Science.gov

Sample records for magnetic x-point oscillatory

  1. Magnetic X-points, edge localized modes, and stochasticity

    SciTech Connect

    Sugiyama, L. E.; Strauss, H. R.

    2010-06-15

    Edge localized modes (ELMs) near the boundary of a high temperature, magnetically confined toroidal plasma represent a new type of nonlinear magnetohydrodynamic (MHD) plasma instability that grows through a coherent plasma interaction with part of a chaotic magnetic field. Under perturbation, the freely moving magnetic boundary surface with an X-point splits into two different limiting asymptotic surfaces (manifolds), similar to the behavior of a hyperbolic saddle point in Hamiltonian dynamics. Numerical simulation using the extended MHD code M3D shows that field-aligned plasma instabilities, such as ballooning modes, can couple to the ''unstable'' manifold that forms helical, field-following lobes around the original surface. Large type I ELMs proceed in stages. Initially, a rapidly growing ballooning outburst involves the entire outboard side. Large plasma fingers grow well off the midplane, while low density regions penetrate deeply into the plasma. The magnetic field becomes superficially stochastic. A secondary inboard edge instability causes inboard plasma loss. The plasma gradually relaxes back toward axisymmetry, with diminishing cycles of edge instability. Poloidal rotation of the interior and edge plasma may be driven. The magnetic tangle constrains the early nonlinear ballooning, but may encourage the later inward penetration. Equilibrium toroidal rotation and two-fluid diamagnetic drifts have relatively small effects on a strong MHD instability. Intrinsic magnetic stochasticity may help explain the wide range of experimentally observed ELMs and ELM-free behavior in fusion plasmas, as well as properties of the H-mode and plasma edge.

  2. A discharge with a magnetic X-point as a negative hydrogen ion source

    SciTech Connect

    Tsankov, Tsanko; Czarnetzki, Uwe

    2011-09-26

    The study presents first results from investigations of a novel low-pressure plasma source, intended for a negative hydrogen ion production. The source utilizes a dc magnetic field, shaped to form a cusp with a magnetic null-point (X-point). Beside the common role of filtering out the high energy electrons, this magnetic field configuration ensures in the present case also an interesting mechanism of coupling the RF power to the plasma. Investigations performed using radio frequency modulation spectroscopy (RFMOS) reveal that the main power coupling to the electrons is confined in the region on one side of the X-point. The modulation of the light intensity indicates also the presence of a strong dc drift close to the plane of the X-point. Several hypothesises for its explanation are raised: an azimuthal diamagnetic drift due to strong axial gradients of the electron energy, the excitation of a standing helicon wave, which couples to the radial magnetic field in the plane of the X-point, or a Trivelpiece-Gould wave which is resonantly absorbed near the plane of the X-point.

  3. Magnetic Reconnection during Collisionless, Stressed, X-point Collapse using Particle-in-cell Simulation

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Haruki, T.

    2008-09-01

    Dungey's (1953) work on X-point collapse is the earliest analysis done on magnetic reconnection and predates the tearing mode, Sweet-Parker and Petcheck reconnection models. X-point collapse soon fell out of favour because in the collisional (MHD) regime, for the plausible space plasma parameters, it was found to be inefficient. We however show [Tsiklauri D. and T. Haruki, Phys. of Plasmas, 14, 112905, (2007)] that in the collisionless regime, which is indeed more applicable to space plasmas, the reconnection is efficient. We study magnetic reconnection during collisionless, stressed, X-point collapse using kinetic, 2.5D, fully electromagnetic, relativistic Particle-in-Cell numerical code. Two cases of weakly and strongly stressed X-point collapse were considered. Here descriptors weakly and strongly refer to 20% and 124% unidirectional spatial compression of the X-point, respectively. We found that within about one Alfven time, 2% and 20% of the initial magnetic energy is converted into heat and accelerated particle energy in the case of weak and strong stress, respectively. In the both cases, during the peak of the reconnection, the quadruple out-of-plane magnetic field is generated. These results strongly suggest the importance of the collisionless, stressed X-point collapse as an efficient mechanism of converting magnetic energy into heat and super-thermal particle energy. In the weakly stressed case, the reconnection rate, defined as the out-of-plane electric field in the X-point normalized by the product of external magnetic field and Alfven speeds, peaks at 0.11, with its average over 1.25 Alfven times being 0.04. Electron energy distribution in the current sheet, at the high-energy end of the spectrum, shows a power-law distribution with the index varying in time, attaining a maximal value of -4.1 at the final simulation time step (1.25 Alfven times). In the strongly stressed case, magnetic reconnection peak occurs 3.4 times faster and is more efficient

  4. Magnetic X points disturbed by the in-plane electric fields

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Qiao, B.; Yao, W. P.; Chang, H. X.; Zhou, C. T.; Zhu, S. P.; He, X. T.

    2017-09-01

    As an efficient mechanism of energy release, magnetic reconnection is popular to explain many explosive events in extreme environments. In some cases, however, we show the key concept of the magnetic X and O points is ambiguous, due to its non-covariant definition. A simple model is constructed to study the case when the magnetic X point is disturbed by the in-plane electric field. The dynamics of the charged particle is investigated near the magnetic X point, where there is a localized attractive or repulsive electric potential. We find that the orbits of the particles are chaotic, which are induced by the X-type magnetic field outside the disturbed region. The chaotic motion helps the charged particles to enter into the reconnection region, though the in-plane electric field may affect the trajectory of the particle. Therefore, the particles that can approach the X point will get accelerated by the out-of-plane electric field, so long as there is an X-type magnetic field outside the disturbed region. Our results may help to clarify the concepts of X and O points in the reconnection process.

  5. The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-01-15

    Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that

  6. The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse

    NASA Astrophysics Data System (ADS)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-01-01

    Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ωpe and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that the

  7. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-06-15

    The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.

  8. Electron temperature difference between the o-point and x-point of a magnetic island

    SciTech Connect

    Yang Jinhong; Zhu Sizheng; Yu Qingquan; Zhuang, G.

    2009-09-15

    The electron temperature difference between the o-point and the x-point of a magnetic island is studied numerically by solving the two-dimensional energy transport equation. It is found that, even without a localized radio-frequency heating at the island's o-point, there is usually a temperature difference between these two points. This difference depends on the radial profile of the heating power deposition, the ratio between the parallel and the perpendicular heat conductivity and the island width, and it takes a minimum when the island width is about twice the local heat diffusion layer width. The effect of the temperature difference on the island growth is further studied, and the peaked heating power density profile at magnetic axis is found be destabilizing.

  9. Prompt particle acceleration around moving X-point magnetic field during impulsive phase of solar flares

    NASA Technical Reports Server (NTRS)

    Sakai, Jun-Ichi

    1992-01-01

    We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs around moving X-point magnetic field during the implosion phase of the current sheet. We derive the electromagnetic fields during the strong implosion phase of the current sheets, which is driven by the converging flow derived from the magnetohydrodynamic equations. It is shown that both protons and electrons can be promptly (within 1 second) accelerated to approximately 70 MeV and approximately 200 MeV, respectively. This acceleration mechanism can be applicable for the impulsive phase of the gradual gamma ray and proton flares (gradual GR/P flare), which have been called two-ribbon flares.

  10. Forced Magnetic Reconnection at an X-point: A Fully Kinetic Study

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bhattacharjee, A.; Bessho, N.; Germaschewski, K.

    2012-12-01

    We will present electromagnetic Particle-In-Cell (PIC) simulation of the current sheet formation and resulting magnetic reconnection at an X-point of an initially potential field closed by conducting wall boundaries. The reconnection we study is driven by forcing that is far from the initial separatrices and is slow compared to a characteristic Alfvén speed. The effects of two types of forcing will be investigated separately: (i) convergent flows at two opposite boundaries, and (ii) enhanced pressure gradient in two spatial domains on opposite sides of the initial separatrix. For both cases, we will present the time dependence of the reconnecting electric field (suitably normalized), energy partitioning, and dependence on system size. Our results will be compared with fluid simulations of the same setup to seek suitable closure relation with necessary kinetic effects in the fluid models. This challenge problem is carried out under the auspices of a Focus Team in the NASA Living With a Star Targeted Research and Technology Program.; Reconnecting electric field Ey in the case of forcing by boundary convergent flows. Change of sign of Ey is observed. Note that the value shown is unnormalized and that if normalized by upstream B and outflow velocity, the value can be of order 0.1. ; The out-of-plane current along two axes passing the X-point at two times. The signs are opposite for the two times. The length of the current sheet is in tens of di while the width is about 1di.

  11. Three-dimensional Oscillatory Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Thurgood, Jonathan O.; Pontin, David I.; McLaughlin, James A.

    2017-07-01

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  12. The effect of guide-field and boundary conditions on the features and signatures of collisionless magnetic reconnection in a stressed X-point collapse

    NASA Astrophysics Data System (ADS)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2015-12-01

    Magnetic X-point collapse is investigated using a 2.5D fully relativistic particle-in-cell simulation, with varying strengths of guide-field as well as open and closed boundary conditions. In the zero guide-field case we discover a new signature of Hall-reconnection in the out-of-plane magnetic field, namely an octupolar pattern, as opposed to the well-studied quadrupolar out-of-plane field of reconnection. The emergence of the octupolar components was found to be caused by ion currents and is a general feature of X-point collapse. In a comparative study of tearing-mode reconnection, signatures of octupolar components are found only in the out-flow region. It is argued that space-craft observations of magnetic fields at reconnection sites may be used accordingly to identify the type of reconnection [1][2]. Further, initial oscillatory reconnection is observed, prior to reconnection onset, generating electro-magnetic waves at the upper-hybrid frequency, matching solar flare progenitor emission. When applying a guide-field, in both open and closed boundary conditions, thinner dissipation regions are obtained and the onset of reconnection is increasingly delayed. Investigations with open boundary conditions show that, for guide-fields close to the strength of the in-plane field, shear flows emerge, leading to the formation of electron flow vortices and magnetic islands [3]. Asymmetries in the components of the generalised Ohm's law across the dissipation region are observed. Extended in 3D geometry, it is shown that locations of magnetic islands and vortices are not constant along the height of the current-sheet. Vortices formed on opposite sites of the current-sheet travel in opposite directions along it, leading to a criss-cross vortex pattern. Possible instabilities resulting from this specific structure formation are to be investigated [4].[1] J. Graf von der Pahlen and D. Tsiklauri, Phys. Plasmas 21, 060705 (2014), [2] J. Graf von der Pahlen and D. Tsiklauri

  13. Forced Magnetic Reconnection at an X-point: Particle-In-Cell and Ten-Moment Extended MHD Simulations

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bessho, N.; Bhattacharjee, A.; Germaschewski, K.; Hakim, A.

    2013-12-01

    We will present comparative numerical studies of current sheet formation and forced magnetic reconnection at an X-point, beginning from a potential field. The problem will be simulated by the fully kinetic Particle Simulation Code (PSC) [1] and an extended ten-moment MHD code Gkeyll [2] that retains important kinetic physics, particularly, electron inertia and full electron/ion pressure tensors. Our goals are to investigate the similarities and differences between the two models, and to seek suitable parameterization of kinetic effects in the fluid models. The simulation domain is restrained in 2-D and is closed by conducting wall boundaries. The reconnection is forced by in-plane flows imposed on two opposite boundaries, where the forcing flows converge at the two boundary centers, and are slow compared to the characteristic Alfvén speed. We will compare results on the time-dependence of the reconnecting electric field (suitably normalized), as well as the structure of current sheets from PSC, Gkeyll, and an MHD code, varying ion-to-electron mass ratio and domain size. This study is carried out under the auspices of a Focus Topic in the NASA Living With a Star Targeted Research and Technology Program. [1] Fox, W., A. Bhattacharjee, and K. Germaschewski. "Magnetic reconnection in high-energy-density laser-produced plasmas." Physics of Plasmas 19 (2012): 056309. [2] Hakim, Ammar H. "Extended MHD modelling with the ten-moment equations." Journal of Fusion Energy 27.1-2 (2008): 36-43.

  14. Forced Magnetic Reconnection at an X-point: Particle-In-Cell and Ten-Moment Extended MHD Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Bessho, Naoki; Bhattacharjee, Amitava; Germaschewski, Kai; Hakim, Ammar

    2013-10-01

    We will present comparative numerical studies of current sheet formation and forced magnetic reconnection at an X-point, beginning from a potential field. The problem will be simulated by the fully kinetic Particle Simulation Code (PSC) and an extended ten-moment MHD code Gkeyll that retains important kinetic physics, particularly, electron inertia and full electron/ion pressure tensors. Our goals are to investigate the similarities and differences between the two models, and to seek suitable parameterization of kinetic effects in the fluid models. The simulation domain is restrained in 2-D and is closed by conducting wall boundaries. The reconnection is forced by in-plane flows imposed on two opposite boundaries, where the forcing flows converge at the two boundary centers, and are slow compared to the characteristic Alfvén speed. We will compare results on the time-dependence of the reconnecting electric field (suitably normalized), as well as the structure of current sheets from PSC, Gkeyll, and an MHD code, varying ion-to-electron mass ratio and domain size. This study is carried out under the auspices of a Focus Topic in the NASA Living With a Star Targeted Research and Technology Program.

  15. Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials

    DOE PAGES

    Liu, Xiaojie; Wang, Cai-Zhuang

    2017-08-07

    Using first-principles calculations here, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. The transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.

  16. Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojie; Wang, Cai-Zhuang

    2017-08-01

    Using first-principles calculations, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. Transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.

  17. Magnetic field dependent electric conductivity of the magnetorheological fluids: the influence of oscillatory shear

    NASA Astrophysics Data System (ADS)

    Ruan, Xiaohui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong

    2017-03-01

    In this work, the influence of oscillatory shear on the magnetic field dependent electric conductivity of the magnetorheological fluid (MRF) was reported. Upon applying a 0.96 T magnetic field, the electric conductivity could increase about 1500 times larger than the one without magnetic field. By increasing the volume fraction of carbonyl iron particles in the MRF from 5% to 30%, the electric conductivity increased about 565 times. Under applying an oscillatory shear, the resistance of the MRF decreased and it oscillated synchronously with the oscillatory shear. Interestingly, the larger shear strain led to larger oscillatory amplitude of the resistance. A particle-particle resistance model and a semi-empirical formula were proposed to investigate the influence of the oscillatory shear on the electric conductivity. The fitting results matched the experimental results very well. At last, a possible mechanism was proposed to explain the changes of resistance.

  18. How fluctuations continue through an X point

    SciTech Connect

    Mattor, N.; Cohen, R.H.

    1995-11-01

    The structure of waves around a magnetic X point is analyzed. A paradox is noted, in which theory implies that waves cannot propagate along the field past an X point, but experiment shows that they do anyway. The paradox may arise from the theoretical ``eikonal in the perpendicular direction`` ansatz, in which waves follow field lines to lowest order. This paper demonstrates that waves can encounter a boundary layer in which this ansatz is violated. Such waves can propagate {ital around} the X-point region, thus avoiding the large wave number increase from magnetic shear, allowing them to correlate through such a region. This result has some unexpected implications concerning mode structure in the edge and scrape-off layer of a diverted tokamak, and possibly for the core as well. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. Oscillatory interlayer magnetic coupling of sputtered Fe/Nb superlattices

    SciTech Connect

    Mattson, J.E.; Fullerton, E.E.; Sowers, C.H.; Huang, Y.Y.; Felcher, G.P.; Bader, S.D.

    1992-09-01

    The saturation field of sputtered Fe/Nb superlattices oscillates as a function of the Nb thickness with a periodicity of [approximately]9 [Angstrom]. In contrast to the case of Fe/Cr superlattices, the concurrent magnetoresistance oscillations were found to be very weak. Yet polarized neutron reflection measurements confirm that the Fe/Nb superlattices with high saturation field possess a magnetic ground state of the [plus minus][plus minus] type. Neutron and x-ray measurements indicate that, while the crystalline and antiferromagnetic order is well developed along the thickness of the film, the average lateral size of the crystallites (as well as of the magnetic domains) is quite small. This effect (thought to be related to the gross mismatch of the iron and the niobium crystal lattices) may be the cause of the high overall resistance of the material, and its weak dependence on the magnetization.

  20. Oscillatory interlayer magnetic coupling of sputtered Fe/Nb superlattices

    SciTech Connect

    Mattson, J.E.; Fullerton, E.E.; Sowers, C.H.; Huang, Y.Y.; Felcher, G.P.; Bader, S.D.

    1992-09-01

    The saturation field of sputtered Fe/Nb superlattices oscillates as a function of the Nb thickness with a periodicity of {approximately}9 {Angstrom}. In contrast to the case of Fe/Cr superlattices, the concurrent magnetoresistance oscillations were found to be very weak. Yet polarized neutron reflection measurements confirm that the Fe/Nb superlattices with high saturation field possess a magnetic ground state of the {plus_minus}{plus_minus} type. Neutron and x-ray measurements indicate that, while the crystalline and antiferromagnetic order is well developed along the thickness of the film, the average lateral size of the crystallites (as well as of the magnetic domains) is quite small. This effect (thought to be related to the gross mismatch of the iron and the niobium crystal lattices) may be the cause of the high overall resistance of the material, and its weak dependence on the magnetization.

  1. Time-dependent Suppression of Oscillatory Power in Evolving Solar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Krishna Prasad, S.; Jess, D. B.; Jain, R.; Keys, P. H.

    2016-05-01

    Oscillation amplitudes are generally smaller within magnetically active regions like sunspots and plage when compared to their surroundings. Such magnetic features, when viewed in spatially resolved power maps, appear as regions of suppressed power due to reductions in the oscillation amplitudes. Employing high spatial- and temporal-resolution observations from the Dunn Solar Telescope (DST) in New Mexico, we study the power suppression in a region of evolving magnetic fields adjacent to a pore. By utilizing wavelet analysis, we study for the first time how the oscillatory properties in this region change as the magnetic field evolves with time. Image sequences taken in the blue continuum, G-band, Ca ii K, and Hα filters were used in this study. It is observed that the suppression found in the chromosphere occupies a relatively larger area, confirming previous findings. Also, the suppression is extended to structures directly connected to the magnetic region, and is found to get enhanced as the magnetic field strength increased with time. The dependence of the suppression on the magnetic field strength is greater at longer periods and higher formation heights. Furthermore, the dominant periodicity in the chromosphere was found to be anti-correlated with increases in the magnetic field strength.

  2. Oscillatory Noncollinear Magnetism Induced by Interfacial Charge Transfer in Superlattices Composed of Metallic Oxides

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; Fabbris, Gilberto; Meyers, D.; Freeland, John W.; Martin, Ivar; Heinonen, Olle G.; Steadman, Paul; Zhou, Hua; Schlepütz, Christian M.; Dean, Mark P. M.; te Velthuis, Suzanne G. E.; Zuo, Jian-Min; Bhattacharya, Anand

    2016-10-01

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La2 /3Sr1 /3MnO3 (LSMO) and the correlated metal LaNiO3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependence of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni2 + states. Our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.

  3. Oscillatory noncollinear magnetism induced by interfacial charge transfer in superlattices composed of metallic oxides

    DOE PAGES

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; ...

    2016-11-22

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La2/3Sr1/3MnO3 (LSMO) and the correlated metal LaNiO3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependence of the noncollinear structuremore » are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less

  4. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram

    PubMed Central

    Noh, Nor Azila

    2016-01-01

    Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP−/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses. PMID:27660540

  5. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  6. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    PubMed Central

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  7. Neoclassical kinetic theory near an X-point: Plateau regime

    SciTech Connect

    Solano, E.R.; Hazeltine, R.D.

    1993-08-01

    Traditionally, neoclassical transport calculations ignore poloidal variation of the poloidal magnetic field. Near an X-point of the confining field of a diverted plasma, the poloidal field is small, causing guiding centers to linger at that poloidal position. We study how neoclassical transport is affected by this differential shaping. The problem is solved in general in the plateau regime, and a model poloidal flux function with an X-point is utilized as an analytic example to show that the plateau diffusion coefficient can change considerably (factor of 2 reduction). Ion poloidal rotation is proportional to the local value of 8 poi, but otherwise it is not strongly affected by shaping.

  8. The relationship between brain oscillatory activity and therapeutic effectiveness of transcranial magnetic stimulation in the treatment of major depressive disorder.

    PubMed

    Leuchter, Andrew F; Cook, Ian A; Jin, Yi; Phillips, Bill

    2013-01-01

    Major depressive disorder (MDD) is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive transcranial magnetic stimulation (rTMS) is a robust treatment for MDD, but the mechanism of action (MOA) of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this MOA and achieve better antidepressant effectiveness. We propose that rTMS can be administered: (1) synchronized to a patient's individual alpha frequency (IAF), or synchronized rTMS (sTMS); (2) as a low magnetic field strength sinusoidal waveform; and, (3) broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD.

  9. The relationship between brain oscillatory activity and therapeutic effectiveness of transcranial magnetic stimulation in the treatment of major depressive disorder

    PubMed Central

    Leuchter, Andrew F.; Cook, Ian A.; Jin, Yi; Phillips, Bill

    2013-01-01

    Major depressive disorder (MDD) is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive transcranial magnetic stimulation (rTMS) is a robust treatment for MDD, but the mechanism of action (MOA) of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this MOA and achieve better antidepressant effectiveness. We propose that rTMS can be administered: (1) synchronized to a patient's individual alpha frequency (IAF), or synchronized rTMS (sTMS); (2) as a low magnetic field strength sinusoidal waveform; and, (3) broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD. PMID:23550274

  10. Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Heedt, S.; Goerke, S.; Ibrahim, A.; Rupprecht, B.; Heyn, Ch; Hardtdegen, H.; Schäpers, Th; Wilde, M. A.; Grundler, D.

    2016-02-01

    We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas-van-Alphen-type oscillations in the magnetization M(B) for external magnetic fields B  >  2 T, measured by torque magnetometry at 0.3 K. We compare the experimental data to model calculations assuming different confinement potentials and including ensemble broadening effects. The comparison shows that a hard wall potential with an edge depletion width of 100 nm explains the magnetic behavior. Beating patterns induced by Rashba spin-orbit interaction (SOI) as measured in unpatterned and nanopatterned InGaAs/InP heterostructures are not observed for the quantum dots. From our model we predict that signatures of SOI in the magnetization could be observed in larger dots in tilted magnetic fields.

  11. Alfv{acute e}n waves and wave-induced transport near an X point

    SciTech Connect

    Myra, J.R.; DIppolito, D.A.

    1998-03-01

    The behavior of Alfv{acute e}n waves and the corresponding variation of the wave-induced transport coefficients along a field line including the divertor X-point region are examined. It is shown that several competing effects exist and can be quantified using a quasilinear diffusion model that takes the magnetic geometry of the X point into account. To address the issue of mode behavior and the validity of the eikonal approximation near the X point, an exact analytical solution of an equation describing Alfv{acute e}n waves in the X-point region is obtained. The results suggest that the X-point region can only dominate Alfv{acute e}n wave-induced transport on flux surfaces that are very close to the separatrix. {copyright} {ital 1998 American Institute of Physics.}

  12. X-Point Reconnection from Shear Driving in Kinetic Simulations

    NASA Astrophysics Data System (ADS)

    Black, C.; Antiochos, S. K.; DeVore, C. R.; Germaschewski, K.; Bessho, N.; Karpen, J. T.

    2014-12-01

    The explosive energy release in solar eruptive phenomena such as CMEs/eruptive flares and coronal jets is believed to be due to magnetic reconnection. Magnetic free energy builds up slowly in the corona due to footpoint stressing by the photospheric motions. Along with the free energy, current sheets build up at coronal nulls, which eventually triggers fast reconnection and explosive energy release. This basic scenario has been modeled extensively by MHD simulations and applied to both CMEs/eruptive flares and jets, but the reconnection itself is well-known to be due to kinetic processes. Consequently, it is imperative that shear-driven X-point reconnection be modeled in a fully kinetic system so as to test and guide the MHD results. In MHD simulations, the application of a magnetic-field shear at the system boundary is a trivial matter, but this is definitely not the case for a kinetic system, because the electric currents need to be fully consistent with all the mass motions. We present the first results of reconnection in a 2D X-Point geometry due to a velocity shear driver perpendicular to the plane of reconnection. We compare the results to high-resolution MHD simulations and discuss the implications for coronal activity.

  13. The electronic state of underdoped YBCO at high magnetic fields and low temperatures: evidence from quantum oscillatory phenomena

    NASA Astrophysics Data System (ADS)

    Lonzarich, Gil

    2012-02-01

    Quantum oscillations in bulk and transport properties have been observed in underdoped YBa2Cu3O6+x via a range of techniques and by independent researchers in applied magnetic fields above 20T and temperatures below 10K. The consensus is that the oscillations are periodic in the reciprocal of the magnetic field and consist of a number of components with frequencies (fundamental or otherwise) of below 2kT, nearly an order of magnitude lower than that observed in the overdoped state of Tl2Ba2CuO6+x. Moreover, the temperature dependence of the amplitude of the strongest oscillatory components that can be measured accurately follows closely that expected for elementary excitations of fermionic character. I will discuss a model of the Fermi surface that can potentially account for each of the periodic components observed, and that appears to be consistent with a number of other known properties in the high-field low-temperature state.

  14. Evidence of electron acceleration around the reconnection X-point in a solar flare

    SciTech Connect

    Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro

    2014-06-01

    Particle acceleration is one of the most significant features that are ubiquitous among space and cosmic plasmas. It is most prominent during flares in the case of the Sun, with which huge amounts of electromagnetic radiation and high-energy particles are expelled into the interplanetary space through acceleration of plasma particles in the corona. Though it has been well understood that energies of flares are supplied by the mechanism called magnetic reconnection based on the observations in X-rays and EUV with space telescopes, where and how in the flaring magnetic field plasmas are accelerated has remained unknown due to the low plasma density in the flaring corona. We here report the first observational identification of the energetic non-thermal electrons around the point of the ongoing magnetic reconnection (X-point), with the location of the X-point identified by soft X-ray imagery and the localized presence of non-thermal electrons identified from imaging-spectroscopic data at two microwave frequencies. Considering the existence of the reconnection outflows that carries both plasma particles and magnetic fields out from the X-point, our identified non-thermal microwave emissions around the X-point indicate that the electrons are accelerated around the reconnection X-point. Additionally, the plasma around the X-point was also thermally heated up to 10 MK. The estimated reconnection rate of this event is ∼0.017.

  15. Dynamical phenomena in sunspots. I - Observing procedures and oscillatory phenomena. II - A moving magnetic feature

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.; Cram, L. E.; Nye, A. H.

    1984-01-01

    High resolution spectra consisting of at least 1 hr periods were obtained of the sunpost atmosphere. The Ca II H and K lines were scanned to characterize umbral oscillations and flashes. The former displayed peaks lasting 150-197 sec, while penumbral oscillations peaked in the 197-300 sec range. Quiet sun oscillations exhibited no peaks under 300 sec. The Ca II K line umbral flashes were ubiquitous for all observational periods and were associated with light bridges in the umbra. Magnetic field, vertical velocity, and chromospheric intensity measurements taken during the 1 hr scans covered moving magnetic features (MMF), which traversed the moats around sunspots. MMF areas increased while the magnetic field intensity decreased with MMF movement away from a sunspot. Bright Ca II K line wings were apparent in the MMFs, but cores of the lines were not observed, suggesting that flux loops generating the line are low in the photosphere.

  16. Bifurcation analysis in a vortex flow generated by an oscillatory magnetic obstacle.

    PubMed

    Beltrán, Alberto; Ramos, Eduardo; Cuevas, Sergio; Brøns, Morten

    2010-03-01

    A numerical simulation and a theoretical model of the two-dimensional flow produced by the harmonic oscillation of a localized magnetic field (magnetic obstacle) in a quiescent viscous, electrically conducting fluid are presented. Nonuniform Lorentz forces produced by induced currents interacting with the oscillating magnetic field create periodic laminar flow patterns that can be characterized by three parameters: the oscillation Reynolds number, Reomega, the Hartmann number, Ha, and the dimensionless amplitude of the magnetic obstacle oscillation, D. The analysis is restricted to oscillations of small amplitude and Ha=100. The resulting flow patterns are described and interpreted in terms of position and evolution of the critical points of the instantaneous streamlines. It is found that in most of the cycle, the flow is dominated by a pair of counter rotating vortices that switch their direction of rotation twice per cycle. The transformation of the flow field present in the first part of the cycle into the pattern displayed in the second half occurs via the generation of hyperbolic and elliptic critical points. The numerical solution of the flow indicates that for low frequencies (v.e. Reomega=1), two elliptic and two hyperbolic points are generated, while for high frequencies (v.e. Reomega=100), a more complex topology involving four elliptic and two hyperbolic points appear. The bifurcation map for critical points of the instantaneous streamline is obtained numerically and a theoretical model based on a local analysis that predicts most of the qualitative properties calculated numerically is proposed.

  17. Optimising X-point target plates

    NASA Astrophysics Data System (ADS)

    Pick, M. A.; Deksnis, E.; Dietz, K. J.; Lowry, C.; Parsons, W.; Tivey, R.

    1992-12-01

    Prior to the 1992 JET experimental campaign new X-point energy dump plates were installed at both top and bottom of the JET vessel. The active areas of the lower plates were covered with beryllium tiles whilst the upper plates were covered with carbon fibre reinforced graphite tiles. This paper describes the design and geometry of the dump plate tile assemblies and how they were modified to optimise the poer handling capability of the system and reducing the probability of producing "hot spots" leading to carbon or beryllium blooms. The design principles can be generalized to apply to other components such as limiters and divertor target plates. The new JET divertor target plates are described as an example.

  18. Magneto-optic characterizations of superlattices and wedged sandwiches with oscillatory interlayer magnetic coupling

    SciTech Connect

    Bader, S.D.

    1992-07-01

    Three examples of magnetic coupling across metallic spacer layers are considered. Fe/Nb sputtered superlattices are observed to have as many as five antiferromagnetic oscillations, but a weak magnetoresistive anomaly. Epitaxial trilayers of Fe/Mo/Fe grown on Mo(100) and Co/Cu/Co grown on Cu(100) are observed to have short- and long-period oscillations, respectively. The trilayers are grown with wedged spacer layers and characterized in-situ by means of the magneto-optic Kerr effect.

  19. Evidence of Electron Acceleration around the Reconnection X-point in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro

    2016-05-01

    Particle acceleration is one of the most significant features that are ubiquitous among space and cosmic plasmas. It is most prominent during flares in the case of the Sun, with which huge amounts of electromagnetic radiation and high-energy particles are expelled into the interplanetary space through acceleration of plasma particles in the corona. Though it has been well understood that energies of flares are supplied by the mechanism called magnetic reconnection based on the observations in X-rays and EUV with space telescopes, where and how in the flaring magnetic field plasmas are accelerated has remained unknown due to the low plasma density in the flaring corona. We here report the first observational identification of the energetic non-thermal electrons around the point of the ongoing magnetic reconnection (X-point), with the location of the X-point identified by soft X-ray imagery and the localized presence of non-thermal electrons identified from imaging-spectroscopic data at two microwave frequencies. Considering the existence of the reconnection outflows that carries both plasma particles and magnetic fields out from the X-point, our identified non-thermal microwave emissions around the X-point indicate that the electrons are accelerated around the reconnection X-point.

  20. Enhanced quantum oscillatory magnetization and nonequilibrium currents in an interacting two-dimensional electron system in MgZnO/ZnO with repulsive scatterers

    NASA Astrophysics Data System (ADS)

    Brasse, M.; Sauther, S. M.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Heyn, Ch.; Wilde, M. A.; Kawasaki, M.; Grundler, D.

    2014-02-01

    Torque magnetometry at low temperature and in high magnetic fields B is performed on MgZnO/ZnO heterostructures incorporating high-mobility two-dimensional electron systems. We find a sawtoothlike quantum oscillatory magnetization M (B), i.e., the de Haas-van Alphen (dHvA) effect. At the same time, nonequilibrium currents and unexpected spikelike overshoots in M are observed which allow us to identify the microscopic nature and density of the residual disorder. The acceptorlike scatterers give rise to a magnetic thaw down effect which enhances the dHvA amplitude beyond the electron-electron interaction effects being present in the MgZnO/ZnO heterostructures.

  1. Oscillatory flow braking: inner magnetosphere observations

    NASA Astrophysics Data System (ADS)

    Panov, E. V.; Nakamura, R.; Baumjohann, W.; Angelopoulos, V.

    2013-12-01

    We search for damped oscillatory flow braking events observed by THEMIS/ARTEMIS in the near-Earth plasma sheet when their counterpart in the inner magnetosphere was observed. By comparing the particle and magnetic field data in the two locations we analyze the feedback of the inner magnetosphere to plasma sheet oscillatory flow braking. We discuss the possible role of the oscillatory flow events for plasma injection into the inner magnetosphere.

  2. Effects of arterial blood flow on walls of the abdominal aorta: distributions of wall shear stress and oscillatory shear index determined by phase-contrast magnetic resonance imaging.

    PubMed

    Sughimoto, Koichi; Shimamura, Yoshiaki; Tezuka, Chie; Tsubota, Ken'ichi; Liu, Hao; Okumura, Kenichiro; Masuda, Yoshitada; Haneishi, Hideaki

    2016-07-01

    Although abdominal aortic aneurysms (AAAs) occur mostly inferior to the renal artery, the mechanism of the development of AAA in relation to its specific location is not yet clearly understood. The objective of this study was to evaluate the hypothesis that even healthy volunteers may manifest specific flow characteristics of blood flow and alter wall shear or oscillatory shear stress in the areas where AAAs commonly develop. Eight healthy male volunteers were enrolled in this prospective study, aged from 24 to 27. Phase-contrast magnetic resonance imaging (MRI) was performed with electrocardiographic triggering. Flow-sensitive four-dimensional MR imaging of the abdominal aorta, with three-directional velocity encoding, including simple morphological image acquisition, was performed. Information on specific locations on the aortic wall was applied to the flow encodes to calculate wall shear stress (WSS) and oscillatory shear index (OSI). While time-framed WSS showed the highest peak of 1.14 ± 0.25 Pa in the juxtaposition of the renal artery, the WSS plateaued to 0.61 Pa at the anterior wall of the abdominal aorta. The OSI peaked distal to the renal arteries at the posterior wall of the abdominal aorta of 0.249 ± 0.148, and was constantly elevated in the whole abdominal aorta at more than 0.14. All subjects were found to have elevated OSI in regions where AAAs commonly occur. These findings indicate that areas of constant peaked oscillatory shear stress in the infra-renal aorta may be one of the factors that lead to morphological changes over time, even in healthy individuals.

  3. The flux-coordinate independent approach applied to X-point geometries

    SciTech Connect

    Hariri, F. Hill, P.; Ottaviani, M.; Sarazin, Y.

    2014-08-15

    A Flux-Coordinate Independent (FCI) approach for anisotropic systems, not based on magnetic flux coordinates, has been introduced in Hariri and Ottaviani [Comput. Phys. Commun. 184, 2419 (2013)]. In this paper, we show that the approach can tackle magnetic configurations including X-points. Using the code FENICIA, an equilibrium with a magnetic island has been used to show the robustness of the FCI approach to cases in which a magnetic separatrix is present in the system, either by design or as a consequence of instabilities. Numerical results are in good agreement with the analytic solutions of the sound-wave propagation problem. Conservation properties are verified. Finally, the critical gain of the FCI approach in situations including the magnetic separatrix with an X-point is demonstrated by a fast convergence of the code with the numerical resolution in the direction of symmetry. The results highlighted in this paper show that the FCI approach can efficiently deal with X-point geometries.

  4. Oscillatory magnetic brain activity is related to dissociative symptoms and childhood adversities - A study in women with multiple trauma.

    PubMed

    Schalinski, I; Moran, J K; Elbert, T; Reindl, V; Wienbruch, C

    2017-08-15

    Individuals with trauma-related disorders are complex and heterogeneous; part of this complexity derives from additional psychopathology like dissociation as well as environmental adversities such as traumatic stress, experienced throughout the lifespan. Understanding the neurophysiological abnormalities in Post-traumatic stress disorder (PTSD) requires a simultaneous consideration of these factors. Resting state magnetoencephalography (MEG) recordings were obtained from 41 women with PTSD and comorbid depressive symptoms, and 16 healthy women. Oscillatory brain activity was extracted for five frequency bands and 11 source locations, and analyzed in relation to shutdown dissociation and adversity-related measures. Dissociative symptoms were related to increased delta and lowered beta power. Adversity-related measures modulated theta and alpha oscillatory power (in particular childhood sexual abuse) and differed between patients and controls. Findings are based on women with comorbid depressive symptoms and therefore may not be applicable for men or groups with other clinical profiles. In respect to childhood adversities, we had no reliable source for the early infancy. Trauma-related abnormalities in neural organization vary with both exposure to adversities as well as their potential to evoke ongoing shutdown responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fast imaging of filaments in the X-point region of Alcator C-Mod

    DOE PAGES

    Terry, J. L.; Ballinger, S.; Brunner, D.; ...

    2017-01-27

    A rich variety of field-aligned fluctuations has been revealed using fast imaging of Dα emission from Alcator C-Mod's lower X-point region. Field-aligned filamentary fluctuations are observed along the inner divertor leg, within the Private-Flux-Zone (PFZ), in the Scrape-Off Layer (SOL) outside the outer divertor leg, and, under some conditions, at or above the X-point. The locations and dynamics of the filaments in these regions are strikingly complex in C-Mod. Changes in the filaments’ generation appear to be ordered by plasma density and magnetic configuration. Filaments are not observed for plasmas with n/nGreenwald ≲ 0.12 nor are they observed in Uppermore » Single Null configurations. In a Lower Single Null with 0.12 ≲ n/nGreenwald ≲ 0.45 and Bx∇B directed down, filaments typically move up the inner divertor leg toward the X-point. Reversing the field direction results in the appearance of filaments outside of the outer divertor leg. With the divertor targets “detached”, filaments inside the LCFS are seen. Lastly, these studies were motivated by observations of filaments in the X-point and PFZ regions in MAST, and comparisons with those observations are made.« less

  6. Fast Imaging of Filaments in the X-Point Region of Alcator C-MOD

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; Ballinger, S.; Brunner, D.; Labombard, B.; White, A. E.; Zweben, S. J.

    2016-10-01

    A rich variety of field-aligned fluctuations has been revealed using fast imaging of Dα emission from Alcator C-Mod's lower X-point region. Field-aligned filamentary fluctuations are observed along the inner divertor leg, within the Private-Flux-Zone (PFZ), in the Scrape-Off Layer outside the outer divertor leg, and, under some conditions, at or above the X-point. The locations and dynamics of the filaments in these regions are strikingly complex in C-Mod. Changes in the filaments' generation appear to be ordered by plasma density and magnetic configuration. In a Lower Single Null with 0.12 < n /nGreenwald <0.45 and Bx ∇B directed down, filaments typically move up the inner divertor leg toward the X-point. Reversing the field direction results in the appearance of filaments outside of the outer divertor leg. With the divertor targets ``detached'', filaments inside the LCFS are seen. These studies were motivated by observations of filaments in the X-point and PFZ regions in MAST, and comparisons with those observations will be made. Supported by USDoE Awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  7. Oscillatory behavior of the tunnel magnetoresistance due to thickness variations in Ta|CoFe|MgO magnetic tunnel junctions: A first-principles study

    NASA Astrophysics Data System (ADS)

    Sankaran, K.; Swerts, J.; Couet, S.; Stokbro, K.; Pourtois, G.

    2016-09-01

    To investigate the impact of both the CoFe ferromagnetic layer thickness and the capping paramagnetic layer on the tunnel magnetoresistance (TMR), we performed first-principles simulations on epitaxial magnetic tunnel junctions contacted with either CoFe or Ta paramagnetic capping layers. We observed a strong oscillation of the TMR amplitude with respect to the thickness of the ferromagnetic layer. The TMR is found to be amplified whenever the MgO spin tunnel barrier is thickened. Quantization of the electronic structure of the ferromagnetic layers is found to be at the origin of this oscillatory behavior. Metals such as Ta contacting the magnetic layer are found to enhance the amplitude of the oscillations due to the occurrence of an interface dipole. The latter drives the band alignment and tunes the nature of the spin channels that are active during the tunneling process. Subsequently, the regular transmission spin channels are modulated in the magnetic tunnel junction stack and other complex ones are being activated.

  8. Effect of a Static Magnetic Field (1.5T) on Brain Oscillatory Activities in Resting State Condition.

    PubMed

    Formaggio, E; Avesani, M; Storti, S F; Milanese, F; Gasparini, A; Acler, M; Cerini, R; Pozzi Mucelli, R; Fiaschi, A; Manganotti, P

    2008-12-17

    The aim of the present study was to compare the EEG signal recorded outside and inside a 1.5T magnetic resonance (MR) scanner. The EEG was recorded in eyes open and eyes closed conditions using a digital recording MR-compatible system. To characterize how a static magnetic field induces changes in EEG signal, EEG data were analyzed using FFT frequency analysis. No significant difference between the alpha powers recorded outside and inside the magnetic field was observed in eyes closed conditions. However, in eyes open condition there was a significant increase in alpha power inside the magnet in comparison to the outside position. The changes in alpha power according to the eyes open/closed conditions could be inversely correlated to a subject's state of wakefulness and due to some physiological changes, rather than an effect of the magnetic field. This experiment suggests that subjects' state of wakefulness is of prime concern when performing functional MRI.

  9. Global Machine Design and Double X-point Equilibrium Configurations for Ignitor*

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Parodi, B.; Coppi, B.

    2008-11-01

    The detailed design of the Ignitor machine has been carried out by considering extended limiter plasma configurations that are up-down symmetric and whose outer magnetic surfaces follow closely the cavity of the toroidal magnet over most of the vertical cross section. This provision minimizes the out-of- plane forces produced by the plasma current and acting on the toroidal magnet. When, instead, the adopted plasma equilibrium configuration is of the double X-point type the out-of-plane forces increase, and a complete structural analysis to take this increase into account becomes appropriate. The reference maximum plasma current Ip, in order to maintain an acceptable magnetic safety factor, is reduced from 11 MA in the extended limiter to 9 MA in the double X-point configuration while the magnetic field on axis (R01.32 m) is maintained at BT13 T. The reduced scenario involving Ip6 MA and BT9 T does not present a problem. Both 3D and 2D drawings of each individual machine component are produced using the Dassault Systems CATIA-V software. After their integration into a single 3D CATIA model of the Core (Load Assembly), the electro-fluidic and fluidic lines which supply electrical currents and helium cooling gas to the coils are included and mechanically connected to the main machine components.^*Sponsored in part by ENEA of Italy and by the U.S. D.O.E.

  10. Oscillatory behavior of perpendicular magnetic anisotropy in Pt/Co/Al(Ox) films as a function of Al thickness

    NASA Astrophysics Data System (ADS)

    Dahmane, Y.; Arm, C.; Auffret, S.; Ebels, U.; Rodmacq, B.; Dieny, B.

    2009-11-01

    The evolution of the perpendicular magnetic anisotropy of Pt/Co/AlOx structures has been followed by extraordinary Hall Effect measurements as a function of both Al thickness and annealing treatment. A nonmonotonous evolution of the magnetic anisotropy is observed with increasing aluminum thickness, with a maximum around 1.4 nm attributed to the formation of quantum well states in the remaining metallic Al layer. This maximum gradually disappears after annealing. High resolution electron microscopy images indicate that the vanishing of this maximum is associated with homogenization of oxygen throughout the whole Al layer.

  11. The role of electron confinement in Pd films for the oscillatory magnetic anisotropy in an adjacent Co layer

    NASA Astrophysics Data System (ADS)

    Manna, Sujit; Przybylski, M.; Sander, D.; Kirschner, J.

    2016-11-01

    We demonstrate the interplay between quantum well states in Pd and the magnetic anisotropy in Pd/Co/Cu (0 0 1) by combined scanning tunneling spectroscopy (STS) and magneto optical Kerr effect (MOKE) measurements. Low temperature scanning tunneling spectroscopy reveals occupied and unoccupied quantum well states (QWS) in atomically flat Pd films on Co/Cu (0 0 1). These states give rise to sharp peaks in the differential conductance spectra. A quantitative analysis of the spectra reveals the electronic dispersion of the Pd (0 0 1) d-band ({{ Δ }5} -type) along the Γ -X direction. In situ MOKE experiments on Pd/Co/Cu (1, 1, 13) uncover a periodic variation of the in-plane uniaxial magnetic anisotropy as a function of Pd thickness with a period of 6 atomic layers Pd. STS shows that QWS in Pd cross the Fermi level with the same periodicity of 6 atomic layers. Backed by previous theoretical work we ascribe the variation of the magnetic anisotropy in Co to QWS in the Pd overlayer. Our results suggest a novel venue towards tailoring uniaxial magnetic anisotropy of ferromagnetic films by exploiting QWS in an adjacent material with large spin-orbit coupling.

  12. ExB CIRCULATION AT THE TOKAMAK DIVERTOR X-POINT

    SciTech Connect

    M.J. SCHAFFER; B.D. BRAY; J.A.BOEDO; T.N. CARLSTROM; R.J.COLCHIN; J.G. WATKINS

    2000-11-01

    Detailed measurements in two dimensions by probes and Thomson scattering reveal unexpected local electric potential and electron pressure (p{sub e}) maxima near the divertor X-point in L-mode plasmas in the DIII-D tokamak [J.L. Luxon and L.G. Davis, Fusion Technol. 8, 441 (1985)]. The potential drives E x B circulation about the X-point, thereby exchanging plasma between closed and open magnetic surfaces at rates that can be comparable to the total cross-separatrix transport. The potential is consistent with the classical parallel Ohm's law. A simple model is proposed to explain the pressure and potential hills in low power, nearly detached plasmas. Recent two-dimensional edge transport modeling with plasma drifts also shows X-point pressure and potential hills but by a different mechanism. These experimental and theoretical results demonstrate that low power tokamak plasmas can be far from poloidal uniformity in a boundary layer just inside the separatrix. Additional data, though preliminary and incomplete, suggest that E x B circulation across the separatrix might be a common feature of low confinement behavior.

  13. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  14. Physics of collisionless reconnection in a stressed X-point collapse

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Haruki, T.

    2008-10-01

    Recently, magnetic reconnection during collisionless, stressed, X-point collapse was studied using kinetic, 2.5-dimensional, fully electromagnetic, relativistic particle-in-cell numerical code [D. Tsiklauri and T. Haruki, Phys. Plasmas 14, 112905 (2007)]. Here we finalize the investigation of this topic by addressing key outstanding physical questions: (i) Which term in the generalized Ohm's law is responsible for the generation of the reconnection electric field? (ii) How does the time evolution of the reconnected flux vary with the ion-electron mass ratio? (iii) What is the exact energy budget of the reconnection process; i.e., in which proportion initial (mostly magnetic) energy is converted into other forms of energy? (iv) Are there any anisotropies in the velocity distribution of the accelerated particles? The following points have been established. (i) A reconnection electric field is generated by the electron pressure tensor off-diagonal terms, resembling to the case of tearing unstable Harris current sheet studied by the GEM reconnection challenge. (ii) For mi/me>>1, the time evolution of the reconnected flux is independent of ion-electron mass ratio. In addition, in the case of mi/me=1, we show that reconnection proceeds slowly as the Hall term is zero; when mi/me>>1 (i.e., the Hall term is nonzero) reconnection is fast and we conjecture that this is due to magnetic field being frozen into electron fluid, which moves significantly faster than ion fluid. (iii) Within one Alfvén time, somewhat less than half (~40%) of the initial total (roughly magnetic) energy is converted into the kinetic energy of electrons, and somewhat more than half (~60%) into kinetic energy of ions (similar to solar flare observations). (iv) In the strongly stressed X-point case, in about one Alfvén time, a full isotropy in all three spatial directions of the velocity distribution is seen for superthermal electrons (also commensurate with solar flare observations).

  15. Role of electron inertia and reconnection dynamics in a stressed X-point collapse with a guide-field

    NASA Astrophysics Data System (ADS)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2016-11-01

    Aims: In previous simulations of collisionless 2D magnetic reconnection it was consistently found that the term in the generalised Ohm's law that breaks the frozen-in condition is the divergence of the electron pressure tensor's non-gyrotropic components. The motivation for this study is to investigate the effect of the variation of the guide-field on the reconnection mechanism in simulations of X-point collapse, and the related changes in reconnection dynamics. Methods: A fully relativistic particle-in-cell (PIC) code was used to model X-point collapse with a guide-field in two and three spatial dimensions. Results: We show that in a 2D X-point collapse with a guide-field close to the strength of the in-plane field, the increased induced shear flows along the diffusion region lead to a new reconnection regime in which electron inertial terms play a dominant role at the X-point. This transition is marked by the emergence of a magnetic island - and hence a second reconnection site - as well as electron flow vortices moving along the current sheet. The reconnection electric field at the X-point is shown to exceed all lower guide-field cases for a brief period, indicating a strong burst in reconnection. By extending the simulation to three spatial dimensions it is shown that the locations of vortices along the current sheet (visualised by their Q-value) vary in the out-of-plane direction, producing tilted vortex tubes. The vortex tubes on opposite sides of the diffusion region are tilted in opposite directions, similarly to bifurcated current sheets in oblique tearing-mode reconnection. The tilt angles of vortex tubes were compared to a theoretical estimation and were found to be a good match. Particle velocity distribution functions for different guide-field runs, for 2.5D and 3D simulations, are analysed and compared.

  16. Generation of X-points and secondary islands in 2D magnetohydrodynamic turbulence

    SciTech Connect

    Wan Minping; Matthaeus, William H.; Servidio, Sergio; Oughton, Sean

    2013-04-15

    We study the time development of the population of X-type critical points in a two-dimensional magnetohydrodynamic model during the early stages of freely decaying turbulence. At sufficiently high magnetic Reynolds number Re{sub m}, we find that the number of neutral points increases as Re{sub m}{sup 3/2}, while the rates of reconnection at the most active sites decrease. The distribution of rates remains approximately exponential. We focus in particular on delicate issues of accuracy, which arise in these numerical experiments, in that the proliferation of X-points is also a feature of under-resolved simulations. The 'splitting' of neutral points at high Reynolds number appears to be a fundamental feature of the cascade that has important implications for understanding the relationship between reconnection and turbulence, an issue of considerable importance for the Magnetospheric Multiscale and Solar Probe missions as well as observation of reconnection in the solar wind.

  17. REMOTE OSCILLATORY RESPONSES TO A SOLAR FLARE

    SciTech Connect

    Andic, A.; McAteer, R. T. J.

    2013-07-20

    The processes governing energy storage and release in the Sun are both related to the solar magnetic field. We demonstrate the existence of a magnetic connection between the energy released by a flare and increased oscillatory power in the lower solar atmosphere. The oscillatory power in active regions tends to increase in response to explosive events at other locations, but not in the active region itself. We carry out timing studies and show that this effect is probably caused by a large-scale magnetic connection between the regions, instead of a globally-propagating wave. We show that oscillations tend to exist in longer-lived wave trains with short periods (P < 200 s) at the time of a flare. These wave trains may be mechanisms by which flare energy can be redistributed throughout the solar atmosphere.

  18. Physics of collisionless reconnection in a stressed X-point collapse

    SciTech Connect

    Tsiklauri, D.; Haruki, T.

