal pattern with coexisting synchronized and incoherent domains found in ensembles of identical oscillators. Considering Stuart-Landau oscillators, we demonstrate that a nonlinear global coupling can induce this symmetry breaking. We find chimera states also in a spatially extended system, a modified complex Ginzburg-Landau equation. This theoretical prediction is validated with an oscillatory electrochemical system, the electro-oxidation of silicon, where the spontaneous formation of chimeras is observed without any external feedback control.

  20. Multi-physics modelling approach for oscillatory microengines: application for a microStirling generator design

    NASA Astrophysics Data System (ADS)

    Formosa, F.; Fréchette, L. G.

    2015-12-01

    An electrical circuit equivalent (ECE) approach has been set up allowing elementary oscillatory microengine components to be modelled. They cover gas channel/chamber thermodynamics, viscosity and thermal effects, mechanical structure and electromechanical transducers. The proposed tool has been validated on a centimeter scale Free Piston membrane Stirling engine [1]. We propose here new developments taking into account scaling effects to establish models suitable for any microengines. They are based on simplifications derived from the comparison of the hydraulic radius with respect to the viscous and thermal penetration depths respectively).

  1. Roller screw lifetime under oscillatory motion: from dry to liquid lubrication

    NASA Astrophysics Data System (ADS)

    Falkner, M.; Nitschko, T.; Supper, L.; Traxler, G.; Zemann, J. V.; Roberts, E. W.

    2003-09-01

    The increased lifetime demanded of state-of-the-art telecommunications satellites has necessitated the tribological redesign of an electric thruster pointing mechanism which is currently used in-orbit on the scientific ESA telecom satellite ARTEMIS. The change from dry to liquid lubrication will be described and results of in-vacuo tests under oscillatory motion will be presented. The tests were performed both at Austrian Aerospace (Austria) and at ESTL (UK). Results of stripdown inspections will be described and the lessons learned stated.

  2. Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns

    SciTech Connect

    Tang, Xiaodong; He, Yuxiu; Wang, Shaorong; Gao, Qingyu; Epstein, Irving R.; Wang, Qun

    2014-06-15

    We study amplitude-modulated waves, e.g., wave packets in one dimension, overtarget spirals and superspirals in two dimensions, under mixed-mode oscillatory conditions in a three-variable reaction-diffusion model. New transition zones, not seen in the homogeneous system, are found, in which periodic transitions occur between local 1{sup N−1} and 1{sup N} oscillations. Amplitude-modulated complex patterns result from periodic transition between (N − 1)-armed and N-armed waves. Spatial recurrence rates provide a useful guide to the stability of these modulated patterns.

  3. Oscillatory multiplexing of population codes for selective communication in the mammalian brain

    PubMed Central

    Akam, Thomas; Kullmann, Dimitri M

    2016-01-01

    Mammalian brains exhibit population oscillations whose structures vary in time and space according to behavioural state. A proposed function of these oscillations is to control the flow of signals among anatomically connected networks. However, the nature of neural coding that may support oscillatory selective communication has received relatively little attention. Here we consider the role of multiplexing, whereby multiple information streams share a common neural substrate. We suggest that multiplexing implemented through periodic modulation of firing rate population codes enables flexible reconfiguration of effective connectivity among brain areas. PMID:24434912

  4. Spectral characteristics of sign-alternating self-oscillatory endoplasm mobility in a myxomycete plasmodium

    NASA Astrophysics Data System (ADS)

    Avsievich, T. I.; Frolov, S. V.; Proskurin, S. G.

    2016-01-01

    The results of a short time Fourier transform of the time dependences of the self-oscillatory endoplasm velocity in an isolated strand of the Physarum polycephalum plasmodium recorded using a sign-sensitive laser Doppler microscope are described. Unlike the mode recording an absolute velocity, a sign-sensitive mode makes it possible to detect the pairs of equidistant harmonic components in the time dependence spectra of endoplasm movement. The resulting frequency and amplitude values are used to construct a model adequately describing the alternating endoplasm mobility.

  5. Oscillatory chloride current evoked by temperature jumps during muscarinic and serotonergic activation in Xenopus oocyte.

    PubMed Central

    Miledi, R; Parker, I; Sumikawa, K

    1987-01-01

    1. Membrane currents were recorded from voltage-clamped oocytes of Xenopus laevis, during temperature jumps imposed by a heating light. Resting oocytes usually showed little response, but large oscillatory membrane currents developed in response to cooling steps applied during activation of 'native' muscarinic receptors. 2. Similar temperature jump (Tjump) currents were seen during activation of oscillatory chloride currents mediated by muscarinic acetylcholine (ACh), serotonin, glutamate and noradrenaline receptors, expressed in the oocyte following injection with messenger ribonucleic acid (mRNA) from rat brain. The Tjump response during muscarinic activation was selectively blocked by atropine, and that during serotonergic activation by methysergide. In contrast, the 'smooth' membrane currents elicited by nicotinic ACh, kainate and gamma-aminobutyric acid (GABA) were not accompanied by Tjump responses. 3. Rapid cooling of the oocyte gave larger Tjump currents than a gradual cooling over a few seconds. The size of the Tjump current elicited by a fixed cooling step increased linearly with the preceding time of warming, becoming maximal at intervals greater than about 100 s. 4. The Tjump current was inward at a clamp potential of -60 mV and reversed direction at about -22 mV, which corresponds to the chloride equilibrium potential in the oocyte. In low-chloride solution the reversal potential was shifted to more positive potentials, but it was almost unchanged by changes in potassium and sodium concentration. The size of the Tjump current decreased as the membrane potential was made more negative than about -40 mV. 5. The period of oscillation of the Tjump current increased with decreasing temperature, following a Q10 of 3.15. Depolarization also caused a small increase in period. 6. The Tjump current was not abolished in calcium-free solution, or by addition of manganese or lanthanum to the bathing solution. However, it was abolished by intracellular injection of

  6. Spatiotemporal Dynamics of Oscillatory Cellular Patterns in Three-Dimensional Directional Solidification

    NASA Astrophysics Data System (ADS)

    Bergeon, N.; Tourret, D.; Chen, L.; Debierre, J.-M.; Guérin, R.; Ramirez, A.; Billia, B.; Karma, A.; Trivedi, R.

    2013-05-01

    We report results of directional solidification experiments conducted on board the International Space Station and quantitative phase-field modeling of those experiments. The experiments image for the first time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal the existence of oscillatory breathing modes with time periods of several 10’s of minutes. Oscillating cells are usually noncoherent due to array disorder, with the exception of small areas where the array structure is regular and stable.

  7. Is there still a role for high-frequency oscillatory ventilation in neonates, children and adults?

    PubMed

    Hupp, Susan R; Turner, David A; Rehder, Kyle J

    2015-10-01

    Critically ill patients with respiratory pathology often require mechanical ventilation and while low tidal volume ventilation has become the mainstay of treatment, achieving adequate gas exchange may not be attainable with conventional ventilator modalities. In attempt to achieve gas exchange goals and also mitigate lung injury, high frequency ventilation is often implemented which couples low tidal volumes with sustained mean airway pressure. This manuscript presents the physiology of high-frequency oscillatory ventilation, reviews the currently available data on its use and provides strategies and approaches for this mode of ventilation. PMID:26290121

  8. Effect of Prandtl number and computational schemes on the oscillatory natural convection in an enclosure

    SciTech Connect

    Tagawa, Toshio; Ozoe, Hiroyuki

    1996-08-23

    Numerical calculations were carried out for natural convection of low-Prandtl-number fluid. These calculations include the inertial terms that were approximated by six kinds of schemes, i.e., upwind scheme, hybrid scheme, second-order central difference method, Kawamura-Kuwahara scheme, Utopia scheme, and fourth-order central difference method. The average Nusselt number depended significantly on the schemes. The occurrence of oscillatory flow also depended on the schemes for inertial terms. Higher order up-winding approximations for inertial terms appear to be required to calculate natural convection of low-Prandtl-number fluids like liquid metal, even if the Rayleigh number is not large enough.

