Science.gov

Sample records for magnetically channeled line-driven

  1. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  2. Magnets for Muon 6D Cooling Channels

    SciTech Connect

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  3. Filament Channel Formation Via Magnetic Helicity Condensation

    NASA Astrophysics Data System (ADS)

    Knizhnik, Kalman Joshua; Antiochos, Spiro K.; DeVore, C. Richard

    2015-04-01

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear, in the form of filament channels, at photospheric polarity inversion lines (PILs). In addition to free energy, this shear also represents magnetic helicity, which is conserved under reconnection. In this work, we address the problem of filament channel formation and show how they acquire their shear and magnetic helicity. The results of 3D simulations using the Adaptively Refined Magnetohydrodynamics Solver (ARMS) are presented that support the model of filament channel formation by magnetic helicity condensation developed by Antiochos (2013). We consider the convective twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse-cascade up to the largest allowable scales that defined the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity-condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations. Our research was supported by NASA's Earth and Space Science Fellowship (K.J.K.) and Heliophysics Supporting Research (S.K.A. and C.R.D.) programs.

  4. Filament Channel Formation via Magnetic Helicity Condensation

    NASA Astrophysics Data System (ADS)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    2015-08-01

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear in the form of filament channels at photospheric polarity inversion lines (PILs). In addition to free energy, this shear represents magnetic helicity, which is conserved under reconnection. In this paper we address the problem of filament channel formation and show how filaments acquire their shear and magnetic helicity. The results of three-dimensional (3D) simulations using the Adaptively Refined Magnetohydrodynamics Solver are presented. Our findings support the model of filament channel formation by magnetic helicity condensation that was developed by Antiochos. We consider the small-scale photospheric twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse cascade up to the largest allowable scales that define the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations.

  5. FILAMENT CHANNEL FORMATION VIA MAGNETIC HELICITY CONDENSATION

    SciTech Connect

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    2015-08-20

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear in the form of filament channels at photospheric polarity inversion lines (PILs). In addition to free energy, this shear represents magnetic helicity, which is conserved under reconnection. In this paper we address the problem of filament channel formation and show how filaments acquire their shear and magnetic helicity. The results of three-dimensional (3D) simulations using the Adaptively Refined Magnetohydrodynamics Solver are presented. Our findings support the model of filament channel formation by magnetic helicity condensation that was developed by Antiochos. We consider the small-scale photospheric twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse cascade up to the largest allowable scales that define the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations.

  6. EVOLUTION OF THE AXIAL MAGNETIC FIELD IN SOLAR FILAMENT CHANNELS

    SciTech Connect

    Litvinenko, Yuri E.

    2010-09-01

    Formation of solar filament channels by photospheric magnetic reconnection is considered. A magnetohydrodynamic model for magnetic merging, driven by converging convective motions in the photosphere, is presented. Evolution of the axial magnetic field in a channel is analyzed. An exact time-dependent analytical solution for the field profile in a steady stagnation-point flow is derived. The maximum magnetic field in the channel is determined, and its dependence on the reconnection inflow speed is discussed. The quantitative results show that the maximum axial magnetic field in a forming channel is an indicator of the photospheric reconnection rate, in agreement with recent solar observations and laboratory experiments.

  7. Magnetic signature of the Sicily Channel volcanism

    NASA Astrophysics Data System (ADS)

    Lodolo, E.; Civile, D.; Zanolla, C.; Geletti, R.

    2012-03-01

    Widespread Late Miocene to Quaternary volcanic activity is know to have occurred in the Sicily Channel continuing up to historical time. New magnetic anomaly data acquired in the Pantelleria Graben, one of the three main tectonic depressions forming the WNW-trending Sicily Channel rift system, integrated with available profiles, are used to identify and map volcanic bodies in this sector of the northern African margin. Some of these manifestations, both outcropping at the sea-floor or buried beneath a variable thickness of Plio-Quaternary sedimentary cover, have been imaged by seismic reflection profiles. Three main positive magnetic anomalies have been found: to the S-E of the Pantelleria Island, the largest emerged caldera of the Sicily Channel, along the eastern margin of the Nameless Bank, and at the north-western termination of the Linosa Graben. Only the anomaly located off the south-eastern coast of the Pantelleria Island, associated with a large outcropping body gradually buried beneath a substantially undisturbed Upper Pliocene-Quaternary sediments, aligns with the trend of the tectonic depression. 2-D geophysical models produced along seismic transects perpendicularly crossing the Pantelleria Graben have allowed to derive its deep crustal structure, and detect the presence of buried magmatic bodies which generate the anomalies. Marginal faults seem to have played a major role in focussing magma emplacement in this sector of the Sicily Channel. The other anomalies represent off-axis volcanic episodes and generally do not show evident magmatic manifestations at the sea-floor. These magnetic maxima seem to follow a NNE-SSW-trending belt extending from Linosa Island to the Nameless Bank, where pre-existing crustal anisotropies may have conditioned magma emplacement both at deep and shallow crustal levels. In general, data analysis has shown that there is a structural control on magma emplacement, with the major magmatic features located in specific locations

  8. Progress on Superconducting Magnets for the MICE Cooling Channel

    SciTech Connect

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  9. Magnetic fluid driven flow in a capillary channel

    NASA Astrophysics Data System (ADS)

    Bruno, Nickolaus M.; Ciocanel, Constantin

    2010-04-01

    This paper presents simulated and experimental results on the flow induced in a closed channel by a magnetic fluid (i.e. magnetorheological (MR) fluid and a ferrofluid) plunger. The results are used to assess the feasibility of using such fluids for development of milli-micro-scale pumps. The magnetic fluid plunger acts as a piston that is moved along the channel by an array of drive coils (or by a permanent magnet) to displace an immiscible fluid. The excited drive coils produce a traveling magnetic field wave inside the channel which in turn produces magnetic dipoles in the magnetic fluid. The dipoles react with the traveling wave leading to a Kelvin force that drags the magnetic fluid plunger through the channel. The flow rates achievable in this approach are a function of channel geometry, magnetic fluid properties, plug size, frequency of the current passing through the drive coils, and the location of the drive coils along the channel. Representative results of the analysis of the effect of these parameters on the flow rates are presented here. While the simulations indicate that both, MR and ferrofluids may be used for fluid actuation in the selected geometry, the experiments validated only the MR fluid option.

  10. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    SciTech Connect

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  11. Magnetic and electric fields across sodium and potassium channels

    NASA Astrophysics Data System (ADS)

    Soares, Marília A. G.; Cruz, Frederico A. O.; Silva, Dilson

    2015-12-01

    We determined the magnetic field around sodium and potassium ionic channels based on a physico-mathematical model that took into account charges in the surface bilayer. For the numerical simulation, we applied the finite element method. Results show that each channel produces its specific and individual response to the ion transport, according to its individual intrinsic properties. The existence of a number of active Na+-channels in a given membrane region seems not to interfere directly in the functioning of K+-channel located among them, and vice-versa.

  12. STUDYING THE INTERSTELLAR MAGNETIC FIELD FROM ANISOTROPIES IN VELOCITY CHANNELS

    SciTech Connect

    Esquivel, A.; Lazarian, A.; Pogosyan, D. E-mail: lazarian@astro.wisc.edu

    2015-11-20

    Turbulence in the interstellar medium is anisotropic due to the ubiquitous magnetic fields. This anisotropy depends on the strength of the magnetic field and leaves an imprint on observations of spectral line maps. We use a grid of ideal magnetohydrodynamic simulations of driven turbulence and produce synthetic position–position–velocity maps to study the turbulence anisotropy in velocity channels of various resolutions. We found that the average structure function of velocity channels is aligned with the projection of the magnetic field on the plane of the sky. We also found that the degree of such anisotropy increases with the magnitude of the magnetic field. For thick velocity channels (low velocity resolution), the anisotropy is dominated by density, and the degree of anisotropy in these maps allows one to distinguish sub-Alfvénic and super-Alfvénic turbulence regimes, but it also depends strongly on the sonic Mach number. For thin channels (high velocity resolution), we find that the anisotropy depends less on the sonic Mach number. An important limitation of this technique is that it only gives a lower limit on the magnetic field strength because the anisotropy is related only to the magnetic field component on the plane of the sky. It can, and should, be used in combination with other techniques to estimate the magnetic field, such as the Fermi-Chandrasekhar method, anisotropies in centroids, Faraday rotation measurements, or direct line-of-sight determinations of the field from Zeeman effect observations.

  13. Simulations of Filament Channel Formation in a Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Knizhnik, Kalman; DeVore, C. Richard; Antiochos, Spiro K.

    2016-05-01

    A major unanswered problem in solar physics has been explaining the presence of sheared filament channels above photospheric polarity inversion lines (PILs) and the simultaneous lack of structure in the ‘loop’ portion of the coronal magnetic field. The shear inherent in filament channels represents not only a form of magnetic energy, but also magnetic helicity. As a result, models of filament channel formation need to explain not only why helicity is observed above PILs, but also why it is apparently not observed anywhere else in the corona. Previous results (Knizhnik, Antiochos & DeVore, 2015) have suggested that any helicity injected into the coronal field inverse-cascades in scale, a process known as magnetic helicity condensation (Antiochos, 2013). In this work, we present high resolution numerical simulations of photospheric helicity injection into a coronal magnetic field that contains both a PIL and a coronal hole (CH). We show conclusively that the inverse cascade of magnetic helicity terminates at the PIL, resulting in the formation of highly sheared filament channels and a smooth, untwisted corona. We demonstrate that even though magnetic helicity is injected throughout the flux system, it accumulates only at the PIL, where it manifests itself in the form of highly sheared filament channels, while any helicity obtained by the CH is ejected out of the system. We show that the formation of filament channels is both qualitatively and quantitatively in agreement with observations and discuss the implications of our simulations for observations.This work was supported by the NASA Earth and Space Science Fellowship, LWS TR&T and H-SR Programs.

  14. Open channel flows of magnetic fluid induced by traveling magnetic field

    NASA Astrophysics Data System (ADS)

    Kuwahara, Takuya; Okubo, Masaaki; Yamane, Ryuichiro

    A theoretical analysis is made on laminar open channel flows of magnetic fluid induced by a non uniform traveling magnetic field which is applied with a stator of a single-sided linear induction motor. The induced flows are mainly in the direction opposite to the traveling direction of the magnetic field and in proportion to the phase velocity of the magnetic field. The velocity profiles are greatly affected by dimensionless wave number of the magnetic field. Near the bottom of the channel, the theoretical velocity distributions agree well with experimental ones which are measured with a laser optical fiber velocity sensor. However, the experimental velocity distributions become larger near the free surface.

  15. Errors in magnetic direction finding due to nonvertical lightning channels

    NASA Technical Reports Server (NTRS)

    Uman, M. A.; Lin, Y. T.; Krider, E. P.

    1980-01-01

    A theory showing that errors in lightning magnetic direction finding due to nonvertical source orientations are minimized by detecting the field from the lowest possible channel section is presented. For 99 cloud-to-ground lightning channels photographed in Arizona, 45 exhibited a bottom few hundred meters within about 8 deg of the vertical, the standard deviation of the distribution of lower-channel tilt angles being about 18 deg. These experimental results, coupled with theory, suggest that if a wideband gated direction finder is used, polarization errors due to nonvertical sources can be kept less than 1 deg for lightning beyond 10 km.

  16. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  17. The Physical Connection and Magnetic Coupling of the MICE CoolingChannel Magnets and the Magnet Forces for Various MICE OperatingModes

    SciTech Connect

    Yang, Stephanie Q.; Baynham, D.E.; Fabricatore, Pasquale; Farinon, Stefania; Green, Michael A.; Ivanyushenkov, Yury; Lau, Wing W.; Maldavi, S.M.; Virostek, Steve P.; Witte, Holger

    2006-08-20

    A key issue in the construction of the MICE cooling channel is the magnetic forces between various elements in the cooling channel and the detector magnets. This report describes how the MICE cooling channel magnets are hooked to together so that the longitudinal magnetic forces within the cooling channel can be effectively connected to the base of the experiment. This report presents a magnetic force and stress analysis for the MICE cooling channel magnets, even when longitudinal magnetic forces as large as 700 kN (70 tons) are applied to the vacuum vessel of various magnets within the MICE channel. This report also shows that the detector magnets can be effectively separated from the central MICE cooling channel magnets without damage to either type of magnet component.

  18. Alpha Channeling in Open-System Magnetic Devices

    SciTech Connect

    Fisch, Nathaniel

    2016-06-19

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasma were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.

  19. Magnetic field generation during intense laser channelling in underdense plasma

    SciTech Connect

    Smyth, A. G.; Sarri, G.; Doria, D.; Kar, S.; Borghesi, M.; Vranic, M.; Guillaume, E.; Silva, L. O.; Vieira, J.; Heathcote, R.; Norreys, P. A.; Hicks, G.; Najmudin, Z.; Nakamura, H.

    2016-06-15

    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.

  20. Quench Protection for the MICE Cooling Channel Coupling Magnet

    SciTech Connect

    Guo, Xing Long; Xu, Feng Yu; Wang, Li; Green, Michael A.; Pan, Heng; Wu, Hong; Liu, X.K.; Jia, Lin Xiang; Amm, Kathleen

    2008-08-02

    This paper describes the passive quench protection system selected for the muon ionization cooling experiment (MICE) cooling channel coupling magnet. The MICE coupling magnet will employ two methods of quench protection simultaneously. The most important method of quench protection in the coupling magnet is the subdivision of the coil. Cold diodes and resistors are put across the subdivisions to reduce both the voltage to ground and the hot-spot temperature. The second method of quench protection is quench-back from the mandrel, which speeds up the spread of the normal region within the coils. Combining quench back with coil subdivision will reduce the hot spot temperature further. This paper explores the effect on the quench process of the number of coil sub-divisions, the quench propagation velocity within the magnet, and the shunt resistance.

  1. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  2. Fringe fields for the N channel permanent magnet array

    SciTech Connect

    Lee, E.P.

    1996-04-01

    Analytical expressions are obtained for fringe field multipoles of an N channel permanent magnet quadrupole array. It is assumed that the system of magnetic wedges starts at some transverse (x, y) plane located at z = 0, and it continues to a magnet length z = l, where it stops. The iron yoke continues to z = {+-} {infinity}, but it will be shown that only a small overhang is actually required to maintain the quadrupole and translational symmetries. Recall the 2-d solution for the magnetic potential (H = {del}{phi}): {phi}{sub 2} = A [(x-x{sub i}){sup 2} - (y-y{sub i}){sub 2}], where A = -M{sub 0}/4b, M{sub 0} is the remnant field of the wedges, and (x{sub i}, y{sub i}) are the coordinates for the center of box (i). Boxes have dimensions 2b x 2b and alternate between vacuum fill (for beams) and magnetic wedge fill. The 2-d system looks like a portion of an infinite transverse lattice with periodicity lengthy = 4b in both the x and y directions. For the magnetic potential {phi}, the periodicity length is 2b.

  3. Direct magnetic field measurement of flow dynamics in magnetized coaxial accelerator channels

    NASA Astrophysics Data System (ADS)

    Black, D. C.; Mayo, R. M.; Caress, R. W.

    1997-08-01

    A miniature magnetic probe array, consisting of ten spatially separated coils, has been used to obtain profile information on the time-varying magnetic field within the 2.54 cm wide flow channel of the Coaxial Plasma Source experiment (CPS-1) [R. M. Mayo et al., Plasma Sources Sci. Technol. 4, 47 (1995)] at the North Carolina State University. Two-dimensional (2-D) current profiles within the annular flow channel, which were constructed from the time-varying magnetic field data, reveal several complex features reflecting the influence of gun inductance, the Hall effect, and the applied magnetic field. When an external, electrode linking magnetic field is applied, the evolution of the 2-D current profile shows evidence of an ionizing shock front identified by a narrow current sheet propagating through the channel during the first few microseconds of the discharge. The thickness of this current sheet is on the same order as both the collisional mean-free path and the ion electromagnetic skin depth. In this applied field case, the plasma is prevented from advancing ahead of the current sheet by the applied magnetic field, which turns the ions and electrons without collisions. In the absence of an applied field, plasma is able to advance ahead of the current sheet, where it may initiate ionization downstream before the advance of the ionization front.

  4. Direct magnetic field measurement of flow dynamics in magnetized coaxial accelerator channels

    SciTech Connect

    Black, D.C.; Mayo, R.M.; Caress, R.W.

    1997-08-01

    A miniature magnetic probe array, consisting of ten spatially separated coils, has been used to obtain profile information on the time-varying magnetic field within the 2.54 cm wide flow channel of the Coaxial Plasma Source experiment (CPS-1) [R. M. Mayo {ital et al.}, Plasma Sources Sci. Technol. {bold 4}, 47 (1995)] at the North Carolina State University. Two-dimensional (2-D) current profiles within the annular flow channel, which were constructed from the time-varying magnetic field data, reveal several complex features reflecting the influence of gun inductance, the Hall effect, and the applied magnetic field. When an external, electrode linking magnetic field is applied, the evolution of the 2-D current profile shows evidence of an ionizing shock front identified by a narrow current sheet propagating through the channel during the first few microseconds of the discharge. The thickness of this current sheet is on the same order as both the collisional mean-free path and the ion electromagnetic skin depth. In this applied field case, the plasma is prevented from advancing ahead of the current sheet by the applied magnetic field, which turns the ions and electrons without collisions. In the absence of an applied field, plasma is able to advance ahead of the current sheet, where it may initiate ionization downstream before the advance of the ionization front. {copyright} {ital 1997 American Institute of Physics.}

  5. Magnetic susceptibility for a two-channel Anderson model

    NASA Astrophysics Data System (ADS)

    Líbero, Valter L.; Ferreira, João V. B.; Oliveira, Luiz N.; Cox, Daniel L.

    2001-03-01

    Non-Fermi-liquid magnetic properties are studied using a generalized two-channel Anderson model suitable for compounds like U_xTh_1-xRu_2Si2 or La_1-xCe_xCu_2.2Si2 in the low concentration regime, for which single-site characteristics of the f-electrons are experimentally evident^1. The model encompasses a spin doublet and two (degenerate) channel doublets as impurity levels, opening two channels in the conduction band, with hybridization strength V1 and V_2. The interleaving Numerical Renormalization Group procedure^2,3 determines the temperature-dependent susceptibility \\chi. For the isotropic case V_1=V2 non-Fermi liquid behavior, \\chi ≈ -ln T, is obtained. This non-trivial fixed-point, however, is unstable against channel anisotropy: for V1 ne V2 normal-Fermi liquid behavior is recovered. 1- Tae-Suk Kim and D. L. Cox, Phys. Rev. Lett. 75, 1622 (1995). 2- S. C. Costa, C. A. Paula, V. L. Líbero and L. N. Oliveira, Phys. Rev. B 55, 30 (1997). 3- J. V. B. Ferreira and V. L. Líbero, Phys. Rev. B 61, 10615 (2000).

  6. Magnetic tornadoes as energy channels into the solar corona.

    PubMed

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  7. Salmonella detection in a microfluidic channel using orbiting magnetic beads

    NASA Astrophysics Data System (ADS)

    Ballard, Matt; Mills, Zachary; Owen, Drew; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2015-03-01

    We use three-dimensional simulations to model the detection of salmonella in a complex fluid sample in a microfluidic channel. Salmonella is captured using magnetic microbeads orbiting around soft ferromagnetic discs at the microchannel bottom subjected to a rotating external magnetic field. Numerical simulations are used to model the dynamics of salmonella and microbeads throughout the detection process. We examine the effect of the channel geometry on the salmonella capture, and the forces applied to the salmonella as it is dragged through the fluid after capture. Our findings guide the design of a lab-on-a-chip device to be used for detection of salmonella in food samples in a way that ensures that salmonella captured by orbiting microbeads are preserved until they can be extracted from the system for testing, and are not washed away by the fluid flow or damaged due to the experience of excessive stresses. Such a device is needed to detect bacteria at the food source and prevention of consumption of contaminated food, and also can be used for the detection of a variety of biomaterials of interest from complex fluid samples. Support from USDA and NSF is gratefully acknowledged.

  8. a Numerical Study on the Magnetic Fluid Flow in a Channel Surrounding a Permanent Magnet Under Temperature Field

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Yao, K. L.; Liu, Z. L.

    It was investigated that the magnetic fluid which can be the carrier of magnetic particles or magnetic drug carrier particles (MDCP) flows surrounding a permanent magnet in a channel under the influence of high gradient magnetic field and the temperature difference between upper and lower boundaries of the channel. It is considered that the magnetization of the fluid varies linearly with temperature and magnetic field intensity. The numerical solution of above model is described by a coupled and nonlinear system of PDEs. Results indicate that the presence of magnetic and temperature fields appreciably influence the flow field; vortexes arise almost around the magnetic source and also appear near the upper left and lower right boundaries. The temperature, local skin friction coefficient and rate of heat transfer are all affected by the magnitude and position of the magnetic source, they fluctuate evidently near the high gradient magnetic field area.

  9. Consolidation of Fe-N Magnets Using Equal Channel Angular Extrusion

    DTIC Science & Technology

    2016-03-23

    ARL-TR-7634 ● MAR 2016 US Army Research Laboratory Consolidation of Fe- N Magnets Using Equal Channel Angular Extrusion by SG...Consolidation of Fe- N Magnets Using Equal Channel Angular Extrusion SG Sankar Advanced Materials Corporation (AMC), Pittsburgh, PA LJ Kecskes Weapons and...August 2013–19 August 2014 4. TITLE AND SUBTITLE Consolidation of Fe- N Magnets Using Equal Channel Angular Extrusion 5a. CONTRACT NUMBER 5b

  10. The Partition Between Terminal Speed and Mass Loss: Thin, Thick, and Rotating Line-Driven Winds

    NASA Astrophysics Data System (ADS)

    Gayley, K. G.; Onifer, A. J.

    2003-01-01

    Steady-state supersonic line-driven winds are important contributors to wind-blown bubbles in star forming regions. The key input to the bubble in the energy-conserving phase is the wind kinetic-energy flux, which involves both the mass-loss rate and the terminal speed. However, these quantities are themselves self-consistent parameters of the line-driving process, so relate to each other and to the resulting wind optical depth. This complex interrelation between optical depth, mass-loss, and wind speed lies at the heart of line-driven wind theory. Drawing on the successes and insights of ``CAK'' theory, I will convey a simplified view of how to unite these processes using the concept of effective opacity, with attention to the ramifications for nonspherical nebular and wind-blown structures. Recent extensions to nongray optically thick environments such as Wolf-Rayet winds and supernovae are also discussed.

  11. Design and Evaluation of a Planar Single-Channel Shim Coil for a Permanent Magnetic Resonance Imaging Magnet

    NASA Astrophysics Data System (ADS)

    Tamada, Daiki; Terada, Yasuhiko; Kose, Katsumi

    2011-06-01

    We propose a straightforward method of designing a planar single-channel shim coil for magnetic resonance imaging (MRI) using a narrow-gap permanent magnet. The design method is based on the superposition of the current densities produced by planar second-order shim coil elements and optimization of the coefficients used for the superposition. The magnetic field homogeneity was improved from 13 to 3.3 ppm (root mean square) in the central spherical area (diameter = 18 mm), revealing that the planar single-channel shim coil is a useful device for narrow-gap permanent MRI magnets.

  12. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    NASA Astrophysics Data System (ADS)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  13. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  14. Power Optimization of a Planar Single-Channel Shim Coil for a Permanent Magnet Circuit

    NASA Astrophysics Data System (ADS)

    Terada, Yasuhiko; Ishi, Keiichiro; Tamada, Daiki; Kose, Katsumi

    2013-02-01

    We propose a new method of designing a power-optimized single-channel shim coil (SCSC), which enables high homogeneity in the magnetic field of a magnetic resonance imaging system. The design method is based on a superposition of multiple circular currents to account for the power dissipated in the current-carrying coils. With a power-optimized SCSC, magnetic field inhomogeneity is largely corrected and there is negligible degradation of the magnetic field in continuous use.

  15. Bright Hot Impacts by Erupted Fragments Falling Back on the Sun: Magnetic Channelling

    NASA Astrophysics Data System (ADS)

    Petralia, A.; Reale, F.; Orlando, S.; Testa, P.

    2016-11-01

    Dense plasma fragments were observed to fall back on the solar surface by the Solar Dynamics Observatory after an eruption on 2011 June 7, producing strong extreme-ultraviolet brightenings. Previous studies investigated impacts in regions of weak magnetic field. Here we model the ˜ 300 km s-1 impact of fragments channelled by the magnetic field close to active regions. In the observations, the magnetic channel brightens before the fragment impact. We use a 3D-MHD model of spherical blobs downfalling in a magnetized atmosphere. The blob parameters are constrained from the observation. We run numerical simulations with different ambient densitie and magnetic field intensities. We compare the model emission in the 171 Å channel of the Atmospheric Imaging Assembly with the observed one. We find that a model of downfall channelled in an ˜1 MK coronal loop confined by a magnetic field of ˜10-20 G, best explains qualitatively and quantitatively the observed evolution. The blobs are highly deformed and further fragmented when the ram pressure becomes comparable to the local magnetic pressure, and they are deviated to be channelled by the field because of the differential stress applied by the perturbed magnetic field. Ahead of them, in the relatively dense coronal medium, shock fronts propagate, heat, and brighten the channel between the cold falling plasma and the solar surface. This study shows a new mechanism that brightens downflows channelled by the magnetic field, such as in accreting young stars, and also works as a probe of the ambient atmosphere, providing information about the local plasma density and magnetic field.

  16. Line-driven disc wind model for ultrafast outflows in active galactic nuclei - scaling with luminosity

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Ohsuga, K.

    2017-03-01

    In order to reveal the origin of the ultrafast outflows (UFOs) that are frequently observed in active galactic nuclei (AGNs), we perform two-dimensional radiation hydrodynamics simulations of the line-driven disc winds, which are accelerated by the radiation force due to the spectral lines. The line-driven winds are successfully launched for the range of MBH = 106-9 M⊙ and ε = 0.1-0.5, and the resulting mass outflow rate (dot{M_w}), momentum flux (dot{p_w}), and kinetic luminosity (dot{E_w}) are in the region containing 90 per cent of the posterior probability distribution in the dot{M}_w-Lbol plane, dot{p}_w-Lbol plane, and dot{E}_w-Lbol plane shown in Gofford et al., where MBH is the black hole mass, ε is the Eddington ratio, and Lbol is the bolometric luminosity. The best-fitting relations in Gofford et al., d log dot{M_w}/d log {L_bol}˜ 0.9, d log dot{p_w}/d log {L_bol}˜ 1.2, and d log dot{E_w}/d log {L_bol}˜ 1.5, are roughly consistent with our results, d log dot{M_w}/d log {L_bol}˜ 9/8, d log dot{p_w}/d log {L_bol}˜ 10/8, and d log dot{E_w}/d log {L_bol}˜ 11/8. In addition, our model predicts that no UFO features are detected for the AGNs with ε ≲ 0.01, since the winds do not appear. Also, only AGNs with MBH ≲ 108 M⊙ exhibit the UFOs when ε ∼ 0.025. These predictions nicely agree with the X-ray observations. These results support that the line-driven disc wind is the origin of the UFOs.

  17. Modulation of channel activity and gadolinium block of MscL by static magnetic fields.

    PubMed

    Petrov, Evgeny; Martinac, Boris

    2007-02-01

    The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd(3+) ions from the membrane bilayer and thus remove the MscL channel block.

  18. A New Planar Single-Channel Shim Coil Using Multiple Circular Currents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Tamada, Daiki; Kose, Katsumi; Haishi, Tomoyuki

    2012-05-01

    We propose a new planar single-channel shim coil for magnetic resonance imaging (MRI) permanent magnets. The coil design is based on the superposition of multiple circular currents and the stream function method. The designed shim coil was implemented for a permanent magnet with 1.0 T and a 90 mm gap. When the shim coil current was optimized, the magnetic field inhomogeneity decreased from 240 to 97 ppm (peak-to-peak) in the central cylindrical area (54.6 mm diameter, 60.0 mm height), demonstrating that the single-channel shim coil proposed here is a useful device for permanent narrow-gap magnets with complicated magnetic field distribution.

  19. On-demand magnetic manipulation of liquid metal in microfluidic channels for electrical switching applications.

    PubMed

    Jeon, Jinpyo; Lee, Jeong-Bong; Chung, Sang Kug; Kim, Daeyoung

    2016-12-20

    We report magnetic-field-driven on-demand manipulation of liquid metal in microfluidic channels filled with base or acid. The liquid metal was coated with iron (Fe) particles and treated with hydrochloric acid to have strong bonding strength with the Fe particles. The magnetic liquid metal slug inserted in the microchannel is manipulated, merged, and separated. In addition, corresponding to the repositioning of an external magnet, the liquid metal slug can be readily moved in microfluidic channels with different angles (>90°) and cross-linked channels in any direction. We demonstrated the functionality of the liquid metal in the microfluidic channel for electrical switching applications by manipulation of the liquid metal, resulting in the sequential turning on of light emitting diodes (LEDs).

  20. USING CORONAL CELLS TO INFER THE MAGNETIC FIELD STRUCTURE AND CHIRALITY OF FILAMENT CHANNELS

    SciTech Connect

    Sheeley, N. R. Jr.; Warren, H. P.; Martin, S. F.; Panasenco, O.

    2013-08-01

    Coronal cells are visible at temperatures of {approx}1.2 MK in Fe XII coronal images obtained from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft. We show that near a filament channel, the plumelike tails of these cells bend horizontally in opposite directions on the two sides of the channel like fibrils in the chromosphere. Because the cells are rooted in magnetic flux concentrations of majority polarity, these observations can be used with photospheric magnetograms to infer the direction of the horizontal field in filament channels and the chirality of the associated magnetic field. This method is similar to the procedure for inferring the direction of the magnetic field and the chirality of the fibril pattern in filament channels from H{alpha} observations. However, the coronal cell observations are easier to use and provide clear inferences of the horizontal field direction for heights up to {approx}50 Mm into the corona.

  1. Effect of surface bilayer charges on the magnetic field around ionic channels

    NASA Astrophysics Data System (ADS)

    Gomes Soares, Marília Amável; Cortez, Celia Martins; Oliveira Cruz, Frederico Alan de; Silva, Dilson

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na+ and K+-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na+ and K+ permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K+-channel is very less sensible to temperature changes than the current density through a Na+- channel, active Na+-channels do not directly interfere with the K+-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  2. Instability of finite volumes of magnetic fluid in channels

    SciTech Connect

    Bashtovoi, V.G.; Mikhalev, V.P.; Reks, A.G.; Taits, E.M.

    1987-07-01

    The instability and magnetohydrodynamic behavior of a magnetic liquid comprised of a suspension of magnetite particles in transformer oil and in droplet form are assessed under experimental conditions in a tube under the effect of a magnetic field of varying strength. Flow visualization is used to monitor the behavior of the liquid. A flow model is constructed based on the experimental data which depicts, along with the above properties, the dependence of the critical magnetization on the dimensions of the capillary tube.

  3. Runaway of Line-driven Winds toward Critical and Overloaded Solutions.

    PubMed

    Feldmeier; Shlosman

    2000-04-01

    Line-driven winds from hot stars and accretion disks are thought to follow a unique, critical solution that corresponds to a maximum mass-loss rate and a particular velocity law. We show that in the presence of negative velocity gradients, radiative-acoustic (Abbott) waves can drive shallow wind solutions toward larger velocities and mass-loss rates. Perturbations that are introduced downstream from the critical point of the wind lead to a convergence toward the critical solution. By contrast, low-lying perturbations cause evolution toward a mass-overloaded solution, developing a broad deceleration region in the wind. Such a wind differs fundamentally from the critical solution. For sufficiently deep-seated perturbations, overloaded solutions become time-dependent and develop shocks and shells.

  4. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children.

    PubMed

    Terada, Y; Kono, S; Ishizawa, K; Inamura, S; Uchiumi, T; Tamada, D; Kose, K

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  5. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Kono, S.; Ishizawa, K.; Inamura, S.; Uchiumi, T.; Tamada, D.; Kose, K.

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  6. The effect of magnetic field on instabilities of heat transfer from an obstacle in a channel

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Esfahani, J. A.

    2015-10-01

    This paper presents forced convective heat transfer in a channel with a built-in square obstacle. The governing equations with the boundary conditions are solved using a finite volume method. The computations were done for a fixed blockage ratio (S=1/8) at Pr=0.71, and Reynolds (Re) and Stuart (N) numbers ranging from 1 to 250 and 0 to 10, respectively. The results are presented to show the effect of the channel walls and streamwise magnetic field at different Reynolds numbers on forced convection heat transfer from a square cylinder. A correlation is obtained for Nusselt number, in which the effect of a magnetic field is taken into account. The obtained results revealed that the existence of channel walls decreases the effects of magnetic field on Nusselt number. It also showed that by increasing Stuart number the thickness of thermal boundary layer increases and the convective heat transfer decreases.

  7. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Liu, Hui; Gao, Yuanyuan; Yu, Daren

    2016-09-01

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weaker magnetic field in the discharge channel.

  8. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    SciTech Connect

    Hu, Peng; Liu, Hui; Gao, Yuanyuan; Yu, Daren

    2016-09-15

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weaker magnetic field in the discharge channel.

  9. Integrated acoustic and magnetic separation in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Adams, Jonathan D.; Thévoz, Patrick; Bruus, Henrik; Soh, H. Tom

    2009-12-01

    With a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column-based magnetic separation. Toward this aim, we report on the integration of microfluidic acoustic and magnetic separation in a monolithic device for multiparameter particle separation. Using our device, we demonstrate high-purity separation of a multicomponent particle mixture at a throughput of up to 108 particles/hr.

  10. Magnetic Shielding of the Acceleration Channel Walls in a Long-Life Hall Thruster

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; de Grys, Kristi; Mathers, Alex

    2010-01-01

    In a Qualification Life Test (QLT) of the BPT-4000 Hall thruster that recently accumulated greater than 10,000 h it was found that the erosion of the acceleration channel practically stopped after approximately 5,600 h. Numerical simulations of this thruster using a 2-D axisymmetric, magnetic field-aligned-mesh (MFAM) plasma solver reveal that the process that led to this significant reduction of the erosion was multifaceted. It is found that when the channel receded from its early-in-life geometry to its steady-state configuration several changes in the near-wall plasma and sheath were induced by the magnetic field that, collectively, constituted an effective shielding of the walls from any significant ion bombardment. Because all such changes in the behavior of the ionized gas near the eroding surfaces were caused by the topology of the magnetic field there, we term this process "magnetic shielding."

  11. Magnetic Shielding of the Acceleration Channel Walls in a Long-Life Hall Thruster

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; de Grys, Kristi; Mathers, Alex

    2010-01-01

    In a Qualification Life Test (QLT) of the BPT-4000 Hall thruster that recently accumulated greater than 10,000 h it was found that the erosion of the acceleration channel practically stopped after approximately 5,600 h. Numerical simulations of this thruster using a 2-D axisymmetric, magnetic field-aligned-mesh (MFAM) plasma solver reveal that the process that led to this significant reduction of the erosion was multifaceted. It is found that when the channel receded from its early-in-life geometry to its steady-state configuration several changes in the near-wall plasma and sheath were induced by the magnetic field that, collectively, constituted an effective shielding of the walls from any significant ion bombardment. Because all such changes in the behavior of the ionized gas near the eroding surfaces were caused by the topology of the magnetic field there, we term this process "magnetic shielding."

  12. Laser beat wave resonant terahertz generation in a magnetized plasma channel

    SciTech Connect

    Bhasin, Lalita; Tripathi, V. K.; Kumar, Pawan

    2016-02-15

    Resonant excitation of terahertz (THz) radiation by nonlinear mixing of two lasers in a ripple-free self created plasma channel is investigated. The channel has a transverse static magnetic field and supports a THz X-mode with phase velocity close to the speed of light in vacuum when the frequency of the mode is close to plasma frequency on the channel axis and its value decreases with the intensity of lasers. The THz is resonantly driven by the laser beat wave ponderomotive force. The THz amplitude scales almost three half power of the intensity of lasers as the width of the THz eigen mode shrinks with laser intensity.

  13. Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Tanveer, Anum; Alsaadi, Fuad; Mousa, Ghassan

    2016-04-01

    This paper addresses the peristaltic flow in curved channel with combined heat/mass transfer and convective effects. The channel walls are flexible. An imposed magnetic field is applied in radial direction to increase the wave amplitude (used in ECG for synchronization purposes). The pseudoplastic fluid comprising shear-thinning/shear thickening effects has been used in mathematical modeling. Small Reynolds number assumption is employed to neglect inertial effects. Half channel-width to wavelength ratio is small enough for the pressure to be considered uniform over the cross-section. The graphical results obtained are compared with planar channel. Results show the non-symmetric behavior of sundry parameters in contrary to the planar case. Additionally more clear results are seen when the curved channel is approached.

  14. A 64-channel whole-head SQUID system in a superconducting magnetic shield

    NASA Astrophysics Data System (ADS)

    Ohta, H.; Matsui, T.; Aono, M.; Uchikawa, Y.; Kobayashi, K.; Tanabe, K.; Takeuchi, S.; Narasaki, K.; Tsunematsu, S.; Koyabu, Y.; Kamekawa, Y.; Nakayama, K.; Shimizu, T.; Koike, J.; Hoshino, K.; Kotaka, H.; Sudoh, E.; Takahara, H.; Yoshida, Y.; Shinada, K.; Takahata, M.; Yamada, Y.; Kamijo, K.

    1999-11-01

    A superconducting magnetic shield of high-Tc superconductor Bi(Pb)-Sr-Ca-Cu-Ox has been constructed whose diameter is 65 cm and length is 160 cm. We have successfully observed magnetic fields from somatosensory-evoked human brains in the superconducting magnetic shield by stimulating the median nerves of patients by current pulses. We made a 64-channel whole-head SQUID magnetometer of superconductor/normal metal/superconductor (SNS) junctions which do not show low-frequency telegraph noise. The sensitivities of the dc SQUID mesoscopic SNS junctions are around 5 fT Hz-1/2 even in rather unfavourable surroundings. The magnetic shield can reduce a magnetic field by around -80 dB or a factor of 10-4 even at as low a frequency as 0.05 Hz. Therefore SQUIDs of SNS junctions and a superconducting magnetic shield are a good combination.

  15. Simultaneous bioassays in a microfluidic channel on plugs of different magnetic particles.

    PubMed

    Bronzeau, Sandrine; Pamme, Nicole

    2008-02-18

    Magnetic particles coated with specific biomolecules are often used as solid supports for bioassays but conventional test tube based techniques are time consuming and labour intensive. An alternative is to work on magnetic particle plugs immobilised inside microfluidic channels. Most research so far has focussed on immobilising one type of particle to perform one type of assay. Here we demonstrate how several assays can be performed simultaneously by flushing a sample solution over several plugs of magnetic particles with different surface coatings. Within a microchannel, three plugs of magnetic particles were immobilised with external magnets. The particles featured surface coatings of glycine, streptavidin and protein A, respectively. Reagents were then flushed through the three plugs. Molecular binding occurred between matching antigens and antibodies in continuous flow and was detected by fluorescence. This first demonstration opens the door to a quicker and easier technique for simultaneous bioassays using magnetic particles.