    2008-10-15

    Recently, magnetic reconnection during collisionless, stressed, X-point collapse was studied using kinetic, 2.5-dimensional, fully electromagnetic, relativistic particle-in-cell numerical code [D. Tsiklauri and T. Haruki, Phys. Plasmas 14, 112905 (2007)]. Here we finalize the investigation of this topic by addressing key outstanding physical questions: (i) Which term in the generalized Ohm's law is responsible for the generation of the reconnection electric field? (ii) How does the time evolution of the reconnected flux vary with the ion-electron mass ratio? (iii) What is the exact energy budget of the reconnection process; i.e., in which proportion initial (mostly magnetic) energy is converted into other forms of energy? (iv) Are there any anisotropies in the velocity distribution of the accelerated particles? The following points have been established. (i) A reconnection electric field is generated by the electron pressure tensor off-diagonal terms, resembling to the case of tearing unstable Harris current sheet studied by the GEM reconnection challenge. (ii) For m{sub i}/m{sub e}>>1, the time evolution of the reconnected flux is independent of ion-electron mass ratio. In addition, in the case of m{sub i}/m{sub e}=1, we show that reconnection proceeds slowly as the Hall term is zero; when m{sub i}/m{sub e}>>1 (i.e., the Hall term is nonzero) reconnection is fast and we conjecture that this is due to magnetic field being frozen into electron fluid, which moves significantly faster than ion fluid. (iii) Within one Alfven time, somewhat less than half ({approx}40%) of the initial total (roughly magnetic) energy is converted into the kinetic energy of electrons, and somewhat more than half ({approx}60%) into kinetic energy of ions (similar to solar flare observations). (iv) In the strongly stressed X-point case, in about one Alfven time, a full isotropy in all three spatial directions of the velocity distribution is seen for superthermal electrons (also commensurate

  19. Oscillatory thermocapillary convection

    NASA Technical Reports Server (NTRS)

    Mundrane, Michael R.; Zebib, Abdelfattah

    1994-01-01

    We study thermocapillary and buoyant thermocapillary convection in rectangular cavities with aspect ratio A = 4 and Pr = 0.015. Two separate problems are considered. The first is combined buoyant thermocapillary convection with a nondeforming interface. We establish neutral curves for transition to oscillatory convection in the Re-Gr plane. It is shown that while pure buoyant convection exhibits oscillatory behavior for Gr is greater than Gr(sub cr) (where Gr(sub cr) is defined for the pure buoyant problem), pure thermocapillary convection is steady within the range of parameters tested. In the second problem, we consider the influence of surface deformation on the pure thermocapillary problem. For the range of parameters considered, thermocapillary convection remained steady.

  20. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  1. A microwave dielectric resonant oscillatory circuit

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Shvartsburg, A. B.

    2016-07-01

    Bias currents in a thin dielectric nonconducting torus are investigated, and the resonant mode of excitation of these currents is established. The similarity of the frequency spectrum of such a dielectric element to the spectra of a classical Thomson oscillatory circuit and a metamaterial with negative permittivity is demonstrated. The resonant frequency of electromagnetic oscillations of the ring dielectric circuit and magnetic and electric fields of such a circuit under resonant excitation are determined.

  2. Drift-based scrape-off particle width in X-point geometry

    NASA Astrophysics Data System (ADS)

    Reiser, D.; Eich, T.

    2017-04-01

    The Goldston heuristic estimate of the scrape-off layer width (Goldston 2012 Nucl. Fusion 52 013009) is reconsidered using a fluid description for the plasma dynamics. The basic ingredient is the inclusion of a compressible diamagnetic drift for the particle cross field transport. Instead of testing the heuristic model in a sophisticated numerical simulation including several physical mechanisms working together, the purpose of this work is to point out basic consequences for a drift-dominated cross field transport using a reduced fluid model. To evaluate the model equations and prepare them for subsequent numerical solution a specific analytical model for 2D magnetic field configurations with X-points is employed. In a first step parameter scans in high-resolution grids for isothermal plasmas are done to assess the basic formulas of the heuristic model with respect to the functional dependence of the scrape-off width on the poloidal magnetic field and plasma temperature. Particular features in the 2D-fluid calculations—especially the appearance of supersonic parallel flows and shock wave like bifurcational jumps—are discussed and can be understood partly in the framework of a reduced 1D model. The resulting semi-analytical findings might give hints for experimental proof and implementation in more elaborated fluid simulations.

  3. Oscillatory Serotonin Function in Depression

    PubMed Central

    Salomon, Ronald M.; Cowan, Ronald L.

    2013-01-01

    Oscillations in brain activities with periods of minutes to hours may be critical for normal mood behaviors. Ultradian (faster than circadian) rhythms of mood behaviors and associated central nervous system activities are altered in depression. Recent data suggest that ultradian rhythms in serotonin (5HT) function also change in depression. In two separate studies, 5HT metabolites in cerebrospinal fluid (CSF) were measured every 10 m for 24 h before and after chronic antidepressant treatment. Antidepressant treatments were associated with enhanced ultradian amplitudes of CSF metabolite levels. Another study used resting-state functional magnetic resonance imaging (fMRI)to measure amplitudes of dorsal raphé activation cycles following sham or active dietary depletions of the 5HT precursor (tryptophan). During depletion, amplitudes of dorsal raphé activation cycles increased with rapid 6 s periods (about 0.18 Hz)while functional connectivity weakened between dorsal raphé and thalamus at slower periods of 20 s (0.05 Hz). A third approach studied MDMA (ecstasy) users because of their chronically diminished 5HT function compared to non-MDMA polysubstance users (Karageorgiou et al., 2009). Compared to a non-MDMA using cohort, MDMA users showed diminished fMRI intra-regional coherence in motor regions along with altered functional connectivity, again suggesting effects of altered 5HT oscillatory function. These data support a hypothesis that qualities of ultradian oscillations in 5HT function may critically influence moods and behaviors. Dysfunctional 5HT rhythms in depression may be a common endpoint and biomarker for depression, linking dysfunction of slow brain network oscillators to 5HT mechanisms affected by commonly available treatments. 5HT oscillatory dysfunction may define illness subtypes and predict responses to serotonergic agents. Further studies of 5HT oscillations in depression are indicated. PMID:23592367

  4. Ventilated Oscillatory Boundary Layers

    DTIC Science & Technology

    1993-02-01

    AD-A266 226IllII !i III ll11111 II •" Ventilated Oscillatory Boundary Layers 0 Daniel -. Conley Douglas L. I nman C 0 UM U U U U till 1% w 1% W" Z t...A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. VENlTILATiD SCIILLAORY BOUNDARY LAYERS Daniel C. C7onley DoL’laN L. . ... La olDla...Wave Crest ........ 5. Boundary Layer Development Under the Wave Trough W 6 . Laboratory Observations .................. ................ 7

  5. Strobes: an oscillatory combustion.

    PubMed

    Corbel, Justine M L; Lingen, Joost N J; Zevenbergen, John F; Gijzeman, Onno L J; Meijerink, Andries

    2012-04-26

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginning of the 20th century. However, the chemical and physical processes involved in this curious oscillatory combustion remain unknown. Several theories have been proposed: One claims that two different reactions occur: one during the slow dark phase and another during the fast flash phase. The alternation between the phases is ascribed to heat variations. Other theories suggest that the formation of intermediate species during the dark phase and the change of phase are caused by variations in their concentration. A ternary strobe composition with ammonium perchlorate, magnalium, and barium sulfate is analyzed. The role of barium sulfate is studied by replacing it by other metal sulfates that have different physical properties (melting points), and the burning of the compositions is recorded with a high-speed camera and a spectrometer coupled with a charge-coupled device (CCD) camera. Experimental results show noticeable differences in the physical and chemical processes involved in the strobe reactions.

  6. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  7. Field-Guided Proton Acceleration at Reconnecting x-Points in Flares

    NASA Astrophysics Data System (ADS)

    Hamilton, B.; McCLEMENTS, K. G.; Fletcher, L.; Thyagaraja, A.

    2003-06-01

    An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to γ-ray-emitting energies (>1 MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.

  8. Oscillatory threshold logic.

    PubMed

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory.

  9. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  10. Oscillatory spin transport in spin Hall multilayers

    NASA Astrophysics Data System (ADS)

    Barsukov, Igor; Gonçalves, A. M.; Soledade, P.; Passos, C. A. C.; Costa, M.; Souza-Neto, N. M.; Garcia, F.; Lee, H. K.; Smith, A.; Tretiakov, O.; Krivorotov, I. N.; Sampaio, L. C.

    We study multilayers of sputtered Pt/(d)Cu/Py as a function of the Cu thickness d using ferromagnetic resonance (FMR). The FMR linewidth reveals a linear dependence on the frequency with negligible inhomogeneous contribution. The Gilbert damping falls smoothly with increasing d, but presents a strong superimposed oscillation with a period of ~1.5nm. We attribute this behavior to RKKY-like spin transport in the confinement of the Cu layer. The induced perpendicular anisotropy due to the proximity effect shows a similar behavior. We evaluate the induced magnetic moment on Pt using x-ray magnetic circular dichroism and find that it decreases with increasing Cu thickness smoothly. Again, we see oscillations of the magnetic moment and show that the oscillatory spin transport affects proximity induced magnetism in Pt. We extend our study to multilayer systems with increased oxidation levels and with out-of-plane crystal texture, in order to investigate the effects of disorder and electron's k-vectors that are responsible for the oscillatory spin transport.

  11. X-point position dependence of edge intrinsic toroidal rotation on the Tokamak à Configuration Variable

    SciTech Connect

    Stoltzfus-Dueck, T.; Karpushov, A. N.; Sauter, O.; Duval, B. P.; Labit, B.; Reimerdes, H.; Vijvers, W. A. J.; Camenen, Y.

    2015-05-15

    Recent theoretical work predicts intrinsic toroidal rotation in the tokamak edge to depend strongly on the normalized major radial position of the X-point. With this motivation, we conducted a series of Ohmic L-mode shots on the Tokamak à Configuration Variable, moving the X-point from the inboard to the outboard edge of the last closed flux surface in both lower and upper single null configurations. The edge toroidal rotation evolved from strongly co-current for an inboard X-point to either vanishing or counter-current for an outboard X-point, in agreement with the theoretical expectations. The whole rotation profile shifted roughly rigidly with the edge rotation, resulting in variation of the peak core rotation by more than a factor of two. Core rotation reversals had little effect on the edge rotation. Edge rotation was slightly more counter-current for unfavorable than favorable ∇B drift discharges.

  12. Colloidal polycrystalline monolayers under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Buttinoni, Ivo; Steinacher, Mathias; Spanke, Hendrik Th.; Pokki, Juho; Bahmann, Severin; Nelson, Bradley; Foffi, Giuseppe; Isa, Lucio

    2017-01-01

    In this paper we probe the structural response to oscillatory shear deformations of polycrystalline monolayers of soft repulsive colloids with varying area fraction over a broad range of frequencies and amplitudes. The particles are confined at a fluid interface, sheared using a magnetic microdisk, and imaged through optical microscopy. The structural and mechanical response of soft materials is highly dependent on their microstructure. If crystals are well understood and deform through the creation and mobilization of specific defects, the situation is much more complex for disordered jammed materials, where identifying structural motifs defining plastically rearranging regions remains an elusive task. Our materials fall between these two classes and allow the identification of clear pathways for structural evolution. In particular, we demonstrate that large enough strains are able to fluidize the system, identifying critical strains that fulfill a local Lindemann criterion. Conversely, smaller strains lead to localized and erratic irreversible particle rearrangements due to the motion of structural defects. In this regime, oscillatory shear promotes defect annealing and leads to the growth of large crystalline domains. Numerical simulations help identify the population of rearranging particles with those exhibiting the largest deviatoric stresses and indicate that structural evolution proceeds towards the minimization of the stress stored in the system. The particles showing high deviatoric stresses are localized around grain boundaries and defects, providing a simple criterion to spot regions likely to rearrange plastically under oscillatory shear.

  13. Effects of the second X-point on hot VDE in HL-2M

    NASA Astrophysics Data System (ADS)

    Xue, L.; Duan, X. R.; Zheng, G. Y.; Liu, Y. Q.; Dokuka, V. N.; Lukash, V. E.; Khayrutdinov, R. R.

    2017-05-01

    Study of the hot-plasma vertical displacement event (VDE) in advanced divertor configurations is of significant importance for ITER and for future fusion reactors. The newly designed, medium-sized copper-conductor machine HL-2M has the capability of generating the second X-point for various advanced divertor configurations. In this paper, effects of the second X-point on the hot VDE in HL-2M are numerically investigated by utilizing the non-linear time-dependent DINA code. The simulation results show that the existence of the second X-point at certain special locations appears to have a better stability in the vertical direction, compared to the standard configuration with the same main plasma parameters. Meanwhile, the peak halo current during the current quench tends to increase as the second X-point changes in the horizontal direction. The same quantity decreases as the second X-point changes in the vertical direction away from the dominant X-point. From the view point of minimizing the halo current, the tripod is better than the standard configuration, followed by the snowflake-plus and the exact snowflake (SF) configuration. The SF-minus is the worst scenario. On the other hand, the tripod configuration, as well as the SF minus configurations, results in relatively higher peak electromagnetic force acting on the vacuum vessel, when compared to other aforementioned configurations.

  14. Oscillatory growth for twisting crystals.

    PubMed

    Ibaraki, Shunsuke; Ise, Ryuta; Ishimori, Koichiro; Oaki, Yuya; Sazaki, Gen; Yokoyama, Etsuro; Tsukamoto, Katsuo; Imai, Hiroaki

    2015-05-18

    We demonstrate the oscillatory phenomenon for the twisting growth of a triclinic crystal through in situ observation of the concentration field around the growing tip of a needle by high-resolution phase-shift interferometry.

  15. Transport-driven scrape-off layer flows and the x-point dependence of the L-H power threshold in Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Rice, J. E.; Hubbard, A. E.; Hughes, J. W.; Greenwald, M.; Granetz, R. S.; Irby, J. H.; Lin, Y.; Lipschultz, B.; Marmar, E. S.; Marr, K.; Mossessian, D.; Parker, R.; Rowan, W.; Smick, N.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S. J.

    2005-05-01

    Factor of ˜2 higher power thresholds for low- to high-confinement mode transitions (L-H) with unfavorable x-point topologies in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are linked to flow boundary conditions imposed by the scrape-off layer (SOL). Ballooning-like transport drives flow along magnetic field lines from low- to high-field regions with toroidal direction dependent on upper/lower x-point balance; the toroidal rotation of the confined plasma responds, exhibiting a strong counter-current rotation when B ×∇B points away from the x point. Increased auxiliary heating power (rf, no momentum input) leads to an L-H transition at approximately twice the edge electron pressure gradient when B ×∇B points away. As gradients rise prior to the transition, toroidal rotation ramps toward the co-current direction; the H mode is seen when the counter-current rotation imposed by the SOL flow becomes compensated. Remarkably, L-H thresholds in lower-limited discharges are identical to lower x-point discharges; SOL flows are also found similar, suggesting a connection.

  16. Oscillatory magnetic anisotropy and spin-reorientation induced by heavy-metal cap in Cu/FeCo/M (M =Hf or Ta): A first-principles study

    NASA Astrophysics Data System (ADS)

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-11-01

    Using ab initio electronic structure calculations we have investigated the effect of the thickness of a heavy-metal (HM) cap on the magnetic anisotropy of the Cu /FeCo /HM (n ) thin film where HM = Hf and Ta with thicknesses of n =0 -10 monolayers (MLs). We find that the Hf cap results in a large perpendicular magnetic anisotropy (PMA), which exhibits quasiperiodic oscillation with a period of two MLs. In contrast, the Ta-capped heterostructure exhibits a spin reorientation from out-of-plane to in-plane magnetization orientation at two MLs of Ta. Moreover, the MA remains negative and depends weakly on the Ta-cap thickness beyond the critical thickness. The underlying mechanism of the PMA oscillation is the periodic change in spin-flip spin-orbit coupling between the minority-spin Fe d (x z ,y z ) and majority Fe d (z2) at Γ ¯, which is induced by the hybridization with Hf at the FeCo/Hf interface. Our results help resolve the contradictory experiments regarding the role of the FeCo/Ta interface on the PMA of the MgO/FeCo/Ta junction. The calculations reveal that the ferromagnet/Hf is promising for spintronic applications and that the capping material and thickness are additional parameters for optimizing the functional properties of spintronic devices.

  17. Method of neutral density determination near the X-point in DIII-D

    SciTech Connect

    Colchin, R.J.; Maingi, R.; Isler, R.C.; Owen, L.W.; Fenstermacher, M.E.; Carlstrom, T.N.

    1998-07-01

    A new method for determining the density of neutrals near the X-point of a diverted plasma is described. Code calculations have predicted that the neutral density peaks poloidally near the X-piont and there is evidence that neutrals play a role in the L-H transition and in damping the plasma rotation. The new method uses D{sub {alpha}} data from a tangentially-viewing video camera calibrated by a vertically-viewing photomultiplier. These data, combined with electron temperature and density measurements from the divertor Thomson scattering (DTS) system, provide sufficient informatino to determine the neutral density in the X-point region of DIII-D. Preliminary results show neutral densities above the X-point are order 10{sup 10}--10{sup 11} atomscm{sup 3}. The diagnostics used to determine these neutral densities, the data analysis method, and preliminary results are described in this paper.

  18. Results of JET operation with continuous carbon and beryllium X-point target plates

    NASA Astrophysics Data System (ADS)

    Lowry, C. G.; Ady, W. N.; Campbell, D. J.; Carman, P.; Clement, S.; Deksnis, E. B.; Gondhalekar, A.; Harbour, P. J.; Horton, L.; Janeschitz, G.; Lesourd, M.; Lingertat, J.; Pick, M. A.; Saibene, G.; Summers, D. D. R.; Thomas, P. R.

    1992-12-01

    The 1991/92 JET experimental campaign assessed the performance of three different toroidally continuous X-point target plates. The main differences were in the tile material, beryllium and carbon, and the presence of exposed edges. These three configurations have been tested up to power levels in excess of 22 MW and with gas fuelling at the X-point and in the midplane. With the beryllium a radiating divertor was achieved by puffing deuterium into the X-point region, while rapid ELMs resulted from deuterium puffing on the carbon target. The investigation into the importance of small edges, up to 1.5 mm, yielded some interesting results. Although the surface temperature rise was substantially reduced by eliminating exposed tile edges, the onset of the carbon bloom was not delayed by a similar amount. In this paper a model is presented which can explain this and other features of the bloom.

  19. X-Point-Position-Dependent Intrinsic Toroidal Rotation in the Edge of the TCV Tokamak.

    PubMed

    Stoltzfus-Dueck, T; Karpushov, A N; Sauter, O; Duval, B P; Labit, B; Reimerdes, H; Vijvers, W A J; Camenen, Y

    2015-06-19

    Edge intrinsic rotation was investigated in Ohmic L-mode discharges on the Tokamak à Configuration Variable, scanning the major radial position of the X point, R(X). Edge rotation decreased linearly with increasing R(X), vanishing or becoming countercurrent for an outboard X point, in agreement with theoretical expectations. The core rotation profile shifted fairly rigidly with the edge rotation, changing the central rotation speed by more than a factor of two. Core rotation reversals had little effect on the edge rotation velocity. Edge rotation was modestly more countercurrent in unfavorable than favorable ∇B shots.

  20. Oscillatory integration windows in neurons

    PubMed Central

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  1. Oscillatory integration windows in neurons.

    PubMed

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-12-15

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking.

  2. Dynamics of an Isolated Blob in the Presence of the X-Point

    SciTech Connect

    Cohen, R H; Ryutov, D D

    2005-10-10

    The interplay of X-point shearing and axial plasma redistribution along a moving flux tube is discussed. Blobs limited to the main scrape-off-layer and the blobs entirely confined in the divertor region are identified. A strong effect of the radial tilt of the divertor plate on ''divertor'' blobs is found.

  3. Resting State Dense Array Gamma Oscillatory Activity as a Response Marker for Cerebellar-Repetitive Transcranial Magnetic Stimulation (rTMS) in Schizophrenia.

    PubMed

    Tikka, Sai Krishna; Garg, Shobit; Sinha, Vinod Kumar; Nizamie, S Haque; Goyal, Nishant

    2015-12-01

    As cerebellum and its abnormalities have been implicated in the pathophysiology of schizophrenia, repetitive transcranial magnetic stimulation (rTMS) of this alternate site has been suggested as a novel target for treating patients with this disorder. As resting state gamma activity measures functional brain connectivity, it could be used as a specific treatment marker. To investigate the effect of cerebellar-rTMS on resting state gamma activity, while studying its efficacy in recent onset schizophrenia patients. This rater-blinded prospective study was completed by 11 schizophrenia patients. They received 10 sessions of high-frequency (theta patterned) rTMS to midline cerebellum over 2 weeks. Resting state EEG was recorded using high (192-channel) resolution EEG at baseline and post rTMS. Gamma spectral power was calculated using fast Fourier transformation, Hanning window averaged over 8 scalp segments corresponding 8 lobes. Clinical improvement rated on the Positive and Negative Syndrome Scale and depressive symptoms assessed using the Calgary Depression Scale for Schizophrenia were other outcome variables. Nonparametric statistics were used. Over the treatment course, significant reduction was seen on negative syndrome and depression scores. Gamma spectral power in left frontal and temporal segments reduced significantly. Spearman correlation analysis showed that percentage reduction in psychopathology scores had significant positive correlation with percentage reduction in gamma spectral power. Cerebellar-rTMS might be an effective adjunct to treat intricate and lingering negative and affective symptoms. Resting state gamma spectral power in frontal and temporal regions might be used as a biomarker for treatment response.

  4. Carbon yields and influxes as a function of target temperatures in JET X-point discharges

    NASA Astrophysics Data System (ADS)

    Reichle, R.; Summers, D. D. R.; Stamp, M. F.

    1990-12-01

    During X-point discharges in JET the wall region near the X-point has been studied with CCD cameras and an OMA system. Tile temperatures, carbon influx, recycled deuterium and a beryllium line were measured. Strike zones which occur only with additional heating receive from fast ions the highest power flux of up to 3 kW/cm 2 resulting in tile temperatures of 2400 ° C. This type of strike zone releases most of the carbon observed. The Carbon yield begins to rise significally at about 1850° C due to RES and continues to rise up to 2350 ° C when thermal sublimation takes over. The carbon influx is amplified by selfsputtering resulting in a carbon bloom almost immediately when the regime of thermal sublimation is entered. It is suggested that the presence of beryllium on the graphite target mitigates the carbon influx.

  5. Stimulus Presentation at Specific Neuronal Oscillatory Phases Experimentally Controlled with tACS: Implementation and Applications

    PubMed Central

    ten Oever, Sanne; de Graaf, Tom A.; Bonnemayer, Charlie; Ronner, Jacco; Sack, Alexander T.; Riecke, Lars

    2016-01-01

    In recent years, it has become increasingly clear that both the power and phase of oscillatory brain activity can influence the processing and perception of sensory stimuli. Transcranial alternating current stimulation (tACS) can phase-align and amplify endogenous brain oscillations and has often been used to control and thereby study oscillatory power. Causal investigation of oscillatory phase is more difficult, as it requires precise real-time temporal control over both oscillatory phase and sensory stimulation. Here, we present hardware and software solutions allowing temporally precise presentation of sensory stimuli during tACS at desired tACS phases, enabling causal investigations of oscillatory phase. We developed freely available and easy to use software, which can be coupled with standard commercially available hardware to allow flexible and multi-modal stimulus presentation (visual, auditory, magnetic stimuli, etc.) at pre-determined tACS-phases, opening up a range of new research opportunities. We validate that stimulus presentation at tACS phase in our setup is accurate to the sub-millisecond level with high inter-trial consistency. Conventional methods investigating the role of oscillatory phase such as magneto-/electroencephalography can only provide correlational evidence. Using brain stimulation with the described methodology enables investigations of the causal role of oscillatory phase. This setup turns oscillatory phase into an independent variable, allowing innovative, and systematic studies of its functional impact on perception and cognition. PMID:27803651

  6. Microscale mapping of oscillatory flows

    NASA Astrophysics Data System (ADS)

    Nedev, Spas; Carretero-Palacios, S.; Kirchner, S. R.; Jäckel, F.; Feldmann, J.

    2014-10-01

    We present an optofluidic method that allows the two-dimensional vectorial near-field mapping of oscillatory flows with micron-scale resolution. An oscillatory flow created by a microsource (an optically trapped silica particle set to oscillate in a dipole-type mode) is detected by another twin silica particle independently trapped and located in the vicinity of the source. Fourier analysis of the motion of the detecting particle at different points in space and time renders the vectorial velocity map around the oscillating microsphere. The method introduced here paves the way for in-situ characterization of fast mixing microscale devices and for new detection methods able to provide location and recognition (due to the field pattern) of moving sources that may be applied to both artificial and living microobjects, including macromolecules, cells, and microorganisms.

  7. Oscillatory control of insulin secretion.

    PubMed

    Tengholm, Anders; Gylfe, Erik

    2009-01-15

    Pancreatic beta-cells possess an inherent ability to generate oscillatory signals that trigger insulin release. Coordination of the secretory activity among beta-cells results in pulsatile insulin secretion from the pancreas, which is considered important for the action of the hormone in the target tissues. This review focuses on the mechanisms underlying oscillatory control of insulin secretion at the level of the individual beta-cell. Recent studies have demonstrated that oscillations of the cytoplasmic Ca(2+) concentration are synchronized with oscillations in beta-cell metabolism, intracellular cAMP concentration, phospholipase C activity and plasma membrane phosphoinositide lipid concentrations. There are complex interdependencies between the different messengers and signalling pathways that contribute to amplitude regulation and shaping of the insulin secretory response to nutrient stimuli and neurohormonal modulators. Several of these pathways may be important pharmacological targets for improving pulsatile insulin secretion in type 2 diabetes.

  8. Oscillatory phase shapes syllable perception

    PubMed Central

    ten Oever, Sanne; Sack, Alexander T.

    2015-01-01

    The role of oscillatory phase for perceptual and cognitive processes is being increasingly acknowledged. To date, little is known about the direct role of phase in categorical perception. Here we show in two separate experiments that the identification of ambiguous syllables that can either be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as measured with EEG and sensory entrainment to rhythmic stimuli. The measured phase difference in which perception is biased toward /da/ or /ga/ exactly matched the different temporal onset delays in natural audiovisual speech between mouth movements and speech sounds, which last 80 ms longer for /ga/ than for /da/. These results indicate the functional relationship between prestimulus phase and syllable identification, and signify that the origin of this phase relationship could lie in exposure and subsequent learning of unique audiovisual temporal onset differences. PMID:26668393

  9. Oscillatory Correlates of Visual Consciousness

    PubMed Central

    Gallotto, Stefano; Sack, Alexander T.; Schuhmann, Teresa; de Graaf, Tom A.

    2017-01-01

    Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., ‘entrainment’). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7–13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences). PMID:28736543

  10. Oscillatory Correlates of Visual Consciousness.

    PubMed

    Gallotto, Stefano; Sack, Alexander T; Schuhmann, Teresa; de Graaf, Tom A

    2017-01-01

    Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., 'entrainment'). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7-13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences).

  11. Regulation of yeast oscillatory dynamics

    PubMed Central

    Murray, Douglas B.; Beckmann, Manfred; Kitano, Hiroaki

    2007-01-01

    When yeast cells are grown continuously at high cell density, a respiratory oscillation percolates throughout the population. Many essential cellular functions have been shown to be separated temporally during each cycle; however, the regulatory mechanisms involved in oscillatory dynamics remain to be elucidated. Through GC-MS analysis we found that the majority of metabolites show oscillatory dynamics, with 70% of the identified metabolite concentrations peaking in conjunction with NAD(P)H. Through statistical analyses of microarray data, we identified that biosynthetic events have a defined order, and this program is initiated when respiration rates are increasing. We then combined metabolic, transcriptional data and statistical analyses of transcription factor activity, identified the top oscillatory parameters, and filtered a large-scale yeast interaction network according to these parameters. The analyses and controlled experimental perturbation provided evidence that a transcriptional complex formed part of the timing circuit for biosynthetic, reductive, and cell cycle programs in the cell. This circuitry does not act in isolation because both have strong translational, proteomic, and metabolic regulatory mechanisms. Our data lead us to conclude that the regulation of the respiratory oscillation revolves around coupled subgraphs containing large numbers of proteins and metabolites, with a potential to oscillate, and no definable hierarchy, i.e., heterarchical control. PMID:17284613

  12. Small-amplitude oscillatory shear magnetorheology of inverse ferrofluids.

    PubMed

    Ramos, Jose; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2010-06-15

    A comprehensive investigation is performed on highly monodisperse silica-based inverse ferrofluids under small-amplitude oscillatory shear in the presence of external magnetic fields up to 1 T. The effect of particle volume fraction and continuous medium Newtonian viscosity is thoroughly investigated. Experimental results for storage modulus are used to validate existing micromechanical magnetorheological models assuming different particle-level field-induced structures.

  13. Oscillatory Phenomena in a Solar Network Region

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.; Tsiropoula, G.; Schwartz, P.; Heinzel, P.

    2008-09-01

    Multi-wavelength, multi-instrument observations, obtained during a coordinated observing campaign on October 2005 by the ground-based Dutch Open Telescope (DOT), and by instruments on the spacecraft Solar and Heliospheric Observatory (SoHO) and Transition Region and Coronal Explorer (TRACE), are used to study oscillatory phenomena in a solar network region. Temporal variations of the intensities and velocities in a region of the quiet Sun containing several dark mottles and in a region with several bright points defining the network boundaries (NB) are investigated with the aim of finding similarities and/or differences in the oscillatory phenomena observed in these two regions and in different spectral lines formed from the chromosphere to the transition region, as well as propagation characteristics of waves. A wavelet, phase difference and coherence analyses were performed indicating a periodicity around 5 min in all considered lines for both regions. V-V phase differences in the NB region point to an upward propagation of, most probably, acoustic waves, while in the region of mottles they indicate a non vertical propagation of waves, due to the presence of several inclined mottles along the line-of-sight. In mottles, for periods of 250-400 s the phase difference is mainly negative suggesting that propagating waves encounter a boundary and are refracted and reflected. However, limitations arising from the complex topology of the magnetic field, the formation conditions and heights of the examined spectral lines and the low spatial resolution of the space instruments influence the exact interpretation of the phase differences.

  14. Resistive Reduced MHD Modeling of Multi-Edge-Localized-Mode Cycles in Tokamak X -Point Plasmas

    NASA Astrophysics Data System (ADS)

    Orain, F.; Bécoulet, M.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Morales, J.; Garbet, X.; Nardon, E.; Pamela, S.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.

    2015-01-01

    The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X -point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements.

  15. A Positive Displacement Oscillatory Water Tunnel.

    DTIC Science & Technology

    1977-02-01

    v — - AD AO3S 593 NATIONAL BUREAU OF STANDARDS WASHINGTON 0 C MECHANICS DIV FIG 1’~/2A POSITIVE DISPLACEMENT OSCILLATORY WATER TUNNEL. (U) FEB 77 K...motion (maximum half stroke) s displacement of pistons from zero level Sr displacement of free surface in reservoirs from zero level T period of...A POSITIVE DISPLACEMENT OSCILLATORY WATER TUNNEL by - - Karl E. B. Lofquist I. INTRODUCTION This report describes a general purpose oscillatory

  16. Heteroclinic contours in oscillatory ensembles.

    PubMed

    Komarov, M A; Osipov, G V; Zhou, C S

    2013-02-01

    In this work, we study the onset of sequential activity in ensembles of neuronlike oscillators with inhibitorylike coupling between them. The winnerless competition (WLC) principle is a dynamical concept underlying sequential activity generation. According to the WLC principle, stable heteroclinic sequences in the phase space of a network model represent sequential metastable dynamics. We show that stable heteroclinic sequences and stable heteroclinic channels, connecting saddle limit cycles, can appear in oscillatory models of neural activity. We find the key bifurcations which lead to the occurrence of sequential activity as well as heteroclinic sequences and channels.

  17. Oscillatory Flow Testing in a Sandbox - Towards Oscillatory Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Lim, D.; Cupola, F.; Cardiff, M. A.

    2014-12-01

    Detailed knowledge of subsurface hydraulic properties is important for predicting groundwater flow and contaminant transport. The spatial variation of hydraulic properties in the shallow subsurface has been extensively studied in the past two decades. A recent approach to characterize subsurface properties is hydraulic tomography, in which pressure data from multiple constant-rate pumping tests is inverted using a numerical model. Many laboratory sandbox studies have explored the performance of hydraulic tomography under different controlled conditions and shown that detailed heterogeneity information can be extracted (Liu et al., 2002, Illman et al., 2007, 2008, 2010a, 2010b, Liu et al., 2007, 2008, Xiang et al., 2009, Yin and Illman, 2009, Liu and Kitanidis, 2011, Berg and Illman, 2011a). Recently, Cardiff et al. (2013) proposed a modified approach of Oscillatory Hydraulic Tomography (OHT) - in which periodic pumping signals of different frequencies are used for aquifer stimulation - to characterize aquifer properties. The potential advantages of OHT over traditional hydraulic tomography include: 1) no net injection or extraction of water; 2) little movement of existing contamination; 3) minimal impact of model boundary conditions; and 4) robust extraction of oscillatory signals from noisy data. To evaluate the premise of OHT, we built a highly-instrumented 2-D laboratory sandbox and record pressure responses to periodic pumping tests. In our setup, the laboratory sandbox is filled with sand of known hydraulic properties, and we measure aquifer responses at a variety of testing frequencies. The signals recorded are processed using Fourier-domain analysis, and compared against expected results under linear (Darcian) theory. The responses are analyzed using analytical and numerical models, which provide key insights as to: 1) how "effective" hydraulic properties estimated using homogeneous models are associated with aquifer heterogeneity; and 2) how OHT is able to

  18. Intrinsic instabilities in X-point geometry: A tool to understand and predict the Scrape Off Layer transport in standard and advanced divertors

    NASA Astrophysics Data System (ADS)

    Militello, F.; Liu, Y.

    2015-08-01

    Intrinsic Scrape Off Layer (SOL) instabilities are studied using flute approximation and incorporating the appropriate sheath boundary conditions at the target. The linear growth rate and the structure of the modes are obtained. The associated diffusion is estimated using a γ / k⊥2 approach for the fastest growing modes. The model used includes curvature and sheath drives, finite Larmor radius effects and partial line tying at the target. The magnetic geometry is obtained using current carrying wires, representing the plasma current and the divertor coils, and naturally generates X-point geometry and magnetic shear effects. The calculation is performed for ITER relevant parameters and scans in SOL width and distance from the separatrix are presented. In addition to a standard Lower Single Null, Super-X and Snowflake configurations are examined in order to assess the importance of the geometry on the stability of the boundary plasma.

  19. Collective phase description of oscillatory convection

    SciTech Connect

    Kawamura, Yoji; Nakao, Hiroya

    2013-12-15

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

  20. Oscillatory Reinstatement Enhances Declarative Memory.

    PubMed

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval.SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval

  1. Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures

    PubMed Central

    Thut, Gregor; Veniero, Domenica; Romei, Vincenzo; Miniussi, Carlo; Schyns, Philippe; Gross, Joachim

    2011-01-01

    Summary Background Neuronal elements underlying perception, cognition, and action exhibit distinct oscillatory phenomena, measured in humans by electro- or magnetoencephalography (EEG/MEG). So far, the correlative or causal nature of the link between brain oscillations and functions has remained elusive. A compelling demonstration of causality would primarily generate oscillatory signatures that are known to correlate with particular cognitive functions and then assess the behavioral consequences. Here, we provide the first direct evidence for causal entrainment of brain oscillations by transcranial magnetic stimulation (TMS) using concurrent EEG. Results We used rhythmic TMS bursts to directly interact with an MEG-identified parietal α-oscillator, activated by attention and linked to perception. With TMS bursts tuned to its preferred α-frequency (α-TMS), we confirmed the three main predictions of entrainment of a natural oscillator: (1) that α-oscillations are induced during α-TMS (reproducing an oscillatory signature of the stimulated parietal cortex), (2) that there is progressive enhancement of this α-activity (synchronizing the targeted, α-generator to the α-TMS train), and (3) that this depends on the pre-TMS phase of the background α-rhythm (entrainment of natural, ongoing α-oscillations). Control conditions testing different TMS burst profiles and TMS-EEG in a phantom head confirmed specificity of α-boosting to the case of synchronization between TMS train and neural oscillator. Conclusions The periodic electromagnetic force that is generated during rhythmic TMS can cause local entrainment of natural brain oscillations, emulating oscillatory signatures activated by cognitive tasks. This reveals a new mechanism of online TMS action on brain activity and can account for frequency-specific behavioral TMS effects at the level of biologically relevant rhythms. PMID:21723129

  2. Dynamics of cerium distribution during oscillatory extraction

    SciTech Connect

    Smirnov, A.V.; Afonin, M.A.; Sedov, V.M.

    1995-01-01

    The dynamics of the Ce distribution in a nonequilibrium extraction process are investigated. Results are presented for the extraction of Ce by tributylphosphate in organic diluents from an aqueous solution in which a Belousov-Zhabotinskii oscillating reaction is occurring. The time dependences of [Ce] in the organic phase of the oscillatory extraction system that are synchronous with the redox-potential dependences are obtained for the first time. The effect of the initial concentrations of Ce, oxidant, and organic substrate on the principal parameters of the oscillatory extraction, such as the frequency, amplitude, etc., is found. A conclusion is made about the ability to control an oscillatory extraction process.

  3. Control of the Oscillatory Interlayer Exchange Interaction with Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Meyer, Uta; Haack, Géraldine; Groth, Christoph; Waintal, Xavier

    2017-03-01

    The oscillatory interlayer exchange interaction between two magnetic layers separated by a metallic spacer is one of the few coherent quantum phenomena that persists at room temperature. Here, we show that this interaction can be controlled dynamically by illuminating the sample (e.g., a spin valve) with radiation in the 10-100 THz range. We predict that the exchange interaction can be changed from ferromagnetic to antiferromagnetic (and vice versa) by tuning the amplitude and/or the frequency of the radiation. Our chief theoretical result is an expression that relates the dynamical exchange interaction to the static one that has already been extensively measured.

  4. Oscillatory-like relaxation behavior of light transmitted through ferrofluids.

    PubMed

    Li, Jian; Qiu, Xiaoyan; Lin, Yueqiang; Liu, Xiaodong; Fu, Jun; Miao, Hua; Zhang, Qingmei; Zhang, Tingzhen

    2011-10-20

    An oscillatory-like relaxation process in which there are two valleys in the T-t curve is observed when light is transmitted through binary ferrofluids composed of both ferrimagnetic CoFe(2)O(4) nanoparticles and paramagnetic p-MgFe(2)O(4) nanoparticles in the presence of a high magnetic field and through pure (single) CoFe(2)O(4) ferrofluids in a low magnetic field. This relaxation behavior is explained using a model of a bidispersed system based on both chained and unchained particles. In such a bidispersed system, the variation of the transmitted light results mainly from the motion of the chains, with the polarized unchained particles' gas producing the modulation effect. The oscillatory-like relaxation phenomenon depends on the features of both the chained and unchained particle systems. If either the particle volume fraction of chained particles or of unchained particles is very low, or the degree of polarization of the unchained particles gas is very weak, a simple nonlinear relaxation process, giving only a valley in the T-t curve, will appear for the transmitted light. For pure CoFe(2)O(4) ferrofluids, the number of chained and unchained particles does not remain constant under different values of the magnetic field. According to the analysis of the relaxation behavior of transmitted light, it is known that binary ferrofluids based on strong magnetic CoFe(2)O(4) particles and weak magnetic p-MgFe(2)O(4) particles can be much closer to the theoretical bidispersed system than single ferrofluids containing only strong magnetic particles. © 2011 Optical Society of America

  5. Control of oscillatory thermocapillary convection in microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1994-01-01

    Laboratory and numerical experiments are underway to generate, and subsequently suppress, oscillatory thermocapillary convection in thin layer of silicone oil. The laboratory experiments have succeeded in characterizing the flow state in a limited range of Bond number-Marangoni number space of interest, identifying states of: (1) steady, unicellular, thermocapillary convection; (2) steady, multicellular, thermocapillary convection; and (3) oscillatory thermocapillary convection. Comparisons between experimental results and stability computations for a related basic state will be made.

  6. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  7. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  8. Advantages of Oscillatory Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  9. Electromyographic activity of shoulder muscles during exercises performed with oscillatory and non-oscillatory poles.

    PubMed

    Hallal, Camilla Z; Marques, Nise R; Silva, Sarah R D; Dieën, Jaap V; Gonçalves, Mauro

    2011-01-01

    Pain and dysfunction of the shoulder complex are commonly found physiotherapy practice. These musculoskeletal abnormalities are related to instability and inadequate kinematic function, that depend on the integrity of the muscle tissues. Thus, to enhance the results of exercise therapies, and prevent and attenuate pain and dynfunction, the use of oscillatory pole has been implemented in clinical practice. The purpose of this study was to analyze the electromyographic (EMG) activity of shoulder stabilizing muscles during exercises performed with an oscillatory and a non-oscillatory pole. Twelve female volunteers, aged 20.4 years±1.9, participated in this study. EMG data were collected from upper trapezius (UT), lower trapezius (LT) and middle deltoid (MD) during three different exercises with an oscillatory and a non-oscillatory pole. The EMG signals were analyzed in the time domain through the calculation of Root Mean Square (RMS). The RMS values were normalized by the peak value obtained over all trials for each muscle. Statistical analysis was performed with repeated measures ANOVA and post-hoc of Bonferroni tests. The EMG activity of UT, LT and MD muscles were significantly higher with the oscillatory pole than the non-oscillatory pole (all p<0,001). There were no significant differences in the activation of these muscles between exercises. The results of the present study indicated that the oscillatory pole does require higher activation of the shoulder muscles and therefore, may be useful in the training of the shoulder complex.

  10. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    NASA Astrophysics Data System (ADS)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  11. The cerebral oscillatory network of voluntary tremor

    PubMed Central

    Pollok, Bettina; Gross, Joachim; Dirks, Martin; Timmermann, Lars; Schnitzler, Alfons

    2004-01-01

    It has recently been shown that resting tremor in Parkinson's disease is associated with oscillatory neural coupling in an extensive cerebral network comprising a cerebello–diencephalic–cortical loop and cortical motor, somatosensory and posterior parietal areas contralateral to the tremor hand. The aim of the present study was to investigate whether this oscillatory brain network exclusively reflects a pathophysiological state in parkinsonian resting tremor or whether it constitutes a fundamental feature of physiological motor control. We investigated cerebro-muscular and cerebro-cerebral coupling in 11 healthy subjects imitating typical antagonistic parkinsonian tremor. We recorded brain activity with a 122-channel whole-head neuromagnetometer and surface EMGs of the forearm extensor. Analysis of cerebro-muscular and cerebro-cerebral coherence revealed oscillatory coupling in the same brain structures that comprise the oscillatory network of parkinsonian resting tremor. Interestingly, similar to parkinsonian resting tremor, cerebro-cerebral coherences often showed a significant peak at twice the simulated tremor frequency. The most striking differences between parkinsonian patients, as investigated in a previous study and healthy subjects imitating the antagonistic resting tremor were a reduction of the coupling between primary sensorimotor cortex and a diencephalic structure – most likely the thalamus – and an enhancement of the coupling between premotor and primary sensorimotor cortex. Our results indicate that the coupling of oscillatory activity within a cerebello–diencephalic–cortical loop constitutes a basic feature of physiological motor control. Thus, our data are consistent with the hypothesis that parkinsonian resting tremor involves oscillatory cerebro-cerebral coupling in a physiologically pre-existing network. PMID:14645449

  12. Cortico-pallidal oscillatory connectivity in patients with dystonia.

    PubMed

    Neumann, Wolf-Julian; Jha, Ashwani; Bock, Antje; Huebl, Julius; Horn, Andreas; Schneider, Gerd-Helge; Sander, Tillmann H; Litvak, Vladimir; Kühn, Andrea A

    2015-07-01

    Primary dystonia has been associated with an underlying dysfunction of a wide network of brain regions including the motor cortex, basal ganglia, cerebellum, brainstem and spinal cord. Dystonia can be effectively treated by pallidal deep brain stimulation although the mechanism of this effect is not well understood. Here, we sought to characterize cortico-basal ganglia functional connectivity using a frequency-specific measure of connectivity-coherence. We recorded direct local field potentials from the human pallidum simultaneously with whole head magnetoencephalography to characterize functional connectivity in the cortico-pallidal oscillatory network in nine patients with idiopathic dystonia. Three-dimensional cortico-pallidal coherence images were compared to surrogate images of phase shuffled data across patients to reveal clusters of significant coherence (family-wise error P < 0.01, voxel extent 1000). Three frequency-specific, spatially-distinct cortico-pallidal networks have been identified: a pallido-temporal source of theta band (4-8 Hz) coherence, a pallido-cerebellar source of alpha band (7-13 Hz) coherence and a cortico-pallidal source of beta band (13-30 Hz) coherence over sensorimotor areas. Granger-based directionality analysis revealed directional coupling with the pallidal local field potentials leading in the theta and alpha band and the magnetoencephalographic cortical source leading in the beta band. The degree of pallido-cerebellar coupling showed an inverse correlation with dystonic symptom severity. Our data extend previous findings in patients with Parkinson's disease describing motor cortex-basal ganglia oscillatory connectivity in the beta band to patients with dystonia. Source coherence analysis revealed two additional frequency-specific networks involving the temporal cortex and the cerebellum. Pallido-cerebellar oscillatory connectivity and its association with dystonic symptoms provides further confirmation of cerebellar involvement

  13. Spectral analysis of oscillatory neural circuits.

    PubMed

    Miller, W L; Sigvardt, K A

    1998-04-30

    Oscillatory dynamics are found at all levels of the nervous system. The goal of our current research on the control of rhythmic motor output by the lamprey spinal cord is to determine the features of neuronal coupling that lead to stable oscillatory activity and precisely-controlled intersegmental phase. Since our experimental manipulations can greatly increase the variability of the ventral root bursting pattern, it is important for us to employ a data analysis method which remains valid independent of this variability. Traditional analysis approaches which rely on identification of burst event times do not generally satisfy this requirement. In this paper, we illustrate the application of a straightforward statistically-based method for determining important parameters of oscillatory motor circuits using Fourier spectral analysis of spike trains. The frequency, phase, and their variabilities can be quantified; and the relative strength of coupling between different parts of the circuit can be tested for statistical significance. The approach we adopt is highly convenient for neuroscientists who study oscillatory systems as it operates directly on trains of action potentials stored as lists of event times (point-processes). Basic concepts and practical issues concerning use of Fourier analysis are discussed.

  14. Mechanisms for oscillatory true polar wander.

    PubMed

    Creveling, J R; Mitrovica, J X; Chan, N-H; Latychev, K; Matsuyama, I

    2012-11-08

    Palaeomagnetic studies of Palaeoproterozoic to Cretaceous rocks propose a suite of large and relatively rapid (tens of degrees over 10 to 100 million years) excursions of the rotation pole relative to the surface geography, or true polar wander (TPW). These excursions may be linked in an oscillatory, approximately coaxial succession about the centre of the contemporaneous supercontinent. Within the framework of a standard rotational theory, in which a delayed viscous adjustment of the rotational bulge acts to stabilize the rotation axis, geodynamic models for oscillatory TPW generally appeal to consecutive, opposite loading phases of comparable magnitude. Here we extend a nonlinear rotational stability theory to incorporate the stabilizing effect of TPW-induced elastic stresses in the lithosphere. We demonstrate that convectively driven inertia perturbations acting on a nearly prolate, non-hydrostatic Earth with an effective elastic lithospheric thickness of about 10 kilometres yield oscillatory TPW paths consistent with palaeomagnetic inferences. This estimate of elastic thickness can be reduced, even to zero, if the rotation axis is stabilized by long-term excess ellipticity in the plane of the TPW. We speculate that these sources of stabilization, acting on TPW driven by a time-varying mantle flow field, provide a mechanism for linking the distinct, oscillatory TPW events of the past few billion years.

  15. Categorization of some oscillatory enzymatic reactions

    SciTech Connect

    Schreiber, I.; Hung, Y.F.; Ross, J.

    1996-05-16

    We investigate the categorization of two or more proposed reaction mechanisms for each of the following oscillatory enzymatic reactions: (1) the peroxidase-oxidase reaction; (2) glycolytic oscillations; (3) oscillations of cyclic AMP in smile mold cells; (4) enzymatic pH oscillations; (5) calcium spiking in cytosol. We use prior work in stoichiometric network analysis and categorization of oscillatory reactions to identify in each proposed reaction mechanism essential and nonessential species, the specific role of each essential species, the connectivity of the essential species, including the identification of the reactions leading to oscillatory instabilities, and the category. For each model, we predict the result of several experiments including relative amplitudes, quench amplitudes, phase shifts, and sign symbolic concentration shifts and compare them with those from available experiments. These and several other experiments such as bifurcation analysis, phase response curves, entrainment experiments, qualitative and quantitative pulsed species response, delay experiments, and external periodic perturbation provide stringent tests of proposed reaction mechanisms, and appropriate ones are suggested to discriminate among competing mechanisms for a given reaction. We find the necessity for introducing a new subcategory in our categorization of oscillatory reactions. 45 refs., 6 figs., 6 tabs.

  16. Acoustic oscillatory pressure control for ramjet

    SciTech Connect

    Brown, R.S.; Dunlap, R.

    1988-08-02

    A method for controlling the acoustic oscillatory pressures generated by gas flow at the combustor inlet to a ramjet engine, the inlet including a sudden geometry expansion is described characterized by; restricting the inlet at the sudden expansion geometry such that the gas flow separates upstream and has a vena contracta downstream of the restricted inlet.

  17. Computer-Assisted Experiments with Oscillatory Circuits

    ERIC Educational Resources Information Center

    Fernandes, J. C.; Ferraz, A.; Rogalski, M. S.

    2010-01-01

    A basic setup for data acquisition and analysis from an oscillatory circuit is described, with focus on its application as either low-pass, high-pass, band-pass or band-reject frequency filter. A homemade board containing the "RLC" elements allows for the interchange of some of them, in particular, for the easy change of the "R" value, and this…

  18. Oscillatory correlates of autobiographical memory.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E

    2015-03-01

    Recollection of events from one's own life is referred to as autobiographical memory. Autobiographical memory is an important part of our self. Neuroimaging findings link self-referential processes with the default mode network (DMN). Much evidence coming primarily from functional magnetic resonance imaging studies shows that autobiographical memory and DMN have a common neural base. In this study, electroencephalographic data collected in 47 participants during recollection of autobiographical episodes were analyzed using temporal and spatial independent component analyses in combination with source localization. Autobiographical remembering was associated with an increase of spectral power in alpha and beta and a decrease in delta band. The increase of alpha power, as estimated by sLORETA, was most prominent in the posterior DMN, but was also observed in visual and motor cortices, prompting an assumption that it is associated with activation of DMN and inhibition of irrelevant sensory and motor areas. In line with data linking delta oscillations with aversive states, decrease of delta power was more pronounced in episodes associated with positive emotions, whereas episodes associated with negative emotions were accompanied by an increase of delta power. Vividness of recollection correlated positively with theta oscillations. These results highlight the leading role of alpha oscillations and the DMN in the processes accompanying autobiographical remembering. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Resistive reduced MHD modeling of multi-edge-localized-mode cycles in Tokamak X-point plasmas.