  9. WLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Liu, Hongxu; Jiao, Xiangmin

    2016-06-01

    ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For unstructured meshes, which are needed for complex geometries, similar schemes are required but they are much more challenging. We propose a new family of non-oscillatory schemes, called WLS-ENO, in the context of solving hyperbolic conservation laws using finite-volume methods over unstructured meshes. WLS-ENO is derived based on Taylor series expansion and solved using a weighted least squares formulation. Unlike other non-oscillatory schemes, the WLS-ENO does not require constructing sub-stencils, and hence it provides a more flexible framework and is less sensitive to mesh quality. We present rigorous analysis of the accuracy and stability of WLS-ENO, and present numerical results in 1-D, 2-D, and 3-D for a number of benchmark problems, and also report some comparisons against WENO.

  10. Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task.

    PubMed

    Tallon-Baudry, Catherine; Mandon, Sunita; Freiwald, Winrich A; Kreiter, Andreas K

    2004-07-01

    Oscillatory synchrony has been proposed to dynamically coordinate distributed neural ensembles, but whether this mechanism is effectively used in neural processing remains controversial. We trained two monkeys to perform a delayed matching-to-sample task using new visual shapes at each trial. Measures of population-activity patterns (cortical field potentials) were obtained from a chronically implanted array of electrodes placed over area V4 and posterior infero-temporal cortex. In correct trials, oscillatory phase synchrony in the beta range (15-20 Hz) was observed between two focal sites in the inferior temporal cortex while holding the sample in short-term memory. Error trials were characterized by an absence of oscillatory synchrony during memory maintenance. Errors did not seem to be due to an impaired stimulus encoding, since various parameters of neural activity in sensory area V4 did not differ in correct and incorrect trials during sample presentation. Our findings suggest that the successful performance of a visual short-term memory task depends on the strength of oscillatory synchrony during the maintenance of the object in short-term memory. The strength of oscillatory synchrony thus seems to be a relevant parameter of the neural population dynamics that matches behavioral performance.

  11. In vitro Neurons in Mammalian Cortical Layer 4 Exhibit Intrinsic Oscillatory Activity in the 10- to 50-Hz Frequency Range

    NASA Astrophysics Data System (ADS)

    Llinas, Rodolfo R.; Grace, Anthony A.; Yarom, Yosef

    1991-02-01

    We report here the presence of fast subthreshold oscillatory potentials recorded in vitro from neurons within layer 4 of the guinea pig frontal cortex. Two types of oscillatory neurons were recorded: (i) One type exhibited subthreshold oscillations whose frequency increased with membrane depolarization and encompassed a range of 10-45 Hz. Action potentials in this type of neuron demonstrated clear after-hyperpolarizations. (ii) The second type of neuron was characterized by narrow-frequency oscillations near 35-50 Hz. These oscillations often outlasted the initiating depolarizing stimulus. No calcium component could be identified in their action potential. In both types of cell the subthreshold oscillations were tetrodotoxin-sensitive, indicating that the depolarizing phase of the oscillation was generated by a voltage-dependent sodium conductance. The initial depolarizing phase was followed by a potassium conductance responsible for the falling phase of the oscillatory wave. In both types of cell, the subthreshold oscillation could trigger spikes at the oscillatory frequency, if the membrane was sufficiently depolarized. Combining intracellular recordings with Lucifer yellow staining showed that the narrow-frequency oscillatory activity was produced by a sparsely spinous interneuron located in layer 4 of the cortex. This neuron has extensive local axonal collaterals that ramify in layers 3 and 4 such that they may contribute to the columnar synchronization of activity in the 40- to 50-Hz range. Cortical activity in this frequency range has been proposed as the basis for the "conjunctive properties" of central nervous system networks.

  12. Numerical investigation of oscillatory thermocapillary flows under zero gravity in a circular liquid film with concave free surfaces

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Takagi, Y.; Okano, Y.; Dost, S.

    2016-03-01

    NASA astronaut Pettit has conducted thermocapillary flow experiments in water films suspended in a solid ring onboard the International Space Station (ISS) in 2003 and 2011. In one of these experiments, an oscillatory thermocapillary flow was observed. The developed flow broke its symmetry along the centerline of the film. To the best of our knowledge, there are no studies on such oscillatory thermocapillary flows in thin films, and the flow-mechanism giving rise to such oscillatory flows is also not well understood. In order to shed light on the subject, we have carried out a numerical simulation study. The simulation results have shown that the water film geometry (film surface shape; being concave) is an important parameter and give rise to three oscillatory flow structures in the film, namely, a hydrothermal wave developing near the heated section, a symmetric oscillatory flow due to temperature variations, and a symmetry breaking flow due to the hydrodynamic instability along the free boundary layer (mixing layer) and the development of the hydrothermal waves. Simulation results show that the symmetry-breaking phenomenon observed in the thin film experiment on the ISS can be explained by the hydrodynamic instability and the development of hydrothermal waves.

  13. New Oscillatory Instability in a Mushy Layer in a Modulated Environment during the Solidification of Binary Alloys

    NASA Astrophysics Data System (ADS)

    Srimani, P. K.; Murthy, M. Vinayaka

    2011-12-01

    In this paper, the effect of gravity modulation on a new oscillatory instability in a mushy layer is discussed. During the solidification of binary mixture from a cold boundary quite often, the planar solidification front becomes unstable due to the constitutional under cooling, resulting in a mushy layer that separates completely the liquid phase from the completely solid phase. Here, the mushy layer is a reactive porous medium, whose internal structure is composed of fine—scale crystals through which the residual melt can flow. Some of the important results of the present investigation are: (i) There exists a limit for the Stefan number, which incorporates a key balance necessary for the existence of oscillatory instability under gravity modulation. (ii) The model incorporates a complex interaction of heat transfer, modulatory convection and solidification. (iii) The steady and oscillatory modes strongly depend on seven dimensionless parameters. (iv) The oscillatory instability is driven solely from the interior of the mushy layer and exists for all wave numbers. (v) A thorough discussion of the results reveals the different transition boundaries associated with the feasible combination of the parameters. (vi) The system becomes more unstable to both real and oscillatory instabilities as the Stefan number increases for a fixed of value of the modulation parameter. (vii) Modulated convection in a mushy layer could be enhanced or suppressed by a suitable choice of the governing parameters. Finally it is observed that, the results are of practical interest.

  14. Particle distributions in collisionless magnetic reconnection: An implicit Particle-In-Cell (PIC) description

    SciTech Connect

    Hewett, D.W.; Francis, G.E.; Max, C.E.

    1990-06-29

    Evidence from magnetospheric and solar flare research supports the belief that collisionless magnetic reconnection can proceed on the Alfven-wave crossing timescale. Reconnection behavior that occurs this rapidly in collisionless plasmas is not well understood because underlying mechanisms depend on the details of the ion and electron distributions in the vicinity of the emerging X-points. We use the direct implicit Particle-In-Cell (PIC) code AVANTI to study the details of these distributions as they evolve in the self-consistent E and B fields of magnetic reconnection. We first consider a simple neutral sheet model. We observe rapid movement of the current-carrying electrons away from the emerging X-point. Later in time an oscillation of the trapped magnetic flux is found, superimposed upon continued linear growth due to plasma inflow at the ion sound speed. The addition of a current-aligned and a normal B field widen the scope of our studies.