  16. Magnetic Field Modeling of Hot Channels in four Flare/CME Events

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Su, Yingna

    2017-08-01

    We study the magnetic structure and 3D geometrical morphology of four active regions with sigmoidal hot channels which produced flare/CME events. Observational study has been done by Cheng & Ding (2016). Using the flux rope insertion method developed by van Ballegooijen (2004), we construct a series of magnetic field models of the four flare/CME events. Through comparing with non-potential coronal loops observed by SDO/AIA , we find that the critical stable model (i.e.,a magnetic field configuration at the boundary between stable and unstable states in parameter space) and the best-fit preflare model (unstable model) which best matches observations for every case, and we think that the real preflare magnetic field configuration may lie between the two models. Finally we calculate the magnetic energy free energy and magnetic helicity of the two selected models,and study the eruption mechanism.

  17. Study of magnetic particles pulse-injected into an annular SPLITT-like channel inside a quadrupole magnetic field.

    PubMed

    Hoyos, M; Moore, L R; McCloskey, K E; Margel, S; Zuberi, M; Chalmers, J J; Zborowski, M

    2000-12-01

    Advantages of the continuous magnetic flow sorting for biomedical applications over current, batch-wise magnetic separations include high throughput and a potential for scale-up operations. A continuous magnetic sorting process has been developed based on the quadrupole magnetic field centered on an annular flow channel. The performance of the sorter has been described using the conceptual framework of split-flow thin (SPLITT) fractionation, a derivative of field-flow fractionation (FFF). To eliminate the variability inherent in working with a heterogenous cell population, we developed a set of monodisperse magnetic microspheres of a characteristic magnetization, and a magnetophoretic mobility, similar to those of the cells labeled with a magnetic colloid. The theory of the magnetic sorting process has been tested by injecting a suspension of the magnetic beads into the carrier fluid flowing through the sorter and by comparing the theoretical and experimental recovery versus total flow-rate profiles. The position of the recovery maxima along the total flow-rate axis was a function of the average bead magnetophoretic mobility and the magnetic field intensity. The theory has correctly predicted the position of the peak maxima on the total flow-rate axis and the dependence on the bead mobility and the field intensity, but has not correctly predicted the peak heights. The differences between the calculated and the measured peak heights were a function of the total flow-rate through the system, indicating a fluid-mechanical origin of the deviations from the theory (such as expected of the lift force effects in the system). The well-controlled elution studies using the monodisperse magnetic beads, and the SPLITT theory, provided us with a firm basis for the future sorter evaluation using cell mixtures.

  18. An approximate analytic solution for the radiation from a line-driven fluid-loaded plate

    NASA Astrophysics Data System (ADS)

    Diperna, Daniel T.; Feit, David

    2001-12-01

    In the analysis of a fluid loaded line-driven plate, the fields in the structure and the fluid are often expressed in terms of a Fourier transform. Once the boundary conditions are matched, the structural displacement can be expressed as an inverse transform, which can be evaluated using contour integration. The result is then a sum of propagating or decaying waves, each arising from poles in the complex plane, plus a branch cut integral. The branch cut is due to a square root in the transform of the acoustic impedance. The complex layer analysis (CLA) used here eliminates the branch cut singularity by approximating the square root with a rational function, causing the characteristic equation to become a polynomial in the transform variable. An approximate analytic solution to the characteristic equation is then found using a perturbation method. The result is four poles corresponding to the roots of the in vacuo plate, modified by the presence of the fluid, plus an infinity of poles located along the branch cut of the acoustic impedance. The solution is then found analytically using contour integration, with the integrand containing only simple poles.

  19. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  20. Low magnetic field dynamic nuclear polarization using a single-coil two-channel probe

    SciTech Connect

    TonThat, D.M.; Augustine, M.P.; Pines, A.; Clarke, J. |

    1997-03-01

    We describe the design and construction of a single-coil, two-channel probe for the detection of low-field magnetic resonance using dynamic nuclear polarization (DNP). The high-frequency channel of the probe, which is used to saturate the electron spins, is tuned to the electron Larmor frequency, 75 MHz at 2.7 mT, and matched to 50 {Omega}. Low-field, {sup 1}H nuclear magnetic resonance (NMR) is detected through the second, low-frequency channel at frequencies {lt}1 MHz. The performance of the probe was tested by measuring the DNP of protons in a manganese (II) chloride solution at 2.7 mT. At the proton NMR frequency of 120 kHz, the signal amplitude was enhanced over the value without DNP by a factor of about 200. {copyright} {ital 1997 American Institute of Physics.}

  1. The effect of external magnetic field on plasma acceleration in electromagnetic railgun channel

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.

    2016-03-01

    We have studied the effect of an external magnetic field on the dynamics of a free plasma piston (PP) accelerated without solid striker armature in an electromagnetic railgun channel filled with various gases (argon or helium). It is established that, as the applied magnetic field grows, the velocity of a shock wave generated by PP in the channel increases. The experimental results are compared to a theoretical model that takes into account the gas pressure force behind the shock wave and the drag force that arises when erosion mass entering the channel is partly entrained by the accelerated plasma. The results of model calculations are in satisfactory agreement with experimental data. The discrepancy somewhat increases with the applied field, but the maximum deviation still does not exceed 20%.

  2. Low magnetic field dynamic nuclear polarization using a single-coil two-channel probe

    NASA Astrophysics Data System (ADS)

    TonThat, Dinh M.; Augustine, Matthew P.; Pines, Alexander; Clarke, John

    1997-03-01

    We describe the design and construction of a single-coil, two-channel probe for the detection of low-field magnetic resonance using dynamic nuclear polarization (DNP). The high-frequency channel of the probe, which is used to saturate the electron spins, is tuned to the electron Larmor frequency, 75 MHz at 2.7 mT, and matched to 50 Ω. Low-field, 1H nuclear magnetic resonance (NMR) is detected through the second, low-frequency channel at frequencies <1 MHz. The performance of the probe was tested by measuring the DNP of protons in a manganese (II) chloride solution at 2.7 mT. At the proton NMR frequency of 120 kHz, the signal amplitude was enhanced over the value without DNP by a factor of about 200.

  3. Quench Protection for the MICE Cooling Channel CouplingMagnet

    SciTech Connect

    Green, M.A.; Wang, L.; Guo, X.L.

    2007-11-20

    The MICE coupling coil is fabricated from Nb-Ti, which hashigh quench propagation velocities within the coil in all directionscompared to coils fabricated with other superconductors such as niobiumtin. The time for the MICE coupling coil to become fully normal throughnormal region propagation in the coil is shorter than the time needed fora safe quench (as defined by a hot-spot temperature that is less than 300K). A MICE coupling coil quench was simulated using a code written at theInstitute of Cryogenics and Superconductive Technology (ICST) at theHarbin Institute of Technology (HIT). This code simulates quench backfrom the mandrel as well as normal region propagation within the coil.The simulations included sub-division of the coil. Each sub-division hasa back to back diodes and resistor across the coil. Current flows in theresistor when there is enough voltage across the coil to cause current toflow through the diodes in the forward direction. The effects of thenumber of coil sub-divisions and the value of the resistor across thesub-division on the quench were calculated with and without quench back.Sub-division of the coupling coil reduces the peak voltage to ground, thelayer-to-layer voltage and the magnet hot-spot temperature. Quench backreduces the magnet hot-spot temperature, but the peak voltage to groundand layer-to-layer voltage are increased, because the magnet quenchesfaster. The resistance across the coil sub-division affects both thehot-spot temperature and the peak voltage to ground.

  4. Effects of particle characteristics on magnetic immunoassay in a thin channel.

    PubMed

    Tsai, H Y; Hsieh, Y C; Su, Y M; Chan, J R; Chang, Y C; Fuh, C Bor

    2011-10-15

    The effects of size and porosity of particles on magnetic immunoassay in a thin channel were studied. Experimental parameters were investigated and compared using a model immunoassay complex of carcinoembryonic antigen (CEA)/anti-CEA. The rate constant for the affinity reaction between functional particles increased as the size of magnetic nanoparticles (800-80 nm) decreased. The affinity reaction between functional particles had no significant effect on the sizes of microparticles (1.0-4.4 μm) at commonly used thin channel flow-rates of 0.001-0.025 ml/min. Competitive and sandwich reactions of CEA/anti-CEA were studied for CEA detection. Microparticles of different porosities produced similar linear ranges of detection and limits of detection. The limits of detection for CEA were 0.29 pg/ml and 0.21 pg/ml for competitive and sandwich reactions, respectively. The linear ranges of detection were from 0.49 pg/ml to 4.9 ng/ml for both competitive and sandwich reactions. The detection limits were lower, and the linear ranges were wider than those of literature. There was a 9% difference in CEA detection measurements between competitive and sandwich magnetic immunoassay. The measurements of two magnetic immunoassays differed by less than 13% from the ELISA reference measurements. The running time was less than 30 min. Magnetic immunoassay in a thin channel has great potential for biochemical analysis and immunoassay-related applications.

  5. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.

    PubMed

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I; Samusev, Kirill B; Parkinson, Patrick; Sreenivasan, Varun K A; Minovich, Alexander; Miroshnichenko, Andrey E; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2013-01-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  6. Stimulated Raman Scattering of a Laser in a Magnetic Plasma Channel

    NASA Astrophysics Data System (ADS)

    Parashar, J.

    A depressed density plasma channel, in the presence of a strong azimuthal magnetic field, supports localized lower hybrid modes of finite azimuthal mode number. A high amplitude laser propagating through the channel undergoes stimulated Raman scattering off a lower hybrid mode producing a back propagating electromagnetic sideband wave. The pump beats with the sideband to exert a ponderomotive force on the electrons driving the lower hybrid wave. The density perturbations associated with the lower hybrid wave couple with the oscillatory velocity due to the pump, producing a nonlinear current, driving the sideband. The radial profile of the sideband and the frequency shift have signatures of magnetic field and can be used as a diagnostics for azimuthal magnetic field.

  7. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I.; Samusev, Kirill B.; Parkinson, Patrick; Sreenivasan, Varun K. A.; Minovich, Alexander; Miroshnichenko, Andrey E.; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N.; Kivshar, Yuri S.

    2013-12-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  8. Channels

    NASA Image and Video Library

    2014-04-29

    Two channels are visible in this image from NASA 2001 Mars Odyssey spacecraft . The smaller one near the bottom did not carve as deeply as the larger channel at the top. The channel near the top of the image is near the origin of Mamers Valles.

  9. NLTE models of line-driven stellar winds - II. O stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Krtička, Jiří

    2006-04-01

    We calculate non-local thermodynamic equilibrium (NLTE) line-driven wind models of selected O stars in the spectral range of O4 to O9 in the Small Magellanic Cloud (SMC). We compare predicted basic wind properties, i.e. the terminal velocity and the mass-loss rate with values derived from observation. We found relatively good agreement between theoretical and observed terminal velocities. On the other hand, predicted mass-loss rates and mass-loss rates derived from observation are in a good agreement only for higher mass-loss rates. Theoretical mass-loss rates lower than approximately 10-7Msolaryr-1 are significantly higher than those derived from observation. These results confirm the previously reported problem of weak winds, since our calculated mass-loss rates are in fair agreement with predictions of Vink et al. We study multicomponent models for these winds. For this purpose we develop a more detailed description of wind decoupling. We show that the instability connected with the decoupling of individual wind elements may occur for low-density winds. In the case of winds with very low observed mass-loss rates the multicomponent effects are important for the wind structure, however this is not able to explain consistently the difference between the predicted mass-loss rate and the mass-loss rate derived from observation for these stars. Similar to previous studies, we found the level of dependence of the wind parameters on the metallicity. We conclude that the wind mass-loss rate significantly increases with metallicity as , whereas the terminal velocity of wind on average depends on metallicity only slightly, namely v∞~Z0.06 (for studied stars).

  10. Controlled release of doxorubicin loaded within magnetic thermo-responsive nanocarriers under magnetic and thermal actuation in a microfluidic channel.

    PubMed

    Pernia Leal, Manuel; Torti, Andrea; Riedinger, Andreas; La Fleur, Rocco; Petti, Daniela; Cingolani, Roberto; Bertacco, Riccardo; Pellegrino, Teresa

    2012-12-21

    We report a procedure to grow thermo-responsive polymer shells at the surface of magnetic nanocarriers made of multiple iron oxide superparamagnetic nanoparticles embedded in poly(maleic anhydride-alt-1-ocatadecene) polymer nanobeads. Depending on the comonomers and on their relative composition, tunable phase transition temperatures in the range between 26 and 47 °C under physiological conditions could be achieved. Using a suitable microfluidic platform combining magnetic nanostructures and channels mimicking capillaries of the circulatory system, we demonstrate that thermo-responsive nanobeads are suitable for localized drug delivery with combined thermal and magnetic activation. Below the critical temperature nanobeads are stable in suspension, retain their cargo, and cannot be easily trapped by magnetic fields. Increasing the temperature above the critical temperature causes the aggregation of nanobeads, forming clusters with a magnetic moment high enough to permit their capture by suitable magnetic gradients in close proximity to the targeted zone. At the same time the polymer swelling activates drug release, with characteristic times on the order of one hour for flow rates of the same order as those of blood in capillaries.

  11. High-Resolution Observations of Flare Precursors and Their Relationship with Magnetic Channels

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Xu, Yan; Ahn, Kwangsu; Jing, Ju; Liu, Chang; Deng, Na; Huang, Nengyi; Gary, Dale E.; Cao, Wenda

    2016-05-01

    The study of precursors of flares is important for understanding the basic magnetic instability leading to solar flares, which can aid the forecasting of eruptions potentially related to severe space weather effects. Although literatures reported many important clues, high-resolution observations of pre-flare activities before a well-observed solar flare have been rare. Even rarely, the associated magnetic structures in fine scale (below 1") were also observed. In this study we take advantage of multiwavelength high-resolution observations completely covering the 2015 June 22 M6.6 flare, which were obtained under excellent seeing condition with the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory. The NST data includes observations of the H-alpha line in five spectral positions at a spatial resolution of 0.1" and magnetograms at a resolution of 0.25". These are complemented by IRIS UV observations with a resolution of 0.25". We find that there are two episodes of pre-flare brightenings (precursors), which are spatially associated with magnetic channels, i.e., elongated structures comprising alternating magnetic polarity inversion lines (Zirin & Wang, 1993, Nature, 363, 426). The pre-flare chromospheric and coronal features reflect an extremely sheared magnetic topology, while the initiation of main flare brightenings correspond to a much less sheared configuration. RHESSI HXR observations reveal that the precursors have both thermal and nonthermal components, and the latter is further evidenced by the microwave observations of the newly expanded Solar Radio Array at Owens Valley.We further investigate the electric current system above the magnetic channels using NLFFF extrapolations, which show strong current sheets above the channel structure. This is consistent with the MHD modeling of Kusano et al (2012, Ap.J., 760, 31), who noted the importance of localized small-scale magnetic structure in triggering the eruption of the whole active region. We

  12. Stimulated ionization scattering of a wave beam forming a discharge channel in a magnetic mirror trap

    SciTech Connect

    Belov, A. S.; Markov, G. A.

    2008-03-15

    The stimulated scattering of a whistler wave beam forming an extended discharge channel in a magnetic mirror trap is discovered and investigated experimentally. It is shown that the beam is scattered by relaxaction oscillations of the lattice of plasma inhomogeneities excited by the beam field. The spectrum of the pump field in the RF discharge plasma is found to broaden considerably and to contain individual modulation peaks corresponding to lattice oscillations. The peaks are observed at working gas pressures at which the electron mean free path is close to the wavelength of the standing wave forming the discharge channel. A physical model describing the phenomena observed is developed.

  13. A Computer Study of High Magnetic Reynolds Number MHD Channel Flow.

    DTIC Science & Technology

    1980-11-01

    AD-AGOG 215 STD RESEARCH CORP ARCADIA CALIF FIG 9043 cOWPUTER STUDY OF HIGH1 MAGNETIC REYNOLDS NUMBER MH CHANNEL F--E,C (U) .OV G0 D A OLIVER. T F... STD RESEARCH.CORPORATION POST OFFICE BOX ’C’, ARCADIA, CALIFORNIA 91006 TELEPHONE: (213)_357-2311 / - STDR-80-41 A COMPUTER STUDY OF HIGH MAGNETIC...AAa____________ Ia. PROGRAM ELEMENT. PROJECT, TASK STD Research Corporation L/ AREA 46 WORK UNT NUuegs P. 0 BOX"C"NR 099-415 1 U. S. Dept. of Navy

  14. A single-channel SQUID magnetometer for measuring magnetic field of human fetal heart

    NASA Astrophysics Data System (ADS)

    Bachir, Wesam; Grot, Przemyslaw; Dunajski, Zbigniew

    2004-07-01

    A non-invasive single-channel SQUID magnetometer for fetal magnetocardiography has been developed. The signal is picked-up with a wire wound third order gradiometer. The optimal configuration of the flux transformer is a trade-off between sufficient sensitivity for the magnetic field originated in fetal heart and effective immunity against the ambient magnetic noise. The over all system performance together with the measuring probe and SQUID electronics is described. The balancing of the third order flux transformer is discussed as well as the signal processing of fetal magnetocardiogram recordings.

  15. Large-scale intermittency of liquid-metal channel flow in a magnetic field.

    PubMed

    Boeck, Thomas; Krasnov, Dmitry; Thess, André; Zikanov, Oleg

    2008-12-12

    We predict a novel flow regime in liquid metals under the influence of a magnetic field. It is characterized by long periods of nearly steady, two-dimensional flow interrupted by violent three-dimensional bursts. Our prediction has been obtained from direct numerical simulations in a channel geometry at low magnetic Reynolds number and translates into physical parameters which are amenable to experimental verification under laboratory conditions. The new regime occurs in a wide range of parameters and may have implications for metallurgical applications.

  16. Single-file and normal diffusion of magnetic colloids in modulated channels.

    PubMed

    Lucena, D; Galván-Moya, J E; Ferreira, W P; Peeters, F M

    2014-03-01

    Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion coefficient of a single particle by Festa and d'Agliano [Physica A 90, 229 (1978)] and show the importance of interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a function of linear density, strength of the periodic modulation and commensurability factor.

  17. The random energy model in a magnetic field and joint source channel coding

    NASA Astrophysics Data System (ADS)

    Merhav, Neri

    2008-09-01

    We demonstrate that there is an intimate relationship between the magnetic properties of Derrida’s random energy model (REM) of spin glasses and the problem of joint source-channel coding in Information Theory. In particular, typical patterns of erroneously decoded messages in the coding problem have “magnetization” properties that are analogous to those of the REM in certain phases, where the non-uniformity of the distribution of the source in the coding problem plays the role of an external magnetic field applied to the REM. We also relate the ensemble performance (random coding exponents) of joint source-channel codes to the free energy of the REM in its different phases.

  18. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Heng; Delikanli, Savas; Zeng, Hao; Ferkey, Denise M.; Pralle, Arnd

    2010-08-01

    Recently, optical stimulation has begun to unravel the neuronal processing that controls certain animal behaviours. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Here, we show an approach based on radio-frequency magnetic-field heating of nanoparticles to remotely activate temperature-sensitive cation channels in cells. Superparamagnetic ferrite nanoparticles were targeted to specific proteins on the plasma membrane of cells expressing TRPV1, and heated by a radio-frequency magnetic field. Using fluorophores as molecular thermometers, we show that the induced temperature increase is highly localized. Thermal activation of the channels triggers action potentials in cultured neurons without observable toxic effects. This approach can be adapted to stimulate other cell types and, moreover, may be used to remotely manipulate other cellular machinery for novel therapeutics.

  19. Magnetic induction measurements with a six channel coil array for vital parameter monitoring.

    PubMed

    Cordes, Axel; Heimann, Konrad; Leonhardt, Steffen

    2012-01-01

    Vital parameter monitoring on neonatal intensive care units is essential but very stressful for patients during daily routine care. For contact-less monitoring of breathing and heart activity, magnetic induction measurements are applicable in research scenarios. For monitoring both vital parameters in newborn intensive care wards, we developed a Multi Channel Simultaneous Magnetic Induction Measurement System (MUSIMITOS2+). In this article we now evaluate the technical requirements of a coil array for vital parameter monitoring and finally present a multichannel coil array with 6 excitation and measurement channels combined as axial gradiometers for the specific measurement scenario. This array will be stored underneath the child. As a test case we will present data of a animal trial with the described coil array and the measurement device MUSIMITOS2+.

  20. The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species

    PubMed Central

    Hoyos, Mauricio; Moore, Lee; Williams, P. Stephen; Zborowski, Maciej

    2011-01-01

    The Quadrupole Magnetic Sorter (QMS), employing an annular flow channel concentric with the aperture of a quadrupole magnet, is well established for cell and particle separations. Here we propose a magnetic particle separator comprising a linear array of cylindrical magnets, analogous to the array proposed by Klaus Halbach, mated to a substantially improved form of parallel-plate SPLITT channel, known as the step-SPLITT channel. While the magnetic force and throughput are generally lower than for the QMS, the new separator has advantages in ease of fabrication and the ability to vary the magnetic force to suit the separands. Preliminary experiments yield results consistent with prediction and show promise regarding future separations of cells of biomedical interest. PMID:21399709

  1. The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species.

    PubMed

    Hoyos, Mauricio; Moore, Lee; Williams, P Stephen; Zborowski, Maciej

    2011-05-01

    The Quadrupole Magnetic Sorter (QMS), employing an annular flow channel concentric with the aperture of a quadrupole magnet, is well established for cell and particle separations. Here we propose a magnetic particle separator comprising a linear array of cylindrical magnets, analogous to the array proposed by Klaus Halbach, mated to a substantially improved form of parallel-plate SPLITT channel, known as the step-SPLITT channel. While the magnetic force and throughput are generally lower than for the QMS, the new separator has advantages in ease of fabrication and the ability to vary the magnetic force to suit the separands. Preliminary experiments yield results consistent with prediction and show promise regarding future separations of cells of biomedical interest.

  2. Particles Sorting in Micro Channel Using Designed Micro Electromagnets of Magnetic Field Gradient

    NASA Astrophysics Data System (ADS)

    Chung, Yung-Chiang; Wu, Chen-Ming; Lin, Shih-Hao

    2016-06-01

    In this study, microelectromagnet, microchannel, syringe pump, and controlling devices were integrated to form a particle sorting system. A simple, two-dimensional, relatively quick fabricating and easily operating microelectromagnet was designed. Polystyrene particles and magnetic beads were pumped into the microchannel with the syringe pump, and it was observed that the magnetic beads were attracted to one of two outlets by the microelectromagnet, which features a gradually changing magnetic field. The polystyrene particles would move to another outlet because of different-width micro channel, and it completed the separation of the particles. Based on experimental results, the magnetic flux density of the microelectromagnet was 2.3 Gauss for a 12.5-μm average distance between electrodes at 1.0-μm increments, and the magnetic force was 0.22 pN for 2.8-μm magnetic beads. The separating rate was greater for larger distance increment and smaller average distance between the electrodes. The separating rate of the magnetic beads increased as the electric current increased and flow velocity decreased. When the flow velocity was 0.333 μm/s and electric current was 1 A, the separating rate was 90%. The separating rate of the polystyrene particles increased as the flow velocity increased and was 85% when the flow velocity was 0.6 μm/s. These results demonstrate that this particle sorting system has potential applications in bio-molecular studies.

  3. Magnetic-field-driven alteration in capillary filling dynamics in a narrow fluidic channel

    NASA Astrophysics Data System (ADS)

    Gorthi, Srinivas R.; Mondal, Pranab Kumar; Biswas, Gautam

    2017-07-01

    We investigated pressure-driven transport of an immiscible binary system, constituted by two electrically conducting liquids, in a narrow fluidic channel under the influence of an externally applied magnetic field. The surface wettability was taken into account in the analysis considering that the walls of the channel are chemically treated to obtain various predefined contact angles as required for the study. Alterations in the capillary filling and wetting dynamics in the channel stemming from a complex interplay among different forces acting over the interface were investigated. It was shown that an alteration in the strength of the magnetic field leads to an alteration in the dynamics of the interface, which in turn, alters the filling and wetting dynamics nontrivially upon interaction with the surface tension force due to the wetted walls of the channel. It is emphasized that a contrast in properties of constituents of the binary system gives rise to an alteration in the forces being applied across the interface, leading to an intricate control over the filling and wetting dynamics for a given flow configuration and an applied field strength. We believe that the results obtained from this analysis may aid the design of microfluidic devices used for multiphase transport.

  4. Space-charge limiting currents in magnetically focused intense relativistic beams with an ion channel

    SciTech Connect

    Li Jianqing; Mo Yuanlong

    2006-12-15

    The intense relativistic beam propagation through the drift tube filled with background plasma is investigated. The self-consistent differential equations, which describe the laminar-flow equilibria state in magnetically focused relativistic beams with an ion channel, are presented. By solving these equations using the Runge-Kutta method, the azimuthal velocity, the axial velocity, and the electron beam density, which are functions of radial position, can be calculated. Then the space-charge limiting current and the externally applied magnetic field can be obtained for solid beams and hollow beams. In the case of plasma fill, the axial velocity of the laminar flow is a nonuniform radial profile. The simulated results show that the background plasma can increase the space-charge limiting current, reduce the externally applied magnetic field, and improve the electron beam propagation through the drift tube.

  5. A High-Beta, Supersonic Plasma Flow and Shock Formation in Magnetic Channels

    NASA Astrophysics Data System (ADS)

    Inutake, Masaaki; Ando, Akira; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Yagai, Tsuyoshi; Tobari, Hiroyuki; Murakami, Fumitake; Ashino, Masashi

    2000-10-01

    Plasma acceleration and shock wave formation are investigated in the HITOP device of Tohoku University. A high-beta(>50%), and highly-ionized(>50%), flowing He-plasma is produced quasi-steadily(1ms) by an MPD arc jet and is injected into a cylindrical vacuum chamber (diameter: 0.8m, length: 3.3m) along various axial magnetic channels. Axial profiles of an ion acoustic Mach number Mi are measured by a Mach probe and a spectroscopic method. It is found that Mi is almost unity in a uniform magnetic field and Mi increases up to 3 in a diverging magnetic field. When a magnetic bump is added in the diverging field, a shock wave with a sudden decrease in Mi and increase in density is observed near the inlet of the bump region. The subsonic plasma flow is re-accelerated in the converging field. Mi attains to unity near the magnetic throat and increases up to 3 in the diverging region. The bump field works as a magnetic Laval nozzle. These phenomena are quite similar to those in a compressible gas flow through a conventional Laval nozzle.

  6. Raman scattering of circularly polarized laser beam in homogeneous and inhomogeneous magnetized plasma channel

    NASA Astrophysics Data System (ADS)

    Ghaffari-Oskooei, S. S.; Aghamir, F. M.

    2017-06-01

    Raman scattering of circularly polarized laser beams in a magnetized plasma channel is investigated. The scattering is considered as parametric instability. Dispersion relations of backward and forward scattered waves in a magnetized plasma are derived in a weakly relativistic regime. Growth rates of the corresponding instabilities are calculated. The effects of laser intensity and its polarization as well as the strength of the magnetic field and corresponding cyclotron frequency along with plasma density and its inhomogeneity on the growth rate of Raman scattering are examined. The study shows that the left-handed circularly polarized laser beam has different behaviors in comparison to the right-handed beam, and their growth rates are different due to the anisotropic properties of the magnetized plasma. In addition, Raman scattering in an inhomogeneous plasma with a linear density profile is investigated. The comparison between homogeneous and inhomogeneous plasmas has indicated that inhomogeneity reduces the growth rate. The frequency shift of scattered waves, when laser intensity is high, is studied in the magnetized plasma. The findings indicate that the shift depends on laser intensity and its polarization as well as plasma density and dc magnetic field. The frequency shift can be used as a diagnostic tool for density measurement in laser-plasma interactions.

  7. Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; deGrys, Kristi; Mathers, Alex

    2011-01-01

    In a qualification life test of a Hall thruster it was found that the erosion of the acceleration channel practically stopped after approx 5,600 h. Numerical simulations using a two-dimensional axisymmetric plasma solver with a magnetic field-aligned mesh reveal that when the channel receded from its early-in-life to its steady-state configuration the following changes occurred near the wall: (1) reduction of the electric field parallel to the wall that prohibited ions from acquiring significant impact kinetic energy before entering the sheath, (2) reduction of the potential fall in the sheath that further diminished the total energy ions gained before striking the material, and (3) reduction of the ion number density that decreased the flux of ions to the wall. All these changes, found to have been induced by the magnetic field, constituted collectively an effective shielding of the walls from any significant ion bombardment. Thus, we term this process in Hall thrusters "magnetic shielding."

  8. Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; deGrys, Kristi; Mathers, Alex

    2011-01-01

    In a qualification life test of a Hall thruster it was found that the erosion of the acceleration channel practically stopped after approx 5,600 h. Numerical simulations using a two-dimensional axisymmetric plasma solver with a magnetic field-aligned mesh reveal that when the channel receded from its early-in-life to its steady-state configuration the following changes occurred near the wall: (1) reduction of the electric field parallel to the wall that prohibited ions from acquiring significant impact kinetic energy before entering the sheath, (2) reduction of the potential fall in the sheath that further diminished the total energy ions gained before striking the material, and (3) reduction of the ion number density that decreased the flux of ions to the wall. All these changes, found to have been induced by the magnetic field, constituted collectively an effective shielding of the walls from any significant ion bombardment. Thus, we term this process in Hall thrusters "magnetic shielding."

  9. Analytic theory for betatron radiation from relativistic electrons in ion plasma channels with magnetic field

    SciTech Connect

    Lee, H. C.; Jiang, T. F.

    2010-11-15

    We analytically solve the relativistic equation of motion for an electron in ion plasma channels and calculate the corresponding trajectory as well as the synchrotron radiation. The relativistic effect on a trajectory is strong, i.e., many high-order harmonic terms in the trajectory, when the ratio of the initial transverse velocity (v{sub x0}) to the longitudinal velocity (v{sub z0}) of the electron injected to ion plasma channels is high. Interestingly, these high-order harmonic terms result in a quite broad and intense radiation spectrum, especially at an oblique angle, in contrast to an earlier understanding. As the initial velocity ratio (v{sub x0}:v{sub z0}) decreases, the relativistic effect becomes weak; only the first and second harmonic terms remain in the transverse and longitudinal trajectories, respectively, which coincides with the result of Esarey et al. [Phys. Rev. E 65, 056505 (2002)]. Our formalism also allows the description of electron's trajectory in the presence of an applied magnetic field. Critical magnetic fields for cyclotron motions are figured out and compared with semiclassical results. The cyclotron motion leads to more high-order harmonic terms than the trajectory without magnetic fields and causes an immensely broad spectrum with vastly large radiation amplitude for high initial velocity ratios (v{sub x0}:v{sub z0}). The radiation from hard x-ray to gamma-ray regions can be generated with a broad radiation angle, thus available for applications.

  10. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    SciTech Connect

    Higginbottom, Nick; Knigge, Christian; Matthews, James H.; Proga, Daniel; Long, Knox S.; Sim, Stuart A.

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  11. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism.

    PubMed

    Ahmed, Zaghloul; Wieraszko, Andrzej

    2015-07-01

    This paper investigates the influence of pulsed magnetic fields (PMFs) on amplitude of evoked, compound action potential (CAP) recorded from the segments of sciatic nerve in vitro. PMFs were applied for 30 min at frequency of 0.16 Hz and intensity of 15 mT. In confirmation of our previous reports, PMF exposure enhanced amplitude of CAPs. The effect persisted beyond PMF activation period. As expected, CAP amplitude was attenuated by antagonists of sodium channel, lidocaine, and tetrodotoxin. Depression of the potential by sodium channels antagonists was reversed by subsequent exposure to PMFs. The effect of elevated potassium concentration and veratridine on the action potential was modified by exposure to PMFs as well. Neither inhibitors of protein kinase C and protein kinase A, nor known free radicals scavengers had any effects on PMF action. Possible mechanisms of PMF action are discussed.

  12. Channels

    NASA Image and Video Library

    2015-11-20

    Today's VIS image shows a number of unnamed channels located on the northeastern margin of Terra Sabaea. Orbit Number: 61049 Latitude: 33.5036 Longitude: 58.6967 Instrument: VIS Captured: 2015-09-18 12:54 http://photojournal.jpl.nasa.gov/catalog/PIA20097

  13. Inspiration of induced magnetic field on nano hyperbolic tangent fluid in a curved channel

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Shahzadi, Iqra

    2016-01-01

    In this research, peristaltic flow of nano hyperbolic tangent fluid is investigated in a curved channel. The model used for the nanofluid includes the effects of thermophoresis and Brownian motion. The resulting equations are assembled in wave frame of reference under the effects of curvature. Influence of induced magnetic field is studied. Long wavelength and low Reynolds number supposition are treated. The travelling wave front of peristaltic flow is chosen sinusoidal (extension /reduction). Analytical solutions are computed by homotopy perturbation method. Results of substantial quantities are explained with particular attention to rheological aspects.

  14. Magnetically-Channeled SIEC Array (MCSA) Fusion Device for Interplanetary Missions

    NASA Astrophysics Data System (ADS)

    Miley, G. H.; Stubbers, R.; Webber, J.; Momota, H.

    2004-02-01

    A radical new Inertial Electrostatic Confinement (IEC) concept, the Magnetically-Channeled Spherical-IEC Array (MCSA) fusion propulsion system, was proposed earlier for use in the high performance Space Ship II fusion propulsion ship (Burton, 2003). This ship was designed for a fast manned round trip mission to Jupiter. The MCSA fusion power plant represents a key enabling technology needed for this mission. The details of the proposed MCSA design are presented here, along with a discussion of some possible experiments that could be performed to confirm key physics aspects.

  15. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase I: Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.

    2011-01-01

    In a proof-of-principle effort to demonstrate the feasibility of magnetically shielded (MS) Hall thrusters, an existing laboratory thruster has been modified with the guidance of physics-based numerical simulation. When operated at a discharge power of 6-kilowatts the modified thruster has been designed to reduce the total energy and flux of ions to the channel insulators by greater than 1 and greater than 3 orders of magnitude, respectively. The erosion rates in this MS thruster configuration are predicted to be at least 2-4 orders of magnitude lower than those in the baseline (BL) configuration. At such rates no detectable erosion is expected to occur.

  16. Design of microfluidic channels for magnetic separation of malaria-infected red blood cells

    PubMed Central

    Wu, Wei-Tao; Martin, Andrea Blue; Gandini, Alberto; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James F.

    2016-01-01

    This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han et al. 2006 (Han and Frazier 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40% with a 10% of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 µm, the addition of an upstream constriction of 80% improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost 2 fold, from 26% to 49%. Further addition of a downstream diffuser reduced remixing, hence improved separation efficiency to 72%. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling-up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput – which is critical for clinical implementation as a blood-filtration system. PMID:27761107

  17. Design of microfluidic channels for magnetic separation of malaria-infected red blood cells.

    PubMed

    Wu, Wei-Tao; Martin, Andrea Blue; Gandini, Alberto; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James F

    2016-01-01

    This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han et al. 2006 (Han and Frazier 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40% with a 10% of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 µm, the addition of an upstream constriction of 80% improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost 2 fold, from 26% to 49%. Further addition of a downstream diffuser reduced remixing, hence improved separation efficiency to 72%. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling-up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput - which is critical for clinical implementation as a blood-filtration system.

  18. A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui

    2012-04-01

    The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.

  19. Self-consistent modelling of line-driven hot-star winds with Monte Carlo radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Noebauer, U. M.; Sim, S. A.

    2015-11-01

    Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.

  20. The HEAO-2 Guest Investigator Program: Non-linear growth of instabilities in line-driven stellar winds

    NASA Technical Reports Server (NTRS)

    Rybicki, G. B.

    1985-01-01

    The linear instability of line-driven stellar winds to take proper account of the dynamical effect of scattered radiation were analyzed. It is found that: (1) the drag effect of the mean scattered radiation does greatly reduce the contribution of scattering lines to the instability at the very base of the wind, but the instability growth rate associated with such lines rapidly increases as the flow moves outward from the base, reaching more than 50% of the growth rate for pure absorption lines within a stellar radius of the surface, and eventually reaching 80% of that rate at large radii; (2) perturbations in the scattered radiation field may be important for the propagation of wind disturbances, but they have little effect on the wind instability; and (3) the contribution of strongly shadowed lines to the wind instability is often reduced compared to that of unshadowed lines, but their overall effect is not one of damping in the outer parts of the wind. It is concluded that, even when all scattering effects are taken into account, the bulk of the flow in a line-driven stellar wind is still highly unstable.

  1. Confined Swimming of Bio-Inspired Magnetic Microswimmers in Rectangular Channels

    NASA Astrophysics Data System (ADS)

    Temel, Fatma Zeynep; Yesilyurt, Serhat

    2014-11-01

    Bio-inspired microswimmers have great potential for medical procedures in conduits and vessels inside the body; hence, controlled swimming in confined spaces needs to be well understood. In this study, analysis of swimming modes of a bio-inspired microswimmer in a rectangular channel at low Reynolds number is performed with experimental and computational studies. A left-handed magnetic helical swimmer (MHS), having 0.5 mm diameter and 2 mm length, is used in experiments by utilizing rotating magnetic field actuation obtained by electromagnetic coil pairs. Three motion modes are observed in experiments depending on the rotation frequency: (i) lateral motion under the effect of gravity and surface traction at low frequencies, (ii) lateral motion under the effect of gravity and fluid forces at transition frequencies, and (iii) circular motion under the effect of fluid forces at high frequencies. Translational and angular velocities of the MHS are calculated using CFD simulations to investigate the motion modes. In addition, induced flow fields for different radial positions of the MHS are studied. Results demonstrate the significance of rotation frequency, flow fields and pressure distribution on swimming modes and behaviour of the MHS inside rectangular channels.

  2. Bounds on the attractor dimension for magnetohydrodynamic channel flow with parallel magnetic field at low magnetic Reynolds number.

    PubMed

    Low, R; Pothérat, A

    2015-05-01

    We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D) flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space parametrized by Hartmann number Ha and attractor dimension d(att). We find how the attractor dimension scales as a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence far from the walls (smallest scales and number of degrees of freedom) are found to be very similar.

  3. Coupled optimization of the channel and magnet coil configuration for a 200 MWe coal-fired MHD generator

    SciTech Connect

    Nishimura, Ryo; Aoki, Yoshiaki; Kayukawa, Naoyuki

    1993-12-31

    This paper discusses the effect of the cross-sectional shape of the magnet coil upon the reduction of the MHD channel length. The optimization for the cross-sectional shape of a magnet coil including an MHD channel is carried out for a 200 MWe coal fired supersonic Faraday-type MHD generator. It is shown that the channel and the coil length can be shortened more than 30% by the optimization of the coil shape in comparison with the case of the crescent shaped coil producing a uniform magnetic field, where the enthalpy extraction is effectively kept unchanged. Also, it is estimated that the capital cost for a stand alone commercial MHD/steam combined plant can be decreased more than 6% by this coil shape optimization.

  4. Effect of incorporating cooling channels into the coil support structure of the TPX toroidal field magnet

    SciTech Connect

    Lvovsky, Y.M.; Neeley, G.W.; Tong, Wei

    1996-12-31

    Toroidal field (TF) magnets for the Tokamak Physics experiment (TPX) include superconducting cable-in conduit conductor (CICC) coils encased in a stainless steel support structure, which receives most of the heat generated in the magnet during operation. An efficient cooling of the structure is necessary to intercept the heat which otherwise would reach the winding pack and reduce temperature margin of the superconductor. Optimal cooling arrangement requires joint (coil+structure) analysis which considers thermal coupling between the winding pack and the structure. A joint steady-state 3-D thermal-hydraulic model for toroidal field magnets is presented. It consists of the two submodels, coupled through iterative runs. First submodel analyzes one-dimensional helium flow in CICC double pancake accounting for thermal coupling between turns. Second is a finite element model for the support structure, represented by 12 sections along the circumference of the coil. Model has demonstrated fast convergence and capabilities to analyze heat flux distribution in the winding pack and structure. Temperature profile in CICC and heat absorbed by case cooling channels are presented.