    PubMed

    Orain, F; Bécoulet, M; Huijsmans, G T A; Dif-Pradalier, G; Hoelzl, M; Morales, J; Garbet, X; Nardon, E; Pamela, S; Passeron, C; Latu, G; Fil, A; Cahyna, P

    2015-01-23

    The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X-point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements.

  20. Oscillatory phenomena in a solar network region

    NASA Astrophysics Data System (ADS)

    Tsiropoula, Georgia; Tziotziou, Kostas; Schwartz, Pavol; Heinzel, Petr

    2009-03-01

    We examine oscillatory phenomena in a solar network region from multi-wavelength, observations obtained by the ground-based Dutch Open Telescope (DOT), and by instruments on the spacecraft Solar and Heliospheric Observatory (SoHO). The observations were obtained during a coordinated observing campaign on October 14, 2005. The temporal variations of the intensities and velocities in two distinct regions of the quiet Sun were investigated: one containing several dark mottles and the other several bright points defining the network boundaries (NB). The aim is to find similarities and/or differences in the oscillatory phenomena observed in these two regions and in different spectral lines formed from the chromosphere to the transition region, as well as propagation characteristics of waves.

  1. Differential oscillatory encoding of foreign speech.

    PubMed

    Pérez, Alejandro; Carreiras, Manuel; Gillon Dowens, Margaret; Duñabeitia, Jon Andoni

    2015-08-01

    Neuronal oscillations play a key role in auditory perception of verbal input, with the oscillatory rhythms of the brain showing synchronization with specific frequencies of speech. Here we investigated the neural oscillatory patterns associated with perceiving native, foreign, and unknown speech. Spectral power and phase synchronization were compared to those of a silent context. Power synchronization to native speech was found in frequency ranges corresponding to the theta band, while no synchronization patterns were found for the foreign speech context and the unknown language context. For phase synchrony, the native and unknown languages showed higher synchronization in the theta-band than the foreign language when compared to the silent condition. These results suggest that neural synchronization patterns are markedly different for native and foreign languages.

  2. Oscillatory flow around discs and through orifices

    NASA Astrophysics Data System (ADS)

    Debernardinis, B.; Graham, J. M. R.; Parker, K. H.

    1980-11-01

    Examples of unsteady, axisymmetric, separated flows are modeled, including unbounded oscillatory flow around a disk and bounded oscillatory flow through a sharp-edged orifice. Calculations are made, assuming that the flow is inviscid and that the shed vortex sheets can be represented by sequences of discrete vortex rings. The solid bodies, i.e., the disk or the orifice and bounding tube, are also represented by a distribution of bound discrete vortex rings whose strenghts are chosen to satisfy the Neumann or zero normal velocity boundary condition. The results of flow visualization experiments and, for the orifice, pressure drop measurements are reported. In general, the gross properties of the flows are predicted accurately.

  3. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.

    PubMed

    Soto-Aquino, D; Rosso, D; Rinaldi, C

    2011-11-01

    Ferrofluids are colloidal suspensions of magnetic nanoparticles that exhibit normal liquid behavior in the absence of magnetic fields but respond to imposed magnetic fields by changing their viscosity without loss of fluidity. The response of ferrofluids to constant shear and magnetic fields has received a lot of attention, but the response of ferrofluids to oscillatory shear remains largely unexplored. In the present work we used rotational Brownian dynamics to study the dynamic properties of ferrofluids with thermally blocked nanoparticles under oscillatory shear and constant magnetic fields. Comparisons between simulations and modeling using the ferrohydrodynamics equations were also made. Simulation results show that, for small rotational Péclet number, the in-phase and out-of-phase components of the complex viscosity depend on the magnitude of the magnetic field and frequency of the shear, following a Maxwell-like model with field-dependent viscosity and characteristic time equal to the field-dependent transverse magnetic relaxation time of the nanoparticles. Comparison between simulations and the numerical solution of the ferrohydrodynamic equations shows that the oscillatory rotational magnetoviscosity for an oscillating shear field obtained using the kinetic magnetization relaxation equation quantitatively agrees with simulations for a wide range of Péclet number and Langevin parameter but has quantitative deviations from the simulations at high values of the Langevin parameter. These predictions indicate an apparent elastic character to the rheology of these suspensions, even though we are considering the infinitely dilute limit in which there are negligible particle-particle interactions and, as such, chains do not form. Additionally, an asymptotic analytical solution of the ferrohydrodynamics equations, valid for Pe<2, was used to demonstrate that the Cox-Merz rule applies for dilute ferrofluids under conditions of small shear rates. At higher shear

  4. Oscillatory dynamics of investment and capacity utilization

    NASA Astrophysics Data System (ADS)

    Greenblatt, R. E.

    2017-01-01

    Capitalist economic systems display a wide variety of oscillatory phenomena whose underlying causes are often not well understood. In this paper, I consider a very simple model of the reciprocal interaction between investment, capacity utilization, and their time derivatives. The model, which gives rise periodic oscillations, predicts qualitatively the phase relations between these variables. These predictions are observed to be consistent in a statistical sense with econometric data from the US economy.

  5. Phase Waves in Oscillatory Chemical Reactions.

    DTIC Science & Technology

    number of waves emitted from a center of heterogeneous catalysis , the rate of wave emission. the lifetime of each wave, the asymptotic wave pattern, the...A theory is presented for the effect of heterogeneity on an oscillatory chemically reactive system in a stable limit cycle such as in heterogeneous ... catalysis . A perturbation technique is developed free of secular behavior for the solution of the non-linear partial differential equations. The

  6. Large Amplitude Oscillatory Shear near Jamming

    NASA Astrophysics Data System (ADS)

    Tighe, Brian; Dagois-Bohy, Simon; Somfai, Ellak; van Hecke, Martin

    2014-11-01

    Jammed solids such as foams and emulsions can be driven with oscillatory shear at finite strain amplitude and frequency. On a macro scale, this induces nonlinearities such as strain softening and shear thinning. On the micro scale one observes the onset of irreversibility, caging, and long-time diffusion. Using simulations of soft viscous spheres, we systematically vary the distance to the jamming transition. We correlate crossovers in the microscopic and macroscopic response, and construct scaling arguments to explain their relationships.

  7. [High-frequency oscillatory ventilation in neonates].

    PubMed

    2002-09-01

    High-frequency oscillatory ventilation (HFOV) may be considered as an alternative in the management of severe neonatal respiratory failure requiring mechanical ventilation. In patients with diffuse pulmonary disease, HFOV can applied as a rescue therapy with a high lung volume strategy to obtain adequate alveolar recruitment. We review the mechanisms of gas exchange, as well as the indications, monitoring and special features of the use HVOF in the neonatal period.

  8. Modeling Stromatolite Growth Under Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Patel, H. J.; Gong, J.; Tice, M. M.

    2014-12-01

    Stromatolite growth models based on diffusion limited aggregation (DLA) has been fairly successful at producing features commonly recognized in stromatolitic structures in the rock record. These models generally require slow mixing of solutes at time scales comparable to the growth of organisms and largely ignore fluid erosions. Recent research on microbial mats suggests that fluid flow might have a dominant control on the formation, deformation and erosion of surface microbial structures, raising the possibility that different styles of fluid flow may influence the morphology of stromatolites. Many stromatolites formed in relatively high energy, shallow water environments under oscillatory currents driven by wind-induced waves. In order to investigate the potential role of oscillatory flows in shaping stromatolites, we are constructing a numerical model of stromatolite growth parameterized by flume experiments with cyanobacterial biofilms. The model explicitly incorporates reaction-diffusion processes, surface deformation and erosion, biomass growth, sedimentation and mineral precipitation. A Lattice-Boltzmann numerical scheme was applied to the reaction-diffusion equations in order to boost computational efficiency. A basic finite element method was employed to compute surface deformation and erosion. Growth of biomass, sedimentation and carbonate precipitation was based on a modified discrete cellular automata scheme. This model will be used to test an alternative hypothesis for the formation of stromatolites in higher energy, shallow and oscillatory flow environments.

  9. Coupled Coils, Magnets and Lenz's Law

    ERIC Educational Resources Information Center

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  10. Coupled coils, magnets and Lenz's law

    NASA Astrophysics Data System (ADS)

    Thompson, Frank

    2010-03-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results.

  11. Coupled Coils, Magnets and Lenz's Law

    ERIC Educational Resources Information Center

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  12. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments

    PubMed Central

    Leuchter, Andrew F.; Hunter, Aimee M.; Krantz, David E.; Cook, Ian A.

    2015-01-01

    Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD. PMID:25809789

  13. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments.

    PubMed

    Leuchter, Andrew F; Hunter, Aimee M; Krantz, David E; Cook, Ian A

    2015-05-01

    Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD.

  14. Oscillatory flow with heat transfer in a square cavity

    NASA Technical Reports Server (NTRS)

    Danabasoglu, G.; Biringen, S.

    1990-01-01

    A computational study is presented for the flow inside an oscillatory cavity. The numerical scheme employs a semiimplicit, time-splitting method to integrate the two-dimensional full Navier-Stokes equations satisfying continuity to machine accuracy. The efficient use of direct solvers for the uncoupled momentum and pressure equations is demonstrated. The oscillatory cavity flow is studied considering the effects of heat transfer, Reynolds number and oscillatory Stokes number.

  15. Oscillatory flow with heat transfer in a square cavity

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Danabasoglu, G.

    1989-01-01

    A computational study is presented for the flow inside an oscillatory cavity. The numerical scheme employs a semi-implicit, time-splitting method to integrate the two-dimensional full Navier-Stokes equations satisfying continuity to machine accuracy. The efficient use of direct solvers for the uncoupled momentum and pressure equations is demonstrated. The oscillatory cavity flow is studied considering the effects of heat transfer, Reynolds number, and oscillatory Stokes number.

  16. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  17. Hydrodynamic Effects in Oscillatory Active Nematics

    NASA Astrophysics Data System (ADS)

    Mikhailov, Alexander S.; Koyano, Yuki; Kitahata, Hiroyuki

    2017-10-01

    Oscillatory active nematics represent nonequilibrium suspensions of microscopic objects, such as natural or artificial molecular machines, that cyclically change their shapes and thus operate as oscillating force dipoles. In this mini-review, hydrodynamic collective effects in such active nematics are discussed. Microscopic stirring at low Reynolds numbers induces non-thermal fluctuating flows and passive particles become advected by them. Similar to advection of particles in macroscopic turbulent flows, this enhances diffusion of tracer particles. Furthermore, their drift and accumulation in regions with stronger activity or higher concentration of force dipoles take place. Analytical investigations and numerical simulations both for 2D and 3D systems were performed.

  18. A procedure for oscillatory parameter identification

    SciTech Connect

    Trudnowski, D.J.; Donnelly, M.K.; Hauer, J.F.

    1994-02-01

    A procedure is proposed where a power system is excited with a low-level pseduo-random probing signal and the frequency, damping, magnitude, and shape of oscillatory modes are identified using spectral density estimation and frequency-domain transfer-function identification. Attention is focussed on identifying system modes in the presence of noise. Two examples cases are studied: identification of electromechanical oscillation modes in a 16-machine power system; and turbine-generator shaft modes of a 3-machine power plant feeding a series-compensated 500-kV network.

  19. Enhancing Rotational Diffusion Using Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai

    2013-05-01

    Taylor dispersion—shear-induced enhancement of translational diffusion—is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle’s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids.

  20. Oscillatory activity of the human cerebellum: the intracranial electrocerebellogram revisited.

    PubMed

    Dalal, Sarang S; Osipova, Daria; Bertrand, Olivier; Jerbi, Karim

    2013-05-01

    The functional electrophysiology of the human cerebellum remains poorly characterized. Existing knowledge originates primarily from lesion studies and increasingly from hemodynamic measures such as functional magnetic resonance imaging, along with some evidence in recent years from transcranial magnetic stimulation. In this context, we revisit the few existing records of intracranial recordings from the human cerebellum, and uncover additional little-known reports - three from the Soviet Union, published in Russian between 1949 and 1951, and one from Belgium, published in French in 1964. These studies together demonstrate electrical rhythms of the human cerebellar cortex at frequencies as high as 250 Hz, including task-related modulations. A reanalysis of their electrode traces with state-of-the-art spectral analysis techniques confirm the reported frequency bands, and showed that these modulations were sustained for 100-200 ms. These remarkable observations from the early ages of intracranial mapping of the human brain are in line with recent electrophysiological studies of oscillations in the rodent cerebellum as well as magnetoencephalographic findings in humans. Time-frequency analyses have provided valuable insight into the function of cerebral cortex, and may prove even more critical for the differing neurophysiology of the cerebellum. We contend that these insights will be invaluable to bridge the role of oscillatory networks in the cerebellum with those of cerebral cortex in mediating perception, action, and cognition and to investigate possible cerebellar involvement in neurological dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Magnetorheology of core-shell carbonyl iron/ZnO rod-like particle silicone oil suspensions under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Mrlik, M.; Machovsky, M.; Pavlinek, V.; Kuritka, I.

    2015-04-01

    The aim of this study is a preparation and application of inorganic coating on the surface of carbonyl iron particles. The two step solvothermal synthesis provides core-shell CI/ZnO rod-like morphology. Compact coating of particles has a slightly negative impact on their magnetic properties (measured for magnetic field strength in the range from 0 to 213 mT); however, there is a suitable magnetorheological performance investigated under oscillatory shear, suitable to be applied in real applications.

  2. Ripple morphology under oscillatory flow: 2. Experiments

    NASA Astrophysics Data System (ADS)

    Pedocchi, F.; GarcíA, M. H.

    2009-12-01

    Recent large-scale laboratory experiments on the formation of ripples under oscillatory flow are presented. The experiments were performed in the Large Oscillatory Water-Sediment Tunnel (LOWST) at University of Illinois at Urbana-Champaign, using 250 μm silica sand as sediment. The dimensions of the ripples formed under a wide range of flow conditions are compared with some of the existing predictors and with a new predictor presented in a companion paper. For a given near-bed water excursion the size of the ripples is observed to initially decrease with the increase of the maximum orbital velocity, as has been suggested before. However, an abrupt change of the ripple size and the transition to large round-crested ripples is observed when the maximum orbital velocity becomes larger than 0.5 m/s. Above this value the size of these round-crested ripples continuously increased with the increase of the maximum orbital velocity. Additionally, anorbital ripples were never formed despite the long water excursions used in several of our experiments, confirming that anorbital ripples are only formed in fine sands. Finally, the performance of the existing planform geometry predictors and a newly proposed predictor is evaluated using our new experimental data. The results confirm that the bed planform geometry is controlled by the wave Reynolds number and the particle size. The comparison or the new data with previous results from narrow facilities shows that the facility width can restrict the development of bed form three-dimensionality.

  3. Ketamine alters oscillatory coupling in the hippocampus

    PubMed Central

    Caixeta, Fábio V.; Cornélio, Alianda M.; Scheffer-Teixeira, Robson; Ribeiro, Sidarta; Tort, Adriano B. L.

    2013-01-01

    Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling. PMID:23907109

  4. Passive swimming in viscous oscillatory flows

    NASA Astrophysics Data System (ADS)

    Jo, Ikhee; Huang, Yangyang; Zimmermann, Walter; Kanso, Eva

    2016-12-01

    Fluid-based locomotion at low Reynolds number is subject to the constraints of Purcell's scallop theorem: reciprocal shape kinematics identical under a time-reversal symmetry cannot cause locomotion. In particular, a single degree-of-freedom scallop undergoing opening and closing motions cannot swim. Most strategies for symmetry breaking and locomotion rely on direct control of the swimmer's shape kinematics. Less is known about indirect control via actuation of the fluid medium. To address how such indirect actuation strategies can lead to locomotion, we analyze a Λ -shaped model system analogous to Purcell's scallop but able to deform passively in oscillatory flows. Neutrally buoyant scallops undergo no net locomotion. We show that dense, elastic scallops can exhibit passive locomotion in zero-mean oscillatory flows. We examine the efficiency of swimming parallel to the background flow and analyze the stability of these motions. We observe transitions from stable to unstable swimming, including ordered transitions from fluttering to chaoticlike motions and tumbling. Our results demonstrate that flow oscillations can be used to passively actuate and control the motion of microswimmers, which may be relevant to applications such as surgical robots and cell sorting and manipulation in microfluidic devices.

  5. Feedback control of subcritical oscillatory instabilities.

    PubMed

    Golovin, A A; Nepomnyashchy, A A

    2006-04-01

    Feedback control of a subcritical oscillatory instability is investigated in the framework of a globally-controlled complex Ginzburg-Landau equation that describes the nonlinear dynamics near the instability threshold. The control is based on a feedback loop between the system linear growth rate and the maximum of the amplitude of the emerging pattern. It is shown that such control can suppress the blow up and result in the formation of spatially localized pulses similar to oscillons. In the one-dimensional case, depending on the values of the linear and nonlinear dispersion coefficients, several types of the pulse dynamics are possible in which the computational domain contains: (i) a single stationary pulse; (ii) several coexisting stationary pulses; (iii) competing pulses that appear one after another at random locations so that at each moment of time there is only one pulse in the domain; (iv) spatiotemporally chaotic system of short pulses; (v) spatially-synchronized pulses. Similar dynamic behavior is found also in the two-dimensional case. The effect of the feedback delay is also studied. It is shown that the increase of the delay leads to an oscillatory instability of the pulses and the formation of pulses with oscillating amplitude.

  6. Oscillatory vortex formation behind a movable plat

    NASA Astrophysics Data System (ADS)

    Vukicevic, Marija; Pedrizzetti, Gianni

    2010-11-01

    INTRODUCTION: A wide spectra of application, from industrial to environmental and biological, involve fluid-structure interaction (FSI) at a fundamental level. We investigate a 2D FSI problem for a rigid structure hinged on a wall, freely rotating by the action of an oscillatory fluid flow. METHODS: The Navier-Stokes equations are solved simultaneously with the body dynamics. An accurate numerical solution is developed on the conformal map of the time-varying physical domain. RESULTS: The FSI is primarily influenced by the vortex formation process and by the interaction between vortices generated during the sequential flow oscillations. The emerging bodies can be arranged into a three main groups. The first, made of heavy bodies, terminates the motion during the first few oscillations with the impact of the body on the wall. On the other extreme, the third group made of relatively light bodies presents a flow-driven motion that oscillates periodically in time. In a wide intermediate range, the body oscillates in time presenting non periodic features. CONCLUSIONS: The process of oscillatory vortex formation in presence of fluid-structure interaction shows the emergence of various phenomena that were analyzed in details. In this specific application the results demonstrate that the FSI range from linear to chaotic interaction and finite-time collapse.

  7. Amyloid fibril networks nucleated under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Batzli, Kiersten; Love, Brian

    2013-03-01

    The process of amyloid fibril formation is of interest due to the link between these self-aggregating proteins and the progression of neurodegenerative disease. More recently, research has been directed at the exploitation of self-assembly properties of amyloid proteins for use as templates for nanowires and fibrillar networks. Insulin is an ideal protein for these purposes due to the ease of aggregation, as well as the large aspect ratio and high chemical stability of the produced fibrils. Insulin in pH 2 solution quickly forms aggregates in the presence of 65 °C heat. We have investigated the effect of oscillatory shear on the nucleation and growth of amyloid fibrillar networks using rheology and TEM to characterize the mechanical properties and structure of the network respectively. We contrast networks nucleated under oscillatory shear with networks nucleated in static and agitated conditions, and discuss network properties in the context of use in templating nanostructures. We find that the structural characteristics of the formed networks, including the density of fibrils, are affected by shear during the nucleation phase of amyloid growth.

  8. Visualization of inert gas wash-out during high-frequency oscillatory ventilation using fluorine-19 MRI.

    PubMed

    Wolf, Ursula; Scholz, Alexander; Terekhov, Maxim; Koebrich, Rainer; David, Matthias; Schreiber, Laura Maria

    2010-11-01

    High-frequency oscillatory ventilation is looked upon as a lung-protective ventilation strategy. For a further clarification of the physical processes promoting gas transport, a visualization of gas flow and the distribution of ventilation are of considerable interest. Therefore, fluorine-19 magnetic resonance imaging of the imaging gas octafluorocyclobutane (C(4) F(8) ) during high-frequency oscillatory ventilation was performed in five healthy pigs. For that, a mutually compatible ventilation-imaging system was set up and transverse images were acquired every 5 sec using FLASH sequences on a 1.5 T scanner. Despite a drop in signal-to-noise ratio after the onset of high-frequency oscillatory ventilation, for each pig, the four experiments could be analyzed. A mean wash-out time (τ) at 5 Hz of 52.7 ± 18 sec and 125.9 ± 39 sec at 10 Hz, respectively, were found for regions of interest including the whole lung. This is in agreement with the clinical findings, in that wash-out of respiratory gases is significantly prolonged for increased high-frequency oscillatory ventilation frequencies. Our study could be a good starting-point for a further optimization of high-frequency oscillatory ventilation.

  9. Probing of field-induced structures and their dynamics in ferrofluids using oscillatory rheology.

    PubMed

    Felicia, Leona J; Philip, John

    2014-10-21

    We probe field-induced structures and their dynamics in ferrofluids using oscillatory rheology. The magnetic field dependence of the relaxation time and crossover modulus showed two distinct regions, indicating the different microstructures in those regions. The observed relaxation at various magnetic field strengths indicates that side chains are attached to the pinned single-sphere-width chains between the rheometer plates. Our results suggest that the ferrofluid under a magnetic field exhibits a soft solidlike behavior whose relaxation is governed by the imposed strain rate and the magnetic field. Using the scaling factors obtained from the frequency and modulus at the crossover point in the oscillatory rheological measurements, the constant strain-rate frequency sweep data is superimposed onto a single master curve. The frequency scaling factor increases with the strain rate as a power law with an exponent close to unity, whereas the amplitude scaling factor is almost strain-rate-independent at high magnetic field strengths. These findings are useful for a better understanding of field-induced ordering of nanoparticles in fluids and their optimization for practical applications.

  10. Magnetic Oscillations in Metals

    NASA Astrophysics Data System (ADS)

    Schoenberg, D.

    2009-09-01

    Preface; 1. Historical introduction; 2. Theory; 3. Observation of the de Haas-van Alphen effect; 4. Other oscillatory effects; 5. Fermi surfaces and cyclotron masses; 6. Magnetic interaction; 7. Magnetic breakdown; 8. The Dingle temperature; 9. Phase and spin-splitting; Appendices; Bibliography; Notes; Index.

  11. Oscillatory high hydrostatic pressure inactivation of Zygosaccharomyces bailii.

    PubMed

    Palou, E; López-Malo, A; Barbosa-Cánovas, G V; Welti-Chanes, J; Swanson, B G

    1998-09-01

    Zygosaccharomyces bailii inactivation was evaluated in oscillatory high hydrostatic pressure (HHP) treatments at sublethal pressures (207, 241, or 276 MPa) and compared with continuous HHP treatments in laboratory model systems with a water activity (aw) of 0.98 and pH 3.5. The yeast was inoculated into laboratory model systems and subjected to HHP in sterile bags. Two HHP treatments were conducted: continuous (holding times of 5, 10, 15, 20, 30, 60, or 90 min) and oscillatory (two, three, or four cycles with holding times of 5 min and two cycles with holding times of 10 min). Oscillatory pressure treatments increased the effectiveness of HHP processing. For equal holding times, Z. bailii counts decreased as the number of cycles increased. Holding times of 20 min in HHP oscillatory treatments at 276 MPa assured inactivation (< 10 CFU/ml) of Z. bailii initial inoculum. Oscillatory pressurization could be useful to decrease Z. bailii inactivation time.

  12. Control of Cavity Resonance Using Steady and Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Lamp, Alison M.; Chokani, Ndaona

    1999-01-01

    An experimental study to investigate the effect of steady and oscillatory (with zero net mass flux) blowing on cavity resonance is undertaken. The objective is to study the basic mechanisms of the control of cavity resonance. An actuator is designed and calibrated to generate either steady blowing or oscillatory blowing with A zero net mass flux. The results of the experiment show that both steady and oscillatory blowing are effective, and reduce the amplitude of the dominant resonant mode by 1OdB. The oscillatory blowing is however found to be more superior in that the same effectiveness could be accomplished with a momentum coefficient an order of magnitude smaller than for steady blowing. The experiment also confirms the results of previous computations that suggest the forcing frequency for oscillatory blowing must not be at harmonic frequencies of the cavity resonant modes.

  13. Automatic control of oscillatory penetration apparatus

    DOEpatents

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  14. Oscillatory patterns in a rotating aqueous suspension.

    PubMed

    Breu, A P J; Kruelle, C A; Rehberg, I

    2004-02-01

    Suspensions of granular material in glycerin-water mixtures agitated in horizontally aligned rotating tubes show a whole variety of patterns. The stationary pattern of a homogeneous distribution and a chain of rings have been investigated before. Here we report on two types of oscillatory states in the same system. For a certain range of the rotation frequency and sufficiently high viscosity traveling waves propagate with constant velocity back and forth along the tube in an almost homogeneous distribution of sedimenting particles. The transition from a stationary to the traveling-wave state is found to be an imperfect supercritical bifurcation. The dependence of the wave length and speed on the tube's rotation frequency and the dynamic viscosity of the fluid are determined. Experiments with low viscosities show no traveling waves but low-frequency oscillations, when the previously known chain of rings undergoes a secondary instability.

  15. Vortex generation in oscillatory canopy flow

    NASA Astrophysics Data System (ADS)

    Ghisalberti, Marco; Schlosser, Tamara

    2013-03-01

    In this paper, we demonstrate for the first time the generation of coherent vortices at the top of a canopy in oscillatory (i.e., wave-dominated) flow. Through a series of flow visualization experiments, vortex formation is shown to occur when two conditions described by the Keulegan-Carpenter (KC) and Reynolds (Re) numbers are met. First, the wave period must be sufficiently long to allow the generation of the shear-driven instability at the top of the canopy; this occurs when KC ≳ 5. Second, the vortex instability must be able to overcome the stabilizing effects of viscosity; this occurs when Re ≳ 1000. The vortices greatly increase the rate of vertical mixing within the canopy, such that any prediction of residence time in a coastal canopy requires an understanding of whether vortex generation is occurring.

  16. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  17. Laser velocimeter application to oscillatory liquid flows

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1978-01-01

    A laser velocimeter technique was used to measure the mean velocity and the frequency characteristics of an oscillatory flow component generated with a rotating flapper in liquid flow system at Reynolds numbers approximating 93,000. The velocity information was processed in the frequency domain using a tracker whose output was used to determine the flow spectrum. This was accomplished with the use of an autocorrelator/Fourier transform analyzer and a spectrum averaging analyzer where induced flow oscillations up to 40 Hz were detected. Tests were conducted at a mean flow velocity of approximately 2 m/s. The experimental results show that the laser velocimeter can provide quantitative information such as liquid flow velocity and frequency spectrum with a possible application to cryogenic fluid flows.

  18. Phase Slips in Oscillatory Hair Bundles

    NASA Astrophysics Data System (ADS)

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production.

  19. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1997-01-01

    In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.

  20. Common oscillatory mechanisms across multiple memory systems

    NASA Astrophysics Data System (ADS)

    Headley, Drew B.; Paré, Denis

    2017-01-01

    The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a "slow" or "fast" mode. The slow mode happens during slow-wave sleep and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and rapid eye movement (REM) sleep and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to slow-wave sleep, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during slow-wave sleep seem to promote declarative and procedural memories.

  1. Multiphase patterns in periodically forced oscillatory systems

    SciTech Connect

    Elphick, C.; Hagberg, A.; Meron, E.

    1999-05-01

    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of {pi}/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: {pi} fronts separating states with a phase shift of {pi} and {pi}/2 fronts separating states with a phase shift of {pi}/2. We find a type of front instability where a stationary {pi} front {open_quotes}decomposes{close_quotes} into a pair of traveling {pi}/2 fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of {pi}/2 fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,{hor_ellipsis}) where stationary {pi} fronts decompose into {ital n} traveling {pi}/n fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased. {copyright} {ital 1999} {ital The American Physical Society}

  2. Oscillatory coupling in writing and writer's cramp.

    PubMed

    Butz, Markus; Timmermann, Lars; Gross, Joachim; Pollok, Bettina; Dirks, Martin; Hefter, Harald; Schnitzler, Alfons

    2006-01-01

    Writing is a highly skilled and overlearned movement. In patients suffering from writer's cramp, a focal task-induced dystonia, writing is impaired or even impossible due to involuntary muscle contractions and abnormal posture, which occur as soon as the person picks up a pen or within writing a few words. The underlying pathophysiological mechanisms of this movement disorder are not fully understood up to now. The aim of the present study was to unravel the oscillatory network underlying physiological writing in healthy subjects and dystonic writing in writer's cramp patients. Using whole-head magnetoencephalography (MEG) and the analysis tool dynamic imaging of coherent sources (DICS) we studied oscillatory neural coupling during writing in eleven healthy subjects and eight patients suffering from writer's cramp. Simultaneous recording of brain activity with MEG and activity of forearm and hand muscles with surface electromyography (EMG) was performed while subjects were writing for five minutes with their dominant right hand. Applying DICS sources of strongest cerebro-muscular coherence and cerebro-cerebral coherence during writing were identified, which consistently included six brain areas in both, the control subjects and the patients: contralateral and ipsilateral sensorimotor cortex, ipsilateral cerebellum, contralateral thalamus, contralateral premotor and posterior parietal cortex. Coherence between cortical sources and muscles appeared primarily in the frequency of writing movements (3-7 Hz) while coherence between cerebral sources occurred primarily around 10 Hz (8-13 Hz). Interestingly, consistent coupling between both sensorimotor cortices was observed in patients only, whereas coupling between ipsilateral cerebellum and the contralateral posterior parietal cortex was found in control subjects only. These results are consistent with the often described bilateral pathophysiology and impaired sensorimotor integration in writer's cramp patients.

  3. Droplet migration characteristics in confined oscillatory microflows

    NASA Astrophysics Data System (ADS)

    Chaudhury, Kaustav; Mandal, Shubhadeep; Chakraborty, Suman

    2016-02-01

    We analyze the migration characteristics of a droplet in an oscillatory flow field in a parallel plate microconfinement. Using phase field formalism, we capture the dynamical evolution of the droplet over a wide range of the frequency of the imposed oscillation in the flow field, drop size relative to the channel gap, and the capillary number. The latter two factors imply the contribution of droplet deformability, commonly considered in the study of droplet migration under steady shear flow conditions. We show that the imposed oscillation brings an additional time complexity in the droplet movement, realized through temporally varying drop shape, flow direction, and the inertial response of the droplet. As a consequence, we observe a spatially complicated pathway of the droplet along the transverse direction, in sharp contrast to the smooth migration under a similar yet steady shear flow condition. Intuitively, the longitudinal component of the droplet movement is in tandem with the flow continuity and evolves with time at the same frequency as that of the imposed oscillation, although with an amplitude decreasing with the frequency. The time complexity of the transverse component of the movement pattern, however, cannot be rationalized through such intuitive arguments. Towards bringing out the underlying physics, we further endeavor in a reciprocal identity based analysis. Following this approach, we unveil the time complexities of the droplet movement, which appear to be sufficient to rationalize the complex movement patterns observed through the comprehensive simulation studies. These results can be of profound importance in designing droplet based microfluidic systems in an oscillatory flow environment.

  4. Dependence of the L-H transition on X-point geometry and divertor recycling on NSTX

    NASA Astrophysics Data System (ADS)

    Battaglia, D. J.; Chang, C. S.; Kaye, S. M.; Kim, K.; Ku, S.; Maingi, R.; Bell, R. E.; Diallo, A.; Gerhardt, S.; LeBlanc, B. P.; Menard, J.; Podesta, M.; the NSTX Team

    2013-11-01

    The edge electron (Te) and ion temperature (Ti) at the time of the L-H transition increase when the X-point radius (RX) is reduced to a high-triangularity shape while maintaining constant edge density. Consequently the L-H power threshold (PLH) is larger for the high-triangularity shape. This supports the prediction that a single-particle loss hole, whose properties are strongly linked to RX and Ti, influences the edge radial electric field (Er) and Er × B flow-shearing rate available for turbulence suppression. Simulations using XGC0, a full-f drift-kinetic neoclassical code, indicate that maintaining a constant Er × B flow-shearing rate does require a larger heat flux and edge Ti as RX decreases. NSTX also observes a decrease in PLH when the divertor recycling is decreased using lithium coatings. However, the edge Te and Ti at the L-H transition appear independent of the divertor recycling for a constant shape. XGC0 calculations demonstrate that more heat flux is needed to maintain the edge Ti and the Er × B flow-shearing rate as the contribution of divertor recycling to the overall neutral fuelling rate increases.

  5. Newly developed ventricular assist device with linear oscillatory actuator.

    PubMed

    Fukunaga, Kazuyoshi; Funakubo, Akio; Fukui, Yasuhiro

    2003-01-01

    The goal of this study was to develop a new direct electromagnetic left ventricular assist device (DEM-LVAD) with a linear oscillatory actuator (LOA). The DEM-LVAD is a pulsatile pump with a pusher plate. The pusher plate is driven directly by the mover of the LOA. The LOA provides reciprocating motion without using any movement converter such as a roller screw or a hydraulic system. It consists of a stator with a single winding excitation coil and a mover with two permanent magnets. The simple structure of the LOA is based on fewer parts to bring about high reliability and smaller size. The mover moves back and forth when forward and backward electric current is supplied to the excitation coil. The pump housings have been designed using three-dimensional computer aided design software and fabricated with the aid of computer aided manufacturing technology. Monostrut valves (Bjork-Shiley #21) were used for the prototype. The DEM-LVAD dimension is 96 mm in diameter and 50 mm thick with a mass of 0.62 kg and a volume of 280 ml. An in vitro test (afterload 100 mm Hg; preload 10 mm Hg; input power 10 W) demonstrated more than 6 L/minute maximum output and 15% maximum efficiency at 130 beats per minute (bpm). Dynamic stroke volume ranged between 40 and 60 ml. The feasibility of the DEM-LVAD was confirmed.

  6. Oscillations of Magnetic Fluid Column in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Storozhenko, A. M.; Platonov, V. B.; Lobova, O. V.; Ryapolov, P. A.

    2017-01-01

    The paper considers the results of measuring the elastic parameters (ponderomotive elasticity coefficient, oscillation frequency, attenuation coefficient) of the oscillatory system with an inertial element that is a magnetic fluid column retained in a tube due to magnetic levitation in a strong magnetic field. Elasticity is provided by the ponderomotive force which affects the upper and lower thin layers of the fluid column. Measurement results of vibration parameters of the oscillatory system can be useful for the investigations of magnetophoresis and aggregation of nanoparticles in magnetic fluids.

  7. EEG oscillatory phase-dependent markers of corticospinal excitability in the resting brain.

    PubMed

    Berger, Barbara; Minarik, Tamas; Liuzzi, Gianpiero; Hummel, Friedhelm C; Sauseng, Paul

    2014-01-01

    Functional meaning of oscillatory brain activity in various frequency bands in the human electroencephalogram (EEG) is increasingly researched. While most research focuses on event-related changes of brain activity in response to external events there is also increasing interest in internal brain states influencing information processing. Several studies suggest amplitude changes of EEG oscillatory activity selectively influencing cortical excitability, and more recently it was shown that phase of EEG activity (instantaneous phase) conveys additional meaning. Here we review this field with many conflicting findings and further investigate whether corticospinal excitability in the resting brain is dependent on a specific spontaneously occurring brain state reflected by amplitude and instantaneous phase of EEG oscillations. We applied single pulse transcranial magnetic stimulation (TMS) over the left sensorimotor cortex, while simultaneously recording ongoing oscillatory activity with EEG. Results indicate that brain oscillations reflect rapid, spontaneous fluctuations of cortical excitability. Instantaneous phase but not amplitude of oscillations at various frequency bands at stimulation site at the time of TMS-pulse is indicative for brain states associated with different levels of excitability (defined by size of the elicited motor evoked potential). These results are further evidence that ongoing brain oscillations directly influence neural excitability which puts further emphasis on their role in orchestrating neuronal firing in the brain.

  8. Resonant alignment of microswimmer trajectories in oscillatory shear flows

    NASA Astrophysics Data System (ADS)

    Hope, Alexander; Croze, Ottavio A.; Poon, Wilson C. K.; Bees, Martin A.; Haw, Mark D.

    2016-09-01

    Oscillatory flows are commonly experienced by swimming micro-organisms in the environment, industrial applications, and rheological investigations. We characterize experimentally the response of the alga Dunaliella salina to oscillatory shear flows and report the surprising discovery that algal swimming trajectories orient perpendicular to the flow-shear plane. The ordering has the characteristics of a resonance in the driving parameter space. The behavior is qualitatively reproduced by a simple model and simulations accounting for helical swimming, suggesting a mechanism for ordering and criteria for the resonant amplitude and frequency. The implications of this work for active oscillatory rheology and industrial algal processing are discussed.

  9. Oscillatory Nernst effect in Pt|ferrite|cuprate-superconductor trilayer films.

    PubMed

    Shiomi, Y; Lustikova, J; Saitoh, E

    2017-07-13

    Although magnetism and superconductivity hardly coexist in a single material, recent advances in nanotechnology and spintronics have brought to light their interplay in magnetotransport in thin-film heterostructures. Here, we found a periodic oscillation of Nernst voltage with respect to magnetic fields in Pt|LiFe5O8 (Pt|LFO) bilayers grown on a cuprate superconductor YBa2Cu3O7-x (YBCO). At high temperatures above the superconducting transition temperature (T C ) of YBCO, spin Seebeck voltages originating in Pt|LFO layers are observed. As temperature decreases well below T C , the spin Seebeck voltage is suppressed and unconventional periodic voltage oscillation as a function of magnetic fields appears; such an oscillation emerging along the Hall direction in the superconducting state has not been observed yet. Dynamics of superconducting vortices pinned by surface precipitates seems responsible for the oscillatory Nernst effect.

  10. Control of Oscillatory Thermocapillary Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Skarda, Ray

    1998-01-01

    This project focused on the generation and suppression of oscillatory thermocapillary convection in a thin liquid layer. The bulk of the research was experimental in nature, some theoretical work was also done. ne first phase of this research generated, for the first time, the hydrothermal-wave instability predicted by Smith and Davis in 1983. In addition, the behavior of the fluid layer under a number of conditions was investigated and catalogued. A transition map for the instability of buoyancy-thermocapillary convection was prepared which presented results in terms of apparatus-dependent and apparatus-independent parameters, for ease of comparison with theoretical results. The second phase of this research demonstrated the suppression of these hydrothermal waves through an active, feed-forward control strategy employing a CO2 laser to selectively heat lines of negative disturbance temperature on the free surface of the liquid layer. An initial attempt at this control was only partially successful, employing a thermocouple inserted slightly below the free surface of the liquid to generate the control scheme. Subsequent efforts, however, were completely successful in suppressing oscillations in a portion of the layer by utilizing data from an infrared image of the free surface to compute hydrothermal-wave phase speeds and, using these, to tailor the control scheme to each passing wave.

  11. Oscillatory Mechanisms in Catalytic CO Oxidation

    NASA Astrophysics Data System (ADS)

    Lund, C. D.; Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.

    1996-03-01

    For nearly twenty years, temporal reaction-rate oscillations in catalytic reactions on metal surfaces have been observed. The most thoroughly studied of these is the oxidation of carbon monoxide on platinum catalysts, both at atmospheric pressure and under UHV conditions. While the oscillations observed under UHV conditions have been shown to be due to a restructuring of the catalyst by adsorbed carbon monoxide, no mechanism has been conclusively shown to be responsible for the oscillations observed under atmospheric conditions. We have developed a system in which oscillations on carefully prepared thin-film catalysts in a continuous flow reactor are highly reproducible, thereby allowing us to study the possible oscillatory mechanisms. footnote S.Y. Yamamoto, C.M. Surko, M.B. Maple, and R.K. Pina, J. Chem. Phys. 102, 8614 (1995). We have been able to discriminate between current theoretical models through a series of reactant gas pretreatments, and we find that the oscillations we observe are consistent with a slow oxidation and reduction of the catalyst surface. [6pt] This work is supported by the Office of Naval Research.

  12. A Statistical Study on Oscillatory Protein Expression

    NASA Astrophysics Data System (ADS)

    Yan, Shiwei

    Motivated by the experiments on the dynamics of a common network motif, p53 and Mdm2 feedback loop, by Lahav et al. [Nat. Genet 36, 147(2004)] in individual cells and Lev Bar-or et al. [Proc. Natl. Acad. Sci. USA 97, 11250(2000)] at the population of cells, we propose a statistical signal-response model with aiming to describe the different oscillatory behaviors for the activities of p53 and Mdm2 proteins both in individual and in population of cells in a unified way. At the cellular level, the activities of p53 and Mdm2 proteins are described by a group of nonlinear dynamical equations where the damage-derived signal is assumed to have the form with abrupt transition (”on” leftrightarrow ”off”) as soon as signal strength passes forth and back across a threshold. Each cell responses to the damage with different time duration within which the oscillations persist. For the case of population of cells, the activities of p53 and Mdm2 proteins will be the population average of the individual cells, which results damped oscillations, due to the averaging over the cell population with the different response time.

  13. Processing oscillatory signals by incoherent feedforward loops

    NASA Astrophysics Data System (ADS)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  14. Plant shoots exhibit synchronized oscillatory motions.

    PubMed

    Ciszak, Marzena; Masi, Elisa; Baluška, František; Mancuso, Stefano

    2016-01-01

    In animals, the ability to move has evolved as an important means of protection from predators and for enhancing nutrient uptake. In the animal kingdom, an individual's movements may become coordinated with those of other individuals that belong to the same group, which leads, for example, to the beautiful collective patterns that are observed in flocks of birds and schools of fish or in animal migration. Land plants, however, are fixed to the ground, which limits their movement and, apparently, their interactions and collective behaviors. We show that emergent maize plants grown in a group exhibit synchronized oscillatory motions that may be in-phase or anti-phase. These oscillations occur in short bursts and appear when the leaves rupture from the coleoptile tip. The appearance of these oscillations indicates an abrupt increase in the plant growth rate, which may be associated with a sudden change in the energy uptake for photosynthesis. Our results suggest that plant shoots behave as a complex network of biological oscillators, interacting through biophysical links, e.g. chemical substances or electric signals.

  15. Autocatalytic Reaction Front Propagation in Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Leconte, Marc; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique

    2003-11-01

    Laboratoire Fluides Automatique et Systèmes Thermiques, Universités P. et M. Curie and Paris Sud, C.N.R.S. (UMR 7608) Bâtiment 502, Campus Universitaire, 91405 Orsay Cedex, France. Autocatalytic reaction front between two reacting species is able to propagate as a solitary wave that is at a constant velocity and with a stationary concentration profile resulting from a balance between molecular diffusion and chemical reaction. On the other hand, in laminar flow the association of molecular diffusion and convection leads to an overall diffusion effect, the so-called Taylor dispersion, with a flow dependent enhanced dispersion coefficient. Previous experiments have demonstrated the dissymmetry between supportive and adverse advection flows compared to the reaction front propagation without flow. We analyze experimentally the effect of laminar oscillatory flow on the propagation and on the shape of the fronts in the Iodate-Arsenous Acid autocatalytic reaction in micro Hele-Shaw cells. We observe new solitary waves whose velocity and shape depend on the relative importance of advection, diffusion and reaction. The results are in reasonable with our lattice 3D BGK simulations.

  16. Exercise oscillatory ventilation: Mechanisms and prognostic significance

    PubMed Central

    Dhakal, Bishnu P; Lewis, Gregory D

    2016-01-01

    Alteration in breathing patterns characterized by cyclic variation of ventilation during rest and during exercise has been recognized in patients with advanced heart failure (HF) for nearly two centuries. Periodic breathing (PB) during exercise is known as exercise oscillatory ventilation (EOV) and is characterized by the periods of hyperpnea and hypopnea without interposed apnea. EOV is a non-invasive parameter detected during submaximal cardiopulmonary exercise testing. Presence of EOV during exercise in HF patients indicates significant impairment in resting and exercise hemodynamic parameters. EOV is also an independent risk factor for poor prognosis in HF patients both with reduced and preserved ejection fraction irrespective of other gas exchange variables. Circulatory delay, increased chemosensitivity, pulmonary congestion and increased ergoreflex signaling have been proposed as the mechanisms underlying the generation of EOV in HF patients. There is no proven treatment of EOV but its reversal has been noted with phosphodiesterase inhibitors, exercise training and acetazolamide in relatively small studies. In this review, we discuss the mechanistic basis of PB during exercise and the clinical implications of recognizing PB patterns in patients with HF. PMID:27022457

  17. Plant shoots exhibit synchronized oscillatory motions

    PubMed Central

    Ciszak, Marzena; Masi, Elisa; Baluška, František; Mancuso, Stefano

    2016-01-01

    ABSTRACT In animals, the ability to move has evolved as an important means of protection from predators and for enhancing nutrient uptake. In the animal kingdom, an individual's movements may become coordinated with those of other individuals that belong to the same group, which leads, for example, to the beautiful collective patterns that are observed in flocks of birds and schools of fish or in animal migration. Land plants, however, are fixed to the ground, which limits their movement and, apparently, their interactions and collective behaviors. We show that emergent maize plants grown in a group exhibit synchronized oscillatory motions that may be in-phase or anti-phase. These oscillations occur in short bursts and appear when the leaves rupture from the coleoptile tip. The appearance of these oscillations indicates an abrupt increase in the plant growth rate, which may be associated with a sudden change in the energy uptake for photosynthesis. Our results suggest that plant shoots behave as a complex network of biological oscillators, interacting through biophysical links, e.g. chemical substances or electric signals. PMID:27829981

  18. Turbulent shear control with oscillatory bubble injection

    NASA Astrophysics Data System (ADS)

    Park, Hyun Jin; Oishi, Yoshihiko; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi

    2009-02-01

    It is known that injecting bubbles into shear flow can reduce the frictional drag. This method has advantages in comparison to others in simplicity of installation and also in environment. The amount of drag reduction by bubbles depends on the void fraction provided in the boundary layer. It means, however, that certain power must be consumed to generate bubbles in water, worsening the total power-saving performance. We propose oscillatory bubble injection technique to improve the performance in this study. In order to prove this idea of new type of drag reduction, velocity vector field and shear stress profile in a horizontal channel flow are measured by ultrasonic velocity profiler (UVP) and shear stress transducer, respectively. We measure the gas-liquid interface from the UVP signal, as well. This compound measurement with different principles leads to deeper understanding of bubble-originated drag reduction phenomena, in particular for unsteady process of boundary layer alternation. At these experiments, the results have demonstrated that the intermittency promotes the drag reduction more than normal continuous injection for the same void fraction supplied.

  19. Computer-assisted experiments with oscillatory circuits

    NASA Astrophysics Data System (ADS)

    Fernandes, J. C.; Ferraz, A.; Rogalski, M. S.

    2010-03-01

    A basic setup for data acquisition and analysis from an oscillatory circuit is described, with focus on its application as either low-pass, high-pass, band-pass or band-reject frequency filter. A homemade board containing the RLC elements allows for the interchange of some of them, in particular, for the easy change of the R value, and this makes apparent for the student its influence on the damping factor. The function generator operates in the swap frequency mode over a suitable frequency range and all the circuit parameters are chosen to provide a reasonable set of data for all the electronic filters studied. The output data are acquired through a commercially available DAQ board and data analysis is performed using a graphing and fitting workspace. The main objective is to develop a methodology of teaching the laboratory material through a computer-based environment devised to help students to appreciate how the governing equations work and to visualize their practical applications.

  20. Oscillatory traveling wave solutions to an attractive chemotaxis system

    NASA Astrophysics Data System (ADS)

    Li, Tong; Liu, Hailiang; Wang, Lihe

    2016-12-01

    This paper investigates oscillatory traveling wave solutions to an attractive chemotaxis system. The convective part of this system changes its type when crossing a parabola in the phase space. The oscillatory nature of the traveling wave comes from the fact that one far-field state is in the elliptic region and another in the hyperbolic region. Such traveling wave solutions are shown to be linearly unstable. Detailed construction of some traveling wave solutions is presented.

  1. Magnetic reconnection simulation using the 2. 5D em (electromagnetic) direct implicit code AVANTI

    SciTech Connect

    Hewett, D.W.; Francis, G.E.; Max, C.E.

    1988-08-30

    Collisionless reconnection of magnetic field lines depends upon electron inertia effects and details of the electron and ion distribution functions, thus requiring a kinetic description of both. Though traditional explicit PIC techniques provide this description in principle, they are severely limited in parameters by time step constraints. This parameter regime has been expanded by using the recently constructed 2.5 D electromagnetic code AVANTI in this work. The code runs stably with arbitrarily large {Delta}t and is quite robust with respect to large fluctuations occurring due to small numbers of particles per cell. We have found several qualitatively new features. The reconnection process is found to occur in distinct stages: early spontaneous reconnection fed by the free energy of an initial anisotropy in the electron component, coalescence of the resulting small-scale filaments of electron current, accompanied by electron jetting, and oscillatory flow of electrons through the magnetic X-point, superposed on continuing nonlinear growth of ion-mediated reconnection. The time evolution of stage is strongly dependent on M{sub i}/m{sub e}. 12 refs., 6 figs.

  2. GENERATION OF QUASI-PERIODIC WAVES AND FLOWS IN THE SOLAR ATMOSPHERE BY OSCILLATORY RECONNECTION

    SciTech Connect

    McLaughlin, J. A.; Verth, G.; Fedun, V.; Erdelyi, R. E-mail: gary.verth@northumbria.ac.uk E-mail: robertus@sheffield.ac.uk

    2012-04-10

    We investigate the long-term evolution of an initially buoyant magnetic flux tube emerging into a gravitationally stratified coronal hole environment and report on the resulting oscillations and outflows. We perform 2.5-dimensional nonlinear numerical simulations, generalizing the models of McLaughlin et al. and Murray et al. We find that the physical mechanism of oscillatory reconnection naturally generates quasi-periodic vertical outflows, with a transverse/swaying aspect. The vertical outflows consist of both a periodic aspect and evidence of a positively directed flow. The speed of the vertical outflow (20-60 km s{sup -1}) is comparable to those reported in the observational literature. We also perform a parametric study varying the magnetic strength of the buoyant flux tube and find a range of associated periodicities: 1.75-3.5 minutes. Thus, the mechanism of oscillatory reconnection may provide a physical explanation to some of the high-speed, quasi-periodic, transverse outflows/jets recently reported by a multitude of authors and instruments.