  15. Acceleration during magnetic reconnection

    SciTech Connect

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  16. UNNOTICED MAGNETIC FIELD OSCILLATIONS IN THE VERY QUIET SUN REVEALED BY SUNRISE/IMaX

    SciTech Connect

    Martinez Gonzalez, M. J.; Asensio Ramos, A.; Manso Sainz, R.; Khomenko, E.; MartInez Pillet, V.; Lopez Ariste, A.

    2011-04-01

    We present observational evidence for oscillations of magnetic flux density in the quiet areas of the Sun. The majority of magnetic fields on the solar surface have strengths of the order of or lower than the equipartition field (300-500 G). This results in a myriad of magnetic fields whose evolution is largely determined by the turbulent plasma motions. When granules evolve they squash the magnetic field lines together or pull them apart. Here, we report on the periodic deformation of the shapes of features in circular polarization observed at high resolution with SUNRISE. In particular, we note that the area of patches with a constant magnetic flux oscillates with time, which implies that the apparent magnetic field intensity oscillates in antiphase. The periods associated with this oscillatory pattern are compatible with the granular lifetime and change abruptly, which suggests that these oscillations might not correspond to characteristic oscillatory modes of magnetic structures, but to the forcing by granular motions. In one particular case, we find three patches around the same granule oscillating in phase, which means that the spatial coherence of these oscillations can reach 1600 km. Interestingly, the same kind of oscillatory phenomenon is also found in the upper photosphere.

  17. Unnoticed Magnetic Field Oscillations in the Very Quiet Sun Revealed by SUNRISE/IMaX

    NASA Astrophysics Data System (ADS)

    Martínez González, M. J.; Asensio Ramos, A.; Manso Sainz, R.; Khomenko, E.; Martínez Pillet, V.; Solanki, S. K.; López Ariste, A.; Schmidt, W.; Barthol, P.; Gandorfer, A.

    2011-04-01

    We present observational evidence for oscillations of magnetic flux density in the quiet areas of the Sun. The majority of magnetic fields on the solar surface have strengths of the order of or lower than the equipartition field (300-500 G). This results in a myriad of magnetic fields whose evolution is largely determined by the turbulent plasma motions. When granules evolve they squash the magnetic field lines together or pull them apart. Here, we report on the periodic deformation of the shapes of features in circular polarization observed at high resolution with SUNRISE. In particular, we note that the area of patches with a constant magnetic flux oscillates with time, which implies that the apparent magnetic field intensity oscillates in antiphase. The periods associated with this oscillatory pattern are compatible with the granular lifetime and change abruptly, which suggests that these oscillations might not correspond to characteristic oscillatory modes of magnetic structures, but to the forcing by granular motions. In one particular case, we find three patches around the same granule oscillating in phase, which means that the spatial coherence of these oscillations can reach 1600 km. Interestingly, the same kind of oscillatory phenomenon is also found in the upper photosphere.

  18. Solitary and shock waves in magnetized electron-positron plasma

    SciTech Connect

    Lu, Ding; Li, Zi-Liang; Abdukerim, Nuriman; Xie, Bai-Song

    2014-02-15

    An Ohm's law for electron-positron (EP) plasma is obtained. In the framework of EP magnetohydrodynamics, we investigate nonrelativistic nonlinear waves' solutions in a magnetized EP plasma. In the collisionless limit, quasistationary propagating solitary wave structures for the magnetic field and the plasma density are obtained. It is found that the wave amplitude increases with the Mach number and the Alfvén speed. However, the dependence on the plasma temperature is just the opposite. Moreover, for a cold EP plasma, the existence range of the solitary waves depends only on the Alfvén speed. For a hot EP plasma, the existence range depends on the Alfvén speed as well as the plasma temperature. In the presence of collision, the electromagnetic fields and the plasma density can appear as oscillatory shock structures because of the dissipation caused by the collisions. As the collision frequency increases, the oscillatory shock structure becomes more and more monotonic.

  19. Aspects of three-dimensional magnetic reconnection

    SciTech Connect

    Borgogno, D.; Grasso, D.; Porcelli, F.; Califano, F.; Pegoraro, F.; Farina, D.

    2005-03-01

    The nonlinear behavior of reconnecting modes in three spatial dimensions (3D) is investigated, on the basis of a collisionless fluid model in slab geometry, assuming a strong constant guide field in one direction. Unstable modes in the so-called large {delta}{sup '} regime are considered. Single helicity modes, i.e., modes with the same orientation with respect to the guide field, depending on all three spatial coordinates correspond to 'oblique' modes with, in general, mixed parity around the corresponding resonant magnetic surface, giving rise to a nonlinear drift of the magnetic island X point. The nonlinear coupling of initial perturbations with different helicities introduces additional helicities that evolve in time in agreement with quasilinear estimates, as long as their amplitudes remain relatively small. Magnetic field lines become stochastic when islands with different helicities are present. Basic questions such as the proper definition of the reconnection rate in 3D are addressed.

  20. Magnetized stratified rotating shear waves

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Lehner, T.; Godeferd, F.; Cambon, C.

    2012-02-01

    solution at infinite vertical wavelength (k3=0): There is an oscillatory behavior for τ>1+|K2/k1|, where τ=St is a dimensionless time and K2 is the radial component of the wave vector at τ=0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k3=0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K2/k1≫1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like Kh/kh where kh(τ)=[k12+(K2-k1τ)2]1/2 and Kh=kh(0). After the leading phase (τ>K2/k1≫1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k1=0 and k3=0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k1=0. The limit at k1=0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement.

  1. Magnetized stratified rotating shear waves.

    PubMed

    Salhi, A; Lehner, T; Godeferd, F; Cambon, C

    2012-02-01

    stability of the solution at infinite vertical wavelength (k(3) = 0): There is an oscillatory behavior for τ > 1+|K(2)/k(1)|, where τ = St is a dimensionless time and K(2) is the radial component of the wave vector at τ = 0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k(3) = 0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K(2)/k(1)>1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like K(h)/k(h) where k(h)(τ)=[k(1)(2) + (K(2) - k(1)τ)(2)](1/2) and K(h) =k(h)(0). After the leading phase (τ > K(2)/k(1)>1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k(1) = 0 and k(3) = 0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k(1) = 0. The limit at k(1) = 0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement. PMID:22463311

  2. Transition of oscillatory flow in tubes - An empirical model for application to Stirling engines

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Ibrahim, M.; Kannapareddy, M.; Johnson, T.; Friedman, G.

    1992-01-01

    Attention is given to an empirical model for transition to turbulence in oscillatory flows in straight tubes. Designed after a correlation for transition of a boundary layer on a flat plate, the model yields the laminar flow momentum thickness Reynolds number that must be met before transition to turbulence will occur. The transition point is located by comparing this to the actual momentum thickness Reynolds number. A scheme is proposed for estimating the momentum thickness Reynolds number in terms of the position within the cycle, the maximum value of the diameter Reynolds within the cycle, Re(max), and the dimensionless frequency, Valensi number. Results from an experimental study of oscillatory flow in a tube are employed to develop the model. When the flow is determined to be turbulent, it is proposed that a fully-developed, steady flow friction coefficient be applied. When the flow is laminar, the assumption of fully developed flow cannot be made; thus, a method is suggested for estimating the friction factor.