  5. Effects of 15 Hz square wave magnetic fields on the voltage-gated sodium and potassium channels in prefrontal cortex pyramidal neurons.

    PubMed

    Zheng, Yu; Dou, Jun-Rong; Gao, Yang; Dong, Lei; Li, Gang

    2017-04-01

    Although magnetic fields have significant effects on neurons, little is known about the mechanisms behind their effects. The present study aimed to measure the effects of magnetic fields on ion channels in cortical pyramidal neurons. Cortical pyramidal neurons of Kunming mice were isolated and then subjected to 15 Hz, 1 mT square wave (duty ratio 50%) magnetic fields stimulation. Sodium currents (INa), transient potassium currents (IA) and delayed rectifier potassium currents (IK) were recorded by whole-cell patch clamp method. We found that magnetic field exposure depressed channel current densities, and altered the activation kinetics of sodium and potassium channels. The inactivation properties of INa and IA were also altered. Magnetic field exposure alters ion channel function in neurons. It is likely that the structures of sodium and potassium channels were influenced by the applied field. Sialic acid, which is an important component of the channels, could be the molecule responsible for the reported results.

  6. Influence of micro-channel shape and magnetic material on the magneto-refrigeration process of integrated circuits.

    PubMed

    Pereira, A M; Soares, J C; Ventura, J; Sousa, J B; Araujo, J P; Oliveira, J C R E

    2010-04-01

    We developed a two dimensional transient numerical model that solves the first step of heat transfer of an active magnetic regenerative refrigerator (AMR) using the heat conduction equation for an adiabatic system. For micro-refrigeration, an AMR device is constituted by a magnetic material, placed on a silicon wafer containing micro-channels where a heat exchanging fluid flows. The magnetic materials used in the simulations are the promising the Gd5Si2Ge2, La(Fe0.88Si0.22)13 and La0.66Sr0.33MnO3 compounds, because they exhibit a giant magnetocaloric effect near room temperature. We considered different initial conditions, namely different micro-channel shapes, sizes and separations, aiming to increase the performance of the micro-cooler device. The influence of the thickness of the magnetic material on refrigeration power is also studied.

  7. Effect of scattering on the transonic solution topology and intrinsic variability of line-driven stellar winds

    NASA Astrophysics Data System (ADS)

    Sundqvist, Jon O.; Owocki, Stanley P.

    2015-11-01

    For line-driven winds from hot, luminous OB stars, we examine the subtle but important role of diffuse, scattered radiation in determining both the topology of steady-state solutions and intrinsic variability in the transonic wind base. We use a smooth source function formalizm to obtain non-local, integral expressions for the direct and diffuse components of the line-force that account for deviations from the usual localized, Sobolev forms. As the scattering source function is reduced, we find the solution topology in the transonic region transitions from X-type, with a unique wind solution, to a nodal type, characterized by a degenerate family of solutions. Specifically, in the idealized case of an optically thin source function and a uniformly bright stellar disc, the unique X-type solution proves to be a stable attractor to which time-dependent numerical radiation-hydrodynamical simulations relax. But in models where the scattering strength is only modestly reduced, the topology instead turns nodal, with the associated solution degeneracy now manifest by intrinsic structure and variability that persist down to the photospheric wind base. This highlights the potentially crucial role of diffuse radiation for the dynamics and variability of line-driven winds, and seriously challenges the use of Sobolev theory in the transonic wind region. Since such Sobolev-based models are commonly used in broad applications like stellar evolution and feedback, this prompts development of new wind models, not only for further quantifying the intrinsic variability found here, but also for computing new theoretical predictions of global properties like velocity laws and mass-loss rates.

  8. Reverberation Mapping of the Broad Line Region: Application to a Hydrodynamical Line-driven Disk Wind Solution

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny

    2016-08-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (i≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .

  9. ON THE RELATIONSHIP BETWEEN A HOT-CHANNEL-LIKE SOLAR MAGNETIC FLUX ROPE AND ITS EMBEDDED PROMINENCE

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Chen, P. F.; Sun, J. Q.; Srivastava, A. K.

    2014-07-10

    A magnetic flux rope (MFR) is a coherent and helical magnetic field structure that has recently been found likely to appear as an elongated hot channel prior to a solar eruption. In this Letter, we investigate the relationship between the hot channel and the associated prominence through analysis of a limb event on 2011 September 12. In the early rise phase, the hot channel was initially cospatial with the prominence. It then quickly expanded, resulting in a separation of the top of the hot channel from that of the prominence. Meanwhile, they both experienced an instantaneous morphology transformation from a Λ shape to a reversed-Y shape and the top of these two structures showed an exponential increase in height. These features are a good indication of the occurrence of kink instability. Moreover, the onset of kink instability is found to coincide in time with the impulsive enhancement of flare emission underneath the hot channel, suggesting that ideal kink instability likely also plays an important role in triggering fast flare reconnection besides initiating the impulsive acceleration of the hot channel and distorting its morphology. We conclude that the hot channel is most likely the MFR system and the prominence only corresponds to the cool materials that are collected in the bottom of the helical field lines of the MFR against gravity.

  10. Turbulence in ferrofluids in channel flow with steady and oscillating magnetic fields.

    PubMed

    Schumacher, Kristopher R; Riley, James J; Finlayson, Bruce A

    2011-01-01

    The turbulent flow of a ferrofluid in channel flow is studied using direct numerical simulation. The method of analysis is an extension of that used for Newtonian fluids, with additional features necessary to model the ferrofluid. The analysis is applied to low Reynolds number turbulence in the range of existing experimental data in a capillary. For steady and oscillating magnetic fields, comparisons are made between a Newtonian fluid and a ferrofluid by comparing the pressure drop, turbulent Reynolds number, turbulent kinetic energy (k), Reynolds stress, velocity, and spin profiles. The results are also compared with predictions of a k-ɛ model to show the accuracy of that model when applied to ferrofluids, where ɛ is the rate of viscous dissipation of turbulent kinetic energy.

  11. Calvarial diploic venous channels: an anatomic study using high-resolution magnetic resonance imaging.

    PubMed

    Tsutsumi, Satoshi; Nakamura, Masanobu; Tabuchi, Takashi; Yasumoto, Yukimasa; Ito, Masanori

    2013-12-01

    The calvarial diploic venous channels (CDVCs) are well-known intraosseous structures, but their distribution and anatomofunctional implications are not fully understood. To investigate the architecture of CDVCs using high-resolution magnetic resonance (MR) imaging. This prospective study enrolled 43 male and 37 female outpatients who underwent a 3.0-T MR imaging equipped by a 32-channel head coil. T1-weighted imaging covering the whole cranial vault was performed after gadolinium injection. In addition, one-piece orbitozygomatic craniotomy was performed in three cadaveric heads to observe the interruption of the CDVCs. The CDVCs showed irregular contours and peculiar branching patterns with four common major pathways: the pteriofrontparietal (PFP), frontoorbital (FO), occipitoparietal (OP), and occipitocervical (OC) routes. The proximal PFP coursed as a single trunk and divided into several branches at the level of the frontal eminence. The orbital part of the FO continued to the subcutaneous vein via the supraorbital rim. The PFP and the pterional part of the FO fused proximally with the sphenoparietal sinus and descended as the middle meningeal vein. The OP coursed in the superoinferior direction and connected the junction part of the transverse-sigmoid sinus to the parietal superior sagittal sinus. The OC occurred as a single trunk in the median occipital bone, drained extracranially, and joined the suboccipital venous channels. The CDVCs seem to be a relatively consistent network functioning not only as conduits connecting the intracranial dural sinuses but also as pathways to the extracranial venous systems. High-resolution MR imaging is useful for investigating the CDVCs.

  12. Witnessing a Large-scale Slipping Magnetic Reconnection along a Dimming Channel during a Solar Flare

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Liu, Rui; Cheung, Mark C. M.; Lee, Jeongwoo; Xu, Yan; Liu, Chang; Zhu, Chunming; Wang, Haimin

    2017-06-01

    We report the intriguing large-scale dynamic phenomena associated with the M6.5 flare (SOL2015-06-22T18:23) in NOAA active region 12371, observed by RHESSI, Fermi, and the Atmospheric Image Assembly (AIA) and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO). The most interesting feature of this event is a third ribbon (R3) arising in the decay phase, propagating along a dimming channel (seen in EUV passbands) toward a neighboring sunspot. The propagation of R3 occurs in the presence of hard X-ray footpoint emission and is broadly visible at temperatures from 0.6 MK to over 10 MK through the differential emission measure analysis. The coronal loops then undergo an apparent slipping motion following the same path of R3, after a ∼80 minute delay. To understand the underlying physics, we investigate the magnetic configuration and the thermal structure of the flaring region. Our results are in favor of a slipping-type reconnection followed by the thermodynamic evolution of coronal loops. In comparison with those previously reported slipping reconnection events, this one proceeds across a particularly long distance (∼60 Mm) over a long period of time (∼50 minutes) and shows two clearly distinguished phases: the propagation of the footpoint brightening driven by nonthermal particle injection and the apparent slippage of loops governed by plasma heating and subsequent cooling.

  13. Witnessing a Large-scale Slipping Magnetic Reconnection along a Dimming Channel during a Solar Flare

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Liu, Rui; Cheung, Mark; Lee, Jeongwoo; Xu, Yan; Liu, Chang; Zhu, Chunming; Wang, Haimin

    2017-08-01

    We report the intriguing large-scale dynamic phenomena associated with the M6.5 flare~(SOL2015-06-22T18:23) in NOAA active region 12371, observed by RHESSI, Fermi, and the Atmospheric Image Assembly (AIA) and Magnetic Imager (HMI) on the Solar Dynamic Observatory (SDO). The most interesting feature of this event is a third ribbon (R3) arising in the decay phase, propagating along a dimming channel (seen in EUV passbands) towards a neighboring sunspot. The propagation of R3 occurs in the presence of hard X-ray footpoint emission, and is broadly visible at temperatures from 0.6 MK to over 10 MK through the Differential Emission Measure (DEM) analysis. The coronal loops then undergo an apparent slipping motion following the same path of R3, after a ~80 min delay. To understand the underlying physics, we investigate the magnetic configuration and the thermal structure of the flaring region. Our results are in favor of a slipping-type reconnection followed by the thermodynamic evolution of coronal loops. In comparison with those previously reported slipping reconnection events, this one proceeds across a particularly long distance (~60 Mm) over a long period of time ~50 min), and shows two clearly distinguished phases: the propagation of the footpoint brightening driven by nonthermal particle injection and the apparent slippage of loops governed by plasma heating and subsequent cooling.

  14. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  15. Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel.

    PubMed

    Islam, Afroja T; Siddique, Ariful H; Ramulu, T S; Reddy, Venu; Eu, Young-Jae; Cho, Seung Hyun; Kim, CheolGi

    2012-12-01

    In this work, we demonstrated the alignment of polystyrene latex microspheres (diameter of 1 ~45 μm), bio-functionalized superparamagnetic beads (diameter 2.8 μm), and live cells (average diameter 1 ~2 μm) using an ultrasonic standing wave (USW) in a PDMS microfluidic channel (330 μm width) attached on a Si substrate for bio-medical applications. To generate a standing wave inside the channel, ultrasound of 2.25 MHz resonance frequency (for the channel width) was applied by two ultrasound transducers installed at both sides of the channel which caused the radiation force to concentrate the micro-particles at the single pressure nodal plane of USW. By increasing the frequency to the next resonance condition of the channel, the particles were concentrated in dual nodal planes. Migration time of the micro-particles towards the single nodal plane was recorded as 108 s, 17 s, and 115 s for polystyrene particles of 2 μm diameter, bio-functionalized magnetic beads, and live cells, respectively. These successful alignments of the bio-functionalized magnetic beads along the desired part of the channel can enhance the performance of a sensor which is applicable for the bio-hybrid system and the alignment of live cells without any damage can be used for sample pre-treatment for the application of lab-on-a-chip type bioassays.

  16. Repetitive transcranial magnetic stimulation regulates L-type Ca(2+) channel activity inhibited by early sevoflurane exposure.

    PubMed

    Liu, Yang; Yang, Huiyun; Tang, Xiaohong; Bai, Wenwen; Wang, Guolin; Tian, Xin

    2016-09-01

    Sevoflurane might be harmful to the developing brain. Therefore, it is essential to reverse sevoflurane-induced brain injury. This study aimed to determine whether low-frequency repetitive transcranial magnetic stimulation (rTMS) can regulate L-type Ca(2+) channel activity, which is inhibited by early sevoflurane exposure. Rats were randomly divided into three groups: control, sevoflurane, and rTMS groups. A Whole-cell patch clamp technique was applied to record L-type Ca(2+) channel currents. The I-V curve, steady-state activation and inactivation curves were studied in rats of each group at different ages (1 week, 2 weeks, 3 weeks, 4 weeks and 5 weeks old). In the control group, L-type Ca(2+) channel current density significantly increased from week 2 to week 3. Compared with the control group, L-type Ca(2+) channel currents of rats in the sevoflurane group were significantly inhibited from week 1 to week 3. Activation curves of L-type Ca(2+) channel shifted significantly towards depolarization at week 1 and week 2. Moreover, steady-state inactivation curves shifted towards hyperpolarization from week 1 to week 3. Compared with the sevoflurane group, rTMS significantly increased L-type Ca(2+) channel currents at week 2 and week 3. Activation curves of L-type Ca(2+) channel significantly shifted towards hyperpolarization at week 2. Meanwhile, steady-state inactivation curves significantly shifted towards depolarization at week 2. The period between week 2 and week 3 is critical for the development of L-type Ca(2+) channels. Early sevoflurane exposure inhibits L-type Ca(2+) channel activity and rTMS can regulate L-type Ca(2+) channel activity inhibited by sevoflurane. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghasemian, M.; Najafian Ashrafi, Z.; Goharkhah, M.; Ashjaee, M.

    2015-05-01

    Laminar forced convection heat transfer of water based Fe3O4 ferrofluid in a mini channel in the presence of constant and alternating magnetic fields is studied numerically. The hot ferrofluid flows into the 20 mm (l)×2 mm (h) mini channel with isothermal top and bottom cold surfaces and is subjected to a transverse non-uniform magnetic field produced by current carrying wires. Two-phase mixture model is implemented and the governing equations are solved using the finite volume approach. Primarily, the effects of the constant magnetic field location and intensity on the convective heat transfer are investigated. Simulation results show that the heat transfer is enhanced due to the disruption of the thermal boundary layer. However, this effect is more pronounced when the magnetic field source is placed in the fully developed region. In the next section, an alternating magnetic field with frequencies ranging from 0 to 10 Hz is imposed to the ferrofluid at different Reynolds numbers of Re=10, 25 and 50. A 16.48% heat transfer enhancement is obtained with a constant magnetic field at Re=25 and magnetic field intensity, Mn=1.07×108. This value is increased up to 27.72% by applying an alternating magnetic field with the same intensity at f=4 Hz. Results also indicate that the heat transfer enhancement due to the magnetic field is more significant at lower Reynolds numbers. The optimum frequency for heat transfer enhancement has been obtained for all the cases which shows that it has an increasing trend with the Reynolds number.

  18. Line-driven winds revisited in the context of Be stars: Ω-slow solutions with high k values

    SciTech Connect

    Silaj, J.; Jones, C. E.; Curé, M.

    2014-11-01

    The standard, or fast, solutions of m-CAK line-driven wind theory cannot account for slowly outflowing disks like the ones that surround Be stars. It has been previously shown that there exists another family of solutions—the Ω-slow solutions—that is characterized by much slower terminal velocities and higher mass-loss rates. We have solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for this latter solution, starting from standard values of the line force parameters (α, k, and δ), and then systematically varying the values of α and k. Terminal velocities and mass-loss rates that are in good agreement with those found in Be stars are obtained from the solutions with lower α and higher k values. Furthermore, the equatorial densities of such solutions are comparable to those that are typically assumed in ad hoc models. For very high values of k, we find that the wind solutions exhibit a new kind of behavior.

  19. Line-Driven Winds Revisited in the Context of Be Stars: Ω-slow Solutions with High k Values

    NASA Astrophysics Data System (ADS)

    Silaj, J.; Curé, M.; Jones, C. E.

    2014-11-01

    The standard, or fast, solutions of m-CAK line-driven wind theory cannot account for slowly outflowing disks like the ones that surround Be stars. It has been previously shown that there exists another family of solutions—the Ω-slow solutions—that is characterized by much slower terminal velocities and higher mass-loss rates. We have solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for this latter solution, starting from standard values of the line force parameters (α, k, and δ), and then systematically varying the values of α and k. Terminal velocities and mass-loss rates that are in good agreement with those found in Be stars are obtained from the solutions with lower α and higher k values. Furthermore, the equatorial densities of such solutions are comparable to those that are typically assumed in ad hoc models. For very high values of k, we find that the wind solutions exhibit a new kind of behavior.

  20. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    PubMed Central

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  1. Detection of alpha-fetoprotein in magnetic immunoassay of thin channels using biofunctional nanoparticles

    NASA Astrophysics Data System (ADS)

    Tsai, H. Y.; Gao, B. Z.; Yang, S. F.; Li, C. S.; Fuh, C. Bor

    2014-01-01

    This paper presents the use of fluorescent biofunctional nanoparticles (10-30 nm) to detect alpha-fetoprotein (AFP) in a thin-channel magnetic immunoassay. We used an AFP model biomarker and s-shaped deposition zones to test the proposed detection method. The results show that the detection using fluorescent biofunctional nanoparticle has a higher throughput than that of functional microparticle used in previous experiments on affinity reactions. The proposed method takes about 3 min (versus 150 min of previous method) to detect 100 samples. The proposed method is useful for screening biomarkers in clinical applications, and can reduce the run time for sandwich immunoassays to less than 20 min. The detection limits (0.06 pg/ml) and linear ranges (0.068 pg/ml-0.68 ng/ml) of AFP using fluorescent biofunctional nanoparticles are the same as those of using functional microparticles within experimental errors. This detection limit is substantially lower and the linear range is considerably wider than those of enzyme-linked immunosorbent assay (ELISA) and other methods in sandwich immunoassay methods. The differences between this method and an ELISA in AFP measurements of serum samples were less than 12 %. The proposed method provides simple, fast, and sensitive detection with a high throughput for biomarkers.

  2. A multi-channel magnetic induction tomography measurement system for human brain model imaging.

    PubMed

    Xu, Zheng; Luo, Haijun; He, Wei; He, Chuanhong; Song, Xiaodong; Zahng, Zhanglong

    2009-06-01

    This paper proposes a multi-channel magnetic induction tomography measurement system for biological conductivity imaging in a human brain model. A hemispherical glass bowl filled with a salt solution is used as the human brain model; meanwhile, agar blocks of different conductivity are placed in the solution to simulate the intracerebral hemorrhage. The excitation and detection coils are fixed co-axially, and the axial gradiometer is used as the detection coil in order to cancel the primary field. On the outer surface of the glass bowl, 15 sensor units are arrayed in two circles as measurement parts, and a single sensor unit for cancelling the phase drift is placed beside the glass bowl. The phase sensitivity of our system is 0.204 degrees /S m(-1) with the excitation frequency of 120 kHz and the phase noise is in the range of -0.03 degrees to +0.05 degrees . Only the coaxial detection coil is available for each excitation coil; therefore, 15 phase data are collected in each measurement turn. Finally, the two-dimensional images of conductivity distribution are obtained using an interpolation algorithm. The frequency-varying experiment indicates that the imaging quality becomes better as the excitation frequency is increased.

  3. Signal acquisition module design for multi-channel surface magnetic resonance sounding system

    NASA Astrophysics Data System (ADS)

    Lin, Tingting; Chen, Wuqiang; Du, Wenyuan; Zhao, Jing

    2015-11-01

    To obtain a precise 2D/3D image of fissure or karst water, multi-channel magnetic resonance sounding (MRS) systems using edge-to-edge or overlapping receiving coils are needed. Thus, acquiring a nano-volt signal for a small amount of the aquifer and suppressing the mutual coupling between adjacent coils are two important issues for the design of the signal acquisition module in the system. In the present study, we propose to use a passive low pass filter, consisted of a resistance (R) and capacitance (C), to inhibit the mutual coupling effects of the coils. Four low-noise operational amplifiers LT1028, OPA124, AD745, and OP27 were compared with respect to achieving the lowest system noise. As a result, 3 pieces of LT1028 were chosen and connected in parallel to serve as preamplifier, with a sensitivity of 1.4 nV/√Hz at 2 kHz. Experimental results are presented for 2D MRS groundwater investigations conducted in the suburb of Changchun, China. The inversion result is consistent with the result of drilling log, suggesting that the signal acquisition module is well developed.

  4. Measuring of high current channel parameters in high pressure gas by combined using of magnetic probe and high speed streak photography

    NASA Astrophysics Data System (ADS)

    Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Leont'ev, V. V.; Pozubenkov, A. A.; Kurakina, N. K.

    2016-11-01

    Experimental results for discharge in hydrogen with current amplitude up to 1 MA, current rise rate of ∼ 1010 A/s, and at initial pressure up to 30 MPa are presented. A series of channel contractions was observed at a current rise stage. Estimation of plasma channel parameters was made for equilibrium state at the channel diameter oscillations. The speed of the discharge channel contraction was determined by the specially developed magnetic- probe technique. Comparison of these magnetic probe measurements with high-speed optical photostreaks was carried out.

  5. Power Supply and Quench Protection for the MICE ChannelMagnets

    SciTech Connect

    Green, Michael A.; Witte, Holger

    2005-09-07

    This report discusses the power supply and quench protection system selected for the MICE superconducting coupling and focusing magnets. First, the MICE focusing and coupling magnet parameters are presented. Second, the report describes passive quench protection systems for these focusing and coupling magnets. Thermal quench-back from the magnet mandrel, which is a key to the MICE magnet quench protection system, is also discussed. A system of diodes and resistors is used to control the voltage to ground as the magnet quenches. Third, the report presents the magnet power supply parameters for MICE magnets.

  6. Persistent current and low-field magnetic susceptibility in one channel mesoscopic loops and Möbius strips

    NASA Astrophysics Data System (ADS)

    Maiti, Santanu K.

    2006-06-01

    I study persistent current and low-field magnetic susceptibility of one-dimensional normal metal mesoscopic rings and Möbius strips threaded by slowly varying magnetic flux phi. In strictly one-channel perfect rings, current shows saw-tooth-like variation with phi for the cases where the rings contain odd and even number of electrons Ne respectively. But in disordered rings, current shows a continuous variation with phi. In these systems current has only phi0 flux-quantum periodicity. Now in Möbius strips, the motion of the electrons in the transverse direction has an important factor on persistent current and also on low-field magnetic response. If the electrons are unable to hop in the transverse direction then an electron encircles the system twice before returning to its initial position and current obtains phi0/2 flux-quantum periodicity unlike phi0 flux-quantum periodicity in strictly one-channel rings or multi-channel cylinders. The sign of the low-field currents in one-channel mesoscopic rings can be predicted exactly, even in the presence of impurity in these systems. For perfect rings current has only diamagnetic behaviour in the limit of zero field irrespective of the total number of electrons Ne. On the other hand, in dirty rings, current shows paramagnetic and diamagnetic signs respectively for the rings with even and odd Ne. In Möbius strips for zero hopping strength of the electrons in the transverse direction we get exactly the same behaviour as in strictly one-channel rings, but for nonzero transverse hopping strength the sign of the low-field currents cannot be predicted since it strongly depends on Ne and the specific realization of disorder configuration of the systems.

  7. Design and Application of Combined 8-Channel Transmit and 10-Channel Receive Arrays and Radiofrequency Shimming for 7-T Shoulder Magnetic Resonance Imaging

    PubMed Central

    Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.

    2014-01-01

    Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112

  8. Design and application of combined 8-channel transmit and 10-channel receive arrays and radiofrequency shimming for 7-T shoulder magnetic resonance imaging.

    PubMed

    Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K; Wiggins, Graham C

    2014-01-01

    The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B₁⁺ efficiency and uniformity for turbo spin echo shoulder imaging. B₁⁺ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim.

  9. Performance characteristics according to the channel length and magnetic fields of cylindrical Hall thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Jongsub; Seo, Mihui; Seon, Jongho; June Lee, Hae; Choe, Wonho

    2011-09-01

    Performance characteristics of low power cylindrical Hall thrusters are investigated in terms of the length of the discharge channel. Thrust, efficiency, discharge current, and propellant utilization are evaluated for different channel lengths of 19, 22, and 25 mm. It is found that the propellant utilization and ion energy distribution function are strongly associated with the channel length. Increase of thrust and efficiency are also found with increasing channel lengths. These characteristics of the thruster are interpreted with possible generation of multi-charged ions due to increased residing time within the extended space inside the channel.

  10. Line-driven ablation of circumstellar discs - I. Optically thin decretion discs of classical Oe/Be stars.

    PubMed

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J O

    2016-05-21

    discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars.

  11. Line-driven ablation of circumstellar discs – I. Optically thin decretion discs of classical Oe/Be stars

    PubMed Central

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J. O.

    2016-01-01

    discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars. PMID:27346978

  12. Superficial magnetic imaging by an xy-scanner of three magnetoresistive channels.

    PubMed

    Cano, M E; Pacheco, A H; Cordova, T; Mazon, E E; Barrera, A

    2012-03-01

    A scanning system developed for planar magnetic surfaces composed of a moving line of three magnetoresistive ultrasensitive transducers, complemented by a signal conditioning circuit is presented. After the calibration of the sensors, it was used to determine magnetized surface images with different shapes to evaluate the sensitivity of the device, and the images are represented in gray levels on a scale from 0 to 255 intensities, to get a visual representation of the magnetic field strength. The device is shown to be sensitive enough to detect gradients homogeneities and discontinuities in the magnetic field maps and images of magnetic susceptibility.

  13. AC Losses in the MICE Channel Magnets -- Is This a Curse or aBlessing?

    SciTech Connect

    Green, M.A.; Wu, H.; Wang, L.; Kai, L.L.; Jia, L.X.; Yang, S.Q.

    2008-01-31

    This report discusses the AC losses in the MICE channelmagnets during magnet charging and discharging. This report talks aboutthe three types of AC losses in the MICE magnets; the hysteretic AC lossin the superconductor, the coupling AC loss in the superconductor and theeddy current AC loss in the magnet mandrel and support structure. AClosses increase the heat load at 4 K. The added heat load increases thetemperature of the second stage of the cooler. In addition, AC losscontributes to the temperature rise between the second stage cold headand the high field point of the magnet, which is usually close to themagnet hot spot. These are the curses of AC loss in the MICE magnet thatcan limit the rate at which the magnet can be charge or discharged. Ifone is willing to allow some of the helium that is around the magnet toboil away during a magnet charge or discharge, AC losses can become ablessing. The boil off helium from the AC losses can be used to cool theupper end of the HTS leads and the surrounding shield. The AC losses arepresented for all three types of MICE magnets. The AC loss temperaturedrops within the coupling magnet are presented as an example of how boththe curse and blessing of the AC losses can be combined.

  14. Mixed convective thermally radiative micro nanofluid flow in a stretchable channel with porous medium and magnetic field

    SciTech Connect

    Rauf, A. Shahzad, S. A.; Meraj, M. A.; Siddiq, M. K.; Raza, J.

    2016-03-15

    A numerical study is carried out for two dimensional steady incompressible mixed convective flow of electrically conductive micro nanofluid in a stretchable channel. The flow is generated due to the stretching walls of the channel immersed in a porous medium. The magnetic field is applied perpendicular to the walls. The impact of radiation, viscous dissipation, thermophoretic and Brownian motion of nanoparticles appear in the energy equation. A numerical technique based on Runge-Kutta-Fehlberg fourth-fifth order (RFK45) method is used to express the solutions of velocity, microrotation, temperature and concentration fields. The dimensionless physical parameters are discussed both in tabular and graphical forms. The results are also found in a good agreement with previously published literature work.

  15. Radial magnetic field and convective condition aspects for the peristalsis in a curved channel with compliant properties

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Zahir, Hina; Tanveer, Anum; Alsaedi, A.

    2017-01-01

    Here the peristaltic activity is observed for the transport of a Prandtl fluid in a curved flow configuration with wall properties. A radially applied magnetic field is utilized for the magnetohydrodynamic (MHD) aspect. The heat transfer subject to convective constraints at the channel walls is analyzed. Influences of thermal radiation and Joule heating are retained. The problems corresponding to large wavelength and small Reynolds number are numerically solved. Results for velocity, temperature and heat transfer coefficient are particularly emphasized. Main findings are concluded. A comparison of the present results with those already available in the limiting sense is shown and discussed.

  16. Study of self-generated magnetic fields in laser produced plasmas using a three-channel polaro-interferometer

    SciTech Connect

    Prasad, Y. B. S. R.; Barnwal, S.; Naik, P. A.; Kamath, M. P.; Joshi, A. S.; Kumbhare, S. R.; Gupta, P. D.; Bolkhovitinov, E. A.; Rupasov, A. A.

    2011-12-15

    Self-generated magnetic fields produced in laser plasmas at moderate laser intensities have been measured using a three-channel polaro-interferometer. The main elements of this device are two birefringent calcite wedges placed between two crossed polarizers. Using this device, the spatial profiles of (a) the rotation angle (polarometry), (b) the electron density (interferometry), and (c) the transmitted probe beam intensity (shadowgraphy) are recorded simultaneously using a digital camera with a large format CCD in a single laser shot. Magnetic fields of 2-4 MG had been estimated in aluminum plasma at laser intensities {approx}10{sup 13} W/cm{sup 2}. It is also possible to use this device in other configurations to get time resolved information.

  17. Study of self-generated magnetic fields in laser produced plasmas using a three-channel polaro-interferometer.

    PubMed

    Prasad, Y B S R; Barnwal, S; Bolkhovitinov, E A; Naik, P A; Kamath, M P; Joshi, A S; Kumbhare, S R; Rupasov, A A; Gupta, P D

    2011-12-01

    Self-generated magnetic fields produced in laser plasmas at moderate laser intensities have been measured using a three-channel polaro-interferometer. The main elements of this device are two birefringent calcite wedges placed between two crossed polarizers. Using this device, the spatial profiles of (a) the rotation angle (polarometry), (b) the electron density (interferometry), and (c) the transmitted probe beam intensity (shadowgraphy) are recorded simultaneously using a digital camera with a large format CCD in a single laser shot. Magnetic fields of 2-4 MG had been estimated in aluminum plasma at laser intensities ~10(13) W/cm(2). It is also possible to use this device in other configurations to get time resolved information.

  18. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA.

    PubMed

    Herrmann, M; Veres, T; Tabrizian, M

    2006-04-01

    The Enzyme-Linked Immuno-Sorbent Assay, or ELISA, is commonly utilized to quantify small concentrations of specific proteins for a large variety of purposes, ranging from medical diagnosis to environmental analysis and food safety. However, this technique requires large volumes of costly reagents and long incubation periods. The use of microfluidics permits one to specifically address these drawbacks by decreasing both the volume and the distance of diffusion inside the micro-channels. Existing microfluidic systems are limited by the necessary control of extremely low flow rates to provide sufficient time for the molecules to interact with each other by diffusion only. In this paper, we describe a new microfluidic design for the realization of parallel ELISA in stop-flow conditions. Magnetic beads were used both as a solid phase to support the formation of the reactive immune complex and to achieve a magnetic mixing inside the channels. In order to test the detection procedure, the formation of the immune complex was performed off-chip before the reactive beads were injected into the reaction chamber. Anti-streptavidin antibodies were quantified with low picomolar sensitivity (0.1-6.7 pM), a linear range of 2 orders of magnitude and good reproducibility. This work represents the first step toward a new platform for simple, highly effective and parallel microfluidic ELISA.

  19. GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Rath, Nikolaus

    Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control

  20. An 11-channel radio frequency phased array coil for magnetic resonance guided high-intensity focused ultrasound of the breast.

    PubMed

    Minalga, E; Payne, A; Merrill, R; Todd, N; Vijayakumar, S; Kholmovski, E; Parker, D L; Hadley, J R

    2013-01-01

    In this study, a radio frequency phased array coil was built to image the breast in conjunction with a magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11 channels. The radio frequency coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise ratio profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in signal-to-noise, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU.

  1. Magnetic topology and current channels in plasmas with toroidal current density inversions

    SciTech Connect

    Ciro, D.; Caldas, I. L.

    2013-10-15

    The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current density is considered. Previous works have shown that internal regions with negative current density lead to non-nested magnetic surfaces inside the plasma. Following these results, we derive a general expression relating the positive and negative currents inside the non-nested surfaces. This is done in terms of an anisotropy parameter that is model-independent and is based in very general properties of the magnetic field. We demonstrate that the positive currents in axisymmetric islands screen the negative one in the plasma center by reaching about twice its magnitude. Further, we illustrate these results by developing a family of analytical local solutions for the poloidal magnetic field in a region of interest that contains the inverted current. These local solutions exhibit non-nested magnetic surfaces with a combined current of at least twice the magnitude of the negative one, as prescribed from the topological arguments, and allow to study topological transitions driven by geometrical changes in the current profile. To conclude, we discuss the signatures of internal current density inversions in a confinement device and show that magnetic pitch measurements may be inappropriate to differentiate current reversals and small current holes in plasmas.

  2. Evidence of the Solar EUV Hot Channel as a Magnetic Flux Rope from Remote-sensing and In Situ Observations

    NASA Astrophysics Data System (ADS)

    SONG, H. Q.; CHEN, Y.; ZHANG, J.; CHENG, X.; Wang, B.; HU, Q.; LI, G.; WANG, Y. M.

    2015-07-01

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  3. Evidence of the Solar EUV Hot Channel as a Magnetic Flux Rope from Remote-sensing and in situ Observations

    NASA Astrophysics Data System (ADS)

    Song, H.

    2015-12-01

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  4. EVIDENCE OF THE SOLAR EUV HOT CHANNEL AS A MAGNETIC FLUX ROPE FROM REMOTE-SENSING AND IN SITU OBSERVATIONS

    SciTech Connect

    SONG, H. Q.; CHEN, Y.; Wang, B.; ZHANG, J.; CHENG, X.; HU, Q.; LI, G.; WANG, Y. M.

    2015-07-20

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  5. Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels

    ERIC Educational Resources Information Center

    Wang, Han

    2010-01-01

    Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…

  6. Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels

    ERIC Educational Resources Information Center

    Wang, Han

    2010-01-01

    Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…

  7. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said

    2017-01-01

    Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  8. Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate

    PubMed Central

    Candini, A.; Klar, D.; Marocchi, S.; Corradini, V.; Biagi, R.; De Renzi, V.; del Pennino, U.; Troiani, F.; Bellini, V.; Klyatskaya, S.; Ruben, M.; Kummer, K.; Brookes, N. B.; Huang, H.; Soncini, A.; Wende, H.; Affronte, M.

    2016-01-01

    Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc2) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world. PMID:26907811

  9. Linear stability of buoyant convective flow in a vertical channel with internal heat sources and a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Hudoba, A.; Molokov, S.

    2016-11-01

    Linear stability of buoyant convective flow of an electrically conducting fluid in a vertical channel owing to internal heat sources has been studied. The flow takes place in a transverse, horizontal magnetic field. The results show that up to four different local minima may be present in the neural stability curve. Up to two of these modes may be the most unstable depending, critically, on the value of the Hartmann number. Over a wide range of moderate to high Hartmann numbers, thermal waves dominate the instability. As the Hartmann number increases, however, this mode is strongly damped. Then the so-called Hartmann mode takes over, which involves the characteristic Hartmann layers at the walls appearing due to modification of the basic velocity profile by the magnetic field. Overall, for liquid metals at high magnetic fields, the basic flow is very stable. Variation of the Prandtl number in a wide range has also been performed as, depending on the type of an electrically conducting fluid (liquid metal or various kinds of electrolytes), the Prandtl number varies over several orders of magnitude. As may be expected, the increase of the Prandtl number lowers the instability threshold for the thermal waves.

  10. Magnetic domain walls as reconfigurable spin-wave nano-channels (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schultheiss, Helmut

    2016-10-01

    In the research field of magnonics, it is envisaged that spin waves will be used as information carriers, promoting operation based on their wave properties. However, the field still faces major challenges. To become fully competitive, novel schemes for energy-efficient control of spin-wave propagation in two dimensions have to be realized on much smaller length scales than used before. In this presentation, these challenges are addressed with the experimental realization of a novel approach to guide spin waves in reconfigurable, nano-sized magnonic waveguides. For this purpose, two inherent characteristics of magnetism are used: the non-volatility of magnetic remanence states and the nanometre dimensions of domain walls formed within these magnetic configurations. The experimental observation and micromagnetic simulations of spin-wave propagation inside nano-sized domain walls and a first step towards a reconfigurable domain-wall-based magnonic nanocircuitry will be presented.

  11. Electric field induced spin and valley polarization within a magnetically confined silicene channel

    NASA Astrophysics Data System (ADS)

    Liu, Yiman; Zhou, Xiaoying; Zhou, Ma; Long, Meng-Qiu; Zhou, Guanghui

    2014-12-01

    We study the electronic structure and transport properties of Dirac electrons along a channel created by an exchange field through the proximity of ferromagnets on a silicene sheet. The multiple total internal reflection induces localized states in the channel, which behaves like an electron waveguide. An effect of spin- and valley-filtering originating from the coupling between valley and spin degrees is predicted for such a structure. Interestingly, this feature can be tuned significantly by locally applying electric and exchange fields simultaneously. The parameter condition for observing fully spin- and valley-polarized current is obtained. These findings may be observable in todays' experimental technique and useful for spintronic and valleytronic applications based on silicene.

  12. Effects of Magnetic Field on the Turbulent Wake of a Cylinder in MHD Channel Flow

    SciTech Connect

    John Rhoads; Edlundd, Eric; Ji, Hantao

    2013-04-01

    Results from a free-surface MHD flow experiment are presented detailing the modi cation of vortices in the wake of a circular cylinder with its axis parallel to the applied magnetic fi eld. Experiments were performed with a Reynolds number near Re ~ 104 as the interaction parameter, N = |j x B| / |ρ (υ • ∇), was increased through unity. By concurrently sampling the downstream fluid velocity at sixteen cross-stream locations in the wake, it was possible to extract an ensemble of azimuthal velocity profi les as a function of radius for vortices shed by the cylinder at varying strengths of magnetic field. Results indicate a signi cant change in vortex radius and rotation as N is increased. The lack of deviations from the vortex velocity pro file at high magnetic fi elds suggests the absence of small-scale turbulent features. By sampling the wake at three locations downstream in subsequent experiments, the decay of the vortices was examined and the effective viscosity was found to decrease as N-049±0.4. This reduction in effective viscosity is due to the modi cation of the small-scale eddies by the magnetic fi eld. The slope of the energy spectrum was observed to change from a k-1.8 power-law at low N to a k-3.5 power-law for N > 1. Together, these results suggest the flow smoothly transitioned to a quasi-two-dimensional state in the range 0 < N < 1.