  3. The slowed brain: cortical oscillatory activity in hepatic encephalopathy.

    PubMed

    Butz, Markus; May, Elisabeth S; Häussinger, Dieter; Schnitzler, Alfons

    2013-08-15

    Oscillatory activity of the human brain has received growing interest as a key mechanism of large-scale integration across different brain regions. Besides a crucial role of oscillatory activity in the emergence of other neurological and psychiatric diseases, recent evidence indicates a key role in the pathophysiology of hepatic encephalopathy (HE). This review summarizes the current knowledge on pathological alterations of oscillatory brain activity in association with liver dysfunction and HE in the context of spontaneous brain activity, motor symptoms, sensory processing, and attention. The existing literature demonstrates a prominent slowing of the frequency of oscillatory activity as shown for spontaneous brain activity at rest, with respect to deficits of motor behavior and motor symptoms, and in the context of visual attention processes. The observed slowing extends across different subsystems of the brain and has been confirmed across different frequency bands, providing evidence for ubiquitous changes of oscillatory activity in HE. For example, the frequency of cortico-muscular coherence in HE patients appears at the frequency of the mini-asterixis (⩽12Hz), while cirrhotics without overt signs of HE show coherence similar to healthy subjects, i.e. at 13-30Hz. Interestingly, the so-called critical flicker frequency (CFF) as a measure of the processing of an oscillating visual stimulus has emerged as a useful tool to quantify HE disease severity, correlating with behavioral and neurophysiological alterations. Moreover, the CFF reliably distinguishes patients with manifest HE from cirrhotics without any signs of HE and healthy controls using a cut-off frequency of 39Hz. In conclusion, oscillatory activity is globally slowed in HE in close association with HE symptoms and disease severity. Although the underlying causal mechanisms are not yet understood, these results indicate that pathological changes of oscillatory activity play an important role in the

  4. Robust Concentration and Frequency Control in Oscillatory Homeostats

    PubMed Central

    Thorsen, Kristian; Agafonov, Oleg; Selstø, Christina H.; Jolma, Ingunn W.; Ni, Xiao Y.; Drengstig, Tormod; Ruoff, Peter

    2014-01-01

    Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable. Integral feedback is a control theoretic concept which has long been known to keep a controlled variable robustly (i.e. perturbation-independent) at a given set-point by feeding the integrated error back into the process that generates . The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators (“oscillatory homeostats”) to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and p53 signaling, and the involvement of circadian rhythms in homeostatic regulation. PMID:25238410

  5. Spatial structure of scrape-off-layer filaments near the midplane and X-point regions of Alcator C-Mod

    SciTech Connect

    Terry, J L; Zweben, S J; Umansky, M V; Cziegler, I; Grulke, O; LaBombard, B; Stotler, D P

    2008-05-22

    Movies of edge turbulence at both the outboard midplane and the region outboard of the typical lower X-point location in C-Mod have been obtained using Gas-Puff-Imaging together with fast-framing cameras. Intermittent turbulent structures, typically referred to as blobs or filaments, are observed in both locations. Near the midplane the filaments are roughly circular in cross-section, while in the X-point region they are highly elongated. Filament velocities in this region are {approx}3x faster than the radial velocities at the midplane, in a direction roughly normal to the local flux surfaces. The observations are consistent with the picture that the filaments arise in outboard region and, as a consequence of the rapid parallel diffusion of the potential perturbations, map along field lines. A simulation using the 3D BOUT turbulence code has been made, with the result that reproduces many of the spatial features observed in the experiment.

  6. Brain oscillatory signatures of motor tasks.

    PubMed

    Ramos-Murguialday, Ander; Birbaumer, Niels

    2015-06-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  7. Brain oscillatory signatures of motor tasks

    PubMed Central

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  8. Unsteady heat and mass transfer in MHD flow over an oscillatory stretching surface with Soret and Dufour effects

    NASA Astrophysics Data System (ADS)

    Zheng, Lian-Cun; Jin, Xin; Zhang, Xin-Xin; Zhang, Jun-Hong

    2013-10-01

    In this paper, we study the unsteady coupled heat and mass transfer of two-dimensional MHD fluid over a moving oscillatory stretching surface with Soret and Dufour effects. Viscous dissipation effects are adopted in the energy equation. A uniform magnetic field is applied vertically to the flow direction. The governing equations are reduced to non-linear coupled partial differential equations and solved by means of homotopy analysis method (HAM). The effects of some physical parameters such as magnetic parameter, Dufour number, Soret number, the Prandtl number and the ratio of the oscillation frequency of the sheet to its stretching rate on the flow and heat transfer characteristics are illustrated and analyzed.

  9. Linked and knotted chimera filaments in oscillatory systems

    NASA Astrophysics Data System (ADS)

    Lau, Hon Wai; Davidsen, Jörn

    2016-07-01

    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets.

  10. Synchronization of oscillatory chemiluminescence with pulsed light irradiation

    NASA Astrophysics Data System (ADS)

    Takayama, Shunsuke; Okano, Kunihiko; Asakura, Kouichi

    2013-01-01

    A chemical oscillator, the H2O2-KSCN-CuSO4-NaOH system, generates an oscillatory chemiluminescence when luminol is added to this system. Attempts were made to synchronize the oscillatory chemiluminescence with pulsed light irradiation. A period of the chemical oscillation became shorter by the irradiation of white and blue color light, while the oscillatory behavior was scarcely influenced by the irradiation of red light. Pulsed red and white or blue lights were irradiated on either the non-luminol or luminol-added H2O2-KSCN-CuSO4-NaOH system. Synchronization of the chemical oscillation was achieved for 25-30 min in the luminol-added system.

  11. Effects of End-Wall Vibration on Oscillatory Thermocapillary Flow

    NASA Technical Reports Server (NTRS)

    Bhowmick, J.; Kou, Q.; Anilkumar, A.; Grugel, R.; Wang, T.

    2000-01-01

    Our previous float zone experiments 1,2 with NaNO3 revealed that steady thermocapillary flow (TC flow) can be balanced/offset by the controlled surface streaming flow (CSS flow), induced by end-wall vibration. In the current experiments, we are examining the effects of surface streaming flow on steadying/stabilizing oscillatory thermocapillary flow. To this effect, we have set up a controlled NaNO3 half-zone experiment, where the processing parameters like zone dimensions and temperature gradients scan be easily varied to achieve oscillatory TC flow. In the present paper, we discuss the thermal signature of the TC flow, and how it is affected by imposition of CSS flow. The results will also include a comparison of the microstructure of a NaNO3- BaNO3 eutectic, processed under oscillatory TC conditions, with and without imposed CSS flow.

  12. Linked and knotted chimera filaments in oscillatory systems.

    PubMed

    Lau, Hon Wai; Davidsen, Jörn

    2016-07-01

    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets.

  13. Oscillatory localization of quantum walks analyzed by classical electric circuits

    NASA Astrophysics Data System (ADS)

    Ambainis, Andris; PrÅ«sis, Krišjānis; Vihrovs, JevgÄ`nijs; Wong, Thomas G.

    2016-12-01

    We examine an unexplored quantum phenomenon we call oscillatory localization, where a discrete-time quantum walk with Grover's diffusion coin jumps back and forth between two vertices. We then connect it to the power dissipation of a related electric network. Namely, we show that there are only two kinds of oscillating states, called uniform states and flip states, and that the projection of an arbitrary state onto a flip state is bounded by the power dissipation of an electric circuit. By applying this framework to states along a single edge of a graph, we show that low effective resistance implies oscillatory localization of the quantum walk. This reveals that oscillatory localization occurs on a large variety of regular graphs, including edge-transitive, expander, and high-degree graphs. As a corollary, high edge connectivity also implies localization of these states, since it is closely related to electric resistance.

  14. Resting-state oscillatory activity in autism spectrum disorders.

    PubMed

    Cornew, Lauren; Roberts, Timothy P L; Blaskey, Lisa; Edgar, J Christopher

    2012-09-01

    Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier Transform was applied and oscillatory activity examined from 1 to 120 Hz at 15 regional sources. Associations between oscillatory anomalies and symptom severity were probed. Children with ASD exhibited regionally specific elevations in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and high frequency (20-120 Hz) power, supporting an imbalance of neural excitation/inhibition as a neurobiological feature of ASD. Increased temporal and parietal alpha power was associated with greater symptom severity and thus is of particular interest.

  15. Fronto-Parietal Anatomical Connections Influence the Modulation of Conscious Visual Perception by High-Beta Frontal Oscillatory Activity

    PubMed Central

    Quentin, Romain; Chanes, Lorena; Vernet, Marine; Valero-Cabré, Antoni

    2015-01-01

    May white matter connectivity influence rhythmic brain activity underlying visual cognition? We here employed diffusion imaging to reconstruct the fronto-parietal white matter pathways in a group of healthy participants who displayed frequency-specific ameliorations of visual sensitivity during the entrainment of high-beta oscillatory activity by rhythmic transcranial magnetic stimulation over their right frontal eye field. Our analyses reveal a strong tract-specific association between the volume of the first branch of the superior longitudinal fasciculus and improvements of conscious visual detection driven by frontal beta oscillation patterns. These data indicate that the architecture of specific white matter pathways has the ability to influence the distributed effects of rhythmic spatio-temporal activity, and suggest a potentially relevant role for long-range connectivity in the synchronization of oscillatory patterns across fronto-parietal networks subtending the modulation of conscious visual perception. PMID:24554730

  16. Excito-oscillatory dynamics as a mechanism of ventricular fibrillation.

    PubMed

    Gray, Richard A; Huelsing, Delilah J

    2008-04-01

    The instabilities associated with reentrant spiral waves are of paramount importance to the initiation and maintenance of tachyarrhythmias, especially ventricular fibrillation (VF). In addition to tissue heterogeneities, there are only a few basic purported mechanisms of spiral wave breakup, most notably restitution. We test the hypothesis that oscillatory membrane properties act to destabilize spiral waves. We recorded transmembrane potential (V(m)) from isolated rabbit myocytes using a constant current stimulation protocol. We developed a mathematical model that included both the stable excitable equilibrium point at resting V(m) (-80 mV) and the unstable oscillatory equilibrium point at elevated V(m) (-10 mV). Spiral wave dynamics were studied in 2-dimensional grids using variants of the model. All models showed restitution and reproduced the experimental values of transmembrane resistance at rest and during the action potential plateau. Stable spiral waves were observed when the model showed only 1 equilibrium point. However, spatio-temporal complexity was observed if the model showed both excitable and oscillatory equilibrium points (i.e., excito-oscillatory models). The initial wave breaks resulted from oscillatory waves expanding in all directions; after a few beats, the patterns were characterized by a combination of unstable spiral waves and target patterns consistent with the patterns observed on the heart surface during VF. In our model, this VF-like activity only occurred when the single cell period of V(m) oscillations was within a specific range. The VF-like patterns observed in our excito-oscillatory models could not be explained by the existing proposed instability mechanisms. Our results introduce the important suggestion that membrane dynamics responsible for V(m) oscillations at elevated V(m) levels can destabilize spiral waves and thus may be a novel therapeutic target for preventing VF.

  17. The Oscillatory Nature of Rotating Convection in Liquid Metal

    NASA Astrophysics Data System (ADS)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  18. Strobes: pyrotechnic compositions that show a curious oscillatory combustion.

    PubMed

    Corbel, Justine M L; van Lingen, Joost N J; Zevenbergen, John F; Gijzeman, Onno L J; Meijerink, Andries

    2013-01-02

    Strobes are pyrotechnic compositions which show an oscillatory combustion; a dark phase and a flash phase alternate periodically. The strobe effect has applications in various fields, most notably in the fireworks industry and in the military area. All strobe compositions mentioned in the literature were discovered by trial and error methods and the mechanisms involved remain unclear. Many oscillatory systems such as Belousov-Zhabotinsky reactions, cool flames, self-propagating high-temperature synthesis have been observed and theories developed to elucidate their unstable behavior based on chemical interactions or based on physical processes. These systems are compared to experimental observations made on strobe mixtures.

  19. Oscillatory/chaotic thermocapillary flow induced by radiant heating

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Thompson, Robert L.; Vanzandt, David; Dewitt, Kenneth; Nash, Jon

    1994-01-01

    The objective of this paper is to conduct ground-based experiments to measure the onset conditions of oscillatory Marangoni flow in laser-heated silicone oil in a cylindrical container. For a single fluid, experimental data are presented using the aspect ratio and the dynamic Bond number. It is found that for a fixed aspect ratio, there seems to be an asymptotic limit of the dynamic Bond number beyond which no onset of flow oscillation could occur. Experimental results also suggested that there could be a lower limit of the aspect ratio below which there is no onset of oscillatory flow.

  20. Oscillatory coalescence of droplets in an alternating electric field

    NASA Astrophysics Data System (ADS)

    Choi, Suhwan; Saveliev, Alexei V.

    2017-06-01

    Partial coalescence of microdroplets is of interest for a number of microfluidic applications where a controlled fluid transfer from one droplet to another is required for mixing, dispensing, and metering of chemical and biological fluids. We report a phenomenon of oscillatory coalescence of water droplets situated in an alternating electric field. The oscillatory coalescence exists in a range of electric capillary numbers and fluid conductivities and proceeds through a finite number of cycles. Each cycle includes attractive and repulsion stages and results in a partial fluid transfer through a liquid bridge formed between droplets during the repulsion stage. We propose an energy model to describe the phenomenon and define its limit of existence.

  1. Oscillatory Positive Expiratory Pressure in Chronic Obstructive Pulmonary Disease.

    PubMed

    Svenningsen, Sarah; Paulin, Gregory A; Sheikh, Khadija; Guo, Fumin; Hasany, Aasim; Kirby, Miranda; Rezai, Roya Etemad; McCormack, David G; Parraga, Grace

    2016-01-01

    Evidence-based guidance for the use of airway clearance techniques (ACT) in chronic obstructive pulmonary disease (COPD) is lacking in-part because well-established measurements of pulmonary function such as the forced expiratory volume in 1s (FEV1) are relatively insensitive to ACT. The objective of this crossover study was to evaluate daily use of an oscillatory positive expiratory pressure (oPEP) device for 21-28 days in COPD patients who were self-identified as sputum-producers or non-sputum-producers. COPD volunteers provided written informed consent to daily oPEP use in a randomized crossover fashion. Participants completed baseline, crossover and study-end pulmonary function tests, St. George's Respiratory Questionnaire (SGRQ), Patient Evaluation Questionnaire (PEQ), Six-Minute Walk Test and (3)He magnetic resonance imaging (MRI) for the measurement of ventilation abnormalities using the ventilation defect percent (VDP). Fourteen COPD patients, self-identified as sputum-producers and 13 COPD-non-sputum-producers completed the study. Post-oPEP, the PEQ-ease-bringing-up-sputum was improved for sputum-producers (p = 0.005) and non-sputum-producers (p = 0.04), the magnitude of which was greater for sputum-producers (p = 0.03). There were significant post-oPEP improvements for sputum-producers only for FVC (p = 0.01), 6MWD (p = 0.04), SGRQ total score (p = 0.01) as well as PEQ-patient-global-assessment (p = 0.02). Clinically relevant post-oPEP improvements for PEQ-ease-bringing-up-sputum/PEQ-patient-global-assessment/SGRQ/VDP were observed in 8/7/9/6 of 14 sputum-producers and 2/0/3/3 of 13 non-sputum-producers. The post-oPEP change in (3)He MRI VDP was related to the change in PEQ-ease-bringing-up-sputum (r = 0.65, p = 0.0004) and FEV1 (r = -0.50, p = 0.009). In COPD patients with chronic sputum production, PEQ and SGRQ scores, FVC and 6MWD improved post-oPEP. FEV1 and PEQ-ease-bringing-up-sputum improvements were related to improved ventilation providing

  2. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response.

  3. Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: Experimental tests and modelling

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun

    2016-03-01

    This paper presents an experimental investigation on the behavior of magnetorheological (MR) fluids in high-frequency oscillatory squeeze mode and proposes a mathematical model to reveal the MR mechanism. A specific MR squeeze structure avoiding the cavitation effect is designed for the experimental tests. The magnetic field- and gap distance-dependent damping force of the MR squeeze structure is presented and compared with the dramatically large damping force under quasi-static excitations, a moderate damping force is observed at high frequencies. Subsequently, in order to interpret the behavior of MR fluids at high frequencies, employing the continuum media theory, a mathematical model is established with consideration of the fluid inertia and hysteresis property. The damping force comparison between the model and experimental tests indicates that in high-frequency oscillatory squeeze mode, the squeeze-strengthen effect does not work and the shear yield stress can be applied well to characterize the flow property of MR fluids. In addition, the hysteresis property has a significant influence on the damping performance.

  4. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  5. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

  6. Bed Morphology and Sediment Transport under Oscillatory Flow

    ERIC Educational Resources Information Center

    Pedocchi Miljan, Francisco

    2009-01-01

    Recent laboratory and field experiments have shown the inability of existing oscillatory flow ripple predictors to accurately predict both ripple size and planform geometry. However, at this time, only partial adaptations of these predictors have been proposed in the literature to account for the observed discrepancies with experimental data…

  7. Heisenberg uncertainty principles for an oscillatory integral operator

    NASA Astrophysics Data System (ADS)

    Castro, L. P.; Guerra, R. C.; Tuan, N. M.

    2017-01-01

    The main aim of this work is to obtain Heisenberg uncertainty principles for a specific oscillatory integral operator which representatively exhibits different parameters on their sine and cosine phase components. Additionally, invertibility theorems, Parseval type identities and Plancherel type theorems are also obtained.

  8. Oscillatory singular integrals and harmonic analysis on nilpotent groups

    PubMed Central

    Ricci, F.; Stein, E. M.

    1986-01-01

    Several related classes of operators on nilpotent Lie groups are considered. These operators involve the following features: (i) oscillatory factors that are exponentials of imaginary polynomials, (ii) convolutions with singular kernels supported on lower-dimensional submanifolds, (iii) validity in the general context not requiring the existence of dilations that are automorphisms. PMID:16593640

  9. Highly oscillatory waves in quasilinear hyperbolic-parabolic coupled equations

    NASA Astrophysics Data System (ADS)

    Meng, Yiping; Wang, Ya-Guang

    2017-08-01

    In this paper, we study the Cauchy problem for a two-speed quasi-linear hyperbolic-parabolic coupled system in several space variables with highly oscillatory initial data and small viscosity. By means of nonlinear geometric optics, we derive the asymptotic expansions of oscillatory waves and deduce that the leading oscillation profiles satisfy quasilinear hyperbolic-parabolic coupled equations with integral terms, from which we obtain that the oscillations of the solutions to the hyperbolic-parabolic equations are propagated along the characteristics of the hyperbolic operators, and partial profiles of oscillations are dissipated by the parabolic effect of the system. Furthermore, by using the energy method in weighted spaces, we rigorously justify the asymptotic expansion and obtain the existence of the highly oscillatory solutions in a time interval independent of the wavelength. Finally, we use this general result to study the behavior of oscillatory waves in the one dimensional compressible viscous flows and in a two-dimensional hyperbolic-parabolic system.

  10. Airflow synchronous with oscillatory acceleration reflects involuntary respiratory muscle activity.

    PubMed

    Brown, Richard E; Lee, Hsueh-Tze; Loring, Stephen H

    2004-06-25

    To explore mechanisms causing involuntary airflow synchronous with oscillatory axial whole body acceleration (oscillatory axial acceleration, OAA) such as that during locomotion, we monitored airflow, acceleration, and electromyograms (EMGs) of the rib cage and abdominal muscles in standing subjects undergoing OAA at 3, 6, and 9 Hz at accelerations of 0.1-0.95 g. Subjects relaxed or performed static respiratory maneuvers at constant lung volume with glottis open. Oscillatory airflows (0.01-3.01 s(-1)) synchronous with OAA were not consistent with expectations for a passive respiratory system, and were larger during active respiratory efforts than during relaxation. Peak inspiratory airflow usually preceded peak upward acceleration by 90-180 degrees. In 80% of runs with respiratory muscles voluntarily activated or relaxed, EMGs showed activity synchronous with OAA. Changes in periodic muscle activity coincided with changes in oscillatory airflow. We conclude that periodic muscle activity, probably a reflex response to body wall deformation during OAA, strongly influences the involuntary airflow synchronous with OAA.

  11. Bed Morphology and Sediment Transport under Oscillatory Flow

    ERIC Educational Resources Information Center

    Pedocchi Miljan, Francisco

    2009-01-01

    Recent laboratory and field experiments have shown the inability of existing oscillatory flow ripple predictors to accurately predict both ripple size and planform geometry. However, at this time, only partial adaptations of these predictors have been proposed in the literature to account for the observed discrepancies with experimental data…

  12. Oscillatory Dynamics Related to the Unagreement Pattern in Spanish

    ERIC Educational Resources Information Center

    Perez, Alejandro; Molinaro, Nicola; Mancini, Simona; Barraza, Paulo; Carreiras, Manuel

    2012-01-01

    Unagreement patterns consist in a person feature mismatch between subject and verb that is nonetheless grammatical in Spanish. The processing of this type of construction gives new insights into the understanding of agreement processes during language comprehension. Here, we contrasted oscillatory brain activity triggered by Unagreement in…

  13. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

  14. Frontal Oscillatory Dynamics Predict Feedback Learning and Action Adjustment

    ERIC Educational Resources Information Center

    van de Vijver, Irene; Ridderinkhof, K. Richard; Cohen, Michael X.

    2011-01-01

    Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after…

  15. Resting-State Oscillatory Activity in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Cornew, Lauren; Roberts, Timothy P. L.; Blaskey, Lisa; Edgar, J. Christopher

    2012-01-01

    Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier…

  16. Oscillatory Correlates of Retrieval-Induced Forgetting in Recognition Memory

    ERIC Educational Resources Information Center

    Spitzer, Bernhard; Hanslmayr, Simon; Opitz, Bertram; Mecklinger, Axel; Bauml, Karl-Heinz

    2009-01-01

    Retrieval practice on a subset of previously studied material enhances later memory for practiced material but can inhibit memory for related unpracticed material. The present study examines the effects of prior retrieval practice on evoked (ERPs) and induced (oscillatory power) measures of electrophysiological activity underlying recognition of…

  17. Oscillatory Dynamics Related to the Unagreement Pattern in Spanish

    ERIC Educational Resources Information Center

    Perez, Alejandro; Molinaro, Nicola; Mancini, Simona; Barraza, Paulo; Carreiras, Manuel

    2012-01-01

    Unagreement patterns consist in a person feature mismatch between subject and verb that is nonetheless grammatical in Spanish. The processing of this type of construction gives new insights into the understanding of agreement processes during language comprehension. Here, we contrasted oscillatory brain activity triggered by Unagreement in…

  18. Frontal Oscillatory Dynamics Predict Feedback Learning and Action Adjustment

    ERIC Educational Resources Information Center

    van de Vijver, Irene; Ridderinkhof, K. Richard; Cohen, Michael X.

    2011-01-01

    Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after…

  19. Unstable oscillatory Pierce modes of neutralized electron beams

    SciTech Connect

    Cary, J.R.; Lemons, D.S.

    1982-04-01

    Oscillatory modes of the Pierce system have been calculated. These modes are found to have growth rates comparable to the previously investigated purely growing modes. When these modes are included, it is found that the Pierce system is unstable for most values of ..omega../sub p/ L/V/sub 0/>..pi...

  20. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.

    PubMed

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W

    2017-10-01

    The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  2. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  3. Superconductivity and oscillatory magnetoresistance at a topological-insulator/chalcogenide interface

    NASA Astrophysics Data System (ADS)

    Dean, C. L.; Kunchur, M. N.; Shahesteh-Mogaddam, N.; Varner, S. D.; Knight, J. M.; Ivlev, B. I.; He, Q. L.; Liu, H.; Wang, J.; Lortz, R.; Sou, I. K.

    2017-05-01

    The Bi2Te3/FeTe heterostructure intersects several phenomena and key classes of materials in condensed matter physics: topological insulators, superconductivity, magnetism, and the physics of interfaces. While neither the topological insulator (Bi2Te3) nor the iron chalcogenide (FeTe) are themselves superconductors, superconductivity forms in a thin 7nm interfacial layer between the two. The restricted dimensionality and the extraordinarily conductive normal state, possibly sourced by the topologically protected surface states, have led to the observation of novel phenomena such as the Likharev vortex explosion and transitions in behavior resulting from the interplay between current induced depairing and the Berezinski-Kosterlitz-Thouless regime. Bi2Te3/FeTe also displays the anomalous oscillatory magnetoresistance phenomenon, which we had previously observed in cuprates.

  4. Experimental investigation of time-dependent cavita-tion in an oscillatory squeeze film

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyang; Sun, Meili; Wang, Wen; Sun, C. D.; Zhang, Zhiming; Wang, Xiaojing

    2004-01-01

    The occurrence of time-dependent cavitation and tensile stress in an oscillatory oil squeeze film were investigated experimentally. The test apparatus was a simple thrust bearing consisting of two parallel circular plates separated by a thin viscous oil film. During the test, one plate was at rest while the other (transparent) oscillated in a direction normal to its surface. This test configuration was chosen to avoid the rotational motion and complicated geometry of a squeeze film journal bearing. The frequency of oscillation was in the range of 5 to 50 Hz and was controlled by an electro-magnetic exciter. The process of cavity formation and its subsequent development was recorded by a high-speed video camera. Concomitant pressure in the oil film was measured both within and without the cavitation region. It was found that both tensile stress and cavities existed in a squeeze film under certain working conditions.

  5. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity

    PubMed Central

    Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834

  6. Oscillatory motion of sheared nanorods beyond the nematic phase

    NASA Astrophysics Data System (ADS)

    Strehober, David A.; Engel, Harald; Klapp, Sabine H. L.

    2013-07-01

    We study the role of the control parameter triggering nematic order (temperature or concentration) on the dynamical behavior of a system of nanorods under shear. Our study is based on a set of mesoscopic equations of motion for the components of the tensorial orientational order parameter. We investigate these equations via a systematic bifurcation analysis based on a numerical continuation technique, focusing on spatially homogeneous states. Exploring a wide range of parameters we find, unexpectedly, that states with oscillatory motion can exist even under conditions where the equilibrium system is isotropic. These oscillatory states are characterized by a wagging motion of the paranematic director, and they occur if the tumbling parameter is sufficiently small. We also present full nonequilibrium phase diagrams in the plane spanned by the concentration and the shear rate.

  7. Status asthmaticus treated by high-frequency oscillatory ventilation.

    PubMed

    Duval, E L; van Vught, A J

    2000-10-01

    We present a 2.5-year-old girl in severe asthma crisis who clinically deteriorated on conventional mechanical ventilation, but was successfully ventilated with high-frequency oscillatory ventilation (HFOV). Although HFOV is accepted as a technique for managing pediatric respiratory failure, its use in obstructive airway disease is generally thought to be contraindicated because of the risk of dynamic air-trapping. However, we suggest that obstructive airway disease can safely be managed with HFOV, provided certain conditions are met. These include the application of sufficiently high mean airway pressures to open and stent the airways ("an open airway strategy"), lower frequencies to overcome the greater attenuation of the oscillatory waves in the narrowed airways, permissive hypercapnia to enable reducing pressure swings as much as possible, longer expiratory times, and muscle paralysis to avoid spontaneous breathing.

  8. Oscillatory multiphase flow strategy for chemistry and biology.

    PubMed

    Abolhasani, Milad; Jensen, Klavs F

    2016-07-19

    Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities.

  9. Flow Loading Induces Oscillatory Trajectories in a Bloodstream Parasite

    PubMed Central

    Uppaluri, Sravanti; Heddergott, Niko; Stellamanns, Eric; Herminghaus, Stephan; Zöttl, Andreas; Stark, Holger; Engstler, Markus; Pfohl, Thomas

    2012-01-01

    The dynamics of isolated microswimmers are studied in bounded flow using the African trypanosome, a unicellular parasite, as the model organism. With the help of a microfluidics platform, cells are subjected to flow and found to follow an oscillatory path that is well fit by a sine wave. The frequency and amplitudes of the oscillatory trajectories are dependent on the flow velocity and cell orientation. When traveling in such a manner, trypanosomes orient upstream while downstream-facing cells tumble within the same streamline. A comparison with immotile trypanosomes demonstrates that self-propulsion is essential to the trajectories of trypanosomes even at flow velocities up to ∼40 times higher than their own swimming speed. These studies reveal important swimming dynamics that may be generally pertinent to the transport of microswimmers in flow and may be relevant to microbial pathogenesis. PMID:22995488

  10. Oscillatory Counter-Centrifugation: Effects of History and Lift Forces

    NASA Astrophysics Data System (ADS)

    Nadim, Ali

    2014-11-01

    This work is co-authored with my doctoral student Shujing Xu and is dedicated to the memory of my doctoral advisor Howard Brenner who enjoyed thought experiments related to rotating systems. Oscillatory Counter-Centrifugation refers to our theoretical discovery that within a liquid-filled container that rotates in an oscillatory manner about a fixed axis as a rigid body, a suspended particle can be made to migrate on average in the direction opposite to that of ordinary centrifugation. That is, a heavy (or light) particle can move toward (or away from) the rotation axis, when the frequency of oscillations is high enough. In this work we analyze the effects of the Basset history force and the Saffman lift force on particle trajectories and find that the counter-centrifugation phenomenon persists even when these forces are active.

  11. Uniformly high order accurate essentially non-oscillatory schemes 3

    NASA Technical Reports Server (NTRS)

    Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R.

    1986-01-01

    In this paper (a third in a series) the construction and the analysis of essentially non-oscillatory shock capturing methods for the approximation of hyperbolic conservation laws are presented. Also presented is a hierarchy of high order accurate schemes which generalizes Godunov's scheme and its second order accurate MUSCL extension to arbitrary order of accuracy. The design involves an essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is derived from a new interpolation technique that when applied to piecewise smooth data gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses an adaptive stencil of grid points and consequently the resulting schemes are highly nonlinear.

  12. Oscillatory motion of a viscous fluid in a porous medium

    NASA Astrophysics Data System (ADS)

    Siraev, R. R.

    2015-08-01

    An oscillatory flow of an incompressible fluid in a saturated porous medium in the presence of a solid inclusion has been theoretically studied. Unsteady filtration has been described by the Brinkman-Forchheimer equation, where inertial effects and terms with acceleration characteristic of high filtration rates and the presence of pulsations are taken into account. The convective part of the acceleration is responsible for nonlinear effects near macroinhomogeneities. These effects can play a noticeable role in unsteady flows in the porous medium, as is shown for the problem of a solid ball streamed by an oscillatory flow having a given velocity at infinity. The results indicate that a secondary averaged flow appears in the case of high frequencies and cannot be described by Darcy's or Forchheimer's filtration laws.

  13. Oscillatory motion of sheared nanorods beyond the nematic phase.

    PubMed

    Strehober, David A; Engel, Harald; Klapp, Sabine H L

    2013-07-01

    We study the role of the control parameter triggering nematic order (temperature or concentration) on the dynamical behavior of a system of nanorods under shear. Our study is based on a set of mesoscopic equations of motion for the components of the tensorial orientational order parameter. We investigate these equations via a systematic bifurcation analysis based on a numerical continuation technique, focusing on spatially homogeneous states. Exploring a wide range of parameters we find, unexpectedly, that states with oscillatory motion can exist even under conditions where the equilibrium system is isotropic. These oscillatory states are characterized by a wagging motion of the paranematic director, and they occur if the tumbling parameter is sufficiently small. We also present full nonequilibrium phase diagrams in the plane spanned by the concentration and the shear rate.

  14. Information-Optimal Transcriptional Response to Oscillatory Driving

    NASA Astrophysics Data System (ADS)

    Mugler, Andrew; Walczak, Aleksandra M.; Wiggins, Chris H.

    2010-07-01

    Intracellular transmission of information via chemical and transcriptional networks is thwarted by a physical limitation: The finite copy number of the constituent chemical species introduces unavoidable intrinsic noise. Here we solve for the complete probabilistic description of the intrinsically noisy response to an oscillatory driving signal. We derive and numerically verify a number of simple scaling laws. Unlike in the case of measuring a static quantity, response to an oscillatory signal can exhibit a resonant frequency which maximizes information transmission. Furthermore, we show that the optimal regulatory design is dependent on biophysical constraints (i.e., the allowed copy number and response time). The resulting phase diagram illustrates under what conditions threshold regulation outperforms linear regulation.

  15. Mobile bed thickness in skewed asymmetric oscillatory sheet flows

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Yong; Wang, Fujun

    2017-06-01

    A new instantaneous mobile bed thickness model is presented for sediment transport in skewed asymmetric oscillatory sheet flows. The proposed model includes a basic bed load part and a suspended load part related to the Shields parameter, and takes into account the effects of mass conservation, phase-lag, and asymmetric boundary layer development, which are important in skewed asymmetric flows but usually absent in classical models. The proposed model is validated by erosion depth and sheet flow layer thickness data in both steady and unsteady flows, and applied to a new instantaneous sediment transport rate formula. With higher accuracy than classical empirical models in steady flows, the new formula can also be used for instantaneous sediment transport rate prediction in skewed asymmetric oscillatory sheet flows.

  16. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  17. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  18. Light scattering studies of an electrorheological fluid in oscillatory shear

    SciTech Connect

    Martin, J.E.; Odinek, J.

    1995-12-31

    We have conducted a real time, two-dimensional light scattering study of the nonlinear dynamics of field-induced structures in an electrorheological fluid subjected to oscillatory shear. We have developed a kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This structural theory is then used to describe the nonlinear rheology of ER fluids.

  19. Diffusional Scaling Laws in Oscillatory Systems with Stochastic Forcing

    NASA Astrophysics Data System (ADS)

    Gao, J. B.; Tung, Wen-wen

    2003-08-01

    Rhythmic motions are ubiquitous in nature and in man-made systems, such as in low Reynolds number wake flows, breathing, and pathological tremors including essential and Parkinsonian. Due to the presence of external noise, those sinusoidal movements are typically only approximately rhythmic, or aperiodic, thus may be interpreted as chaotic. Although existing tests developed for the analysis of chaotic systems may be able to tell some qualitative differences between these stochastically driven oscillatory motions from true chaotic motions, those differences are often not very instructive, because in the study of chaos, one often monitors the motion on fairly short time scales, to be consistent with the one of the key features of chaos—short-term predictability. In this paper, we report a diffusional scaling law for stochastically driven oscillatory motions. By studying a number of measured data such as the fluctuating velocity signals in the near wake of a circular cylinder and pathological tremor data as well as numerically generated data, we shall show that the time scale range for the diffusional scaling law to be valid starts from about one to several tens of the mean oscillation period. Furthermore, we classify the diffusional oscillatory motions into three categories, depending on whether the diffusional exponent less than, equal to, or large than 0.5, and consider the mechanism for each category. It is found that the case with the exponent larger than 0.5 is an anomalous diffusion and is a pre-cursor for noise to induce chaos.

  20. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  1. [Recent results in research on oscillatory chemical reactions].

    PubMed

    Poros, Eszter; Kurin-Csörgei, Krisztina

    2014-01-01

    The mechanisms of the complicated periodical phenomenas in the nature (e.g. hearth beat, sleep cycle, circadian rhythms, etc) could be understood with using the laws of nonlinear chemical systems. In this article the newest result in the research of the subfield of nonlinear chemical dynamics aimed at constructing oscillatory chemical reactions, which are novel either in composition or in configuration, are presented. In the introductory part the concept of chemical periodicity is defined, then the forms as it can appear in time and space and the methods of their study are discussed. Detailed description of the experimental work that has resulted in two significant discoveries is provided. A method was developed to design pH-oscillators which are capable of operating under close conditions. The batch pH-oscillators are more convenient to use in some proposed applications than the equivalent CSTR variant. A redox oscillator that is new in composition was found. The permanganate oxidation of some amino acids was shown to take place according to oscillatory kinetics in a narrow range of the experimental parameters. The KMnO4 - glycine - Na2HPO4 system represents the first example in the family of manganese based oscillators where amino acids is involved. In the conclusion formal analogies between the simple chemical and some more complicated biological oscillatory phenomena are mentioned and the possibility of modeling periodic processes with the use of information gained from the studies of chemical oscillations is pointed out.

  2. Targeted training modifies oscillatory brain activity in schizophrenia patients.

    PubMed

    Popov, Tzvetan G; Carolus, Almut; Schubring, David; Popova, Petia; Miller, Gregory A; Rockstroh, Brigitte S

    2015-01-01

    Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ). Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditory-verbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG) oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4 weeks of auditory-verbal training (N = 19), similarly intense facial affect discrimination training (N = 19), or 4 weeks of treatment as usual (TAU, N = 19). Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b). Abnormally small alpha decrease 300-800 ms around S2 improved more after targeted auditory-verbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects.

  3. A generalized locomotion CPG architecture based on oscillatory building blocks.

    PubMed

    Yang, Zhijun; França, Felipe M G

    2003-07-01

    Neural oscillation is one of the most extensively investigated topics of artificial neural networks. Scientific approaches to the functionalities of both natural and artificial intelligences are strongly related to mechanisms underlying oscillatory activities. This paper concerns itself with the assumption of the existence of central pattern generators (CPGs), which are the plausible neural architectures with oscillatory capabilities, and presents a discrete and generalized approach to the functionality of locomotor CPGs of legged animals. Based on scheduling by multiple edge reversal (SMER), a primitive and deterministic distributed algorithm, it is shown how oscillatory building block (OBB) modules can be created and, hence, how OBB-based networks can be formulated as asymmetric Hopfield-like neural networks for the generation of complex coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also shown that the resulting Hopfield-like network possesses the property of reproducing the whole spectrum of different gaits intrinsic to the target locomotor CPGs. Although the new approach is not restricted to the understanding of the neurolocomotor system of any particular animal, hexapodal and quadrupedal gait patterns are chosen as illustrations given the wide interest expressed by the ongoing research in the area.

  4. Dynamic modes of red blood cells in oscillatory shear flow.

    PubMed

    Noguchi, Hiroshi

    2010-06-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ, and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (TB): θ rotates while the shape and ϕ oscillate. (iii) intermediate motion: both ϕ and θ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean shear rate with small shear oscillation, the shape and θ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.

  5. Dynamic modes of red blood cells in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2010-06-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ , and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (TB): θ rotates while the shape and ϕ oscillate. (iii) intermediate motion: both ϕ and θ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean shear rate with small shear oscillation, the shape and θ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.

  6. A structural classification of candidate oscillatory and multistationary biochemical systems.

    PubMed

    Blanchini, Franco; Franco, Elisa; Giordano, Giulia

    2014-10-01

    Molecular systems are uncertain: The variability of reaction parameters and the presence of unknown interactions can weaken the predictive capacity of solid mathematical models. However, strong conclusions on the admissible dynamic behaviors of a model can often be achieved without detailed knowledge of its specific parameters. In systems with a sign-definite Jacobian, for instance, cycle-based criteria related to the famous Thomas' conjectures have been largely used to characterize oscillatory and multistationary dynamic outcomes. We build on the rich literature focused on the identification of potential oscillatory and multistationary behaviors using parameter-free criteria. We propose a classification for sign-definite non-autocatalytic biochemical networks, which summarizes several existing results in the literature. We call weak (strong) candidate oscillators systems which can possibly (exclusively) transition to instability due to the presence of a complex pair of eigenvalues, while we call weak (strong) candidate multistationary systems those which can possibly (exclusively) transition to instability due to the presence of a real eigenvalue. For each category, we provide a characterization based on the exclusive or simultaneous presence of positive and negative cycles in the associated sign graph. Most realistic examples of biochemical networks fall in the gray area of systems in which both positive and negative cycles are present: Therefore, both oscillatory and bistable behaviors are in principle possible. However, many canonical example circuits exhibiting oscillations or bistability fall in the categories of strong candidate oscillators/multistationary systems, in agreement with our results.

  7. Lattice Boltzmann method for linear oscillatory noncontinuum flows

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Yap, Ying Wan; Sader, John E.

    2014-03-01

    Oscillatory gas flows are commonly generated by micro- and nanoelectromechanical systems. Due to their small size and high operating frequencies, these devices often produce noncontinuum gas flows. Theoretical analysis of such flows requires solution of the unsteady Boltzmann equation, which can present a formidable challenge. In this article, we explore the applicability of the lattice Boltzmann (LB) method to such linear oscillatory noncontinuum flows; this method is derived from the linearized Boltzmann Bhatnagar-Gross-Krook (BGK) equation. We formulate four linearized LB models in the frequency domain, based on Gaussian-Hermite quadratures of different algebraic precision (AP). The performance of each model is assessed by comparison to high-accuracy numerical solutions to the linearized Boltzmann-BGK equation for oscillatory Couette flow. The numerical results demonstrate that high even-order LB models provide superior performance over the greatest noncontinuum range. Our results also highlight intrinsic deficiencies in the current LB framework, which is incapable of capturing noncontinuum behavior at high oscillation frequencies, regardless of quadrature AP and the Knudsen number.

  8. Lattice Boltzmann method for linear oscillatory noncontinuum flows.

    PubMed

    Shi, Yong; Yap, Ying Wan; Sader, John E

    2014-03-01

    Oscillatory gas flows are commonly generated by micro- and nanoelectromechanical systems. Due to their small size and high operating frequencies, these devices often produce noncontinuum gas flows. Theoretical analysis of such flows requires solution of the unsteady Boltzmann equation, which can present a formidable challenge. In this article, we explore the applicability of the lattice Boltzmann (LB) method to such linear oscillatory noncontinuum flows; this method is derived from the linearized Boltzmann Bhatnagar-Gross-Krook (BGK) equation. We formulate four linearized LB models in the frequency domain, based on Gaussian-Hermite quadratures of different algebraic precision (AP). The performance of each model is assessed by comparison to high-accuracy numerical solutions to the linearized Boltzmann-BGK equation for oscillatory Couette flow. The numerical results demonstrate that high even-order LB models provide superior performance over the greatest noncontinuum range. Our results also highlight intrinsic deficiencies in the current LB framework, which is incapable of capturing noncontinuum behavior at high oscillation frequencies, regardless of quadrature AP and the Knudsen number.

  9. Targeted training modifies oscillatory brain activity in schizophrenia patients

    PubMed Central

    Popov, Tzvetan G.; Carolus, Almut; Schubring, David; Popova, Petia; Miller, Gregory A.; Rockstroh, Brigitte S.

    2015-01-01

    Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ). Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditory–verbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG) oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4 weeks of auditory–verbal training (N = 19), similarly intense facial affect discrimination training (N = 19), or 4 weeks of treatment as usual (TAU, N = 19). Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b). Abnormally small alpha decrease 300–800 ms around S2 improved more after targeted auditory–verbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects. PMID:26082889

  10. Analytic solution of an oscillatory migratory α2 stellar dynamo

    NASA Astrophysics Data System (ADS)

    Brandenburg, A.

    2017-02-01

    Context. Analytic solutions of the mean-field induction equation predict a nonoscillatory dynamo for homogeneous helical turbulence or constant α effect in unbounded or periodic domains. Oscillatory dynamos are generally thought impossible for constant α. Aims: We present an analytic solution for a one-dimensional bounded domain resulting in oscillatory solutions for constant α, but different (Dirichlet and von Neumann or perfect conductor and vacuum) boundary conditions on the two boundaries. Methods: We solve a second order complex equation and superimpose two independent solutions to obey both boundary conditions. Results: The solution has time-independent energy density. On one end where the function value vanishes, the second derivative is finite, which would not be correctly reproduced with sine-like expansion functions where a node coincides with an inflection point. The field always migrates away from the perfect conductor boundary toward the vacuum boundary, independently of the sign of α. Conclusions: The obtained solution may serve as a benchmark for numerical dynamo experiments and as a pedagogical illustration that oscillatory migratory dynamos are possible with constant α.

  11. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  12. Magnetic

    NASA Astrophysics Data System (ADS)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  13. Point spread function of the optical needle super-oscillatory lens

    SciTech Connect

    Roy, Tapashree; Rogers, Edward T. F.; Yuan, Guanghui; Zheludev, Nikolay I.

    2014-06-09

    Super-oscillatory optical lenses are known to achieve sub-wavelength focusing. In this paper, we analyse the imaging capabilities of a super-oscillatory lens by studying its point spread function. We experimentally demonstrate that a super-oscillatory lens can generate a point spread function 24% smaller than that dictated by the diffraction limit and has an effective numerical aperture of 1.31 in air. The object-image linear displacement property of these lenses is also investigated.

  14. Characterization of vertical mixing in oscillatory vegetated flows

    NASA Astrophysics Data System (ADS)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  15. A self-regulating biomolecular comparator for processing oscillatory signals

    PubMed Central

    Agrawal, Deepak K.; Franco, Elisa; Schulman, Rebecca

    2015-01-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  16. Inspiratory oscillatory flow with a portable ventilator: a bench study

    PubMed Central

    Frank, Guenther E; Trimmel, Helmut; Fitzgerald, Robert D

    2005-01-01

    Introduction We observed an oscillatory flow while ventilating critically ill patients with the Dräger Oxylog 3000™ transport ventilator during interhospital transfer. The phenomenon occurred in paediatric patients or in adult patients with severe airway obstruction ventilated in the pressure-regulated or pressure-controlled mode. As this had not been described previously, we conducted a bench study to investigate the phenomenon. Methods An Oxylog 3000™ intensive care unit ventilator and a Dräger Medical Evita-4 NeoFlow™ intensive care unit ventilator were connected to a Dräger Medical LS800™ lung simulator. Data were registered by a Datex-S5™ Monitor with a D-fend™ flow and pressure sensor, and were analysed with a laptop using S5-Collect™ software. Clinical conditions were simulated using various ventilatory modes, using various ventilator settings, using different filters and endotracheal tubes, and by changing the resistance and compliance. Data were recorded for 258 combinations of patient factors and respirator settings to detect thresholds for the occurrence of the phenomenon and methods to overcome it. Results Under conditions with high resistance in pressure-regulated ventilation with the Oxylog 3000™, an oscillatory flow during inspiration produced rapid changes of the airway pressure. The phenomenon resulted in a jerky inspiration with high peak airway pressures, higher than those set on the ventilator. Reducing the inspiratory flow velocity was effective to terminate the phenomenon, but resulted in reduced tidal volumes. Conclusion Oscillatory flow with potentially harmful effects may occur during ventilation with the Dräger Oxylog 3000™, especially in conditions with high resistance such as small airways in children (endotracheal tube internal diameter <6 mm) or severe obstructive lung diseases or airway diseases in adult patients. PMID:16137343

  17. Single Polymer Dynamics under Large Amplitude Oscillatory Extensional (LAOE) Flow

    NASA Astrophysics Data System (ADS)

    Zhou, Yuecheng; Schroeder, Charles M.

    Over the past two decades, advances in fluorescence imaging and particle manipulation have enabled the direct observation of single polymer dynamics in model flows such as shear flow and planar extensional flow. The vast majority of single polymer studies, however, has focused on chain dynamics using simple transient step forcing functions. In order to study single polymer dynamics in non-idealized model flows, there is a clear need to implement more complicated transient flow forcing functions. In bulk rheology, large amplitude oscillatory shear (LAOS) was widely used to study the linear and nonlinear viscoelasticity of materials, but not yet been applied to molecular rheology. In this work, we directly probe single polymer dynamics using oscillatory extensional flow in precisely controlled microfluidic devices. We are able to generate large and small amplitude sinusoidal oscillatory extensional flow in a cross-slot microfluidic device while imaging the conformational dynamics of a single polymer trapped at the stagnation point. In this flow, polymer chains are stretched, squeezed, and rotated between extensional/compressional axes in a highly dynamic and transient manner. Using this technique, we studied the dynamics and coil-stretch transition of a single λ-DNA as a function of the Weissenberg number (Wi) and Deborah number (De). Moreover, we use Brownian dynamics simulation to map a wide range of Pipkin space for polymers from linear steady-state conditions to non-linear unsteady-states. Our results reveal a critical Wi at the coil-stretch transition that is function of the De in LAOE flow. Department of Materials Science and Engineering.

  18. Hierarchical Organization of Gamma and Theta Oscillatory Dynamics in Schizophrenia

    PubMed Central

    Kirihara, Kenji; Rissling, Anthony J.; Swerdlow, Neal R.; Braff, David L.; Light, Gregory A.

    2012-01-01

    Background Schizophrenia patients have deficits across a broad range of important cognitive and clinical domains. Synchronization of oscillations in the gamma frequency range (~40 Hz) is associated with many normal cognitive functions and underlies at least some of the deficits observed in schizophrenia patients. Recent studies have demonstrated that gamma oscillations are modulated by the phase of theta waves, and this cross-frequency coupling indicates that a complex and hierarchical organization governs neural oscillatory dynamics. The aims of the present study were to determine if schizophrenia patients have abnormalities in the amplitude, synchrony, and cross-frequency coupling of gamma and theta oscillations in response to gamma-frequency steady-state stimulation and if abnormal neural oscillatory dynamics are associated with cognitive deficits in schizophrenia. Methods Schizophrenia patients (n = 234) and healthy control subjects (n = 188) underwent EEG testing in response to 40-Hz auditory steady-state stimulation. Cognitive functions were assessed with a battery of neuropsychological tests. Results Schizophrenia patients had significantly reduced gamma intertrial phase coherence, increased theta amplitude, and intact cross-frequency coupling relative to healthy control subjects. In schizophrenia patients, increased theta amplitude was associated with poor verbal memory performance. Conclusions Results suggest that schizophrenia patients have specific alterations in both gamma and theta oscillations but these deficits occur in the context of an intact hierarchical organization of their cross-frequency modulation in response to 40 Hz steady-state stimulation. Cortical oscillatory dynamics may be useful for understanding the neural mechanisms that underlie the disparate cognitive and functional impairments of schizophrenia. PMID:22361076

  19. Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia.

    PubMed

    Kirihara, Kenji; Rissling, Anthony J; Swerdlow, Neal R; Braff, David L; Light, Gregory A

    2012-05-15

    Schizophrenia patients have deficits across a broad range of important cognitive and clinical domains. Synchronization of oscillations in the gamma frequency range (~40 Hz) is associated with many normal cognitive functions and underlies at least some of the deficits observed in schizophrenia patients. Recent studies have demonstrated that gamma oscillations are modulated by the phase of theta waves, and this cross-frequency coupling indicates that a complex and hierarchical organization governs neural oscillatory dynamics. The aims of the present study were to determine if schizophrenia patients have abnormalities in the amplitude, synchrony, and cross-frequency coupling of gamma and theta oscillations in response to gamma-frequency steady-state stimulation and if abnormal neural oscillatory dynamics are associated with cognitive deficits in schizophrenia. Schizophrenia patients (n = 234) and healthy control subjects (n = 188) underwent electroencephalography testing in response to 40-Hz auditory steady-state stimulation. Cognitive functions were assessed with a battery of neuropsychological tests. Schizophrenia patients had significantly reduced gamma intertrial phase coherence, increased theta amplitude, and intact cross-frequency coupling relative to healthy control subjects. In schizophrenia patients, increased theta amplitude was associated with poor verbal memory performance. Results suggest that schizophrenia patients have specific alterations in both gamma and theta oscillations, but these deficits occur in the context of an intact hierarchical organization of their cross-frequency modulation in response to 40-Hz steady-state stimulation. Cortical oscillatory dynamics may be useful for understanding the neural mechanisms that underlie the disparate cognitive and functional impairments of schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Single polymer dynamics under large amplitude oscillatory extension

    NASA Astrophysics Data System (ADS)

    Zhou, Yuecheng; Schroeder, Charles M.

    2016-09-01

    Understanding the conformational dynamics of polymers in time-dependent flows is of key importance for controlling materials properties during processing. Despite this importance, however, it has been challenging to study polymer dynamics in controlled time-dependent or oscillatory extensional flows. In this work, we study the dynamics of single polymers in large-amplitude oscillatory extension (LAOE) using a combination of experiments and Brownian dynamics (BD) simulations. Two-dimensional LAOE flow is generated using a feedback-controlled stagnation point device known as the Stokes trap, thereby generating an oscillatory planar extensional flow with alternating principal axes of extension and compression. Our results show that polymers experience periodic cycles of compression, reorientation, and extension in LAOE, and dynamics are generally governed by a dimensionless flow strength (Weissenberg number Wi) and dimensionless frequency (Deborah number De). Single molecule experiments are compared to BD simulations with and without intramolecular hydrodynamic interactions (HI) and excluded volume (EV) interactions, and good agreement is obtained across a range of parameters. Moreover, transient bulk stress in LAOE is determined from simulations using the Kramers relation, which reveals interesting and unique rheological signatures for this time-dependent flow. We further construct a series of single polymer stretch-flow rate curves (defined as single molecule Lissajous curves) as a function of Wi and De, and we observe qualitatively different dynamic signatures (butterfly, bow tie, arch, and line shapes) across the two-dimensional Pipkin space defined by Wi and De. Finally, polymer dynamics spanning from the linear to nonlinear response regimes are interpreted in the context of accumulated fluid strain in LAOE.