  3. Enhanced oscillatory rectification and negative differential resistance in pentamantane diamondoid-cumulene systems.

    PubMed

    Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C

    2016-02-14

    We propose a new functionality for diamondoids in nanoelectronics. Based on the nonequilibrium Green's function formalism and density functional theory, we reveal that when attached to gold electrodes, the pentamantane-cumulene molecular junction exhibits large and oscillatory rectification and negative differential resistance (NDR) - depending on the number of carbon atoms in cumulene (Cn). When n is odd rectification is greatly enhanced where the rectification ratio can reach ∼180 and a large negative differential resistance peak current of ∼3 μA. This oscillatory behavior is well rationalised in terms of the occupancy of the carbon 2p states in Cn. Interestingly, different layers of C atoms in the pentamantane molecule have different contributions to transmission. The first and third layers of C atoms in pentamantane have a slight contribution to rectification, and the fifth and sixth layers have a stronger contribution to both rectification and NDR. Thus, our results suggest potential avenues for controlling their functions by chemically manipulating various parts of the diamondoid molecule, thus extending the applications of diamondoids in nanoscale integrated circuits.

  4. Oscillatory activity in auditory cortex reflects the perceptual level of audio-tactile integration

    PubMed Central

    Plöchl, Michael; Gaston, Jeremy; Mermagen, Tim; König, Peter; Hairston, W. David

    2016-01-01

    Cross-modal interactions between sensory channels have been shown to depend on both the spatial disparity and the perceptual similarity between the presented stimuli. Here we investigate the behavioral and neural integration of auditory and tactile stimulus pairs at different levels of spatial disparity. Additionally, we modulated the amplitudes of both stimuli in either a coherent or non-coherent manner. We found that both auditory and tactile localization performance was biased towards the stimulus in the respective other modality. This bias linearly increases with stimulus disparity and is more pronounced for coherently modulated stimulus pairs. Analyses of electroencephalographic (EEG) activity at temporal–cortical sources revealed enhanced event-related potentials (ERPs) as well as decreased alpha and beta power during bimodal as compared to unimodal stimulation. However, while the observed ERP differences are similar for all stimulus combinations, the extent of oscillatory desynchronization varies with stimulus disparity. Moreover, when both stimuli were subjectively perceived as originating from the same direction, the reduction in alpha and beta power was significantly stronger. These observations suggest that in the EEG the level of perceptual integration is mainly reflected by changes in ongoing oscillatory activity. PMID:27647158

  5. Dynamics of liquid bridges inside microchannels subject to pure oscillatory flows

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2014-11-01

    We report on 2D simulations of liquid bridges' dynamics in microchannels of uniform wettability and subject to external oscillatory flows. The flow equations were solved using the Cahn-Hilliard diffuse-interface formulation and the finite element method with unstructured grid. It was found that regardless of the wettability properties of the microchannel walls, there is a critical frequency above which the bridge shows perpetual periodic oscillatory motion. Below that critical frequency, the liquid bridge ruptures when the channel walls are philic and detaches from the surface when they are phobic. This critical frequency depends on the viscosity ratio, oscillation amplitude and geometric aspect ratio of the bridge. It was also found that the flow velocity is out of phase with the footprint/throat lengths and that the latter two show a phase difference. These differences were explained in terms of the motion of the two contact lines on the substrates and the deformation of the fluid-fluid interfaces. To characterize the behavior of the liquid bridge, two quantitative parameters; the liquid bridge-solid interfacial length and the length of the throat of the liquid bridge were used. Variations of the interfacial morphology development of the bridge were analyzed to understand the bridge response.

  6. Nanoscopic Terraces, Mesas, and Ridges in Freely Standing Thin Films Sculpted by Supramolecular Oscillatory Surface Forces.

    PubMed

    Zhang, Yiran; Yilixiati, Subinuer; Pearsall, Collin; Sharma, Vivek

    2016-04-26

    Freely standing thin liquid films containing supramolecular structures including micelles, nanoparticles, polyelectrolyte-surfactant complexes, and smectic liquid crystals undergo drainage via stratification. The layer-by-layer removal of these supramolecular structures manifests as stepwise thinning over time and a coexistence of domains and nanostructures of discretely different thickness. The layering of supramolecular structures in confined thin films contributes additional non-DLVO, supramolecular oscillatory surface forces to disjoining pressure, thus influencing both drainage kinetics and stability of thin films. Understanding and characterizing the spontaneous creation and evolution of nanoscopic topography of stratifying, freely standing thin liquid films have been long-standing challenges due to the absence of experimental techniques with the requisite spatial (thickness <10 nm) and temporal resolution (<1 ms). Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed herein, we visualize and characterize size, shape, and evolution kinetics of nanoscopic mesas, terraces, and ridges. The exquisite thickness maps created using IDIOM protocols provide much needed and unprecedented insights into the role of supramolecular oscillatory surface forces in driving growth of such nanostructures as well as in controlling properties and stability of freely standing thin films and, more generally, of colloidal dispersions like foams.

  7. The neural origins of visual crowding as revealed by event-related potentials and oscillatory dynamics.

    PubMed

    Ronconi, Luca; Bertoni, Sara; Bellacosa Marotti, Rosilari

    2016-06-01

    Visual crowding is the difficulty in perceiving a target in the presence of nearby flankers. Most neurophysiological studies of crowding employed functional neuroimaging, but because of its low temporal resolution, no definitive answer can be given to the question: is crowding arising at the earliest or at later stages of visual processing? Here, we used a classic letters crowding paradigm in combination with electroencephalography (EEG). We manipulated the critical space between peripheral target and flankers, while ensuring a proper control of basic stimulus characteristics. Analyses were focused on event-related potentials (ERPs) and oscillatory activity in the alpha (8-12 Hz), beta (15-30 Hz) and gamma (30-80 Hz) bands. At the ERP level, we found that the first sign of a crowding-induced modulation of EEG activity was a suppression of the N1 component. Oscillatory analysis revealed an early stimulus-evoked gamma enhancement and a later alpha reduction that, however, were not influenced by the amount of crowding. Importantly, reduction in the beta band reflected the amount of crowding (i.e., stronger reduction for strong relative to mid crowding condition) and correlated with individual behavioral performance. Collectively, these findings show that crowding for complex objects emerges at later stages of visual processing, possibly as a result of large-scale network interaction.

  8. Oscillatory Brain Dynamics during Sentence Reading: A Fixation-Related Spectral Perturbation Analysis

    PubMed Central

    Vignali, Lorenzo; Himmelstoss, Nicole A.; Hawelka, Stefan; Richlan, Fabio; Hutzler, Florian

    2016-01-01

    The present study investigated oscillatory brain dynamics during self-paced sentence-level processing. Participants read fully correct sentences, sentences containing a semantic violation and “sentences” in which the order of the words was randomized. At the target word level, fixations on semantically unrelated words elicited a lower-beta band (13–18 Hz) desynchronization. At the sentence level, gamma power (31–55 Hz) increased linearly for syntactically correct sentences, but not when the order of the words was randomized. In the 300–900 ms time window after sentence onsets, theta power (4–7 Hz) was greater for syntactically correct sentences as compared to sentences where no syntactic structure was preserved (random words condition). We interpret our results as conforming with a recently formulated predictive-coding framework for oscillatory neural dynamics during sentence-level language comprehension. Additionally, we discuss how our results relate to previous findings with serial visual presentation vs. self-paced reading. PMID:27199713

  9. PIV experiments in rough-wall, laminar-to-turbulent, oscillatory boundary-layer flows

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Mier, Jose M.; Christensen, Kenneth T.; Bateman, Allen; Garcia, Marcelo H.