  13. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase III: Comparison of Theory with Experiment

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2012-01-01

    A proof-of-principle effort to demonstrate a technique by which erosion of the acceleration channel in Hall thrusters of the magnetic-layer type can be eliminated has been completed. The first principles of the technique, now known as "magnetic shielding," were derived based on the findings of numerical simulations in 2-D axisymmetric geometry. The simulations, in turn, guided the modification of an existing 6-kW laboratory Hall thruster. This magnetically shielded (MS) thruster was then built and tested. Because neither theory nor experiment alone can validate fully the first principles of the technique, the objective of the 2-yr effort was twofold: (1) to demonstrate in the laboratory that the erosion rates can be reduced by >order of magnitude, and (2) to demonstrate that the near-wall plasma properties can be altered according to the theoretical predictions. This paper concludes the demonstration of magnetic shielding by reporting on a wide range of comparisons between results from numerical simulations and laboratory diagnostics. Collectively, we find that the comparisons validate the theory. Near the walls of the MS thruster, theory and experiment agree: (1) the plasma potential has been sustained at values near the discharge voltage, and (2) the electron temperature has been lowered by at least 2.5-3 times compared to the unshielded (US) thruster. Also, based on carbon deposition measurements, the erosion rates at the inner and outer walls of the MS thruster are found to be lower by at least 2300 and 1875 times, respectively. Erosion was so low along these walls that the rates were below the resolution of the profilometer. Using a sputtering yield model with an energy threshold of 25 V, the simulations predict a reduction of 600 at the MS inner wall. At the outer wall ion energies are computed to be below 25 V, for which case we set the erosion to zero in the simulations. When a 50-V threshold is used the computed ion energies are below the threshold at both

  14. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase III: Comparison of Theory with Experiment

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2012-01-01

    A proof-of-principle effort to demonstrate a technique by which erosion of the acceleration channel in Hall thrusters of the magnetic-layer type can be eliminated has been completed. The first principles of the technique, now known as "magnetic shielding," were derived based on the findings of numerical simulations in 2-D axisymmetric geometry. The simulations, in turn, guided the modification of an existing 6-kW laboratory Hall thruster. This magnetically shielded (MS) thruster was then built and tested. Because neither theory nor experiment alone can validate fully the first principles of the technique, the objective of the 2-yr effort was twofold: (1) to demonstrate in the laboratory that the erosion rates can be reduced by >order of magnitude, and (2) to demonstrate that the near-wall plasma properties can be altered according to the theoretical predictions. This paper concludes the demonstration of magnetic shielding by reporting on a wide range of comparisons between results from numerical simulations and laboratory diagnostics. Collectively, we find that the comparisons validate the theory. Near the walls of the MS thruster, theory and experiment agree: (1) the plasma potential has been sustained at values near the discharge voltage, and (2) the electron temperature has been lowered by at least 2.5-3 times compared to the unshielded (US) thruster. Also, based on carbon deposition measurements, the erosion rates at the inner and outer walls of the MS thruster are found to be lower by at least 2300 and 1875 times, respectively. Erosion was so low along these walls that the rates were below the resolution of the profilometer. Using a sputtering yield model with an energy threshold of 25 V, the simulations predict a reduction of 600 at the MS inner wall. At the outer wall ion energies are computed to be below 25 V, for which case we set the erosion to zero in the simulations. When a 50-V threshold is used the computed ion energies are below the threshold at both

  15. Novel Therapeutic Strategies for Alcohol and Drug Addiction: Focus on GABA, Ion Channels and Transcranial Magnetic Stimulation

    PubMed Central

    Addolorato, Giovanni; Leggio, Lorenzo; Hopf, F Woodward; Diana, Marco; Bonci, Antonello

    2012-01-01

    Drug addiction represents a major social problem where addicts and alcoholics continue to seek and take drugs despite adverse social, personal, emotional, and legal consequences. A number of pharmacological compounds have been tested in human addicts with the goal of reducing the level or frequency of intake, but these pharmacotherapies have often been of only moderate efficacy or act in a sub-population of humans. Thus, there is a tremendous need for new therapeutic interventions to treat addiction. Here, we review recent interesting studies focusing on gamma-aminobutyric acid receptors, voltage-gated ion channels, and transcranial magnetic stimulation. Some of these treatments show considerable promise to reduce addictive behaviors, or the early clinical studies or pre-clinical rationale suggest that a promising avenue could be developed. Thus, it is likely that within a decade or so, we could have important new and effective treatments to achieve the goal of reducing the burden of human addiction and alcoholism. PMID:22030714

  16. Coherent magnetic vortex motion in optically formed channels for easy flow in YBa2Cu3O7- x superconducting thin films

    NASA Astrophysics Data System (ADS)

    Jukna, A.; Steponavičienė, L.; Plaušinaitienė, V.; Abrutis, A.; Maneikis, A.; Šliužienė, K.; Lisauskas, V.; Sobolewski, Roman

    2013-12-01

    We report our results of investigation of electric and magnetic properties of partially oxygen-depleted channels for easy vortex motion in YBa2Cu3O7- x (YBCO) superconducting, 50-μm-wide, and 100-μm-long microbridges at temperatures below the onset of the superconducting state critical temperature T {c/on}. The channels were produced by means of a laser-writing technique. The writing was performed using a 0.1-0.3 W power, continuous-wave laser radiation focused down to a ~ 5 μm spot on the surface of a superconducting film in a nitrogen gas atmosphere, and resulted in perpendicular stripes (channels) with partial ( x ~ 0.2) reduction of the oxygen content in the YBCO stripe. The oxygen-depleted channels exhibit a depressed T c and lower both the critical current density and the first critical magnetic field, as compared with the laser-untreated areas. The bias current applied to the bridge self-produced a magnetic flux that penetrated the channels in a form of Abrikosov magnetic vortices that, subsequently, moved coherently (a quasi-Josephson effect) along the channels in the narrow temperature range of 0.943 T {c/on}-0.98 T {c/on} and manifested themselves as steps on the current-voltage characteristics of our microbridges. Our results demonstrate that laser-induced formation of artificial channels of the flux flow can be used for a precise control of vortex nucleation and their coherent motion in pre-assigned regions of thin-film YBCO devices.

  17. A comparison of 15 Hz sine on-line and off-line magnetic stimulation affecting the voltage-gated sodium channel currents of prefrontal cortex pyramidal neurons

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Dong, Lei; Gao, Yang; Dou, Jun-Rong; Li, Ze-yan

    2016-10-01

    Combined with the use of patch-clamp techniques, repetitive transcranial magnetic stimulation (rTMS) has proven to be a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons after extensive research. The studies generally focused on the method: the neurons are first stimulated in an external standard magnetic exposure device, and then moved to the patch-clamp to record electrophysiological characteristics (off-line magnetic exposure). Despite its universality, real-time observation of the effects of magnetic stimulation on the neurons is more effective (on-line magnetic stimulation). In this study, we selected a standard exposure device for magnetic fields acting on mouse prefrontal cortex pyramidal neurons, and described a new method that a patch-clamp setup was modified to allow on-line magnetic stimulation. By comparing the off-line exposure and on-line stimulation of the same magnetic field intensity and frequency affecting the voltage-gated sodium channel currents, we succeeded in proving the feasibility of the new on-line stimulation device. We also demonstrated that the sodium channel currents of prefrontal cortex pyramidal neurons increased significantly under the 15 Hz sine 1 mT, and 2 mT off-line magnetic field exposure and under the 1 mT and 2 mT on-line magnetic stimulation, and the rate of acceleration was most significant on 2 mT on-line magnetic stimulation. This study described the development of a new on-line magnetic stimulator and successfully demonstrated its practicability for scientific stimulation of neurons.

  18. The effects of temperature and magnetic flux on electron transport through a four-channel DNA model

    NASA Astrophysics Data System (ADS)

    Lee, Sunhee; Hedin, Eric; Joe, Yong

    2010-03-01

    The temperature dependence of the conductivity of lambda phage DNA has been measured by Tran et al [1] experimentally, where the conductivity displayed strong (weak) temperature dependence above (below) a threshold temperature. In order to understand the temperature effects of electron transport theoretically, we study a two-dimensional and four-channel DNA model using a tight-binding (TB) Hamiltonian. The thermal effects within a TB model are incorporated into the hopping integral and the relative twist angle from its equilibrium value between base-pairs. Since these thermal structural fluctuations localize the electronic wave functions in DNA, we examine a temperature-dependent localization length, a temperature-driven transmission, and current-voltage characteristics in this system. In addition, we incorporate magnetic field effects into the analysis of the transmission through DNA in order to modulate the quantum interference between the electron paths that comprise the 4-channel structure. [1] P. Tran, B. Alavi, and G. Gruner, PRL 85, 1564 (2000).

  19. Research of transportation efficiency of low-energy high- current electron beam in plasma channel in external magnetic field

    NASA Astrophysics Data System (ADS)

    Vagin, E. S.; Grigoriev, V. P.

    2015-11-01

    Effective high current (5-20 kA) and low energy (tens of keV) electrons beam transportation is possible only with almost complete charging neutralization. It is also necessary to use quite high current neutralization for elimination beam self-pinching effect. The research is based on the self-consistent mathematical model that takes into account beam and plasma particles dynamic, current and charge neutralization of electron beam and examines the transportation of electron beam into a chamber with low-pressure plasma in magnetic field. A numerical study was conducted using particle in cell (PIC) method. The study was performed with various system parameters: rise time and magnitude of the beam current, gas pressure and plasma density and geometry of the system. Regularities of local virtual cathode field generated by the beam in the plasma channel, as well as ranges of parameters that let transportation beam with minimal losses, depending on the external magnetic field were determined through a series of numerical studies. In addition, the assessment of the impact of the plasma ion mobility during the transition period and during steady beam was performed.

  20. Comparison of self-fields effects in two-stream electromagnetically pumped FEL with ion-channel guiding and axial magnetic field

    NASA Astrophysics Data System (ADS)

    Saviz, S.; Mehdian, H.; Aghamir, Farzin M.; Ghorannevis, M.; Ashkarran, A. A.

    2011-12-01

    A theory of two-stream free-electron laser in a combined electromagnetic wiggler and an ion-channel guiding is developed. In the analysis, the electron trajectories and the small signal gain are derived by considering the effects of self-fields. Numerical calculations show that there are seven group's trajectories rather than nine groups reported in Mehdian and Saviz (2010 Chin. Phys. B 19(1), 014214). The comparison of the normalized gains and their corresponding normalized frequencies by employing the axial magnetic field and ion-channel guiding, with and without self-fields, in FEL has been studied numerically. The results show that the normalized maximum gain in FEL with axial magnetic is larger than that for using ion-channel guiding except in small region, but the results for their corresponding normalized frequencies are opposite.

  1. Subject-specific optimization of channel currents for multichannel transcranial magnetic stimulation.

    PubMed

    Cline, Christopher C; Johnson, Nessa N; He, Bin

    2015-01-01

    The goal of this work is to develop a focal transcranial magnetic stimulation (TMS) system using a multichannel coil array for high-resolution neuromodulation. We proposed a novel spatially-distributed stimulation strategy to significantly improve the focality of TMS. Computer simulations were conducted to evaluate the proposed approach and test the merits of multichannel TMS. Three different multichannel coil arrays were modeled in addition to a conventional figure-8 coil for comparison. Simulations were performed on finite element head models of six subjects constructed from anatomical MR images via an automated pipeline. Multichannel TMS arrays exhibited significantly more focal induced electric field magnitudes compared to the figure-8 coil. Additionally, electrical steering of stimulation sites without physical movement of the coil array was demonstrated.

  2. Accelerated magnetic resonance imaging using the sparsity of multi-channel coil images.

    PubMed

    Xie, Guoxi; Song, Yibiao; Shi, Caiyun; Feng, Xiang; Zheng, Hairong; Weng, Dehe; Qiu, Bensheng; Liu, Xin

    2014-02-01

    Joint estimation of coil sensitivities and output image (JSENSE) is a promising approach that improves the reconstruction of parallel magnetic resonance imaging (pMRI). However, when acceleration factor increases, the signal to noise ratio (SNR) of JSENSE reconstruction decreases as quickly as that of the conventional pMRI. Although sparse constraints have been used to improve the JSENSE reconstruction in recent years, these constraints only use the sparsity of the output image, which cannot fully exploit the prior information of pMRI. In this paper, we use the sparsity of coil images, instead of the output image, to exploit more prior information for JSENSE. Numerical simulation, phantom and in vivo experiments demonstrate that the proposed method has better performance than the SparseSENSE method and the constrained JSENSE method using the sparsity of the output image only. © 2013 Elsevier Inc. All rights reserved.

  3. Electron acceleration in the inverse free electron laser with a helical wiggler by axial magnetic field and ion-channel guiding

    NASA Astrophysics Data System (ADS)

    Reza, Khazaeinezhad; Mahdi, Esmaeilzadeh

    2012-09-01

    Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article. The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration. In free electron lasers, electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser. The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method. The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.

  4. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil.

    PubMed

    Kim, Kyoung-Nam; Ryu, Yeunchul; Seo, Jeung-Hoon; Kim, Young-Bo

    2016-11-01

    The purpose of this study was to combine a dual-Helmholtz (DH) transmit (Tx)-only coil and 12-channel receive (Rx)-only bended phased array (PA) coil to improve the magnetic flux (|B1 |) sensitivity in the superior-to-inferior (S-I) direction during human brain magnetic resonance imaging (MRI) at 7-T. The proposed coil combination was primarily implemented by electromagnetic (EM) simulation and compared with the 16-leg birdcage coil and 8-channel PA coil, which are generally used for the Tx- and Rx-only modes, respectively. The optimal coil combinations for the proposed structure were determined by |B1 | field calculations using the |BT(+) | and |BR(-) | fields, which are respectively the transmit and receive components of the |B1 | field. The coil performance was then evaluated by a bench test and 7-T MRI experiment. The results of the computational calculations indicated that the |BT(+) | field of the DH coil was distributed similarly to that of the 16-leg birdcage coil despite the fewer conducting legs of the former. However, the 12-channel Rx-only bended PA coil had clearly higher |BR(-) | profiles compared to the 8-channel PA coil. The results of the 7-T in vivo experiment showed that the proposed combination of the DH Tx-only coil and 12-channel Rx-only bended PA coil had better |B1 | field homogeneity in the sagittal slice as well as higher |B1 | field sensitivity during human brain MRI compared to an 8-channel Rx-only PA coil. SCANNING 38:515-524, © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  5. Magic Angle Spinning Nuclear Magnetic Resonance Characterization of Voltage-Dependent Anion Channel Gating in Two-Dimensional Lipid Crystalline Bilayers

    PubMed Central

    2015-01-01

    The N-terminus of the voltage-dependent anion channel (VDAC) has been proposed to contain the mechanistically important gating helices that modulate channel opening and closing. In this study, we utilize magic angle spinning nuclear magnetic resonance (MAS NMR) to determine the location and structure of the N-terminus for functional channels in lipid bilayers by measuring long-range 13C–13C distances between residues in the N-terminus and other domains of VDAC reconstituted into DMPC lipid bilayers. Our structural studies show that the distance between A14 Cβ in the N-terminal helix and S193 Cβ is ∼4–6 Å. Furthermore, VDAC phosphorylation by a mitochondrial kinase at residue S193 has been claimed to delay mitochondrial cell death by causing a conformational change that closes the channel, and a VDAC-Ser193Glu mutant has been reported to show properties very similar to those of phosphorylated VDAC in a cellular context. We expressed VDAC-S193E and reconstituted it into DMPC lipid bilayers. Two-dimensional 13C–13C correlation experiments showed chemical shift perturbations for residues located in the N-terminus, indicating possible structural perturbations to that region. However, electrophysiological data recorded on VDAC-S193E showed that channel characteristics were identical to those of wild type samples, indicating that phosphorylation of S193 does not directly affect channel gating. The combination of NMR and electrophysiological results allows us to discuss the validity of proposed gating models. PMID:25545271

  6. 3D imaging of magnetic particles using the 7-channel magnetoencephalography device without pre-magnetization or displacement of the sample

    NASA Astrophysics Data System (ADS)

    Polikarpov, M. A.; Ustinin, M. N.; Rykunov, S. D.; Yurenya, A. Y.; Naurzakov, S. P.; Grebenkin, A. P.; Panchenko, V. Y.

    2017-04-01

    SQUID-based magnetoencephalography device was used for the measurement of a magnetic noise generated by ferrofluid in the stationary standing vial. It was found that a free surface of the ferrofluid generates spontaneous magnetic field sufficient to detect the presence of nanoparticles in the experimental setup. The spatial distribution of elementary magnetic sources was reconstructed by the frequency-pattern analysis of multichannel time series. The localization of ferrofluids was performed based on the analysis of quasirandom time series in two cases of oscillation source. One of them was infrasound from outer noise, and another one was the human heartbeat. These results are prospective for 3D imaging of magnetic particles without pre-magnetization.

  7. New X-ray observations of IQ Aurigae and α2 Canum Venaticorum. Probing the magnetically channeled wind shock model in A0p stars

    NASA Astrophysics Data System (ADS)

    Robrade, J.; Schmitt, J. H. M. M.

    2011-07-01

    Aims: We re-examine the scenario of X-ray emission from magnetically confined/channeled wind shocks (MCWS) for Ap/Bp stars, a model originally developed to explain the ROSAT detection of the A0p star IQ Aur. Methods: We present new X-ray observations of the A0p stars α2 CVn (Chandra) and IQ Aur (XMM-Newton) and discuss our findings in the context of X-ray generating mechanisms of magnetic, chemically peculiar intermediate mass stars. Results: The X-ray luminosities of IQ Aur with log LX = 29.6 erg s-1 and α2 CVn with log LX ≲ 26.0 erg s-1 differ by at least three orders of magnitude, although both are A0p stars. By studying a sample of comparison stars, we find that X-ray emission is preferably generated by more massive objects such as IQ Aur. Besides a strong, cool plasma component, significant amounts of hot (>10 MK) plasma are present during the quasi-quiescent phase of IQ Aur; moreover, diagnostics of the UV sensitive f/i line ratio in He-like O vii triplet point to X-ray emitting regions well above the stellar surface of IQ Aur. In addition we detect a large flare from IQ Aur with temperatures up to ~100 MK and a peak X-ray luminosity of log LX ≈ 31.5 erg s-1. The flare, showing a fast rise and e-folding decay time of less than half an hour, originates in a fairly compact structure and is accompanied by a significant metallicity increase. The X-ray properties of IQ Aur cannot be described by wind shocks only and require the presence of magnetic reconnection. This is most evident in the, to our knowledge, first X-ray flare reported from an A0p star. Conclusions: Our study indicates that the occurrence the of X-ray emission in A0p stars generated by magnetically channeled wind shocks depends on stellar properties such as luminosity, which promote a high mass loss rate, whereas magnetic field configuration and transient phenomena refine their appearance. While we cannot rule out unknown close companions, the X-ray emission from IQ Aur can be described

  8. The effect of Cu-based core-sheath configurations on the processing of Nd-Fe-B-based permanent magnets via equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Besley, L.; Zhang, H.; Molotnikov, A.; Kishimoto, H.; Kato, A.; Davies, C.; Suzuki, K.

    2017-05-01

    Equal channel angular pressing (ECAP) has been used as an alternative manufacturing route for preparation of Nd2Fe14B-based anisotropic magnets, facilitating processing temperatures much lower than conventional die upsetting. While this method can produce a suitable texture and microstructure in permanent magnetic materials, it still remains novel; involving extremely high pressures which present a high risk of both process failure and die and tooling damage. Powder metallurgical processes frequently incorporate an external layer of secondary material (commonly an outer foil layer or can) for separation between the primary material and die as well as the control of surface effects such as friction through appropriate choice of secondary material. This work implements such modifications to this manufacturing route by incorporation of an outer layer of Cu foil, the addition of which negatively affected both the powder compaction and strength of texture produced via ECAP. Also investigated was the incorporation of solid Cu bar as part of the sample cross section. This modification facilitated processing without any compromise on observed magnetic properties, whilst also reducing damage to both the die and tooling. This type of methodology may aid in improving the reliability of producing bulk anisotropic permanent magnets via ECAP.

  9. The Post-merger Magnetized Evolution of White Dwarf Binaries: The Double-degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    NASA Astrophysics Data System (ADS)

    Fisher, Robert; Garcia-Berro, Enríque; Ji, Suoqing; Kashyap, Rahul; Aznar-Siguán, Gabriela; Tzeferacos, Petros; Lee, Dongwook; Lorén-Aguilar, Pablo

    2014-06-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this presentation, I will present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and I will demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths ~2 × 10^8 G. I discuss the impact of these findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  10. The Post-merger Magnetized Evolution of White Dwarf Binaries: The Double-degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    NASA Astrophysics Data System (ADS)

    Ji, Suoqing; Fisher, Robert T.; García-Berro, Enrique; Tzeferacos, Petros; Jordan, George; Lee, Dongwook; Lorén-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-08-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths ~2 × 108 G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  11. THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS

    SciTech Connect

    Ji Suoqing; Fisher, Robert T.; Garcia-Berro, Enrique; Loren-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-08-20

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths {approx}2 Multiplication-Sign 10{sup 8} G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  12. Azimuthal ExB drift of electrons induced by the radial electric field flowing through a longitudinal magnetic channel with non-magnetized ions

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi

    2016-09-01

    To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.

  13. Preliminary Interpretations of Multi-Channel Seismic Reflection and Magnetic Data on North Anatolian Fault (NAF) in the Eastern Marmara Region, Turkey

    NASA Astrophysics Data System (ADS)

    Gözde Okut Toksoy, Nigar; Kurt, Hülya; İşseven, Turgay

    2017-04-01

    The North Anatolian Fault (NAF) is 1600 km long, right lateral strike-slip fault nearly E-W elongated between Karlıova in the east and Saros Gulf in the west. NAF splays into two major strands near the west of Bolu city as Northern and Southern strands. Northern strand passes Sapanca Lake and extends towards west and reaches Marmara Sea through the Gulf of Izmit. The area has high seismicity; 1999 Kocaeli (Mw=7.4) and 1999 Düzce (Mw=7.2) earthquakes caused approximately 150 km long surface rupture between the Gulf of Izmit and Bolu. The rupture has four distinct fault segments as Gölcük, Sapanca, Sakarya, and Karadere from west to east. In this study multi-channel seismic and magnetic data are collected for the first time on the Sapanca Segment to investigate the surficial and deeper geometry of the NAF. Previously, the NAF in the eastern Marmara region is investigated using by paleo-seismological data from trenches on the surface rupture of fault or the geomorphological data (Lettis et al., 2000; Dikbaş and Akyüz, 2010) which have shallower depth targets. Crustal structure and seismic velocities for Central Anatolia and eastern Marmara regions are obtained from deeper targeted refraction data (Gürbüz et al., 1992). However, their velocity models do not have the spatial resolution to determine details of the fault zone structure. Multi-channel seismic and magnetic data in this study were acquired on two N-S directed profiles crossing NAF perpendicularly near Kartepe on the western part of the Sapanca Lake in October 2016. The receiver interval is 5 m, shot interval is 5-10 m, and the total length of the profiles are approximately 1400 m. Buffalo Gun is used as a seismic source for deeper penetration. Conventional seismic reflection processing steps are applied to the data. These are geometry definition, editing, filtering, static correction, velocity analysis and deconvolution, stacking and migration. Echos seismic software package in Geophysical Department

  14. Influence of Heat Source, Thermal Radiation, and Inclined Magnetic Field on Peristaltic Flow of a Hyperbolic Tangent Nanofluid in a Tapered Asymmetric Channel.

    PubMed

    Kothandapani, M; Prakash, J

    2015-06-01

    In the present analytic thinking, we have modeled the governing equations of a two dimensional peristaltic transport of a Hyperbolic tangent nanofluid in the presence of a heat source/sink with the combined effects of thermal radiation and inclined magnetic field in a tapered asymmetric channel. The propagation of waves on the non-uniform walls to have different amplitudes and phase but the same wave speed is produced the tapered asymmetric channel. The equations of dimensionless temperature and nanoparticle concentration are solved analytically under assumptions of long wavelength and low Reynolds number. The governing equations of momentum of a hyperbolic tangent nanofluid for the tapered asymmetric channel have also been solved analytically using the regular perturbation method. The expression for average rise in pressure has been figured using numerical integrations. The effects of various physical parameters entering into the problem are discussed numerically and graphically. The phenomenon of trapping is also investigated. Furthermore, the received results show that the maximum pressure rise gets increased in case of non-Newtonian fluid when equated with Newtonian fluid.

  15. On The Gate Capacitance Of MOS Structures Of n-Channel Inversion Layers On Ternary Semiconductors In The Presence Of A Quantizing Magnetic Field

    NASA Astrophysics Data System (ADS)

    Biswas, S. N.; Ghatak, K. P.

    1987-04-01

    It is well-known that the gate capacitance of MOS strut tures of n-channel inversion layers on small ptap semiconductors is a very important one since the MOS capacitance can be very easily controlled by varying the gate voltage and also since it explores various other fundamental aspects of semiconductor surfaces in MOS structures. However, the gate capacitance of MOS structures on ternary semiconductors has relatively been less investigated in the literature and an attempt is made for the first time to investigate theoretically the above capacitance on ternary compounds by using the three-band Kane model. We have derived an expression of the surface electron statistics without any approximations of low or high electric field limits and taking into account the influence of the Dingle temperature respectively. We have then formulated a model expression of the magneto gate capacitance with the proper use of the electron concentration. We shall also formulate the same capacitance for both the limits excluding he broadening of Landau levels for the purpose of comparison. It is observed, taking n-channel inversion layers on Hg1-x Cdx Te as an example that the gate capacitance exhibits spiky oscillations with " changinp, magnetic field and the oscillatory behaviour is in qualitative agreement with the experimental observation reported in the recent literature for MOS structure of Hg1-x Cdx Te. The corresponding results for n-channel inversion layers on relatively large band-gap semi-conductors both in the presence and absence of magnetic quantization can also obtained from the expressions derived.

  16. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study.

    PubMed Central

    Weinstein, S; Wallace, B A; Blout, E R; Morrow, J S; Veatch, W

    1979-01-01

    We have determined the conformation of the channel-forming polypeptide antibiotic gramicidin A in phosphatidylcholine vesicles by using 13C and 19F NMR spectroscopy. The models previously proposed for the conformation of the dimer channel differ in the surface localization of the NH2 and COOH termini. We have incorporated specific 13C and 19F nuclei at both the NH2, and COOH termini of gramicidin and have used 13C and 19F chemical shifts and spin lattice relaxation time measurements to determine the accessibility of these labels to three paramagnetic NMR probes--two in aqueous solution and one attached to the phosphatidylcholine fatty acid chain9 all of our results indicate that the COOH terminus of gramicidin in the channel is located near the surface of the membrane and the NH2 terminus is buried deep within the lipid bilayer. These findings strongly favor an NH2-terminal to NH2-terminal helical dimer as the major conformation for the gramicidin channel in phosphatidylcholine vesicles. PMID:92025

  17. The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Afrand, Masoud; Karimipour, Arash; Nadooshan, Afshin Ahmadi; Akbari, Mohammad

    2016-10-01

    Simulation of forced convection of FMWNT-water (functionalized multi-walled carbon nano-tubes) nano-fluid in a micro-channel under a magnetic field in slip flow regime is performed. The micro-channel wall is divided into two portions. The micro-channel entrance is insulated while the rest of length of the micro-channel has constant temperature (TC). Moreover, the micro-channel domain is exposed to a magnetic field with constant strength of B0. High temperature nano-fluid (TH) enters the micro-channel and exposed to its cold walls. Slip velocity boundary condition along the walls of the micro-channel is considered. Governing equations are numerically solved using FORTRAN computer code based on the SIMPLE algorithm. Results are presented as the velocity, temperature, and Nusselt number profiles. Greater Reynolds number, Hartmann number, and volume fraction related to more heat transfer rate; however, the effects of Ha and ϕ are more noteworthy at higher Re.

  18. Laplace Transformation for an Optically Thick Gray Gas in a Vertical Channel with Magnetic Body Force: Rosseland Approximation

    NASA Astrophysics Data System (ADS)

    Kalita, K.; Ahmed, S.

    2017-07-01

    A Couette flow of an optically thick gray gas flowing in a vertical channel is analyzed analytically with consideration of the buoyancy effects and thermal radiation. The Rosseland diffusion flux approximation is employed to simulate the radiative heat transfer contribution. An impulsive movement and a uniformly accelerated movement of one plate are considered with the second plate being stationary. The numerical results for some special cases are compared with the exact solutions and are found to be in good agreement. The effects of the flow parameters on the nondimensional velocity and skin friction are revealed.

  19. 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience.

    PubMed

    Yang, Qi; Li, Kuncheng; Liu, Xin; Du, Xiangying; Bi, Xiaoming; Huang, Feng; Jerecic, Renate; Liu, Zhi; An, Jing; Xu, Dong; Zheng, Hairong; Fan, Zhaoyang; Li, Debiao

    2012-09-01

    Whole-heart coronary magnetic resonance angiography (MRA) is a promising method for noninvasive, radiation-free detection and exclusion of obstructive coronary artery disease; however, the required imaging time and robustness of the technique are not yet satisfactory. We evaluated the value of whole-heart coronary MRA at 3.0T using a 32-channel cardiac coil, which reduces image-acquisition times and hence allows to increase the clinical throughput. A total of 110 consecutive patients with suspected coronary artery disease referred for clinically indicated conventional coronary angiography were included in this prospective study. Acquisition of 3.0T coronary MRA data was done by using 32-channel receiver coils. An ECG-triggered, navigator-gated, inversion-recovery prepared, segmented gradient-echo sequence was used for image acquisition with an acceleration factor of 3 in the phase-encoding direction using generalized auto calibrating partially parallel acquisitions reconstruction. Acquisition of coronary MRA was successfully completed in 101 of 110 (92%) patients with average imaging time of 7.0±1.8 minutes. The sensitivity, specificity, positive and negative predictive value of coronary MRA on a patient-based analysis were 95.9% (47/49, 95% CI, 86.0%-99.4%), 86.5% (45/52, 95% CI, 74.2%-94.4%), 87.0% (47/54, 95% CI, 75.1%-94.6%) and 95.7% (45/47, 95% CI, 85.4%-99.4%), respectively. Whole-heart coronary MRA at 3.0T using a 32-channel cardiac coil allows high overall accuracy for detecting significant coronary artery disease with reduced imaging time. It has potential to be a robust and alternative technique for ruling out significant coronary artery disease. URL: http://www.chictr.org. Unique identifier: ChiCTR-DDT-07000121.

  20. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil.

    PubMed

    Aydin, Omer; Buyukkaya, Ramazan; Hakyemez, Bahattin

    2017-01-01

    Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21. In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading.

  1. Accuracy and Precision of Head Motion Information in Multi-Channel Free Induction Decay Navigators for Magnetic Resonance Imaging.

    PubMed

    Babayeva, Maryna; Kober, Tobias; Knowles, Benjamin; Herbst, Michael; Meuli, Reto; Zaitsev, Maxim; Krueger, Gunnar

    2015-09-01

    Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13°, respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1° for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.

  2. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil

    PubMed Central

    Aydin, Omer; Buyukkaya, Ramazan; Hakyemez, Bahattin

    2017-01-01

    Summary Background Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Material/Methods Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. Results There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21 Conslusions In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading. PMID:28439322

  3. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  4. Unsteady two-layered fluid flow of conducting fluids in a channel between parallel porous plates under transverse magnetic field in a rotating system

    NASA Astrophysics Data System (ADS)

    Linga Raju, T.; Neela Rao, B.

    2016-05-01

    An unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be incompressible, electrically conducting with different viscosities and electrical conductivities. The governing partial differential equations are reduced to the linear ordinary differential equations using two-term series. The resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and secondary) in the two regions respectively, by assuming their solutions as a combination of both the steady state and time dependent components of the solutions. Numerical values of the velocity distributions are computed for different sets of values of the governing parameters involved in the study and their corresponding profiles are also plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and heights are discussed. Also an observation is made how the velocity distributions vary with the rotating hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases both the primary and secondary velocity distributions in the two regions.

  5. A Large Volume Double Channel 1H-X RF Probe for Hyperpolarized Magnetic Resonance at 0.0475 Tesla

    PubMed Central

    Coffey, Aaron M.; Shchepin, Roman V.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2012-01-01

    In this work we describe a large volume 340 mL 1H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. 1H/13C and 1H/15N probe configurations are demonstrated with the potential for extension to 1H/129Xe. The primary applications of this probe are preparation and quality assurance of 13C and 15N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 μs 13C excitation pulses at 5.3 Watts, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to 13C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with 13C hyperpolarized 2-hydroxyethyl propionate-1-13C,2,3,3-d3. PMID:22706029

  6. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels.

    PubMed

    Wang, Chengquan; Qian, Jing; Wang, Kun; Hua, Mengjuan; Liu, Qian; Hao, Nan; You, Tianyan; Huang, Xingyi

    2015-12-09

    We proposed a facile method to prepare the nitrogen-doped graphene quantum dots (NGQDs) doped silica (NGQDs@SiO2) nanoparticles (NPs). The NGQDs@SiO2 NPs were further explored as a versatile signal indicator for ochratoxin A (OTA) aptasensing by combination with electrochemiluminescence (ECL) and fluorescence (FL) detection. In this strategy, the core-shell Fe3O4@Au magnetic beads (MBs) acted as a nanocarrier to immobilize the thiolated aptamer specific for OTA, and the amino modified capture DNA (cDNA) was efficiently tagged with NGQDs@SiO2 NPs. The multifunctional aptasensor was thus fabricated by assembly of the NGQDs@SiO2 NPs onto the surface of Fe3O4@Au MBs through the high specific DNA hybridization between aptamer and cDNA. Upon OTA incubation, the aptamer linked with Fe3O4@Au MBs preferred to form an aptamer-OTA complex, which resulted in the partial release of the preloaded NGQDs@SiO2 NPs. The more OTA molecules in the detection system, the more NGQDs@SiO2 NPs were released into the bulk solution and the less preloaded NGQDs@SiO2 NPs were accumulated on the magnetic electrode surface. This provided a dual channel for OTA detection by combination with the enriched solid-state ECL and homogeneous FL detection. The FL assay exhibits a wide dynamic range and is more reproducible due to the homogeneous detection while the ECL assay possesses a lower detection limit and is preferable by using a cheaper instrument. One can obtain a preliminary screen from FL assay and a more accurate result from ECL assay. Integrating the virtues of dual analytical modality, this aptasensing strategy well-balanced the rapidity, sensitivity, and dynamic range, making it promising to other targets with aptamer sequences.

  7. Magnetic

    NASA Astrophysics Data System (ADS)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  8. Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses.

    PubMed

    Graessl, Andreas; Muhle, Maximilian; Schwerter, Michael; Rieger, Jan; Oezerdem, Celal; Santoro, Davide; Lysiak, Darius; Winter, Lukas; Hezel, Fabian; Waiczies, Sonia; Guthoff, Rudolf F; Falke, Karen; Hosten, Norbert; Hadlich, Stefan; Krueger, Paul-Christian; Langner, Soenke; Stachs, Oliver; Niendorf, Thoralf

    2014-05-01

    This study was designed to examine the feasibility of ophthalmic magnetic resonance imaging (MRI) at 7 T using a local 6-channel transmit/receive radiofrequency (RF) coil array in healthy volunteers and patients with intraocular masses. A novel 6-element transceiver RF coil array that makes uses of loop elements and that is customized for eye imaging at 7 T is proposed. Considerations influencing the RF coil design and the characteristics of the proposed RF coil array are presented. Numerical electromagnetic field simulations were conducted to enhance the RF coil characteristics. Specific absorption rate simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Phantom experiments were carried out to validate the electromagnetic field simulations and to assess the real performance of the proposed transceiver array. Certified approval for clinical studies was provided by a local notified body before the in vivo studies. The suitability of the RF coil to image the human eye, optical nerve, and orbit was examined in an in vivo feasibility study including (a) 3-dimensional (3D) gradient echo (GRE) imaging, (b) inversion recovery 3D GRE imaging, and (c) 2D T2-weighted fast spin-echo imaging. For this purpose, healthy adult volunteers (n = 17; mean age, 34 ± 11 years) and patients with intraocular masses (uveal melanoma, n = 5; mean age, 57 ± 6 years) were investigated. All subjects tolerated all examinations well with no relevant adverse events. The 6-channel coil array supports high-resolution 3D GRE imaging with a spatial resolution as good as 0.2 × 0.2 × 1.0 mm, which facilitates the depiction of anatomical details of the eye. Rather, uniform signal intensity across the eye was found. A mean signal-to-noise ratio of approximately 35 was found for the lens, whereas the vitreous humor showed a signal-to-noise ratio of approximately 30. The lens-vitreous humor contrast-to-noise ratio was 8, which allows good

  9. Implementation of the superfluid helium phase transition using finite element modeling: Simulation of transient heat transfer and He-I/He-II phase front movement in cooling channels of superconducting magnets

    NASA Astrophysics Data System (ADS)

    Bielert, E. R.; Verweij, A. P.; Ten Kate, H. H. J.

    2013-01-01

    In the thermal design of high magnetic field superconducting accelerator magnets, the emphasis is on the use of superfluid helium as a coolant and stabilizing medium. The very high effective thermal conductivity of helium below the lambda transition temperature significantly helps to extract heat from the coil windings during steady state and transient heat deposition. The layout and size of the helium channels have a strong effect on the maximum amount of heat that can be extracted from the porously insulated superconducting cables. To better understand the behavior of superfluid helium penetrating the magnet structure and coil windings, simulation based on a three dimensional finite element model can give valuable insight. The 3D geometries of interest can be regarded as a complex network of coupled 1D geometries. The governing physics is thus similar for both geometries and therefore validation of several and different 1D models is performed. Numerically obtained results and published experimental data are compared. Once the viability of the applied methods is proven, they can be incorporated into the 3D geometries. Not only the transport properties in the bulk of the helium are of interest, but also the strong non-linear behavior at the interfaces between solids and superfluid helium (Kapitza conductance) is important from an engineering point of view, since relatively large temperature jumps may occur here. In this work it is shown how He-II behavior in magnet windings can be simulated using COMSOL Multiphysics. 1D models are validated by experimental results taken from literature in order to improve existing 2D and 3D models with more complete physics. The examples discussed include transient heat transfer in 1D channels, Kapitza conductance and sub-cooling of normal liquid helium to temperatures below the lambda transition in long channels (phase front movement).

  10. Near-field and far-field sound radiation from a line-driven fluid-loaded infinite flat plate having periodic and non-periodic attached rib stiffeners

    NASA Astrophysics Data System (ADS)

    Cray, Benjamin A.

    1992-03-01

    The far-field and near-field solutions for the radiated acoustic pressure from a line-driven fluid-loaded, rib-stiffened thin elastic plate have been obtained. The plate has been configured to have two sets of rib-stiffeners, though the formulation given may be extended to include additional rib-stiffener sets. The stiffeners composing a given set are identical and are spaced periodically with distance l. However, one set of stiffeners is shifted by an amount from the other set. In this manner, portions of the plate may be configured with repeating sections having non-periodic rib spacing. The stiffeners exert reactive forces upon the plate, but not angular moments. Fluid loading is included on the upper surface of the plate while the lower surface is unloaded, except for a time harmonic line force applied normal to the lower surface. Expressions are derived, for the special case of periodic inter-rib spacing, which give the wavenumbers at which the magnitude of the wavenumber response obtains relative maximum and minimum values. For a stiffened plate, it is seen that excitation frequencies below coincidence generate large magnitude supersonic wavenumber components.