  1. VINETA II: A linear magnetic reconnection experiment

    SciTech Connect

    Bohlin, H. Von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.

    2014-02-15

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

  2. Efficient implementation of essentially non-oscillatory shock capturing schemes

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Osher, Stanley

    1987-01-01

    In the computation of discontinuous solutions of hyperbolic conservation laws, TVD (total-variation-diminishing), TVB (total-variation-bounded) and the recently developed ENO (essentially non-oscillatory) schemes have proven to be very useful. In this paper two improvements are discussed: a simple TVD Runge-Kutta type time discretization, and an ENO construction procedure based on fluxes rather than on cell averages. These improvements simplify the schemes considerably -- especially for multi-dimensional problems or problems with forcing terms. Preliminary numerical results are also given.

  3. Parametric oscillatory instability in a signal-recycled LIGO interferometer

    SciTech Connect

    Vyatchanin, S P; Strigin, S E

    2007-12-31

    The undesirable effect of parametric oscillatory instability in a LIGO (Laser Interferometer Gravitational-Wave Observatory) laser gravitational-wave antenna with a signal-recirculation mirror is analysed in detail. The instability is manifested in excitation of the Stokes optical mode and elastic mechanical mode of the mirror. It is shown that, if the eigenfrequencies of Fabry-Perot resonators in the interferometer arms are different, the parametric instability is quite small due to a small passband band width. (fifth seminar in memory of d.n. klyshko)

  4. Adaptive wavelet-based recognition of oscillatory patterns on electroencephalograms

    NASA Astrophysics Data System (ADS)

    Nazimov, Alexey I.; Pavlov, Alexey N.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Sitnikova, Evgenija Y.

    2013-02-01

    The problem of automatic recognition of specific oscillatory patterns on electroencephalograms (EEG) is addressed using the continuous wavelet-transform (CWT). A possibility of improving the quality of recognition by optimizing the choice of CWT parameters is discussed. An adaptive approach is proposed to identify sleep spindles (SS) and spike wave discharges (SWD) that assumes automatic selection of CWT-parameters reflecting the most informative features of the analyzed time-frequency structures. Advantages of the proposed technique over the standard wavelet-based approaches are considered.

  5. Oscillatory cellular patterns in three-dimensional directional solidification

    DOE PAGES

    Tourret, D.; Debierre, J. -M.; Song, Y.; ...

    2015-09-11

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelatedmore » at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global

  6. Oscillatory cellular patterns in three-dimensional directional solidification

    SciTech Connect

    Tourret, D.; Debierre, J. -M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guerin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-09-11

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is

  7. Oscillatory tank-treading motion of erythrocytes in shear flows

    PubMed Central

    Dodson, W. R.; Dimitrakopoulos, P.

    2013-01-01

    In this paper, we investigate the oscillatory dynamics of the tank-treading motion of healthy human erythrocytes in shear flows with capillary number Ca = O(1) and small to moderate viscosity ratios 0.01 ≤ λ ≤ 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4 to 600 mPa s) and shear flow rates (2 to 560 s−1), and match those used in ektacytometry systems. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically. In addition, the flow rate increase dampens the oscillatory erythrocyte inclination but not its lengths oscillations (which show relative variations of about 5–8%). For a given flow rate, as the viscosity ratio increases, the erythrocyte length L contracts while its depth W increases (i.e. the cell becomes less deformed) with small decrease in the lengths variations. The average orientation angle of the erythrocyte shows a significant decrease with the viscosity ratio as does the angle oscillation while the oscillation period increases. These trends continue in higher viscosity ratios resulting eventually in the transition from a (weakly oscillatory) tank-treading motion to a tumbling motion. Our computations show that the erythrocyte width S, which exists in the shear plane, is practically invariant in time, capillary number and viscosity ratio, and corresponds to a real cell thickness of about 2.5 μm. Comparison of our computational results with the predictions of (low degree-of-freedom) theoretical models and experimental findings, suggests that the energy dissipation due to the shape-memory effects is more significant than the energy dissipation due to the membrane viscosity. Our work shows that the oscillatory tank-treading motion can account for more than 50% of the variations found in ektacytometry systems; thus, researchers who wish to study inherent

  8. Oscillatory nonhmic current drive for maintaining a plasma current

    DOEpatents

    Fisch, Nathaniel J.

    1986-01-01

    Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  9. Oscillatory nonohomic current drive for maintaining a plasma current

    DOEpatents

    Fisch, N.J.

    1984-01-01

    Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  10. Oscillatory dynamics in nanocavities with noninstantaneous Kerr response

    SciTech Connect

    Armaroli, Andrea; Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano; Rossi, Alfredo de; Combrie, Sylvain

    2011-11-15

    We investigate the impact of a finite response time of Kerr nonlinearities over the onset of spontaneous oscillations (self-pulsing) occurring in a nanocavity. The complete characterization of the underlying Hopf bifurcation in the full parameter space allows us to show the existence of a critical value of the response time and to envisage different regimes of competition with bistability. The transition from a stable oscillatory state to chaos is found to occur only in cavities which are detuned far off-resonance, which turns out to be mutually exclusive with the region where the cavity can operate as a bistable switch.

  11. Oscillatory behavior in a lattice prey-predator system.

    PubMed

    Lipowski, A

    1999-11-01

    Using Monte Carlo simulations we study a lattice model of a prey-predator system. We show that in the three-dimensional model populations of preys and predators exhibit coherent periodic oscillations but such a behavior is absent in lower-dimensional models. Finite-size analysis indicate that amplitude of these oscillations is finite even in the thermodynamic limit. This is an example of a microscopic model with stochastic dynamics which exhibits oscillatory behavior without any external driving force. We suggest that oscillations in our model are induced by some kind of stochastic resonance.

  12. Regulation of oscillatory contraction in insect flight muscle by troponin.

    PubMed

    Krzic, Uros; Rybin, Vladimir; Leonard, Kevin R; Linke, Wolfgang A; Bullard, Belinda

    2010-03-19

    Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca(2+). Indirect flight muscle has two TnC isoforms: F1 binding a single Ca(2+) in the C-domain, and F2 binding Ca(2+) in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca(2+). We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca(2+) concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca(2+) was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The K(d) was 1.01 muM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle.

  13. Dynamics of a population of oscillatory and excitable elements

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Kevin P.; Strogatz, Steven H.

    2016-06-01

    We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.

  14. About the oscillatory possibilities of the dynamical systems

    NASA Astrophysics Data System (ADS)

    Herrero, R.; Pi, F.; Rius, J.; Orriols, G.

    2012-08-01

    This paper may be ultimately described as an attempt to make feasible the evolutionary emergence of novelty in a supposedly deterministic world whose behavior is associated with that of the mathematical dynamical systems. It means philosophical implications that the paper needs to address, subsidiarily at least. The work was motivated by the observation of complex oscillatory behaviors in a family of physical devices and related mathematical models, for which there is no known explanation in the mainstream of nonlinear dynamics. The paper begins by describing a nonlinear mechanism of oscillatory mode mixing explaining such behaviors and, through its generalization to richer nonlinear vector fields, establishes a generic dynamical scenario with extraordinary oscillatory possibilities, including expansive growing scalability toward high dimensionalities and through nonlinear multiplicities. The scenario is then used to tentatively explain complex oscillatory behaviors observed in nature like those of turbulent fluids and living brains. Finally, by considering the scenario as a dynamic substrate underlying generic aspects of both the functioning and the genesis of complex behaviors in a supposedly deterministic world, a theoretical framework covering the evolutionary development of structural transformations in the time evolution of that world is built up. The analysis includes attempts to clarify the roles of items often invoked apropos of pathways to complexity like chaos, pattern formation, externally-driven bifurcations, hysteresis, irreversibility, and order through random fluctuations. Thermodynamics, as the exclusive field of physics in providing generic evolutionary criteria, is briefly and synthetically considered from the dynamical systems point of view by trying to elucidate its explanatory possibilities concerning the emergence of complexity. Quantum mechanics gets involved in two different ways: the lack of a dynamical systems perspective in the currently

  15. Oscillatory tank-treading motion of erythrocytes in shear flows

    NASA Astrophysics Data System (ADS)

    Dodson, W. R., III; Dimitrakopoulos, P.

    2011-07-01

    In this paper, we investigate the oscillatory dynamics of the tank-treading motion of healthy human erythrocytes in shear flows with capillary number Ca=O(1) and small to moderate viscosity ratios 0.01⩽⩽1.5. These conditions correspond to a wide range of surrounding medium viscosities (4-600 m Pa s) and shear flow rates (2-560s-1), and match those used in ektacytometry systems. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically. In addition, the flow rate increase dampens the oscillatory erythrocyte inclination but not its length oscillations (which show relative variations of about 5-8%). For a given flow rate, as the viscosity ratio increases, the erythrocyte length L contracts while its depth W increases (i.e., the cell becomes less deformed) with a small decrease in the length variations. The average orientation angle of the erythrocyte shows a significant decrease with the viscosity ratio as does the angle oscillation while the oscillation period increases. These trends continue in higher viscosity ratios resulting eventually in the transition from a (weakly oscillatory) tank-treading motion to a tumbling motion. Our computations show that the erythrocyte width S, which exists in the shear plane, is practically invariant in time, capillary number, and viscosity ratio, and corresponds to a real cell thickness of about 2.5μm. Comparison of our computational results with the predictions of (low degree-of-freedom) theoretical models and experimental findings, suggests that the energy dissipation due to the shape-memory effects is more significant than the energy dissipation due to the membrane viscosity. Our work shows that the oscillatory tank-treading motion can account for more than 50% of the variations found in ektacytometry systems; thus, researchers who wish to study inherent differences

  16. Torque characteristics of solid lubricated precision bearings during oscillatory motion

    NASA Astrophysics Data System (ADS)

    Bauer, Reinhold; Fleischauer, Paul D.

    1994-01-01

    MoS2 sputter-coated as well as uncoated (bare) angular-contact ball bearings were tested with various cage materials in a low-speed regime. Various self-lubricating polymers either neat or with additives and metallic cages were tested. The emphasis of this paper is to report on significant torque increases torque bumps observed during non-ball overlap, oscillatory motion for some race/cage combinations. In some race/cage combinations torque bumps can be minimized by proper run-in. No attempt was made to run the bearings to failure, although certain race/cage combinations did in fact fail before the end of test.

  17. Interhemispheric Synchronization of Oscillatory Neuronal Responses in Cat Visual Cortex

    NASA Astrophysics Data System (ADS)

    Engel, Andreas K.; Konig, Peter; Kreiter, Andreas K.; Singer, Wolf

    1991-05-01

    Neurons in area 17 of cat visual cortex display oscillatory responses that can synchronize across spatially separate columns in a stimulus-specific way. Response synchronization has now been shown to occur also between neurons in area 17 of the right and left cerebral hemispheres. This synchronization was abolished by section of the corpus callosum. Thus, the response synchronization is mediated by corticocortical connections. These data are compatible with the hypothesis that temporal synchrony of neuronal discharges serves to bind features within and between the visual hemifields.

  18. Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoxia; You, Xiong; Shi, Wei; Liu, Zhongli

    2012-01-01

    The ERKN methods proposed by H. Yang et al. [Comput. Phys. Comm. 180 (2009) 1777] are an important improvement of J.M. Franco's ARKN methods for perturbed oscillators [J.M. Franco, Comput. Phys. Comm. 147 (2002) 770]. This paper focuses on the symmetry and symplecticity conditions for ERKN methods solving oscillatory Hamiltonian systems. Two examples of symmetric and symplectic ERKN (SSERKN) methods of orders two and four respectively are constructed. The phase and stability properties of the new methods are analyzed. The results of numerical experiments show the robustness and competence of the SSERKN methods compared with some well-known methods in the literature.

  19. Particle interaction in oscillatory Couette and Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Fathi, Nima; Ingber, Marc; Vorobieff, Peter

    2013-11-01

    In oscillating Poiseuille flows of relatively dense suspensions, the direction of particle migration changes with the amplitude of oscillation. High amplitudes produce migration toward low shear rate regions of the flow, and vice versa, low oscillation amplitude results in particle migration toward the high shear rate region. We demonstrate that a similar behavior can be observed in a two-particle system, where it can be physically interpreted more easily, and discuss numerical modeling and experimental studies of oscillatory Poiseuille and Couette flows. This research is supported by the National Science Foundation and (in part) by a gift from the Procter & Gamble Company.

  20. Oscillatory cellular patterns in three-dimensional directional solidification

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Debierre, J.-M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guérin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-10-01

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted onboard the International Space Station have allowed us to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 min. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (i.e., low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exists, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both

  1. Translation invariance in a network of oscillatory units

    NASA Astrophysics Data System (ADS)

    Rao, A. Ravishankar; Cecchi, Guillermo A.; Peck, Charles C.; Kozloski, James R.

    2006-02-01

    One of the important features of the human visual system is that it is able to recognize objects in a scale and translational invariant manner. However, achieving this desirable behavior through biologically realistic networks is a challenge. The synchronization of neuronal firing patterns has been suggested as a possible solution to the binding problem (where a biological mechanism is sought to explain how features that represent an object can be scattered across a network, and yet be unified). This observation has led to neurons being modeled as oscillatory dynamical units. It is possible for a network of these dynamical units to exhibit synchronized oscillations under the right conditions. These network models have been applied to solve signal deconvolution or blind source separation problems. However, the use of the same network to achieve properties that the visual sytem exhibits, such as scale and translational invariance have not been fully explored. Some approaches investigated in the literature (Wallis, 1996) involve the use of non-oscillatory elements that are arranged in a hierarchy of layers. The objects presented are allowed to move, and the network utilizes a trace learning rule, where a time averaged output value is used to perform Hebbian learning with respect to the input value. This is a modification of the standard Hebbian learning rule, which typically uses instantaneous values of the input and output. In this paper we present a network of oscillatory amplitude-phase units connected in two layers. The types of connections include feedforward, feedback and lateral. The network consists of amplitude-phase units that can exhibit synchronized oscillations. We have previously shown that such a network can segment the components of each input object that most contribute to its classification. Learning is unsupervised and based on a Hebbian update, and the architecture is very simple. We extend the ability of this network to address the problem of

  2. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Avesani, Mirko; Cerini, Roberto; Milanese, Franco; Gasparini, Anna; Acler, Michele; Pozzi Mucelli, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2008-12-01

    Electroencephalography combined with functional magnetic resonance imaging (EEG-fMRI) may be used to identify blood oxygenation level dependent (BOLD) signal changes associated with physiological and pathological EEG event. In this study we used EEG-fMRI to determine the possible correlation between topographical movement-related EEG changes in brain oscillatory activity recorded from EEG electrodes over the scalp and fMRI-BOLD cortical responses in motor areas during finger movement. Thirty-two channels of EEG were recorded in 9 subjects during eyes-open condition inside a 1.5 T magnetic resonance (MR) scanner using a MR-compatible EEG recording system. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. For EEG data analysis we used the event-related-synchronization/desynchronization (ERS/ERD) approach to investigate where movement-related decreases in alpha and beta power are located. For image statistical analysis we used a general linear model (GLM) approach. There was a significant correlation between the positive-negative ratio of BOLD signal peaks and ERD values in the electrodes over the region of activation. We conclude that combined EEG-fMRI may be used to investigate movement-related oscillations of the human brain inside an MRI scanner and the movement-related changes in the EMG or EEG signals are useful to identify the brain activation sources responsible for BOLD-signal changes.

  3. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits

    NASA Astrophysics Data System (ADS)

    Gérard, Claude; Goldbeter, Albert

    2010-12-01

    We previously proposed an integrated computational model for the network of cyclin-dependent kinases (Cdks) that controls the dynamics of the mammalian cell cycle [C. Gérard and A. Goldbeter, "Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle," Proc. Natl. Acad. Sci. U.S.A. 106, 21643 (2009)]. The model contains four Cdk modules regulated by reversible phosphorylation, Cdk inhibitors, protein synthesis or degradation, and the balance between antagonistic effects of the tumor suppressor pRB and the transcription factor E2F. Increasing the level of a growth factor above a critical threshold triggers the transition from a quiescent, stable steady state to self-sustained oscillations in the Cdk network. These oscillations correspond to the repetitive, transient activation of cyclin D/Cdk4-6 in G1, cyclin E/Cdk2 at the G1/S transition, cyclin A/Cdk2 in S and at the S/G2 transition, and cyclin B/Cdk1 at the G2/M transition. This periodic, ordered activation of the various cyclin/Cdk complexes can be associated with cell proliferation. The multiplicity of feedback loops within the Cdk network is such that it contains at least four distinct circuits capable of producing oscillations. The tight coupling of these oscillatory circuits generally results in simple periodic behavior associated with repetitive cycles of mitosis or with endoreplication. The latter corresponds to multiple passages through the phase of DNA replication without mitosis. We show here that, as a result of the interaction between the multiple oscillatory circuits, particularly when attenuating the strength of the oscillatory module involving cyclin B/Cdk1, the model for the Cdk network can also produce complex periodic oscillations, quasiperiodic oscillations, and chaos. Numerical simulations based on limited explorations in parameter space nevertheless suggest that these complex modes of oscillatory behavior remain less common than the evolution to simple periodic

  4. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits.

    PubMed

    Gérard, Claude; Goldbeter, Albert

    2010-12-01

    We previously proposed an integrated computational model for the network of cyclin-dependent kinases (Cdks) that controls the dynamics of the mammalian cell cycle [C. Gérard and A. Goldbeter, "Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle," Proc. Natl. Acad. Sci. U.S.A. 106, 21643 (2009)]. The model contains four Cdk modules regulated by reversible phosphorylation, Cdk inhibitors, protein synthesis or degradation, and the balance between antagonistic effects of the tumor suppressor pRB and the transcription factor E2F. Increasing the level of a growth factor above a critical threshold triggers the transition from a quiescent, stable steady state to self-sustained oscillations in the Cdk network. These oscillations correspond to the repetitive, transient activation of cyclin D/Cdk4-6 in G1, cyclin E/Cdk2 at the G1/S transition, cyclin A/Cdk2 in S and at the S/G2 transition, and cyclin B/Cdk1 at the G2/M transition. This periodic, ordered activation of the various cyclin/Cdk complexes can be associated with cell proliferation. The multiplicity of feedback loops within the Cdk network is such that it contains at least four distinct circuits capable of producing oscillations. The tight coupling of these oscillatory circuits generally results in simple periodic behavior associated with repetitive cycles of mitosis or with endoreplication. The latter corresponds to multiple passages through the phase of DNA replication without mitosis. We show here that, as a result of the interaction between the multiple oscillatory circuits, particularly when attenuating the strength of the oscillatory module involving cyclin B/Cdk1, the model for the Cdk network can also produce complex periodic oscillations, quasiperiodic oscillations, and chaos. Numerical simulations based on limited explorations in parameter space nevertheless suggest that these complex modes of oscillatory behavior remain less common than the evolution to simple periodic

  5. Modulation instability of space-periodic oscillatory patterns

    NASA Astrophysics Data System (ADS)

    Nepomnyashchy, Alexander; Shklyaev, Sergey; Oron, Alexander

    2011-11-01

    Pattern selection and stability of regular (periodic in space) regimes is a classical problem with a number of applications in fluid dynamics. For steady bifurcations both competition of perfect periodic patterns and their stability with respect to slow modulations in space (e.g. Eckhaus or zigzag instabilities) are well studied. In contrast, in the case of Hopf bifurcation, usually only selection of patterns that possess a certain symmetry was analyzed (Silber & Knobloch, Nonlinearity, 1991; Roberts et al, Contemp. Math, 1986), whereas the set of Ginzburg-Landau equations was studied only in the one-dimensional case (rolls). Dealing with a wide class of problems, where the longwave oscillatory instability takes place, we consider a stability of regular oscillatory patterns that belong to either square or hexagonal lattices with respect to spatial modulations. By means of the multiple scale expansion, we derive instability criteria valid near the stability threshold. Useful classification of possible perturbations of a regular structure is introduced. As an example, the theory is applied to Marangoni convection in a layer of a binary mixture with the Soret effect. Domains of stability of space-periodic patterns are obtained.

  6. Frequency-dependent oscillatory neural profiles during imitation

    PubMed Central

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-01-01

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation. PMID:28393878

  7. Efficient energy-preserving integrators for oscillatory Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Wu, Xinyuan; Wang, Bin; Shi, Wei

    2013-02-01

    In this paper, we focus our attention on deriving and analyzing an efficient energy-preserving formula for the system of nonlinear oscillatory or highly oscillatory second-order differential equations q″(t)+Mq(t)=fq(t), where M is a symmetric positive semi-definite matrix with M≫1 and f(q)=-∇qU(q) is the negative gradient of a real-valued function U(q). This system is a Hamiltonian system with the Hamiltonian H(p,q)=1/2 pTp+1/2 >qTMq+U(q). The energy-preserving formula exactly preserves the Hamiltonian. We analyze in detail the properties of the energy-preserving formula and propose new efficient energy-preserving integrators in the sense of numerical implementation. The convergence analysis of the fixed-point iteration is presented for the implicit integrators proposed in this paper. It is shown that the convergence of implicit Average Vector Field methods is dependent on M, whereas the convergence of the new energy-preserving integrators is independent of M. The Fermi-Pasta-Ulam problem and the sine-Gordon equation are carried out numerically to show the competence and efficiency of the novel integrators in comparison with the well-known Average Vector Field methods in the scientific literature.

  8. Oscillatory correlates of moral decision-making: Effect of personality.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E

    2016-01-01

    The role of emotion in moral decision-making is still a matter of debate. Greene, Sommerville, Nystrom, Darley, and Cohen (2001) argue that 'personal' moral judgments are driven by emotional responses, while 'impersonal' judgments are largely driven by cognitive processes. In this study, oscillatory correlates of decision-making were compared in moral personal, moral impersonal, and nonmoral conditions, as well as in trials associated with utilitarian (i.e., favoring the 'greater good' over individual rights) and non-utilitarian choices. Event-related synchronization in delta and theta bands was greater in the right temporal lobe in personal than in both nonmoral and impersonal moral condition. Graph-theoretical analysis of connectivity patterns showed the prominent role of the orbitofrontal and cingulate cortices in personal moral decision-making, implying greater emotional and self-processing. Higher conscientiousness and intellect and lower behavioral activation were associated with greater difference in oscillatory responses between utilitarian and non-utilitarian choices in personal than in impersonal condition, indicating that sensitivity to moral issues and the ability to grasp the nuances of moral situation are essential for understanding the implications of utilitarian choices in personal and impersonal conditions.

  9. Cellular and oscillatory substrates of fear extinction learning.

    PubMed

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G

    2017-10-02

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.

  10. Oscillatory characteristics of metallic nanoparticles inside lipid nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, Fatemeh; Ansari, Reza; Darvizeh, Mansour

    2015-12-01

    This study is concerned with the oscillatory behavior of metallic nanoparticles, and in particular silver and gold nanoparticles, inside lipid nanotubes (LNTs) using the continuum approximation along with the 6-12 Lennard-Jones (LJ) potential function. The nanoparticle is modeled as a dense sphere and the LNT is assumed to be comprised of six layers including two head groups, two intermediate layers and two tail groups. To evaluate van der Waals (vdW) interactions, analytical expressions are first derived through undertaking surface and volume integrals which are then validated by a fully numerical scheme based on the differential quadrature (DQ) technique. Using the actual force distribution between the two interacting molecules, the equation of motion is directly solved utilizing the Runge-Kutta numerical integration scheme to arrive at the time history of displacement and velocity of the inner core. Also, a semi-analytical expression incorporating both geometrical parameters and initial conditions is introduced for the precise evaluation of oscillation frequency. A comprehensive study is conducted to gain an insight into the influences of nanoparticle radius, LNT length, head and tail group thicknesses and initial conditions on the oscillatory behavior of the metallic nanoparticles inside LNTs. It is found that the escape velocity and oscillation frequency of silver nanoparticles are higher than those of gold ones. It is further shown that the oscillation frequency is less affected by the tail group thickness when compared to the head group thickness.

  11. Propulsion of micro-structures in Oscillatory Stokes Flow

    NASA Astrophysics Data System (ADS)

    Jo, Ikhee; Huang, Yangyang; Zimmerman, Walter; Kanso, Eva

    2015-11-01

    Drug delivery often necessitates specific site-targeting within the human body. The use of micro and/or nano devices swimming through the bloodstream provides an attractive mechanism for targeted drug targeting, however the design and practical implementation of such devices remain very challenging. Inspired by flapping wings, we construct a two-dimensional wedge-like device, consisting of two links connected by a linear torsional spring and released in an oscillatory Stokes flow. We vary the stiffness and rest angle of the linear spring and the oscillation amplitude and frequency of the background flow to explore the behavior of the device. We find that the device achieves a net displacement, or propulsion, in oscillatory flows even when no elastic energy is stored initially, thus breaking Purcell's scallop's theorem. More importantly, the vehicle tends to align with the background flow under perturbations. We conclude by commenting on how to control the parameters of the device and the fluid to achieve desired behavior of the device. These findings may have significant implications on the design of micro devices in viscous fluids.

  12. The oscillatory network of simple repetitive bimanual movements.

    PubMed

    Pollok, Bettina; Südmeyer, Martin; Gross, Joachim; Schnitzler, Alfons

    2005-09-01

    Bimanual synchronization relies on the precisely coordinated interplay of both hands. It is assumed that during temporal bimanual coordination, timing signals controlling each hand might be integrated. Although a specific role of the cerebellum for this integration process has been suggested, its neural foundations are still poorly understood. Since dynamic interactions between spatially distributed neural activity are reflected in oscillatory neural coupling, the aim of the present study was to characterize the dynamic interplay between participating brain structures. More specifically, the study aimed at investigating whether any evidence for the integration of bilateral cerebellar hemispheres could be found. Seven right-handed subjects synchronized bimanual index finger-taps to a regular pacing signal. We recorded continuous neuromagnetic activity using a 122-channel whole-head neuromagnetometer and surface EMGs of the first dorsal interosseus (FDI) muscle of both hands. Coherence analysis revealed that an oscillatory network coupling at 8-12 Hz subserves task execution. The constituents are bilateral primary sensorimotor and premotor areas, posterior-parietal and primary auditory cortex, thalamus and cerebellum. Coupling occurred at different cortical and subcortical levels within and between both hemispheres. Coupling between primary sensorimotor and premotor areas was observed directly and indirectly via the thalamus. Coupling direction suggests that information was integrated within the left premotor cortex corroborating a specific role of the left premotor cortex for motor control in right-handers. Most importantly, our data indicate strong coupling between both cerebellar hemispheres substantiating the hypothesis that cerebellar signals might be integrated during task execution.

  13. In silico evolution of oscillatory dynamics in biochemical networks

    NASA Astrophysics Data System (ADS)

    Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2015-03-01

    We are studying in silico evolution of complex, oscillatory network dynamics within the framework of a minimal mutational model of protein-protein interactions. In our model we consider two different types of proteins, kinase (activator) and phosphatase(inhibitor). In our model. each protein can either be phosphorylated(active) or unphospphorylated (inactive), represented by binary strings. Active proteins can modify their target based on the Michaelis-Menten kinetics of chemical equation. Reaction rate constants are directly related to sequence dependent protein-protein interaction energies. This model can be stuided for non-trivial behavior e.g. oscillations, chaos, multiple stable states. We focus here on biochemical oscillators; some questions we will address within our framework include how the oscillatory dynamics depends on number of protein species, connectivity of the network, whether evolution can readily converge on a stable oscillator if we start with random intitial parameters, neutral evolution with additional protein components and general questions of robustness and evolavability.

  14. Bistable flapping of flexible flyers in oscillatory flow

    NASA Astrophysics Data System (ADS)

    Huang, Yangyang; Kanso, Eva

    2016-11-01

    Biological and bio-inspired flyers move by shape actuation. The direct control of shape variables for locomotory purposes is well studied. Less is known about indirect shape actuation via the fluid medium. Here, we consider a flexible Λ-flyer in oscillatory flow that is free to flap and rotate around its fixed apex. We study its motion in the context of the inviscid vortex sheet model. We first analyze symmetric flapping about the vertical axis of gravity. We find that there is a finite value of the flexibility that maximizes both the flapping amplitude and elastic energy storage. Our results show that rather than resonance, the flyer relies on fluidic effects to optimize these two quantities. We then perturb the flyer away from the vertical and analyze its stability. Four distinct types of rolling behavior are identified: mono-stable, bistable, bistable oscillatory rotations and chaotic dynamics. We categorize these types of behavior in terms of the flyer's and flow parameters. In particular, the transition from mono-stable to bistable behavior occurs at a constant value of the product of the flow amplitude and acceleration. This product can be interpreted as the ratio of fluidic drag to gravity, confirming the fluid role in this transition.

  15. Oscillatory shearing behavior of rocket leaves powder incorporated dough

    NASA Astrophysics Data System (ADS)

    Almusallam, Abdulwahab Salem; Ahmed, Jasim; Nahar, Shamsun; Chacko, Siby

    2016-05-01

    Dough blended with rocket leaves powder was subjected to small and large amplitude oscillatory shears. Small amplitude oscillatory shear data were fitted to a discrete relaxation model of elastic solids and to a critical gel model. The small amplitude relaxation spectrum was thereafter used to calculate the LAOS predictions of various large deformation models. The LAOS theoretical calculations using the Phan-Thien model showed good agreement with the first harmonic stress data, and only qualitative agreement with the third and the fifth harmonic stress values. Lissajous curves showed dissimilarity in shape between the experimental data and Phan-Thien model. The network model of Sim et al. (2003). Did not have the butterfly shape displayed in the Phan-Thien model, but it provided a worse fit to stress harmonics than the Phan-Thien model. An improved damage function was proposed, where time effect on network damage was taken into consideration, and fits to stress harmonics and to Lissajous stress-strain curves were significantly improved.

  16. Emergence of self-organised oscillatory domains in fungal mycelia.

    PubMed

    Tlalka, M; Bebber, D P; Darrah, P R; Watkinson, S C; Fricker, M D

    2007-11-01

    Fungi play a central role in the nutrient cycles of boreal and temperate forests. In these biomes, the saprotrophic wood-decay fungi are the only organisms that can completely decompose woody plant litter. In particular, cord-forming basidiomycete fungi form extensive mycelial networks that scavenge scarce mineral nutrients and translocate them over long distances to exploit new food resources. Despite the importance of resource allocation, there is limited information on nutrient dynamics in these networks, particularly for nitrogen, as there is no suitable radioisotope available. We have mapped N-translocation using photon-counting scintillation imaging of the non-metabolised amino acid analogue, (14)C-aminoisobutyrate. We describe a number of novel phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional N-transport, abrupt switching between different pre-existing transport routes, and emergence of locally synchronised, oscillatory phase domains. It is possible that such self-organised oscillatory behaviour is a mechanism to achieve global co-ordination in the mycelium.

  17. Oscillatory neural networks for robotic yo-yo control.

    PubMed

    Jin, Hui-Liang; Zacksenhouse, M

    2003-01-01

    Different networks of coupled oscillators were developed for open-loop control of periodic motion. However, some tasks, like yo-yo playing, are open-loop unstable and require proper phase locking to stabilize. Given the phase-locking property of coupled oscillators, we investigate their application to closed-loop control of open-loop unstable systems, concentrating on the challenging task of yo-yo control. In particular, we focus on pulse-coupling, where the yo-yo sends a feedback upon reaching the bottom of the string and the onset of the oscillatory cycle is used to trigger the movement. Four networks involving either a stand-alone or a circuit level oscillator with either excitatory or inhibitory couplings are considered. Working curve analysis indicates that three of the networks cannot stabilize the yo-yo. The fourth network, which is based on a circuit-level oscillator, is analyzed using the return map and the region of stability is determined and verified by simulations. The resulting pulse-coupled oscillatory control provides a model-free control strategy that operates with an easy-to-measure low-rate feedback.

  18. Frequency-dependent oscillatory neural profiles during imitation.

    PubMed

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-04-10

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation.

  19. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    PubMed

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity.

  20. Origin of spontaneous wave generation in an oscillatory chemical system

    SciTech Connect

    Zhang, Yi-Xue; Foerster, P.; Ross, J.

    1992-10-29

    The origin of spontaneously generated chemical waves in an oscillatory Belousov-Zhabotinskii reaction has been investigated by numerical calculations of the deterministic reaction-diffusion equations of a modified Oregonator model and by equilibrium stochastic calculations. From numerical calculations, we obtain threshold perturbations in the phase of oscillations and in the concentrations of HBrO{sub 2} and Br{sup {minus}} within areas of space with varying radii necessary to initiate trigger waves. Inward propagating trigger waves initiated by a phase shift in the perturbed region with respect to the bulk solution have been observed in the calculations for the first time. Perturbations smaller than the threshold perturbations or in regions with smaller radii lead to phase-diffusion waves. Our equilibrium stochastic calculations show that the recurrence time for a thermal fluctuation to induce a change in the HBrO{sub 2} concentration of sufficient magnitude within a sufficient volume for a trigger wave to propagate is many orders of magnitude larger than the observation time of traveling wave experiments. We concluded that an internal thermal fluctuation is highly unlikely to generate a trigger wave in an oscillatory chemical solution. 22 refs., 5 figs., 7 tabs.

  1. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  2. Diffusive heat and mass transfer in oscillatory pipe flow

    NASA Astrophysics Data System (ADS)

    Brereton, G. J.; Jalil, S. M.

    2017-07-01

    The enhancement of axial heat and mass transfer by laminar flow oscillation in pipes with axial gradients in temperature and concentration has been studied analytically for the cases of insulated and conducting walls. The axial diffusivity can exceed its molecular counterpart by many orders of magnitude, with a quadratic scaling on the pressure-gradient amplitude and the Prandtl or Schmidt number, and is a bimodal function of oscillatory frequency: quasi-steady behavior at low frequencies and a power-law decay at high frequencies. When the pipe wall is conductive and of sufficient thickness, and the flow oscillation is quasi-steady, the axial diffusivity may be enhanced by a further factor of about ten as a result of increased radial diffusion, for liquid and gas flows in pipes with walls with a wide range of thermal conductivities. Criteria for the wall thickness required to achieve this additional enhancement and for the limits placed on the validity of these solutions by viscous dissipation are also deduced. When the heat transfer per unit flow work achieved by oscillatory pipe flow is contrasted with that of a conventional parallel-flow heat exchanger, it is found to be of comparable size and the ratio of the two is shown to be a function only of the pipe geometry, heat-exchanger mean velocity, and fluid viscosity.

  3. Cortical oscillatory dynamics in a social interaction model.

    PubMed

    Knyazev, Gennady G; Slobodskoj-Plusnin, Jaroslav Y; Bocharov, Andrey V; Pylkova, Liudmila V

    2013-03-15

    In this study we sought to investigate cortical oscillatory dynamics accompanying three major kinds of social behavior: aggressive, friendly, and avoidant. Behavioral and EEG data were collected in 48 participants during a computer game modeling social interactions with virtual 'persons'. 3D source reconstruction and independent component analysis were applied to EEG data. Results showed that social behavior was partly reactive and partly proactive with subject's personality playing an important role in shaping this behavior. Most salient differences were found between avoidance and approach behaviors, whereas the two kinds of approach behavior (i.e., aggression and friendship) did not differ from each other. Comparative to avoidance, approach behaviors were associated with higher induced responses in most frequency bands which were mostly observed in cortical areas overlapping with the default mode network. The difference between approach- and avoidance-related oscillatory dynamics was more salient in subjects predisposed to approach behaviors (i.e., in aggressive or sociable subjects) and was less pronounced in subjects predisposed to avoidance behavior (i.e., in high trait anxiety scorers). There was a trend to higher low frequency phase-locking in motor area in approach than in avoid condition. Results are discussed in light of the concept linking induced responses with top-down and evoked responses with bottom-up processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Enhanced Gamma Oscillatory Activity in Rats with Chronic Inflammatory Pain

    PubMed Central

    Wang, Jing; Wang, Jing; Xing, Guo-Gang; Li, Xiaoli; Wan, You

    2016-01-01

    It has been reported that oscillatory gamma activity participates in brief acute pain and tonic ongoing pain. It is of great interest to determine whether the gamma activity is involved in chronic pain since chronic pain is a more severe pathological condition characterized by pain persistency. To investigate the oscillatory gamma activity in chronic pain, in the present study, we recorded spontaneous electrocorticogram (ECoG) signals during chronic pain development in rats with chronic inflammatory pain induced by monoarthritis. Power spectrum analysis of ECoG data showed that gamma power increased significantly at the late stage of chronic inflammatory pain. The increased gamma activity occurred mainly at electrodes over primary somatosensory cortices. In rats with chronic pain, the gamma power was positively correlated with the hyperalgesia measured by laser energy that elicited hindpaw withdrawal response. Furthermore, an increased coupling between the amplitude of gamma power and the phase of theta oscillations was observed in chronic inflammatory pain condition. These results indicate an enhanced spontaneous gamma activity in chronic pain and suggest a potential biomarker for the severity of chronic pain. PMID:27847461

  5. Yielding of colloidal gels under steady and oscillatory shear

    NASA Astrophysics Data System (ADS)

    Petekidis, George; Moghimi, Esmaeel; Koumakis, Nick; Forth Team

    2015-03-01

    The structural and rheological properties of intermediate volume fraction colloid polymer gels are examined during and after steady and oscillatory shear flow using rheometry, confocal microscopy, light scattering and Brownian Dynamics simulations. Our main objective is to rationalize the microscopic mechanisms through which one can tune the mechanical properties of such metastable colloidal gels by imposing different types of external shear and flow. Experimentally, the gels consist of model hard sphere particle dispersions of φ = 0.44 with the addition of non-adsorbing linear chains, while BD simulations are conducted for hard spheres with the superposition of an AO potential for depletion attractions. Structural analysis shows that variation of the applied shear rate produces strong changes in the structure of the gels both when under shear and during gel reformation at cessation. Larger rates are characterized by disperse particles and the total breakage of structures at rest, which after cessation evolve with time into strong solids with relatively homogeneous structures. However, smaller rates show large inhomogeneous structures under flow, which do not evolve after cessation and additionally exhibit reduced elasticity and as such are weaker solids. Furthermore oscillatory shear is far more efficient than steady shear creating gels with stronger differences in their elastic modulus. Thus by tuning the way a gel is sheared, one may vary the final strength and structure of the resulting gel. Work in collaboration with R. Besseling, W. C. K. Poon and J. F. Brady

  6. Order restricted inference for oscillatory systems for detecting rhythmic signals

    PubMed Central

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A.; Peddada, Shyamal D.

    2016-01-01

    Motivation: Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic. Availability and Implementation: A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm. Contact: peddada@niehs.nih.gov PMID:27596593

  7. Constitutive sensitivity of the oscillatory behaviour of hyperelastic cylindrical shells

    NASA Astrophysics Data System (ADS)

    Aranda-Iglesias, D.; Vadillo, G.; Rodríguez-Martínez, J. A.

    2015-12-01

    Free and forced nonlinear radial oscillations of a thick-walled cylindrical shell are investigated. The shell material is taken to be incompressible and isotropic within the framework of finite nonlinear elasticity. In comparison with previous seminal works dealing with the dynamic behaviour of hyperelastic cylindrical tubes, in this paper we have developed a broader analysis on the constitutive sensitivity of the oscillatory response of the shell. In this regard, our investigation is inspired by the recent works of Bucchi and Hearn (2013) [28,29], who carried out a constitutive sensitivity analysis of similar problem with hyperelastic cylindrical membranes subjected to static inflation. In the present paper we consider two different Helmholtz free-energy functions to describe the material behaviour: Mooney-Rivlin and Yeoh constitutive models. We carry out a systematic comparison of the results obtained by application of both constitutive models, paying specific attention to the critical initial and loading conditions which preclude the oscillatory response of the cylindrical tube. It has been found that these critical conditions are strongly dependent on the specific constitutive model selected, even though both Helmholtz free-energy functions were calibrated using the same experimental data.

  8. A learning algorithm for oscillatory cellular neural networks.

    PubMed

    Ho, C Y.; Kurokawa, H

    1999-07-01

    We present a cellular type oscillatory neural network for temporal segregation of stationary input patterns. The model comprises an array of locally connected neural oscillators with connections limited to a 4-connected neighborhood. The architecture is reminiscent of the well-known cellular neural network that consists of local connection for feature extraction. By means of a novel learning rule and an initialization scheme, global synchronization can be accomplished without incurring any erroneous synchrony among uncorrelated objects. Each oscillator comprises two mutually coupled neurons, and neurons share a piecewise-linear activation function characteristic. The dynamics of traditional oscillatory models is simplified by using only one plastic synapse, and the overall complexity for hardware implementation is reduced. Based on the connectedness of image segments, it is shown that global synchronization and desynchronization can be achieved by means of locally connected synapses, and this opens up a tremendous application potential for the proposed architecture. Furthermore, by using special grouping synapses it is demonstrated that temporal segregation of overlapping gray-level and color segments can also be achieved. Finally, simulation results show that the learning rule proposed circumvents the problem of component mismatches, and hence facilitates a large-scale integration.

  9. Decrease of Delta Oscillatory Responses in Cognitively Normal Parkinson's Disease.

    PubMed

    Emek-Savaş, Derya Durusu; Özmüş, Gülin; Güntekin, Bahar; Dönmez Çolakoğlu, Berril; Çakmur, Raif; Başar, Erol; Yener, Görsev G

    2017-09-01

    Parkinson's disease (PD) is a common progressive neurodegenerative disorder. This study aims to compare sensory-evoked oscillations (SEOs) and event-related oscillations (EROs) of visual modality in cognitively normal PD patients and healthy controls. Sixteen PD and 16 age-, gender-, and education-matched healthy controls participated in the study. A simple flashlight was used for SEO and a classical visual oddball paradigm was used for target ERO. Oscillatory responses in the delta frequency range (0.5-3.5 Hz) were examined. Significantly lower delta ERO and SEO responses were found in PD patients than healthy controls. Delta ERO responses were decreased at all frontal, central and parietal locations, whereas delta SEO responses were decreased over mid and right central locations in PD. According to the notion that SEO reflects the activity of sensory networks and ERO reflects cognitive networks, these findings indicate that PD patients have impairments in both cognitive and sensory networks of visual modality. Decreased delta ERO responses indicate that the subliminal cognitive changes in PD can be detected by electrophysiological methods. These results demonstrate that brain oscillatory responses have the potential to be studied as a biomarker for visual cognitive and sensory networks in PD.

  10. 3D LDV Measurements in Oscillatory Boundary Layers

    NASA Astrophysics Data System (ADS)

    Mier, J. M.; Garcia, M. H.

    2012-12-01

    The oscillatory boundary layer represents a particular case of unsteady wall-bounded flows in which fluid particles follow a periodic sinusoidal motion. Unlike steady boundary layer flows, the oscillatory flow regime and bed roughness character change in time along the period for every cycle, a characteristic that introduces a high degree of complexity in the analysis of these flows. Governing equations can be derived from the general Navier-Stokes equations for the motion of fluids, from which the exact solution for the laminar oscillatory boundary layer is obtained (also known as the 2nd Stokes problem). No exact solution exists for the turbulent case, thus, understanding of the main flow characteristics comes from experimental work. Several researchers have reported experimental work in oscillatory boundary layers since the 1960's; however, larger scale facilities and the development of newer measurement techniques with improved temporal and spatial resolution in recent years provides a unique opportunity to achieve a better understanding about this type of flows. Several experiments were performed in the Large Oscillatory Water and Sediment Tunnel (LOWST) facility at the Ven Te Chow Hydrosystems Laboratory, for a range of Reynolds wave numbers between 6x10^4 < Rew < 6x10^6 over a flat and smooth bottom. A 3D Laser Doppler Velocimetry (LDV) system was used to measure instantaneous flow velocities with a temporal resolution up to ~ 1,000 Hz. It was mounted on a 3-axis traverse with a spatial resolution of 0.01 mm in all three directions. The closest point to the bottom was measured at z = 0.2 mm (z+ ≈ 4), which allowed to capture boundary layer features with great detail. In order to achieve true 3D measurements, 2 probes were used on a perpendicular configuration, such that u and w components were measured from a probe on the side of the flume and v component was measured from a probe pointing down through and access window on top of the flume. The top probe

  11. Quasi-oscillatory dynamics observed in ascending phase of the flare on March 6, 2012

    NASA Astrophysics Data System (ADS)

    Philishvili, E.; Shergelashvili, B. M.; Zaqarashvili, T. V.; Kukhianidze, V.; Ramishvili, G.; Khodachenko, M.; Poedts, S.; De Causmaecker, P.

    2017-03-01

    Context. The dynamics of the flaring loops in active region (AR) 11429 are studied. The observed dynamics consist of several evolution stages of the flaring loop system during both the ascending and descending phases of the registered M-class flare. The dynamical properties can also be classified by different types of magnetic reconnection, related plasma ejection and aperiodic flows, quasi-periodic oscillatory motions, and rapid temperature and density changes, among others. The focus of the present paper is on a specific time interval during the ascending (pre-flare) phase. Aims: The goal is to understand the quasi-periodic behavior in both space and time of the magnetic loop structures during the considered time interval. Methods: We have studied the characteristic location, motion, and periodicity properties of the flaring loops by examining space-time diagrams and intensity variation analysis along the coronal magnetic loops using AIA intensity and HMI magnetogram images (from the Solar Dynamics Observatory). Results: We detected bright plasma blobs along the coronal loop during the ascending phase of the solar flare, the intensity variations of which clearly show quasi-periodic behavior. We also determined the periods of these oscillations. Conclusions: Two different interpretations are presented for the observed dynamics. Firstly, the oscillations are interpreted as the manifestation of non-fundamental harmonics of longitudinal standing acoustic oscillations driven by the thermodynamically non-equilibrium background (with time variable density and temperature). The second possible interpretation we provide is that the observed bright blobs could be a signature of a strongly twisted coronal loop that is kink unstable.

  12. Optogenetic perturbation and bioluminescence imaging to analyze cell-to-cell transfer of oscillatory information

    PubMed Central

    Isomura, Akihiro; Ogushi, Fumiko; Kori, Hiroshi; Kageyama, Ryoichiro

    2017-01-01

    Cells communicate with each other to coordinate their gene activities at the population level through signaling pathways. It has been shown that many gene activities are oscillatory and that the frequency and phase of oscillatory gene expression encode various types of information. However, whether or how such oscillatory information is transmitted from cell to cell remains unknown. Here, we developed an integrated approach that combines optogenetic perturbations and single-cell bioluminescence imaging to visualize and reconstitute synchronized oscillatory gene expression in signal-sending and signal-receiving processes. We found that intracellular and intercellular periodic inputs of Notch signaling entrain intrinsic oscillations by frequency tuning and phase shifting at the single-cell level. In this way, the oscillation dynamics are transmitted through Notch signaling, thereby synchronizing the population of oscillators. Thus, this approach enabled us to control and monitor dynamic cell-to-cell transfer of oscillatory information to coordinate gene expression patterns at the population level. PMID:28373207

  13. Multigrid methods for differential equations with highly oscillatory coefficients

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  14. Oscillatory Flows Induced by Swimming Microorganisms in Two-dimensions

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey S.; Johnson, Karl A.; Gollub, J. P.

    2010-11-01

    We present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga Chlamydomonas reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The phase-resolved velocity field reveals complex time-dependent flow structures, which evolve throughout the beat cycle of the organism, and the fluid velocity scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields via the viscous dissipation and scales with the square of the swimmer speed. The peak power is about 15 fW, and the dissipation per cycle is more than four times what steady swimming would require. These observations carry important implications for the interpretation and modeling of transport processes, locomotion, and flagellar mechanics.

  15. [Vulnerability to Depression and Oscillatory Resting-State Networks].

    PubMed

    Knyazev, G G; Savostyanov, A N; Bocharov, A V; Saprygin, A E; Tamozhnikov, S S

    2015-01-01

    Depression is the most commonly observed mood disorder, which is accompanied by changes in emotional processes and the default mode network (DMN) activity. In this study, we aimed to investigate how predisposition to depression shows up in the emotional coloring of spontaneous thoughts and the activity of oscillatory resting-state networks, as revealed by source localization and independent component analysis techniques. Depressive symptoms correlated positively with the prevalence of negative emotion during EEG registration and with delta and theta activity in the orbitofrontal cortex and negatively with theta activity in the DMN. Since an increase of low-frequency oscillations in the orbitofrontal cortex is observed in aversive states, whereas their decrease in the DMN reflects an activation of this network, which is related to self-referenced processing, our results are consistent with the notion that vulnerability to depression is associated with general negative emotional disposition and excessive focus on the self.

  16. The yielding transition in amorphous solids under oscillatory shear deformation

    NASA Astrophysics Data System (ADS)

    Leishangthem, Premkumar; Parmar, Anshul D. S.; Sastry, Srikanth

    2017-03-01

    Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition.

  17. Effectiveness of oscillatory gutter brushes in removing street sweeping waste.

    PubMed

    Vanegas-Useche, Libardo V; Abdel-Wahab, Magd M; Parker, Graham A

    2015-09-01

    In this paper, the novel concept of oscillatory gutter brushes of road sweepers is studied experimentally. Their effectiveness in removing different debris types is studied by means of a brushing test rig. The debris types dealt with are medium-size gravel, small and fine particles, wet thin debris, and compacted debris. The performance of two types of brushes, cutting and F128, under diverse operating conditions is investigated. The purpose of the tests is to ascertain whether brush oscillations superimposed onto brush rotation improve sweeping effectiveness. According to the results, brush oscillations seem to be useful for increasing brushing effectiveness in the case of bonded particles and wet thin debris, especially for bonded debris, but they seem to be of no value for other loosed debris. Also, appropriate values of brush penetration, sweeper speed, brush angle of attack, rotational speed, and frequency of brush speed oscillations, for the debris types studied are provided.

  18. Oscillatory characteristics of face-evoked neuromagnetic responses.

    PubMed

    Hsiao, Fu-Jung; Lin, Yung-Yang; Hsieh, Jen-Chuen; Wu, Zin-An; Ho, Low-Tone; Chang, Yin

    2006-08-01

    To study the oscillatory activities during face processing, we recorded magnetoencephalographic responses in 8 healthy subjects to upright and inverted human faces, and obtained the time-frequency representation by using wavelet transform. Delta to beta activities were clearly increased at 140-210 ms after stimulus onset in the bilateral occipitotemporal (OT) areas (t(7)>5.5; p<0.001), with larger power for theta, alpha and beta over the right side. Notably, more increase alpha activity for inverted than upright face condition was observed in the right OT area. Our results suggest that 4-25 Hz oscillations are involved in face information processing, and the more activation over the right OT implies the right hemisphere advantage for face perception. Moreover, the alpha activity may reflect the differential cortical demands for processing inverted and upright face images.

  19. Reversible plastic events during oscillatory deformation of amorphous solids.

    PubMed

    Priezjev, Nikolai V

    2016-01-01

    The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that become comparable with the system size near the yield strain. Along with reversible displacements there exist a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements during one cycle increases, which leads to permanent structural relaxation of the material.

  20. Oscillatory enzyme reactions and Michaelis-Menten kinetics.

    PubMed

    Goldbeter, Albert

    2013-09-02

    Oscillations occur in a number of enzymatic systems as a result of feedback regulation. How Michaelis-Menten kinetics influences oscillatory behavior in enzyme systems is investigated in models for oscillations in the activity of phosphofructokinase (PFK) in glycolysis and of cyclin-dependent kinases in the cell cycle. The model for the PFK reaction is based on a product-activated allosteric enzyme reaction coupled to enzymatic degradation of the reaction product. The Michaelian nature of the product decay term markedly influences the period, amplitude and waveform of the oscillations. Likewise, a model for oscillations of Cdc2 kinase in embryonic cell cycles based on Michaelis-Menten phosphorylation-dephosphorylation kinetics shows that the occurrence and amplitude of the oscillations strongly depend on the ultrasensitivity of the enzymatic cascade that controls the activity of the cyclin-dependent kinase.

  1. Waves spontaneously generated by heterogeneity in oscillatory media

    PubMed Central

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-01-01

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated. PMID:27142730

  2. Quantum oscillatory exciton migration in photosynthetic reaction centers.

    PubMed

    Abramavicius, Darius; Mukamel, Shaul

    2010-08-14

    The harvesting of solar energy and its conversion to chemical energy is essential for all forms of life. The primary photon absorption, transport, and charge separation events, which trigger a chain of chemical reactions, take place in membrane-bound photosynthetic complexes. Whether quantum effects, stemming from entanglement of chromophores, persist in the energy transport at room temperature, despite the rapid decoherence effects caused by environment fluctuations, is under current active debate. If confirmed, these may explain the high efficiency of light harvesting and open up numerous applications to quantum computing and information processing. We present simulations of the photosynthetic reaction center of photosystem II that clearly establish oscillatory energy transport at room temperature originating from interference of quantum pathways. These signatures of quantum transport may be observed by two dimensional coherent optical spectroscopy.

  3. Collective Decision-Making and Oscillatory Behaviors in Cell Populations

    NASA Astrophysics Data System (ADS)

    Fujimoto, Koichi; Sawai, Satoshi

    2013-12-01

    Many examples of oscillations are known in multicellular dynamics, however how properties of individual cells can account for the collective rhythmic behaviors at the tissue level remain elusive. Recently, studies in chemical reactions, synthetic gene circuits, yeast and social amoeba Dictyostelium have greatly enhanced our understanding of collective oscillations in cell populations. From these relatively simple systems, a unified view of how excitable and oscillatory regulations could be tuned and coupled to give rise to tissue-level oscillations is emerging. This chapter reviews recent progress in these and other experimental systems and highlight similarities and differences. We will show how group-level information can be encoded in the oscillations depending on degree of autonomy of single cells and discuss some of their possible biological roles.

  4. Oscillatory athermal quasistatic deformation of a model glass

    NASA Astrophysics Data System (ADS)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2013-08-01

    We report computer simulations of oscillatory athermal quasistatic shear deformation of dense amorphous samples of a three-dimensional model glass former. A dynamical transition is observed as the amplitude of the deformation is varied: For large values of the amplitude the system exhibits diffusive behavior and loss of memory of the initial conditions, whereas localization is observed for small amplitudes. Our results suggest that the same kind of transition found in driven colloidal systems is present in the case of amorphous solids (e.g., metallic glasses). The onset of the transition is shown to be related to the onset of energy dissipation. Shear banding is observed for large system sizes, without, however, affecting qualitative aspects of the transition.

  5. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience.

    PubMed

    Ashwin, Peter; Coombes, Stephen; Nicks, Rachel

    2016-12-01

    The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation, as well as predicting novel network states such as chimeras. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling, or must be carefully interpreted, as in the presence of stochastic forcing. There are also surprises in the dynamical complexity of the attractors that can robustly appear-for example, heteroclinic network attractors. In this review we present a set of mathematical tools that are suitable for addressing the dynamics of oscillatory neural networks, broadening from a standard phase oscillator perspective to provide a practical framework for further successful applications of mathematics to understanding network dynamics in neuroscience.

  6. Quantum oscillatory exciton migration in photosynthetic reaction centers

    NASA Astrophysics Data System (ADS)

    Abramavicius, Darius; Mukamel, Shaul

    2010-08-01

    The harvesting of solar energy and its conversion to chemical energy is essential for all forms of life. The primary photon absorption, transport, and charge separation events, which trigger a chain of chemical reactions, take place in membrane-bound photosynthetic complexes. Whether quantum effects, stemming from entanglement of chromophores, persist in the energy transport at room temperature, despite the rapid decoherence effects caused by environment fluctuations, is under current active debate. If confirmed, these may explain the high efficiency of light harvesting and open up numerous applications to quantum computing and information processing. We present simulations of the photosynthetic reaction center of photosystem II that clearly establish oscillatory energy transport at room temperature originating from interference of quantum pathways. These signatures of quantum transport may be observed by two dimensional coherent optical spectroscopy.

  7. Minimum energy paths for optimal oscillatory movements of PUMA arm

    SciTech Connect

    Olgac, N.; Zhou, S.

    1988-08-01

    This paper employs a geometric approach in reducing the number of time-consuming iterations necessary for the numerical solution of an optimal energy consumption problem for small amplitude oscillatory motions of robot manipulators. A general objective function in joint space is given for the energy needs in the drives, and specific applications for a commercially available manipulator, Unimation-PUMA 560, are carried out by separating the manipulator motions into two parallel segments: arm and wrist. This process, in general, leads to a highly nonlinear and transcendental optimization problem. The geometric study is presented, and the shortened numerical optimization is carried out. For any given point in the workspace, optimal directions of oscillations and their corresponding energy levels are found. This information is translated into a map of minimum energy levels across the workspace. The map will comprise a section of an intelligent control mechanism of larger scope which is conceived for ultimate use in space and subsea robotic operations. 6 references.

  8. Linear analysis of an oscillatory instability of radiative shock waves

    NASA Astrophysics Data System (ADS)

    Chevalier, R. A.; Imamura, J. N.

    1982-10-01

    A linear stability analysis of a planar radiative shock structure is presented that is applicable both to accretion onto compact objects and to radiative shock waves in the interstellar medium. The cooling function of the shock is directly proportional to temperature raised to the power alpha. An oscillatory instability similar to that found in numerical calculations of accretion onto degenerate dwarfs is investigated, and it is shown that multiple modes of oscillation are possible. Oscillation frequencies are determined, along with the values of alpha for which the various modes are unstable. It is concluded that the instability may explain why steady-state shock-wave models cannot reproduce certain observations of old supernova remnants and Herbig-Haro objects.

  9. Waves spontaneously generated by heterogeneity in oscillatory media.

    PubMed

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-05-04

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.

  10. Boundary-driven anomalous spirals in oscillatory media

    NASA Astrophysics Data System (ADS)

    Kessler, David A.; Levine, Herbert

    2017-06-01

    We study a heretofore ignored class of spiral patterns in oscillatory media as characterized by the complex Landau-Ginzburg model. These spirals emerge from modulating the growth rate as a function of r, thereby turning off the instability at large r. They are uniquely determined by matching to this outer condition, lifting a degeneracy in the set of steady-state solutions of the original equations. Unlike the well-studied spiral which acts as a wave source, has a simple core structure and is insensitive to the details of the boundary on which no-flux conditions are imposed, these new spirals are wave sinks, have non-monotonic wavefront curvature near the core, and can be patterned by the form of the spatial boundary. We predict that these anomalous spirals could be produced in nonlinear optics experiments via spatially modulating the gain of the medium.

  11. Diffusion of Brownian Particles under Oscillatory Shear Flow

    NASA Astrophysics Data System (ADS)

    Takikawa, Yoshinori; Orihara, Hiroshi

    2012-12-01

    Brownian motion has been investigated in oscillatory flows. A number of polystyrene spheres dispersed in water were traced with a confocal scanning laser microscope, and the time dependences of their coordinates were obtained. From the trajectories of the particles observed, mean-square displacements (MSDs) were calculated. We found that although the MSD in the vorticity direction is independent of the amplitude of shear strain, that of MSD in the flow direction increases as the amplitude of shear strain is increased, and that the effective diffusion constant depends on both the amplitude and initial phase of the applied sinusoidal shear strains. All experimental results are in good agreement with the theoretical results derived from the Langevin equation.

  12. Oscillatory burning of solid propellants including gas phase time lag.

    NASA Technical Reports Server (NTRS)

    T'Ien, J. S.

    1972-01-01

    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  13. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  14. Oscillatory Dynamics of One-Dimensional Homogeneous Granular Chains

    NASA Astrophysics Data System (ADS)

    Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.

    The acoustics of the homogeneous granular chains has been studied extensively both numerically and experimentally in the references cited in the previous chapters. This chapter focuses on the oscillatory behavior of finite dimensional homogeneous granular chains. It is well known that normal vibration modes are the building blocks of the vibrations of linear systems due to the applicability of the principle of superposition. One the other hand, nonlinear theory is deprived of such a general superposition principle (although special cases of nonlinear superpositions do exist), but nonlinear normal modes ‒ NNMs still play an important role in the forced and resonance dynamics of these systems. In their basic definition [1], NNMs were defined as time-periodic nonlinear oscillations of discrete or continuous dynamical systems where all coordinates (degrees-of-freedom) oscillate in-unison with the same frequency; further extensions of this definition have been considered to account for NNMs of systems with internal resonances [2]...

  15. Changes in Oscillatory Brain Networks after Lexical Tone Training

    PubMed Central

    Kaan, Edith; Wayland, Ratree; Keil, Andreas

    2013-01-01

    Learning foreign speech contrasts involves creating new representations of sound categories in memory. This formation of new memory representations is likely to involve changes in neural networks as reflected by oscillatory brain activity. To explore this, we conducted time-frequency analyses of electro-encephalography (EEG) data recorded in a passive auditory oddball paradigm using Thai language tones. We compared native speakers of English (a non-tone language) and native speakers of Mandarin Chinese (a tone language), before and after a two-day laboratory training. Native English speakers showed a larger gamma-band power and stronger alpha-band synchrony across EEG channels than the native Chinese speakers, especially after training. This is compatible with the view that forming new speech categories on the basis of unfamiliar perceptual dimensions involves stronger gamma activity and more coherent activity in alpha-band networks than forming new categories on the basis of familiar dimensions. PMID:24961423

  16. The yielding transition in amorphous solids under oscillatory shear deformation

    PubMed Central

    Leishangthem, Premkumar; Parmar, Anshul D. S.; Sastry, Srikanth

    2017-01-01

    Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition. PMID:28248289

  17. Carreau model for oscillatory blood flow in a tube

    NASA Astrophysics Data System (ADS)

    Tabakova, S.; Nikolova, E.; Radev, St.

    2014-11-01

    The analysis of the blood flow dynamics (hemodynamics) in tubes is crucial when investigating the rupture of different types of aneurysms. The blood viscosity nonlinear dependence on the flow shear rate creates complicated manifestations of the blood pulsations. Although a great number of studies exists, experimental and numerical, this phenomenon is still not very well understood. The aim of the present work is to propose a numerical model of the oscillatory blood flow in a tube on the basis of the Carreau model of the blood viscosity (nonlinear model with respect to the shear rate). The obtained results for the flow velocity and tangential stress on the tube wall are compared well with other authors' results.

  18. Oscillatory burning of solid propellants including gas phase time lag.

    NASA Technical Reports Server (NTRS)

    T'Ien, J. S.

    1972-01-01

    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  19. Cellular-based modeling of oscillatory dynamics in brain networks.

    PubMed

    Skinner, Frances K

    2012-08-01

    Oscillatory, population activities have long been known to occur in our brains during different behavioral states. We know that many different cell types exist and that they contribute in distinct ways to the generation of these activities. I review recent papers that involve cellular-based models of brain networks, most of which include theta, gamma and sharp wave-ripple activities. To help organize the modeling work, I present it from a perspective of three different types of cellular-based modeling: 'Generic', 'Biophysical' and 'Linking'. Cellular-based modeling is taken to encompass the four features of experiment, model development, theory/analyses, and model usage/computation. The three modeling types are shown to include these features and interactions in different ways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control

  1. Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics.

    PubMed

    Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Schnitzler, Alfons; Dalal, Sarang S

    2016-01-01

    Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson's patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23-35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8-12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24-40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling demanding

  2. Oscillatory changes related to the forced termination of a movement.

    PubMed

    Alegre, M; Alvarez-Gerriko, I; Valencia, M; Iriarte, J; Artieda, J

    2008-02-01

    Stimulus-induced movements are accompanied by a definite pattern of oscillatory changes, that include a frontal 15 Hz synchronization, a central peri-movement desynchronization, and a contralateral beta rebound after the movement. Our aim was to study the oscillatory changes related to the forced termination of a single complex motor program (signature) and compare them with those observed after the normal termination of the movement. Fifty-eight reference-free EEG channels were analyzed in 10 healthy subjects. A 2000 Hz tone (S1, go signal) indicated the subject to begin to write his/her complete signature. A second 2000 Hz tone 0.8 s afterwards (50% probability: S2, stop signal) indicated the subject to stop immediately. Movement-related energy changes were evaluated by means of time-frequency (Gabor) transforms. A frontal 15 Hz synchronization was observed after S1, but not after S2. The amplitude of the post-movement beta increase was significantly lower when the movement was abnormally terminated (p=0.005), while the peri-movement decrease was similar. The forced termination of a motor program reduces significantly the amplitude of the post-movement beta increment, conserving its temporal pattern. Also, the presence of the 15 Hz frontal synchronization only after S1, together with the results of previous studies, suggests that the frontal mechanisms involved in go/no go and stop signals are very different. Our results indicate that the beta rebound is an active process, independent of the peri-movement beta decrease, which is influenced by how the movement is terminated.

  3. Extracting Independent Local Oscillatory Geophysical Signals by Geodetic Tropospheric Delay

    NASA Technical Reports Server (NTRS)

    Botai, O. J.; Combrinck, L.; Sivakumar, V.; Schuh, H.; Bohm, J.

    2010-01-01

    Zenith Tropospheric Delay (ZTD) due to water vapor derived from space geodetic techniques and numerical weather prediction simulated-reanalysis data exhibits non-linear and non-stationary properties akin to those in the crucial geophysical signals of interest to the research community. These time series, once decomposed into additive (and stochastic) components, have information about the long term global change (the trend) and other interpretable (quasi-) periodic components such as seasonal cycles and noise. Such stochastic component(s) could be a function that exhibits at most one extremum within a data span or a monotonic function within a certain temporal span. In this contribution, we examine the use of the combined Ensemble Empirical Mode Decomposition (EEMD) and Independent Component Analysis (ICA): the EEMD-ICA algorithm to extract the independent local oscillatory stochastic components in the tropospheric delay derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) over six geodetic sites (HartRAO, Hobart26, Wettzell, Gilcreek, Westford, and Tsukub32). The proposed methodology allows independent geophysical processes to be extracted and assessed. Analysis of the quality index of the Independent Components (ICs) derived for each cluster of local oscillatory components (also called the Intrinsic Mode Functions (IMFs)) for all the geodetic stations considered in the study demonstrate that they are strongly site dependent. Such strong dependency seems to suggest that the localized geophysical signals embedded in the ZTD over the geodetic sites are not correlated. Further, from the viewpoint of non-linear dynamical systems, four geophysical signals the Quasi-Biennial Oscillation (QBO) index derived from the NCEP/NCAR reanalysis, the Southern Oscillation Index (SOI) anomaly from NCEP, the SIDC monthly Sun Spot Number (SSN), and the Length of Day (LoD) are linked to the extracted signal components from ZTD. Results from the synchronization

  4. Fluence dependent oscillatory amorphization and recrystallization in ion irradiation

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Satpati, B.; Dev, B. N.

    2017-09-01

    Ion-beam-induced amorphization and recrystallization are well-known phenomena. At a constant ion flux, there is a substrate temperature TR such that, for T < TR the irradiation produces amorphization, whereas for T > TR, it produces recrystallization. However, both the processes do not happen at a given substrate temperature. Here we present a novel phenomenon of ion fluence dependent oscillatory amorphization and recrystallization in silicon at room temperature in a Si(5 nm)/Ni(15 nm)/Si system. Before the deposition of Ni on Si, a buffer Si layer was deposited on the Si substrate. Ion irradiation was carried out with 1 MeV Si+ ions in the fluence range 1 × 1014-3 × 1017 ions/cm2. At a fluence of 5 × 1016 ions/cm2, Si is amorphous up to a depth of ∼1.4 μm. However, at a fluence of 1 × 1017 ions/cm2 two narrow bands of recrystallized (rc) Si are formed within the amorphized Si. At 2 × 1017 ions/cm2 these rc-Si bands become amorphous again. At 3 × 1017 ions/cm2 the broader rc band reappears. This oscillatory amorphization/recrystallization behaviour is Ni-mediated. Energy dispersive X-ray map of Ni shows Ni accumulation at the top of the rc-Si bands. The top of the broader rc band is actually the buffer-Si/substrate-Si interface. TRIM simulation shows the appearance of a Ni-displacement-induced vacancy peak at the position of the narrow rc-Si band. Accumulation of Ni in these regions is associated with the recrystallization process. The Ni layer, with incorporation of Si, also passes through amorphization and recrystallization. At the highest fluence η-NiSi nanocrystals are formed in the Ni layer.

  5. Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics

    PubMed Central

    Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Schnitzler, Alfons; Dalal, Sarang S.

    2016-01-01

    Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23–35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8–12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24–40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling

  6. Order restricted inference for oscillatory systems for detecting rhythmic signals.

    PubMed

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2016-12-15

    Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic. A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm CONTACT: peddada@niehs.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Oscillatory Flow in Curved and Straight Tubes: Transport and Transition.

    NASA Astrophysics Data System (ADS)

    Eckmann, David Matthew

    Transport of soluble material is analyzed for volume-cycled oscillatory flow in a curved tube. The Navier -Stokes equations of motion are solved using a regular perturbation method for small ratio of tube radius to radius of curvature and order unity amplitude over a range of the Womersley parameter. A stream function definition of the lateral velocities is defined to satisfy the conservation of mass equation exactly. A pressure-gradient amplitude is specified to satisfy the fluid volume-cycling constraint imposed. Axial velocity profiles and cross-sectional steady streaming velocity profiles are compared to previous theories and experiments. The convection-diffusion transport equation is similarly solved by a regular perturbation scheme where uniform steady end concentrations and no wall flux are assumed. The time-average axial transport, consisting of the diffusive and convective flux of solute is calculated. There is substantial modification of transport compared to the straight tube case and the results are interpreted with respect to pulmonary gas exchange. A Laser Doppler Anemometer is used to analyze volume-cycled oscillatory flow of a Newtonian viscous fluid in a straight circular tube. The working fluid is chosen to match index of refraction with the Plexiglas test section. The axial velocity is measured at radial positions across the diameter of the tube for a wide range of amplitude A = stroke distance/tube radius (2.4 <=q A <=q 21.6) and Womersley parameter (9 < alpha < 33). Transition to turbulence is detected during the decelerating phase of fluid motion for 500 < R_delta < 875, where R_delta = alphaAsurd2 is the Reynolds number based on Stokes layer thickness. This instability is confined to the viscous boundary layer and does not appear in the inviscid core as reported by previous investigators, unless a source of vorticity such as a hot -wire anemometer probe is resident in the flow.

  8. Oscillatory Fluid Flow Influences Primary Cilia and Microtubule Mechanics

    PubMed Central

    Espinha, Lina C.; Hoey, David A.; Fernandes, Paulo R.; Rodrigues, Hélder C.; Jacobs, Christopher R.

    2014-01-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. PMID:25044764

  9. Measurements of the three-dimensional oscillatory flow in a double bifurcation

    NASA Astrophysics Data System (ADS)

    Nemes, Andras; Jalal, Sahar; van de Moortele, Tristan; Coletti, Filippo

    2015-11-01

    Above a certain ventilation frequency, the unsteady nature of the respiratory flow becomes apparent, and inhalation and exhalation cannot be approximated as quasi-stationary processes. This is especially important in the upper and central airways, where length and velocity scales are the largest, making inertia and acceleration effects dominant over viscous dissipation. We experimentally investigate the primary features of the oscillatory flow through a symmetric double bifurcation which models the self-similar branching of the human bronchial tree. We consider a range of Reynolds and Womersley numbers relevant to physiological conditions between the trachea and the lobar bronchi. Three-component, three-dimensional velocity fields are acquired at multiple phases within the ventilation cycle using magnetic resonance imaging (MRI), and are complemented with instantaneous two-dimensional fields obtained by particle image velocimetry (PIV). The phase-averaged volumetric data provide a description of the rich flow topology, characterizing the main secondary flow structures and their spatio-temporal evolution. The instantaneous measurements reveal some of the dynamics of the laminar-to-turbulent transition in the bifurcations, and its aperiodicity throughout the respiratory cycle.

  10. Ongoing slow oscillatory phase modulates speech intelligibility in cooperation with motor cortical activity.

    PubMed

    Onojima, Takayuki; Kitajo, Keiichi; Mizuhara, Hiroaki

    2017-01-01

    Neural oscillation is attracting attention as an underlying mechanism for speech recognition. Speech intelligibility is enhanced by the synchronization of speech rhythms and slow neural oscillation, which is typically observed as human scalp electroencephalography (EEG). In addition to the effect of neural oscillation, it has been proposed that speech recognition is enhanced by the identification of a speaker's motor signals, which are used for speech production. To verify the relationship between the effect of neural oscillation and motor cortical activity, we measured scalp EEG, and simultaneous EEG and functional magnetic resonance imaging (fMRI) during a speech recognition task in which participants were required to recognize spoken words embedded in noise sound. We proposed an index to quantitatively evaluate the EEG phase effect on behavioral performance. The results showed that the delta and theta EEG phase before speech inputs modulated the participant's response time when conducting speech recognition tasks. The simultaneous EEG-fMRI experiment showed that slow EEG activity was correlated with motor cortical activity. These results suggested that the effect of the slow oscillatory phase was associated with the activity of the motor cortex during speech recognition.

  11. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    PubMed Central

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611

  12. Simulation of motional eddy current phenomena in soft magnetic material

    NASA Astrophysics Data System (ADS)

    De Gersem, Herbert; Hameyer, Kay

    2001-05-01

    The finite element simulation of conductors moving in a magnetic field at elevated speeds, yields oscillatory solutions. To overcome the effect of the huge convection terms, the partial differential equation is stabilised by adding artificial diffusion. Accurate results are obtained by applying adaptive mesh refinement. A rotational magnetic brake with a solid ferromagnetic rotor is simulated.

  13. Localized electron heating by strong guide-field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Inomoto, Michiaki; Sugawara, Takumichi; Yamasaki, Kotaro; Ushiki, Tomohiko; Ono, Yasushi

    2015-10-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field using two merging spherical tokamak plasmas in the University of Tokyo Spherical Tokamak experiment. Our new slide-type two-dimensional Thomson scattering system is documented for the first time the electron heating localized around the X-point. Shape of the high electron temperature area does not agree with that of energy dissipation term Et.jt . If we include a guide-field effect term Bt/(Bp+αBt) for Et.jt , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point.

  14. Factor structure of the human gamma band oscillatory response to visual (contrast) stimulation.

    PubMed

    Carozzo, Simone; De Carli, Fabrizio; Beelke, Manolo; Saturno, Moreno; Garbarino, Sergio; Martello, Cristina; Sannita, Walter G

    2004-07-01

    Visual contrast stimulation evokes in man an oscillatory mass response at approximately 20.0-35.0 Hz, consistent with stimulus-dependent synchronous oscillations in multiunit animal recordings from visual cortex, but shorter in duration and phase-locked to stimulus. A factor analysis was applied to characterize the signal structure under stimulus conditions inducing an oscillatory response and to identify possible subcomponents in normal volunteers. Contrast stimuli were gratings with a sinusoidal luminance profile (9.0 degrees; 5.0 cycle/degree; 80% contrast; reversal 1.06 Hz). The amplitude spectrum of the signal was computed by Discrete Fourier Transform (DFT) and the oscillatory response was separated from the corresponding visually evoked potential (VEP) by DFT high-pass filter at 19.0 Hz. Nine consecutive waves were identified in all subjects (60 volunteers), with amplitudes/latencies consistent with normative studies. A factor analysis was computed 1- in the frequency domain, on the amplitude values of the signal components (2 Hz resolution), and 2- in the time domain, on the latencies/amplitudes of the averaged VEP and oscillatory responses. (1) Two non-overlapping factors accounted for the approximately 2-20.0 and approximately 20.0-40.0 Hz signal components, with separation of the approximately 20.0-35.0 Hz oscillatory response from low frequency VEPs. (2) Two factors on latencies and one factor on amplitudes (independent of each other and from those of VEPs) accounted for the average approximately 20.0-35.0 Hz oscillatory response. The factor structure further indicates an oscillatory structure and some independence from conventional VEPs of the human oscillatory response to contrast, with a separation between the oscillatory response early and late waves possibly reflecting functional differences.

  15. Early History of Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ramsey, N. F.

    1999-06-01

    The early history of magnetic resonance to around 1950 is discussed from the point of view of a participant in it. I. I. Rabi's theory of space quantization in a gyrating magnetic field and his molecular beam experiments in the 1930s laid the foundation of the magnetic resonance method, which he and his associates subsequently pursued and developed further at Columbia University, leading eventually to the development of NMR after World War II and the invention of the separated oscillatory fields method in 1950.

  16. Thermal oscillatory behavior analysis and dynamic modulation of refractive index in microspherical resonator.

    PubMed

    Wang, Quanlong; Wang, Yue; Guo, Zhen; Wu, Junfeng; Wu, Yihui

    2015-04-01

    The thermal nonlinear effects in whispering-gallery-mode resonators are characterized by oscillatory behavior in the transmission spectrum. Although the thermal linewidth broadening is proven to be practical in mode-locking and dynamic control of the optical path, the oscillatory behavior always leads to instability of mode-locking and influences the control accuracy. We theoretically and experimentally illustrate the thermal oscillatory behavior using a model that combines slow and fast thermal relaxation processes of the microsphere and fluctuations of the pump wavelength. We also report dynamic modulation of the refractive index based on the fast thermal relaxation process.

  17. Dynamic Characteristics Analysis of Two-DOF Oscillatory Actuator and Experimental Verification of Prototype

    NASA Astrophysics Data System (ADS)

    Takamichi, Yoshimoto; Hirata, Katsuhiro; Asai, Yasuyoshi; Ueyama, Kenji; Hashimoto, Eiichiro; Takagi, Takahiro

    Recently, linear oscillatory actuators have been used in a wide range of applications. In particular, small linear oscillatory actuators are expected to be applied to haptic devices by extension to multi-degree-of-freedom motion with an arbitrary acceleration. In this paper, we propose a compact two-DOF oscillatory actuator that can move in various directions on the plane. The static and dynamic characteristics of the actuator are determined by the 3-D finite element method. The effectiveness of this method is shown through a comparison of the obtained results with the experimental results of a prototype.

  18. Dopaminergic modulation and rod contribution in the generation of oscillatory potentials in the tiger salamander retina.

    PubMed

    Perry, B; George, J S

    2007-02-01

    The roles of rod and cone input and of dopamine in the generation of oscillatory potentials were studied in tiger salamander retina. Under scotopic conditions, oscillations were elicited with a green, but not a red stimulus. With mesopic background illumination, both stimuli caused oscillations. Addition of quinpirole to a mesopic retina eliminated oscillations while SKF-38393 had no effect. Similarly, addition of sulpiride to a light-adapted retina elicited oscillatory activity, but SCH 22390 had no effect. These results suggest that oscillatory potentials are elicited through activation of the rod pathway and are modulated by dopamine through D2-receptors.

  19. An examination of the differential constitutive models under large amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Pivokonsky, Radek; Filip, Petr; Zelenkova, Jana; Ledvinkova, Blanka

    2017-05-01

    The exponential Phan-Tien and Tanner, Giesekus, Leonov, and modified eXtended Pom-Pom models are examined under large amplitude oscillatory shear flows using poly(ethylene oxide) solution. Optimization of the nonlinear adjustable parameters of the individual models is based on Fourier transform coefficients of the largest amplitude oscillatory shear characteristics where both magnitude and phase are taken into account. An efficiency of the individual models is shown for large amplitude oscillatory shear characteristics as well as for steady shear characteristics.

  20. Oxygen-induced excitability of the belousov-zhabotinskii oscillatory system

    NASA Astrophysics Data System (ADS)

    Treindl, Ľudovit; Mrákavová, Marta

    1985-12-01

    The modified Belousov-Zhabotinskii ferroin-catalyzed oscillatory system with the ethyl ester of 3-oxobutanoic acid is described. After an induction period of about 120 s its oscillatory state consisting of four or five oscillations of absorbancy at a wavenumber of 22×10 3 cm -1 can be revived three or four times, if the solution is shaken for 25 s after the oscillatory state has finished. This apparently "mechanical" excitability, which can be observed spectrophotometrically and also polarographically using a rotating platinum disc electrode, proved to be oxygen-induced.

  1. Tuning PID controllers for higher-order oscillatory systems with improved performance.

    PubMed

    Malwatkar, G M; Sonawane, S H; Waghmare, L M

    2009-07-01

    In this paper, model based design of PID controllers is proposed for higher-order oscillatory systems. The proposed method has no limitations regarding systems order, time delays and oscillatory behavior. The reduced model is achieved based on third-order modeling and selection of coefficients through the use of frequency responses. The tuning of the PID parameters are obtained from a reduced third-order model; the procedure seems to be simple and effective, and improved performance of the overall system can be achieved. Three simulation examples and one real-time experiment are included to demonstrate the effectiveness and applicability of the proposed method to systems with oscillatory behavior.

  2. Multiple Independent Oscillatory Networks in the Degenerating Retina.

    PubMed

    Euler, Thomas; Schubert, Timm

    2015-01-01

    During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina's first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O'Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self

  3. Oscillatory frontal theta responses are increased upon bisensory stimulation.

    PubMed

    Sakowitz, O W; Schürmann, M; Başar, E

    2000-05-01

    To investigate the functional correlation of oscillatory EEG components with the interaction of sensory modalities following simultaneous audio-visual stimulation. In an experimental study (15 subjects) we compared auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) to bimodal evoked potentials (BEPs; simultaneous auditory and visual stimulation). BEPs were assumed to be brain responses to complex stimuli as a marker for intermodal associative functioning. Frequency domain analysis of these EPs showed marked theta-range components in response to bimodal stimulation. These theta components could not be explained by linear addition of the unimodal responses in the time domain. Considering topography the increased theta-response showed a remarkable frontality in proximity to multimodal association cortices. Referring to methodology we try to demonstrate that, even if various behavioral correlates of brain oscillations exist, common patterns can be extracted by means of a systems-theoretical approach. Serving as an example of functionally relevant brain oscillations, theta responses could be interpreted as an indicator of associative information processing.

  4. The mechanism of spontaneous oscillatory contractions in skeletal muscle.

    PubMed

    Smith, D A; Stephenson, D G

    2009-05-06

    Most striated muscles generate steady contractile tension when activated, but some preparations, notably cardiac myocytes and slow-twitch fibers, may show spontaneous oscillatory contractions (SPOC) at low levels of activation. We have provided what we believe is new evidence that SPOC is a property of the contractile system at low actin-myosin affinity, whether caused by a thin-filament regulatory system or by other means. We present a quantitative single-sarcomere model for isotonic SPOC in skeletal muscle with three basic ingredients: i), actin and myosin filaments initially in partial overlap, ii), stretch activation by length-dependent changes in the lattice spacing, and iii), viscoelastic passive tension. Modeling examples are given for slow-twitch and fast-twitch fibers, with periods of 10 s and 4 s respectively. Isotonic SPOC occurs in a narrow domain of parameter values, with small minimum and maximum values for actin-myosin affinity, a minimum amount of passive tension, and a maximum transient response rate that explains why SPOC is favored in slow-twitch fibers. The model also predicts the contractile, relaxed and SPOC phases as a function of phosphate and ADP levels. The single-sarcomere model can also be applied to a whole fiber under auxotonic and fixed-end conditions if the remaining sarcomeres are treated as a viscoelastic load. Here the model predicts an upper limit for the load stiffness that leads to SPOC; this limit lies above the equivalent loads expected from the rest of the fiber.

  5. An analytical approach to fluid ratcheting in oscillatory boundary layer

    NASA Astrophysics Data System (ADS)

    Yu, Jie

    2013-11-01

    It is well known that oscillatory flows close to a rigid or flexible boundary induces a steady streaming due to viscosity. Under progressive motions, this becomes a unidirectional streaming near the boundary (e.g. mass transport or peristaltic pumping in water waves). This mechanism is shared by the phenomenon of ratcheting fluid in a narrow channel by vibrating the channel walls that are lined with asymmetric corrugations (shown by a recent experiment BAPS.2010.DFD.HC.3). A theory is presented here to describe the ratcheting effects in such a channel. A conformal transformation method, developed for waves over arbitrary periodic topographies (Yu & Howard, J. Fluid Mech. 2012), is adapted to deal with large corrugations of the channel walls. Under the assumption that the wall oscillations are of small amplitude, the vorticity dynamics can be analyzed in the mapped plane, obtaining the solution that describes the steady streaming field due to nonlinear convective inertia. The results are discussed, regarding the dependency of the pumping direction on the oscillation frequency of the walls and the effects of the end position relative to the phase of corrugations in the case of a finite length channel. Preliminary experimental data will be presented if time permits. Support by NFS (Grant CBET-0845957) during the period of this work is gratefully acknowledged.

  6. Positive expiratory pressure and oscillatory positive expiratory pressure therapies.

    PubMed

    Myers, Timothy R

    2007-10-01

    Airway clearance techniques, historically referred to as chest physical therapy, have traditionally consisted of a variety of breathing maneuvers or exercises and manual percussion and postural drainage. The methods and types of airway clearance techniques and devices have rapidly increased in an effort to find a more efficacious strategy that allows for self-therapy, better patient adherence and compliance, and more efficient durations of care. Mechanically applied pressure devices have migrated from European countries over the last several decades to clinical practice in the United States. I conducted a comprehensive MEDLINE search of two such devices: positive expiratory pressure (PEP) and oscillatory positive expiratory pressure (OPEP) and their role in airway clearance strategies. This was followed by a comprehensive search for cross-references in an attempt to identify additional studies. The results of that search are contained and reported in this review. From a methods standpoint, most of the studies of PEP and OPEP for airway clearance are limited by crossover designs and small sample sizes. While PEP and OPEP do not definitively prove superiority to other methods of airway clearance strategies, there is no clear evidence that they are inferior. Ultimately, the correct choice may be an airway clearance strategy that is clinically and cost effective, and is preferred by the patient so that adherence and compliance can be at the very least supported.

  7. Oscillatory Brain Activity Reveals Linguistic Prints in the Quantity Code

    PubMed Central

    Salillas, Elena; Barraza, Paulo; Carreiras, Manuel

    2015-01-01

    Number representations change through education, although it is currently unclear whether and how language could impact the magnitude representation that we share with other species. The most prominent view is that language does not play any role in modulating the core numeric representation involved in the contrast of quantities. Nevertheless, possible cultural hints on the numerical magnitude representation are currently on discussion focus. In fact, the acquisition of number words provides linguistic input that the quantity system may not ignore. Bilingualism offers a window to the study of this question, especially in bilinguals where the two number wording systems imply also two different numerical systems, such as in Basque-Spanish bilinguals. The present study evidences linguistic prints in the core number representational system through the analysis of EEG oscillatory activity during a simple number comparison task. Gamma band synchronization appears when Basque-Spanish bilinguals compare pairs of Arabic numbers linked through the Basque base-20 wording system, but it does not if the pairs are related through the base-10 system. Crucially, this gamma activity, originated in a left fronto-parietal network, only appears in bilinguals who learned math in Basque and not in equivalent proficiency bilinguals who learned math in Spanish. Thus, this neural index reflected in gamma band synchrony appears to be triggered by early learning experience with the base-20 numerical associations in Basque number words. PMID:25875210

  8. Enhancing Hebbian Learning to Control Brain Oscillatory Activity.

    PubMed

    Soekadar, Surjo R; Witkowski, Matthias; Birbaumer, Niels; Cohen, Leonardo G

    2015-09-01

    Sensorimotor rhythms (SMR, 8-15 Hz) are brain oscillations associated with successful motor performance, imagery, and imitation. Voluntary modulation of SMR can be used to control brain-machine interfaces (BMI) in the absence of any physical movements. The mechanisms underlying acquisition of such skill are unknown. Here, we provide evidence for a causal link between function of the primary motor cortex (M1), active during motor skill learning and retention, and successful acquisition of abstract skills such as control over SMR. Thirty healthy participants were trained on 5 consecutive days to control SMR oscillations. Each participant was randomly assigned to one of 3 groups that received either 20 min of anodal, cathodal, or sham transcranial direct current stimulation (tDCS) over M1. Learning SMR control across training days was superior in the anodal tDCS group relative to the other 2. Cathodal tDCS blocked the beneficial effects of training, as evidenced with sham tDCS. One month later, the newly acquired skill remained superior in the anodal tDCS group. Thus, application of weak electric currents of opposite polarities over M1 differentially modulates learning SMR control, pointing to this primary cortical region as a common substrate for acquisition of physical motor skills and learning to control brain oscillatory activity. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Frontal oscillatory dynamics predict feedback learning and action adjustment.

    PubMed

    van de Vijver, Irene; Ridderinkhof, K Richard; Cohen, Michael X

    2011-12-01

    Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after specific, randomly selected time intervals (300-2000 msec) using the feedback after each button press (correct, too fast, too slow). Consistent with previous findings, theta-band activity over medial frontal scalp sites (presumably reflecting medial frontal cortex activity) was stronger after negative feedback, whereas beta-band activity was stronger after positive feedback. Theta-band power predicted learning only after negative feedback, and beta-band power predicted learning after positive and negative feedback. Furthermore, negative feedback increased theta-band intersite phase synchrony (a millisecond resolution measure of functional connectivity) among right lateral prefrontal, medial frontal, and sensorimotor sites. These results demonstrate the importance of frontal theta- and beta-band oscillations and intersite communication in the realization of reinforcement learning.

  10. Oscillatory shear rheology measurements and Newtonian modeling of insoluble monolayers

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir H.; Lopez, Juan M.

    2017-04-01

    Circular systems are advantageous for interfacial studies since they do not suffer from end effects, but their hydrodynamics is more complicated because their flows are not unidirectional. Here, we analyze the shear rheology of a harmonically driven knife-edge viscometer through experiments and computations based on the Navier-Stokes equations with a Newtonian interface. The measured distribution of phase lag in the surface velocity relative to the knife-edge speed is found to have a good signal-to-noise ratio and provides robust comparisons to the computations. For monomolecular films of stearic acid, the surface shear viscosity deduced from the model was found to be the same whether the film is driven steady or oscillatory, for an order of magnitude range in driving frequencies and amplitudes. Results show that increasing either the amplitude or forcing frequency steepens the phase lag next to the knife edge. In all cases, the phase lag is linearly proportional to the radial distance from the knife edge and scales with surface shear viscosity to the power -1 /2 .

  11. Oscillatory dynamics in rock-paper-scissors games with mutations.

    PubMed

    Mobilia, Mauro

    2010-05-07

    We study the oscillatory dynamics in the generic three-species rock-paper-scissors games with mutations. In the mean-field limit, different behaviors are found: (a) for high mutation rate, there is a stable interior fixed point with coexistence of all species; (b) for low mutation rates, there is a region of the parameter space characterized by a limit cycle resulting from a Hopf bifurcation; (c) in the absence of mutations, there is a region where heteroclinic cycles yield oscillations of large amplitude (not robust against noise). After a discussion on the main properties of the mean-field dynamics, we investigate the stochastic version of the model within an individual-based formulation. Demographic fluctuations are therefore naturally accounted and their effects are studied using a diffusion theory complemented by numerical simulations. It is thus shown that persistent erratic oscillations (quasi-cycles) of large amplitude emerge from a noise-induced resonance phenomenon. We also analytically and numerically compute the average escape time necessary to reach a (quasi-)cycle on which the system oscillates at a given amplitude. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Oscillatory EEG dynamics underlying automatic chunking during sentence processing.

    PubMed

    Bonhage, Corinna E; Meyer, Lars; Gruber, Thomas; Friederici, Angela D; Mueller, Jutta L

    2017-03-10

    Sentences are easier to remember than random word sequences, likely because linguistic regularities facilitate chunking of words into meaningful groups. The present electroencephalography study investigated the neural oscillations modulated by this so-called sentence superiority effect during the encoding and maintenance of sentence fragments versus word lists. We hypothesized a chunking-related modulation of neural processing during the encoding and retention of sentence fragments as compared to word lists. Time-frequency analysis revealed a two-fold oscillatory pattern for the memorization of sentences: Sentence encoding was accompanied by higher delta amplitude (4Hz), originating both from regions processing syntax as well as semantics (bilateral superior/middle temporal regions and fusiform gyrus). Subsequent sentence retention was reflected in decreased theta (6Hz) and beta/gamma (27-32Hz) amplitude instead. Notably, whether participants simply read or properly memorized the sentences did not impact chunking-related activity during encoding. Therefore, we argue that the sentence superiority effect is grounded in highly automatized language processing mechanisms, which generate meaningful memory chunks irrespective of task demands.

  13. Non-exponential and oscillatory decays in quantum mechanics

    SciTech Connect

    Peshkin, Murray; Volya, Alexander; Zelevinsky, Vladimir

    2014-08-07

    The quantum-mechanical theory of the decay of unstable states is revisited. We show that the decay is non-exponential both in the short-time and long-time limits using a more physical definition of the decay rate than the one usually used. We report results of numerical studies based on Winter's model that may elucidate qualitative features of exponential and non-exponential decay more generally. The main exponential stage is related to the formation of a radiating state that maintains the shape of its wave function with exponentially diminishing normalization. We discuss situations where the radioactive decay displays several exponents. The transient stages between different regimes are typically accompanied by interference of various contributions and resulting oscillations in the decay curve. The decay curve can be fully oscillatory in a two-flavor generalization of Winter's model with some values of the parameters. We consider the implications of that result for models of the oscillations reported by GSI.

  14. Shear bands in concentrated bacterial suspensions under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang; Samanta, Devranjan; Xu, Xinliang

    2016-11-01

    Bacterial suspensions show interesting rheological behaviors such as a remarkable "superfluidic" state with vanishing viscosity. Although the bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been systematically explored so far. Here, by combining confocal rheometry with PIV, we investigated the flow behaviors of concentrated E. coli suspensions under planar oscillatory shear. We found that concentrated bacterial suspensions exhibit strong non-homogeneous flow profiles at low shear rates, where shear rates vanish away from the moving shear plate. We characterized the shape of the nonlinear shear profiles at different applied shear rates and bacterial concentrations and activities. The shear profiles follow a simple scaling relation with the applied shear rates and the enstrophy of suspensions, unexpected from the current hydrodynamic models of active fluids. We demonstrated that this scaling relation can be quantitatively understood by considering the power output of bacteria at different orientations with respect to shear flows. Our experiments reveal a profound influence of shear flows on the locomotion of bacteria and provide new insights into the dynamics of active fluids. The research is funded by ACS Petroleum Research Fund (54168-DNI9) and by the David & Lucile Packard Foundation. X. X. acknowledges support by the National Natural Science Foundation of China No. 11575020.

  15. Robust regulation of oscillatory Min-protein patterns

    NASA Astrophysics Data System (ADS)

    Halatek, Jacob; Frey, Erwin

    2012-02-01

    Robust spatial patterning was crucial just from the beginning of cellular evolution, and is key to the development of multicellular organisms. In E. Coli, the oscillatory pole-to-pole dynamics of MinCDE proteins functionality prevent improper cell divisions apart from midcell. Min-oscillations are characterized by the remarkable robustness with which spatial patterns dynamically adapt to variations of cell geometry. Moreover, adaption, and therefore proper cell division, is independent of temperature. These observations raise fundamental questions about the underlying core mechanisms, and about the role of spatial cues. With a conceptually novel and universal approach to cellular geometries, we introduce a robust model based on experimental data, consistently explaining the mechanisms underlying pole-to-pole, striped and circular patterns, as well as the observed temperature-dependence. Contrary to prior conjectures, the model predicts that MinD and cardiolipin domains are not colocalized. The key mechanisms are transient sequestration of MinE, and highly canalized transfer of MinD between polar zones. MinD channeling enhances midcell localization and facilitates stripe formation, revealing the potential optimization process from which robust Min-oscillations originally arose.

  16. Increased oscillatory theta activation evoked by violent digital game events.

    PubMed

    Salminen, Mikko; Ravaja, Niklas

    2008-04-11

    The authors examined electroencephalographic (EEG) oscillatory responses to two violent events, the player character wounding and killing an opponent character with a gun, in the digital game James Bond 007: NightFire. EEG was recorded from 25 (16 male) right-handed healthy young adults. EEG data were segmented into one 1-s baseline epoch before each event and two 1-s epochs after event onset. Power estimates (microV(2)) were derived with the fast Fourier transform (FFT) for each artefact free event. Both of the studied events evoked increased occipital theta (4-6Hz) responses as compared to the pre-event baseline. The wounding event evoked also increased occipital high theta (6-8Hz) response and the killing event evoked low alpha (8-10Hz) asymmetry over the central electrodes, both relative to the pre-event baseline. The results are discussed in light of facial electromyographic and electrodermal activity responses evoked by these same events, and it is suggested that the reported EEG responses may be attributable to affective processes related to these violent game events.

  17. Biological processing in oscillatory baffled reactors: operation, advantages and potential

    PubMed Central

    Abbott, M. S. R.; Harvey, A. P.; Perez, G. Valente; Theodorou, M. K.

    2013-01-01

    The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing ‘long’ processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509

  18. Four-phase patterns in forced oscillatory systems

    SciTech Connect

    Lin, A. L.; Hagberg, A.; Ardelea, A.; Swinney, H. L.; Meron, E.

    2000-09-01

    We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation. Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturbation frequency for certain values of the forcing frequency and amplitude. We focus on the subharmonic resonant case where the system locks at one-fourth the driving frequency, and four-phase rotating spiral patterns are observed at low forcing amplitudes. The spiral patterns are studied using an amplitude equation for periodically forced oscillating systems. The analysis predicts a bifurcation (with increasing forcing) from rotating four-phase spirals to standing two-phase patterns. This bifurcation is also found in periodically forced reaction-diffusion equations, the FitzHugh-Nagumo and Brusselator models, even far from the onset of oscillations where the amplitude equation analysis is not strictly valid. In a Belousov-Zhabotinsky chemical system periodically forced with light we also observe four-phase rotating spiral wave patterns. However, we have not observed the transition to standing two-phase patterns, possibly because with increasing light intensity the reaction kinetics become excitable rather than oscillatory. (c) 2000 The American Physical Society.

  19. A fundamental oscillatory state of isolated rodent hippocampus.

    PubMed

    Wu, Chiping; Shen, Hui; Luk, Wah Ping; Zhang, Liang

    2002-04-15

    Population neuronal rhythms of various frequencies are observed in the rodent hippocampus during distinct behavioural states. However, the question of whether the hippocampus exhibits properties of spontaneous rhythms and population synchrony in isolation has not been definitively answered. To address this, we developed a novel preparation for studying neuronal rhythms in a relatively large hippocampal tissue in vitro. We isolated the whole hippocampus from mice up to 28 days postnatal age, removing the dentate gyrus while preserving the functional CA3-to-CA1 connections. Placing the hippocampal isolate in a perfusion chamber for electrophysiological assessment extracellular recordings from the CA1 revealed rhythmic field potential of 0.5 to oscillatory state of the hippocampal circuitry isolated from extra-hippocampal inputs.

  20. Dopamine depresses cholinergic oscillatory network activity in rat hippocampus.

    PubMed

    Weiss, Torsten; Veh, Rüdiger W; Heinemann, Uwe

    2003-11-01

    The dopaminergic neuronal system is implicated in cognitive processes in a variety of brain regions including the mesolimbic system. We have investigated whether dopamine also affects synchronized network activity in the hippocampus, which has been ascribed to play a pivotal role in memory formation. Gamma frequency (20-80 Hz) oscillations were induced by the cholinergic agonist carbachol. Oscillatory activity was examined in area CA3 of Wistar rat hippocampal slices, employing field potential and intracellular recordings. Application of carbachol initiated synchronized population activity in the gamma band at 40 Hz. Induced gamma activity persisted over hours and required GABAA receptors. Dopamine reversibly decreased the integrated gamma band power of the carbachol rhythm by 62%, while its frequency was not changed. By contrast, individual pyramidal cells recorded during carbachol-induced field gamma activity exhibited theta frequency (5-15 Hz) membrane potential oscillations that were not altered by dopamine. The dopamine effect on the field gamma activity was mimicked by the D1 receptor agonist SKF-383393 and partially antagonized by the D1 antagonist SCH-23390. Conversely, the D2 receptor agonist quinpirole failed to depress the oscillations, and the D2 antagonist sulpiride did not prevent the suppressive dopamine effect. The data indicate that dopamine strongly depresses cholinergic gamma oscillations in area CA3 of rat hippocampus by activation of D1-like dopamine receptors and that this effect is most likely mediated via impairment of interneurons involved in generation and maintenance of the carbachol-induced network rhythm.

  1. A fundamental oscillatory state of isolated rodent hippocampus

    PubMed Central

    Wu, Chiping; Shen, Hui; Luk, Wah Ping; Zhang, Liang

    2002-01-01

    Population neuronal rhythms of various frequencies are observed in the rodent hippocampus during distinct behavioural states. However, the question of whether the hippocampus exhibits properties of spontaneous rhythms and population synchrony in isolation has not been definitively answered. To address this, we developed a novel preparation for studying neuronal rhythms in a relatively large hippocampal tissue in vitro. We isolated the whole hippocampus from mice up to 28 days postnatal age, removing the dentate gyrus while preserving the functional CA3-to-CA1 connections. Placing the hippocampal isolate in a perfusion chamber for electrophysiological assessment extracellular recordings from the CA1 revealed rhythmic field potential of 0.5 to ≤ 4 Hz that occurred spontaneously and propagated along the ventro-dorsal hippocampal axis. We provide convergent evidence, via measurements of extracellular pH and K+, recordings of synaptic and intracellular activities and morphological assessments, verifying that these rhythms were not the consequence of hypoxia. Data obtained via simultaneous extracellular and patch clamp recordings suggest that the spontaneous rhythms represent a summation of GABAergic IPSPs originating from pyramidal neurons, which result from synchronous discharges of GABAergic inhibitory interneurons. Similar spontaneous field rhythms were also observed in the hippocampal isolate prepared from young gerbils and rats. Based on these data, we postulate that the spontaneous rhythms represent a fundamental oscillatory state of the hippocampal circuitry isolated from extra-hippocampal inputs. PMID:11956340

  2. [Emotional intelligence and oscillatory responses on the emotional facial expressions].

    PubMed

    Kniazev, G G; Mitrofanova, L G; Bocharov, A V

    2013-01-01

    Emotional intelligence-related differences in oscillatory responses to emotional facial expressions were investigated in 48 subjects (26 men and 22 women) in age 18-30 years. Participants were instructed to evaluate emotional expression (angry, happy and neutral) of each presented face on an analog scale ranging from -100 (very hostile) to + 100 (very friendly). High emotional intelligence (EI) participants were found to be more sensitive to the emotional content of the stimuli. It showed up both in their subjective evaluation of the stimuli and in a stronger EEG theta synchronization at an earlier (between 100 and 500 ms after face presentation) processing stage. Source localization using sLORETA showed that this effect was localized in the fusiform gyrus upon the presentation of angry faces and in the posterior cingulate gyrus upon the presentation of happy faces. At a later processing stage (500-870 ms) event-related theta synchronization in high emotional intelligence subject was higher in the left prefrontal cortex upon the presentation of happy faces, but it was lower in the anterior cingulate cortex upon presentation of angry faces. This suggests the existence of a mechanism that can be selectively increase the positive emotions and reduce negative emotions.

  3. Determination of gas-trapping during high frequency oscillatory ventilation.

    PubMed

    Alexander, J; Milner, A D

    1997-03-01

    To determine the effect of frequency and percent inspiratory time on tidal volume and gas-trapping during high-frequency oscillatory ventilation (HFOV). Nine preterm infants with respiratory distress syndrome tested in the first 48 h of life. Tidal volumes and the presence of gas-trapping were measured by respiratory jacket plethysmography at frequencies of 10, 14, and 17.8 Hz and at inspiratory times of 30%, 50% and 70%, using a commercially available high frequency oscillator.74 Mean (SD) tidal volumes were 2.40 (1.06) ml/kg at 10 Hz, 2.52 (1.07) ml/kg at 14 Hz and fell significantly to 1.96 (0.92) at 17.8 Hz (p < 0.05). Tidal volumes at 50% inspiratory time were significantly greater than at 30% inspiratory time [2.81 (1.42) ml/kg and 2.32 (1.18) ml/kg, respectively] but fell to baseline levels at 70% inspiratory time. There was no significant gas-trapping with increases in either frequency or percent inspiratory time. Gas-trapping is not a significant problem during HFOV in premature infants. Changes in tidal volume with increases in frequency and percent inspiratory time are similar to that seen in animal models.

  4. Biological processing in oscillatory baffled reactors: operation, advantages and potential.

    PubMed

    Abbott, M S R; Harvey, A P; Perez, G Valente; Theodorou, M K

    2013-02-06

    The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing 'long' processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future.

  5. Oscillatory jet flow in electrospinning of polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Tripatanasuwan, Sureeporn; Reneker, Darrell

    2008-03-01

    The flow of polymer solution into an electrospinning jet can be controlled by the pressure applied to the fluid, and the flow out can be controlled by the electrical potential of the fluid. When the average flow rate of solution carried away by the jet was smaller than the rate at which the liquid was forced through the orifice into the jet, the solution flow rate and the electrical current both oscillated in time. The amount of fluid near the orifice grew larger and caused the flow out of that region to increase, and the amount of fluid near the orifice decreased. Then the cycle repeated. The oscillatory phenomena were demonstrated using a jet of polyethylene oxide in water (Molecular weight, 400k, concentration about 5%) flowing through a tube with a diameter of 0.7 mm. The pressure was 500 to 2500 Pascals, and the applied potential was around 5 kV. The frequency of oscillation (about 0.5 Hertz) was affected by the resistivity of the polymer solution (around 4500 ohm-meters).

  6. Computational heat transfer analysis for oscillatory channel flows

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mounir; Kannapareddy, Mohan

    An accurate finite-difference scheme has been utilized to investigate oscillatory, laminar and incompressible flow between two-parallel-plates and in circular tubes. The two-parallel-plates simulate the regenerator of a free-piston Stirling engine (foil type regenerator) and the channel wall was included in the analysis (conjugate heat transfer problem). The circular tubes simulate the cooler and heater of the engine with an isothermal wall. The study conducted covered a wide range for the maximum Reynolds number (from 75 to 60,000), Valensi number (from 2.5 to 700), and relative amplitude of fluid displacement (0.714 and 1.34). The computational results indicate a complex nature of the heat flux distribution with time and axial location in the channel. At the channel mid-plane we observed two thermal cycles (out of phase with the flow) per each flow cycle. At this axial location the wall heat flux mean value, amplitude and phase shift with the flow are dependent upon the maximum Reynolds number, Valensi number and relative amplitude of fluid displacement. At other axial locations, the wall heat flux distribution is more complex.

  7. Non-exponential and oscillatory decays in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Peshkin, Murray; Volya, Alexander; Zelevinsky, Vladimir

    2014-08-01

    The quantum-mechanical theory of the decay of unstable states is revisited. We show that the decay is non-exponential both in the short-time and long-time limits using a more physical definition of the decay rate than the one usually used. We report results of numerical studies based on Winter's model that may elucidate qualitative features of exponential and non-exponential decay more generally. The main exponential stage is related to the formation of a radiating state that maintains the shape of its wave function with exponentially diminishing normalization. We discuss situations where the radioactive decay displays several exponents. The transient stages between different regimes are typically accompanied by interference of various contributions and resulting oscillations in the decay curve. The decay curve can be fully oscillatory in a two-flavor generalization of Winter's model with some values of the parameters. We consider the implications of that result for models of the oscillations reported by GSI.

  8. Microstructure characterization of Cu processed by compression with oscillatory torsion

    SciTech Connect

    Rodak, K.; Pawlicki, J.

    2014-08-15

    High purity Cu (99.9%) was subjected to severe plastic deformation up to a total effective strain ε{sub ft} = 130 through compression with the oscillatory torsion method at room temperature. This method produces an ultrafine grain microstructure. The microstructure evolution was investigated with respect to the value of the total effective strain using a scanning electron microscope with an electron-backscattered diffraction technique and a scanning transmission electron microscope. The results of the structural analyses show that increasing ε{sub ft} from 2 to 50 causes progress in the grain refinement. A quantitative study of the microstructure parameters, such as fraction of high angle boundaries, grain and subgrain diameter, and the area fraction of grains up to 1 μm, shows that deformation at ε{sub ft} = 45 guaranteed the best conditions for refining the microstructure of Cu. Using high values of ε{sub ft} in the range 60 to 130 restricts grain refinement because intensive recovery begins to dominate in the microstructure. - Highlights: • Cu was processed by SPD metodto an effective strain 130. • The microstructure evolution has been investigated. • The method allows to produce an ultrafine grain microstructure.

  9. Computational heat transfer analysis for oscillatory channel flows

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Kannapareddy, Mohan

    1993-01-01

    An accurate finite-difference scheme has been utilized to investigate oscillatory, laminar and incompressible flow between two-parallel-plates and in circular tubes. The two-parallel-plates simulate the regenerator of a free-piston Stirling engine (foil type regenerator) and the channel wall was included in the analysis (conjugate heat transfer problem). The circular tubes simulate the cooler and heater of the engine with an isothermal wall. The study conducted covered a wide range for the maximum Reynolds number (from 75 to 60,000), Valensi number (from 2.5 to 700), and relative amplitude of fluid displacement (0.714 and 1.34). The computational results indicate a complex nature of the heat flux distribution with time and axial location in the channel. At the channel mid-plane we observed two thermal cycles (out of phase with the flow) per each flow cycle. At this axial location the wall heat flux mean value, amplitude and phase shift with the flow are dependent upon the maximum Reynolds number, Valensi number and relative amplitude of fluid displacement. At other axial locations, the wall heat flux distribution is more complex.

  10. Peripheral sensory coding through oscillatory synchrony in weakly electric fish

    PubMed Central

    Baker, Christa A; Huck, Kevin R; Carlson, Bruce A

    2015-01-01

    Adaptations to an organism's environment often involve sensory system modifications. In this study, we address how evolutionary divergence in sensory perception relates to the physiological coding of stimuli. Mormyrid fishes that can detect subtle variations in electric communication signals encode signal waveform into spike-timing differences between sensory receptors. In contrast, the receptors of species insensitive to waveform variation produce spontaneously oscillating potentials. We found that oscillating receptors respond to electric pulses by resetting their phase, resulting in transient synchrony among receptors that encodes signal timing and location, but not waveform. These receptors were most sensitive to frequencies found only in the collective signals of groups of conspecifics, and this was correlated with increased behavioral responses to these frequencies. Thus, different perceptual capabilities correspond to different receptor physiologies. We hypothesize that these divergent mechanisms represent adaptations for different social environments. Our findings provide the first evidence for sensory coding through oscillatory synchrony. DOI: http://dx.doi.org/10.7554/eLife.08163.001 PMID:26238277

  11. An analytical model of capped turbulent oscillatory bottom boundary layers

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2010-03-01

    An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.

  12. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    SciTech Connect

    Juan M. Restrepo

    2008-09-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers en- compassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation is boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundry conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.

  13. Alpha oscillatory correlates of motor inhibition in the aged brain

    PubMed Central

    Bönstrup, Marlene; Hagemann, Julian; Gerloff, Christian; Sauseng, Paul; Hummel, Friedhelm C.

    2015-01-01

    Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time—early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains. PMID:26528179

  14. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks

    PubMed Central

    Hata, Shigefumi; Nakao, Hiroya; Mikhailov, Alexander S.

    2014-01-01

    As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory Turing instability does not lead to wave patterns in networks, but to spontaneous development of heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all possible food webs with three predator or prey species, under various assumptions about the mobility of individual species and nonlinear interactions between them. Hence, the oscillatory Turing instability should be generic and must play a fundamental role in metapopulation dynamics, providing a common mechanism for dispersal-induced destabilization of ecosystems. PMID:24394959

  15. More than spikes: Common oscillatory mechanisms for content specific neural representations during perception and memory

    PubMed Central

    Watrous, Andrew J.; Fell, Juergen; Ekstrom, Arne D.; Axmacher, Nikolai

    2014-01-01

    Although previous research into the mechanisms underlying sensory and episodic representations has primarily focused on changes in neural firing rate, more recent evidence suggests that neural oscillations also contribute to these representations. Here, we argue that multiplexed oscillatory power and phase contribute to neural representations at the mesoscopic scale, complementary to neuronal firing. Reviewing recent studies which used oscillatory activity to decipher content-specific neural representations, we identify oscillatory mechanisms common to both sensory and episodic memory representations and incorporate these into a model of episodic encoding and retrieval. This model advances the idea that oscillations provide a reference frame for phase-coded item representations during memory encoding and that shifts in oscillatory frequency and phase coordinate ensemble activity during memory retrieval. PMID:25129044

  16. Oscillatory modes in the flow between two horizontal corotating cylinders with a partially filled gap

    NASA Astrophysics Data System (ADS)

    Mutabazi, I.; Normand, C.; Peerhossaini, H.; Wesfreid, J. E.

    1989-01-01

    The linear stability of viscous flow between two rotating coaxial horizontal cylinders with a partially filled gap is investigated. It is shown that, for a range of values of the rotation ratio μ, the stability diagram for stationary modes consists of two separate curves connected by an oscillatory branch. For 0.26<μ<0.61 the critical point is on the oscillatory branch. Therefore it can be expected that, at onset, the instability will set in as an oscillatory mode. We have established the existence of codimension-2 points for two particular values of the rotation ratio μ=0.26 and 0.61, where the onset of instability for stationary as well as oscillatory modes occurs for the same value of the Taylor number.

  17. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks

    NASA Astrophysics Data System (ADS)

    Hata, Shigefumi; Nakao, Hiroya; Mikhailov, Alexander S.

    2014-01-01

    As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory Turing instability does not lead to wave patterns in networks, but to spontaneous development of heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all possible food webs with three predator or prey species, under various assumptions about the mobility of individual species and nonlinear interactions between them. Hence, the oscillatory Turing instability should be generic and must play a fundamental role in metapopulation dynamics, providing a common mechanism for dispersal-induced destabilization of ecosystems.

  18. Phenomenological approach to describe oscillatory growth or decay in different dynamical systems

    NASA Astrophysics Data System (ADS)

    Biswas, Dibyendu; Poria, Swarup; Patra, Sankar Narayan

    2016-12-01

    The approach of the phenomenological universalities of growth is considered to describe the behaviour of a system showing an oscillatory growth. Two phenomenological classes are proposed to consider the oscillatory behaviour of a system. One of them is showing oscillatory nature with constant amplitude and the other represents oscillatory nature with a change in amplitude. The term responsible for decay (or growth) in amplitude in the proposed class is also been identified. The variations in the nature of oscillation with the dependent parameters are studied in this communication. In this connection, the variation of a specific growth rate is also been considered. The significance of the presence and the absence of each term involved in the phenomenological description are also taken into consideration. These proposed classes might be useful for the experimentalists to extract a characteristic feature from the data set and to develop a suitable model consistent with their data set.

  19. Detection and integration of oscillatory differential equations with initial stepsize, order and method selection

    SciTech Connect

    Gallivan, K. A.

    1980-12-01

    Within any general class of problems there typically exist subclasses possessed of characteristics that can be exploited to create techniques more efficient than general methods applied to these subclasses. Two such subclasses of initial-value problems in ordinary differential equations are stiff and oscillatory problems. Indeed, the subclass of oscillatory problems can be further refined into stiff and nonstiff oscillatory problems. This refinement is discussed in detail. The problem of developing a method of detection for nonstiff and stiff oscillatory behavior in initial-value problems is addressed. For this method of detection a control structure is proposed upon which a production code could be based. An experimental code using this control structure is described, and results of numerical tests are presented. 3 figures.

  20. A NON-OSCILLATORY SCHEME FOR OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the ...

  1. Strategies for avoiding errors and ambiguities in the analysis of oscillatory pumping tests

    NASA Astrophysics Data System (ADS)

    Cardiff, Michael; Sayler, Claire

    2016-09-01

    Oscillatory pumping tests have recently seen a resurgence in interest as a strategy for aquifer characterization. In a cross-well pumping test, measured responses to oscillatory pumping tests consist of the amplitude and phase delay of pressure changes at an observation well. This information can be used to obtain estimates of effective aquifer parameters (conductivity and storage coefficients), by fitting field data with an analytical model through parameter estimation. Alternately, multiple pumping tests can be fit simultaneously through tomographic analyses. However, in both cases, analysis of obtained test results may be ambiguous if "phase wrapping" occurs, i.e. if signals are delayed by more than one period. In this work, we demonstrate scenarios under which phase wrapping can make analysis of oscillatory testing difficult, and present guidelines for avoiding ambiguity in oscillatory testing results.

  2. Influence of edge additions on the synchronizability of oscillatory power networks

    NASA Astrophysics Data System (ADS)

    Yang, Li-xin; Jiang, Jun; Liu, Xiao-jun

    2016-12-01

    The influence of edge-adding number and edge-adding distance on synchronization of oscillatory power network is investigated. Here we study how the addition of new links impacts the emergence of synchrony in oscillatory power network, focusing on ring, and tree-like topologies. Numerical simulations show that the impact of distance of adding edges whether homogeneous (generators to generators or consumers to consumers) or heterogeneous (generators to consumer nodes and vice versa) edges is not obvious on the synchronizability of oscillatory power network. However, for the edge-adding number, it is observed that the bigger heterogeneous edge-adding number, the stronger synchronizability of power network will be. Furthermore, the homogeneous edge-adding number does not affect the synchronizability of oscillatory power network.

  3. A NON-OSCILLATORY SCHEME FOR OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the ...

  4. Out-of-phase oscillatory Turing patterns in a bistable reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Vanag, Vladimir K.; Epstein, Irving R.

    2005-06-01

    A new type of out-of-phase oscillatory Turing pattern is found in simulations of a simple two-variable model of a bistable reaction-diffusion system consisting of an autocatalytic activator reacting with a substrate that is replenished by a flow. This class of models can describe pH oscillators or enzymatic reactions. No Hopf instability is necessary for this type of oscillatory Turing pattern.

  5. On Essentially Non-Oscillatory Schemes on Unstructured Meshes: Analysis and Implementation

    DTIC Science & Technology

    1992-12-01

    is to use a Lagrange type interpolation with an adapted stencil: when a discontinuity is detected, the procedure looks for the region around this...be introduced for unstructured meshes. We first recall how to interpolate data in an essentially non-oscillatory Lagrange fashion, and then how this...is used to reconstruct 1D data. Essentially non-oscillatory interpolation . This relies on two well known properties of divided differences. Let {yo

  6. Wave Grouping of a Meandering Spiral Induced by Doppler Effects and Oscillatory Dispersion

    NASA Astrophysics Data System (ADS)

    Liao, Hui-Min; Zhou, Lu-Qun; Zhang, Chun-Xia; Ouyang, Qi

    2005-12-01

    A new type of meandering spiral pattern, in which the dense waves form groups while the sparse waves keep evenly spaced, is observed in a spatial open reactor using a ferroin-catalyzed Belousov-Zhabotinsky reaction. Such a phenomenon is related to both the Doppler effect of a meandering spiral and the oscillatory dispersion relation of the system. Simulation in the two-dimensional Oregonator reaction-diffusion model with an oscillatory dispersion relation gives very similar results.

  7. Characterization and merger of oscillatory mechanisms in an artificial genetic regulatory network

    NASA Astrophysics Data System (ADS)

    Yang, D.; Li, Y.; Kuznetsov, A.

    2009-09-01

    Regulatory molecular networks have numerous pharmacological and medical applications. The oscillatory mechanisms and the role of oscillations in these regulatory networks are not fully understood. In this paper, we explore two oscillatory mechanisms: the hysteresis-based relaxation oscillator and the repressilator. We combine these mechanisms into one regulatory network so that only two parameters, the strength of an additional regulatory connection and the timescale separation for one of the variables, control the transition from one mechanism to the other. Our data support a qualitative difference between the oscillatory mechanisms, but in the parameter space, we found a single oscillatory region, suggesting that the two mechanisms support each other. We examine interactions in a basic population: that is, a pair of the composite oscillators. We found that the relaxation oscillation mechanism is much more resistant to oscillatory death as the cells are diffusively coupled in a population. Additionally, stationary pattern formation has been found to accompany the relaxation oscillation but not the repressilator mechanism. These properties may guide the identification of oscillatory mechanisms in complex natural regulatory networks.

  8. Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli.

    PubMed

    Doiron, Brent; Chacron, Maurice J; Maler, Leonard; Longtin, André; Bastian, Joseph

    2003-01-30

    Stimulus-induced oscillations occur in visual, olfactory and somatosensory systems. Several experimental and theoretical studies have shown how such oscillations can be generated by inhibitory connections between neurons. But the effects of realistic spatiotemporal sensory input on oscillatory network dynamics and the overall functional roles of such oscillations in sensory processing are poorly understood. Weakly electric fish must detect electric field modulations produced by both prey (spatially localized) and communication (spatially diffuse) signals. Here we show, through in vivo recordings, that sensory pyramidal neurons in these animals produce an oscillatory response to communication-like stimuli, but not to prey-like stimuli. On the basis of well-characterized circuitry, we construct a network model of pyramidal neurons that predicts that diffuse delayed inhibitory feedback is required to achieve oscillatory behaviour only in response to communication-like stimuli. This prediction is experimentally verified by reversible blockade of feedback inhibition that removes oscillatory behaviour in the presence of communication-like stimuli. Our results show that a sensory system can use inhibitory feedback as a mechanism to 'toggle' between oscillatory and non-oscillatory firing states, each associated with a naturalistic stimulus.

  9. Effects of Oscillatory Flow on Fertilization in the Green Sea Urchin Strongylocentrotus droebachiensis

    PubMed Central

    Kregting, Louise T.; Bass, Anna L.; Guadayol, Òscar; Yund, Philip O.; Thomas, Florence I. M.

    2013-01-01

    Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(uw)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(uw) <0.02 m s−1), depending on the location sampled, but declined to below 10% for most locations at higher rms(uw). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(uw) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions. PMID:24098766

  10. Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention.

    PubMed

    Taylor, K; Mandon, S; Freiwald, W A; Kreiter, A K

    2005-09-01

    Attention serves to select objects from often complex scenes for enhanced processing and perception. In particular, the perception of shape depends critically on attention for integrating the various parts of the selected object into a coherent representation of object shape. To study whether oscillatory neuronal synchrony may serve as a mechanism of attention in shape perception, we introduced a novel shape-tracking task requiring sustained attention to a morphing shape. Attention was found to strongly increase oscillatory currents underlying the recorded field potentials in the gamma-frequency range, thus indicating enhanced neuronal synchrony within the population of V4 neurons representing the attended stimulus. Errors indicating a misdirection of attention to the distracter instead of the target were preceded by a corresponding shift of oscillatory activity from the target's neuronal representation to that of the distracter. No such effect was observed for errors unrelated to attention. Modulations of the attention-dependent enhancement of oscillatory activity occurred in correspondence with changing attentional demands during the course of a trial. The specificity of the effect of attentional errors together with the close coupling between attentional demand and oscillatory activity support the hypothesis that oscillatory neuronal synchrony serves as a mechanism of attention.

  11. A review of radiative detachment studies in tokamak advanced magnetic divertor configurations

    DOE PAGES

    Soukhanovskii, V. A.

    2017-04-28

    The present vision for a plasma–material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertormore » configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). As a result, this paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.« less

  12. A review of radiative detachment studies in tokamak advanced magnetic divertor configurations

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.

    2017-06-01

    The present vision for a plasma-material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertor configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). This paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.

  13. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.

    PubMed

    Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M

    2016-09-29

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  14. Surface Instability of Liquid Propellant under Vertical Oscillatory Forcing

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    Fluid motion in a fuel tank produced during thrust oscillations can circulate sub-cooled hydrogen near the liquid-vapor interface resulting in increased condensation and ullage pressure collapse. The first objective of this study is to validate the capabilities of a Computational Fluid Dynamics (CFD) tool, CFD-ACE+, in modeling the fundamental interface transition physics occurring at the propellant surface. The second objective is to use the tool to assess the effects of thrust oscillations on surface dynamics. Our technical approach is to first verify the CFD code against known theoretical solutions, and then validate against existing experiments for small scale tanks and a range of transition regimes. A 2D axisymmetric, multi-phase model of gases, liquids, and solids is used to verify that CFD-ACE+ is capable of modeling fluid-structure interaction and system resonance in a typical thrust oscillation environment. Then, the 3D mode is studied with an assumed oscillatory body force to simulate the thrust oscillating effect. The study showed that CFD modeling can capture all of the transition physics from solid body motion to standing surface wave and to droplet ejection from liquid-gas interface. Unlike the analytical solutions established during the 1960 s, CFD modeling is not limited to the small amplitude regime. It can extend solutions to the nonlinear regime to determine the amplitude of surface waves after the onset of instability. The present simulation also demonstrated consistent trends from numerical experiments through variation of physical properties from low viscous fluid to high viscous fluids, and through variation of geometry and input forcing functions. A comparison of surface wave patterns under various forcing frequencies and amplitudes showed good agreement with experimental observations. It is concluded that thrust oscillations can cause droplet formation at the interface, which results in increased surface area and enhanced heat transfer

  15. Fluid mechanics experiments in oscillatory flow. Volume 1

    SciTech Connect

    Seume, J.; Friedman, G.; Simon, T.W.

    1992-03-01

    Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).

  16. Advective velocity and energy dissipation rate in an oscillatory flow.

    PubMed

    Haider, Ziaul; Hondzo, Miki; Porte-Agel, Fernando

    2005-07-01

    Characterizing the transport processes at the sediment-water interface along sloping boundaries in lakes and reservoirs is of fundamental interest in lake and reservoir water quality management. The turbulent bottom boundary layer (TBBL) along a slope, induced by the breaking of internal waves in a linearly stratified fluid, was investigated through laboratory measurements. Fast response micro-scale conductivity and temperature probes in conjunction with laser-Doppler velocimetry were used to measure the time series of salinity, temperature, and velocity along a sloping boundary. Turbulent energy spectra were computed from the velocity data using a time-dependent advective velocity and Taylor's hypothesis. The energy spectra were used to estimate the energy dissipation rate at different positions in the TBBL. The advective velocity in this near-zero mean shear flow is based on an integral time scale (T(int)). The integral time scale is related to the average frequency of the spectral energy density of the flow velocity. The energy dissipation rate estimated from the variable advective velocity with an averaging time window equal to the integral time scale (T=T(int)) was 43% higher than the energy dissipation rate estimated from a constant advective velocity. The estimated dissipation rates with T=T(int) were comparable to values obtained by curve-fitting a theoretical Batchelor spectrum for the temperature gradient spectra. This study proposes the integral time scale to be used for the oscillatory flows as (a) a time-averaging window to estimate the advective velocity and associated energy dissipation level, and (b) a normalizing parameter in the energy spectrum.

  17. High temperature steady shear and oscillatory rheometry of basaltic melt

    NASA Astrophysics Data System (ADS)

    Petford, N.; English, R.; Williams, R.; Rogers, N.

    2012-04-01

    There is a paucity of linear viscoelastic data on low viscosity (basaltic) silicate melts. We report here the initial results of a rheometrical characterisation (steady rotation, small angle oscillation) study on a geochemically well constrained aphyric basalt from Ethiopia (SiO2 48.51 wt.%, Mg# 0.44), in the temperature range 1200-1400 Celsius. Experiments were done using a recently developed commercial instrument (Anton Paar FRS 1600) and a wide gap Couette geometry. To the best of our knowledge these are the first reported silicate melt viscosity data obtained using small amplitude oscillatory shear and a rheometer with a high performance electrically commutated actuator. Results show that in the temperature range the system was very fluid, with the measured shear viscosity falling to ~ 2.3 Pa s at T = 1400 C. The melt exhibited a linear (Newtonian) response, with the shear viscosity remaining constant across two decades of deformation rate. As expected for a Newtonian fluid, the phase angle was 90 degrees across the entire range of angular frequencies studied. Correspondingly, the storage modulus (G') was zero and the loss modulus finite exhibiting a linear increase with frequency. The complex viscosity (oscillation) and shear viscosity (steady rotation) were equal in magnitude ('Cox-Merz' equivalence). These data are best interpreted in terms of a system with relatively low 'connectivity'/polymeric character and rapid relaxation dynamics, consistent with the mafic composition of the melt. As detailed compositional data are available the experimentally determined shear viscosity values are compared with those predicted from multicomponent chemical models in the literature. Discrepancies between the experimental and theoretical values are discussed.

  18. Rheological changes of polyamide 12 under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Mielicki, C.; Gronhoff, B.; Wortberg, J.

    2014-05-01

    Changes in material properties as well as process deviation prevent Laser Sintering (LS) technology from manufacturing of quality assured parts in a series production. In this context, the viscosity of Polyamide 12 (PA12) is assumed to possess the most significant influence, as it determines the sintering velocity, the resistance towards melt formation and the bonding strength of sintered layers. Moreover, the viscosity is directly related to the structure of the molten polymer. In particular, it has been recently reported that LS process conditions lead to structural changes of PA12 affecting viscosity and coalescence of adjacent polymer particles, i.e. melt formation significantly. Structural change of PA12 was understood as a post condensation. Its influence on viscosity was described by a time and temperature depending rheological model whereas time dependence was considered by a novel structural change shift factor which was derived from melt volume rate data. In combination with process data that was recorded using online thermal imaging, the model is suitable to control the viscosity (processability of the material) as result of material and process properties. However, as soon as laser energy is exposed to the powder bed PA12 undergoes a phase transition from solid to molten state. Above the melting point, structural change is expected to occur faster due to a higher kinetic energy and free volume of the molten polymer. Oscillatory shear results were used to study the influence of aging time and for validation of the novel structural change shift factor and its model parameters which were calibrated based on LS processing condition.

  19. An oscillatory interference model of grid cell firing

    PubMed Central

    Burgess, N; Barry, C; O'Keefe, J

    2009-01-01

    We expand upon our proposal that the oscillatory interference mechanism proposed for the phase precession effect in place cells underlies the grid-like firing pattern of dorsomedial entorhinal grid cells (O'Keefe & Burgess, 2005). The original 1-dimensional interference model is generalized to an appropriate 2-dimensional mechanism. Specifically, dendritic subunits of layer II medial entorhinal stellate cells provide multiple linear interference patterns along different directions, with their product determining the firing of the cell. Connection of appropriate speed- and direction- dependent inputs onto dendritic subunits could result from an unsupervised learning rule which maximizes post-synaptic firing (e.g. competitive learning). These inputs cause the intrinsic oscillation of subunit membrane potential to increase above theta frequency by an amount proportional to the animal's speed of running in the ‘preferred’ direction. The phase difference between this oscillation and a somatic input at theta-frequency essentially integrates velocity so that the interference of the two oscillations reflects distance traveled in the preferred direction. The overall grid pattern is maintained in environmental location by phase reset of the grid cell by place cells receiving sensory input from the environment, and environmental boundaries in particular. We also outline possible variations on the basic model, including the generation of grid-like firing via the interaction of multiple cells rather than via multiple dendritic subunits. Predictions of the interference model are given for the frequency composition of EEG power spectra and temporal autocorrelograms of grid cell firing as functions of the speed and direction of running and the novelty of the environment. PMID:17598147

  20. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  1. Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies.

    PubMed

    Canolty, Ryan T; Ganguly, Karunesh; Kennerley, Steven W; Cadieu, Charles F; Koepsell, Kilian; Wallis, Jonathan D; Carmena, Jose M

    2010-10-05

    Hebb proposed that neuronal cell assemblies are critical for effective perception, cognition, and action. However, evidence for brain mechanisms that coordinate multiple coactive assemblies remains lacking. Neuronal oscillations have been suggested as one possible mechanism for cell assembly coordination. Prior studies have shown that spike timing depends upon local field potential (LFP) phase proximal to the cell body, but few studies have examined the dependence of spiking on distal LFP phases in other brain areas far from the neuron or the influence of LFP-LFP phase coupling between distal areas on spiking. We investigated these interactions by recording LFPs and single-unit activity using multiple microelectrode arrays in several brain areas and then used a unique probabilistic multivariate phase distribution to model the dependence of spike timing on the full pattern of proximal LFP phases, distal LFP phases, and LFP-LFP phase coupling between electrodes. Here we show that spiking activity in single neurons and neuronal ensembles depends on dynamic patterns of oscillatory phase coupling between multiple brain areas, in addition to the effects of proximal LFP phase. Neurons that prefer similar patterns of phase coupling exhibit similar changes in spike rates, whereas neurons with different preferences show divergent responses, providing a basic mechanism to bind different neurons together into coordinated cell assemblies. Surprisingly, phase-coupling-based rate correlations are independent of interneuron distance. Phase-coupling preferences correlate with behavior and neural function and remain stable over multiple days. These findings suggest that neuronal oscillations enable selective and dynamic control of distributed functional cell assemblies.

  2. The Mechanism of Spontaneous Oscillatory Contractions in Skeletal Muscle

    PubMed Central

    Smith, D.A.; Stephenson, D.G.

    2009-01-01

    Most striated muscles generate steady contractile tension when activated, but some preparations, notably cardiac myocytes and slow-twitch fibers, may show spontaneous oscillatory contractions (SPOC) at low levels of activation. We have provided what we believe is new evidence that SPOC is a property of the contractile system at low actin-myosin affinity, whether caused by a thin-filament regulatory system or by other means. We present a quantitative single-sarcomere model for isotonic SPOC in skeletal muscle with three basic ingredients: i), actin and myosin filaments initially in partial overlap, ii), stretch activation by length-dependent changes in the lattice spacing, and iii), viscoelastic passive tension. Modeling examples are given for slow-twitch and fast-twitch fibers, with periods of 10 s and 4 s respectively. Isotonic SPOC occurs in a narrow domain of parameter values, with small minimum and maximum values for actin-myosin affinity, a minimum amount of passive tension, and a maximum transient response rate that explains why SPOC is favored in slow–twitch fibers. The model also predicts the contractile, relaxed and SPOC phases as a function of phosphate and ADP levels. The single-sarcomere model can also be applied to a whole fiber under auxotonic and fixed-end conditions if the remaining sarcomeres are treated as a viscoelastic load. Here the model predicts an upper limit for the load stiffness that leads to SPOC; this limit lies above the equivalent loads expected from the rest of the fiber. PMID:19413973

  3. Visual field defects for unidirectional and oscillatory motion in depth.

    PubMed

    Hong, X; Regan, D

    1989-01-01

    Visual fields for oscillatory motion in depth were recorded for 21 subjects. Near fields were different from far fields in 8 and similar in 11 subjects. Visual fields for unidirectional motion in depth were recorded for 16 subjects for near and far disparities. Some subjects had fields that differed for approaching versus receding motion in depth and/or for near versus far disparities. In particular, for near disparities, approaching versus receding motion gave fields that were different in 5 and similar 7 subjects; for far disparities, approaching versus receding motion gave fields that were different in 1 and similar in 10 subjects. For approaching motion in depth, near fields differed from far fields in 3 and were similar in 8 subjects; for receding motion in depth, near fields were different from far fields in 5 and similar in 8 subjects. Because sensitivity to monocular frontal plane motion showed no irregularities corresponding to the stereomotion field defects, we conclude that (1) stereomotion field defects were chiefly due to defective cortical processing of motion. We also conclude that (2) stereomotion field defects--at least for unidirectional motion--are caused by loss of sensitivity to unidirectional motion in depth rather than to abnormal interactions between mechanisms for approaching and receding motion, and (3) the finding of directional-specific stereomotion blindness is better explained by the two-population than by the one-population hypothesis of stereomotion blindness. We suggest that the substantial incidence of stereomotion field defects in normally-sighted subjects has implications for clinical studies and for visual assessment of pilots.

  4. Numerical simulation of flow separation control by oscillatory fluid injection

    NASA Astrophysics Data System (ADS)

    Resendiz Rosas, Celerino

    2005-07-01

    In this work, numerical simulations of flow separation control are performed. The separation control technique studied is called "synthetic jet actuation". The developed code employs a cell centered finite volume scheme which handles viscous, steady and unsteady compressible turbulent flows. The pulsating zero mass jet flow is simulated by imposing a harmonically varying transpiration boundary condition on the airfoil's surface. Turbulence is modeled with the algebraic model of Baldwin and Lomax. The application of synthetic jet actuators is based in their ability to energize the boundary layer, thereby providing significant increase in the lift coefficient. This has been corroborated experimentally and it is corroborated numerically in this research. The performed numerical simulation investigates the flow over a NACA0015 airfoil. For this flow Re = 9 x 105 and the reduced frequency and momentum coefficient are F + = 1.1 and Cmu = 0.04 respectively. The oscillatory injection takes place at 12.27% chord from the leading edge. A maximum increase in the mean lift coefficient of 93% is predicted by the code. A discrepancy of approximately 10% is observed with corresponding experimental data from the literature. The general trend is, however, well captured. The discrepancy is attributed to the modeling of the injection boundary condition and to the turbulence model. A sensitivity analysis of the lift coefficient to different values of the oscillation parameters is performed. It is concluded that tangential injection, F+ ≈ O(1) and the utilized grid resolution around the site of injection are optimal. Streamline fields obtained for different angles of injection are analyzed. Flow separation and attachment as functions of the injection angle and of the velocity of injection can be observed. It is finally concluded that a reliable numerical tool has been developed which can be utilized as a support tool in the optimization of the synthetic jet operation and in the

  5. Jacobi elliptic functions: A review of nonlinear oscillatory application problems

    NASA Astrophysics Data System (ADS)

    Kovacic, Ivana; Cveticanin, Livija; Zukovic, Miodrag; Rakaric, Zvonko

    2016-10-01

    This review paper is concerned with the applications of Jacobi elliptic functions to nonlinear oscillators whose restoring force has a monomial or binomial form that involves cubic and/or quadratic nonlinearity. First, geometric interpretations of three basic Jacobi elliptic functions are given and their characteristics are discussed. It is shown then how their different forms can be utilized to express exact solutions for the response of certain free conservative oscillators. These forms are subsequently used as a starting point for a presentation of different quantitative techniques for obtaining an approximate response for free perturbed nonlinear oscillators. An illustrative example is provided. Further, two types of externally forced nonlinear oscillators are reviewed: (i) those that are excited by elliptic-type excitations with different exact and approximate solutions; (ii) those that are damped and excited by harmonic excitations, but their approximate response is expressed in terms of Jacobi elliptic functions. Characteristics of the steady-state response are discussed and certain qualitative differences with respect to the classical Duffing oscillator excited harmonically are pointed out. Parametric oscillations of the oscillators excited by an elliptic-type forcing are considered as well, and the differences with respect to the stability chart of the classical Mathieu equation are emphasized. The adjustment of the Melnikov method to derive the general condition for the onset of homoclinic bifurcations in a system parametrically excited by an elliptic-type forcing is provided and compared with those corresponding to harmonic excitations. Advantages and disadvantages of the use of Jacobi elliptic functions in nonlinear oscillatory application problems are discussed and some suggestions for future work are given.

  6. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    NASA Technical Reports Server (NTRS)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  7. Magnetic equilibria for X-Diverted plasmas

    NASA Astrophysics Data System (ADS)

    Pekker, M.; Valanju, P.; Kotschenreuther, M.; Wiley, J.; Mahajan, S.

    2006-10-01

    The X-divertor has been proposed to solve heat exhaust problems for reactors beyond ITER. By generating an extra X-point downstream from the main X-point, the X-divertor greatly expands magnetic flux at the divertor plates. As a result, the heat is distributed over a larger area and the line length is greatly increased. We have developed coil sets for X-diverted magnetic equilibria for many devices (NSTX, PEGASUS, EAST, HL-2A, CREST, and a CTF). These demonstrate that the XD configuration can be created for highly shaped plasmas using moderate coil currents. For reactors, all coils can be placed behind 1 m of shielding. We have also shown that XD configurations are robust to modest plasma perturbations and VDEs; this is in contrast to the sensitivity of highly tilted divertor plates.

  8. Highly Efficient Freestyle Magnetic Nanoswimmer.

    PubMed

    Li, Tianlong; Li, Jinxing; Morozov, Konstantin I; Wu, Zhiguang; Xu, Tailin; Rozen, Isaac; Leshansky, Alexander M; Li, Longqiu; Wang, Joseph

    2017-08-09

    The unique swimming strategies of natural microorganisms have inspired recent development of magnetic micro/nanorobots powered by artificial helical or flexible flagella. However, as artificial nanoswimmers with unique geometries are being developed, it is critical to explore new potential modes for kinetic optimization. For example, the freestyle stroke is the most efficient of the competitive swimming strokes for humans. Here we report a new type of magnetic nanorobot, a symmetric multilinked two-arm nanoswimmer, capable of efficient "freestyle" swimming at low Reynolds numbers. Excellent agreement between the experimental observations and theoretical predictions indicates that the powerful "freestyle" propulsion of the two-arm nanorobot is attributed to synchronized oscillatory deformations of the nanorobot under the combined action of magnetic field and viscous forces. It is demonstrated for the first time that the nonplanar propulsion gait due to the cooperative "freestyle" stroke of the two magnetic arms can be powered by a plane oscillatory magnetic field. These two-arm nanorobots are capable of a powerful propulsion up to 12 body lengths per second, along with on-demand speed regulation and remote navigation. Furthermore, the nonplanar propulsion gait powered by the consecutive swinging of the achiral magnetic arms is more efficient than that of common chiral nanohelical swimmers. This new swimming mechanism and its attractive performance opens new possibilities in designing remotely actuated nanorobots for biomedical operation at the nanoscale.

  9. Analytical and Semi-Analytical Tools for the Design of Oscillatory Pumping Tests.

    PubMed

    Cardiff, Michael; Barrash, Warren

    2015-01-01

    Oscillatory pumping tests-in which flow is varied in a periodic fashion-provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant-rate pumping tests. During oscillatory testing, pressure data collected at non-pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing helps to validate the methodology. Second, we develop a semi-analytical method for computing the sensitivity of oscillatory signals to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the "sensed" extent of an aquifer at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize design of oscillatory pumping test campaigns.

  10. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  11. Quantitative analysis of numerical solvers for oscillatory biomolecular system models

    PubMed Central

    Quo, Chang F; Wang, May D

    2008-01-01

    Background This article provides guidelines for selecting optimal numerical solvers for biomolecular system models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010, the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular system models, which makes it difficult to experimentally validate the modeling results. To address this problem, we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system model. Solving this model, we have illustrated that different answers may result from different numerical solvers. We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We have also conducted a systematic study of numerical solver performances by using qualitative and quantitative measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers when solving biomolecular system models. Results The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance conditions. Conclusions For any given biomolecular model, by building a library of numerical solvers with quantitative performance assessment metric, we show that it is possible

  12. Pulsatile Versus Oscillatory Shear Stress Regulates NADPH Oxidase Subunit Expression

    PubMed Central

    Hwang, Juliana; Ing, Michael H.; Salazar, Adler; Lassègue, Bernard; Griendling, Kathy; Navab, Mohamad; Sevanian, Alex; Hsiai, Tzung K.

    2015-01-01

    Shear stress regulates endothelial nitric oxide and superoxide (O2−·) production, implicating the role of NADPH oxidase activity. It is unknown whether shear stress regulates the sources of reactive species production, consequent low-density lipoprotein (LDL) modification, and initiation of inflammatory events. Bovine aortic endothelial cells (BAECs) in the presence of 50 μg/mL of native LDL were exposed to (1) pulsatile flow with a mean shear stress (τave) of 25 dyne/cm2 and (2) oscillating flow at τave of 0. After 4 hours, aliquots of culture medium were collected for high-performance liquid chromatography analyses of electronegative LDL species, described as LDL− and LDL2−. In response to oscillatory shear stress, gp91phox mRNA expression was upregulated by 2.9±0.3-fold, and its homologue, Nox4, by 3.9±0.9-fold (P<0.05, n=4), with a corresponding increase in O2−· production rate. The proportion of LDL− and LDL2− relative to static conditions increased by 67±17% and 30±7%, respectively, with the concomitant upregulation of monocyte chemoattractant protein-1 expression and increase in monocyte/BAEC binding (P<0.05, n=5). In contrast, pulsatile flow downregulated both gp91phox and Nox4 mRNA expression (by 1.8±0.2-fold and 3.0±0.12-fold, respectively), with an accompanying reduction in O2−· production, reduction in the extent of LDL modification (51±12% for LDL− and 30±7% for LDL2−), and monocyte/BAEC binding. The flow-dependent LDL oxidation is determined in part by the NADPH oxidase activity. The formation of modified LDL via O2−· production may also affect the regulation of monocyte chemoattractant protein-1 expression and monocyte/BAEC binding. PMID:14593003

  13. Dynamics of an unconstrained oscillatory flicking brush for road sweeping

    NASA Astrophysics Data System (ADS)

    Vanegas Useche, L. V.; Abdel Wahab, M. M.; Parker, G. A.

    2007-11-01

    This article studies the dynamics of a freely rotating flicking brush by means of a mathematical model. The bristles are treated as cantilever prismatic beams subjected to small deflections. A solution of the equation of motion for their forced transverse vibration is obtained through the normal-mode method. A novel oscillatory motion is superimposed onto the rotary motion of the brush. Two functions of oscillation are investigated: a sinusoidal angular velocity and a novel function, named after the authors 'VAP' (Vanegas Useche, Abdel Wahab, Parker), developed to provide small shaft accelerations. The VAP function may be a square wave, a triangle wave, or a smooth wave between them, depending on the value of a smoothness parameter, b. The results indicate that the maximum bending moment, stress, and deflection are independent of the mean angular velocity, are proportional to its alternating component, and increase linearly with the mount radius and the sine of the mount angle. In addition, the behaviour of the brush is strongly affected by the frequency of oscillation, the type of function, the value of b, and bristle wear, amongst other parameters. For the sinusoidal and VAP function, resonance occurs at the bristle natural frequencies. Moreover, the VAP function tends to produce a condition similar to resonance also at odd fractions of the natural frequencies. This phenomenon may be accentuated or reduced, by adjusting the value of b, and be expedited or impeded, by the selection of the frequency. The results of this work may also be applied to the case of a small-deflection cantilever beam, when the transverse external force is a sinusoidal, square, or triangle wave or when it is given by the new VAP function. Finally, the VAP wave may enable to excite a condition similar to resonance not only at the natural frequencies of the beam, but also at odd fractions of them. Small frequencies may be required to achieve a resonant behaviour of a high-frequency mode

  14. The cerebral oscillatory network of parkinsonian resting tremor.

    PubMed

    Timmermann, Lars; Gross, Joachim; Dirks, Martin; Volkmann, Jens; Freund, Hans-Joachim; Schnitzler, Alfons

    2003-01-01

    analysis and the calculation of phase shifts revealed a strong bidirectional coupling between the EMG and diencephalic activity and a direct afferent coupling between the EMG and SII and the PPC. In contrast, the cerebellum, SMA/CMA and PM show little evidence for direct coupling with the peripheral EMG but seem to be connected with the periphery via other cerebral areas (e.g. M1). In summary, our results demonstrate tremor-related oscillatory activity within a cerebral network, with abnormal coupling in a cerebello-diencephalic-cortical loop and cortical motor (M1, SMA/CMA, PM) and sensory (SII, PPC) areas contralateral to the tremor hand. The main frequency of cerebro-cerebral coupling corresponds to double the tremor frequency.

  15. Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal

    PubMed Central

    Wen, Haiguang; Liu, Zhongming

    2015-01-01

    Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the Irregular-Resampling Auto-Spectral Analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography (ECoG) and human magnetoencephalography (MEG) data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions. PMID:26318848

  16. Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal.

    PubMed

    Wen, Haiguang; Liu, Zhongming

    2016-01-01

    Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the irregular-resampling auto-spectral analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography and human magnetoencephalography data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions.

  17. Oscillatory quantum screening effects on the transition bremsstrahlung radiation in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Jung, Young-Dae

    2011-06-01

    The oscillatory screening effects on the transition bremsstrahlung radiation due to the polarization interaction between the electron and shielding cloud are investigated in dense quantum plasmas. The impact-parameter analysis with the modified Debye-Hückel potential is applied to obtain the bremsstrahlung radiation cross section as a function of the quantum wave number, impact parameter, photon energy, and projectile energy. The results show that the oscillatory quantum screening effect strongly suppresses the transition bremsstrahlung radiation spectrum in dense quantum plasmas. It is also found that the oscillatory quantum screening effect is more significant near the maximum peak of the bremsstrahlung radiation cross section. In addition, the maximum peak of the bremsstrahlung radiation cross section is getting close to the center of the shielding cloud as increasing quantum wave number. It is interesting to note that the range of the bremsstrahlung photon energy would be broadened with an increase of the oscillatory screening effect. It is also found that the oscillatory screening effects on the transition bremsstrahlung spectrum decreases with increasing projectile energy.

  18. Decision-making ability of Physarum polycephalum enhanced by its coordinated spatiotemporal oscillatory dynamics.

    PubMed

    Iwayama, Koji; Zhu, Liping; Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki

    2016-04-12

    An amoeboid unicellular organism, a plasmodium of the true slime mold Physarum polycephalum, exhibits complex spatiotemporal oscillatory dynamics and sophisticated information processing capabilities while deforming its amorphous body. We previously devised an 'amoeba-based computer (ABC),' that implemented optical feedback control to lead this amoeboid organism to search for a solution to the traveling salesman problem (TSP). In the ABC, the shortest TSP route (the optimal solution) is represented by the shape of the organism in which the body area (nutrient absorption) is maximized while the risk of being exposed to aversive light stimuli is minimized. The shortness of the TSP route found by ABC, therefore, serves as a quantitative measure of the optimality of the decision made by the organism. However, it remains unclear how the decision-making ability of the organism originates from the oscillatory dynamics of the organism. We investigated the number of coexisting traveling waves in the spatiotemporal patterns of the oscillatory dynamics of the organism. We show that a shorter TSP route can be found when the organism exhibits a lower number of traveling waves. The results imply that the oscillatory dynamics are highly coordinated throughout the global body. Based on the results, we discuss the fact that the decision-making ability of the organism can be enhanced not by uncorrelated random fluctuations, but by its highly coordinated oscillatory dynamics.

  19. Synchronization phenomena in mixed media of passive, excitable, and oscillatory cells.

    PubMed

    Kryukov, A K; Petrov, V S; Averyanova, L S; Osipov, G V; Chen, W; Drugova, O; Chan, C K

    2008-09-01

    We study collective phenomena in highly heterogeneous cardiac cell culture and its models. A cardiac culture is a mixture of passive (fibroblasts), oscillatory (pacemakers), and excitable (myocytes) cells. There is also heterogeneity within each type of cell as well. Results of in vitro experiments are modelled by Luo-Rudy and FitzHugh-Nagumo systems. For oscillatory and excitable media, we focus on the transitions from fully incoherent behavior to partially coherent behavior and then to global synchronization as the coupling strength is increased. These regimes are characterized qualitatively by spatiotemporal diagrams and quantitatively by profiles of dependence of individual frequencies on coupling. We find that synchronization clusters are determined by concentric and spiral waves. These waves arising due to the heterogeneity of medium push covered cells to oscillate in synchrony. We are also interested in the influence of passive and excitable elements on the oscillatory characteristics of low- and high-dimensional ensembles of cardiac cells. The mixture of initially silent excitable and passive cells shows the transitions to oscillatory behavior. In the media of oscillatory and passive or excitable cells, the effect of oscillation death is observed.

  20. Ca2+ Effects on ATP Production and Consumption Have Regulatory Roles on Oscillatory Islet Activity.

    PubMed

    McKenna, Joseph P; Ha, Joon; Merrins, Matthew J; Satin, Leslie S; Sherman, Arthur; Bertram, Richard

    2016-02-02

    Pancreatic islets respond to elevated blood glucose by secreting pulses of insulin that parallel oscillations in β-cell metabolism, intracellular Ca(2+) concentration, and bursting electrical activity. The mechanisms that maintain an oscillatory response are not fully understood, yet several models have been proposed. Only some can account for experiments supporting that metabolism is intrinsically oscillatory in β-cells. The dual oscillator model (DOM) implicates glycolysis as the source of oscillatory metabolism. In the companion article, we use recently developed biosensors to confirm that glycolysis is oscillatory and further elucidate the coordination of metabolic and electrical signals in the insulin secretory pathway. In this report, we modify the DOM by incorporating an established link between metabolism and intracellular Ca(2+) to reconcile model predictions with experimental observations from the companion article. With modification, we maintain the distinguishing feature of the DOM, oscillatory glycolysis, but introduce the ability of Ca(2+) influx to reshape glycolytic oscillations by promoting glycolytic efflux. We use the modified model to explain measurements from the companion article and from previously published experiments with islets.

  1. Fluctuations of Prestimulus Oscillatory Power Predict Subjective Perception of Tactile Simultaneity

    PubMed Central

    Halacz, Johanna; van Dijk, Hanneke; Kahlbrock, Nina; Schnitzler, Alfons

    2012-01-01

    Oscillatory activity is modulated by sensory stimulation but can also fluctuate in the absence of sensory input. Recent studies have demonstrated that such fluctuations of oscillatory activity can have substantial influence on the perception of subsequent stimuli. In the present study, we employed a simultaneity task in the somatosensory domain to study the role of prestimulus oscillatory activity on the temporal perception of 2 events. Subjects received electrical stimulations of the left and right index finger with varying stimulus onset asynchronies (SOAs) and reported their subjective perception of simultaneity, while brain activity was recorded with magnetoencephalography. With intermediate SOAs (30 and 45 ms), subjects frequently misperceived the stimulation as simultaneously. We compared neuronal oscillatory power in these conditions and found that power in the high beta band (∼20 to 40 Hz) in primary and secondary somatosensory cortex prior to the electrical stimulation predicted subjects' reports of simultaneity. Additionally, prestimulus alpha-band power influenced perception in the condition SOA 45 ms. Our results indicate that fluctuations of ongoing oscillatory activity in the beta and alpha bands shape subjective perception of physically identical stimulation. PMID:22114082

  2. Fluctuations of prestimulus oscillatory power predict subjective perception of tactile simultaneity.

    PubMed

    Lange, Joachim; Halacz, Johanna; van Dijk, Hanneke; Kahlbrock, Nina; Schnitzler, Alfons

    2012-11-01

    Oscillatory activity is modulated by sensory stimulation but can also fluctuate in the absence of sensory input. Recent studies have demonstrated that such fluctuations of oscillatory activity can have substantial influence on the perception of subsequent stimuli. In the present study, we employed a simultaneity task in the somatosensory domain to study the role of prestimulus oscillatory activity on the temporal perception of 2 events. Subjects received electrical stimulations of the left and right index finger with varying stimulus onset asynchronies (SOAs) and reported their subjective perception of simultaneity, while brain activity was recorded with magnetoencephalography. With intermediate SOAs (30 and 45 ms), subjects frequently misperceived the stimulation as simultaneously. We compared neuronal oscillatory power in these conditions and found that power in the high beta band (∼20 to 40 Hz) in primary and secondary somatosensory cortex prior to the electrical stimulation predicted subjects' reports of simultaneity. Additionally, prestimulus alpha-band power influenced perception in the condition SOA 45 ms. Our results indicate that fluctuations of ongoing oscillatory activity in the beta and alpha bands shape subjective perception of physically identical stimulation.

  3. Light-Induced Responses of Slow Oscillatory Neurons of the Rat Olivary Pretectal Nucleus

    PubMed Central

    Szkudlarek, Hanna J.; Orlowska, Patrycja; Lewandowski, Marian H.

    2012-01-01

    Background The olivary pretectal nucleus (OPN) is a small midbrain structure responsible for pupil constriction in response to eye illumination. Previous electrophysiological studies have shown that OPN neurons code light intensity levels and therefore are called luminance detectors. Recently, we described an additional population of OPN neurons, characterized by a slow rhythmic pattern of action potentials in light-on conditions. Rhythmic patterns generated by these cells last for a period of approximately 2 minutes. Methodology To answer whether oscillatory OPN cells are light responsive and whether oscillatory activity depends on retinal afferents, we performed in vivo electrophysiology experiments on urethane anaesthetized Wistar rats. Extracellular recordings were combined with changes in light conditions (light-dark-light transitions), brief light stimulations of the contralateral eye (diverse illuminances) or intraocular injections of tetrodotoxin (TTX). Conclusions We found that oscillatory neurons were able to fire rhythmically in darkness and were responsive to eye illumination in a manner resembling that of luminance detectors. Their firing rate increased together with the strength of the light stimulation. In addition, during the train of light pulses, we observed two profiles of responses: oscillation-preserving and oscillation-disrupting, which occurred during low- and high-illuminance stimuli presentation respectively. Moreover, we have shown that contralateral retina inactivation eliminated oscillation and significantly reduced the firing rate of oscillatory cells. These results suggest that contralateral retinal innervation is crucial for the generation of an oscillatory pattern in addition to its role in driving responses to visual stimuli. PMID:22427957

  4. How brain oscillations form memories--a processing based perspective on oscillatory subsequent memory effects.

    PubMed

    Hanslmayr, Simon; Staudigl, Tobias

    2014-01-15

    Brain oscillations are increasingly recognized by memory researchers as a useful tool to unravel the neural mechanisms underlying the formation of a memory trace. However, the increasing numbers of published studies paint a rather complex picture of the relation between brain oscillations and memory formation. Concerning oscillatory amplitude, for instance, increases as well as decreases in various frequency bands (theta, alpha, beta and gamma) were associated with memory formation. These results cast doubt on frameworks putting forward the idea of an oscillatory signature that is uniquely related to memory formation. In an attempt to clarify this issue we here provide an alternative perspective, derived from classic cognitive frameworks/principles of memory. On the basis of Craik's levels of processing framework and Tulving's encoding specificity principle we hypothesize that brain oscillations during encoding might primarily reflect the perceptual and cognitive processes engaged by the encoding task. These processes may then lead to later successful retrieval depending on their overlap with the processes engaged by the memory test. As a consequence, brain oscillatory correlates of memory formation could vary dramatically depending on how the memory is encoded, and on how it is being tested later. Focusing on oscillatory amplitude changes and on theta-to-gamma cross-frequency coupling, we here review recent evidence showing how brain oscillatory subsequent memory effects can be modulated, and sometimes even be reversed, by varying encoding tasks, and the contextual overlap between encoding and retrieval. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Oscillatory pallidal local field potential activity inversely correlates with limb dyskinesias in Parkinson's disease.

    PubMed

    Silberstein, Paul; Oliviero, Antonio; Di Lazzaro, Vincenzo; Insola, Angelo; Mazzone, Paolo; Brown, Peter

    2005-08-01

    Levodopa induced dyskinesias (LIDs) are poorly understood and yet are a major cause of disability in Parkinson's disease (PD). The activity of neurons in the basal ganglia of patients with PD tends to be strongly synchronized at frequencies under 30 Hz, leading to oscillatory local field potentials (LFPs). As dopaminergic therapy acutely suppresses this synchronization, we investigated whether this suppression may contribute to LIDs. Accordingly, we sought an inverse correlation between oscillatory synchronization and dyskinesia activity across time. To this end, we recorded pallidal LFPs in two Parkinsonian subjects exhibiting LIDs following surgery for deep brain stimulation. We correlated LFP power with simultaneously recorded EMG from the dyskinetic contralateral upper limb. We found highly significant inverse correlations between the oscillatory LFP activity under 30 Hz and dyskinetic EMG (maximum r = -0.65, P < 0.001 and r = -0.33, P < 0.001 for activities over 13-30 Hz in each subject). The inverse relationship between oscillatory pallidal LFP activity and dyskinetic EMG was maintained over time periods of a few seconds and was focal. This observation links the suppression of oscillatory synchronization in the pallidum with dyskinetic muscle activity in PD.

  6. Oscillatory pressure drops through a woven-screen packed column subjected to a cyclic flow

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Cheng, P.

    An experiment has been performed to investigate oscillatory pressure drop characteristics in packed columns (composed of three different sizes of woven screen) subjected to a periodically reversing flow of air. It was found that the oscillatory pressure drop factor increases with the kinetic Reynolds number (Re ω) Dh and with the dimensionless fluid displacement ( Ao) Dh. Based on 92 experimental runs, correlation equations for the maximum and the cycle-averaged pressure drop factors in terms of these two similarity parameters are obtained. It is found that the value of the cycle-averaged pressure drop of the oscillatory flow in a packed column is four to six times higher than that of a steady flow at the same Reynolds number based on the cross-sectional mean velocity. At small Reynolds numbers, this pressure drop ratio depends only on the geometry of the woven screens and is independent of the Reynolds number (Re gw) Dh and the dimensionless fluid displacement ( Ao) DDh.

  7. Oscillatory Notch-pathway activity in a delay model of neuronal differentiation

    NASA Astrophysics Data System (ADS)

    Momiji, Hiroshi; Monk, Nicholas A. M.

    2009-08-01

    Lateral inhibition resulting from a double-negative feedback loop underlies the assignment of different fates to cells in many developmental processes. Previous studies have shown that the presence of time delays in models of lateral inhibition can result in significant oscillatory transients before patterned steady states are reached. We study the impact of local feedback loops in a model of lateral inhibition based on the Notch signaling pathway, elucidating the roles of intracellular and intercellular delays in controlling the overall system behavior. The model exhibits both in-phase and out-of-phase oscillatory modes and oscillation death. Interactions between oscillatory modes can generate complex behaviors such as intermittent oscillations. Our results provide a framework for exploring the recent observation of transient Notch-pathway oscillations during fate assignment in vertebrate neurogenesis.

  8. Mobile phone effects on children's event-related oscillatory EEG during an auditory memory task.

    PubMed

    Krause, Christina M; Björnberg, Christian Haarala; Pesonen, Mirka; Hulten, Annika; Liesivuori, Tiia; Koivisto, Mika; Revonsuo, Antti; Laine, Matti; Hämäläinen, Heikki

    2006-06-01

    To assess the effects of electromagnetic fields (EMF) emitted by mobile phones (MP) on the 1 - 20 Hz event-related brain oscillatory EEG (electroencephalogram) responses in children performing an auditory memory task (encoding and recognition). EEG data were gathered while 15 subjects (age 10 - 14 years) performed an auditory memory task both with and without exposure to a digital 902 MHz MP in counterbalanced order. During memory encoding, the active MP modulated the event-related desynchronization/synchronization (ERD/ERS) responses in the approximately 4 - 8 Hz EEG frequencies. During recognition, the active MP transformed these brain oscillatory responses in the approximately 4 - 8 Hz and approximately 15 Hz frequencies. The current findings suggest that EMF emitted by mobile phones has effects on brain oscillatory responses during cognitive processing in children.

  9. The effect of flow rate on the oscillatory activation energy of an oscillating reaction

    NASA Astrophysics Data System (ADS)

    Monteiro, Emily V.; Varela, Hamilton; Faria, Roberto B.

    2017-09-01

    The simultaneous influence of temperature and flow rate (k0) in the oscillatory regime of the bromate-oxalic acid-acetone-Ce(III) oscillating reaction was investigated. The influence of temperature was evaluated in terms of the oscillatory activation energy (Eω), which was determined at different flow rates. Increasing k0, the oscillatory activation energy is decreased, tending to a limit value, Eω∞. The sensitivity of Eω with k0 is described by the parameter η = dEω/d(1/k0). Eω∞ and η are global properties of any particular oscillating reaction and describes a correlation between the dynamical behavior and temperature, and should be used when comparing different oscillating reactions.

  10. A comparative analysis on different nanofluid models for the oscillatory stagnation point flow

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Khan, A. U.; Saleem, S.

    2016-08-01

    In this study we have presented the comparative analysis of the oscillatory stagnation point flow of nanofluids. Both the phase flow model and Buongiorno model are discussed for oscillatory stagnation point flows and a comparison between experimental model and theoretical model is presented. The resulting partial differential equations for oscillatory two-dimensional flows are simplified in a fixed frame and a moving frame of reference subject to the assumed form of solutions. The homotopy analysis method is used to solve the reduced system of coupled nonlinear ordinary differential equations. The consequences are examined through graphs and tables. It is also found that comparatively both the Boungiorno nanofluid model and phase flow model are of compatible order for a special set of parameters but generally such results do not hold.

  11. Pseudo-inverse Jacobian control with grey relational analysis for robot manipulators mounted on oscillatory bases

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lin, C. C.; Lo, H.-S.

    2009-10-01

    Interest in complex robotic systems is growing in new application areas. An example of such a robotic system is a dexterous manipulator mounted on an oscillatory base. In literature, such systems are known as macro/micro systems. This work proposes pseudo-inverse Jacobian feedback control laws and applies grey relational analysis for tuning outer-loop PID control parameters of Cartesian computed-torque control law for robotic manipulators mounted on oscillatory bases. The priority when modifying controller parameters should be the top ranking importance among parameters. Grey relational grade is utilized to investigate the sensitivity of tuning the auxiliary signal PID of the Cartesian computed-torque law to achieve desired performance. Results of this study can be feasible to numerous mechanical systems, such as mobile robots, gantry cranes, underwater robots, and other dynamic systems mounted on oscillatory bases, for moving the end-effector to a desired Cartesian position.

  12. Determination of Temporal Order among the Components of an Oscillatory System

    PubMed Central

    Barragán, Sandra; Rueda, Cristina; Fernández, Miguel A.; Peddada, Shyamal D.

    2015-01-01

    Oscillatory systems in biology are tightly regulated process where the individual components (e.g. genes) express in an orderly manner by virtue of their functions. The temporal order among the components of an oscillatory system may potentially be disrupted for various reasons (e.g. environmental factors). As a result some components of the system may go out of order or even cease to participate in the oscillatory process. In this article, we develop a novel framework to evaluate whether the temporal order is unchanged in different populations (or experimental conditions). We also develop methodology to estimate the order among the components with a suitable notion of “confidence.” Using publicly available data on S. pombe, S. cerevisiae and Homo sapiens we discover that the temporal order among the genes cdc18; mik1; hhf1; hta2; fkh2 and klp5 is evolutionarily conserved from yeast to humans. PMID:26151635

  13. Not so different after all: The same oscillatory processes support different types of attention.

    PubMed

    Frey, Julia Natascha; Ruhnau, Philipp; Weisz, Nathan

    2015-11-11

    Scientific research from the last two decades has provided a vast amount of evidence that brain oscillations reflect physiological activity enabling diverse cognitive processes. The goal of this review is to give a broad empirical and conceptual overview of how ongoing oscillatory activity may support attention processes. Keeping in mind that definitions of cognitive constructs like attention are prone to being blurry and ambiguous, the present review focuses mainly on the neural correlates of 'top-down' attention deployment. In particular, we will discuss modulations of (ongoing) oscillatory activity during spatial, temporal, selective, and internal attention. Across these seemingly distinct attentional domains, we will summarize studies showing the involvement of two oscillatory processes observed during attention deployment: power modulations mainly in the alpha band, and phase modulations in lower frequency bands. This article is part of a Special Issue entitled SI: Prediction and Attention.

  14. Effect of the History Force on Particle Trajectories within an Oscillatory Rotating Flow

    NASA Astrophysics Data System (ADS)

    Xu, Shujing; Nadim, Ali

    2012-11-01

    At a previous APS-DFD meeting it was reported, based on theoretical considerations, that particles denser than their suspending fluid can be made to migrate toward the rotation axis if the container undergoes oscillatory rigid-body rotation in an appropriate range of frequencies [Nadim et al., Bull. Am. Phys. Soc., 53, 191 (2008)]. This is contrary to ordinary centrifugation. However, the effect of the Basset history force was not accounted for in that analysis. It is shown here that while the history force significantly affects the dynamics of the particles, the oscillatory ``counter-centrifugation'' effect that was previously discovered continues to persist even when the history force is included in the analysis. Interestingly, inclusion of the history force can extend the parameter regime for which oscillatory counter-centrifugation might be observed.

  15. Determination of Temporal Order among the Components of an Oscillatory System.

    PubMed

    Barragán, Sandra; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2015-01-01

    Oscillatory systems in biology are tightly regulated process where the individual components (e.g. genes) express in an orderly manner by virtue of their functions. The temporal order among the components of an oscillatory system may potentially be disrupted for various reasons (e.g. environmental factors). As a result some components of the system may go out of order or even cease to participate in the oscillatory process. In this article, we develop a novel framework to evaluate whether the temporal order is unchanged in different populations (or experimental conditions). We also develop methodology to estimate the order among the components with a suitable notion of "confidence." Using publicly available data on S. pombe, S. cerevisiae and Homo sapiens we discover that the temporal order among the genes cdc18; mik1; hhf1; hta2; fkh2 and klp5 is evolutionarily conserved from yeast to humans.

  16. Influence of sperm impact angle on successful fertilization through mZP oscillatory spherical net model.

    PubMed

    Hedrih, Andjelka; Lazarevic, Mihailo; Mitrovic-Jovanovic, Ana

    2015-04-01

    According to the available literature, penetrating sperm creates an oblique path trough Zona pellucida (ZP)--the most outer surface of oocytes. Considering fertilization process as an oscillatory phenomenon, the influence of sperm impact angle relative to the oscillatory behavior of mouse ZP is described by using the discrete continuum mechanical model in the form of a spherical net model. A parametric frequency analysis of oscillatory behavior of knot material particles in the mouse ZP (mZP) spherical net model is conducted by using generalized Lussajous curves. The influence of impact angles of sperm cells on the corresponding knot mass particles' resultant trajectory is discussed. Favorable sperm impact angles for successful fertilization are identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Non-oscillatory spectral element Chebyshev method for shock wave calculations

    SciTech Connect

    Sidilkover, D.; Karniadakis, G.E.

    1993-07-01

    A new algorithm based on spectral element discretization and non-oscillatory ideas is developed for the solution of hyperbolic partial differential equations. A conservative formulation is proposed based on cell averaging and reconstruction procedures, that employs a staggered grid of Gauss-Chebyshev and Gauss-Lobatto-Chebyshev discretizations. The non-oscillatory reconstruction procedure is based on ideas similar to those proposed by Cai et al. but employs a modified technique which is more robust and simpler in terms of determining the location and strength of a discontinuity. It is demonstrated through model problems of linear advection, inviscid Burgers equation, and one-dimensional Euler system that the proposed algorithm leads to stable, non-oscillatory accurate results. Exponential accuracy away from the discontinuity is realized for the inviscid Burgers equation example. 20 refs., 10 figs.

  18. Gas conductance during high-frequency oscillatory ventilation in large animals.

    PubMed

    Dodman, N H; Lehr, J L; Spaulding, G L; Gavriely, N

    1989-08-01

    Three sheep, a foal, a pony, and a calf were anesthetized and ventilated for short periods, using a high-frequency oscillatory ventilator. The efficiency of CO2 elimination was characterized at various oscillatory frequencies (50 to 30 Hz) and various tidal volumes, although the tidal volume used was always less than the measured dead space of the animal. In general, increasing either the oscillatory frequency or tidal volume increased CO2 elimination, but increasing the tidal volume had more effect. The relationship between these 3 variables was best described by a power law equation. Ventilatory frequencies and tidal volumes required to maintain eucapnia in the species studied were extrapolated from the results and, when technically possible, the potential of the technique to maintain eucapnia was tested in extended runs. The animals were supported successfully over this period, with normal blood gas tensions and no detrimental effects to heart rate and rhythm or arterial blood pressure.

  19. Visual study of the effect of grazing flow on the oscillatory flow in a resonator orifice

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1975-01-01

    Grazing flow and oscillatory flow in an orifice were studied in a plexiglass flow channel with a single side branch Helmholtz resonator using water as the fluid medium. An oscillatory flow was applied to the resonatory cavity, and color dyes were injected in both the orifice and the grazing flow field to record the motion of the fluid. The flow regimes associated with linear and nonlinear (high sound pressure level) impedances with and without grazing flows were recorded by a high-speed motion-picture camera. Appreciable differences in the oscillatory flow field were seen in the various flow regimes. With high grazing flows, the outflow and inflow from the resonator cavity are found to be asymmetric. The visual study confirms that jet energy loss during flow into a resonator cavity is much larger than the loss for ejection from the cavity into the grazing flow. For inflow into the resonator cavity, the effective orifice area was significantly reduced.

  20. Oscillatory magnetoresistance in La 0.67Ca 0.33MnO 3/YBa 2Cu 4O 8/La 0.67Ca 0.33MnO 3 sandwiches

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wong, H. K.

    2004-06-01

    Transport properties of La 0.67Ca 0.33MnO 3 (LCMO)/YBa 2Cu 4O 8 (YBCO)/LCMO sandwiches were studied. An oscillatory resistance occurs with a period 30 nm in the series of LCMO (50 nm)/YBCO/LCMO (50 nm) films when the thickness of the YBCO layer is less than 60 nm. In contrast to that for LCMO films, the metal-semiconductor transition temperature for LCMO/YBCO/LCMO films is enhanced and strongly depends on the thickness of the YBCO layer. The magnetoresistance ratio also shows a non-monotonic behavior and a long oscillatory period (80 nm) is found for LCMO (100 nm)/YBCO/LCMO (100 nm) films. These results imply that the magnetic spin interaction between the two LCMO layers may exist through the normal-conductive YBCO layer.

  1. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function.

    PubMed

    Kembro, Jackelyn M; Cortassa, Sonia; Aon, Miguel A

    2014-01-01

    The time-keeping properties bestowed by oscillatory behavior on functional rhythms represent an evolutionarily conserved trait in living systems. Mitochondrial networks function as timekeepers maximizing energetic output while tuning reactive oxygen species (ROS) within physiological levels compatible with signaling. In this work, we explore the potential for timekeeping functions dependent on mitochondrial dynamics with the validated two-compartment mitochondrial energetic-redox (ME-R) computational model, that takes into account (a) four main redox couples [NADH, NADPH, GSH, Trx(SH)2], (b) scavenging systems (glutathione, thioredoxin, SOD, catalase) distributed in matrix and extra-matrix compartments, and (c) transport of ROS species between them. Herein, we describe that the ME-R model can exhibit highly complex oscillatory dynamics in energetic/redox variables and ROS species, consisting of at least five frequencies with modulated amplitudes and period according to power spectral analysis. By stability analysis we describe that the extent of steady state-as against complex oscillatory behavior-was dependent upon the abundance of Mn and Cu, Zn SODs, and their interplay with ROS production in the respiratory chain. Large parametric regions corresponding to oscillatory dynamics of increasingly complex waveforms were obtained at low Cu, Zn SOD concentration as a function of Mn SOD. This oscillatory domain was greatly reduced at higher levels of Cu, Zn SOD. Interestingly, the realm of complex oscillations was located at the edge between normal and pathological mitochondrial energetic behavior, and was characterized by oxidative stress. We conclude that complex oscillatory dynamics could represent a frequency- and amplitude-modulated H2O2 signaling mechanism that arises under intense oxidative stress. By modulating SOD, cells could have evolved an adaptive compromise between relative constancy and the flexibility required under stressful redox/energetic conditions.

  2. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function

    PubMed Central

    Kembro, Jackelyn M.; Cortassa, Sonia; Aon, Miguel A.

    2014-01-01

    The time-keeping properties bestowed by oscillatory behavior on functional rhythms represent an evolutionarily conserved trait in living systems. Mitochondrial networks function as timekeepers maximizing energetic output while tuning reactive oxygen species (ROS) within physiological levels compatible with signaling. In this work, we explore the potential for timekeeping functions dependent on mitochondrial dynamics with the validated two-compartment mitochondrial energetic-redox (ME-R) computational model, that takes into account (a) four main redox couples [NADH, NADPH, GSH, Trx(SH)2], (b) scavenging systems (glutathione, thioredoxin, SOD, catalase) distributed in matrix and extra-matrix compartments, and (c) transport of ROS species between them. Herein, we describe that the ME-R model can exhibit highly complex oscillatory dynamics in energetic/redox variables and ROS species, consisting of at least five frequencies with modulated amplitudes and period according to power spectral analysis. By stability analysis we describe that the extent of steady state—as against complex oscillatory behavior—was dependent upon the abundance of Mn and Cu, Zn SODs, and their interplay with ROS production in the respiratory chain. Large parametric regions corresponding to oscillatory dynamics of increasingly complex waveforms were obtained at low Cu, Zn SOD concentration as a function of Mn SOD. This oscillatory domain was greatly reduced at higher levels of Cu, Zn SOD. Interestingly, the realm of complex oscillations was located at the edge between normal and pathological mitochondrial energetic behavior, and was characterized by oxidative stress. We conclude that complex oscillatory dynamics could represent a frequency- and amplitude-modulated H2O2 signaling mechanism that arises under intense oxidative stress. By modulating SOD, cells could have evolved an adaptive compromise between relative constancy and the flexibility required under stressful redox

  3. Thermocapillary oscillatory convection in half-zone liquid bridge and hydrothermal wave

    NASA Astrophysics Data System (ADS)

    Tang, Ze Mei

    It is now generally accepted that thermocapillary convection in half-zone liquid bridge of large Prandtl number fluid transfers from axis-symmetric convection to oscillatory convection directly with the increasing temperature difference, and it may be excited by the hydrothermal wave. In present study, thermocapillary oscillatory convection in a half-zone liquid bridge has been simulated for large Prandtl number fluid (10 cSt silicon oil) in the gravity level 1x10-4 g0 . The direct numerical simulation shows that for half-zone of large Prandtl fluid, the steady axissymmetric thermocapillary convection transfers to oscillatory convection via a 3-D steady state flow with azimuthal wave number m = 2 for some parameters, for example, L/d = 0.4 and V/Vo = 0.985, as the Marangoni number is increased. It is also of interest that the flow on the free surface at the z-constant cross section is from the cold spots towards the hot spots, which is similar to the results obtained in half-zone liquid bridge of Pr = 0.01 by Levenstam et al. Moreover, the present study reports the numerical results for hydrothermal wave in a liquid layer in the gravity level 1x10-4 g0 . The amplitudes of oscillatory velocity and temperature in the liquid layer are compared with those in the half-zone liquid bridge, which show that the amplitude of hydrothermal wave in the liquid layer is much smaller than that in the liquid bridge. The information about the existence of the steady state flow m = 2 prior to the oscillatory convection in half-zone liquid bridge and the very small amplitude of hydrothermal wave in a liquid layer are useful for understanding the mechanism for transition to oscillatory convection in the half zone.

  4. Boundary in the dynamic phase of globally coupled oscillatory and excitable units

    NASA Astrophysics Data System (ADS)

    Daido, Hiroaki

    2017-07-01

    There is a crucial boundary between dynamic phase 1 and dynamic phase 2 of globally coupled oscillatory and excitable units, where the mean field is constant and oscillates in the former and the latter, respectively. This boundary is theoretically derived here for a large population of dynamical units, each having only a phase variable, where it is assumed that both the coupling strength and the distribution width of bifurcation parameters are equally small. This theory, which is applicable only if all or most of the units are intrinsically oscillatory, is confirmed to agree with simulation results for two different distribution densities.

  5. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  6. Essentially non-oscillatory shock capturing methods applied to turbulence amplification in shock wave calculations

    NASA Technical Reports Server (NTRS)

    Osher, Stanley; Shu, Chi-Wang

    1988-01-01

    ENO (essentially non-oscillatory) schemes can provide uniformly high order accuracy right up to discontinuities while keeping sharp, essentially non-oscillatory shock transitions. Recently, an efficient implementation of ENO schemes was obtained based on fluxes and TVD Runge-Kutta time discretizations. The resulting code is very simple to program for multi-dimensions. ENO schemes are especially suitable for computing problems with both discontinuities and fine structures in smooth regions, such as shock interaction with turbulence, for which results for 1-D and 2-D Euler equations are presented. Much better resolution is observed by using third order ENO schemes than by using second order TVD schemes for such problems.

  7. On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1992-01-01

    A few years ago, the class of Essentially Non-Oscillatory Schemes for the numerical simulation of hyperbolic equations and systems was constructed. Since then, some extensions have been made to multidimensional simulations of compressible flows, mainly in the context of very regular structured meshes. In this paper, we first recall and improve the results of an earlier paper about non-oscillatory reconstruction on unstructured meshes, emphasizing the effective calculation of the reconstruction. Then we describe a class of numerical schemes on unstructured meshes and give some applications for its third order version. This demonstrates that a higher order of accuracy is indeed obtained, even on very irregular meshes.

  8. Solutions of a generalized anharmonic oscillatory noncentral potential in higher spatial dimensions

    NASA Astrophysics Data System (ADS)

    Bai, Ya; Zhang, Min-Cang

    2017-09-01

    A generalized anharmonic oscillatory noncentral potential is presented and the D-dimensional Schrödinger equation for this noncentral potential is examined in hyperspherical coordinates. The Nikiforov-Uvarov (N-U) method is applied to obtain the D-dimensional energy eigenvalues and the corresponding eigenfunctions. The angular/radial wavefunction is expressed in terms of Jacobi/ Laguerre polynomials. Some special cases of this potential model including the Quesne potential and the ring-shaped non-spherical harmonic oscillatory (RNHO) potential are discussed also.

  9. Extrapolation methods for divergent oscillatory infinite integrals that are defined in the sense of summability

    NASA Technical Reports Server (NTRS)

    Sidi, Avram

    1987-01-01

    In a recent work by the author an extrapolation method, the W-transformation, was developed, by which a large class of oscillatory infinite integrals can be computed very efficiently. The results of this work are extended to a class of divergent oscillatory infinite integrals in the present paper. It is shown in particular that these divergent integrals exist in the sense of Abel summability and that the W-transformation can be applied to them without any modifications. Convergence results are stated and numerical examples given.

  10. Evaluation of write error rate for voltage-driven dynamic magnetization switching in magnetic tunnel junctions with perpendicular magnetization

    NASA Astrophysics Data System (ADS)

    Shiota, Yoichi; Nozaki, Takayuki; Tamaru, Shingo; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Suzuki, Yoshishige

    2016-01-01

    We investigated the write error rate (WER) for voltage-driven dynamic switching in magnetic tunnel junctions with perpendicular magnetization. We observed a clear oscillatory behavior of the switching probability with respect to the duration of pulse voltage, which reveals the precessional motion of magnetization during voltage application. We experimentally demonstrated WER as low as 4 × 10-3 at the pulse duration corresponding to a half precession period (˜1 ns). The comparison between the results of the experiment and simulation based on a macrospin model shows a possibility of ultralow WER (<10-15) under optimum conditions. This study provides a guideline for developing practical voltage-driven spintronic devices.

  11. EXPLICT CALULATIONS OF HOMOCLINIC TANGLES SURROUNDING MAGNETIC ISLANDS IN TOKAMAKS

    SciTech Connect

    ROEDER, R.K.W.; RAPOPORT, B.I.; EVANS, T.E.

    2002-06-01

    We present explicit calculations of the complicated geometric objects known as homoclinic tangles that surround magnetic islands in the Poincare mapping of a tokamak's magnetic field. These tangles are shown to exist generically in the magnetic field of all toroidal confinement systems. The geometry of these tangles provides an explanation for the stochasticity known to occur near the X-points of the Poincare mapping. Furthermore, the intersection of homoclinic tangles from different resonances provides an explicit mechanism for the non-diffusive transport of magnetic field lines between these resonance layers.

  12. Rheological behavior of magnetic powder mixtures for magnetic PIM

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hun; Kim, See Jo; Park, Seong Jin; Mun, Jun Ho; Kang, Tae Gon; Park, Jang Min

    2012-06-01

    Powder injection molding (PIM) is a promising manufacturing technology for the net-shape production of small, complex, and precise metal or ceramic components. In order to manufacture high quality magnets using PIM, the magneto-rheological (MR) properties of the PIM feedstock, i.e. magnetic powder-binder mixture, should be investigated experimentally and theoretically. The current research aims at comprehensive understanding of the rheological characteristics of the PIM feedstock. The feedstock used in the experiment consists of strontium ferrite powder and paraffin wax. Steady and oscillatory shear tests have been carried out using a plate-and-plate rheometer, under the influence of a uniform magnetic field applied externally. Rheological properties of the PIM feedstock have been measured and characterized for various conditions by changing the temperature, the powder fraction and the magnetic flux density.

  13. Yielding behavior and temperature-induced on-field oscillatory rheological studies in a novel MR suspension containing polymer-capped Fe3Ni alloy microspheres

    NASA Astrophysics Data System (ADS)

    Arief, Injamamul; Mukhopadhyay, P. K.

    2017-05-01

    Magnetic Bimetallic alloy nanoparticles of 3d elements are known for their tunable shape, size and magnetic anisotropy and find extensive applications ranging from magneto-mechanical to biomedical devices. This paper reports the polyol-mediated synthesis of Fe-rich polyacrylic acid (PAA)-Fe3Ni alloyed microspheres and its morphological and structural characterizations with scanning electron microscopy and X-ray diffraction studies. Magnetorheological fluid was prepared by dispersing the 10 vol% microparticles in silicone oil. The room temperature viscoelastic characterization of the fluid was performed under different magnetic fields. The field-dependent yield stresses were scaled using Klingenberg model and found that static yield stress was more accurately described by an M3 dependence, where M is particle magnetization. We proposed a multipolar contribution and ascertained the fact that simple dipolar description was insufficient to describe the trend in a complex rheological fluid. Temperature-dependent oscillatory rheological studies under various fields were also investigated. This demonstrated a strong temperature-induced thinning effect. The temperature-thinning in complex moduli and viscosity were more pronounced for the samples at higher magnetic field owing to quasi-solid behavior.

  14. Determination of the Neutron Magnetic Moment

    DOE R&D Accomplishments Database

    Greene, G. L.; Ramsey, N. F.; Mampe, W.; Pendlebury, J. M.; Smith, K.; Dress, W. B.; Miller, P. D.; Perrin, P.

    1981-06-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H{sub 2}O), we find ..mu..{sub n}/..mu..{sub p} = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units.

  15. Global Pressure and Temperature Surface Measurements on a NACA 0012 Airfoil in Oscillatory Compressible Flow at Low Reduced Frequencies

    DTIC Science & Technology

    2012-01-01

    Global Pressure and Temperature Surface Measurements on a NACA 0012 Airfoil in Oscillatory Compressible Flow at Low Reduced Frequencies...SUBTITLE Global Pressure And Temperature Surface Measurements On A NACA 0012 Airfoil In Oscillatory Compressible Flow At Low Reduced Frequencies 5a...31 Section 4.2: Lifetime- vs . Intensity-Based PSP Techniques

  16. Quantum Well States in Magnetic Nanostructures

    NASA Astrophysics Data System (ADS)

    Qiu, Z. Q.

    2000-03-01

    Quantum Well (QW) states in magnetic nanostructures play an important role in many phenomena such as the oscillatory interlayer coupling in giant magnetoresistance (GMR) multilayers. Photoemission provides the most direct measurement of QW states in k-space. In this talk, I will report our recent results on QW states obtained at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. The high brightness and fine spot size of photon beam at beamline 7 of ALS allow the performance of photoemission experiment on double wedged samples. First, the nature of QW states in metallic thin films will be discussed. Using one monolayer Ni as a probe, we show that the amplitude of the QW wavefunction is described by an envelope function. Second, quantum interference between two QWs will be discussed. Finally, we demonstrate the interconnection between the QW states and the oscillatory interlayer coupling in magnetic multilayers.

  17. Observation of parallel-antiparallel magnetic coupling in ultrathin CoFeB-MgO based structures with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Wei; Shiue, C. H.; Cheng, Tsung-I.; Chern, G.

    2012-08-01

    A series of MgO/CoFeB/Ta(x)/CoFeB/MgO multilayered structures is fabricated by sputtering. Magnetic parallel-antiparallel oscillatory behavior is observed as a function of Ta thickness, while perpendicular magnetic anisotropy (PMA) also exists due to the MgO stabilization. The oscillatory period is ˜1.3 nm with a maximum interlayer exchange coupling (IEC) of ˜0.02 erg/cm2. The Ta spacer can be replaced by a layer of other metals to form a general perpendicular synthetic antiferromagnetic structure. The tuning of IEC and PMA by insertion of Ru is discussed.

  18. On oscillatory convection with the Cattaneo–Christov hyperbolic heat-flow model

    PubMed Central

    Bissell, J. J.

    2015-01-01

    Adoption of the hyperbolic Cattaneo–Christov heat-flow model in place of the more usual parabolic Fourier law is shown to raise the possibility of oscillatory convection in the classic Bénard problem of a Boussinesq fluid heated from below. By comparing the critical Rayleigh numbers for stationary and oscillatory convection, Rc and RS respectively, oscillatory convection is found to represent the preferred form of instability whenever the Cattaneo number C exceeds a threshold value CT≥8/27π2≈0.03. In the case of free boundaries, analytical approaches permit direct treatment of the role played by the Prandtl number P1, which—in contrast to the classical stationary scenario—can impact on oscillatory modes significantly owing to the non-zero frequency of convection. Numerical investigation indicates that the behaviour found analytically for free boundaries applies in a qualitatively similar fashion for fixed boundaries, while the threshold Cattaneo number CT is computed as a function of P1∈[10−2,10+2] for both boundary regimes. PMID:25792960

  19. Oscillatory Critical Amplitudes in Hierarchical Models and the Harris Function of Branching Processes

    NASA Astrophysics Data System (ADS)

    Costin, Ovidiu; Giacomin, Giambattista

    2013-02-01

    Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).

  20. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation.

    PubMed

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S

    2015-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

  1. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation

    PubMed Central

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S.

    2016-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties. PMID:26793063

  2. Information-geometric measures estimate neural interactions during oscillatory brain states

    PubMed Central

    Nie, Yimin; Fellous, Jean-Marc; Tatsuno, Masami

    2014-01-01

    The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG), a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain. PMID:24605089

  3. Brain Oscillatory Activity during Spatial Navigation: Theta and Gamma Activity Link Medial Temporal and Parietal Regions

    ERIC Educational Resources Information Center

    White, David J.; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B.

    2012-01-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town…

  4. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    NASA Astrophysics Data System (ADS)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2011-08-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell-cell junctions and spatial cues provided by the anterior-posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells.

  5. Study of Repetitive Movements Induced Oscillatory Activities in Healthy Subjects and Chronic Stroke Patients

    PubMed Central

    Hsu, Chuan-Chih; Lee, Wai-Keung; Shyu, Kuo-Kai; Chang, Hsiao-Huang; Yeh, Ting-Kuang; Hsu, Hao-Teng; Chang, Chun-Yen; Lan, Gong-Yau; Lee, Po-Lei

    2016-01-01

    Repetitive movements at a constant rate require the integration of internal time counting and motor neural networks. Previous studies have proved that humans can follow short durations automatically (automatic timing) but require more cognitive efforts to track or estimate long durations. In this study, we studied sensorimotor oscillatory activities in healthy subjects and chronic stroke patients when subjects were performing repetitive finger movements. We found the movement-modulated changes in alpha and beta oscillatory activities were decreased with the increase of movement rates in finger lifting of healthy subjects and the non-paretic hands in stroke patients, whereas no difference was found in the paretic-hand movements at different movement rates in stroke patients. The significant difference in oscillatory activities between movements of non-paretic hands and paretic hands could imply the requirement of higher cognitive efforts to perform fast repetitive movements in paretic hands. The sensorimotor oscillatory response in fast repetitive movements could be a possible indicator to probe the recovery of motor function in stroke patients. PMID:27976723

  6. Shadows of Music-Language Interaction on Low Frequency Brain Oscillatory Patterns

    ERIC Educational Resources Information Center

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-01-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations…

  7. On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model.

    PubMed

    Bissell, J J

    2015-03-08

    Adoption of the hyperbolic Cattaneo-Christov heat-flow model in place of the more usual parabolic Fourier law is shown to raise the possibility of oscillatory convection in the classic Bénard problem of a Boussinesq fluid heated from below. By comparing the critical Rayleigh numbers for stationary and oscillatory convection, Rc and RS respectively, oscillatory convection is found to represent the preferred form of instability whenever the Cattaneo number C exceeds a threshold value CT≥8/27π(2)≈0.03. In the case of free boundaries, analytical approaches permit direct treatment of the role played by the Prandtl number [Formula: see text], which-in contrast to the classical stationary scenario-can impact on oscillatory modes significantly owing to the non-zero frequency of convection. Numerical investigation indicates that the behaviour found analytically for free boundaries applies in a qualitatively similar fashion for fixed boundaries, while the threshold Cattaneo number CT is computed as a function of [Formula: see text] for both boundary regimes.

  8. Analysis of Wind Tunnel Longitudinal Static and Oscillatory Data of the F-16XL Aircraft

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.; Curry, Timothy J.; Brandon, Jay M.

    1997-01-01

    Static and oscillatory wind tunnel data are presented for a 10-percent-scale model of an F-16XL aircraft. Static data include the effect of angle of attack, sideslip angle, and control surface deflections on aerodynamic coefficients. Dynamic data from small-amplitude oscillatory tests are presented at nominal values of angle of attack between 20 and 60 degrees. Model oscillations were performed at five frequencies from 0.6 to 2.9 Hz and one amplitude of 5 degrees. A simple harmonic analysis of the oscillatory data provided Fourier coefficients associated with the in-phase and out-of-phase components of the aerodynamic coefficients. A strong dependence of the oscillatory data on frequency led to the development of models with unsteady terms in the form of indicial functions. Two models expressing the variation of the in-phase and out-of-phase components with angle of attack and frequency were proposed and their parameters estimated from measured data.

  9. Evaluation of oscillatory integrals for analytical groundwater flow and mass transport models

    NASA Astrophysics Data System (ADS)

    Ledder, Glenn; Zlotnik, Vitaly A.

    2017-06-01

    Modeling of transient dynamics of an interface between fluids of identical density and viscosity, but different otherwise, is of great interest in aquifer hydraulic, and advective contaminant transport, and has broad application. Closed-form solutions are often available for problems with simple, practically important geometry, but the integrals that appear in such solutions often have integrands with two or more oscillatory factors. Such integrals pose difficulties for numerical evaluation because the positive and negative contributions of the integrand largely cancel and the integrands decay very slowly in the integration domain. Some problems with integrands with a single oscillatory factor were tackled in the past with an integration/summation/extrapolation (ISE) method: breaking the integrand at consecutive zeros to obtain an alternating series and then using the Shanks algorithm to accelerate convergence of the series. However, this technique is ineffective for problems with multiple oscillatory factors. We present a comprehensive strategy for evaluation of such integrals that includes a better ISE method, an interval truncation method, and long-time asymptotics; this strategy is applicable to a large class of integrals with either single or multiple oscillatory factors that arise in modeling of groundwater flow and transport. The effectiveness of this methodology is illustrated by examples of integrals used in well hydraulics, groundwater recharge design, and particle tracking.

  10. Brain Oscillatory Activity during Spatial Navigation: Theta and Gamma Activity Link Medial Temporal and Parietal Regions

    ERIC Educational Resources Information Center

    White, David J.; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B.

    2012-01-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town…

  11. An Extended Motor Network Generates Beta and Gamma Oscillatory Perturbations during Development

    ERIC Educational Resources Information Center

    Wilson, Tony W.; Slason, Erin; Asherin, Ryan; Kronberg, Eugene; Reite, Martin L.; Teale, Peter D.; Rojas, Donald C.

    2010-01-01

    This study examines the time course and neural generators of oscillatory beta and gamma motor responses in typically-developing children. Participants completed a unilateral flexion-extension task using each index finger as whole-head magnetoencephalography (MEG) data were acquired. These MEG data were imaged in the frequency-domain using spatial…

  12. Shadows of Music-Language Interaction on Low Frequency Brain Oscillatory Patterns

    ERIC Educational Resources Information Center

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-01-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations…

  13. A modified seventh order two step hybrid method for the numerical integration of oscillatory problems

    NASA Astrophysics Data System (ADS)

    Kalogiratou, Z.; Monovasilis, Th.; Simos, T. E.

    2016-12-01

    In this work we consider trigonometrically fitted two step hybrid methods for the numerical solution of second-order initial value problems. We follow the approach of Simos and derive trigonometrically fitting conditions for methods with five stages. As an example we modify a seventh order method and apply to three well known oscillatory problems.

  14. The effect of oscillatory flow on nucleation and grain growth in the undercooled melt

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wen; Mi, Jing-Xian; Wang, Zi-Dong

    2017-06-01

    The present paper investigates the effect of the oscillatory flow induced by vibration on nucleation and grain growth in the undercooled melt in terms of the analytical method. The analytical solution shows that the oscillatory flow stimulates the meta-stable crystalline embryos to grow rapidly and facilitates to form a great number of nuclei in the undercooled melt during the initial stage of nucleation. As a grain grows, the oscillatory flow alternately facilitates and inhibits the growth of the grain such that the formed nuclei survive. For the low frequency and low acceleration, the interface temperature of a grain rises rapidly immediately after nucleation and then gradually decreases. For the high frequency, the interface temperature shows no significant difference with the increase of frequency. For the high acceleration, the interface temperature oscillates with the oscillatory flow. The oscillation acts as a stimulating and inhibitory effect and facilitates to produce a number of crystalline sites in the undercooled melt. The grains are refined with increasing vibration acceleration under a certain vibration frequency.

  15. An Extended Motor Network Generates Beta and Gamma Oscillatory Perturbations during Development

    ERIC Educational Resources Information Center

    Wilson, Tony W.; Slason, Erin; Asherin, Ryan; Kronberg, Eugene; Reite, Martin L.; Teale, Peter D.; Rojas, Donald C.

    2010-01-01

    This study examines the time course and neural generators of oscillatory beta and gamma motor responses in typically-developing children. Participants completed a unilateral flexion-extension task using each index finger as whole-head magnetoencephalography (MEG) data were acquired. These MEG data were imaged in the frequency-domain using spatial…

  16. Influence of chronic endurance exercise training on conduit artery retrograde and oscillatory shear in older adults.

    PubMed

    Casey, Darren P; Schneider, Aaron C; Ueda, Kenichi

    2016-10-01

    With aging, there tends to be an increase in retrograde and oscillatory shear in peripheral conduit arteries of humans. Whether the increase in shear rate is due to the aging process or an effect of a less active lifestyle that often accompanies aging is unknown. Therefore, we examined whether chronic endurance exercise training attenuates conduit artery retrograde and oscillatory shear in older adults. Brachial and common femoral artery mean blood velocities and diameter were determined via Doppler ultrasound under resting conditions, and shear rate was calculated in 13 young (24 ± 2 years), 17 older untrained (66 ± 3 years), and 16 older endurance exercise-trained adults (66 ± 7 years). Brachial artery retrograde (-9.1 ± 6.4 vs. -12.6 ± 9.4 s(-1); P = 0.35) and oscillatory (0.14 ± 0.08 vs. 0.14 ± 0.08 arbitrary units; P = 0.99) shear were similar between the older trained and untrained groups, whereas brachial artery retrograde and oscillatory shear were greater in older untrained compared to young adults (-5.0 ± 3.4, 0.08 ± 0.05 s(-1) arbitrary units, P = 0.017 and 0.048, respectively). There was no difference between the young and older trained brachial retrograde (P = 0.29) and oscillatory (P = 0.07) shear. Common femoral artery retrograde (-6.3 ± 2.9 s(-1)) and oscillatory (0.21 ± 0.08 arbitrary units) shear were reduced in older trained compared to the older untrained group (-10.4 ± 4.1 and 0.30 ± 0.09 s(-1) arbitrary units, both P = 0.005 and 0.006, respectively), yet similar to young adults (-7.1 ± 3.5 and 0.19 ± 0.06 s(-1) arbitrary units, P = 0.81 and 0.87, respectively). Our results suggest that chronic endurance exercise training in older adults ameliorates retrograde and oscillatory shear rate patterns, particularly in the common femoral artery.

  17. Influence of chronic endurance exercise training on conduit artery retrograde and oscillatory shear in older adults

    PubMed Central

    Schneider, Aaron C.; Ueda, Kenichi

    2017-01-01

    Purpose With aging, there tends to be an increase in retrograde and oscillatory shear in peripheral conduit arteries of humans. Whether the increase in shear rate is due to the aging process or an effect of a less active lifestyle that often accompanies aging is unknown. Therefore, we examined whether chronic endurance exercise training attenuates conduit artery retrograde and oscillatory shear in older adults. Methods Brachial and common femoral artery mean blood velocities and diameter were determined via Doppler ultrasound under resting conditions, and shear rate was calculated in 13 young (24 ± 2 years), 17 older untrained (66 ± 3 years), and 16 older endurance exercise-trained adults (66 ± 7 years). Results Brachial artery retrograde (−9.1 ± 6.4 vs. −12.6 ± 9.4 s−1; P = 0.35) and oscillatory (0.14 ± 0.08 vs. 0.14 ± 0.08 arbitrary units; P = 0.99) shear were similar between the older trained and untrained groups, whereas brachial artery retrograde and oscillatory shear were greater in older untrained compared to young adults (−5.0 ± 3.4, 0.08 ± 0.05 s−1 arbitrary units, P = 0.017 and 0.048, respectively). There was no difference between the young and older trained brachial retrograde (P = 0.29) and oscillatory (P = 0.07) shear. Common femoral artery retrograde (−6.3 ± 2.9 s−1) and oscillatory (0.21 ± 0.08 arbitrary units) shear were reduced in older trained compared to the older untrained group (−10.4 ± 4.1 and 0.30 ± 0.09 s−1 arbitrary units, both P = 0.005 and 0.006, respectively), yet similar to young adults (−7.1 ± 3.5 and 0.19 ± 0.06 s−1 arbitrary units, P = 0.81 and 0.87, respectively). Conclusion Our results suggest that chronic endurance exercise training in older adults ameliorates retrograde and oscillatory shear rate patterns, particularly in the common femoral artery. PMID:27497720

  18. Effect of a cardiac rehabilitation program on exercise oscillatory ventilation in Japanese patients with heart failure.

    PubMed

    Yamauchi, Fumitake; Adachi, Hitoshi; Tomono, Jun-Ichi; Toyoda, Shigeru; Iwamatsu, Koichi; Sakuma, Masashi; Nakajima, Toshiaki; Oshima, Shigeru; Inoue, Teruo

    2016-10-01

    Although exercise oscillatory ventilation has emerged as a potent independent risk factor for adverse prognosis in heart failure, it is not well known whether cardiac rehabilitation can improve oscillatory ventilation. In this study, we investigated the magnitude of oscillations in ventilation before and after cardiac rehabilitation in chronic heart failure patients with exercise oscillatory ventilation. Cardiac rehabilitation (5-month program) was performed in 26 patients with chronic heart failure who showed an oscillatory ventilation pattern during cardiopulmonary exercise testing (CPX). After the 5-month rehabilitation program was completed, the patients again underwent CPX. To determine the magnitude of oscillations in ventilation, the amplitude and cycle length of the oscillations were calculated and compared with several other parameters, including biomarkers that have established prognostic value in heart failure. At baseline before cardiac rehabilitation, both oscillation amplitude (R = 0.625, P < 0.01) and cycle length (R = 0.469, P < 0.05) were positively correlated with the slope of minute ventilation vs. carbon dioxide production. Plasma BNP levels were positively correlated with amplitude (R = 0.615, P < 0.01) but not cycle length (R = 0.371). Cardiac rehabilitation decreased oscillation amplitude (P < 0.01) but failed to change cycle length. The change in amplitude was positively correlated with the change in BNP levels (R = 0.760, P < 0.01). Multiple regression analysis showed that only the change in amplitude was an independent predictor of the change in BNP levels (R = 0.717, P < 0.01). A 5-month cardiac rehabilitation program improves exercise oscillatory ventilation in chronic heart failure patients by reducing the oscillation amplitude. This effect is associated with a reduction of plasma BNP levels, potentially contributing to an improvement of heart failure.

  19. Nanomechanical control of properties of biological membranes achieved by rodlike magnetic nanoparticles in a superlow-frequency magnetic field

    NASA Astrophysics Data System (ADS)

    Golovin, Yu. I.; Klyachko, N. L.; Gribanovskii, S. L.; Golovin, D. Yu.; Samodurov, A. A.; Majouga, A. G.; Sokolsky-Papkov, M.; Kabanov, A. V.

    2015-05-01

    It is proposed to use single-domain rodlike magnetic nanoparticles (MNPs) as mediators for nanomechanical control of properties of biological membranes and cells on the molecular or cellular level by exposing them to a homogeneous nonheating low-frequency magnetic field (AC MF). The trigger effect is achieved due to rotatory-oscillatory motion of MNPs in the AC MF, which causes the needed deformations in macromolecules of the membrane interacting with these MNPs.

  20. Non-rigid precession of magnetic stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.; Jones, D. I.

    2017-06-01

    Stars are, generically, rotating and magnetized objects with a misalignment between their magnetic and rotation axes. Since a magnetic field induces a permanent distortion to its host, it provides effective rigidity even to a fluid star, leading to bulk stellar motion that resembles free precession. This bulk motion is, however, accompanied by induced interior velocity and magnetic field perturbations, which are oscillatory on the precession time-scale. Extending previous work, we show that these quantities are described by a set of second-order perturbation equations featuring cross-terms scaling with the product of the magnetic and centrifugal distortions to the star. For the case of a background toroidal field, we reduce these to a set of differential equations in radial functions, and find a method for their solution. The resulting magnetic field and velocity perturbations show complex multipolar structure and are strongest towards the centre of the star.