    2014-01-01

    Exploratory measurements of oscillatory boundary layers were conducted over a smooth and two different rough beds spanning the laminar, transitional and turbulent flow regimes using a multi-camera 2D-PIV system in a small oscillatory-flow tunnel (Admiraal et al. in J Hydraul Res 44(4):437-450, 2006). Results show how the phase lag between bed shear stress and free-stream velocity is better defined when the integral of the momentum equation is used to estimate the bed shear stress. Observed differences in bed shear stress and phase lag between bed shear stress and free-stream velocity are highly sensitive to the definition of the bed position ( y = b). The underestimation of turbulent stresses close to the wall is found to explain such differences when using the addition of Reynolds and viscous stresses to define both the bed shear stress and the phase lag. Regardless of the flow regime, in all experiments, boundary-layer thickness reached its maximum value at a phase near the flow reversal at the wall. Friction factors in smooth walls are better estimated using a theoretical equation first proposed by Batchelor (An introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967) while the more recent empirical predictor of Pedocchi and Garcia (J Hydraul Res 47(4):438-444, 2009a) was found to be appropriate for estimating friction coefficients in the laminar-to-turbulent transition regime.

  10. Reduced Sensory Oscillatory Activity during Rapid Auditory Processing as a Correlate of Language-Learning Impairment

    PubMed Central

    Heim, Sabine; Friedman, Jennifer Thomas; Keil, Andreas; Benasich, April A.

    2010-01-01

    Successful language acquisition has been hypothesized to involve the ability to integrate rapidly presented, brief acoustic cues in sensory cortex. A body of work has suggested that this ability is compromised in language-learning impairment (LLI). The present research aimed to examine sensory integration during rapid auditory processing by means of electrophysiological measures of oscillatory brain activity using data from a larger longitudinal study. Twenty-nine children with LLI and control participants with typical language development (n=18) listened to tone doublets presented at a temporal interval that is essential for accurate speech processing (70-ms interstimulus interval). The children performed a deviant (pitch change of second tone) detection task, or listened passively. The electroencephalogram was recorded from 64 electrodes. Data were source-projected to the auditory cortices and submitted to wavelet analysis, resulting in time-frequency representations of electrocortical activity. Results show significantly reduced amplitude and phase-locking of early (45–75 ms) oscillations in the gamma-band range (29–52 Hz), specifically in the LLI group, for the second stimulus of the tone doublet. This suggests altered temporal organization of sensory oscillatory activity in LLI when processing rapid sequences. PMID:21822356

  11. Syntactic unification operations are reflected in oscillatory dynamics during on-line sentence comprehension.

    PubMed

    Bastiaansen, Marcel; Magyari, Lilla; Hagoort, Peter

    2010-07-01

    There is growing evidence suggesting that synchronization changes in the oscillatory neuronal dynamics in the EEG or MEG reflect the transient coupling and uncoupling of functional networks related to different aspects of language comprehension. In this work, we examine how sentence-level syntactic unification operations are reflected in the oscillatory dynamics of the MEG. Participants read sentences that were either correct, contained a word category violation, or were constituted of random word sequences devoid of syntactic structure. A time-frequency analysis of MEG power changes revealed three types of effects. The first type of effect was related to the detection of a (word category) violation in a syntactically structured sentence, and was found in the alpha and gamma frequency bands. A second type of effect was maximally sensitive to the syntactic manipulations: A linear increase in beta power across the sentence was present for correct sentences, was disrupted upon the occurrence of a word category violation, and was absent in syntactically unstructured random word sequences. We therefore relate this effect to syntactic unification operations. Thirdly, we observed a linear increase in theta power across the sentence for all syntactically structured sentences. The effects are tentatively related to the building of a working memory trace of the linguistic input. In conclusion, the data seem to suggest that syntactic unification is reflected by neuronal synchronization in the lower-beta frequency band.

  12. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness.

    PubMed

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-07-14

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.

  13. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.

    PubMed

    Ishijima, Sumio

    2016-01-01

    It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements. PMID:26863204

  14. Oscillatory flow at the end of parallel-plate stacks: phenomenological and similarity analysis

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoan; Jaworski, Artur J.

    2010-10-01

    This paper addresses the physics of the oscillatory flow in the vicinity of a series of parallel plates forming geometrically identical channels. This type of flow is particularly relevant to thermoacoustic engines and refrigerators, where a reciprocating flow is responsible for the desirable energy transfer, but it is also of interest to general fluid mechanics of oscillatory flows past bluff bodies. In this paper, the physics of an acoustically induced flow past a series of plates in an isothermal condition is studied in detail using the data provided by PIV imaging. Particular attention is given to the analysis of the wake flow during the ejection part of the flow cycle, where either closed recirculating vortices or alternating vortex shedding can be observed. This is followed by a similarity analysis of the governing Navier-Stokes equations in order to derive the similarity criteria governing the wake flow behaviour. To this end, similarity numbers including two types of Reynolds number, the Keulegan-Carpenter number and a non-dimensional stack configuration parameter, d/h, are considered and their influence on the phenomena are discussed.

  15. Pre-stimulus beta and gamma oscillatory power predicts perceived audiovisual simultaneity.

    PubMed

    Yuan, Xiangyong; Li, Haijiang; Liu, Peiduo; Yuan, Hong; Huang, Xiting

    2016-09-01

    Pre-stimulus oscillation activity in the brain continuously fluctuates, but it is correlated with subsequent behavioral and perceptual performance. Here, using fast Fourier transformation of pre-stimulus electroencephalograms, we explored how oscillatory power modulates the subsequent discrimination of perceived simultaneity from non-simultaneity in the audiovisual domain. We found that the over-scalp high beta (20-28Hz), parieto-occipital low beta (14-20Hz), and high gamma oscillations (55-80Hz) were significantly stronger before audition-then-vision sequence when they were judged as simultaneous rather than non-simultaneous. In contrast, a broad range of oscillations, mainly the beta and gamma bands over a great part of the scalp were significantly weaker before vision-then-audition sequences when they were judged as simultaneous versus non-simultaneous. Moreover, for auditory-leading sequence, pre-stimulus beta and gamma oscillatory power successfully predicted subjects' reports of simultaneity on a trial-by-trial basis, with stronger activity resulting in more simultaneous judgments. These results indicate that ongoing fluctuations of beta and gamma oscillations can modulate subsequent perceived audiovisual simultaneity, but with an opposing pattern for auditory- and visual-leading sequences.

  16. Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson's disease.

    PubMed

    Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned

    2012-08-01

    Oscillatory activities in the brain within the beta (15-30 Hz) and gamma (70-90 Hz) ranges have been implicated in the generation of voluntary movement. However, their roles remain unclear. Here, we record local field potential activity from the region of the subthalamic nucleus during movement of the contralateral limb in 11 patients with Parkinson's disease. Patients were on their normal dopaminergic medication and were cued to perform arm-reaching movements after a delay period at three different speeds: 'slow', 'normal', and 'fast'. Beta activity desynchronized earlier in response to the cue indicating an upcoming fast reach than to the cues for slow or normal speed movement. There was no difference in the degree of beta desynchronization between reaching speeds and beta desynchronization was established prior to movement onset in all cases. In contrast, synchronization in the gamma range developed during the reaching movement, and was especially pronounced during fast reaching. Thus the timing of suppression in the beta band depended on task demands, whereas the degree of increase in gamma oscillations depended on movement speed. These findings point to functionally segregated roles for different oscillatory frequencies in motor preparation and performance.

  17. Oscillatory Brain Dynamics during Sentence Reading: A Fixation-Related Spectral Perturbation Analysis.

    PubMed

    Vignali, Lorenzo; Himmelstoss, Nicole A; Hawelka, Stefan; Richlan, Fabio; Hutzler, Florian

    2016-01-01

    The present study investigated oscillatory brain dynamics during self-paced sentence-level processing. Participants read fully correct sentences, sentences containing a semantic violation and "sentences" in which the order of the words was randomized. At the target word level, fixations on semantically unrelated words elicited a lower-beta band (13-18 Hz) desynchronization. At the sentence level, gamma power (31-55 Hz) increased linearly for syntactically correct sentences, but not when the order of the words was randomized. In the 300-900 ms time window after sentence onsets, theta power (4-7 Hz) was greater for syntactically correct sentences as compared to sentences where no syntactic structure was preserved (random words condition). We interpret our results as conforming with a recently formulated predictive-coding framework for oscillatory neural dynamics during sentence-level language comprehension. Additionally, we discuss how our results relate to previous findings with serial visual presentation vs. self-paced reading. PMID:27199713

  18. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness.

    PubMed

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473

  19. Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans

    PubMed Central

    Bottari, Davide; Troje, Nikolaus F.; Ley, Pia; Hense, Marlene; Kekunnaya, Ramesh; Röder, Brigitte

    2016-01-01

    Functional brain development is characterized by sensitive periods during which experience must be available to allow for the full development of neural circuits and associated behavior. Yet, only few neural markers of sensitive period plasticity in humans are known. Here we employed electroencephalographic recordings in a unique sample of twelve humans who had been blind from birth and regained sight through cataract surgery between four months and 16 years of age. Two additional control groups were tested: a group of visually impaired individuals without a history of total congenital blindness and a group of typically sighted individuals. The EEG was recorded while participants performed a visual discrimination task involving intact and scrambled biological motion stimuli. Posterior alpha and theta oscillations were evaluated. The three groups showed indistinguishable behavioral performance and in all groups evoked theta activity varied with biological motion processing. By contrast, alpha oscillatory activity was significantly reduced only in individuals with a history of congenital cataracts. These data document on the one hand brain mechanisms of functional recovery (related to theta oscillations) and on the other hand, for the first time, a sensitive period for the development of alpha oscillatory activity in humans. PMID:27080158

  20. Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans.

    PubMed

    Bottari, Davide; Troje, Nikolaus F; Ley, Pia; Hense, Marlene; Kekunnaya, Ramesh; Röder, Brigitte

    2016-01-01

    Functional brain development is characterized by sensitive periods during which experience must be available to allow for the full development of neural circuits and associated behavior. Yet, only few neural markers of sensitive period plasticity in humans are known. Here we employed electroencephalographic recordings in a unique sample of twelve humans who had been blind from birth and regained sight through cataract surgery between four months and 16 years of age. Two additional control groups were tested: a group of visually impaired individuals without a history of total congenital blindness and a group of typically sighted individuals. The EEG was recorded while participants performed a visual discrimination task involving intact and scrambled biological motion stimuli. Posterior alpha and theta oscillations were evaluated. The three groups showed indistinguishable behavioral performance and in all groups evoked theta activity varied with biological motion processing. By contrast, alpha oscillatory activity was significantly reduced only in individuals with a history of congenital cataracts. These data document on the one hand brain mechanisms of functional recovery (related to theta oscillations) and on the other hand, for the first time, a sensitive period for the development of alpha oscillatory activity in humans. PMID:27080158

  1. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation

    PubMed Central

    Ishijima, Sumio

    2016-01-01

    It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements. PMID:26863204

  2. Evidence for Outer Hair Cell Driven Oscillatory Fluid Flow in the Tunnel of Corti

    PubMed Central

    Karavitaki, K. Domenica; Mountain, David C.

    2007-01-01

    Outer hair cell (OHC) somatic motility plays a key role in mammalian cochlear frequency selectivity and hearing sensitivity, but the mechanism of cochlear amplification is not well understood and remains a matter of controversy. We have visualized and quantified the effects of electrically evoked OHC somatic motility within the gerbil organ of Corti using an excised cochlear preparation. We found that OHC motility induces oscillatory motion of the medial olivocochlear fibers where they cross the tunnel of Corti (ToC) in their course to innervate the OHCs. We show that this motion is present at physiologically relevant frequencies and remains at locations distal to the OHC excitation point. We interpret this fiber motion to be the result of oscillatory fluid flow in the ToC. We show, using a simple one-dimensional hydromechanical model of the ToC, that a fluid wave within the tunnel can travel without significant attenuation for distances larger than the wavelength of the cochlear traveling wave at its peak. This ToC fluid wave could interact with the cochlear traveling wave to amplify the motion of the basilar membrane. The ToC wave could also provide longitudinal coupling between adjacent sections of the basilar membrane, and such coupling may be critical for cochlear amplification. PMID:17277193

  3. Modafinil Effects on Middle-Frequency Oscillatory Power During Rule Selection in Schizophrenia

    PubMed Central

    Minzenberg, Michael J; Yoon, Jong H; Cheng, Yaoan; Carter, Cameron S

    2014-01-01

    Control-related cognitive processes such as rule selection are associated with cortical oscillations in the theta, alpha and, beta ranges, and modulated by catecholamine neurotransmission. Thus, a potential strategy for improving cognitive control deficits in schizophrenia would be to use pro-catecholamine pharmacological agents to augment these control-related oscillations. In a double-blind, placebo-controlled (within-subjects) study, we tested the effects of adjunctive single-dose modafinil 200 mg on rule-related 4–30 Hz oscillations in 23 stable schizophrenia patients, using EEG during cognitive control task performance. EEG data underwent time-frequency decomposition with Morlet wavelets to determine the power of 4–30 Hz oscillations. Modafinil (relative to placebo) enhanced oscillatory power associated with high-control rule selection in theta, alpha, and beta ranges, with modest effects during rule maintenance. Modafinil treatment in schizophrenia augments middle-frequency cortical oscillatory power associated with rule selection, and may subserve diverse subcomponent processes in proactive cognitive control. PMID:24964814

  4. Oscillatory activity in auditory cortex reflects the perceptual level of audio-tactile integration.

    PubMed

    Plöchl, Michael; Gaston, Jeremy; Mermagen, Tim; König, Peter; Hairston, W David

    2016-09-20

    Cross-modal interactions between sensory channels have been shown to depend on both the spatial disparity and the perceptual similarity between the presented stimuli. Here we investigate the behavioral and neural integration of auditory and tactile stimulus pairs at different levels of spatial disparity. Additionally, we modulated the amplitudes of both stimuli in either a coherent or non-coherent manner. We found that both auditory and tactile localization performance was biased towards the stimulus in the respective other modality. This bias linearly increases with stimulus disparity and is more pronounced for coherently modulated stimulus pairs. Analyses of electroencephalographic (EEG) activity at temporal-cortical sources revealed enhanced event-related potentials (ERPs) as well as decreased alpha and beta power during bimodal as compared to unimodal stimulation. However, while the observed ERP differences are similar for all stimulus combinations, the extent of oscillatory desynchronization varies with stimulus disparity. Moreover, when both stimuli were subjectively perceived as originating from the same direction, the reduction in alpha and beta power was significantly stronger. These observations suggest that in the EEG the level of perceptual integration is mainly reflected by changes in ongoing oscillatory activity.

  5. Numerical simulations of mixed convection in periodic open cavities with oscillatory throughflow

    SciTech Connect

    Fusegi, Toru

    1995-12-31

    Mixed convection in fully-developed flows of air (Pr = 0.7) inside a channel subjected to oscillatory pressure gradients is studied numerically. The lower wall of the channel is periodically grooved to form square cavities, which are heated uniformly from the bottom. The following three pertinent parameters evolve as a result of the proper non-dimensionalization of the governing equations: Re, the oscillatory flow Reynolds number (based on an oscillation velocity scale); Wo, the Womersley number; and, Gr{sub q}, a modified Grashof number. A low Re range (10 {le} Re {le} 100), in which the flow properties are sensitive to small changes in Wo and/or Gr{sub q}, is of the primary interest in the present investigation. When the buoyancy effect is neglected, a circulatory roll cell appears inside the cavity, which remains in presence over almost the entire cycle. However, the formation of such a vortex does not take place with the mixed convection mode; this difference stems from a deeper penetration of the throughflow to the cavity. Heat transfer enhancement at the heated surface ensues this structure change as a manifestation of the buoyancy effects.

  6. Continuum study on the oscillatory characteristics of carbon nanocones inside single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Sadeghi, F.; Darvizeh, M.

    2016-02-01

    This article aims to present a comprehensive study on the oscillatory behavior of concentric carbon nanocones (CNCs) inside carbon nanotubes (CNTs) using a continuum approach. To this end, the optimum radius of nanotube for which the nanocone lies on the tube axis is determined based on the distribution of suction energy. Using the Runge-Kutta numerical integration scheme, the equation of motion is solved numerically to attain the time history of displacement and velocity of nanocone. It is observed that the oscillation of nanocone occurs with respect to its axial equilibrium distance which moves further away from the middle axis of nanotube as the number of pentagons increases. A novel semi-analytical expression as a function of geometrical parameters, initial conditions and cone vertex direction is also proposed for the precise evaluation of oscillation frequency. With respect to the proposed frequency expression, a detailed parametric study is conducted to get an insight into the effects of number of pentagons, cone vertex direction and initial conditions on the oscillatory behavior of CNC-CNT oscillators. It is found that nanocones with more pentagons generate greater maximum frequencies inside nanotubes. Furthermore, it is shown that higher maximum frequencies can be achieved if the nanocone enters the nanotube from base.

  7. Oscillatory phase modulates the timing of neuronal activations and resulting behavior.

    PubMed

    Coon, W G; Gunduz, A; Brunner, P; Ritaccio, A L; Pesaran, B; Schalk, G

    2016-06-01

    Human behavioral response timing is highly variable from trial to trial. While it is generally understood that behavioral variability must be due to trial-by-trial variations in brain function, it is still largely unknown which physiological mechanisms govern the timing of neural activity as it travels through networks of neuronal populations, and how variations in the timing of neural activity relate to variations in the timing of behavior. In our study, we submitted recordings from the cortical surface to novel analytic techniques to chart the trajectory of neuronal population activity across the human cortex in single trials, and found joint modulation of the timing of this activity and of consequent behavior by neuronal oscillations in the alpha band (8-12Hz). Specifically, we established that the onset of population activity tends to occur during the trough of oscillatory activity, and that deviations from this preferred relationship are related to changes in the timing of population activity and the speed of the resulting behavioral response. These results indicate that neuronal activity incurs variable delays as it propagates across neuronal populations, and that the duration of each delay is a function of the instantaneous phase of oscillatory activity. We conclude that the results presented in this paper are supportive of a general model for variability in the effective speed of information transmission in the human brain and for variability in the timing of human behavior. PMID:26975551

  8. Shadows of music-language interaction on low frequency brain oscillatory patterns.

    PubMed

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-10-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations during simultaneous processing of music and language using visually presented sentences and auditorily presented chord sequences. Music-syntactically regular or irregular chord functions were presented in sync with syntactically or semantically correct or incorrect words. Irregular chord functions (presented simultaneously with a syntactically correct word) produced an early (150-250 ms) spectral power decrease over anterior frontal regions in the theta band (5-7 Hz) and a late (350-700 ms) power increase in both the delta and the theta band (2-7 Hz) over parietal regions. Syntactically incorrect words (presented simultaneously with a regular chord) elicited a similar late power increase in delta-theta band over parietal sites, but no early effect. Interestingly, the late effect was significantly diminished when the language-syntactic and music-syntactic irregularities occurred at the same time. Further, the presence of a semantic violation occurring simultaneously with regular chords produced a significant increase in later delta-theta power at posterior regions; this effect was marginally decreased when the identical semantic violation occurred simultaneously with a music syntactical violation. Altogether, these results show that low frequency oscillatory networks get activated during the syntactic processing of both music and language, and further, these networks may possibly be shared.

  9. Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making.

    PubMed

    Cohen, Michael X; Elger, Christian E; Fell, Juergen

    2009-02-01

    Electroencephalogram oscillations recorded both within and over the medial frontal cortex have been linked to a range of cognitive functions, including positive and negative feedback processing. Medial frontal oscillatory characteristics during decision making remain largely unknown. Here, we examined oscillatory activity of the human medial frontal cortex recorded while subjects played a competitive decision-making game. Distinct patterns of power and cross-trial phase coherence in multiple frequency bands were observed during different decision-related processes (e.g., feedback anticipation vs. feedback processing). Decision and feedback processing were accompanied by a broadband increase in cross-trial phase coherence at around 220 msec, and dynamic fluctuations in power. Feedback anticipation was accompanied by a shift in the power spectrum from relatively lower (delta and theta) to higher (alpha and beta) power. Power and cross-trial phase coherence were greater following losses compared to wins in theta, alpha, and beta frequency bands, but were greater following wins compared to losses in the delta band. Finally, we found that oscillation power in alpha and beta frequency bands were synchronized with the phase of delta and theta oscillations ("phase-amplitude coupling"). This synchronization differed between losses and wins, suggesting that phase-amplitude coupling might reflect a mechanism of feedback valence coding in the medial frontal cortex. Our findings link medial frontal oscillations to decision making, with relations among activity in different frequency bands suggesting a phase-utilizing coding of feedback valence information.

  10. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    PubMed Central

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473

  11. Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system

    NASA Astrophysics Data System (ADS)

    Rotstein, Horacio G.; Wu, Hui

    2012-09-01

    We use simulations and dynamical systems tools to investigate the mechanisms of generation of phase-locked and localized oscillatory cluster patterns in a globally coupled Oregonator model where the activator receives global feedback from the inhibitor, mimicking experimental results observed in the photosensitive Belousov-Zhabotinsky reaction. A homogeneous two-cluster system (two clusters with equal cluster size) displays antiphase patterns. Heterogenous two-cluster systems (two clusters with different sizes) display both phase-locked and localized patterns depending on the parameter values. In a localized pattern the oscillation amplitude of the largest cluster is roughly an order of magnitude smaller than the oscillation amplitude of the smaller cluster, reflecting the effect of self-inhibition exerted by the global feedback term. The transition from phase-locked to localized cluster patterns occurs as the intensity of global feedback increases. Three qualitatively different basic mechanisms, described previously for a globally coupled FitzHugh-Nagumo model, are involved in the generation of the observed patterns. The swing-and-release mechanism is related to the canard phenomenon (canard explosion of limit cycles) in relaxation oscillators. The hold-and-release and hold-and-escape mechanisms are related to the release and escape mechanisms in synaptically connected neural models. The methods we use can be extended to the investigation of oscillatory chemical reactions with other types of non-local coupling.

  12. Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system.

    PubMed

    Rotstein, Horacio G; Wu, Hui

    2012-09-14

    We use simulations and dynamical systems tools to investigate the mechanisms of generation of phase-locked and localized oscillatory cluster patterns in a globally coupled Oregonator model where the activator receives global feedback from the inhibitor, mimicking experimental results observed in the photosensitive Belousov-Zhabotinsky reaction. A homogeneous two-cluster system (two clusters with equal cluster size) displays antiphase patterns. Heterogenous two-cluster systems (two clusters with different sizes) display both phase-locked and localized patterns depending on the parameter values. In a localized pattern the oscillation amplitude of the largest cluster is roughly an order of magnitude smaller than the oscillation amplitude of the smaller cluster, reflecting the effect of self-inhibition exerted by the global feedback term. The transition from phase-locked to localized cluster patterns occurs as the intensity of global feedback increases. Three qualitatively different basic mechanisms, described previously for a globally coupled FitzHugh-Nagumo model, are involved in the generation of the observed patterns. The swing-and-release mechanism is related to the canard phenomenon (canard explosion of limit cycles) in relaxation oscillators. The hold-and-release and hold-and-escape mechanisms are related to the release and escape mechanisms in synaptically connected neural models. The methods we use can be extended to the investigation of oscillatory chemical reactions with other types of non-local coupling. PMID:22979891

  13. Phase-locked signals elucidate circuit architecture of an oscillatory pathway.

    PubMed

    Jovic, Andreja; Howell, Bryan; Cote, Michelle; Wade, Susan M; Mehta, Khamir; Miyawaki, Atsushi; Neubig, Richard R; Linderman, Jennifer J; Takayama, Shuichi

    2010-12-23

    This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways.

  14. Frequency-domain Monte Carlo method for linear oscillatory gas flows

    NASA Astrophysics Data System (ADS)

    Ladiges, Daniel R.; Sader, John E.

    2015-03-01

    Gas flows generated by resonating nanoscale devices inherently occur in the non-continuum, low Mach number regime. Numerical simulations of such flows using the standard direct simulation Monte Carlo (DSMC) method are hindered by high statistical noise, which has motivated the development of several alternate Monte Carlo methods for low Mach number flows. Here, we present a frequency-domain low Mach number Monte Carlo method based on the Boltzmann-BGK equation, for the simulation of oscillatory gas flows. This circumvents the need for temporal simulations, as is currently required, and provides direct access to both amplitude and phase information using a pseudo-steady algorithm. The proposed method is validated for oscillatory Couette flow and the flow generated by an oscillating sphere. Good agreement is found with an existing time-domain method and accurate numerical solutions of the Boltzmann-BGK equation. Analysis of these simulations using a rigorous statistical approach shows that the frequency-domain method provides a significant improvement in computational speed.

  15. [Features of brain oscillatory activity and cardiac defense in treatment arterial hypertensives].

    PubMed

    Aftanas, L I; Brak, I V; Gilinskaia, O M; Pavlov, S V; Reva, N V

    2014-01-01

    Stress reactivity of the motivational system of defense can be assessed with the aid the cardiac defense response (CDR) - the reaction of the cardiovascular system to unexpected aversive unconditioned stimulus. The main objective of the study was revealing putative contribution of oscillatory systems of the brain into central pathogenic mechanisms of enhanced blood pressure (BP) stress-reactivity in naive patients with arterial hypertension (AH) of the 1st-2nd degrees (n = 17) and healthy control (n = 19) subjects. Using dynamic registration "beat-by-beat" arterial pressure, and oscillatory activity related EEG (64 channels) is estimated using the event-related synchronization/desynchronization (ERD/ERS). Along with abnormally high blood pressure in patients with hypertension background set significantly lower concentrations of serotonin blood platelets and increased tonic activation of the left hemisphere, reflected in the asymmetric reduction of delta- (2-4 Hz) and theta-1 (4-6 Hz) power in the central and parietal cortex in the hemisphere CDR of the patients are characterized by hyperactivity both short- and long-latency components of blood pressure. According to the dynamic analysis of the concomitant EEG, long-latency BP components may be accounted by, among other mechanisms, weakening of the descending ("top-down") inhibitory control, hypothetically implemented with the high-frequency EEG alpha (10-12 Hz) oscillations from the medial central-parietal cortex of both hemispheres of the brain. PMID:25464727

  16. Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis.

    PubMed Central

    Ahissar, E; Vaadia, E

    1990-01-01

    Neuronal activity was extracellularly recorded in the cortex of an awake monkey (Macaca fascicularis). Single units displaying oscillatory firing patterns were found in the upper bank of the lateral sulcus in a region where most of the neurons responded to somatosensory stimuli. The spectral energies of the oscillating activity were distributed in a trimodal fashion--0-15, 15-50, and 80-250 Hz--with the most common frequencies around 30 Hz. The oscillatory activity was not affected by anesthesia, but it was often reduced by tactile stimulation or self-initiated movements. Analysis of the spike trains suggests that the majority of oscillatory activity was intrinsically generated by the neurons. A neural model of texture analysis is offered based on a corticothalamic phase-locked loop. The newly identified oscillators play a key role in this model. The relevance of the model to physiological, anatomical, and psychophysical data, as well as testable predictions, are discussed. Images PMID:2247469

  17. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Gurnon, Amanda Kate

    The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Soft materials are widely used in consumer products and industrial processes including energy recovery, surfactants for personal healthcare (e.g. soap and shampoo), coatings, plastics, drug delivery, medical devices and therapeutics. Oftentimes, these materials are processed by, used during, or exposed to non-equilibrium conditions for which the transient response of the complex fluid is critical. As such, designing new dynamic experiments is imperative to testing these materials and further developing micromechanical models to predict their transient response. Two of the most common classes of these soft materials stand as the focus of the present research; they are: solutions of polymer-like micelles (PLM or also known as wormlike micelles, WLM) and concentrated colloidal suspensions. In addition to their varied applications these two different classes of soft materials are also governed by different physics. In contrast, to the shear thinning behavior of the WLMs at high shear rates, the near hard-sphere colloidal suspensions are known to display increases, sometimes quite substantial, in viscosity (known as shear thickening). The stress response of these complex fluids derive from the shear-induced microstructure, thus measurements of the microstructure under flow are critical for understanding the mechanisms underlying the complex, nonlinear rheology of these complex fluids. A popular micromechanical model is reframed from its original derivation for predicting steady shear rheology of polymers and WLMs to be applicable to weakly nonlinear oscillatory shear flow. The validity, utility and limits of

  18. First Observation of the High Field Side Sawtooth Crash and Heat Transfer during Driven Reconnection Processes in Magnetically Confined Plasmas

    SciTech Connect

    Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z

    2005-12-01

    High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an "X-point" reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic.

  19. An application of parameter identification to the oscillatory motion of an airplane at high C(L)

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.; Klein, V.

    1983-01-01

    This paper presents an application of a stepwise regression incorporating polynomial splines to oscillatory flight data from a light research airplane operating at near stall angles of attack. It is shown that data from several experiments can be combined into a large data set for analysis and that hysteresis phenomena can be observed in this large data set. Finally, it is postulated from the analysis of the flight data and theoretical calculations that the observed oscillatory motion is the result of a combination of wing stall and wing wake position at the tail.

  20. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Multi-mode Spiral Wave in a Coupled Oscillatory Medium

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Gao, Qing-Yu; Lü, Hua-Ping; Zheng, Zhi-Gang

    2010-05-01

    Multi-mode spiral wave and its breakup in 1-d and 2-d coupled oscillatory media is studied here by theoretic analysis and numerical simulations. The analysis in 1-d system shows that the dispersion relation curve could be non-monotonic depending on the coupling strength. It may also lead to the coexistence of different wave numbers within one system. Direct numerical observations in 1-d and 2-d systems conform to the prediction of dispersion relation analysis. Our findings indicate that the wave grouping can also be observed in oscillatory media without tip meandering and waves with negative group velocity can occur without inhomogeneity.