  11. Lava Channels

    NASA Image and Video Library

    2013-12-03

    The channels and linear depression in this image captured by NASA 2001 Mars Odyssey spacecraft are located on the western margin of the Elysium Volcanic complex. The channels were created by lava flow.

  12. TRP Channels

    PubMed Central

    Venkatachalam, Kartik; Montell, Craig

    2011-01-01

    The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease. PMID:17579562

  13. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    PubMed

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  14. Signal enhancement using a switchable magnetic trap

    DOEpatents

    Beer, Neil Reginald [Pleasanton, CA

    2012-05-29

    A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.

  15. Tests of the standard (30 hz) NCER FM multiplex telemetry system, augmented by two timing channels and a compensation reference signal, used to record multiplexed seismic network data on magnetic tape

    USGS Publications Warehouse

    Eaton, Jerry P.

    1976-01-01

    The application of subtractive compensation to USGS seismic magnetic tape recording and playback systems was examined in a recent USGS Open-file report (1). It was found, for the standard (30 Hz) NCER multiplex system, that subtractive compensation utilizing a 4688 Hz reference signal multiplexed onto each data track was more effective than that utilizing a 3125 Hz reference signal recorded separately on a different track. Moreover, it was found that the portion of the spectrum between the uppermost data channel (3060 Hz + or - 125 Hz) and the compensation reference signal (4688 Hz) could be used to record an additional timing signal, with a center frequency of 3700 Hz and a broader playback bandwidth (ca 0 to 100 Hz) than that of the standard data channels. Accordingly, for the tests described in that report, the standard 8-datachannel multiplex system was augmented by one additional timing channel with a center frequency of 3700 Hz. The 3700 Hz discriminator used in those tests was not successfully set up to utilize subtractive compensation; so its output from a tape playback was quite noisy. Subsequently, further tests have been carried out on the application of subtractive compensation to a 4-channel broad-band multiplex system and to the standard multiplex system, both recorded on field tape recorders with relatively poor tape speed control (2), (3). In the course of these experiments, it was discovered that two separate timing channe1s, not just one, can be inserted between the uppermost data channel and the compensation reference signal, Furthermore, it was possible to adjust the discriminators used to playback these timing channels so that they profited significantly from subtractive compensation even though the playback bandwidth was 0 to 100 Hz (for short rise times of square wave timing signals). The advantages of recording two timing signals on each data track include: 1) one standard time signal to be used for critical timing, e.g. IRIG E, can be

  16. Rich diversity of single-ion magnet features in the linear OCu(III)O(-) ion confined in the hexagonal channels of alkaline-earth phosphate apatites.

    PubMed

    Kazin, Pavel E; Zykin, Mikhail A; Schnelle, Walter; Felser, Claudia; Jansen, Martin

    2014-08-25

    Following our recent discovery of slow spin relaxation in the unique [OCu(III)O](-) anion located in the apatite-type pigment A10(PO4)6(CuxOH1-x-y)2, where A = Sr, we present the magnetic behavior of this anion for the cases of A = Ca and Ba, which provides evidence for a cation field impact on the properties of a single-ion magnet molecular anion.

  17. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  18. Rippley Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    18 September 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a narrow channel on the upper east flank of the martian volcano, Hadriaca Patera. Because it is located on a volcano, most likely this channel was formed by lava, perhaps as a lava tube at which the thin roof later collapsed. Large ripples of windblown sediment now occur on the channel floor; their crests are generally perpendicular to the channel walls, suggesting that winds blow up and down through this channel.

    Location near: 30.5oS, 266.2oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  19. Rippley Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    18 September 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a narrow channel on the upper east flank of the martian volcano, Hadriaca Patera. Because it is located on a volcano, most likely this channel was formed by lava, perhaps as a lava tube at which the thin roof later collapsed. Large ripples of windblown sediment now occur on the channel floor; their crests are generally perpendicular to the channel walls, suggesting that winds blow up and down through this channel.

    Location near: 30.5oS, 266.2oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  20. Structural studies of a non-stoichiometric channel hydrate using high resolution X-ray powder diffraction, solid-state nuclear magnetic resonance, and moisture sorption methods.

    PubMed

    Kiang, Y-H; Cheung, Eugene; Stephens, Peter W; Nagapudi, Karthik

    2014-09-01

    Structural investigations of a nonstoichiometric hydrate, AMG 222 tosylate, a DPP-IV inhibitor in clinical development for type II diabetes, were performed using a multitechnique approach. The moisture sorption isotherm is in good agreement with a simple Langmuir model, suggesting that the hydrate water is located in well-defined crystallographic sites, which become vacant during dehydration. Crystal structures of AMG 222 tosylate at ambient and dry conditions were determined from high-resolution X-ray diffraction using the direct space method. On the basis of these crystal structures, hydrated water is located in channels formed by the drug framework. Upon dehydration, an isostructural dehydrate is formed with the channels remaining void and accessible to water for rehydration. Kitaigorodskii packing coefficients of the solid between relative humidity of 0% and 90% indicate that the equilibrium form of AMG 222 tosylate is the fully hydrated monohydrate.

  1. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  2. Mechanosensitive Channels

    NASA Astrophysics Data System (ADS)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  3. Channel catfish

    USDA-ARS?s Scientific Manuscript database

    This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...

  4. Counteraction by repetitive daily exposure to static magnetism against sustained blockade of N-methyl-D-aspartate receptor channels in cultured rat hippocampal neurons.

    PubMed

    Hirai, Takao; Taniura, Hideo; Goto, Yasuaki; Tamaki, Keisuke; Oikawa, Hirotaka; Kambe, Yuki; Ogura, Masato; Ohno, Yu; Takarada, Takeshi; Yoneda, Yukio

    2005-05-15

    In rat hippocampal neurons cultured with the antagonist for N-methyl-D-aspartate (NMDA) receptors dizocilpine (MK-801) for 8 days in vitro (DIV), a significant decrease was seen in the expression of microtubule-associated protein-2 (MAP-2) as well as mRNA for both brain-derived neurotrophic factor (BDNF) and growth-associated protein-43 (GAP-43), in addition to decreased viability. MK-801 not only decreased the expression of the NR1 subunit of NMDA receptors but also increased NR2A expression, without affecting NR2B expression. Repetitive daily exposure to static magnetic fields at 100 mT for 15 min led to a decrease in the expression of MAP-2, without significantly affecting cell viability or the expression of neuronal nuclei (NeuN) and GAP-43. However, the repetitive magnetism prevented decreases in both BDNF mRNA and MAP-2 and additionally increased the expression of NR2A subunit, without altering NR1 expression in neurons cultured in the presence of MK-801. Repetitive magnetism was also effective in preventing the decrease by MK-801 in the ability of NMDA to increase intracellular free Ca2+ ions, without affecting the decrease in the maximal response. These results suggest that repetitive magnetism may at least in part counteract the neurotoxicity of MK-801 through modulation of the expression of particular NMDA receptor subunits in cultured rat hippocampal neurons.

  5. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed Central

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  6. Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Farooq, S.; Alsaedi, A.; Ahmad, B.

    2016-08-01

    The purpose of present investigation is to study the Hall and MHD effects on peristaltic flow of Carreau-Yasuda fluid in a convectively curved configuration. Thermal radiation, Soret and Dufour effects are also accounted. The channel walls comprised the no slip and compliant properties. Constitutive equations for mass, momentum, energy and concentration are first modeled in view of considered assumptions and then simplified under long wavelength and low Reynolds number approximation. Solution of the resulting system of equations is carried out via a regular perturbation technique. Physical behaviors of velocity, temperature, concentration and streamlines are discussed with the help of graphical representation.

  7. Magnetic resonance imaging of the knee at 3 and 7 tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols.

    PubMed

    Welsch, Goetz H; Juras, Vladimir; Szomolanyi, Pavol; Mamisch, Tallal C; Baer, Peter; Kronnerwetter, Claudia; Blanke, Matthias; Fujita, Hiroyuki; Trattnig, Siegfried

    2012-09-01

    To show the feasibility and possible superiority of two 7 Tesla knee protocols ("7 T high resolution" and "7 T quick") using a new 28-channel knee coil compared to an optimised 3 T knee protocol using an 8-channel knee coil. The study was approved by the ethics committee. Both 3 T and 7 T MRI of the knee were performed in 10 healthy volunteers (29.6 ± 7.9 years), with two 2D sequences (PD-TSE and T1-SE) and three isotropic 3D sequences (TRUFI, FLASH and PD-TSE SPACE). Quantitative contrast-to-noise ratio (CNR) and qualitative evaluations were performed by different readers, and intra- and inter-rater agreement was assessed. The signal-to-noise ratio (SNR) as well as the CNR values for cartilage-bone, cartilage-fluid, cartilage-menisci and menisci-fluid were, in most cases, higher at 7 T compared to 3 T, and the 7 T quick measurement was slightly superior compared to the 7 T high-resolution measurement. The results of the subjective qualitative analysis were higher for the 7 T measurements compared to the 3 T measurements. Inter- and intra-observer reliability was high (0.884-0.999). Through higher field strength and an optimal coil, resolution at 7 T can be increased and acquisition time can be reduced, with superior quantitative and comparable qualitative results compared to 3 T.

  8. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  9. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  10. Simulations of Filament Channel Formation

    NASA Astrophysics Data System (ADS)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    2014-12-01

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear, in the form of filament channels, at photospheric polarity inversion lines (PILs). In addition to free energy, this shear also represents magnetic helicity, which is conserved under reconnection. In this work, we address the problem of filament channel formation and show how they acquire their shear and magnetic helicity. Results of 3D MHD simulations using the Adaptively Refined MHD Solver (ARMS) are presented that support the magnetic helicity-condensation model of filament-channel formation described by Antiochos, 2013. We consider the supergranular twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse-cascade up to the largest allowable scales that define the closed flux system: the PIL and the CH boundary. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity-condensation model. We present a detailed analysis of the simulation, including comparisons of our analytical and numerical results, and discuss their implications for observations.

  11. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  12. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  13. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J. Stephen

    1992-01-01

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet.

  14. Channeling through Bent Crystals

    SciTech Connect

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  15. Inverted Channels

    NASA Technical Reports Server (NTRS)

    2006-01-01

    23 June 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows sinuous ridges and other landforms exposed by erosion in the Aeolis region of Mars. The ridges in this scene indicate the locations of ancient channels in a fan of sediment deposited in this region. Over time, wind erosion has removed surrounding materials and left the channels, which had been filled by sediment, standing as ridges.

    Location near: 4.5oS, 205.2oW Image width: 2 km (1.2 mi) Illumination from: upper left Season: Southern Autumn

  16. Starburst Channels

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Translucent carbon dioxide ice covers the polar regions of Mars seasonally. It is warmed and sublimates (evaporates) from below, and escaping gas carves a numerous channel morphologies.

    In this example (figure 1) the channels form a 'starburst' pattern, radiating out into feathery extensions. The center of the pattern is being buried with dust and new darker dust fans ring the outer edges. This may be an example of an expanding morphology, where new channels are formed as the older ones fill and are no longer efficiently channeling the subliming gas out.

    Observation Geometry Image PSP_003443_0980 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 21-Apr-2007. The complete image is centered at -81.8 degrees latitude, 76.2 degrees East longitude. The range to the target site was 247.1 km (154.4 miles). At this distance the image scale is 24.7 cm/pixel (with 1 x 1 binning) so objects 74 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 04:52 PM and the scene is illuminated from the west with a solar incidence angle of 71 degrees, thus the sun was about 19 degrees above the horizon. At a solar longitude of 223.4 degrees, the season on Mars is Northern Autumn.

  17. Starburst Channels

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Translucent carbon dioxide ice covers the polar regions of Mars seasonally. It is warmed and sublimates (evaporates) from below, and escaping gas carves a numerous channel morphologies.

    In this example (figure 1) the channels form a 'starburst' pattern, radiating out into feathery extensions. The center of the pattern is being buried with dust and new darker dust fans ring the outer edges. This may be an example of an expanding morphology, where new channels are formed as the older ones fill and are no longer efficiently channeling the subliming gas out.

    Observation Geometry Image PSP_003443_0980 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 21-Apr-2007. The complete image is centered at -81.8 degrees latitude, 76.2 degrees East longitude. The range to the target site was 247.1 km (154.4 miles). At this distance the image scale is 24.7 cm/pixel (with 1 x 1 binning) so objects 74 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 04:52 PM and the scene is illuminated from the west with a solar incidence angle of 71 degrees, thus the sun was about 19 degrees above the horizon. At a solar longitude of 223.4 degrees, the season on Mars is Northern Autumn.

  18. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  19. Nonlinear channelizer

    NASA Astrophysics Data System (ADS)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  20. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  1. Magnetic multi-lens focusing optical system

    NASA Astrophysics Data System (ADS)

    Trejbal, Z.; Bejšovec, V.; S̆tursa, J.; Hanc̆l, P.

    1996-02-01

    A magnetic focusing system called B-channel is introduced. Three methods of ion optical calculation are presented and a comparison with experimental results is shown. The properties of B-channel are discussed in comparison with a classical solenoid.

  2. Properties of a two-orbital model for oxypnictide superconductors: Magnetic order, B2g spin-singlet pairing channel, and its nodal structure

    SciTech Connect

    Moreo, Adriana; Daghofer, Maria; Riera, J. A.; Dagotto, Elbio R

    2009-01-01

    A recently proposed two-orbital model for the Fe-based superconductors is studied using the Lanczos method on small clusters as well as pairing mean-field approximations. Our main goals are i to provide a comprehensive analysis of this model using numerical techniques with focus on the magnetic state at halffilling and the quantum numbers of the state with two more electrons than half-filling and ii to investigate the nodal structure of the mean-field superconducting state and compare the results with angle-resolved photoemission data. In particular, we provide evidence that the dominant magnetic state at half-filling contains spin stripes, as observed experimentally using neutron scattering techniques. Competing spin states are also investigated. The symmetry properties of the state with two more electrons added to half-filling are also studied: depending on parameters, either a spin-singlet or spin triplet state is obtained. Since experiments suggest spin-singlet pairs, our focus is on this state. Under rotations, the spin-singlet state transforms as the B2g representation of the D4h group. We also show that the s pairing operator transforms according to the A1g representation of D4h and becomes dominant only in an unphysical regime of the model where the undoped state is an insulator. We obtain qualitatively very similar results both with hopping amplitudes derived from a Slater-Koster approximation and with hoppings selected to fit band-structure calculations, the main difference between the two being the size of the Fermi surface pockets. For robust values of the effective electronic attraction producing the Cooper pairs, assumption compatible with recent angle-resolved photoemission spectroscopy ARPES results that suggest a small Cooper-pair size, the nodes of the two-orbital model are found to be located only at the electron pockets. Note that recent ARPES efforts have searched for nodes at the hole pockets or only in a few directions at the electron pockets

  3. Elliptical Muon Helical Cooling Channel Coils

    SciTech Connect

    Kahn, S. A.; Flanagan, G.; Lopes, M. L.; Yonehara, K.

    2013-09-01

    A helical cooling channel (HCC) consisting of a pressurized gas absorber imbedded in a magnetic channel that provides solenoid, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional phase space reduction for muon beams. The most effective approach to implementing the desired magnetic field is a helical solenoid (HS) channel composed of short solenoid coils arranged in a helical pattern. The HS channel along with an external solenoid allows the B$_z$ and B$_{\\phi}$ components along the reference orbit to be set to any desired values. To set dB$_{\\phi}$/dr to the desired value for optimum focusing requires an additional variable to tune. We shall show that using elliptical shaped coils in the HS channel allows the flexibility to achieve the desired dB$_{\\phi}$/dr on the reference orbit without significant change to B$_z$ and B$_{\\phi}$.

  4. Alpha Channeling in Mirror Machines

    SciTech Connect

    Fisch, Nathaniel J.

    2014-07-16

    This Final Report for DE-FG02-06ER54851, Alpha Channeling in Mirror Machines, was in fact submitted on April 9, 2010. Some confusion arose because it was submitted as an initial progress report on a related grant, Alpha Channeling in Open- System Magnetic Devices. The original text is reproduced below, except that the publication record is undated. Note that the articles published in 2009 and 2010 reflect work in fact done under DE-FG02-06ER54851.

  5. Dynamic Channel Allocation

    DTIC Science & Technology

    2003-09-01

    7 1 . Fixed Channel Allocation (FCA) ........................................................7 2. Dynamic Channel ...19 7. CSMA/CD-Based Multiple Network Lines .....................................20 8. Hybrid Channel Allocation in Wireless Networks...28 1 . Channel Allocation

  6. Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI

    DOEpatents

    Ledbetter, Micah P [Oakland, CA; Savukov, Igor M [Los Alamos, NM; Budker, Dmitry [El Cerrito, CA; Shah, Vishal K [Plainsboro, NJ; Knappe, Svenja [Boulder, CO; Kitching, John [Boulder, CO; Michalak, David J [Berkeley, CA; Xu, Shoujun [Houston, TX; Pines, Alexander [Berkeley, CA

    2011-08-09

    An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.

  7. Electrically detected magnetic resonance study of defects created by hot carrier stress at the SiC/SiO2 interface of a SiC n-channel metal-oxide-semiconductor field-effect transistor

    NASA Astrophysics Data System (ADS)

    Gruber, G.; Hadley, P.; Koch, M.; Aichinger, T.

    2014-07-01

    This Letter reports electrical measurements as well as electrically detected magnetic resonance (EDMR) studies of defects created at the SiC/SiO2 interface of a lateral 4H-SiC n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) by hot carrier stress (HCS). Both charge pumping (CP) and mobility measurements indicate severe device degradation due to the electrical stress. In accordance with the electrical measurements, a large increase in the EDMR amplitude by a factor of 27 was observed after 106 s of HCS. The defect observed in the unstressed device is anisotropic with gB||c = 2.0045(4) and gB⊥c = 2.0020(4). After the stress, the g-value changes to gB||c = 2.0059(4) and gB⊥c = 2.0019(4). During HCS, most defects are created near the n-doped drain region of the device. In this region, the crystalline structure of the SiC is distorted due to incorporation of N close to the amorphous dose. The distortion could explain the slight change in the g-value with the dominating defect or defect family remaining the same before and after stress. Although the precise structure of the defect could not be identified due to overlapping spectra and limited measurement resolution, the strong hyperfine side peaks suggest a N related defect.

  8. The Inductive Coupling of the Magnets in MICE and its Effect onQuench Protection

    SciTech Connect

    Green, Michael A.; Witte, Holger

    2005-09-08

    The inductive coupling between various MICE magnet circuits is described. The consequences of this coupling on magnet charging and quenching are discussed. Magnet quench protection is achieved through the use of quench-back. Calculations of the quenching of a magnet due to quench-back resulting from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. This report describes how the MICE magnet channel will react when magnets in that channel are quenched.

  9. Eukaryotic mechanosensitive channels.

    PubMed

    Arnadóttir, Jóhanna; Chalfie, Martin

    2010-01-01

    Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.

  10. Clinical comparison between a currently available single-loop and an investigational dual-channel endorectal receive coil for prostate magnetic resonance imaging: a feasibility study at 1.5 and 3 T.

    PubMed

    Vos, Eline K; Sambandamurthy, Sriram; Kamel, Maged; McKenney, Robert; van Uden, Mark J; Hoeks, Caroline M A; Yakar, Derya; Scheenen, Tom W J; Fütterer, Jurgen J

    2014-01-01

    The objectives of this study were to test the feasibility of an investigational dual-channel next-generation endorectal coil (NG-ERC) in vivo, to quantitatively assess signal-to-noise ratio (SNR), and to get an impression of image quality compared with the current clinically available single-loop endorectal coil (ERC) for prostate magnetic resonance imaging at both 1.5 and 3 T. The study was approved by the institutional review board, and written informed consent was obtained from all patients. In total, 8 consecutive patients with prostate cancer underwent a local staging magnetic resonance examination with the successive use of both coils in 1 session (4 patients at 1.5 T and 4 other patients at 3 T). Quantitative comparison of both coils was performed for the apex, mid-gland and base levels at both field strengths by calculating SNR profiles in the axial plane on an imaginary line in the anteroposterior direction perpendicular to the coil surface. Two radiologists independently assessed the image quality of the T2-weighted and apparent diffusion coefficient maps calculated from diffusion-weighted imaging using a 5-point scale. Improvement of geometric distortion on diffusion-weighted imaging with the use of parallel imaging was explored. Statistical analysis included a paired Wilcoxon signed rank test for SNR and image quality evaluation as well as κ statistics for interobserver agreement. No adverse events were reported. The SNR was higher for the NG-ERC compared with the ERC up to a distance of approximately 40 mm from the surface of the coil at 1.5 T (P < 0.0001 for the apex, the mid-gland, and the base) and approximately 17 mm (P = 0.015 at the apex level) and 30 mm at 3 T (P < 0.0001 for the mid-gland and base). Beyond this distance, the SNR profiles of both coils were comparable. Overall, T2-weighted image quality was considered better for NG-ERC at both field strengths. Quality of apparent diffusion coefficient maps with the use of parallel imaging was

  11. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  12. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  13. Quench Protection and Magnet Supply Requirements for the MICEFocusingand Coupling Magnets

    SciTech Connect

    Green, Michael A.; Witte, Holger

    2005-06-08

    This report discusses the quench protection and power supply requirements of the MICE superconducting magnets. A section of the report discusses the quench process and how to calculate the peak voltages and hotspot temperature that result from a magnet quench. A section of the report discusses conventional quench protection methods. Thermal quench back from the magnet mandrel is also discussed. Selected quench protection methods that result in safe quenching of the MICE focusing and coupling magnets are discussed. The coupling of the MICE magnets with the other magnets in the MICE is described. The consequences of this coupling on magnet charging and quenching are discussed. Calculations of the quenching of a magnet due quench back from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. The conclusion of this report describes how the MICE magnet channel will react when one or magnets in that channel are quenched.

  14. The Psychology of Channeling.

    ERIC Educational Resources Information Center

    Corey, Michael A.

    1988-01-01

    Theoretically analyzes phenomenon of channeling from perspective of C. G. Jung's analytic psychology. Hypothesizes that contact with otherworldly spiritual beings claimed by channelers is actually projected contact with contents of channeler's own unconscious mind. Suggests that channelers seek more constructive ways of contacting their…

  15. The Effect of Extending the Length of the Coupling Coils in a Muon Ionization Cooling Channel

    NASA Astrophysics Data System (ADS)

    Green, Michael A.

    2008-02-01

    RF cavities are used to re-accelerate muons that have been cooled by absorbers that are in low beta regions of a muon ionization cooling channel. A superconducting coupling magnet (or magnets) are around or among the RF cavities of a muon ionization-cooling channel. The field from the magnet guides the muons so that they are kept within the iris of the RF cavities that are used to accelerate the muons. This report compares the use of a single short coupling magnet with an extended coupling magnet that has one or more superconducting coils as part of a muon-cooling channel of the same design as the muon ionization cooling experiment (MICE). Whether the superconducting magnet is short and thick or long and this affects the magnet stored energy and the peak field in the winding. The magnetic field distribution also affects is the muon beam optics in the cooling cell of a muon cooling channel.

  16. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  17. DISCOVERY OF ROTATIONAL BRAKING IN THE MAGNETIC HELIUM-STRONG STAR SIGMA ORIONIS E

    SciTech Connect

    Townsend, R. H. D.; Oksala, M. E.; Owocki, S. P.; Cohen, D. H.; Ud-Doula, A.

    2010-05-10

    We present new U-band photometry of the magnetic helium-strong star {sigma} Ori E, obtained over 2004-2009 using the SMARTS 0.9 m telescope at Cerro Tololo Inter-American Observatory. When combined with historical measurements, these data constrain the evolution of the star's 1.19 day rotation period over the past three decades. We are able to rule out a constant period at the p {sub null} = 0.05% level, and instead find that the data are well described (p {sub null} = 99.3%) by a period increasing linearly at a rate of 77 ms per year. This corresponds to a characteristic spin-down time of 1.34 Myr, in good agreement with theoretical predictions based on magnetohydrodynamical simulations of angular momentum loss from magnetic massive stars. We therefore conclude that the observations are consistent with {sigma} Ori E undergoing rotational braking due to its magnetized line-driven wind.

  18. Physical Experiment of Englacial R-Channels

    NASA Astrophysics Data System (ADS)

    Prohaska, Yuri M.; Werder, Mauro A.; Farinotti, Daniel

    2017-04-01

    In 1972, Röthlisberger presented a theoretical study describing the evolution of pressurised en- and subglacial channels. The existence of these so-called R-channels has later been confirmed through field observations. To our knowledge, however, no physical experiment has ever been conducted to actually measure the properties of such channel flow in the laboratory. Here, we present a setup for such a laboratory experiment and preliminary results. The aim of our experiment is to measure the Darcy-Weisbach friction factor, the heat exchange rate between water and channel wall, and the Reynolds number. For our experiment, we produce transparent ice blocks of 1.6m length and a cross section of up to 25x25cm. A small metal tube is frozen into the ice block and removed before the experiment to create an initial R-channel. Pipes attached to flanges frozen into the ice block allow us to let water flow under pressurised conditions. Water pressure and temperature are measured at the inlet and outlet of the ice block whilst the evolution of the channel diameter is captured by photographic imaging. A magnetic flow meter measures the discharge. During a typical experiment, the diameter of the R-channel evolves from 1 to 6cm with flow speeds of up to 2m/s, the Reynolds number is around 10⁴, and the friction factor increases from about 0.024 to 0.12. This means that the channel evolves from hydraulically smooth to rough.

  19. High-current channel characteristics in high-pressure gas

    NASA Astrophysics Data System (ADS)

    Pinchuk, M. E.; Bogomaz, A. A.; Budin, A. V.; Leont'ev, V. V.; Leks, A. G.; Pozubenkov, A. A.; Rutberg, Ph G.

    2015-11-01

    Research results for discharge initiated by wire explosion in hydrogen at initial pressures up to 30 MPa and current amplitudes up to 1 MA are presented. Measurements of channel radius oscillation amplitude by magnetic probe diagnostics were made to calculate channel plasma parameters. The amplitude of channel radius oscillations was observed to decrease with growth of initial gas pressure and to increase with growth of current amplitude.

  20. Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration

    SciTech Connect

    Sharma, B. S. Jain, Archana; Jaiman, N. K.; Gupta, D. N.; Jang, D. G.; Suk, H.; Kulagin, V. V.

    2014-02-15

    Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (≃10{sup 19} W/cm{sup 2}) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.

  1. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  2. Experimental quantum channel simulation

    NASA Astrophysics Data System (ADS)

    Lu, He; Liu, Chang; Wang, Dong-Sheng; Chen, Luo-Kan; Li, Zheng-Da; Yao, Xing-Can; Li, Li; Liu, Nai-Le; Peng, Cheng-Zhi; Sanders, Barry C.; Chen, Yu-Ao; Pan, Jian-Wei

    2017-04-01

    Quantum simulation is of great importance in quantum information science. Here, we report an experimental quantum channel simulator imbued with an algorithm for imitating the behavior of a general class of quantum systems. The reported quantum channel simulator consists of four single-qubit gates and one controlled-not gate. All types of quantum channels can be decomposed by the algorithm and implemented on this device. We deploy our system to simulate various quantum channels, such as quantum-noise channels and weak quantum measurement. Our results advance experimental quantum channel simulation, which is integral to the goal of quantum information processing.

  3. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  4. Hadamard quantum broadcast channels

    NASA Astrophysics Data System (ADS)

    Wang, Qingle; Das, Siddhartha; Wilde, Mark M.

    2017-10-01

    We consider three different communication tasks for quantum broadcast channels, and we determine the capacity region of a Hadamard broadcast channel for these various tasks. We define a Hadamard broadcast channel to be such that the channel from the sender to one of the receivers is entanglement-breaking and the channel from the sender to the other receiver is complementary to this one. As such, this channel is a quantum generalization of a degraded broadcast channel, which is well known in classical information theory. The first communication task we consider is classical communication to both receivers, the second is quantum communication to the stronger receiver and classical communication to other, and the third is entanglement-assisted classical communication to the stronger receiver and unassisted classical communication to the other. The structure of a Hadamard broadcast channel plays a critical role in our analysis: The channel to the weaker receiver can be simulated by performing a measurement channel on the stronger receiver's system, followed by a preparation channel. As such, we can incorporate the classical output of the measurement channel as an auxiliary variable and solve all three of the above capacities for Hadamard broadcast channels, in this way avoiding known difficulties associated with quantum auxiliary variables.

  5. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  6. Magnetic Separation Using HTS Bulk Magnet for Cs-Bearing Fe precipitates

    NASA Astrophysics Data System (ADS)

    Oka, T.; Ichiju, K.; Sasaki, S.; Ogawa, J.; Fukui, S.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Aoki, S.; Ohnishi, N.

    2017-09-01

    A peculiar magnetic separation technique has been examined in order to remove the Cs-bearing Fe precipitates formed of the waste ash from the withdrawn incinerator furnaces in Fukushima. The separation system was constructed in combination with high temperature superconducting bulk magnets which generates the intensive magnetic field over 2 T, which was activated by the pulsed field magnetization process. The separation experiment has been operated with use of the newly-built alternating channel type magnetic separating device, which followed the high-gradient magnetic separation technique. The magnetic stainless steel filters installed in the water channels are magnetized by the applied magnetic fields, and are capable of attracting the precipitates bearing the Fe compound and thin Cs contamination. The experimental results clearly exhibited the positive feasibility of HTS bulk magnets.

  7. Magnetic study of turbidites

    NASA Astrophysics Data System (ADS)

    Tanty, Cyrielle; Valet, Jean Pierre; Carlut, Julie

    2015-04-01

    Turbidites induce sedimentary reworking and re-deposition caused by tsunami, earthquake, volcanic processes, and other catastrophic events. They result from rapid depositional processes and are thus considered not being pertinent for comparison with pelagic sediments. Turbidites are evidently ruled out from paleomagnetic records dealing with time-series. Consequently, no attention has ever been paid to the magnetization of turbidites which is fully justified if the high level of turbulence governing the depositional processes influences the acquisition of magnetization. In certain conditions like channeled turbidity currents, levees of sediment are generated and then associated with relatively calm although very fast redeposition processes. Such conditions will thus govern the subsequent acquisition of magnetization through mechanical lock-in of the magnetic grains. This situation is actually quite similar to what happens during the experiences of artificial redeposition that are conducted in laboratory. Therefore, combining laboratory experiments and studies of natural turbidites could reveal important information on the processes involved in the acquisition of magnetization, especially if the comparison with the overlying hemipelagic sediments does not show any striking difference. We will present the results of magnetic measurements performed on four different and relatively recent turbidites. We selected different origins associated either with spillover of channeled turbidity currents or with co-seismic faulting. Each event is characterized by a different thickness (ten to few tens of cm), lithology and mean granulometry (few tens of μm to hundreds of μm). We have carried out measurements of magnetic susceptibility, magnetic remanence, anisotropy of magnetic susceptibility (AMS) and we also scrutinize the evolution of various rock magnetic parameters (ARM, IRM, S ratio, magnetic grain sizes, hysteresis parameters…). The magnetic characteristics of the

  8. The Channel Tunnel

    NASA Image and Video Library

    2006-08-11

    The Channel Tunnel is a 50.5 km-long rail tunnel beneath the English Channel at the Straits of Dover. It connects Dover, Kent in England with Calais, northern France. This image was acquired by NASA Terra spacecraft.

  9. Bayesian sparse channel estimation

    NASA Astrophysics Data System (ADS)

    Chen, Chulong; Zoltowski, Michael D.

    2012-05-01

    In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.

  10. Helical Channel Design and Technology for Cooling of Muon Beams

    NASA Astrophysics Data System (ADS)

    Yonehara, K.; Derbenev, Y. S.; Johnson, R. P.

    2010-11-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  11. Helical channel design and technology for cooling of muon beams

    SciTech Connect

    Yonehara, K; Derbenev, Y.S.; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  12. Helical Channel Design and Technology for Cooling of Muon Beams

    SciTech Connect

    Yonehara, K.; Derbenev, Y. S.; Johnson, R. P.

    2010-11-04

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  13. Ultrasonic Concentration in a Line-Driven Cylindrical Tube

    SciTech Connect

    Goddard, Gregory Russ

    2004-01-01

    The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle concentration within the system. The effects of tubing, fluid, and particle material properties, tube geometry, fluid flow, and tube length on the structural excitation and consequently power requirements and concentration quality within the tube were investigated theoretically and experimentally. Limitations of the method are discussed, as well as ways to minimize or compensate for deleterious effects. Finally a preliminary demonstration of the efficacy of acoustic concentration is presented.

  14. New Insights into Radiation Line-Driven Winds

    NASA Astrophysics Data System (ADS)

    Cidale, L.; Venero, R. O. J.; Curé, M.; Haucke, M.

    2017-02-01

    The classical theory of radiatively driven stellar winds reproduces the observed stellar wind conditions (mass loss and terminal velocity) of massive supergiants fairly well. However, some differences are still found between the wind parameters predicted by theory and those observed in mid-B, late-B, and A-type supergiants. Inclusion of rotation in the models brought a remarkable progress in the development of the theory of stellar winds. Three types of stationary wind regimes are currently known: the classical fast solution, the Ω-slow solution that arises for fast rotators, and the δ-slow solution that takes place in highly ionized winds. We show synthetic line profiles and discuss all the hydrodynamical solutions in the context of the observed wind properties of B and B[e] supergiants. We also discuss the variability of spectral lines formed in the wind of B-supergiants.

  15. The Propagation of Kinks in Line-driven Winds

    NASA Astrophysics Data System (ADS)

    Feldmeier, A.; Rätzel, D.; Owocki, S. P.

    2008-05-01

    We show that discontinuities in spatial derivatives of the velocity and density law, so-called kinks, can propagate upstream at Mach numbers > 1 with respect to radiative-acoustic waves in stellar winds driven by radiation scattering in spectral lines. This fast upstream propagation of kinks can, for example, explain the slow evolution of discrete absorption components found in P Cygni line profiles from O stars.

  16. Quasi-Anonymous Channels

    DTIC Science & Technology

    2003-01-01

    QUASI- ANONYMOUS CHANNELS Ira S. Moskowitz Center for High Assurance Computer Systems - Code 5540 Naval Research Laboratory, Washington, DC...Assurance Computer Systems - Code 5540 Naval Research Laboratory, Washington, DC 20375, USA Abstract Although both anonymity and covert...channels are part of the larger topic of information hiding, there also exists an intrinsic linkage between anonymity and covert channels. This linkage

  17. Channel morphology [Chapter 5

    Treesearch

    Jonathan W. Long; Alvin L. Medina; Daniel G. Neary

    2012-01-01

    Channel morphology has become an increasingly important subject for analyzing the health of rivers and associated fish populations, particularly since the popularization of channel classification and assessment methods. Morphological data can help to evaluate the flows of sediment and water that influence aquatic and riparian habitat. Channel classification systems,...

  18. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J.S.

    1992-11-03

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet. 6 figs.

  19. Filament Channel Formation, Eruption, and Jet Generation

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Antiochos, Spiro K.; Karpen, Judith T.

    2017-08-01

    The mechanism behind filament-channel formation is a longstanding mystery, while that underlying the initiation of coronal mass ejections and jets has been studied intensively but is not yet firmly established. In previous work, we and collaborators have investigated separately the consequences of magnetic-helicity condensation (Antiochos 2013) for forming filament channels (Zhao et al. 2015; Knizhnik et al. 2015, 2017a,b) and of the embedded-bipole model (Antiochos 1996) for generating reconnection-driven jets (Pariat et al. 2009, 2010, 2015, 2016; Wyper et al. 2016, 2017). Now we have taken a first step toward synthesizing these two lines of investigation. Our recent study (Karpen et al. 2017) of coronal-hole jets with gravity and wind employed an ad hoc, large-scale shear flow at the surface to introduce magnetic free energy and form the filament channel. In this effort, we replace the shear flow with an ensemble of local rotation cells, to emulate the Sun’s ever-changing granules and supergranules. As in our previous studies, we find that reconnection between twisted flux tubes within the closed-field region concentrates magnetic shear and free energy near the polarity inversion line, forming the filament channel. Onset of reconnection between this field and the external, unsheared, open field releases stored energy to drive the impulsive jet. We discuss the results of our new simulations with implications for understanding solar activity and space weather.

  20. Three-dimensional multiphase time-resolved low-dose contrast-enhanced magnetic resonance angiography using TWIST on a 32-channel coil at 3 T: a quantitative and qualitative comparison of a conventional gadolinium chelate with a high-relaxivity agent.

    PubMed

    Giesel, Frederik L; Runge, Val; Kirchin, Miles; Mehndiratta, Amit; Gerigk, Lars; Corell, Body; von Gall, Carl; Kauczor, Hans-Ulrich; Essig, Marco

    2010-01-01

    To evaluate low-dose contrast-enhanced magnetic resonance angiography (CE-MRA) at high temporal and spatial resolution for imaging of abdominal vascular structures. Contrast-enhanced magnetic resonance angiography (TWIST [time-resolved angiography with interleaved stochastic trajectories]) was performed in 8 male New Zealand white rabbits at 3 T using a prototype 32-channel coil. Gadoteridol (Gd-HP-DO3A, ProHance; Bracco Imaging SpA, Milan, Italy) and the high-relaxivity agent gadobenate dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging SpA), each at a dose of 0.04 mmol/kg body weight, were used in an intraindividual comparison. Quantitative analysis of contrast-to-noise ratio (CNR) was performed in regions of interest placed in the aorta and the adjacent tissues. The image quality in the aorta, external iliac artery, and vena cava was categorized by 2 independent blinded readers from excellent (1) to poor (3). A significantly (P < 0.001) higher CNR was obtained with gadobenate dimeglumine. The improved CNR led to a better delineation of the external iliac arteries. Qualitative rating showed the image quality to be excellent for gadobenate dimeglumine and adequate for gadoteridol. Time-resolved CE-MRA performed at 3 T with a 32-channel volume coil can be improved using the high-relaxivity agent gadobenate dimeglumine, which increases quality and quantity of vessel enhancement.

  1. Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    NASA Technical Reports Server (NTRS)

    Lin, Adam Y. (Inventor); Wong, Tak S. (Inventor)

    2013-01-01

    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.

  2. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  3. On 1-qubit channels

    NASA Astrophysics Data System (ADS)

    Uhlmann, Armin

    2001-09-01

    The entropy HT (ρ) of a state with respect to a channel T and the Holevo capacity of the channel require the solution of difficult variational problems. For a class of 1-qubit channels, which contains all the extremal ones, the problem can be significantly simplified by attaching a unique Hermitian antilinear operator ϑ to every channel of the considered class. The channel's concurrence CT can be expressed by ϑ and turns out to be a flat roof. This allows to write down an explicit expression for HT. Its maximum would give the Holevo (one-shot) capacity.

  4. Incompatibility of quantum channels

    NASA Astrophysics Data System (ADS)

    Heinosaari, Teiko; Miyadera, Takayuki

    2017-03-01

    Two quantum channels are called compatible if they can be obtained as marginals from a single broadcasting channel; otherwise they are incompatible. We derive a characterization of the compatibility relation in terms of concatenation and conjugation, and we show that all pairs of sufficiently noisy quantum channels are compatible. The complement relation of incompatibility can be seen as a unifying aspect for several important quantum features, such as impossibility of universal broadcasting and unavoidable measurement disturbance. We show that the concepts of entanglement breaking channel and antidegradable channel can be completely characterized in terms compatibility.

  5. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  6. Ion channels in plants

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  7. Thoughts on Incorporating HPRF in a Linear Cooling Channel

    SciTech Connect

    Gallardo, Juan C.; Zisman, Michael S

    2009-08-20

    We discuss a possible implementation of high-pressure gas-filled RF (HPRF) cavities in a linear cooling channel for muons and some of the technical issues that must be dealt with. The approach we describe is a hybrid approach that uses high-pressure hydrogen gas to avoid cavity breakdown, along with discrete LiH absorbers to provide the majority of the energy loss. Initial simulations show that the channel performs as well as the original vacuum RF channel while potentially avoiding the degradation in RF gradient associated with the strong magnetic field in the cooling channel.

  8. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    regime by a buried oxide layer / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- A positron source using channeling in crystals for linear colliders / X. Artru ... [et al.] -- Parametric channeling and collapse of charged particles beams in crystals / M. Vysotskyy and V. Vysotskii.The formation and usage of coherent correlated charged particles states in the physics of channeling in crystals / S. V. Adamenko, V. I. Vysotskii and M. V. Vysotskyy -- Surface channeling of magnetic-charged particles on multilayer surface / S. V. Adamenko and V. I. Vysotskii -- Coherent creation of anti-hydrogen atoms in a crystal by relativistic antiproton / Yu. P. Kunashenko -- Thermal equilibrium of light ions in heavy crystals / E. Tsyganov -- Photon emission of electrons in a crystalline undulator / H. Backe ... [et al.] -- Channeling radiation from relativistic electrons in a crystal target as complementary x-ray and gamma ray source at synchrotron light facilities / K. B. Korotchenko, Yu. L. Pivovarov and T. A. Tukhfatullin -- Diffracted channeling radiation and other compound radiation processes / H. Nitta -- Collective scattering on the atom planes under the condition of full transition / A. R. Mkrtchyan ... [et al.] -- The proposal of the experiment on the research of the diffracted channeling radiation / D. A. Baklanov ... [et al.] -- Positron channeling at the DaOne BTF Facility: the cup experiment / L. Quintieri ... [et al.] -- Radiation spectra of 200 MeV electrons in diamond and silicon crystals at axial and planar orientations / K. Fissum ... [et al.] -- Channeling experiments with electrons at the Mainz Microtron Mami / W. Lauth ... [et al.] -- Dechanneling of positrons by dislocations: effects of anharmonic interactions / J. George and A. P. Pathak -- Diffracted channeling radiation from axially channeled relativistic electrons / K. B. Korotchenko ... [et al.] -- Intensive quasi-monochromatic, directed x-ray radiation of planar channeled positron bunch / L. Gevorgian

  9. Nested Channels near Hellas

    NASA Image and Video Library

    2015-09-30

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows a channel system flowing to the southwest toward the huge Hellas impact basin. We're not sure if this channel-inside-a-channel was carved by flowing water or lava. Flowing water erodes channels, and flowing lava both erodes and melts surrounding rock to form channels. It's not clear whether a huge surge of water or lava first formed the wide channel and then subsided into a trickle to form this narrow, inner channel, or if a trickle formed the inner channel and a subsequent surge formed the wider one. Detailed analysis of the shape could reveal which scenario is most likely, as well as whether water or lava is responsible. Relevant observations for such a determination would include, for example, the facts that the channels lack levees (ridges along the banks) and that the inner channel diverts around a mound, which at one time was an island. This channel system flowed to the southwest toward the huge Hellas impact basin.

  10. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.

  11. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  12. MULTI-CHANNEL PULSE HEIGHT ANALYZER

    DOEpatents

    Boyer, K.; Johnstone, C.W.

    1958-11-25

    An improved multi-channel pulse height analyzer of the type where the device translates the amplitude of each pulse into a time duration electrical quantity which is utilized to control the length of a train of pulses forwarded to a scaler is described. The final state of the scaler for any one train of pulses selects the appropriate channel in a magnetic memory in which an additional count of one is placed. The improvement consists of a storage feature for storing a signal pulse so that in many instances when two signal pulses occur in rapid succession, the second pulse is preserved and processed at a later time.

  13. A case study of a density structure over a vertical magnetic field region in the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Diéval, C.; Morgan, D. D.; Pisa, D.; Lundin, R.

    2016-05-01

    One of the discoveries made by the radar sounder on the Mars Express spacecraft is the existence of magnetically controlled structures in the ionosphere of Mars, which result in bulges in the ionospheric electron density contours. These bulges lead in turn to oblique echoes, which show up as hyperbola-shaped features in the echograms. A hyperbola-shaped feature observed over an isolated region of strong crustal magnetic field is associated with a plasma cavity in the upper ionosphere and a corresponding density enhancement in the lower levels of the ionosphere. We suggest that along open magnetic field lines, the solar wind electrons are accelerated downward and the ionospheric ions are accelerated upward in a manner similar to the field line-driven auroral acceleration at Earth. This heating due to precipitating electrons may cause an increase in the scale height and may drive a loss of ionospheric plasma at high altitudes.

  14. Time-resolved voltage measurements in terawatt magnetically insulated transmission lines

    SciTech Connect

    Savage, M.E.; Mendel, C.W. Jr.; Grasser, T.W.; Simpson, W.W.; Zagar, D.M. )

    1990-12-01

    We have developed two voltage diagnostics that circumvent many of the difficulties of measuring voltage in magnetically insulated transmission lines driven by terawatt (megavolt and megampere) electrical pulsers. Two versions of simple vacuum capacitive probes use strong magnetic fields to deflect electrons from the anode-mounted displacement current collector. We then introduce the electron launching voltage monitor as a novel way to measure voltage. This device uses a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. The electron launching voltage monitor has a large number of advantages over methods commonly used to measure voltage, including large signal level, tolerance to poor vacuum, and nanosecond temporal response. This article shows designs for all these monitors, and presents data from experiments done on the SuperMite pulser at Sandia National Laboratories.

  15. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  16. Cholesterol and Kir channels

    PubMed Central

    Levitan, Irena

    2009-01-01

    To date, most of the major types of Kir channels, Kir2s, Kir3s, Kir4s and Kir6s, have been found to partition into cholesterol-rich membrane domains and/or to be regulated by changes in the level of membrane cholesterol. Surprisingly, however, in spite of the structural similarities between different Kirs, effects of cholesterol on different types of Kir channels vary from cholesterol-induced decrease in the current density (Kir2 channels) to the loss of channel activity by cholesterol depletion (Kir4 channels) and loss of channel coupling by different mediators (Kir3 and Kir6 channels). Recently, we have gained initial insights into the mechanisms responsible for cholesterol-induced suppression Kir2 channels, but mechanisms underlying cholesterol sensitivity of other Kir channels are mostly unknown. The goal of this review is to present a summary of the current knowledge of the distinct effects of cholesterol on different types of Kir channels in vitro and in vivo. PMID:19548316

  17. Superconducting magnet system for muon beam cooling

    SciTech Connect

    Andreev, N.; Johnson, R.P.; Kashikhin, V.S.; Kashikhin, V.V.; Novitski, I.; Yonehara, K.; Zlobin, A.; /Fermilab

    2006-08-01

    A helical cooling channel has been proposed to quickly reduce the six-dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. A novel superconducting magnet system for a muon beam cooling experiment is being designed at Fermilab. The inner volume of the cooling channel is filled with liquid helium where passing muon beam can be decelerated and cooled in a process of ionization energy loss. The magnet parameters are optimized to match the momentum of the beam as it slows down. The results of 3D magnetic analysis for two designs of magnet system, mechanical and quench protection considerations are discussed.

  18. Applying Alpha-Channeling to Mirror Machines

    SciTech Connect

    A.I. Zhmoginov and N.J. Fisch

    2012-03-16

    The α-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic α- particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefi t open-ended fusion devices. Here, the fundamental theory and practical aspects of α- channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the α-channeling mechanism. For practical implementation of the α -channeling effect in mirror geometry, suitable contained weakly-damped modes are identifi ed. In addition, the parameter space of candidate waves for implementing the α -channeling effect can be signi cantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the α-channeling wave to the fuel ions.

  19. R type anion channel

    PubMed Central

    Diatloff, Eugene; Peyronnet, Rémi; Colcombet, Jean; Thomine, Sébastien; Barbier-Brygoo, Hélène

    2010-01-01

    Plant genomes code for channels involved in the transport of cations, anions and uncharged molecules through membranes. Although the molecular identity of channels for cations and uncharged molecules has progressed rapidly in the recent years, the molecular identity of anion channels has lagged behind. Electrophysiological studies have identified S-type (slow) and R-type (rapid) anion channels. In this brief review, we summarize the proposed functions of the R-type anion channels which, like the S-type, were first characterized by electrophysiology over 20 years ago, but unlike the S-type, have still yet to be cloned. We show that the R-type channel can play multiple roles. PMID:21051946

  20. Introduction to sodium channels.

    PubMed

    Peters, Colin H; Ruben, Peter C

    2014-01-01

    Voltage-gated sodium channels (VGSCs) are present in many tissue types within the human body including both cardiac and neuronal tissues. Like other channels, VGSCs activate, deactivate, and inactivate in response to changes in membrane potential. VGSCs also have a similar structure to other channels: 24 transmembrane segments arranged into four domains that surround a central pore. The structure and electrical activity of these channels allows them to create and respond to electrical signals in the body. Because of their distribution throughout the body, VGSCs are implicated in a variety of diseases including epilepsy, cardiac arrhythmias, and neuropathic pain. As such the study of these channels is essential. This brief review will introduce sodium channel structure, physiology, and pathophysiology.

  1. HIPPI and Fibre Channel

    SciTech Connect

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background.

  2. Study of diffusion influence on plasma channel while transporting a low-energy high intensity electron beam in the low pressure gas

    NASA Astrophysics Data System (ADS)

    Zvigintsev, I. L.; Grigoriev, V. P.

    2017-05-01

    This work studies the mathematical model of plasma channel. We consider the beam current in the range of 100-400 A and the external magnetic field in the range of 100-1500 G. It is shown that plasma channel expands under the influence of diffusion. The channel expansion is inversely proportional to the external magnetic field magnitude.

  3. Calcium Channel Blockers

    MedlinePlus

    ... calcium channel blockers interact with grapefruit products. References Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  4. Switchable topological phonon channels

    NASA Astrophysics Data System (ADS)

    Süsstrunk, Roman; Zimmermann, Philipp; Huber, Sebastian D.

    2017-01-01

    Guiding energy deliberately is one of the central elements in engineering and information processing. It is often achieved by designing specific transport channels in a suitable material. Topological metamaterials offer a way to construct stable and efficient channels of unprecedented versatility. However, due to their stability it can be tricky to terminate them or to temporarily shut them off without changing the material properties massively. While a lot of effort was put into realizing mechanical topological metamaterials, almost no works deal with manipulating their edge channels in sight of applications. Here, we take a step in this direction, by taking advantage of local symmetry breaking potentials to build a switchable topological phonon channel.

  5. Selfcomplementary Quantum Channels

    NASA Astrophysics Data System (ADS)

    Smaczyński, Marek; Roga, Wojciech; Życzkowski, Karol

    2016-10-01

    Selfcomplementary quantum channels are characterized by such an interaction between the principal quantum system and the environment that leads to the same output states of both interacting systems. These maps can describe approximate quantum copy machines, as perfect copying of an unknown quantum state is not possible due to the celebrated no-cloning theorem. We provide here a parametrization of a large class of selfcomplementary channels and analyze their properties. Selfcomplementary channels preserve some residual coherences and residual entanglement. Investigating some measures of non-Markovianity, we show that time evolution under selfcomplementary channels is highly non-Markovian.

  6. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Study on the degradation of NMOSFETs with ultra-thin gate oxide under channel hot electron stress at high temperature

    NASA Astrophysics Data System (ADS)

    Hu, Shi-Gang; Hao, Yue; Ma, Xiao-Hua; Cao, Yan-Rong; Chen, Chi; Wu, Xiao-Feng

    2009-12-01

    This paper studies the degradation of device parameters and that of stress induced leakage current (SILC) of thin tunnel gate oxide under channel hot electron (CHE) stress at high temperature by using n-channel metal oxide semiconductor field effect transistors (NMOSFETs) with 1.4-nm gate oxides. The degradation of device parameters under CHE stress exhibits saturating time dependence at high temperature. The emphasis of this paper is on SILC of an ultra-thin-gate-oxide under CHE stress at high temperature. Based on the experimental results, it is found that there is a linear correlation between SILC degradation and Vh degradation in NMOSFETs during CHE stress. A model of the combined effect of oxide trapped negative charges and interface traps is developed to explain the origin of SILC during CHE stress.

  7. Nonlocal Boltzmann theory of plasma channels

    NASA Astrophysics Data System (ADS)

    Yu, S. S.; Melendez, R. E.

    1983-01-01

    The mathematical framework for the Lawrence Livermore National Lab. (LLNL) code NUTS is developed. This code is designed to study the evolution of an electron beam generated plasma channel at all pressures. The Boltzmann treatment of the secondary electrons presented include all inertial, nonlocal, electric and magnetic effects, as well as effects of atomic collisions. Field equations are advanced simultaneously and self-consistently with the evolving plasma currents.

  8. A linearization of quantum channels

    NASA Astrophysics Data System (ADS)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  9. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays

    PubMed Central

    Hejazian, Majid

    2016-01-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  10. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  11. State Machine Operation of the MICE Cooling Channel

    NASA Astrophysics Data System (ADS)

    Hanlet, Pierrick; Mice Collaboration

    2014-06-01

    The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The cooling channel for MICE has between 12 and 18 superconductnig solenoid coils in 3 to 7 magnets, depending on the staged development of the experiment. The magnets are coaxial and in close proximity which requires coordinated operation of the magnets when ramping, responding to quench conditions, and quench recovery. To reliably manage the operation of the magnets, MICE is implementing state machines for each magnet and an over-arching state machine for the magnets integrated in the cooling channel. The state machine transitions and operating parameters are stored/restored to/from the configuration database and coupled with MICE Run Control. Proper implementation of the state machines will not only ensure safe operation of the magnets, but will help ensure reliable data quality. A description of MICE, details of the state machines, and lessons learned from use of the state machines in recent magnet training tests will be discussed.

  12. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  13. Ion channels in microbes.

    PubMed

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-10-01

    Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric, view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Although at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant, and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future.

  14. Athermalized channeled spectropolarimeter enhancement.

    SciTech Connect

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  15. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1982-01-01

    Early observations of Mars conducted by means of telescopes are considered. Secchi introduced the Italian word 'canale' ('channel') in 1869 to describe apparent lines on the planet's surface. Between 1877 and 1888 Schiaparelli mapped a profusion of 'canali'. Schiaparelli's work led to famous controversies about Mars. This book attempts to investigate the puzzle posed by the Martian channels, taking into account also the results of the studies conducted with the aid of the two orbiting Viking spacecraft which have produced a total number of nearly 60,000 pictures. The channel types are discussed along with questions regarding the distribution, the ages, and the proposed origins of the channels. Attention is given to the geomorphology of Mars, the patterns and networks of Martian valleys, ice and the Martian surface, the outflow channels, catastrophic flood processes, questions of analogy between terrestrial and Martian geographic features, and Martian phenomena associated with water liquid or water ice.

  16. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1982-01-01

    Early observations of Mars conducted by means of telescopes are considered. Secchi introduced the Italian word 'canale' ('channel') in 1869 to describe apparent lines on the planet's surface. Between 1877 and 1888 Schiaparelli mapped a profusion of 'canali'. Schiaparelli's work led to famous controversies about Mars. This book attempts to investigate the puzzle posed by the Martian channels, taking into account also the results of the studies conducted with the aid of the two orbiting Viking spacecraft which have produced a total number of nearly 60,000 pictures. The channel types are discussed along with questions regarding the distribution, the ages, and the proposed origins of the channels. Attention is given to the geomorphology of Mars, the patterns and networks of Martian valleys, ice and the Martian surface, the outflow channels, catastrophic flood processes, questions of analogy between terrestrial and Martian geographic features, and Martian phenomena associated with water liquid or water ice.

  17. Design of Octupole Channel for Integrable Optics Test Accelerator

    SciTech Connect

    Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo; Valishev, Alexander; Wesseln, Steven

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  18. Resonant laser plasma channel undulator

    NASA Astrophysics Data System (ADS)

    Lei, Bifeng; Wang, Jingwei; Kharin, Vasily; Rykovanov, Sergey

    2016-10-01

    Laser-plasma based undulators/wigglers attract a lot of attention because of their potential for the next generation of compact ( cm scales) radiation sources. The undulator wavelength of plasma-based devices can theoretically reach 1 mm or less while keeping the undulator strength on the order of unity - values so far unachievable by conventional magnetic undulators. Recently, a novel type of the plasma channel undulator/wiggler (PIGGLER) based on the wakefields generated in a parabolic plasma channel by a laser pulse undergoing centroid oscillations was proposed. It was demonstrated analytically and with the help of numerical simulations that narrow-bandwidth, flexible polarization and bright UV-soft X-ray source can be obtained for the case when the laser pulse centroid oscillation frequency, proportional to the Rayleigh length of the laser pulse, is tuned to be much larger than the betatron frequency. In the current contribution, the case of the resonance, when the laser pulse centroid oscillation frequency is equal to the betatron frequency is discussed. It is shown that significant photon yield enhancement can be. Both linear and nonlinear regimes are studied. Helmholtz Institute Jena, Germany.

  19. Comparison of a 32-channel with a 12-channel head coil: are there relevant improvements for functional imaging?

    PubMed

    Kaza, Evangelia; Klose, Uwe; Lotze, Martin

    2011-07-01

    To evaluate the suitability of a 12- or 32-channel head coil and of a prescan normalization filter for functional magnetic resonance imaging (fMRI) studies at different brain regions. fMRI was obtained from 36 volunteers executing a visually instructed motor paradigm using a 12-channel head matrix coil and a 32-channel phased-array head coil with and without prescan normalization filtering at 3 T. The time-course signal-to-noise ratio (tSNR) and the magnitude of functional activation (beta-value, t-value, percent signal change) were statistically compared between experimental conditions for the contralateral primary motor and visual cortex, contralateral thalamus, and ipsilateral anterior cerebellar hemispheres. tSNR was higher overall measuring with the 32-channel array and with prescan normalization. Without filtering, the 32-channel array delivered higher functional activation magnitudes for the visual cortex, whereas the 12-channel array seemed superior in this respect in thalamus and cerebellum. Filtering did not considerably affect the fMRI-activation magnitude detected from the 12-channel coil; its application favored the 32-channel coil at the subcortical and cerebellar locations but disfavored it at the cortical ones. The 32-channel coil detected more fMRI-activation cortically but less subcortically than the 12-channel coil; prescan normalization improved activation parameters only at central brain structures. Copyright © 2011 Wiley-Liss, Inc.

  20. Specialty magnets

    SciTech Connect

    Halbach, K.

    1986-07-01

    A number of basic conceptual designs are explained for magnet systems that use permanent magnet materials. Included are iron free multipoles and hybrid magnets. Also appended is a discussion of the manufacturing process and magnetic properties of some permanent magnet materials. (LEW)

  1. On the magnetohydrodynamics flows in curved coaxial channels

    NASA Astrophysics Data System (ADS)

    Brushlinskii, K. V.; Styopin, E. V.

    2017-01-01

    Stationary plasma flows obtained by using numerical solutions of corresponding stationary problems in curved coaxial channels are considered. It is supposed that plasma interacts with own azimuthal magnetic field. The main attention of the paper is focused on accelerating transonic flows, which attract a considerable interest in the theory of plasma accelerators. It was demonstrated that a curvilinear configuration of a channel makes the significant contribution to distributions of basic plasma parameters.

  2. Alpha Channeling in Rotating Plasma with Stationary Waves

    SciTech Connect

    A. Fetterman and N.J. Fisch

    2010-02-15

    An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high nθ can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

  3. Propulsion by Helical Strips in Circular Channels

    NASA Astrophysics Data System (ADS)

    Yesilyurt, Serhat; Demir, Ebru

    2016-11-01

    Progress in manufacturing techniques avails the production of artificial micro swimmers (AMS) in various shapes and sizes. There are numerous studies on the generation of efficient locomotion by means of helical tails with circular cross-sections. This work focuses on locomotion with helical strips in circular channels. A CFD model is used to analyze the effects of geometric parameters and the radius of the channel on swimming velocity of infinite helical-strips in circular channels. Results show that there is an optimum wavelength that depends on thickness to channel radius ratio, suggesting that these parameters need to be optimized simultaneously. With constant torque, thinner strips swim faster, whereas under constant angular velocity application, thicker strips (in radial direction) prevail. As width approaches the wavelength, velocity decreases under both conditions, unless a magnetically coated tail is simulated, for which width has an optimum value. Increasing channel radius to helix amplitude ratio increases the velocity up to a maximum and after a slight drop, saturation occurs as bulk swimming conditions are approached.

  4. Dual channel self-oscillating optical magnetometer

    SciTech Connect

    Belfi, J.; Bevilacqua, G.; Biancalana, V.; Dancheva, Y.; Khanbekyan, K.; Moi, L.; Cartaleva, S.

    2009-05-15

    We report on a two-channel magnetometer based on nonlinear magneto-optical rotation in a Cs glass cell with buffer gas. The Cs atoms are optically pumped and probed by free running diode lasers tuned to the D{sub 2} line. A wide frequency modulation of the pump laser is used to produce both synchronous Zeeman optical pumping and hyperfine repumping. The magnetometer works in an unshielded environment, and a spurious signal from distant magnetic sources is rejected by means of differential measurement. In this regime the magnetometer simultaneously gives the magnetic field modulus and the field difference. Rejection of the common-mode noise allows for high-resolution magnetometry with a sensitivity of 2 pT/{radical}(Hz). This sensitivity, in conjunction with long-term stability and a large bandwidth, makes it possible to detect water proton magnetization and its free induction decay in a measurement volume of 5 cm{sup 3}.

  5. Fine Channel Networks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  6. Fine Channel Networks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  7. Assay for calcium channels

    SciTech Connect

    Glossmann, H.; Ferry, D.R.

    1985-01-01

    This chapter focuses on biochemical assays for Ca/sup 2 +/-selective channels in electrically excitable membranes which are blocked in electrophysiological and pharmacological experiments by verapamil, 1,4-dihydropyridines, diltiazen (and various other drugs), as well as inorganic di- or trivalent cations. The strategy employed is to use radiolabeled 1,4-dihydropyridine derivatives which block calcium channels with ED/sub 50/ values in the nanomolar range. Although tritiated d-cis-diltiazem and verapamil can be used to label calcium channels, the 1,4-dihydropyridines offer numerous advantages. The various sections cover tissue specificity of channel labeling, the complex interactions of divalent cations with the (/sup 3/H)nimodipine-labeled calcium channels, and the allosteric regulation of (/sup 3/H)nimodipine binding by the optically pure enantiomers of phenylalkylamine and benzothiazepine calcium channel blockers. A comparison of the properties of different tritiated 1,4-dihydropyridine radioligands and the iodinated channel probe (/sup 125/I)iodipine is given.

  8. Reconfigurable virtual electrowetting channels.

    PubMed

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  9. Computational analysis of enhanced magnetic bioseparation in microfluidic systems with flow-invasive magnetic elements.

    PubMed

    Khashan, S A; Alazzam, A; Furlani, E P

    2014-06-16

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer.

  10. Magnetic testing

    NASA Technical Reports Server (NTRS)

    Pasley, R. L.; Barton, J. R.

    1973-01-01

    Magnetic techniques are described for the nondestructive evaluation of defects in materials. The physical principles, and the magnetic-particle method are discussed along with magnetic-hysteresis measurements and electric current perturbations.

  11. Magnetic testing

    NASA Technical Reports Server (NTRS)

    Pasley, R. L.; Barton, J. R.

    1973-01-01

    Magnetic techniques are described for the nondestructive evaluation of defects in materials. The physical principles, and the magnetic-particle method are discussed along with magnetic-hysteresis measurements and electric current perturbations.

  12. Magnetic translator bearings

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  13. Channel Access in Erlang

    SciTech Connect

    Nicklaus, Dennis J.

    2013-10-13

    We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PV monitors.

  14. ARQ on fading channels

    NASA Astrophysics Data System (ADS)

    Beirouti, Patrick; Leib, Harry; Morgera, Salvatore D.

    A recursive procedure for obtaining a (2 to the power n)-state extended Gilbert-Elliott fading channel model suitable for n-bit block codes is described. The extended model may be used for numerical assessment of the throughput of a variety of popular automatic repeat-request schemes used over fading channels such as those encountered in mobile communications systems. Computationally efficient lower and upper performance bounds are also developed for low memory fading channels. It is found that the throughput of the stop-and-wait protocol exhibits a maximum; therefore, there exists an optimum codeword length for this automatic repeat-request scheme.

  15. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  16. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  17. Cylindrical Hall thrusters with permanent magnets

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-11-01

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction in both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  18. Cylindrical Hall Thrusters with Permanent Magnets

    SciTech Connect

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-10-18

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT. __________________________________________________

  19. Magnetic Materials

    DTIC Science & Technology

    1985-03-01

    recommends more research in the areas of rare-earth permanent magnets, amorphous mag t~ic materials and recording alleges -P/~ media and lists a number of...magnets ) Soft magnetic materialsI Storage media ) Magnetic bubbles, -’.- Transducers (magnetostriction and magnetoresistance). Electrophotography...magnets, amorphous magnetic materials, and recording media , and it lists a number of specific scientific challenges. .5, 5%; vi"e ,,S CONTENTS 1

  20. Simulation of double stage hall thruster with double-peaked magnetic field

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Li, Peng; Sun, Hezhi; Wei, Liqiu; Xu, Yu; Peng, Wuji; Su, Hongbo; Li, Hong; Yu, Daren

    2017-07-01

    This study adopts double permanent magnetic rings and four permanent magnetic rings to form two symmetrical magnetic peaks and two asymmetrical magnetic peaks in the channel of a Hall thruster, and uses a 2D-3V PIC-MCC model to analyze the influence of magnetic strength on the discharge characteristic and performance of Hall thrusters with an intermediate electrode and double-peaked magnetic field. As opposed to the two symmetrical magnetic peaks formed by double permanent magnetic rings, increasing the magnetic peak value deep within the channel can cause propellant ionization to occur; with the increase in the magnetic peak deep in the channel, the propellant utilization, thrust, and anode efficiency of the thruster are significantly improved. Double-peaked magnetic field can realize separate control of ionization and acceleration in a Hall thruster, and provide technical means for further improving thruster performance. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  1. Morphology of Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Vestine, E. H.

    1961-01-01

    This publication is a product of the continuing study of the properties of charged particles and fields in space being conducted by The RAND Corporation under contract No. NAS5-276 for the National Aeronautics and Space Administration. Magnetic storms, revealed by world-wide changes in the intensity of the earth's magnetic field, and emphasized by disturbances in electromagnetic communication channels, form detectable patterns on the surface of the earth and above it. The author draws together data from various times, places, and altitudes and, coupling these with what is known or inferred about the aurora, the ionosphere, and the relationship between them and the earth's radiation belts, creates a picture of what is believed to occur during a magnetic storm.

  2. Neodymium Magnets.

    ERIC Educational Resources Information Center

    Wida, Sam

    1992-01-01

    Uses extremely strong neodymium magnets to demonstrate several principles of physics including electromagnetic induction, Lenz's Law, domain theory, demagnetization, the Curie point, and magnetic flux lines. (MDH)

  3. Neodymium Magnets.

    ERIC Educational Resources Information Center

    Wida, Sam

    1992-01-01

    Uses extremely strong neodymium magnets to demonstrate several principles of physics including electromagnetic induction, Lenz's Law, domain theory, demagnetization, the Curie point, and magnetic flux lines. (MDH)

  4. Magnetohydrodynamic Vortex Behavior in Free-Surface Channel Flow

    NASA Astrophysics Data System (ADS)

    Kubricht, J.; Rhoads, J.; Spence, E.; Ji, H.

    2011-10-01

    Flowing liquid plasma-facing systems have been proposed for fusion devices due to their structural consistency and capability to withstand enormous heat fluxes. In support of these designs, the effects of magnetic field on the thermal mixing of conductive fluids need to be studied and understood. The Princeton Liquid Metal Experiment (LMX) consists of a free-surface, externally driven channel flow subjected to a strong vertical magnetic field. LMX uses an infrared camera and non-intrusive heat signatures to visually study the vortex street of a vertical cylinder while an array of potential probes has been installed to map the velocity profile for varying magnetic field strengths. Our studies show a decrease in surface activity with increasing field strength as well as distinct changes in vortex behavior. Velocity distributions across the channel are compared with infrared observations and the relationship between Strouhal number and magnetic field strength is examined.

  5. Turbulent transport of passive scalar in magnetohydrodynamic channel flow

    NASA Astrophysics Data System (ADS)

    Dey, Prasanta; Zikanov, Oleg

    2011-11-01

    Direct numerical simulations are conducted to analyze transport of a passive scalar in a turbulent flow of an electrically conducting fluid in a channel. Cases of imposed wall-normal, spanwise, and streamwise magnetic field are considered. The magnetic Reynolds and Prandtl numbers are assumed small. The hydrodynamic Reynolds number based on the channel half-width and mean velocity is Re=6000 and the Hartmann number varies from zero to the value slightly below the laminarization threshold. We find that the flow transformation caused by the magnetic field leads to significant changes of the statistical properties of the scalar distribution and of the rate of scalar transport. A particularly important factor is the suppression of turbulent fluctuations of wall-normal velocity in the cases of wall-normal and spanwise magnetic fields. The work is supported by the NSF through grant CBET 096557.

  6. Four-channel optically pumped atomic magnetometer for magnetoencephalography

    PubMed Central

    Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N.; Dagel, Amber L.; Schwindt, Peter D. D.

    2016-01-01

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization. PMID:27410816

  7. Four-channel optically pumped atomic magnetometer for magnetoencephalography.

    PubMed

    Colombo, Anthony P; Carter, Tony R; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N; Dagel, Amber L; Schwindt, Peter D D

    2016-07-11

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization.

  8. Software Compression for Partially Parallel Imaging with Multi-channels.

    PubMed

    Huang, Feng; Vijayakumar, Sathya; Akao, James

    2005-01-01

    In magnetic resonance imaging, multi-channel phased array coils enjoy a high signal to noise ratio (SNR) and better parallel imaging performance. But with the increase in number of channels, the reconstruction time and requirement for computer memory become inevitable problems. In this work, principle component analysis is applied to reduce the size of data and protect the performance of parallel imaging. Clinical data collected using a 32-channel cardiac coil are used in the experiments. Experimental results show that the proposed method dramatically reduces the processing time without much damage to the reconstructed image.

  9. Four-channel optically pumped atomic magnetometer for magnetoencephalography

    DOE PAGES

    Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; ...

    2016-06-29

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. As a result, this module will serve as a building block of an array for magnetic source localization.

  10. Four-channel optically pumped atomic magnetometer for magnetoencephalography

    DOE PAGES

    Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; ...

    2016-06-29

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. As a result, this module will serve as a building block of an array for magnetic source localization.

  11. Electromagnetic Fields Produced by Inclined Return Stroke Channel

    NASA Astrophysics Data System (ADS)

    Nemamcha, Abdelmalek; Houabes, Mourad

    2014-05-01

    In this paper further theoretical investigations to understand and elucidate recently raised questions on the characteristics of lightning return-strokes curried out. Using Antenna Theory (AT) model, which is extended to take into account the channel inclination, the electromagnetic fields expressions for vertical dipole are completed, and an inclined channel is properly modeled, vertical electric and azimuthally magnetic fields are computed at different distances (close, intermediate and far distance ranges). The computations show that amplitudes and wave forms of the electromagnetic fields at close and intermediate lightning environment are considerably affected by the channel inclination.

  12. Four-channel optically pumped atomic magnetometer for magnetoencephalography

    SciTech Connect

    Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; Jau, Yuan -Yu; Johnson, Cort N.; Dagel, Amber L.; Schwindt, Peter D. D.

    2016-06-29

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. As a result, this module will serve as a building block of an array for magnetic source localization.

  13. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  14. Stretchable inductor with liquid magnetic core

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Meyer, C. D.

    2016-03-01

    Adding magnetic materials is a well-established method for improving performance of inductors. However, traditional magnetic cores are rigid and poorly suited for the emerging field of stretchable electronics, where highly deformable inductors are used to wirelessly couple power and data signals. In this work, stretchable inductors are demonstrated based on the use of ferrofluids, magnetic liquids based on distributed magnetic particles, to create a compliant magnetic core. Using a silicone molding technique to create multi-layer fluidic channels, a liquid metal solenoid is fabricated around a ferrofluid channel. An analytical model is developed for the effects of mechanical strain, followed by experimental verification using two different ferrofluids with different permeabilities. Adding ferrofluid was found to increase the unstrained inductance by up to 280% relative to a similar inductor with a non-magnetic silicone core, while retaining the ability to survive uniaxial strains up to 100%.

  15. Homology modeling of transporter proteins (carriers and ion channels).

    PubMed

    Ravna, Aina Westrheim; Sylte, Ingebrigt

    2012-01-01

    Transporter proteins are divided into channels and carriers and constitute families of membrane proteins of physiological and pharmacological importance. These proteins are targeted by several currently prescribed drugs, and they have a large potential as targets for new drug development. Ion channels and carriers are difficult to express and purify in amounts for X-ray crystallography and nuclear magnetic resonance (NMR) studies, and few carrier and ion channel structures are deposited in the PDB database. The scarcity of atomic resolution 3D structures of carriers and channels is a problem for understanding their molecular mechanisms of action and for designing new compounds with therapeutic potentials. The homology modeling approach is a valuable approach for obtaining structural information about carriers and ion channels when no crystal structure of the protein of interest is available. In this chapter, computational approaches for constructing homology models of carriers and transporters are reviewed.

  16. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  17. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  18. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  19. Fractures and Channels

    NASA Image and Video Library

    2013-01-22

    This image from NASA 2001 Mars Odyssey spacecraft of the Claritas Fossae region illustrates how fractures affect other features. In this instance, the fractures control the path of several channels from upper right towards lower left.

  20. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  1. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  2. Design and performance of the LANL 158-channel magnetoencephalography system

    SciTech Connect

    Matlachov, A. N.; Kraus, Robert H., Jr.; Espy, M. A.; Best, E. D.; Briles, M. Carolyn; Raby, E. Y.; Flynn, E. R.

    2002-01-01

    Design and performance for a recently completed whole-head magnetoencephalography (MEG) system using a superconducting imaging-surface (SIS) surrounding an array of SQUID magnetometers is reported. The helmet-like SIS is hemispherical in shape with a brim. The SIS images nearby sources while shields sensors from ambient magnetic noise. The shielding factor depends on magnetometer position and orientation. Typical shielding values of 200 in central sulcus area have been observed. Nine reference channels form three vector magnetometers, which are placed outside SIS. Signal channels consist of 149 SQUID magnetometers with 0.84nT/{Phi}{sub 0} field sensitivity and less then 3 fT/{radical}Hz noise. Typical SQUID - room temperature separations are about 20mm in the cooled state. Twelve 16-channel flux-lock loop units are connected to two 96-channel control units allowing up to 192 total SQUID channels. The control unit includes signal conditioning circuits as well as system test and control circuits. After conditioning all signals are fed to 192-channel, 24-bit data acquisition system capable of sampling up to 48kSa/sec/channel. The SIS-MEG system enables high-quality human functional brain data to be recorded in a one-layer magnetically shielded room.

  3. Vortex transport in a channel with periodic constrictions

    NASA Astrophysics Data System (ADS)

    Kapra, A. V.; Y Vodolazov, D.; Misko, V. R.

    2013-09-01

    By numerically solving the time-dependent Ginzburg-Landau equations in a type-II superconductor, characterized by a critical temperature Tc1, and the coherence length ξ1, with a channel formed by overlapping rhombuses (diamond-like channel) made of another type-II superconductor, characterized, in general, by different Tc2 and ξ2, we investigate the dynamics of driven vortex matter for varying parameters of the channel: the width of the neck connecting the diamond cells, the cell geometry, and the ratio between the coherence lengths in the bank and the channel. We analyzed samples with periodic boundary conditions (which we call ‘infinite’ samples) and finite-size samples (with boundaries for vortex entry/exit), and we found that by tuning the channel parameters, one can manipulate the vortex dynamics, e.g., change the transition from flux-pinned to flux-flow regime and tune the slope of the IV-curves. In addition, we analyzed the effect of interstitial vortices on these characteristics. The critical current of this device was studied as a function of the applied magnetic field, jc(H). The function jc(H) reveals a striking commensurability peak, in agreement with recent experimental observations. The obtained results suggest that the diamond channel, which combines the properties of pinning arrays and flux-guiding channels, can be a promising candidate for potential use in devices controlling magnetic flux motion.

  4. Chloride channels in stroke

    PubMed Central

    Zhang, Ya-ping; Zhang, Hao; Duan, Dayue Darrel

    2013-01-01

    Vascular remodeling of cerebral arterioles, including proliferation, migration, and apoptosis of vascular smooth muscle cells (VSMCs), is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain, ie, stroke. Accumulating evidence strongly supports an important role for chloride (Cl−) channels in vascular remodeling and stroke. At least three Cl− channel genes are expressed in VSMCs: 1) the TMEM16A (or Ano1), which may encode the calcium-activated Cl− channels (CACCs); 2) the CLC-3 Cl− channel and Cl−/H+ antiporter, which is closely related to the volume-regulated Cl− channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR), which encodes the PKA- and PKC-activated Cl− channels. Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization, vasoconstriction, and inhibition of VSMC proliferation. Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species, induces proliferation and inhibits apoptosis of VSMCs. Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension. In addition, Cl− current mediated by gamma-aminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death. This review focuses on the functional roles of Cl− channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Cl− channels as new targets for the prevention and treatment of stroke. PMID:23103617

  5. The Effect of Extending the Length of the Coupling Coils in a MuonIonization Cooling Channel

    SciTech Connect

    Green, Michael A.

    2007-11-10

    RF cavities are used to re-accelerate muons that have beencooled by absorbers that are in low beta regions of a muon ionizationcooling channel. A superconducting coupling magnet (or magnets) arearound or among the RF cavities of a muon ionization-cooling channel. Thefield from the magnet guides the muons so that they are kept within theiris of the RF cavities that are used to accelerate the muons. Thisreport compares the use of a single short coupling magnet with anextended coupling magnet that has one or more superconducting coils aspart of a muon-cooling channel of the same design as the muon ionizationcooling experiment (MICE). Whether the superconducting magnet is shortand thick or long and this affects the magnet stored energy and the peakfield in the winding. The magnetic field distribution also affects is themuon beam optics in the cooling cell of a muon coolingchannel.

  6. Cl(-) channels in apoptosis.

    PubMed

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida; MacAulay, Nanna; Schreiber, Rainer; Kunzelmann, Karl

    2016-10-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also determines sensitivity towards cytostatic drugs such as cisplatin. Recent data point to a molecular and functional relationship of LRRC8A and anoctamins (ANOs). ANO6, 9, and 10 (TMEM16F, J, and K) augment apoptotic Cl(-) currents and AVD, but it remains unclear whether these anoctamins operate as Cl(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling.

  7. Fracture channel waves

    NASA Astrophysics Data System (ADS)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  8. Magnetic Support of Magnetic Fluid Droplet against Flow

    NASA Astrophysics Data System (ADS)

    Yamane, R.; Sakiyama, N.; Park, M. K.

    The magnetic droplet should be held in position against the flow of the blood for the magnetic drug targeting. In the present research, as the basis of this problem three types of experiments were conducted. In the first and the second experiments, a two-dimensional and a three-dimensional droplet are placed on the inclined flat plate and are supported by the magnetic force against the gravity. The maximum inclination for the droplet to flow down is measured. In the third experiment, a two-dimensional droplet is placed on the floor of the channel and is held in position by the magnetic force against the flow of the water. The droplet itself can be held at the position of the magnet, but, as the flow is faster, the spikes on the droplet move downstream with the water flow as if they rotate around the droplet.

  9. Selective channel combination of MRI signal phase.

    PubMed

    Vegh, Viktor; O'Brien, Kieran; Barth, Markus; Reutens, David C

    2016-11-01

    Signal magnitude can robustly be combined using the sum-of-squares approach. Methods have been developed to combine complex images. However, techniques based only on signal phase have not been developed and evaluated. We performed simulations to demonstrate the effect of noise on coil combination. 32-channel 7 Tesla human gradient echo MRI brain data were collected. We combined phase images based on phase noise leading to spatially selective and coil selective combination of phase images. We compared our selective combination approach to optimal noise distribution and adaptive combination methods. We found that selective combination of signal phases leads to improved phase signal-to-noise ratio. Furthermore, a phase shift can be present in combined phase images introduced by the method used to combine multiple channel phases. Mapping of signal phase from ultra-high field MRI data undoubtedly provides a wealth of information about the ageing brain and the effects of neurodegenerative disorders. Measurement of signal phase is essential in frequency shift mapping and in quantitative susceptibility mapping. The method used to combine signal phase should be informed by an understanding of the noise distribution in signal phase at the individual channel level. Magn Reson Med 76:1469-1477, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  10. Magnetic Spinner

    ERIC Educational Resources Information Center

    Ouseph, P. J.

    2006-01-01

    A science toy sometimes called the "magnetic spinner" is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays…

  11. Magnetic Levitation.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  12. Magnetic Levitation.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  13. Magnetic Spinner

    ERIC Educational Resources Information Center

    Ouseph, P. J.

    2006-01-01

    A science toy sometimes called the "magnetic spinner" is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays…

  14. Optical Communications Channel Combiner

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  15. TOPICAL REVIEW: Electron dynamics in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Nogaret, Alain

    2010-06-01

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation.

  16. Convection surrounding mesoscale ionospheric flow channels

    NASA Astrophysics Data System (ADS)

    Rinne, Y.; Moen, J.; Baker, J. B. H.; Carlson, H. C.

    2011-05-01

    We evaluate data from the European Incoherent Scatter (EISCAT) Svalbard radar (ESR) and Defense Meteorological Satellite Program (DMSP) spacecraft coupled with data from the Super Dual Auroral Radar Network (SuperDARN) polar cap convection patterns in order to study how the ionospheric convection evolves around a sequence of transient, mesoscale flow channel events in the duskside of the cusp inflow region. On a northwestward convection background for the interplanetary magnetic field (IMF) BY positive and BZ negative, a sequence of three eastward flow channels formed over the course of 1 hour in response to three sharp IMF rotations to IMF BY negative and IMF BZ positive. The first and third channels, due to IMF BY negative periods of ˜13 min and >30 min, respectively, develop in a similar manner: they span the entire ESR field of view and widen poleward with increasing time elapsed since their first appearance until the IMF rotates back. The convection patterns are consistent with the line-of-sight data from the ESR and DMSP within a 10 min adaption time. The flow lines form a twin-vortex flow, with the observed channel being the twin vortices' center flow. The fitting algorithm was pushed to its limits in terms of spatial resolution in this study. During portions of the channel events, the suggested twin-cell flow is not in agreement with our physical interpretation of the flow channels being reconnection events because cell closure is suggested across an anticipated nonreconnecting open-closed boundary. For these segments, we present simulated patterns which have been arrived at by a combination of looking at the raw data and examining the fitted convection patterns.

  17. Pool spacing in forest channels

    Treesearch

    David R. Montgomery; John M. Buffington; Richard D. Smith; Kevin M. Schmidt; George Pess

    1995-01-01

    Field surveys of stream channels in forested mountain drainage basins in southeast Alaska and Washington reveal that pool spacing depends on large woody debris (LWD) loading and channel type, slope, and width. Mean pool spacing in pool-riffle, plane-bed, and forced pool-riffle channels systematically decreases from greater than 13 channel widths per pool to less than 1...

  18. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    NASA Astrophysics Data System (ADS)

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour.

  19. Edge-channel interferometer at the graphene quantum Hall pn junction

    SciTech Connect

    Morikawa, Sei; Moriya, Rai; Masubuchi, Satoru Machida, Tomoki; Watanabe, Kenji; Taniguchi, Takashi

    2015-05-04

    We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharonov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels is confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.

  20. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b

    PubMed Central

    DeBerg, Hannah A.; Bankston, John R.; Rosenbaum, Joel C.; Brzovic, Peter S.; Zagotta, William N.; Stoll, Stefan

    2015-01-01

    Summary Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cAMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide-binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance (NMR), we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels. PMID:25800552

  1. In vivo proton observed carbon edited (POCE) (13) C magnetic resonance spectroscopy of the rat brain using a volumetric transmitter and receive-only surface coil on the proton channel.

    PubMed

    Kumaragamage, Chathura; Madularu, Dan; Mathieu, Axel P; De Feyter, Henk; Rajah, M Natasha; Near, Jamie

    2017-05-12

    In vivo carbon-13 ((13) C) MR spectroscopy (MRS) is capable of measuring energy metabolism and neuroenergetics, noninvasively in the brain. Indirect ((1) H-[(13) C]) MRS provides sensitivity benefits compared with direct (13) C methods, and normally includes a (1) H surface coil for both localization and signal reception. The aim was to develop a coil platform with homogenous B1+ and use short conventional pulses for short echo time proton observed carbon edited (POCE) MRS. A (1) H-[(13) C] MRS coil platform was designed with a volumetric resonator for (1) H transmit, and surface coils for (1) H reception and (13) C transmission. The Rx-only (1) H surface coil nullifies the requirement for a T/R switch before the (1) H preamplifier; the highpass filter and preamplifier can be placed proximal to the coil, thus minimizing sensitivity losses inherent with POCE-MRS systems described in the literature. The coil platform was evaluated with a PRESS-POCE sequence (TE = 12.6 ms) on a rat model. The coil provided excellent localization, uniform spin nutation, and sensitivity. (13) C labeling of Glu-H4 and Glx-H3 peaks, and the Glx-H2 peaks were observed approximately 13 and 21 min following the infusion of 1-(13) C glucose, respectively. A convenient and sensitive platform to study energy metabolism and neurotransmitter cycling is presented. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  3. Mitochondrial Ion Channels

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  4. TRP channel gating physiology.

    PubMed

    Nieto-Posadas, Andrés; Jara-Oseguera, Andrés; Rosenbaum, Tamara

    2011-01-01

    Transient Receptor Potential (TRP) cation channels participate in several processes of vital importance in cell and organism physiology, and have been demonstrated to participate in the detection of sensory stimuli. The thermo TRP's reviewed: TRPV1 (vanilloid 1), TRPM8 (melastatin 8) and TRPA1 (ankyrin-like 1) are known to integrate different chemical and physical stimuli such as changes in temperature and sensing different irritant or pungent compounds. However, despite the physiological importance of these channels the mechanisms by which they detect incoming stimuli, how the sensing domains are coupled to channel gating and how these processes are connected to specific structural regions in the channel are not fully understood, but valuable information is available. Many sites involved in agonist detection have been characterized and gating models that describe many features of the channel's behavior have been put forward. In this review we will survey some of the key findings concerning the structural and molecular mechanisms of TRPV1, TRPA1 and TRPM8 activation.

  5. Channel Identification Machines

    PubMed Central

    Lazar, Aurel A.; Slutskiy, Yevgeniy B.

    2012-01-01

    We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits. PMID:23227035

  6. TRP Channels and Analgesia

    PubMed Central

    Premkumar, Louis S.; Abooj, Mruvil

    2013-01-01

    Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control etc. PMID:22910182

  7. Calcium channels and migraine.

    PubMed

    Pietrobon, Daniela

    2013-07-01

    Missense mutations in CACNA1A, the gene that encodes the pore-forming α1 subunit of human voltage-gated Ca(V)2.1 (P/Q-type) calcium channels, cause a rare form of migraine with aura (familial hemiplegic migraine type 1: FHM1). Migraine is a common disabling brain disorder whose key manifestations are recurrent attacks of unilateral headache that may be preceded by transient neurological aura symptoms. This review, first, briefly summarizes current understanding of the pathophysiological mechanisms that are believed to underlie migraine headache, migraine aura and the onset of a migraine attack, and briefly describes the localization and function of neuronal Ca(V)2.1 channels in the brain regions that have been implicated in migraine pathogenesis. Then, the review describes and discusses i) the functional consequences of FHM1 mutations on the biophysical properties of recombinant human Ca(V)2.1 channels and native Ca(V)2.1 channels in neurons of knockin mouse models carrying the mild R192Q or severe S218L mutations in the orthologous gene, and ii) the functional consequences of these mutations on neurophysiological processes in the cerebral cortex and trigeminovascular system thought to be involved in the pathophysiology of migraine, and the insights into migraine mechanisms obtained from the functional analysis of these processes in FHM1 knockin mice. This article is part of a Special Issue entitled: Calcium channels.

  8. Wideband transhorizon channel characterization

    NASA Astrophysics Data System (ADS)

    Ndzi, David; Austin, John; Vilar, Enric

    2001-09-01

    The paper describes a 31.25 MHz bandwidth wideband channel sounder used to characterize a transhorizon path over the English Channel (La Manche) at 11.64 GHz. The measurements were done continuously for a period of 8 months (June 5, 1996, to January 5, 1997), capturing 515 Mb of data each day. A nonlinear regression technique, singular value decomposition prony (SVD-P), was used to estimate the channel impulse response from the measured transfer function. The received signal levels obtained together with their dynamic signatures were used to categorize the mechanisms into three broad groups: ducting, strong enhancements, and troposcatter. The statistical analysis carried out gave strong correlation between signal levels, delay spread, coherence bandwidth, and Doppler spread. The results also help to highlight the limitation of traditional channel characterization parameters such as delay spread. The investigation has also revealed the potential and propagation conditions of an over the sea transhorizon path as a high-data-rate communication channel. The research has qualified and quantified the interference potential in spectrum reuse and the frequency decorrelation probabilities to combat it.

  9. TRP channels and analgesia.

    PubMed

    Premkumar, Louis S; Abooj, Mruvil

    2013-03-19

    Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control, etc.

  10. Wakefield Propagation in Plasma Channels

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron; Leemans, Wim; Esarey, Eric; Shadwick, Brad; Wurtele, Johnathan

    2000-10-01

    Characteristics of laser wakefields propagating in plasma channels have been studied at the l'OASIS laser facility at LBNL. Plasma channels are formed in gas jets using the ignitor-heater method[1], allowing control of channel geometry and profile. The channels are characterized by longitudinal and transverse interferometry, giving both radial and longitudinal profiles of the channel. High intensity (>5E17 W/cm^2, 50fs) pulses at 800nm are guided in these channels and are used to create plasma wakes in the channel. Laser propagation in the channel is characterized by output mode images and energies, and the wakes are profiled by longitudinal spectral interferometry. Measurements of channel and wake profiles, and studies of wake dependence on channel parameters will be presented. [1]P.Volfbeyn, E.Esarey, W.P. Leemans, Phys Plasmas 6, 2269 (1999)

  11. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  12. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  13. Semi-Classical theory of Nonlinear interaction of circularly polarized optical vortex beam with plasma channel

    NASA Astrophysics Data System (ADS)

    Sharma, B. S.; Dhabhai, R. C.; Sharma, A.; Jaiman, N. K.

    2017-05-01

    A semiclassical approach of nonlinear interaction of intense circularly polarized optical vortex Laguerre-Gaussian (LG) beam modes with a plasma channel is analyzed theoretically and numerically. We study an exchange of angular momentum between the vortex beam and plasma channel. The transfer of angular momentum and the generated magnetic field are calculated. We have observed that both the generated magnetic field and angular momentum transfer depend on beam mode, intensity, and the polarization state of beam mode.

  14. Guidance of the divertor channel outside the main coil system for heliotron/torsatron devices

    NASA Astrophysics Data System (ADS)

    Takase, H.; Ohyabu, N.

    1995-02-01

    A divertor magnetic configuration is proposed that significantly reduces heat load on the divertor plates in heliotron/torsatron devices. The proposed configuration utilizes an octupole field for guiding the divertor channels to a remote area outside the main coil system, where the magnetic field is weak. This allows a significant reduction of the heat load due to expansion of the divertor channels as well as substantially easier access to the divertor plates for maintenance, the key requirements for toroidal fusion reactor designs

  15. A slow-speed multiple-channel analog-to-digital data logging system

    NASA Technical Reports Server (NTRS)

    Lloyd, T. C.; Flaherty, B. J.

    1973-01-01

    The system was developed to record from one up to a maximum of sixteen channels of analog data onto magnetic tape. Each analog channel of data can be sampled at rates of 1, 2, 6, 12, or 60 times per minute. The system is divided into three subunits: a digital clock, an incremental magnetic tape recorder, and a sequential converter. The interfacing requirements of these subunits are presented.

  16. One Channel Image Texture Based Interpretation

    NASA Astrophysics Data System (ADS)

    Rodinova, N. V.

    2011-03-01

    In single band and single polarized synthetic aperture radar (SAR) images, in individual channels of polarimetric SAR and multispectral images, in panchromatic images, magnetic resonance imaging, etc., the information is limited to the intensity and texture, and it is very difficult to interpret such images without any a priori information.This paper proposes to use the textural features (contrast, entropy and inverse moment), obtained from grey level co-occurrence matrix (GLCM), to segment one channel images. The interpretation of received texture merged color images are performed based on calculated texture feature values for various surface objects (forest, town, water, and so on) in initial image.SIR-C/X-SAR SLC L-band images, SPOT 4 multispectral and panchromatic images are used for illustration.

  17. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; ...

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  18. Chaos in quantum channels

    SciTech Connect

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  19. Entanglement-saving channels

    SciTech Connect

    Lami, L.; Giovannetti, V.

    2016-03-15

    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ is said to be ES if its powers ψ{sup n} are not entanglement-breaking for all integers n. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps that not only preserve entanglement for all finite n but which also sustain an explicitly not null level of entanglement in the asymptotic limit n → ∞. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.

  20. TRP channels and pain.

    PubMed

    Julius, David

    2013-01-01

    Nociception is the process whereby primary afferent nerve fibers of the somatosensory system detect noxious stimuli. Pungent irritants from pepper, mint, and mustard plants have served as powerful pharmacological tools for identifying molecules and mechanisms underlying this initial step of pain sensation. These natural products have revealed three members of the transient receptor potential (TRP) ion channel family--TRPV1, TRPM8, and TRPA1--as molecular detectors of thermal and chemical stimuli that activate sensory neurons to produce acute or persistent pain. Analysis of TRP channel function and expression has validated the existence of nociceptors as a specialized group of somatosensory neurons devoted to the detection of noxious stimuli. These studies are also providing insight into the coding logic of nociception and how specification of nociceptor subtypes underlies behavioral discrimination of noxious thermal, chemical, and mechanical stimuli. Biophysical and pharmacological characterization of these channels has provided the intellectual and technical foundation for developing new classes of analgesic drugs.

  1. Cryogenic microwave channelized receiver

    SciTech Connect

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-07-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results.

  2. Nanoscale Vacuum Channel Transistor.

    PubMed

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M

    2017-04-12

    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (<5 V) and provides a high drive current (>3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  3. Ionic Channels in Thunderclouds

    NASA Astrophysics Data System (ADS)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  4. The neutron channeling phenomenon.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    Shields, used for protection against radiation, are often pierced with vacuum channels for passing cables and other instruments for measurements. The neutron transmission through these shields is an unavoidable phenomenon. In this work we study and discuss the effect of channels on neutron transmission through shields. We consider an infinite homogeneous slab, with a fixed thickness (20 lambda, with lambda the mean free path of the neutron in the slab), which contains a vacuum channel. This slab is irradiated with an infinite source of neutrons on the left side and on the other side (right side) many detectors with windows equal to 2 lambda are placed in order to evaluate the neutron transmission probabilities (Khanouchi, A., Aboubekr, A., Ghassoun, J. and Jehouani, A. (1994) Rencontre Nationale des Jeunes Chercheurs en Physique. Casa Blanca Maroc; Khanouchi, A., Sabir, A., Ghassoun, J. and Jehouani, A. (1995) Premier Congré International des Intéractions Rayonnements Matière. Eljadida Maroc). The neutron history within the slab is simulated by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) and using the exponential biasing technique in order to improve the Monte Carlo calculation (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Aboubker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco). Then different geometries of the vacuum channel have been studied. For each geometry we have determined the detector response and calculated the neutron transmission probability for different detector positions. This neutron transmission probability presents a peak for the detectors placed in front of the vacuum channel. This study allowed us to clearly identify the neutron channeling phenomenon. One application of our study is to detect vacuum defects in materials.

  5. Chryse Outflow Channel

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of the south Chryse basin Valles Marineris outflow channels on Mars; north toward top. The scene shows on the southwest corner the chaotic terrain of the east part of Valles Marineris and two of its related canyons: Eos and Capri Chasmata (south to north). Ganges Chasma lies directly north. The chaos in the southern part of the image gives rise to several outflow channels, Shalbatana, Simud, Tiu, and Ares Valles (left to right), that drained north into the Chryse basin. The mouth of Ares Valles is the site of the Mars Pathfinder lander.

    This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 20 degrees S. to 20 degrees N. and from longitude 15 degrees to 53 degrees; Mercator projection.

    The south Chryse outflow channels are cut an average of 1 km into the cratered highland terrain. This terrain is about 9 km above datum near Valles Marineris and steadily decreases in elevation to 1 km below datum in the Chryse basin. Shalbatana is relatively narrow (10 km wide) but can reach 3 km in depth. The channel begins at a 2- to 3-km-deep circular depression within a large impact crater, whose floor is partly covered by a chaotic material, and ends in Simud Valles. Tiu and Simud Valles consist of a complex of connected channel floors and chaotic terrain and extend as far south as and connect to eastern Valles Marineris. Ares Vallis originates from discontinuous patches of chaotic terrain within large craters. In the Chryse basin the Ares channel forks; one branch continues northwest into central Chryse Planitia (Latin for plain) and the other extends north into eastern Chryse Planitia.

  6. Chryse Outflow Channel

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of the south Chryse basin Valles Marineris outflow channels on Mars; north toward top. The scene shows on the southwest corner the chaotic terrain of the east part of Valles Marineris and two of its related canyons: Eos and Capri Chasmata (south to north). Ganges Chasma lies directly north. The chaos in the southern part of the image gives rise to several outflow channels, Shalbatana, Simud, Tiu, and Ares Valles (left to right), that drained north into the Chryse basin. The mouth of Ares Valles is the site of the Mars Pathfinder lander.

    This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 20 degrees S. to 20 degrees N. and from longitude 15 degrees to 53 degrees; Mercator projection.

    The south Chryse outflow channels are cut an average of 1 km into the cratered highland terrain. This terrain is about 9 km above datum near Valles Marineris and steadily decreases in elevation to 1 km below datum in the Chryse basin. Shalbatana is relatively narrow (10 km wide) but can reach 3 km in depth. The channel begins at a 2- to 3-km-deep circular depression within a large impact crater, whose floor is partly covered by a chaotic material, and ends in Simud Valles. Tiu and Simud Valles consist of a complex of connected channel floors and chaotic terrain and extend as far south as and connect to eastern Valles Marineris. Ares Vallis originates from discontinuous patches of chaotic terrain within large craters. In the Chryse basin the Ares channel forks; one branch continues northwest into central Chryse Planitia (Latin for plain) and the other extends north into eastern Chryse Planitia.

  7. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  8. Wide, Branching Channels

    NASA Image and Video Library

    2017-01-11

    Southern spring on Mars brings sublimation of the seasonal dry ice polar cap. Gas trapped under the seasonal ice sheet carves channels on its way to escaping to the atmosphere. At this site, the channels are wider than we see elsewhere on Mars, perhaps meaning that the spider-like (or more scientifically, "araneiform") terrain here is older, or that the surface is more easily eroded. Seasonal fans of eroded surface material, pointed in two different directions, are deposited on the remaining ice. http://photojournal.jpl.nasa.gov/catalog/PIA13151

  9. Zeolites: Exploring Molecular Channels

    ScienceCinema

    Arslan, Ilke; Derewinski, Mirek

    2016-07-12

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  10. How Gas Carves Channels

    NASA Image and Video Library

    2017-01-24

    NASA Mars Reconnaissance Orbiter spies a layer of dry ice covering Mars south polar layer. In the spring, gas created from heating of the dry ice escapes through ruptures in the overlying seasonal ice, entraining material from the ground below. The gas erodes channels in the surface, generally exploiting weaker material. The ground likely started as polygonal patterned ground (common in water-ice-rich surfaces), and then escaping gas widened the channels. Fans of dark material are bits of the surface carried onto the top of the seasonal ice layer and deposited in a direction determined by local winds. http://photojournal.jpl.nasa.gov/catalog/PIA11706

  11. Tharsis Grooved Channel

    NASA Image and Video Library

    2002-12-04

    The Tharsis Montes region on Mars is a major center of volcanic and tectonic activity. The channel in this image from NASA Mars Odyssey is west of the relatively small volcano called Biblis Patera although it shows no obvious relationship to that volcano. Instead, it may be related to the more distant, but more massive volcano Olympus Mons to the north. The channel may have hosted flowing lava at one time but now contains a material that has eroded into an impressive ridge-and-groove pattern. These features may be yardangs, landforms produced from the erosion by wind of sedimentary material. http://photojournal.jpl.nasa.gov/catalog/PIA04020

  12. Alluvial channel hydraulics

    NASA Astrophysics Data System (ADS)

    Ackers, Peter

    1988-07-01

    The development and utilisation of water resources for irrigation, hydropower and public supply can be severely affected by sediment. Where there is a mature and well vegetated landscape, sediment problems may be relatively minor; but where slopes are steep and vegetation sparse, the yield of sediment from the catchment gives high concentrations in the rivers. In utilising these resources, for whatever purpose, an understanding of the hydraulics of alluvial channels is vital. The regime of any conveyance channel in alluvium depends on the interrelationships of sediment transport, channel resistance and bank stability. The regime concept was originally based on empirical relations obtained from observations from canal systems in the Indian subcontinent, and for many years was surrounded by a certain degree of mystique and much scepticism from academics. In more recent years the unabashed empiricism of the original method has been replaced by process-based methods, which have also served as broad confirmation of the classic regime formulae, including their extension to natural channels and meandering channels. The empirical approach to the hydraulics of alluvial channels has thus been updated by physically based formulae for sediment transport and resistance, though there remains some uncertainty about the third function to complete the definition of slope and geometry. Latest thoughts in this respect are that the channel seeks a natural optimum state. Physical modelling using scaled down representations of rivers and estuaries has been used for almost a century, but it requires the correct simulation of the relevant processes. The coming of a better understanding of the physics of sediment transport and the complexity of alluvial channel roughness leads to the conclusion that only in very restricted circumstances can scale models simulate closely the full-size condition. However, the quantification of these processes has been instrumental in the development of

  13. Plasma Channel Transport for Heavy Ion Fusion: Investigation of Beam Transport, Channel Initiation and Stability

    NASA Astrophysics Data System (ADS)

    Tauschwitz, Andreas; Niemann, Christoph; Penache, Dan; Birkner, Richard; Hoffmann, Dieter H. H.; Kobloch, Renate; Neff, Stefan; Presura, Radu; Ponce, Dave; Rosmej, Frank; Yu, Simon

    2002-12-01

    For final beam transport in an IFE reactor three alternatives are mainly discussed. These are neutralized ballistic transport, self-pinched transport, and plasma channel transport. Discharge plasma channels were investigated in the recent years at GSI Darmstadt and at LBNL Berkeley in a number of experiments. Different initiation mechanisms for gas discharges of up to 60 kA were studied and compared. In the Berkeley experiments laser ionization of organic vapors in a buffer gas was used to initiate and direct the discharge while at GSI laser gas heating and ion beam induced gas ionization were tested as initiation mechanisms. Measurements of temperature, electron density, gas density, and magnetic field distribution in the channels are compared with results of beam transport experiments at the GSI UNILAC accelerator and with MHD simulations of the 1D-fluidcode CYCLOPS, which was developed in Berkeley. Good agreement between plasma diagnostics results, measured ion optical properties and MHD simulations was found. Parameters that are required for a reactor application are a discharge current of 50 kA, a channel diameter below 1 cm, a pointing stability better than 500 μm, and MHD stability for more than 10 μs. These parameters have been demonstrated in the recent experiments. The results imply that transport channels work with sufficient stability, reproducibility and ion optical properties in a wide pressure range and for various discharge gases.

  14. What is the optimal channel density for transmyocardial laser revascularization?

    PubMed

    Mouli, Samdeep K; Fronza, Jeffrey; Greene, Rodney; Robert, Emmanuel S; Horvath, Keith A

    2004-10-01

    Transmyocardial laser revascularization (TMR) has demonstrated reproducible relief of angina in patients with end-stage coronary disease. However, the optimum dose or channel density has not been elucidated. Using a porcine model of chronic myocardial ischemia, 14 animals were treated with CO2 TMR and randomized as follows: group 1 was 1 channel per 2 cm2; group 2 was 1 channel per 1 cm2; and group 3 was 2 channels per 1 cm2. Left ventricular myocardial viability and function were assessed by magnetic resonance imaging (MRI) and echocardiography pretreatment, and repeated 6 weeks later. The MRI assessment of group 1 (1 channel/2 cm2) and group 2 (1 channel/cm2) demonstrated similar improvement in segmental contractility posttreatment of 12.11% +/- 5.15% and 12.47% +/- 9.51%, respectively. In contrast, group 3 (2 channels/cm2) showed significantly worse segmental contractility posttreatment: -18.52% +/- 7.16% (p = 0.01). Echocardiographic imaging revealed significant improvements in wall thickening in the ischemic zone for group 1 at 0.91 +/- 0.07 cm pretreatment versus 1.30 +/- 0.09 cm posttreatment, (p = 0.01); and for group 2 at 0.93 +/- 0.11 cm versus 1.42 +/- 0.18 cm, (p = 0.01). No significant improvement in wall thickening was seen in group 3 (0.84 +/- 0.06 cm versus 0.88 +/- 0.09 cm, p = n.s.). These data corroborate the empiric finding of an effective therapeutic dose range for TMR, 1 channel per 1 to 2 cm2. These results also demonstrate a detrimental effect when channel density is increased above the clinical standard of 1 channel per cm2 to a density of 2 channels per 1 cm2.

  15. Multi-channel scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Su-Young

    I designed, fabricated, assembled, and tested an 8-channel high- Tc scanning SQUID system. I started by modifying an existing single-channel 77 K high-Tc scanning SQUID microscope into a multi-channel system with the goal of reducing the scanning time and improving the spatial resolution by increasing the signal-to-noise ratio S/N. I modified the window assembly, SQUID chip assembly, cold-finger, and vacuum connector. The main concerns for the multi-channel system design were to reduce interaction between channels, to optimize the use of the inside space of the dewar for more than 50 shielded wires, and to achieve good spatial resolution. In the completed system, I obtained the transfer function and the dynamic range (phimax ˜ 11phi0) for each SQUID. At 1kHz, the slew rate is about 3000 phi0/s. I also found that the white noise level varies from 5 muphi0/Hz1/2 to 20 muphi 0/Hz1/2 depending on the SQUID. A new data acquisition program was written that triggered on position and collects data from up to eight SQUIDS. To generate a single image from the multichannel system, I calibrated the tilt of the xy-stage and z-stage manually, rearranged the scanned data by cutting overlapping parts, and determined the applied field by multiplying by the mutual inductance matrix. I found that I could reduce scanning time and improve the image quality by doing so. In addition, I have analyzed and observed the effect of position noise on magnetic field images and used these results to find the position noise in my scanning SQUID microscope. My analysis reveals the relationship between spatial resolution and position noise and that my system was dominated by position noise under typical operating conditions. I found that the smaller the sensor-sample separation, the greater the effect of position noise is on the total effective magnetic field noise and on spatial resolution. By averaging several scans, I found that I could reduce position noise and that the spatial resolution can

  16. Development of multistage magnetic deposition microscopy.

    PubMed

    Nath, Pulak; Strelnik, Joseph; Vasanji, Amit; Moore, Lee R; Williams, P Stephen; Zborowski, Maciej; Roy, Shuvo; Fleischman, Aaron J

    2009-01-01

    Magnetic deposition microscropy (MDM) combines magnetic deposition and optical analysis of magnetically tagged cells into a single platform. Our multistage MDM uses enclosed microfabricated channels and a magnet assembly comprising four zones in series. The enclosed channels alleviate the problem plaguing previous versions of MDM: scouring of the cell deposition layer by the air-liquid interface as the channel is drained. The four-zone magnet assembly was designed to maximize capture efficiency, and experiments yielded total capture efficiencies of >99% of fluorescent- and magnetically-labeled Jurkat cells at reasonable throughputs (10(3) cells/min). A digital image processing protocol was developed to measure the average pixel intensities of the deposited cells in different zones, indicative of the marker expression. Preliminary findings indicate that the multistage MDM may be suitable for depositing cells and particles in successive zones according to their magnetic properties (e.g., magnetic susceptibilities or magnetophoretic mobilities). The overall goal is to allow the screening of multiple disease conditions in a single platform.

  17. Ion channels in inflammation.

    PubMed

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  18. Learning in Tactile Channels

    ERIC Educational Resources Information Center

    Gescheider, George A.; Wright, John H.

    2012-01-01

    Vibrotactile intensity-discrimination thresholds for sinusoidal stimuli applied to the thenar eminence of the hand declined as a function of practice. However, improvement was confined to the tactile information-processing channel in which learning had occurred. Specifically, improvements in performance with training within the Pacinian-corpuscle…

  19. Developments in relativistic channeling

    SciTech Connect

    Carrigan, R.A. Jr.

    1996-10-01

    The possibility of using channeling as a tool for high energy accelerator applications and particle physics has now been extensively investigated. Bent crystals have been used for accelerator extraction and for particle deflection. Applications as accelerating devices have been discussed but have not yet been tried. 61 refs., 1 fig.

  20. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  1. Covert Channels within IRC

    DTIC Science & Technology

    2011-03-24

    Distribution ~NA maintain primary management responsibility and Statement "A" - unclassifed, unlimited distribution ? authority to release all...AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED... DISTRIBUTION UNLIMITED. AFIT/GCE/ENG/11-04 COVERT CHANNELS WITHIN IRC Wayne C. Henry, BSCE Captain, USAF Approved

  2. Channels of Propaganda.

    ERIC Educational Resources Information Center

    Sproule, J. Michael

    Defining propaganda as "efforts by special interests to win over the public covertly by infiltrating messages into various channels of public expression ordinarily viewed as politically neutral," this book argues that propaganda has become pervasive in American life. Pointing out that the 1990s society is inundated with propaganda from…

  3. Sodium channel auxiliary subunits.

    PubMed

    Tseng, Tsai-Tien; McMahon, Allison M; Johnson, Victoria T; Mangubat, Erwin Z; Zahm, Robert J; Pacold, Mary E; Jakobsson, Eric

    2007-01-01

    Voltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits. Recent interests in pharmacological properties of these auxiliary subunits have prompted significant amounts of efforts in understanding their physiological roles. Some auxiliary subunits can potentially serve as drug targets for novel analgesics. Three families of sodium channel auxiliary subunits are described here: beta1 and beta3, beta2 and beta4, and temperature-induced paralytic E (TipE). While sodium channel beta-subunits are encoded in many animal genomes, TipE has only been found exclusively in insects. In this review, we present phylogenetic analyses, discuss potential evolutionary origins and functional data available for each of these subunits. For each family, we also correlate the functional specificity with the history of evolution for the individual auxiliary subunits.

  4. Learning in Tactile Channels

    ERIC Educational Resources Information Center

    Gescheider, George A.; Wright, John H.

    2012-01-01

    Vibrotactile intensity-discrimination thresholds for sinusoidal stimuli applied to the thenar eminence of the hand declined as a function of practice. However, improvement was confined to the tactile information-processing channel in which learning had occurred. Specifically, improvements in performance with training within the Pacinian-corpuscle…

  5. Visual Channel Problems.

    ERIC Educational Resources Information Center

    Mann, Philip H.; Suiter, Patricia A.

    This teacher training module classifies visual channel problems into the following four main areas: visual perception, revisualization (memory), visual-motor (eye-hand coordination), and ocular-motor tasks. Specific deficits are listed under these main headings, behaviors are given to help identify the problem, and ways to improve the condition…

  6. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  7. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  8. A Helical Cooling Channel System for Muon Colliders

    SciTech Connect

    Katsuya Yonehara, Rolland Johnson, Michael Neubauer, Yaroslav Derbenev

    2010-03-01

    Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 105 emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

  9. Design of Helical Cooling Channel for Muon Collider

    SciTech Connect

    Yonehara, Katsuya; /Fermilab

    2010-07-30

    Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 10{sup 5} emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

  10. Magnetic Fields in Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Muehle, S.; Robishaw, T.; Everett, J.; Wilcots, E.; Zweibel, E.; Heiles, C.

    2007-12-01

    Magnetic fields are an important component of the interstellar medium (ISM). They provide a source of pressure support, transfer energy from supernovae, are a possible heating mechanism for the ISM, and channel gas flows. Despite the importance of magnetic fields in the ISM, what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies is not well understood. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. Only three irregular galaxies besides the LMC and the SMC have previously observed magnetic field structures. NGC 4449 (Chyzy et al. 2000) and the LMC (Gaensler et al. 2005) both have large-scale fields, while IC 10 and NGC 6822 have mostly random fields (Chyzy et al. 2003). Our goal is to determine what mechanisms generate and sustain large-scale magnetic fields in irregular galaxies and what causes the range of magnetic field structure in irregular galaxies. We have observed the polarized radio continuum emission of four irregular galaxies with the VLA, GBT, and ATCA. Our observations double the number of irregular galaxies with observed magnetic field structure. Here we present results from two of our galaxies: NGC 4214 and NGC 1569. We find that NGC 4214 has a mostly random magnetic field structure, which is not surprising given its weak bar, small size, and high star formation rate. The magnetic field of NGC 1569 has large-scale structure which has been shaped not by a dynamo, but by an outflow generated by the massive star formation rate in this galaxy. Support for this research has been provided by a GBT Student Support Award, a Wisconsin Space Grant Consortium Graduate Fellowship, and an NSF Graduate Research Fellowship.

  11. Mesoscale magnetism

    DOE PAGES

    Hoffmann, Axel; Schultheiß, Helmut

    2014-12-17

    Magnetic interactions give rise to a surprising amount of complexity due to the fact that both static and dynamic magnetic properties are governed by competing short-range exchange interactions and long-range dipolar coupling. Even though the underlying dynamical equations are well established, the connection of magnetization dynamics to other degrees of freedom, such as optical excitations, charge and heat flow, or mechanical motion, make magnetism a mesoscale research problem that is still wide open for exploration. Synthesizing magnetic materials and heterostructures with tailored properties will allow to take advantage of magnetic interactions spanning many length-scales, which can be probed with advancedmore » spectroscopy and microscopy and modeled with multi-scale simulations. Finally, this paper highlights some of the current basic research topics in mesoscale magnetism, which beyond their fundamental science impact are also expected to influence applications ranging from information technologies to magnetism based energy conversion.« less

  12. Mesoscale magnetism

    SciTech Connect

    Hoffmann, Axel; Schultheiß, Helmut

    2014-12-17

    Magnetic interactions give rise to a surprising amount of complexity due to the fact that both static and dynamic magnetic properties are governed by competing short-range exchange interactions and long-range dipolar coupling. Even though the underlying dynamical equations are well established, the connection of magnetization dynamics to other degrees of freedom, such as optical excitations, charge and heat flow, or mechanical motion, make magnetism a mesoscale research problem that is still wide open for exploration. Synthesizing magnetic materials and heterostructures with tailored properties will allow to take advantage of magnetic interactions spanning many length-scales, which can be probed with advanced spectroscopy and microscopy and modeled with multi-scale simulations. Finally, this paper highlights some of the current basic research topics in mesoscale magnetism, which beyond their fundamental science impact are also expected to influence applications ranging from information technologies to magnetism based energy conversion.

  13. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1981-01-01

    A synoptic view of early and recent data on the planetary magnetism of Mercury, Venus, the moon, Mars, Jupiter, and Saturn is presented. The data on Mercury from Mariner 10 are synthesized with various other sources, while data for Venus obtained from 120 orbits of Pioneer Venus give the upper limit of the magnetic dipole. Explorer 35 Lunar Orbiter data provided the first evidence of lunar magnetization, but it was the Apollo subsatellite data that measured accurately the magnetic dipole of the moon. A complete magnetic survey of Mars is still needed, and only some preliminary data are given on the magnetic dipole of the planet. Figures on the magnetic dipoles of Jupiter and Saturn are also suggested. It is concluded that if the magnetic field data are to be used to infer the interior properties of the planets, good measures of the multiple harmonics in the field are needed, which may be obtained only through low altitude polar orbits.

  14. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1981-01-01

    A synoptic view of early and recent data on the planetary magnetism of Mercury, Venus, the moon, Mars, Jupiter, and Saturn is presented. The data on Mercury from Mariner 10 are synthesized with various other sources, while data for Venus obtained from 120 orbits of Pioneer Venus give the upper limit of the magnetic dipole. Explorer 35 Lunar Orbiter data provided the first evidence of lunar magnetization, but it was the Apollo subsatellite data that measured accurately the magnetic dipole of the moon. A complete magnetic survey of Mars is still needed, and only some preliminary data are given on the magnetic dipole of the planet. Figures on the magnetic dipoles of Jupiter and Saturn are also suggested. It is concluded that if the magnetic field data are to be used to infer the interior properties of the planets, good measures of the multiple harmonics in the field are needed, which may be obtained only through low altitude polar orbits.

  15. Detection of New Dissociative Electron Attachment Channels in NO

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.

    1995-01-01

    Three dissociative electron attachment channels have been detected and identified in NO via measurement of the O minus (exp 2)P fragment energy. In addition to the known N((exp 2 D(exp 0)) + O minus (exp 2)P channel, two new channels N((exp 1 S(exp 0)) + 0 (2 P) and N(exp 2)P(exp 0) + O(exp 2)P were detected. Cross sections for each of the channels are reported by normalizing the scattering intensities to previously measured total cross sections. The experimental approach uses solenoidal magnetic confinement of the electrons and ions, and trochoidal energy analysis of the low-energy ions.

  16. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz [Livermore, CA

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  17. Superconducting magnets

    SciTech Connect

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  18. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  19. Magnetic microbeads for sampling and mixing in a microchannel

    NASA Astrophysics Data System (ADS)

    Owen, Drew; Ballard, Matt; Mao, Wenbin; Alexeev, Alexander; Hesketh, Peter J.

    2014-03-01

    Microfluidics provides exciting possibilities for miniaturized biosensors systems allowing for highly parallel automated high throughput tests to be performed. Detection of low concentrations of bacteria, viral particles and parasites in food samples is a challenging process. The capture of the target can be more effectively carried out with efficient mixing. We present a simple microfluidic system capable of controlled transport of rotating magnetic beads among soft magnetic patterns. Low aspect ratio NiFe discs (200 nm tall, diameter 3 μm) are patterned onto a silicon wafer. A PDMS channel is bonded onto the wafer to create the microfluidic channel. An external permanent magnet attached to a motor provides a magnetic field, which can be rotated at different speeds while magnetizing the NiFe disks in the channel. Microbeads (Dynabeads M-280, Invitrogen) introduced into the channel with a syringe pump are trapped at the poles of the now magnetized soft magnetic discs. Rotation of the external permanent magnet induced magnetic poles in the soft magnetic discs which will in turn rotate the trapped microbeads. We have already demonstrated the capacity to capture particles from flow with rotating M-280 beads in this device.

  20. Angular momentum loss and stellar spin-down in magnetic massive stars

    NASA Astrophysics Data System (ADS)

    ud-Doula, Asif; Owocki, Stanley P.; Townsend, Richard H. D.

    2009-04-01

    We examine the angular momentum loss and associated rotational spin-down for magnetic hot stars with a line-driven stellar wind and a rotation-aligned dipole magnetic field. Our analysis here is based on our previous 2-D numerical MHD simulation study that examines the interplay among wind, field, and rotation as a function of two dimensionless parameters, W(=Vrot/Vorb) and ‘wind magnetic confinement’, η∗ defined below. We compare and contrast the 2-D, time variable angular momentum loss of this dipole model of a hot-star wind with the classical 1-D steady-state analysis by Weber and Davis (WD), who used an idealized monopole field to model the angular momentum loss in the solar wind. Despite the differences, we find that the total angular momentum loss averaged over both solid angle and time follows closely the general WD scaling ~ ṀΩR2A. The key distinction is that for a dipole field Alfvèn radius RA is significantly smaller than for the monopole field WD used in their analyses. This leads to a slower stellar spin-down for the dipole field with typical spin-down times of order 1 Myr for several known magnetic massive stars.

  1. The superconducting solenoid magnets for MICE

    SciTech Connect

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.

  2. Magnetizing of permanent magnets using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  3. Learning Channels and Verbal Behavior

    ERIC Educational Resources Information Center

    Lin, Fan-Yu; Kubina, Richard M., Jr.

    2004-01-01

    This article reviews the basics of learning channels and how specification of stimuli can help enhance verbal behavior. This article will define learning channels and the role of the ability matrix in training verbal behavior.

  4. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, Charles A.; Godfrey, Brendon B.; Kiekel, Paul D.; Shope, Steven L.

    1988-01-01

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.

  5. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.

    1988-05-10

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.

  6. Channel processes and watershed function

    Treesearch

    Tom Lisle

    1999-01-01

    Purpose of this presentation is to put channel monitoring in context of channel processes and dispel the myth of the learned sage walking up the stream channel observing changes in the channel and extrapolating how these changes came about without looking at the rest of the watershed. The message I want to convey is it is not only O.K.to peek at the rest of the...

  7. Meander properties of Venusian channels

    NASA Technical Reports Server (NTRS)

    Komatsu, G.; Baker, V. R.

    1993-01-01

    Venusian lava channels have meander dimensions that relate to their mode of formation. Their meander properties generally follow terrestrial river trends of wavelength (L) to width (W) ratios, suggesting an equilibrium adjustment of channel form. Slightly higher L/W for many Venusian channels in comparison to terrestrial rivers may relate to nonaqueous flow processes. The unusually low L/W values for some Venusian and lunar sinuous rilles probably indicate modification of original meander patterns by lava-erosional channel widening.

  8. Radar channel balancing with commutation

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  9. Universality of receptor channel responses.

    PubMed

    Kardos, J; Nyikos, L

    2001-12-01

    Rate parameters estimated for neurotransmitter-gated receptor channel opening and receptor desensitization are classified according to their dependence on the temporal resolution of the techniques applied in the measurements. Because allosteric proteins constituting receptor channels impose restrictions on the types of model suitable to describe the dynamic response of channels to neurotransmitters, Markovian, non-linear or fractal dynamic models and their possible extension to receptor channel response in excitable membranes are discussed.

  10. Nanochannels: biological channel analogues.

    PubMed

    Pradeep, H; Rajanikant, G K

    2012-06-01

    The flux of ions across the biological membrane is a central activity to many cellular processes, from conduction of nerve impulse to the apoptosis. Traffic of ions or molecules across the membrane and organelles is governed by natural machines of great precision; ion channels, a special class of proteins, reside in the biological membranes. Recent studies in the field of nanoscience have concentrated on to precisely mimic the physical and chemical properties of these pores that make them increasingly attractive in this field. Synthetic nanoporous materials have a great deal of medical applications, including biosensing, biosorting, immune-isolation and drug delivery. In this review, the authors briefly describe the interesting synthetic channels that are extensively studied, and also attempt to furnish a precise overview of recent advances in this arena.

  11. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  12. ``Just Another Distribution Channel?''

    NASA Astrophysics Data System (ADS)

    Lemstra, Wolter; de Leeuw, Gerd-Jan; van de Kar, Els; Brand, Paul

    The telecommunications-centric business model of mobile operators is under attack due to technological convergence in the communication and content industries. This has resulted in a plethora of academic contributions on the design of new business models and service platform architectures. However, a discussion of the challenges that operators are facing in adopting these models is lacking. We assess these challenges by considering the mobile network as part of the value system of the content industry. We will argue that from the perspective of a content provider the mobile network is ‘just another’ distribution channel. Strategic options available for the mobile communication operators are to deliver an excellent distribution channel for content delivery or to move upwards in the value chain by becoming a content aggregator. To become a mobile content aggregator operators will have to develop or acquire complementary resources and capabilities. Whether this strategic option is sustainable remains open.

  13. Chryse Outflow Channel

    NASA Image and Video Library

    1998-06-08

    A color image of the south Chryse basin Valles Marineris outflow channels on Mars; north toward top. The scene shows on the southwest corner the chaotic terrain of the east part of Valles Marineris and two of its related canyons: Eos and Capri Chasmata (south to north). Ganges Chasma lies directly north. The chaos in the southern part of the image gives rise to several outflow channels, Shalbatana, Simud, Tiu, and Ares Valles (left to right), that drained north into the Chryse basin. The mouth of Ares Valles is the site of the Mars Pathfinder lander. This image is a composite of NASA's Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 20 degrees S. to 20 degrees N. and from longitude 15 degrees to 53 degrees; Mercator projection. http://photojournal.jpl.nasa.gov/catalog/PIA00418

  14. Lightning energetics: Estimates of energy dissipation in channels, channel radii, and channel-heating risetimes

    SciTech Connect

    Borovsky, J.E.

    1998-05-01

    In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear charge density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union

  15. Stream Channel Stability.

    DTIC Science & Technology

    1981-04-01

    geometry of the stilling basin and appurtenances for optimum energy dissipation. The hydraulic design, based on a 100-year return period design storm...cases the only viable alternative based on present technology is to let the channel seek its oa equilibrium, but attempt to minimize total losses by...are degrading, resulting in bank caving, land loss , and damage to highway bridges. Many streams have enlarged to the extent that 50 to 100-year runoff

  16. Athermal channeled spectropolarimeter

    SciTech Connect

    Jones, Julia Craven

    2015-12-08

    A temperature insensitive (athermal) channeled spectropolarimeter (CSP) is described. The athermal CSP includes a crystal retarder formed of a biaxial crystal. The crystal retarder has three crystal axes, wherein each axis has its own distinct index of refraction. The axes are oriented in a particular manner, causing an amplitude modulating carrier frequency induced by the crystal retarder to be thermally invariant. Accordingly, a calibration beam technique can be used over a relatively wide range of ambient temperatures, with a common calibration data set.

  17. Aquaglyceroporins: generalized metalloid channels

    PubMed Central

    Mukhopadhyay, Rita; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2014-01-01

    Background: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. Scope of Review: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. Major Conclusions: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. General Significance: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. PMID:24291688

  18. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  19. Cascading blockages in channel bundles

    NASA Astrophysics Data System (ADS)

    Barré, C.; Talbot, J.

    2015-11-01

    Flow in channel networks may involve a redistribution of flux following the blockage or failure of an individual link. Here we consider a simplified model consisting of Nc parallel channels conveying a particulate flux. Particles enter these channels according to a homogeneous Poisson process and an individual channel blocks if more than N particles are simultaneously present. The behavior of the composite system depends strongly on how the flux of entering particles is redistributed following a blockage. We consider two cases. In the first, the intensity on each open channel remains constant while in the second the total intensity is evenly redistributed over the open channels. We obtain exact results for arbitrary Nc and N for a system of independent channels and for arbitrary Nc and N =1 for coupled channels. For N >1 we present approximate analytical as well as numerical results. Independent channels block at a decreasing rate due to a simple combinatorial effect, while for coupled channels the interval between successive blockages remains constant for N =1 but decreases for N >1 . This accelerating cascade is due to the nonlinear dependence of the mean blocking time of a single channel on the entering particle flux that more than compensates for the decrease in the number of active channels.

  20. Cascading blockages in channel bundles.

    PubMed

    Barré, C; Talbot, J

    2015-11-01

    Flow in channel networks may involve a redistribution of flux following the blockage or failure of an individual link. Here we consider a simplified model consisting of N(c) parallel channels conveying a particulate flux. Particles enter these channels according to a homogeneous Poisson process and an individual channel blocks if more than N particles are simultaneously present. The behavior of the composite system depends strongly on how the flux of entering particles is redistributed following a blockage. We consider two cases. In the first, the intensity on each open channel remains constant while in the second the total intensity is evenly redistributed over the open channels. We obtain exact results for arbitrary N(c) and N for a system of independent channels and for arbitrary N(c) and N=1 for coupled channels. For N>1 we present approximate analytical as well as numerical results. Independent channels block at a decreasing rate due to a simple combinatorial effect, while for coupled channels the interval between successive blockages remains constant for N=1 but decreases for N>1. This accelerating cascade is due to the nonlinear dependence of the mean blocking time of a single channel on the entering particle flux that more than compensates for the decrease in the number of active channels.

  1. Ion channels in the RPE.

    PubMed

    Wimmers, Sönke; Karl, Mike O; Strauss, Olaf

    2007-05-01

    In close interaction with photoreceptors, the retinal pigment epithelium (RPE) plays an essential role for visual function. The analysis of RPE functions, specifically ion channel functions, provides a basis to understand many degenerative diseases of the retina. The invention of the patch-clamp technique significantly improved the knowledge of ion channel structure and function, which enabled a new understanding of cell physiology and patho-physiology of many diseases. In this review, ion channels identified in the RPE will be described in terms of their specific functional role in RPE physiology. The RPE expresses voltage- and ligand-gated K(+), Cl(-), and Ca(2+)-conducting channels. K(+) and Cl(-) channels are involved in transepithelial ion transport and volume regulation. Voltage-dependent Ca(2+) channels act as regulators of secretory activity, and ligand-gated cation channels contribute to RPE function by providing driving forces for ion transport or by influencing intracellular Ca(2+) homoeostasis. Collectively, activity of these ion channels determines the physiology of the RPE and its interaction with photoreceptors. Furthermore, changes in ion channel function, such as mutations in ion channel genes or a changed regulation of ion channel activity, have been shown to lead to degenerative diseases of the retina. Increasing knowledge about the properties of RPE ion channels has not only provided a new understanding of RPE function but has also provided greater understanding of RPE function in health and disease.

  2. Comments on ionization cooling channels

    NASA Astrophysics Data System (ADS)

    Neuffer, D.

    2017-09-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  3. Micro-channel plate detector

    DOEpatents

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  4. Ion channeling revisited

    SciTech Connect

    Doyle, Barney Lee; Corona, Aldo; Nguyen, Anh

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  5. Magneto-Optical Study of Lithographically Patterned Ferromagnetic Multilayer (Co/Pt)8 Micro-Channels

    NASA Astrophysics Data System (ADS)

    Bowers, Alexis; Samarth, Nitin; Kempinger, Susan; Fraleigh, Robert

    Controlled domain movement in magnetic structures has become promising for applications in magnetic memory systems and data processing. This study examines magnetic domain nucleation and propagation within a series of lithographically patterned Co/Pt micro-channels with perpendicular magnetic anisotropy (PMA). Magnetic domains are nucleated and then manipulated using out-of-plane sweep protocols and studied in situ using magneto-optical Kerr effect (MOKE) imaging. Co/Pt multilayers were fabricated with optical lithography and sputter deposition. Effects of channel width and annealing are presented. Annealing the Co/Pt after fabrication as a function of time and temperature resulted in increasing the coercivity of the unpatterned film, decreasing the coercivity of the micro-channels, and reducing the average domain size in both. Atomic force microscopy (AFM) characterization of the micro-channels showed non-uniform deposition near feature edges. MOKE imaging demonstrated that the feature edges had a much lower coercivity (70G) than the middle of the channel/pad (150G) or the unpatterned film (250G). We found that an oscillating field protocol to re-initialize soft domains near feature edges proved to be more effective than a traditional field sweep to initialize a domain wall in the channel. Once a domain wall was formed, we explored a combination of constant and pulsed field protocols to manipulate the domain wall. 2015 Penn State REU in Interdisciplinary Materials and Physics.

  6. A multi-channel high-? SQUID system and its application

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Tanaka, Saburou; Toyoda, Haruhisa; Hirano, Tetsuya; Haruta, Yasuhiro; Nomura, Masahiro; Saijou, Tetsuya; Kado, Hisashi

    1996-04-01

    A multi-channel high-temperature superconducting interference device (high-0953-2048/9/4A/011/img11 SQUID) system has been developed. Step edge junctions were employed for the SQUID. Magnetic field resolution was in the range 0953-2048/9/4A/011/img12 at 1 Hz, 0953-2048/9/4A/011/img13 at 10 Hz and 0953-2048/9/4A/011/img14 at 1 kHz. We have designed and developed 16-channel and 32-channel high-0953-2048/9/4A/011/img11 SQUID systems. We used them in a magnetically shielded room to measure magnetic signals of the human heart. We obtained clear multi-channel magnetocardiac signals, which showed clearly the R, S, and T wave peaks. A clear isofield contour map of magnetocardiac signals was also obtained. We also observed activities of the stomach using a tiny steel ball as a tracer. These data indicate that the use of the high-0953-2048/9/4A/011/img11 SQUID is feasible for these biomagnetic applications.

  7. Simulations of peristaltic slip-flow of hydromagnetic bio-fluid in a curved channel

    NASA Astrophysics Data System (ADS)

    Ali, N.; Javid, K.; Sajid, M.

    2016-02-01

    The influence of slip and magnetic field on transport characteristics of a bio-fluid are analyzed in a curved channel. The problem is modeled in curvilinear coordinate system under the assumption that the wavelength of the peristaltic wave is larger in magnitude compared to the width of the channel. The resulting nonlinear boundary value problem (BVP) is solved using an implicit finite difference technique (FDT). The flow velocity, pressure rise per wavelength and stream function are illustrated through graphs for various values of rheological and geometrical parameters of the problem. The study reveals that a thin boundary layer exists at the channel wall for strong magnetic field. Moreover, small values of Weissenberg number counteract the curvature and make the velocity profile symmetric. It is also observed that pressure rise per wavelength in pumping region increases (decreases) by increasing magnetic field, Weissenberg number and curvature of the channel (slip parameter).

  8. Position and Trajectrories of helical microswimmers inside circular channels

    NASA Astrophysics Data System (ADS)

    Caldag, Hakan; Yesilyurt, Serhat

    2015-11-01

    This work reports the position and orientation of helical mm-sized microswimmers in circular channels obtained by image processing of recorded images. Microswimmers are biologically inspired structures with huge potential for medical practices such as delivery of potent drugs into tissues. In order to understand the hydrodynamic effects of confinement on the velocity and stability of trajectories of swimmers, we developed helical microswimmers with a magnetic head and a rigid helical tail, similar to those of E. coli bacteria. The experiments are recorded using a digital camera, which is placed above the experimental setup that consists of three Helmholtz pairs, generating a rotating magnetic field. A channel containing the microswimmer is placed along the axis of the innermost coil. Image processing tools based on contrast-enhancement are used to obtain the centroid of the head of the swimmer and orientation of the whole swimmer in the channel. Swimmers that move in the direction of the head, i.e. pushed kinematically by the tail, has helical trajectories, which are more unstable in the presence of Poiesuille flow inside the channel; and the swimmers that are pulled by the tail, have trajectories that stabilize at the centerline of the channel.

  9. Effects of volatile anesthetic on channel structure of gramicidin A.

    PubMed Central

    Tang, Pei; Mandal, Pravat K; Zegarra, Martha

    2002-01-01

    Volatile anesthetic agent, 1-chloro-1,2,2-trifluorocyclobutane (F3), was found to alter gramicidin A channel function by enhancing Na(+) transport (. Biophys. J. 77:739-746). Whether this functional change is associated with structural alternation is evaluated by circular dichroism and nuclear magnetic resonance spectroscopy. The circular dichroism and nuclear magnetic resonance results indicate that at low millimolar concentrations, 1-chloro-1,2,2-trifluorocyclobutane causes minimal changes in gramicidin A channel structure in sodium dodecyl sulfate micelles. All hydrogen bonds between channel backbones are well maintained in the presence of 1-chloro-1,2,2-trifluorocyclobutane, and the channel structure is stable. The finding supports the notion that low affinity drugs such as volatile anesthetics and alcohols can cause significant changes in protein function without necessarily producing associated changes in protein structure. To understand the molecular mechanism of general anesthesia, it is important to recognize that in addition to structural changes, other protein properties, including dynamic characteristics of channel motions, may also be of functional significance. PMID:12202367

  10. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz

    2013-12-01

    Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

  11. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center

    SciTech Connect

    Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz

    2013-12-15

    Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

  12. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center.

    PubMed

    Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz

    2013-12-01

    Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

  13. Magnetic investigations

    SciTech Connect

    Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G.; Baldwin, M.J.

    1983-12-31

    Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.

  14. Voltage-Gated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  15. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    PubMed

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.

  16. Electrical conductivity channels in the atmosphere produced by relativistic-electron microbursts from the magnetosphere

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.

    2017-03-01

    The properties of a cylindrical-shaped magnetic-field-aligned channel of electrical conductivity produced by the precipitation of relativistic-electrons into the atmosphere during a spatially localized magnetospheric microburst are estimated. The conducting channel connects the middle atmosphere ( 50 km) to the ionosphere. A channel diameter of 8 km with an electric conductivity of 1.2×10-9 Ω-1m-1 near the bottom and 1.8×10-7 Ω-1m-1 higher up is found. In the fair-weather electric field, the higher-conductivity portions of the channel can carry substantial electrical currents.

  17. Roughness characteristics of natural channels

    USGS Publications Warehouse

    Barnes, Harry Hawthorne

    1967-01-01

    Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .

  18. Intersecting Channels near Olympica Fossae

    NASA Image and Video Library

    2016-09-21

    This complicated area contains various types of channels, pits and fractures. We can determine the relative ages of the pits and channels based on which features cross-cut others. Older channels appear smooth-edged and shallow. Younger channels and pits are deeper and more sharp-edged, as well as less sinuous than the shallower channels. What caused this array of various channels and intersecting pits? This region is covered in vast lava flows. The collapse pits here may be collapsed lava tubes or where overlying rock "drained" into voids created by extensional faulting. The older smoother channel that seems to source from this region may have carried an outflow of groundwater. It continues on for over 100 kilometers (62 miles). The orientation and shapes of these features make an interesting geological puzzle. http://photojournal.jpl.nasa.gov/catalog/PIA21066

  19. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  20. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  1. STRUCTURE AND DYNAMICS OF QUIESCENT FILAMENT CHANNELS OBSERVED BY HINODE/XRT AND STEREO/EUVI

    SciTech Connect

    Su Yingna; Van Ballegooijen, Adriaan; Golub, Leon

    2010-09-20

    We present a study of the structure and dynamics of quiescent filament channels observed by Hinode/XRT and STEREO/EUVI at the solar minimum 23/24 from 2006 November to 2008 December. For 12 channels identified on the solar disk (Group I channels), we find that the morphology of the structure on the two sides of the channel is asymmetric in both X-rays and EUV: the eastern side has curved features while the western side has straight features. We interpret the results in terms of a magnetic flux rope model. The asymmetry in the morphology is due to the variation in axial flux of the flux rope along the channel, which causes the field lines from one polarity to turn into the flux rope (curved feature), while the field lines from the other polarity are connected to very distant sources (straight). For most of the 68 channels identified by cavities at the east and west limbs (Group II channels), the asymmetry cannot be clearly identified, which is likely due to the fact that the axial flux may be relatively constant along such channels. Corresponding cavities are identified only for 5 of the 12 Group I channels, while Group II channels are identified for all of the 68 cavity pairs. The studied filament channels are often observed as dark channels in X-rays and EUV. Sheared loops within Group I channels are often seen in X-rays, but are rarely seen in Group II channels as shown in the X-ray Telescope daily synoptic observations. A survey of the dynamics of studied filament channels shows that filament eruptions occur at an average rate of 1.4 filament eruptions per channel per solar rotation.

  2. Single-channel properties of IKs potassium channels.

    PubMed

    Yang, Y; Sigworth, F J

    1998-12-01

    Expressed in Xenopus oocytes, KvLQT1 channel subunits yield a small, rapidly activating, voltage- dependent potassium conductance. When coexpressed with the minK gene product, a slowly activating and much larger potassium current results. Using fluctuation analysis and single-channel recordings, we have studied the currents formed by human KvLQT1 subunits alone and in conjunction with human or rat minK subunits. With low external K+, the single-channel conductances of these three channel types are estimated to be 0.7, 4.5, and 6.5 pS, respectively, based on noise analysis at 20 kHz bandwidth of currents at +50 mV. Power spectra computed over the range 0.1 Hz-20 kHz show a weak frequency dependence, consistent with current interruptions occurring on a broad range of time scales. The broad spectrum causes the apparent single-channel current value to depend on the bandwidth of the recording, and is mirrored in very "flickery" single-channel events of the channels from coexpressed KvLQT1 and human minK subunits. The increase in macroscopic current due to the presence of the minK subunit is accounted for by the increased apparent single-channel conductance it confers on the expressed channels. The rat minK subunit also confers the property that the outward single-channel current is increased by external potassium ions.

  3. Magnetic switching

    NASA Astrophysics Data System (ADS)

    Kirbie, H. C.

    1989-04-01

    Magnetic switching is a pulse compression technique that uses a saturable inductor (reactor) to pass pulses of energy between two capacitors. A high degree of pulse compression can be achieved in a network when several of these simple, magnetically switched circuits are connected in series. Individual inductors are designed to saturate in cascade as a pulse moves along the network. The technique is particularly useful when a single-pulse network must be very reliable or when a multi-pulse network must operate at a high pulse repetition frequency (PRF). Today, magnetic switches trigger spark gaps, sharpen the risetimes of high energy pulses, power large lasers, and drive high PRF linear induction accelerators. This paper will describe the technique of magnetic pulse compression using simple networks and design equations. A brief review of modern magnetic materials and of their role in magnetic switch design will be presented.

  4. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  5. Magnetic nanocomposites.

    PubMed

    Behrens, Silke; Appel, Ingo

    2016-06-01

    Magnetic nanocomposites are multi-component materials, typically containing nanosized magnetic materials to trigger the response to an external stimulus (i.e., an external static or alternating magnetic field). Up to now, the search for novel nanocomposites has lead to the combination of a plethora of different materials (e.g., gels, liquid crystals, renewable polymers, silica, carbon or metal organic frameworks) with various types of magnetic particles, offering exciting perspectives not only for fundamental investigations but also for application in various fields, including medical therapy and diagnosis, separations, actuation, or catalysis. In this review, we have selected a few of the most recent examples to highlight general concepts and advances in the preparation of magnetic nanocomposites and recent advances in the synthesis of magnetic nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Magnetic Coiling

    NASA Image and Video Library

    2016-07-18

    One broad active region sported a wonderful example of coiled magnetic field lines over almost a four-day period (July 15-18, 2016). The magnetic lines are easily visible in this 171 Angstrom wavelength of extreme ultraviolet light be cause charged particles are spiraling along the lines. The active region is a hotbed of struggling magnetic forces that were pushing out above the sun's surface. http://photojournal.jpl.nasa.gov/catalog/PIA17911

  7. Channel to Nowhere

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 22 May 2003

    A channel-like feature roughly halfway between the Isidis Basin and Elysium Mons shows no connection to either a source region or terminal basin. It may be that this feature is not a channel at all and has instead arisen from the erosion of a once continuous layer of material into remnants that mimic a channel.

    Image information: VIS instrument. Latitude 20.9, Longitude 105 East (255) meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Channels and Erosion

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 20 June 2003

    The dissected and eroded channel observed in this THEMIS image taken of plains materials southwest of the volcano Elysium Mons shows typical erosional islands and depositional features. The interesting thing about this channel is that it appears to start out of nowhere. The MOLA context image shows that the channel originates from a fissure within the ground, whose origin is likely volcanic, but may also be related to volatile processes.

    Image information: VIS instrument. Latitude 19.5, Longitude 126.8 East (233.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Channels and Erosion

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 20 June 2003

    The dissected and eroded channel observed in this THEMIS image taken of plains materials southwest of the volcano Elysium Mons shows typical erosional islands and depositional features. The interesting thing about this channel is that it appears to start out of nowhere. The MOLA context image shows that the channel originates from a fissure within the ground, whose origin is likely volcanic, but may also be related to volatile processes.

    Image information: VIS instrument. Latitude 19.5, Longitude 126.8 East (233.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells

    PubMed Central

    Sun, Chen; Hassanisaber, Hamid; Yu, Richard; Ma, Sai; Verbridge, Scott S.; Lu, Chang

    2016-01-01

    In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples. PMID:27388549

  11. Population Enrichment and Isolation with Magnetic Sorting

    DTIC Science & Technology

    2011-09-01

    diposable, microfluidic cartridges. Along with magnetic sorting methods, we detail flow cytometry analysis techniques to quantify cell population...panel. The red signal in each plot is the background cell fluorescence measured in the PE emission channel . Either a histogram of PE-H vs. count or...Recently, the U.S. Army Research Laboratory (ARL) transitioned a microfluidic magnetic sorter (MMS) from Cynvenio Biosystems during an ICB 6.2

  12. The Tow Channel

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. During World War II, the Jet Propulsion Laboratory had a contract with the U.S. Army to develop rocket torpedoes. This picture from August 1944 shows the test facility, known as the "Tow Channel." It was used for storage for many years before being torn out to make space for the Earth and Space Science Laboratory (Building 300) and the Microdevices Laboratory (Building 302). http://photojournal.jpl.nasa.gov/catalog/PIA21124

  13. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io.

  14. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  15. Magnetic shielding

    DOEpatents

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  16. Planetary Magnetism

    SciTech Connect

    Russell, C.T.

    1980-02-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io.

  17. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io.

  18. Enhanced betatron radiation in strongly magnetized plasma

    SciTech Connect

    Pan, K. Q.; Zheng, C. Y. He, X. T.; Cao, L. H.; Liu, Z. J.

    2016-04-15

    Betatron radiation in strongly magnetized plasma is investigated by two dimensional (2D) particle-in-cell (PIC) simulations. The results show that the betatron radiation in magnetized plasmas is strongly enhanced and is more collimated compared to that in unmagnetized plasma. Single particle model analysis shows that the frequency and the amplitude of the electrons's betatron oscillation are strongly influenced by the axial external magnetic field and the axial self-generated magnetic field. And the 2D PIC simulation shows that the axial magnetic field is actually induced by the external magnetic field and tends to increase the betatron frequency. By disturbing the perturbation of the plasma density in the laser-produced channel, the hosing instability is also suppressed, which results in a better angular distribution and a better symmetry of the betatron radiation.

  19. Bacterial sodium channels: models for eukaryotic sodium and calcium channels.

    PubMed

    Scheuer, Todd

    2014-01-01

    Eukaryotic sodium and calcium channels are made up of four linked homologous but different transmembrane domains. Bacteria express sodium channels comprised of four identical subunits, each being analogous to a single homologous domain of their eukaryotic counterparts. Key elements of primary structure are conserved between bacterial and eukaryotic sodium and calcium channels. The simple protein structure of the bacterial channels has allowed extensive structure-function probes of key regions as well as allowing determination of several X-ray crystallographic structures of these channels. The structures have revealed novel features of sodium and calcium channel pores and elucidated the structural importance of many of the conserved features of primary sequence. The structural information has also formed the basis for computational studies probing the basis for sodium and calcium selectivity and gating.

  20. A hybrid method for more efficient channel-by-channel reconstruction with many channels.

    PubMed

    Huang, Feng; Lin, Wei; Duensing, George R; Reykowski, Arne

    2012-03-01

    In MRI, imaging using receiving coil arrays with a large number of elements is an area of growing interest. With increasing channel numbers for parallel acquisition, longer reconstruction times have become a significant concern. Channel reduction techniques have been proposed to reduce the processing time of channel-by-channel reconstruction algorithms. In this article, two schemes are combined to enable faster and more accurate reconstruction than existing channel reduction techniques. One scheme use two stages of channel reduction instead of one. The other scheme is to incorporate all acquired data into the final reconstruction. The combination of these two schemes is called flexible virtual coil. Applications of flexible virtual coil for partially parallel imaging, motion compensation, and compressed sensing are presented as specific examples. Theoretical analysis and experimental results demonstrate that the proposed method has a major impact in reducing computation cost in reconstruction with high-channel count coil elements. Copyright © 2011 Wiley Periodicals, Inc.

  1. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  2. DC CICC retrofit magnet

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-10-30

    The coil system presented here for the MHD retrofit magnet incorporates many features of the latest in superconducting magnet technology and finite element modeling to create an efficient and viable design concept. At the core of the design is the niobium titanium (NbTi) superconducting Cable-in-Conduit Conductor (CICC). Engineered to create moderately high magnetic fields (up to 8 T) with essentially no power loss, this specific CICC design provides good load carrying capacity, operating margin from a perturbation such as a local heat input, and coil protection in the event of a quench transient. The CICC is wound on a mandrel into long, tapered, saddle shaped single conductor thickness pancakes. By defining the appropriate number of conductor turns in each pancake, the saddle coils can be stacked to form a semi-elliptical winding pack cross section. Extruded aluminum filler blocks are fitted into the steps, at the edge of the pancake and present a smooth surface to the supporting structure. The semi-elliptical conductor array is supported by an identically shaped strap at all locations except where the end turns sweep over the MHD channel. The strap resists the electromagnetic forces tending to separate the coils on each side of the channel. Low friction surfaces are placed between conductor pancakes, and between the inside skin of the support straps and the outside surface of the conductor winding pack. This allows relative movement between pancakes, and between the strap and coil, thereby reducing shear stresses and coulombic friction heating which would otherwise tend to crack insulation, load joints, and initiate a quench in the superconducting cable.

  3. Muon Beam Helical Cooling Channel Design

    SciTech Connect

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  4. Stream Channel Stability. Appendix E. Geomorphic Controls of Channel Stability,

    DTIC Science & Technology

    1981-04-01

    Erosion and Channels Research Unit, USDA Sedimentation Laboratory, Oxford, MS. 1,"<Xi i .. i,,< .;,i,<..7 PREFACE This process -oriented study was...organized to investigate three complementary aspects of channel stability including (a) the nature of channel failure processes ; (b) the influences of...valley-fill depositional units on these processes and (c) the properties and distributions of the valley-fill units. The study was process oriented to

  5. Minio Vallis Channel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This VIS image is of the southern reach of Minio Vallis, a small fluvial channel located near the larger Mangala Vallis. Both channels are in the Tharsis region, in the area west of Arsia Mons and southeast of Medusae Fossae.

    Image information: VIS instrument. Latitude -8.2, Longitude 208.1 East (151.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Channel Wall Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation.

    Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Channel Wall Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation.

    Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. A 64-channel transmitter for investigating parallel transmit MRI.

    PubMed

    Ke Feng; Hollingsworth, N A; McDougall, M P; Wright, S M

    2012-08-01

    Multiple channel radiofrequency (RF) transmitters are being used in magnetic resonance imaging to investigate a number of active research topics, including transmit SENSE and B(1) shimming. Presently, the cost and availability of multiple channel transmitters restricts their use to relatively few sites. This paper describes the development and testing of a relatively inexpensive transmit system that can be easily duplicated by users with a reasonable level of RF hardware design experience. The system described here consists of 64 channels, each with 100 W peak output level. The hardware is modular at the level of four channels, easily accommodating larger or smaller channel counts. Unique aspects of the system include the use of vector modulators to replace more complex IQ direct digital modulators, 100 W MOSFET RF amplifiers with partial microstrip matching networks, and the use of digital potentiometers to replace more complex and costly digital-to-analog converters to control the amplitude and phase of each channel. Although mainly designed for B(1) shimming, the system is capable of dynamic modulation necessary for transmit SENSE by replacing the digital potentiometers controlling the vector modulators with commercially available analog output boards. The system design is discussed in detail and bench and imaging data are shown, demonstrating the ability to perform phase and amplitude control for B(1) shimming as well as dynamic modulation for transmitting complex RF pulses.

  9. Specification for wide channel bandwidth one-inch video tape

    NASA Technical Reports Server (NTRS)

    Perry, Jimmy L.

    1988-01-01

    Standards and controls are established for the procurement of wide channel bandwidth one inch video magnetic recording tapes for Very Long Base Interferometer (VLBI) system applications. The Magnetic Tape Certification Facility (MTCF) currently maintains three specifications for the Quality Products List (QPL) and acceptance testing of magnetic tapes. NASA-TM-79724 is used for the QPL and acceptance testing of new analog tapes; NASA-TM-80599 is used for QPL and acceptance testing of new digital tapes; and NASA-TM-100702 is used for the QPL and acceptance testing of new IBM/IBM compatible 3480 magnetic tape cartridges. This specification will be used for the QPL and acceptance testing of new wide channel bandwidth one inch video magnetic recording tapes. The one inch video tapes used by the Jet Propulsion Lab., the Deep Space Network and the Haystack Observatory will be covered by this specification. These NASA stations will use the video tapes for their VLBI system applications. The VLBI system is used for the tracking of quasars and the support of interplanetary exploration.

  10. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  11. Magnetic Recording.

    ERIC Educational Resources Information Center

    Lowman, Charles E.

    A guide to the technology of magnetic recorders used in such fields as audio recording, broadcast and closed-circuit television, instrumentation recording, and computer data systems is presented. Included are discussions of applications, advantages, and limitations of magnetic recording, its basic principles and theory of operation, and its…

  12. Magnetic Minerals.

    ERIC Educational Resources Information Center

    Cordua, William S.

    1994-01-01

    Discusses common as well as uncommon minerals that are attracted to a hand magnet. Included in the discussion are answers to the following questions: (1) What causes this attraction? and (2) How many different minerals respond to a hand magnet? (ZWH)

  13. Magnetic-plasmonic multilayered nanorods

    NASA Astrophysics Data System (ADS)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  14. Tissue channel morphology in Octopus.

    PubMed

    Browning, J; Casley-Smith, J R

    1981-01-01

    The morphology of tissue channels in muscle and neural tissues of Octopus was investigated, at the ultrastructural level, with a technique involving the precipitation of ferrocyanide ions. The numbers, sizes and conductivities of the channels were estimated from quantitative data. No evidence was gained to indicate that the low microvascular density in Octopus is coupled to an especially extensive network of extravascular channels. The tissue channel system in Octopus appears to be broadly comparable with the mammalian system; a lack of information prevents more appropriate comparisons with marine fishes. Probable functions of tissue channels in Octopus and mammals, and reasons for apparent similarities and differences in the channel organization of these divergent groups, are discussed.

  15. Ion channel therapeutics for pain

    PubMed Central

    Skerratt, Sarah E; West, Christopher W

    2015-01-01

    Pain is a complex disease which can progress into a debilitating condition. The effective treatment of pain remains a challenge as current therapies often lack the desired level of efficacy or tolerability. One therapeutic avenue, the modulation of ion channel signaling by small molecules, has shown the ability to treat pain. However, of the 215 ion channels that exist in the human genome, with 85 ion channels having a strong literature link to pain, only a small number of these channels have been successfully drugged for pain. The focus of future research will be to fully explore the possibilities surrounding these unexplored ion channels. Toward this end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the treatment of pain. PMID:26218246

  16. Multiplicative properties of quantum channels

    NASA Astrophysics Data System (ADS)

    Rahaman, Mizanur

    2017-08-01

    In this paper, we study the multiplicative behaviour of quantum channels, mathematically described by trace preserving, completely positive maps on matrix algebras. It turns out that the multiplicative domain of a unital quantum channel has a close connection to its spectral properties. A structure theorem (theorem 2.5), which reveals the automorphic property of an arbitrary unital quantum channel on a subalgebra, is presented. Various classes of quantum channels (irreducible, primitive, etc) are then analysed in terms of this stabilising subalgebra. The notion of the multiplicative index of a unital quantum channel is introduced, which measures the number of times a unital channel needs to be composed with itself for the multiplicative algebra to stabilise. We show that the maps that have trivial multiplicative domains are dense in completely bounded norm topology in the set of all unital completely positive maps. Some applications in quantum information theory are discussed.

  17. Wakefield Generation in Plasma Channels

    NASA Astrophysics Data System (ADS)

    Volfbeyn, P.; Leemans, W. P.; Brussaard, G. J. H.; Esarey, E.; Wurtele, J. S.

    1999-11-01

    Laser wakefield generation in plasma channels is experimentally studied. Plasma channels, produced using the ignitor-heater method [1] in hydrogen and nitrogen, have been used to guide intense (> 5 x 10^17 W/cm^2), short (<70 fs) infrared (800 nm) laser pulses. Laser pulses injected into these channels produce a plasma wake with a phase velocity close to the speed of light. The transverse density profile of the channel determines the properties of the laser mode as well as of the plasma wave mode. The longitudinally integrated properties of the channel are measured with a Mach-Zehnder interferometer using 400 nm radiation. The probe and reference beam are combined directly on a CCD camera to provide two-dimensional interferograms and also through a spectrometer to allow Fourier domain interferometry. Progress on measuring the transverse channel profile and wakefield amplitudes will be presented. [1] P. Volfbeyn, E. Esarey and W.P. Leemans, Phys. Plasmas 6, 2269 (1999).

  18. Sensing pressure with ion channels.

    PubMed

    Nilius, Bernd; Honoré, Eric

    2012-08-01

    Opening of stretch-activated ion channels (SACs) is the earliest event occurring in mechanosensory transduction. The molecular identity of mammalian SACs has long remained a mystery. Only very recently, Piezo1 and Piezo2 have been shown to be essential components of distinct SACs and moreover, purified Piezo1 forms cationic channels when reconstituted into artificial bilayers. In line with these findings, dPiezo was demonstrated to act in the Drosophila mechanical nociception pathway. Finally, the 3D structure of the two-pore domain potassium channel (K(2P)), TRAAK [weakly inward rectifying K⁺ channel (TWIK)-related arachidonic acid stimulated K⁺ channel], has recently been solved, providing valuable information about pharmacology, selectivity and gating mechanisms of stretch-activated K⁺ channels (SAKs). These recent findings allow a better understanding of the molecular basis of molecular and cellular mechanotransduction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Magnetic nanotubes

    DOEpatents

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  20. Magnetic nanoparticles for "smart liposomes".

    PubMed

    Nakayama, Yoshitaka; Mustapić, Mislav; Ebrahimian, Haleh; Wagner, Pawel; Kim, Jung Ho; Hossain, Md Shahriar Al; Horvat, Joseph; Martinac, Boris

    2015-12-01

    Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs.