Science.gov

Sample records for magnetically channeled line-driven

  1. New Instabilities in Line Driven Winds

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.

    1985-01-01

    The physical mechanisms which potentially lead to instabilities in line driven winds, the drift instability and the line shape instability, are discussed. A general three dimensional treatment of the stability problem of line driven winds which leads to the general dispersion equation is proposed. From this dispersion equation automatically a third physical mechanism driving instability in stellar winds is deduced; the thermal drift instability which is related to changes in absorption of radiation caused by temperature perturbations. This mechanism results in growing inwardly propagating sound waves.

  2. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  3. Magnets for Muon 6D Cooling Channels

    SciTech Connect

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  4. Effect of magnetic yoke on magnetic field distribution and intercepting effect of multi-channel cascading magnet arrays

    NASA Astrophysics Data System (ADS)

    Zhang, S. P.; Wu, P.; Wang, L.; Li, F. C.; Chen, S.; Sun, S. F.

    2010-03-01

    `Magnetic-Sieve' possesses a potential use in oxygen separation. The effect of a magnetic yoke on magnetic field distribution and intercepting effect of multi-channel cascading magnet arrays in a `Magnetic-Sieve' configuration is studied by ANSYS finite element software. The multi-channel cascading magnet arrays consist of cuboid neodymium-iron-boron permanent magnets. The size of the magnets is W×H = 38 mm×5 mm, and the clearance between two adjacent magnets is 1 mm. The results show that the intercepting effect tends to decrease from the central channel to the most lateral channels in multi-channel cascading magnet arrays. Compared with the simulation result of two magnets, the central magnetic inductions of the center channel and the most lateral channels in the multi-channel cascading magnet array including 14 magnets decrease respectively 10% and 31%, and the intercepting effects of the center channel and the most lateral channels decrease 19% and 60%, respectively. When the magnetic yoke is added on the multi-channel cascading magnet array, the above-mentioned four values are increased by 28%, 29%, 63% and 65%, respectively. The simulation study shows that the introducing of magnetic yokes can enhance the central magnetic induction and the intercepting effect of the gradient magnetic field, and moreover, reduce the disparities of intercepting effect among the channels.

  5. Magnetohydrodynamic channel flows with weak transverse magnetic fields.

    PubMed

    Rothmayer, A P

    2014-07-28

    Magnetohydrodynamic flow of an incompressible fluid through a plane channel with slowly varying walls and a magnetic field applied transverse to the channel is investigated in the high Reynolds number limit. It is found that the magnetic field can first influence the hydrodynamic flow when the Hartmann number reaches a sufficiently large value. The magnetic field is found to suppress the steady and unsteady viscous flow near the channel walls unless the wall shapes become large.

  6. Progress on the superconducting magnets for the MICE cooling channel

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Virostek, S. P.; Li, D.; Zisman, M. S.; Wang, L.; Pan, H.; Wu, H.; Guo, X. L.; Xu, F. Y.; Liu, X. K.; Zheng, S. X.; Bradshaw, T.; Baynham, D. E.; Cobb, J.; Lau, W.; Lau, P.; Yang, S. Q.

    2010-06-01

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in the United States, China, and the UK respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that are used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  7. Progress on Superconducting Magnets for the MICE Cooling Channel

    SciTech Connect

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  8. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    SciTech Connect

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  9. Magnetic and electric fields across sodium and potassium channels

    NASA Astrophysics Data System (ADS)

    Soares, Marília A. G.; Cruz, Frederico A. O.; Silva, Dilson

    2015-12-01

    We determined the magnetic field around sodium and potassium ionic channels based on a physico-mathematical model that took into account charges in the surface bilayer. For the numerical simulation, we applied the finite element method. Results show that each channel produces its specific and individual response to the ion transport, according to its individual intrinsic properties. The existence of a number of active Na+-channels in a given membrane region seems not to interfere directly in the functioning of K+-channel located among them, and vice-versa.

  10. STUDYING THE INTERSTELLAR MAGNETIC FIELD FROM ANISOTROPIES IN VELOCITY CHANNELS

    SciTech Connect

    Esquivel, A.; Lazarian, A.; Pogosyan, D. E-mail: lazarian@astro.wisc.edu

    2015-11-20

    Turbulence in the interstellar medium is anisotropic due to the ubiquitous magnetic fields. This anisotropy depends on the strength of the magnetic field and leaves an imprint on observations of spectral line maps. We use a grid of ideal magnetohydrodynamic simulations of driven turbulence and produce synthetic position–position–velocity maps to study the turbulence anisotropy in velocity channels of various resolutions. We found that the average structure function of velocity channels is aligned with the projection of the magnetic field on the plane of the sky. We also found that the degree of such anisotropy increases with the magnitude of the magnetic field. For thick velocity channels (low velocity resolution), the anisotropy is dominated by density, and the degree of anisotropy in these maps allows one to distinguish sub-Alfvénic and super-Alfvénic turbulence regimes, but it also depends strongly on the sonic Mach number. For thin channels (high velocity resolution), we find that the anisotropy depends less on the sonic Mach number. An important limitation of this technique is that it only gives a lower limit on the magnetic field strength because the anisotropy is related only to the magnetic field component on the plane of the sky. It can, and should, be used in combination with other techniques to estimate the magnetic field, such as the Fermi-Chandrasekhar method, anisotropies in centroids, Faraday rotation measurements, or direct line-of-sight determinations of the field from Zeeman effect observations.

  11. Simulations of Filament Channel Formation in a Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Knizhnik, Kalman; DeVore, C. Richard; Antiochos, Spiro K.

    2016-05-01

    A major unanswered problem in solar physics has been explaining the presence of sheared filament channels above photospheric polarity inversion lines (PILs) and the simultaneous lack of structure in the ‘loop’ portion of the coronal magnetic field. The shear inherent in filament channels represents not only a form of magnetic energy, but also magnetic helicity. As a result, models of filament channel formation need to explain not only why helicity is observed above PILs, but also why it is apparently not observed anywhere else in the corona. Previous results (Knizhnik, Antiochos & DeVore, 2015) have suggested that any helicity injected into the coronal field inverse-cascades in scale, a process known as magnetic helicity condensation (Antiochos, 2013). In this work, we present high resolution numerical simulations of photospheric helicity injection into a coronal magnetic field that contains both a PIL and a coronal hole (CH). We show conclusively that the inverse cascade of magnetic helicity terminates at the PIL, resulting in the formation of highly sheared filament channels and a smooth, untwisted corona. We demonstrate that even though magnetic helicity is injected throughout the flux system, it accumulates only at the PIL, where it manifests itself in the form of highly sheared filament channels, while any helicity obtained by the CH is ejected out of the system. We show that the formation of filament channels is both qualitatively and quantitatively in agreement with observations and discuss the implications of our simulations for observations.This work was supported by the NASA Earth and Space Science Fellowship, LWS TR&T and H-SR Programs.

  12. Open channel flows of magnetic fluid induced by traveling magnetic field

    NASA Astrophysics Data System (ADS)

    Kuwahara, Takuya; Okubo, Masaaki; Yamane, Ryuichiro

    A theoretical analysis is made on laminar open channel flows of magnetic fluid induced by a non uniform traveling magnetic field which is applied with a stator of a single-sided linear induction motor. The induced flows are mainly in the direction opposite to the traveling direction of the magnetic field and in proportion to the phase velocity of the magnetic field. The velocity profiles are greatly affected by dimensionless wave number of the magnetic field. Near the bottom of the channel, the theoretical velocity distributions agree well with experimental ones which are measured with a laser optical fiber velocity sensor. However, the experimental velocity distributions become larger near the free surface.

  13. Selective activation of mechanosensitive ion channels using magnetic particles.

    PubMed

    Hughes, Steven; McBain, Stuart; Dobson, Jon; El Haj, Alicia J

    2008-08-01

    This study reports the preliminary development of a novel magnetic particle-based technique that permits the application of highly localized mechanical forces directly to specific regions of an ion-channel structure. We demonstrate that this approach can be used to directly and selectively activate a mechanosensitive ion channel of interest, namely TREK-1. It is shown that manipulation of particles targeted against the extended extracellular loop region of TREK-1 leads to changes in whole-cell currents consistent with changes in TREK-1 activity. Responses were absent when particles were coated with RGD (Arg-Gly-Asp) peptide or when magnetic fields were applied in the absence of magnetic particles. It is concluded that changes in whole-cell current are the result of direct force application to the extracellular loop region of TREK-1 and thus these results implicate this region of the channel structure in mechano-gating. It is hypothesized that the extended loop region of TREK-1 may act as a tension spring that acts to regulate sensitivity to mechanical forces, in a nature similar to that described for MscL. The development of a technique that permits the direct manipulation of mechanosensitive ion channels in real time without the need for pharmacological drugs has huge potential benefits not only for basic biological research of ion-channel gating mechanisms, but also potentially as a tool for the treatment of human diseases caused by ion-channel dysfunction.

  14. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  15. The Physical Connection and Magnetic Coupling of the MICE CoolingChannel Magnets and the Magnet Forces for Various MICE OperatingModes

    SciTech Connect

    Yang, Stephanie Q.; Baynham, D.E.; Fabricatore, Pasquale; Farinon, Stefania; Green, Michael A.; Ivanyushenkov, Yury; Lau, Wing W.; Maldavi, S.M.; Virostek, Steve P.; Witte, Holger

    2006-08-20

    A key issue in the construction of the MICE cooling channel is the magnetic forces between various elements in the cooling channel and the detector magnets. This report describes how the MICE cooling channel magnets are hooked to together so that the longitudinal magnetic forces within the cooling channel can be effectively connected to the base of the experiment. This report presents a magnetic force and stress analysis for the MICE cooling channel magnets, even when longitudinal magnetic forces as large as 700 kN (70 tons) are applied to the vacuum vessel of various magnets within the MICE channel. This report also shows that the detector magnets can be effectively separated from the central MICE cooling channel magnets without damage to either type of magnet component.

  16. Magnetic field generation during intense laser channelling in underdense plasma

    NASA Astrophysics Data System (ADS)

    Smyth, A. G.; Sarri, G.; Vranic, M.; Amano, Y.; Doria, D.; Guillaume, E.; Habara, H.; Heathcote, R.; Hicks, G.; Najmudin, Z.; Nakamura, H.; Norreys, P. A.; Kar, S.; Silva, L. O.; Tanaka, K. A.; Vieira, J.; Borghesi, M.

    2016-06-01

    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.

  17. Quench Protection for the MICE Cooling Channel Coupling Magnet

    SciTech Connect

    Guo, Xing Long; Xu, Feng Yu; Wang, Li; Green, Michael A.; Pan, Heng; Wu, Hong; Liu, X.K.; Jia, Lin Xiang; Amm, Kathleen

    2008-08-02

    This paper describes the passive quench protection system selected for the muon ionization cooling experiment (MICE) cooling channel coupling magnet. The MICE coupling magnet will employ two methods of quench protection simultaneously. The most important method of quench protection in the coupling magnet is the subdivision of the coil. Cold diodes and resistors are put across the subdivisions to reduce both the voltage to ground and the hot-spot temperature. The second method of quench protection is quench-back from the mandrel, which speeds up the spread of the normal region within the coils. Combining quench back with coil subdivision will reduce the hot spot temperature further. This paper explores the effect on the quench process of the number of coil sub-divisions, the quench propagation velocity within the magnet, and the shunt resistance.

  18. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  19. Pump-free transport of magnetic particles in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Danckwardt, Nils Z.; Franzreb, Matthias; Guber, Andreas E.; Saile, Volker

    2011-11-01

    The use of magnetic particles in microfluidic devices offers new possibilities and a new degree of freedom to sequential synthesis and preparative or analytical procedures in very small volumes. In contrast to most of the traditional approaches where the liquid phase is flushed or pumped along a solid phase, the transport of magnetic particles through a microfluidic channel has the advantage of reduced reagent consumption and simpler, smaller systems. By lining up different reservoirs along the transport direction, reactions with different agents can be accomplished. Here, we present a pump and valve-free microfluidic particle transport system. By creating a simple and very effective layout of soft magnetic structures, which concentrate an external homogeneous magnetic field, a passive, thus easy to operate structure was generated. Most importantly, this layout is based on a simple tube by which fluidic and magnetic parts are separated. The tube itself is disposable and can be replaced prior to vital reactions, thus helping reduce sample cross-contaminations without affecting the particle transport properties. The layout of the device was thoroughly examined by a computer simulation of the particle trajectories, and the results were confirmed by experiments on a micro-machined demonstrator, which revealed an effective transport speed of up to 5 mm/s in 30 mT magnetic fields. Thus, we present a microfluidic transport device that combines the advantages of magnetic particles in microfluidic systems with a simple single-use technology for, e.g., bioanalytical purposes.

  20. The Propagation of Solar Energetic Particles in Magnetic Channels

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B.; Burlaga, L. F.

    1985-01-01

    The existence of interplanetary flow systems produced by the entrainment of interplanetary transients, consisting of flare produced shocks, high speed solar wind streams and coronal mass ejection, has been established. This entrainment process produces enhanced regions of the interplanetary magnetic field that should be connected back to the solar corona. These compressed regions can provide a preferred magnetic channel for the propagation of solar cosmic rays. The characteristics of these events appear to be different from those previously reported by the NASA/University of New Hampshire team and the University of Chicago in their study of a large number of events in the region beyond 1 AU. These new events have a very flat energy spectra (with gamma = approx. 1.5) that frequently extend to energies above 100 MeV and have a significant enhancement of MeV electrons.

  1. Effect of pulse magnetic field stimulation on calcium channel current

    NASA Astrophysics Data System (ADS)

    Fan, J.; Lee, Z. H.; Ng, W. C.; Khoa, W. L.; Teoh, S. H.; Soong, T. H.; Qin, Y. R.; Zhang, Z. Y.; Li, X. P.

    2012-10-01

    This study aimed to investigate the effect of low frequency and high amplitude pulse magnetic field (PMF) on Calcium ion channel current of cells. Measurements were done on the Human Embryonic Kidney 293 cells (HEK 293), which have only Calcium ion channels functioning. The whole cell current was measured by patch clamp method, with the clamped voltage ramping from -90 mV to +50 mV across the cell membrane. A PMF was generated by a 400-turn coil connected to a pulse current generator. The frequency of the pulse was 7 Hz, the width of the pulse was 3 ms, and the amplitude of the pulse, or the flux density, was ranging from 6 to 25 mT. The results showed that the profile of the whole cell Calcium channel current could be modified by the PMF. With the PMF applied, the phase shifting occurred: the onset of the channel opening took place several mili-seconds earlier than that without the PWF and correspondingly, the whole cell current reached its maximum earlier, and the current returned back to zero earlier as well. When the PWF was stopped, these effects persisted for a period of time, and then the current profile "recovered" to its original appearance. The decrease of the onset time and peak current time could be due to the local electric potential induced by the PWF and the direct interaction between PMF and ion channels/ions. The exact mechanisms of the observed effects of PMF on the cell are still unknown and need to be further studied.

  2. Magnetic tornadoes as energy channels into the solar corona.

    PubMed

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-28

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere. PMID:22739314

  3. Magnetic tornadoes as energy channels into the solar corona.

    PubMed

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  4. Salmonella detection in a microfluidic channel using orbiting magnetic beads

    NASA Astrophysics Data System (ADS)

    Ballard, Matt; Mills, Zachary; Owen, Drew; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2015-03-01

    We use three-dimensional simulations to model the detection of salmonella in a complex fluid sample in a microfluidic channel. Salmonella is captured using magnetic microbeads orbiting around soft ferromagnetic discs at the microchannel bottom subjected to a rotating external magnetic field. Numerical simulations are used to model the dynamics of salmonella and microbeads throughout the detection process. We examine the effect of the channel geometry on the salmonella capture, and the forces applied to the salmonella as it is dragged through the fluid after capture. Our findings guide the design of a lab-on-a-chip device to be used for detection of salmonella in food samples in a way that ensures that salmonella captured by orbiting microbeads are preserved until they can be extracted from the system for testing, and are not washed away by the fluid flow or damaged due to the experience of excessive stresses. Such a device is needed to detect bacteria at the food source and prevention of consumption of contaminated food, and also can be used for the detection of a variety of biomaterials of interest from complex fluid samples. Support from USDA and NSF is gratefully acknowledged.

  5. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.

    PubMed

    Munir, Ahsan; Zhu, Zanzan; Wang, Jianlong; Zhou, Hong Susan

    2014-06-01

    A novel continuous switching/separation scheme of magnetic nanoparticles (MNPs) in a sub-microlitre fluid volume surrounded by neodymium permanent magnet is studied in this work using tangential microfluidic channels. Polydimethylsiloxane tangential microchannels are fabricated using a novel micromoulding technique that can be done without a clean room and at much lower cost and time. Negligible switching of MNPs is seen in the absence of magnetic field, whereas 90% of switching is observed in the presence of magnetic field. The flow rate of MNPs solution had dramatic impact on separation performance. An optimum value of the flow rate is found that resulted in providing effective MNP separation at much faster rate. Separation performance is also investigated for a mixture containing non-magnetic polystyrene particles and MNPs. It is found that MNPs preferentially moved from lower microchannel to upper microchannel resulting in efficient separation. The proof-of-concept experiments performed in this work demonstrates that microfluidic bioseparation can be efficiently achieved using functionalised MNPs, together with tangential microchannels, appropriate magnetic field strength and optimum flow rates. This work verifies that a simple low-cost magnetic switching scheme can be potentially of great utility for the separation and detection of biomolecules in microfluidic lab-on-a-chip systems. PMID:25014081

  6. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.

    PubMed

    Munir, Ahsan; Zhu, Zanzan; Wang, Jianlong; Zhou, Hong Susan

    2014-06-01

    A novel continuous switching/separation scheme of magnetic nanoparticles (MNPs) in a sub-microlitre fluid volume surrounded by neodymium permanent magnet is studied in this work using tangential microfluidic channels. Polydimethylsiloxane tangential microchannels are fabricated using a novel micromoulding technique that can be done without a clean room and at much lower cost and time. Negligible switching of MNPs is seen in the absence of magnetic field, whereas 90% of switching is observed in the presence of magnetic field. The flow rate of MNPs solution had dramatic impact on separation performance. An optimum value of the flow rate is found that resulted in providing effective MNP separation at much faster rate. Separation performance is also investigated for a mixture containing non-magnetic polystyrene particles and MNPs. It is found that MNPs preferentially moved from lower microchannel to upper microchannel resulting in efficient separation. The proof-of-concept experiments performed in this work demonstrates that microfluidic bioseparation can be efficiently achieved using functionalised MNPs, together with tangential microchannels, appropriate magnetic field strength and optimum flow rates. This work verifies that a simple low-cost magnetic switching scheme can be potentially of great utility for the separation and detection of biomolecules in microfluidic lab-on-a-chip systems.

  7. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    NASA Astrophysics Data System (ADS)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  8. Optical control of Magnetic Feshbach Resonances using Closed Channel EIT

    NASA Astrophysics Data System (ADS)

    Jagannathan, Arunkumar; Arunkumar, Nithya; Joseph, James; Thomas, John

    2016-05-01

    Optical techniques can provide rapid temporal control and high-resolution spatial control of interactions in cold gases enabling the study of non-equilibrium strongly interacting Fermi gases. We use electromagnetically induced transparency (EIT) in the closed channel to control magnetic Feshbach resonances in an optically-trapped mixture of the two lowest hyperfine states of a 6 Li Fermi gas. In our experiments, the narrow Feshbach resonance is tuned by up to 3 G. For the broad resonance, the spontaneous lifetime is increased to 0.4 s at the dark state resonance, compared to 0.5 ms for single field tuning. We present a new model of light-induced loss spectra, employing continuum-dressed basis states, that agrees in shape and magnitude with loss measurements for both broad and narrow resonances. Using this model, we predict the trade-off between tunability and loss for the broad resonance in 6 Li, showing that our two-field method substantially reduces the two-body loss rate compared to single field methods for same tuning range. This research is supported by AFOSR, NSF, ARO, and DOE.

  9. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  10. The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel

    NASA Astrophysics Data System (ADS)

    Valiallah Mousavi, S.; Barzegar Gerdroodbary, M.; Sheikholeslami, Mohsen; Ganji, D. D.

    2016-09-01

    In this study, two dimensional numerical simulations are performed to investigate the influence of the magnetic field on the nanofluid flow inside a sinusoidal channel. This work reveals the influence of variable magnetic field in the heat transfer of heat exchanger while the mixture is in a single phase. In this heat exchanger, the inner tube is sinusoidal and the outer tube is considered smooth. The magnetic field is applied orthogonal to the axis of the sinusoidal tube. In our study, the ferrofluid (water with 4 vol% nanoparticles (Fe3O4)) flows in a channel with sinusoidal bottom. The finite volume method with the SIMPLEC algorithm is used for handling the pressure-velocity coupling. The numerical results present validated data with experimentally measured data and show good agreement with measurement. The influence of different parameters, like the intensity of magnetic field and Reynolds number, on the heat transfer is investigated. According to the obtained results, the sinusoidal formation of the internal tube significantly increases the Nusselt number inside the channel. Our findings show that the magnetic field increases the probability of eddy formation inside the cavities and consequently enhances the heat transfer (more than 200%) in the vicinity of the magnetic field at low Reynolds number ( Re=50). In addition, the variation of the skin friction shows that the magnetic field increases the skin friction (more than 600%) inside the sinusoidal channel.

  11. Dynamic Behavior of Nano-Size Dust Particles in a Magnetic Field Channel.

    PubMed

    Huang, Shan; Park, Haewoo; Jo, Youngmin

    2016-05-01

    Removal of very small dust from indoor public spaces, such as metro subway stations, is a challenge. A large proportion of subway dust, particularly that of submicron sizes, contains iron compounds. This study sought to understand the dynamic behavior of such fine iron dust in a magnetic field. The computer aided fluid dynamics (CFD) calculation revealed that the design and configuration of a rectangular flow channel with magnets determine the dynamic motion of particles. An attractive magnetic emitter arrangement produced higher magnetic flux density than a repulsive arrangement. Additional ferromagnetic wire mesh inserted into the duct channel could provide a more systematic magnetic field and collect more dust. The field gradient for 0.3 mm thick wire was more than twice that of 0.5 mm wire. The provision of a magnetic field could contribute a 20% increase in 100 nm particle collection and an increase of 5% in 10 nm. PMID:27483753

  12. USING CORONAL CELLS TO INFER THE MAGNETIC FIELD STRUCTURE AND CHIRALITY OF FILAMENT CHANNELS

    SciTech Connect

    Sheeley, N. R. Jr.; Warren, H. P.; Martin, S. F.; Panasenco, O.

    2013-08-01

    Coronal cells are visible at temperatures of {approx}1.2 MK in Fe XII coronal images obtained from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft. We show that near a filament channel, the plumelike tails of these cells bend horizontally in opposite directions on the two sides of the channel like fibrils in the chromosphere. Because the cells are rooted in magnetic flux concentrations of majority polarity, these observations can be used with photospheric magnetograms to infer the direction of the horizontal field in filament channels and the chirality of the associated magnetic field. This method is similar to the procedure for inferring the direction of the magnetic field and the chirality of the fibril pattern in filament channels from H{alpha} observations. However, the coronal cell observations are easier to use and provide clear inferences of the horizontal field direction for heights up to {approx}50 Mm into the corona.

  13. Stability of layered channel flow of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Yecko, Philip

    2009-03-01

    The stability of a sheared interface separating a viscous magnetic fluid (ferrofluid) and an ordinary viscous fluid is examined for arbitrary wavelength disturbances using three dimensional linear perturbation theory. The unperturbed state corresponds to a two-layer Poiseuille profile in which a uniform magnetic field of arbitrary orientation is imposed. Coupling between the field and fluid occurs via the magnetic Maxwell stress tensor, formulated here for nonlinear magnetic material, expanding the scope of previous studies of linear media. Neutral curves and stability characteristics at low Reynolds number are presented and analyzed, and are found to depend sensitively on the linear and nonlinear magnetic properties of the material. The stability properties of the flow are shaped by a small set of the least stable modes of the spectrum, a result that evades single mode or potential flow analyses. The gravest modes can be of different character, resembling either interfacial or shear modes, modified by magnetic effects. The commonly cited ferrofluid interface properties of "stabilization by a tangential field" and "destabilization by a normal field" are shown to be invalid here, although the origins of these features can be identified within this problem.

  14. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Kono, S.; Ishizawa, K.; Inamura, S.; Uchiumi, T.; Tamada, D.; Kose, K.

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  15. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children.

    PubMed

    Terada, Y; Kono, S; Ishizawa, K; Inamura, S; Uchiumi, T; Tamada, D; Kose, K

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  16. Model of the Dynamics of Plasma-Wave Channels in Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Shirokov, E. A.; Chugunov, Yu. V.

    2016-06-01

    We analyze the dynamics of the plasma-wave channels excited in magnetized plasmas in the whistler frequency range. A linear theory of excitation of a plasma waveguide by an external source is developed using the quasistatic approximation. Self-consistent spatio-temporal distributions of the electric field of quasipotential waves and plasma density, which are solutions of the nonlinear nonstationary problem of the ionizing self-channeling of waves in plasmas are found on the basis of the linear theory.

  17. Integrated acoustic and magnetic separation in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Adams, Jonathan D.; Thévoz, Patrick; Bruus, Henrik; Soh, H. Tom

    2009-12-01

    With a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column-based magnetic separation. Toward this aim, we report on the integration of microfluidic acoustic and magnetic separation in a monolithic device for multiparameter particle separation. Using our device, we demonstrate high-purity separation of a multicomponent particle mixture at a throughput of up to 108 particles/hr.

  18. The effect of a magnetic field on heat transfer in a slotted channel

    SciTech Connect

    Evtushenko, I.A.; Kirillov, I.R.; Sidorenkov, S.S.; Hua, T.Q.; Reed, C.B.

    1994-07-01

    The results of numerical and experimental studies of liquid metal heat transfer in slotted channels in a transverse magnetic field are presented. Test results showed an improvement in heat transfer in a straight channel at low and moderate interaction parameter, N. The Nusselt number at small N (around 120) was up to 2 times higher than in turbulent flow without a magnetic field, Peclet number being equal. This effect of heat transfer enhancement is caused by the generation and development of large scale velocity fluctuations in the near heated wall area. Qualitative and quantitative correlations between heat transfer and velocity fluctuation characteristics are presented.

  19. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Liu, Hui; Gao, Yuanyuan; Yu, Daren

    2016-09-01

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weaker magnetic field in the discharge channel.

  20. Magnetic Shielding of the Acceleration Channel Walls in a Long-Life Hall Thruster

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; de Grys, Kristi; Mathers, Alex

    2010-01-01

    In a Qualification Life Test (QLT) of the BPT-4000 Hall thruster that recently accumulated greater than 10,000 h it was found that the erosion of the acceleration channel practically stopped after approximately 5,600 h. Numerical simulations of this thruster using a 2-D axisymmetric, magnetic field-aligned-mesh (MFAM) plasma solver reveal that the process that led to this significant reduction of the erosion was multifaceted. It is found that when the channel receded from its early-in-life geometry to its steady-state configuration several changes in the near-wall plasma and sheath were induced by the magnetic field that, collectively, constituted an effective shielding of the walls from any significant ion bombardment. Because all such changes in the behavior of the ionized gas near the eroding surfaces were caused by the topology of the magnetic field there, we term this process "magnetic shielding."

  1. Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Tanveer, Anum; Alsaadi, Fuad; Mousa, Ghassan

    2016-04-01

    This paper addresses the peristaltic flow in curved channel with combined heat/mass transfer and convective effects. The channel walls are flexible. An imposed magnetic field is applied in radial direction to increase the wave amplitude (used in ECG for synchronization purposes). The pseudoplastic fluid comprising shear-thinning/shear thickening effects has been used in mathematical modeling. Small Reynolds number assumption is employed to neglect inertial effects. Half channel-width to wavelength ratio is small enough for the pressure to be considered uniform over the cross-section. The graphical results obtained are compared with planar channel. Results show the non-symmetric behavior of sundry parameters in contrary to the planar case. Additionally more clear results are seen when the curved channel is approached.

  2. Topological Insulators in Magnetic Fields: Quantum Hall Effect and Edge Channels with a Nonquantized θ Term

    NASA Astrophysics Data System (ADS)

    Sitte, M.; Rosch, A.; Altman, E.; Fritz, L.

    2012-03-01

    We investigate how a magnetic field induces one-dimensional edge channels when the two-dimensional surface states of three-dimensional topological insulators become gapped. The Hall effect, measured by contacting those channels, remains quantized even in situations where the θ term in the bulk and the associated surface Hall conductivities, σxyS, are not quantized due to the breaking of time-reversal symmetry. The quantization arises as the θ term changes by ±2πn along a loop around n edge channels. Model calculations show how an interplay of orbital and Zeeman effects leads to quantum Hall transitions, where channels get redistributed along the edges of the crystal. The network of edges opens new possibilities to investigate the coupling of edge channels.

  3. Quench Protection for the MICE Cooling Channel CouplingMagnet

    SciTech Connect

    Green, M.A.; Wang, L.; Guo, X.L.

    2007-11-20

    The MICE coupling coil is fabricated from Nb-Ti, which hashigh quench propagation velocities within the coil in all directionscompared to coils fabricated with other superconductors such as niobiumtin. The time for the MICE coupling coil to become fully normal throughnormal region propagation in the coil is shorter than the time needed fora safe quench (as defined by a hot-spot temperature that is less than 300K). A MICE coupling coil quench was simulated using a code written at theInstitute of Cryogenics and Superconductive Technology (ICST) at theHarbin Institute of Technology (HIT). This code simulates quench backfrom the mandrel as well as normal region propagation within the coil.The simulations included sub-division of the coil. Each sub-division hasa back to back diodes and resistor across the coil. Current flows in theresistor when there is enough voltage across the coil to cause current toflow through the diodes in the forward direction. The effects of thenumber of coil sub-divisions and the value of the resistor across thesub-division on the quench were calculated with and without quench back.Sub-division of the coupling coil reduces the peak voltage to ground, thelayer-to-layer voltage and the magnet hot-spot temperature. Quench backreduces the magnet hot-spot temperature, but the peak voltage to groundand layer-to-layer voltage are increased, because the magnet quenchesfaster. The resistance across the coil sub-division affects both thehot-spot temperature and the peak voltage to ground.

  4. The effect of external magnetic field on plasma acceleration in electromagnetic railgun channel

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.

    2016-03-01

    We have studied the effect of an external magnetic field on the dynamics of a free plasma piston (PP) accelerated without solid striker armature in an electromagnetic railgun channel filled with various gases (argon or helium). It is established that, as the applied magnetic field grows, the velocity of a shock wave generated by PP in the channel increases. The experimental results are compared to a theoretical model that takes into account the gas pressure force behind the shock wave and the drag force that arises when erosion mass entering the channel is partly entrained by the accelerated plasma. The results of model calculations are in satisfactory agreement with experimental data. The discrepancy somewhat increases with the applied field, but the maximum deviation still does not exceed 20%.

  5. Study of magnetic particles pulse-injected into an annular SPLITT-like channel inside a quadrupole magnetic field.

    PubMed

    Hoyos, M; Moore, L R; McCloskey, K E; Margel, S; Zuberi, M; Chalmers, J J; Zborowski, M

    2000-12-01

    Advantages of the continuous magnetic flow sorting for biomedical applications over current, batch-wise magnetic separations include high throughput and a potential for scale-up operations. A continuous magnetic sorting process has been developed based on the quadrupole magnetic field centered on an annular flow channel. The performance of the sorter has been described using the conceptual framework of split-flow thin (SPLITT) fractionation, a derivative of field-flow fractionation (FFF). To eliminate the variability inherent in working with a heterogenous cell population, we developed a set of monodisperse magnetic microspheres of a characteristic magnetization, and a magnetophoretic mobility, similar to those of the cells labeled with a magnetic colloid. The theory of the magnetic sorting process has been tested by injecting a suspension of the magnetic beads into the carrier fluid flowing through the sorter and by comparing the theoretical and experimental recovery versus total flow-rate profiles. The position of the recovery maxima along the total flow-rate axis was a function of the average bead magnetophoretic mobility and the magnetic field intensity. The theory has correctly predicted the position of the peak maxima on the total flow-rate axis and the dependence on the bead mobility and the field intensity, but has not correctly predicted the peak heights. The differences between the calculated and the measured peak heights were a function of the total flow-rate through the system, indicating a fluid-mechanical origin of the deviations from the theory (such as expected of the lift force effects in the system). The well-controlled elution studies using the monodisperse magnetic beads, and the SPLITT theory, provided us with a firm basis for the future sorter evaluation using cell mixtures. PMID:11153960

  6. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.

    PubMed

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I; Samusev, Kirill B; Parkinson, Patrick; Sreenivasan, Varun K A; Minovich, Alexander; Miroshnichenko, Andrey E; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2013-01-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  7. An approximate analytic solution for the radiation from a line-driven fluid-loaded plate

    NASA Astrophysics Data System (ADS)

    Diperna, Daniel T.; Feit, David

    2001-12-01

    In the analysis of a fluid loaded line-driven plate, the fields in the structure and the fluid are often expressed in terms of a Fourier transform. Once the boundary conditions are matched, the structural displacement can be expressed as an inverse transform, which can be evaluated using contour integration. The result is then a sum of propagating or decaying waves, each arising from poles in the complex plane, plus a branch cut integral. The branch cut is due to a square root in the transform of the acoustic impedance. The complex layer analysis (CLA) used here eliminates the branch cut singularity by approximating the square root with a rational function, causing the characteristic equation to become a polynomial in the transform variable. An approximate analytic solution to the characteristic equation is then found using a perturbation method. The result is four poles corresponding to the roots of the in vacuo plate, modified by the presence of the fluid, plus an infinity of poles located along the branch cut of the acoustic impedance. The solution is then found analytically using contour integration, with the integrand containing only simple poles.

  8. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  9. Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel

    NASA Astrophysics Data System (ADS)

    Goharkhah, Mohammad; Ashjaee, Mehdi

    2014-08-01

    Forced convective heat transfer of water based Fe3O4 nanofluid (ferrofluid) in the presence of an alternating non-uniform magnetic field is investigated numerically. The geometry is a two-dimensional channel which is subjected to a uniform heat flux at the top and bottom surfaces. Nonuniform magnetic field produced by eight line source dipoles is imposed on several parts of the channel. Also, a rectangular wave function is applied to the dipoles in order to turn them on and off alternatingly. The effects of the alternating magnetic field strength and frequency on the convective heat transfer are investigated for four different Reynolds numbers (Re=100, 600, 1200 and 2000) in the laminar flow regime. Comparing the results with zero magnetic field case, show that the heat transfer enhancement increases with the Reynolds number and reaches a maximum of 13.9% at Re=2000 and f=20 Hz. Moreover, at a constant Reynolds number, it increases with the magnetic field intensity while an optimum value exists for the frequency. Also, the optimum frequency increases with the Reynolds number. On the other hand, the heat transfer enhancement due to the magnetic field is always accompanied by a pressure drop penalty. A maximum pressure drop increase of 6% is observed at Re=2000 and f=5 Hz which shows that the pressure drop increase is not as significant as the heat transfer enhancement.

  10. Stimulated ionization scattering of a wave beam forming a discharge channel in a magnetic mirror trap

    SciTech Connect

    Belov, A. S.; Markov, G. A.

    2008-03-15

    The stimulated scattering of a whistler wave beam forming an extended discharge channel in a magnetic mirror trap is discovered and investigated experimentally. It is shown that the beam is scattered by relaxaction oscillations of the lattice of plasma inhomogeneities excited by the beam field. The spectrum of the pump field in the RF discharge plasma is found to broaden considerably and to contain individual modulation peaks corresponding to lattice oscillations. The peaks are observed at working gas pressures at which the electron mean free path is close to the wavelength of the standing wave forming the discharge channel. A physical model describing the phenomena observed is developed.

  11. High-Resolution Observations of Flare Precursors and Their Relationship with Magnetic Channels

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Xu, Yan; Ahn, Kwangsu; Jing, Ju; Liu, Chang; Deng, Na; Huang, Nengyi; Gary, Dale E.; Cao, Wenda

    2016-05-01

    The study of precursors of flares is important for understanding the basic magnetic instability leading to solar flares, which can aid the forecasting of eruptions potentially related to severe space weather effects. Although literatures reported many important clues, high-resolution observations of pre-flare activities before a well-observed solar flare have been rare. Even rarely, the associated magnetic structures in fine scale (below 1") were also observed. In this study we take advantage of multiwavelength high-resolution observations completely covering the 2015 June 22 M6.6 flare, which were obtained under excellent seeing condition with the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory. The NST data includes observations of the H-alpha line in five spectral positions at a spatial resolution of 0.1" and magnetograms at a resolution of 0.25". These are complemented by IRIS UV observations with a resolution of 0.25". We find that there are two episodes of pre-flare brightenings (precursors), which are spatially associated with magnetic channels, i.e., elongated structures comprising alternating magnetic polarity inversion lines (Zirin & Wang, 1993, Nature, 363, 426). The pre-flare chromospheric and coronal features reflect an extremely sheared magnetic topology, while the initiation of main flare brightenings correspond to a much less sheared configuration. RHESSI HXR observations reveal that the precursors have both thermal and nonthermal components, and the latter is further evidenced by the microwave observations of the newly expanded Solar Radio Array at Owens Valley.We further investigate the electric current system above the magnetic channels using NLFFF extrapolations, which show strong current sheets above the channel structure. This is consistent with the MHD modeling of Kusano et al (2012, Ap.J., 760, 31), who noted the importance of localized small-scale magnetic structure in triggering the eruption of the whole active region. We

  12. Single-file and normal diffusion of magnetic colloids in modulated channels

    NASA Astrophysics Data System (ADS)

    Lucena, D.; Galván-Moya, J. E.; Ferreira, W. P.; Peeters, F. M.

    2014-03-01

    Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion coefficient of a single particle by Festa and d'Agliano [Physica A 90, 229 (1978), 10.1016/0378-4371(78)90111-5] and show the importance of interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a function of linear density, strength of the periodic modulation and commensurability factor.

  13. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles.

    PubMed

    Huang, Heng; Delikanli, Savas; Zeng, Hao; Ferkey, Denise M; Pralle, Arnd

    2010-08-01

    Recently, optical stimulation has begun to unravel the neuronal processing that controls certain animal behaviours. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Here, we show an approach based on radio-frequency magnetic-field heating of nanoparticles to remotely activate temperature-sensitive cation channels in cells. Superparamagnetic ferrite nanoparticles were targeted to specific proteins on the plasma membrane of cells expressing TRPV1, and heated by a radio-frequency magnetic field. Using fluorophores as molecular thermometers, we show that the induced temperature increase is highly localized. Thermal activation of the channels triggers action potentials in cultured neurons without observable toxic effects. This approach can be adapted to stimulate other cell types and, moreover, may be used to remotely manipulate other cellular machinery for novel therapeutics.

  14. Particles Sorting in Micro Channel Using Designed Micro Electromagnets of Magnetic Field Gradient

    NASA Astrophysics Data System (ADS)

    Chung, Yung-Chiang; Wu, Chen-Ming; Lin, Shih-Hao

    2016-06-01

    In this study, microelectromagnet, microchannel, syringe pump, and controlling devices were integrated to form a particle sorting system. A simple, two-dimensional, relatively quick fabricating and easily operating microelectromagnet was designed. Polystyrene particles and magnetic beads were pumped into the microchannel with the syringe pump, and it was observed that the magnetic beads were attracted to one of two outlets by the microelectromagnet, which features a gradually changing magnetic field. The polystyrene particles would move to another outlet because of different-width micro channel, and it completed the separation of the particles. Based on experimental results, the magnetic flux density of the microelectromagnet was 2.3 Gauss for a 12.5-μm average distance between electrodes at 1.0-μm increments, and the magnetic force was 0.22 pN for 2.8-μm magnetic beads. The separating rate was greater for larger distance increment and smaller average distance between the electrodes. The separating rate of the magnetic beads increased as the electric current increased and flow velocity decreased. When the flow velocity was 0.333 μm/s and electric current was 1 A, the separating rate was 90%. The separating rate of the polystyrene particles increased as the flow velocity increased and was 85% when the flow velocity was 0.6 μm/s. These results demonstrate that this particle sorting system has potential applications in bio-molecular studies.

  15. Computational Fluid Dynamics Simulation of a Quadrupole Magnetic Sorter Flow Channel: Effect of Splitter Position on Nonspecific Crossover

    PubMed Central

    Sajja, V. S. K.; Kennedy, David J.; Todd, Paul W.; Hanley, Thomas R.

    2011-01-01

    In the Quadrupole Magnetic Sorter (QMS) magnetic particles enter a vertical flow annulus and are separated from non-magnetic particles by radial deflection into an outer annulus where the purified magnetic particles are collected via a flow splitter. The purity of magnetically isolated particles in QMS is affected by the migration of nonmagnetic particles across transport lamina in the annular flow channel. Computational Fluid Dynamics (CFD) simulations were used to predict the flow patterns, pressure drop and nonspecific crossover in QMS flow channel for the isolation of pancreatic islets of Langerhans. Simulation results were compared with the experimental results to validate the CFD model. Results of the simulations were used to show that one design gives up to 10% less nonspecific crossover than another and this model can be used to optimise the flow channel design to achieve maximum purity of magnetic particles. PMID:21984840

  16. Effect of normal and parallel magnetic fields on the stability of interfacial flows of magnetic fluids in channels

    NASA Astrophysics Data System (ADS)

    Yecko, Philip

    2010-02-01

    The effect of an imposed magnetic field on the linear stability of immiscible two-fluid Poiseuille flow in a channel is examined for low Reynolds numbers. Surface tension acts on the interface, the fluids have different densities and viscosities, and one fluid is magnetic (ferrofluid). A Langevin function is used to model the fluid magnetization, resulting in a nonlinear permeability; the stability properties depend on this permeability relation both directly and indirectly, through the base state solution. Uniform magnetic fields applied normal or parallel to the interface both lead to an interfacial instability. Normal fields excite longer wavelength modes, generally having higher growth rates, but parallel fields can excite faster growing modes in high permeability fluids at large applied field strength. Whether or not the field stabilizes or destabilizes the flow depends on the viscosity and layer thickness ratios in a simple way, while the placement of the magnetic fluid layer does not play a major role. Growth rates predicted for realistic microchannel conditions are shown to be large enough to make ferrofluid manipulation a practical method of control.

  17. Hindered magnetic dipole transitions between P-wave bottomonia and coupled-channel effects

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Meißner, Ulf-G.; Yang, Zhi

    2016-09-01

    In the hindered magnetic dipole transitions of heavy quarkonia, the coupled-channel effects originating from the coupling of quarkonia to a pair of heavy and anti-heavy mesons can play a dominant role. Here, we study the hindered magnetic dipole transitions between two P-wave bottomonia, χb (nP) and hb (n‧ P), with n ≠n‧. In these processes the coupled-channel effects are expected to lead to partial widths much larger than the quark model predictions. We estimate these partial widths which, however, are very sensitive to unknown coupling constants related to the vertices χb0 (nP) B B bar . A measurement of the hindered M1 transitions can shed light on the coupled-channel dynamics in these transitions and hence on the size of the coupling constants. We also suggest to check the coupled-channel effects by comparing results from quenched and fully dynamical lattice QCD calculations.

  18. Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; deGrys, Kristi; Mathers, Alex

    2011-01-01

    In a qualification life test of a Hall thruster it was found that the erosion of the acceleration channel practically stopped after approx 5,600 h. Numerical simulations using a two-dimensional axisymmetric plasma solver with a magnetic field-aligned mesh reveal that when the channel receded from its early-in-life to its steady-state configuration the following changes occurred near the wall: (1) reduction of the electric field parallel to the wall that prohibited ions from acquiring significant impact kinetic energy before entering the sheath, (2) reduction of the potential fall in the sheath that further diminished the total energy ions gained before striking the material, and (3) reduction of the ion number density that decreased the flux of ions to the wall. All these changes, found to have been induced by the magnetic field, constituted collectively an effective shielding of the walls from any significant ion bombardment. Thus, we term this process in Hall thrusters "magnetic shielding."

  19. Analytic theory for betatron radiation from relativistic electrons in ion plasma channels with magnetic field

    SciTech Connect

    Lee, H. C.; Jiang, T. F.

    2010-11-15

    We analytically solve the relativistic equation of motion for an electron in ion plasma channels and calculate the corresponding trajectory as well as the synchrotron radiation. The relativistic effect on a trajectory is strong, i.e., many high-order harmonic terms in the trajectory, when the ratio of the initial transverse velocity (v{sub x0}) to the longitudinal velocity (v{sub z0}) of the electron injected to ion plasma channels is high. Interestingly, these high-order harmonic terms result in a quite broad and intense radiation spectrum, especially at an oblique angle, in contrast to an earlier understanding. As the initial velocity ratio (v{sub x0}:v{sub z0}) decreases, the relativistic effect becomes weak; only the first and second harmonic terms remain in the transverse and longitudinal trajectories, respectively, which coincides with the result of Esarey et al. [Phys. Rev. E 65, 056505 (2002)]. Our formalism also allows the description of electron's trajectory in the presence of an applied magnetic field. Critical magnetic fields for cyclotron motions are figured out and compared with semiclassical results. The cyclotron motion leads to more high-order harmonic terms than the trajectory without magnetic fields and causes an immensely broad spectrum with vastly large radiation amplitude for high initial velocity ratios (v{sub x0}:v{sub z0}). The radiation from hard x-ray to gamma-ray regions can be generated with a broad radiation angle, thus available for applications.

  20. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    SciTech Connect

    Higginbottom, Nick; Knigge, Christian; Matthews, James H.; Proga, Daniel; Long, Knox S.; Sim, Stuart A.

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  1. Precision calibration procedure for magnetic loss testers using a digital two-channel function generator

    NASA Astrophysics Data System (ADS)

    Ahlers, H.

    1994-05-01

    For the precision calibration of power meters used for magnetic loss measurements, a two-channel precision generator developed at the PTB is used. The staircase functions of the generator matched to the wattmeters by a current and voltage amplifier are smoothed by low-pass Bessel filters. The complex transfer functions of the filters have been measured for different ranges of voltage, current and frequency. The waveforms to be generated are corrected by means of fast Fourier transformation (FFT) and by multiplying the Fourier coefficients by the inverse complex transfer function. The accuracy of this calibration procedure was estimated to be 0.1%.

  2. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase I: Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.

    2011-01-01

    In a proof-of-principle effort to demonstrate the feasibility of magnetically shielded (MS) Hall thrusters, an existing laboratory thruster has been modified with the guidance of physics-based numerical simulation. When operated at a discharge power of 6-kilowatts the modified thruster has been designed to reduce the total energy and flux of ions to the channel insulators by greater than 1 and greater than 3 orders of magnitude, respectively. The erosion rates in this MS thruster configuration are predicted to be at least 2-4 orders of magnitude lower than those in the baseline (BL) configuration. At such rates no detectable erosion is expected to occur.

  3. Design of microfluidic channels for magnetic separation of malaria-infected red blood cells

    PubMed Central

    Wu, Wei-Tao; Martin, Andrea Blue; Gandini, Alberto; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James F.

    2016-01-01

    This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han et al. 2006 (Han and Frazier 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40% with a 10% of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 µm, the addition of an upstream constriction of 80% improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost 2 fold, from 26% to 49%. Further addition of a downstream diffuser reduced remixing, hence improved separation efficiency to 72%. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling-up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput – which is critical for clinical implementation as a blood-filtration system. PMID:27761107

  4. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  5. A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui

    2012-04-01

    The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.

  6. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Bounds on the attractor dimension for magnetohydrodynamic channel flow with parallel magnetic field at low magnetic Reynolds number.

    PubMed

    Low, R; Pothérat, A

    2015-05-01

    We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D) flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space parametrized by Hartmann number Ha and attractor dimension d(att). We find how the attractor dimension scales as a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence far from the walls (smallest scales and number of degrees of freedom) are found to be very similar.

  8. Bounds on the attractor dimension for magnetohydrodynamic channel flow with parallel magnetic field at low magnetic Reynolds number.

    PubMed

    Low, R; Pothérat, A

    2015-05-01

    We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D) flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space parametrized by Hartmann number Ha and attractor dimension d(att). We find how the attractor dimension scales as a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence far from the walls (smallest scales and number of degrees of freedom) are found to be very similar. PMID:26066263

  9. Role of Induced Magnetic Field on Transient Natural Convection Flow in a Vertical Channel: The Riemann Sum Approximation Approach

    NASA Astrophysics Data System (ADS)

    Jha, B. K.; Sani, I.

    2015-02-01

    This paper investigates the role of induced magnetic field on a transient natural convection flow of an electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of channel walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically using the Laplace transform technique along with the Riemann-sum approximation method. The solutions obtained are validated by comparisons with the closed form solutions obtained for the steady states which have been derived separately and also by the implicit finite difference method. Graphical results for the temperature, velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are presented and discussed.

  10. Topological insulators in magnetic fields: Quantum Hall effect and edge channels with non-quantized θ-term

    NASA Astrophysics Data System (ADS)

    Fritz, Lars; Sitte, Matthias; Rosch, Achim; Altman, Ehud

    2012-02-01

    We investigate how a magnetic field induces one-dimensional edge channels when the two-dimensional surface states of three-dimensional topological insulators become gapped. The Hall effect, measured by contacting those channels, remains quantized even in situations, where the θ-term in the bulk and the associated surface Hall conductivities, σxy^S, are not quantized due to the breaking of time-reversal symmetry. The quantization arises as the θ-term changes by ±2 πn along a loop around n edge channels. Model calculations show how an interplay of orbital and Zeeman effects leads to quantum Hall transitions, where channels get redistributed along the edges of the crystal. The network of edges opens new possibilities to investigate the coupling of edge channels.

  11. ON THE RELATIONSHIP BETWEEN A HOT-CHANNEL-LIKE SOLAR MAGNETIC FLUX ROPE AND ITS EMBEDDED PROMINENCE

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Chen, P. F.; Sun, J. Q.; Srivastava, A. K.

    2014-07-10

    A magnetic flux rope (MFR) is a coherent and helical magnetic field structure that has recently been found likely to appear as an elongated hot channel prior to a solar eruption. In this Letter, we investigate the relationship between the hot channel and the associated prominence through analysis of a limb event on 2011 September 12. In the early rise phase, the hot channel was initially cospatial with the prominence. It then quickly expanded, resulting in a separation of the top of the hot channel from that of the prominence. Meanwhile, they both experienced an instantaneous morphology transformation from a Λ shape to a reversed-Y shape and the top of these two structures showed an exponential increase in height. These features are a good indication of the occurrence of kink instability. Moreover, the onset of kink instability is found to coincide in time with the impulsive enhancement of flare emission underneath the hot channel, suggesting that ideal kink instability likely also plays an important role in triggering fast flare reconnection besides initiating the impulsive acceleration of the hot channel and distorting its morphology. We conclude that the hot channel is most likely the MFR system and the prominence only corresponds to the cool materials that are collected in the bottom of the helical field lines of the MFR against gravity.

  12. Turbulence in ferrofluids in channel flow with steady and oscillating magnetic fields.

    PubMed

    Schumacher, Kristopher R; Riley, James J; Finlayson, Bruce A

    2011-01-01

    The turbulent flow of a ferrofluid in channel flow is studied using direct numerical simulation. The method of analysis is an extension of that used for Newtonian fluids, with additional features necessary to model the ferrofluid. The analysis is applied to low Reynolds number turbulence in the range of existing experimental data in a capillary. For steady and oscillating magnetic fields, comparisons are made between a Newtonian fluid and a ferrofluid by comparing the pressure drop, turbulent Reynolds number, turbulent kinetic energy (k), Reynolds stress, velocity, and spin profiles. The results are also compared with predictions of a k-ɛ model to show the accuracy of that model when applied to ferrofluids, where ɛ is the rate of viscous dissipation of turbulent kinetic energy. PMID:21405774

  13. Turbulence in ferrofluids in channel flow with steady and oscillating magnetic fields.

    PubMed

    Schumacher, Kristopher R; Riley, James J; Finlayson, Bruce A

    2011-01-01

    The turbulent flow of a ferrofluid in channel flow is studied using direct numerical simulation. The method of analysis is an extension of that used for Newtonian fluids, with additional features necessary to model the ferrofluid. The analysis is applied to low Reynolds number turbulence in the range of existing experimental data in a capillary. For steady and oscillating magnetic fields, comparisons are made between a Newtonian fluid and a ferrofluid by comparing the pressure drop, turbulent Reynolds number, turbulent kinetic energy (k), Reynolds stress, velocity, and spin profiles. The results are also compared with predictions of a k-ɛ model to show the accuracy of that model when applied to ferrofluids, where ɛ is the rate of viscous dissipation of turbulent kinetic energy.

  14. Effects of transverse magnetic field on channel flow of liquid gallium

    NASA Astrophysics Data System (ADS)

    Rhoads, John; Ji, Hantao; Nornberg, Mark; Pfeffer, Scott

    2008-11-01

    Interest in using liquid metals as first walls in fusion devices requires understanding of their behavior in strong magnetic fields. The effects of such a field applied orthogonal to the direction of flow of liquid gallium in a wide aspect ratio channel were studied through several diagnostics. Magnetohydrodynamic (MHD) theory was tested for surface waves in the deep liquid limit along with the cross-channel velocity profile. A non-invasive diagnostic consisting of an intensified-CCD camera capturing the positions of an array of reflected lasers was employed. The resulting dispersion relation was found to agree with linear MHD theory. Strong damping of turbulent structures was observed along the field lines, while no damping was observed in longitudinal waves. A second non-invasive diagnostic using a position sensitive photodiode was used to obtain the full frequency response of the surface waves, which implicates a transition to two-dimensional turbulence. An invasive potential probe diagnostic was developed to measure the local velocity to examine boundary layer characteristics. Experimental results and conclusions will be discussed.

  15. Reverberation Mapping of the Broad Line Region: Application to a Hydrodynamical Line-driven Disk Wind Solution

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny

    2016-08-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (i≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .

  16. Simulation of transient behavior in a pulse-line-driven gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Lin, A. T.; Lin, Chih-Chien; Yang, Z. H.; Chu, K. R.; Fliflet, A. W.

    1988-04-01

    Results are reported for a set of slow-time-scale single-mode and fast-time-scale single-mode and multimode simulations of the transient-mode excitation phenomena in a short-pulse high-peak-power Ka-band gyrotron oscillator experiment. Both the slow- and fast-time-scale single-mode simulations are generally in good agreement with each other and, within experimental uncertainties, with the experimental observations of the time dependence and magnetic-field dependence of 35-GHz emission in the TE62 mode. However, the multimode simulations suggest the presence of mode suppression, mode beating, and other nonlinear multimode phenomena that could not easily be observed in the experiment, and generally agree less well with the experimental measurements than the single-mode simulations. The multimode simulations also suggest that steady-state behavior may not be obtainable with the highly time-dependent voltage waveform employed in the experiment, and indicate the importance of carrying out future high-voltage gyrotron experiments with less highly transient voltage waveforms.

  17. Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel

    NASA Astrophysics Data System (ADS)

    Malvandi, A.; Ganji, D. D.

    2014-08-01

    The present study is a theoretical investigation of the laminar flow and convective heat transfer of water/alumina nanofluid inside a parallel-plate channel in the presence of a uniform magnetic field. A modified two-component, four-equation, nonhomogeneous equilibrium model was employed for the alumina/water nanofluid, which fully accounted for the effect of the nanoparticle volume fraction distribution. The no-slip condition of the fluid-solid interface is abandoned in favor of a slip condition which appropriately represents the non-equilibrium region near the interface at micro/nano channels. The results obtained indicated that nanoparticles move from the heated walls (nanoparticles depletion) toward the core region of the channel (nanoparticles accumulation) and construct a non-uniform nanoparticles distribution. Moreover, in the presence of the magnetic field, the near wall velocity gradients increase, enhancing the slip velocity and thus the heat transfer rate and pressure drop increase.

  18. Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel.

    PubMed

    Islam, Afroja T; Siddique, Ariful H; Ramulu, T S; Reddy, Venu; Eu, Young-Jae; Cho, Seung Hyun; Kim, CheolGi

    2012-12-01

    In this work, we demonstrated the alignment of polystyrene latex microspheres (diameter of 1 ~45 μm), bio-functionalized superparamagnetic beads (diameter 2.8 μm), and live cells (average diameter 1 ~2 μm) using an ultrasonic standing wave (USW) in a PDMS microfluidic channel (330 μm width) attached on a Si substrate for bio-medical applications. To generate a standing wave inside the channel, ultrasound of 2.25 MHz resonance frequency (for the channel width) was applied by two ultrasound transducers installed at both sides of the channel which caused the radiation force to concentrate the micro-particles at the single pressure nodal plane of USW. By increasing the frequency to the next resonance condition of the channel, the particles were concentrated in dual nodal planes. Migration time of the micro-particles towards the single nodal plane was recorded as 108 s, 17 s, and 115 s for polystyrene particles of 2 μm diameter, bio-functionalized magnetic beads, and live cells, respectively. These successful alignments of the bio-functionalized magnetic beads along the desired part of the channel can enhance the performance of a sensor which is applicable for the bio-hybrid system and the alignment of live cells without any damage can be used for sample pre-treatment for the application of lab-on-a-chip type bioassays.

  19. Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghasemian, M.; Najafian Ashrafi, Z.; Goharkhah, M.; Ashjaee, M.

    2015-05-01

    Laminar forced convection heat transfer of water based Fe3O4 ferrofluid in a mini channel in the presence of constant and alternating magnetic fields is studied numerically. The hot ferrofluid flows into the 20 mm (l)×2 mm (h) mini channel with isothermal top and bottom cold surfaces and is subjected to a transverse non-uniform magnetic field produced by current carrying wires. Two-phase mixture model is implemented and the governing equations are solved using the finite volume approach. Primarily, the effects of the constant magnetic field location and intensity on the convective heat transfer are investigated. Simulation results show that the heat transfer is enhanced due to the disruption of the thermal boundary layer. However, this effect is more pronounced when the magnetic field source is placed in the fully developed region. In the next section, an alternating magnetic field with frequencies ranging from 0 to 10 Hz is imposed to the ferrofluid at different Reynolds numbers of Re=10, 25 and 50. A 16.48% heat transfer enhancement is obtained with a constant magnetic field at Re=25 and magnetic field intensity, Mn=1.07×108. This value is increased up to 27.72% by applying an alternating magnetic field with the same intensity at f=4 Hz. Results also indicate that the heat transfer enhancement due to the magnetic field is more significant at lower Reynolds numbers. The optimum frequency for heat transfer enhancement has been obtained for all the cases which shows that it has an increasing trend with the Reynolds number.

  20. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen.

    PubMed

    Pandian, Ramasamy P; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M; Hammel, P Chris; Manoharan, Periakaruppan T; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å(2) in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å(2)) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO(2) with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy.

  1. Effect of an inclined magnetic field on peristaltic flow of Williamson fluid in an inclined channel with convective conditions

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Bibi, Shahida; Rafiq, M.; Alsaedi, A.; Abbasi, F. M.

    2016-03-01

    This paper deals with the influence of inclined magnetic field on peristaltic flow of an incompressible Williamson fluid in an inclined channel with heat and mass transfer. Convective conditions of heat and mass transfer are employed. Viscous dissipation and Joule heating are taken into consideration. Mathematical modeling also includes Soret and Dufour effects. Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. Resulting problems are solved for small Weissenberg number. Impacts of variables reflecting the salient features of wall properties, Biot numbers and Soret and Dufour on the velocity, temperature, concentration and heat transfer coefficient are pointed out. Trapping phenomenon is also analyzed.

  2. Measuring the strong electrostatic and magnetic fields with proton radiography for ultra-high intensity laser channeling on fast ignition.

    PubMed

    Uematsu, Y; Ivancic, S; Iwawaki, T; Habara, H; Lei, A L; Theobald, W; Tanaka, K A

    2014-11-01

    In order to investigate the intense laser propagation and channel formation in dense plasma, we conducted an experiment with proton deflectometry on the OMEGA EP Laser facility. The proton image was analyzed by tracing the trajectory of mono-energetic protons, which provides understanding the electric and magnetic fields that were generated around the channel. The estimated field strengths (E ∼ 10(11) V/m and B ∼ 10(8) G) agree with the predictions from 2D-Particle-in-cell (PIC) simulations, indicating the feasibility of the proton deflectometry technique for over-critical density plasma. PMID:25430358

  3. Measuring the strong electrostatic and magnetic fields with proton radiography for ultra-high intensity laser channeling on fast ignition

    SciTech Connect

    Uematsu, Y.; Iwawaki, T.; Habara, H. Tanaka, K. A.; Ivancic, S.; Theobald, W.; Lei, A. L.

    2014-11-15

    In order to investigate the intense laser propagation and channel formation in dense plasma, we conducted an experiment with proton deflectometry on the OMEGA EP Laser facility. The proton image was analyzed by tracing the trajectory of mono-energetic protons, which provides understanding the electric and magnetic fields that were generated around the channel. The estimated field strengths (E ∼ 10{sup 11} V/m and B ∼ 10{sup 8} G) agree with the predictions from 2D-Particle-in-cell (PIC) simulations, indicating the feasibility of the proton deflectometry technique for over-critical density plasma.

  4. Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: Application in crude oil refinement

    NASA Astrophysics Data System (ADS)

    Sher Akbar, Noreen

    2015-03-01

    The influence of magnetic field on peristaltic flow of a Casson fluid model is considered. The model for peristaltic literature is modelled first time. The governing coupled equations are constructed under long wavelength and low Reynold's number approximation. Exact solutions are evaluated for stream function and pressure gradient. The important findings in this study are the variation of the Hartmann number M, Casson fluid parameter ζ and amplitudes a, b, d and ϕ. The velocity field increases due to increase in Hartmann number M near the channel walls while velocity field decreases at the centre of the channel.

  5. Signal acquisition module design for multi-channel surface magnetic resonance sounding system.

    PubMed

    Lin, Tingting; Chen, Wuqiang; Du, Wenyuan; Zhao, Jing

    2015-11-01

    To obtain a precise 2D/3D image of fissure or karst water, multi-channel magnetic resonance sounding (MRS) systems using edge-to-edge or overlapping receiving coils are needed. Thus, acquiring a nano-volt signal for a small amount of the aquifer and suppressing the mutual coupling between adjacent coils are two important issues for the design of the signal acquisition module in the system. In the present study, we propose to use a passive low pass filter, consisted of a resistance (R) and capacitance (C), to inhibit the mutual coupling effects of the coils. Four low-noise operational amplifiers LT1028, OPA124, AD745, and OP27 were compared with respect to achieving the lowest system noise. As a result, 3 pieces of LT1028 were chosen and connected in parallel to serve as preamplifier, with a sensitivity of 1.4 nV/√Hz at 2 kHz. Experimental results are presented for 2D MRS groundwater investigations conducted in the suburb of Changchun, China. The inversion result is consistent with the result of drilling log, suggesting that the signal acquisition module is well developed. PMID:26628154

  6. Line-driven winds revisited in the context of Be stars: Ω-slow solutions with high k values

    SciTech Connect

    Silaj, J.; Jones, C. E.; Curé, M.

    2014-11-01

    The standard, or fast, solutions of m-CAK line-driven wind theory cannot account for slowly outflowing disks like the ones that surround Be stars. It has been previously shown that there exists another family of solutions—the Ω-slow solutions—that is characterized by much slower terminal velocities and higher mass-loss rates. We have solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for this latter solution, starting from standard values of the line force parameters (α, k, and δ), and then systematically varying the values of α and k. Terminal velocities and mass-loss rates that are in good agreement with those found in Be stars are obtained from the solutions with lower α and higher k values. Furthermore, the equatorial densities of such solutions are comparable to those that are typically assumed in ad hoc models. For very high values of k, we find that the wind solutions exhibit a new kind of behavior.

  7. Performance characteristics according to the channel length and magnetic fields of cylindrical Hall thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Jongsub; Seo, Mihui; Seon, Jongho; June Lee, Hae; Choe, Wonho

    2011-09-01

    Performance characteristics of low power cylindrical Hall thrusters are investigated in terms of the length of the discharge channel. Thrust, efficiency, discharge current, and propellant utilization are evaluated for different channel lengths of 19, 22, and 25 mm. It is found that the propellant utilization and ion energy distribution function are strongly associated with the channel length. Increase of thrust and efficiency are also found with increasing channel lengths. These characteristics of the thruster are interpreted with possible generation of multi-charged ions due to increased residing time within the extended space inside the channel.

  8. Temperature and magnetic field effects on electron transport through DNA molecules in a two-dimensional four-channel system.

    PubMed

    Joe, Yong S; Lee, Sun H; Hedin, Eric R; Kim, Young D

    2013-06-01

    We utilize a two-dimensional four-channel DNA model, with a tight-binding (TB) Hamiltonian, and investigate the temperature and the magnetic field dependence of the transport behavior of a short DNA molecule. Random variation of the hopping integrals due to the thermal structural disorder, which partially destroy phase coherence of electrons and reduce quantum interference, leads to a reduction of the localization length and causes suppressed overall transmission. We also incorporate a variation of magnetic field flux density into the hopping integrals as a phase factor and observe Aharonov-Bohm (AB) oscillations in the transmission. It is shown that for non-zero magnetic flux, the transmission zero leaves the real-energy axis and moves up into the complex-energy plane. We also point out that the hydrogen bonds between the base pair with flux variations play a role to determine the periodicity of AB oscillations in the transmission.

  9. Line-driven ablation of circumstellar discs - I. Optically thin decretion discs of classical Oe/Be stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J. O.

    2016-05-01

    discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars.

  10. Line-driven ablation of circumstellar discs – I. Optically thin decretion discs of classical Oe/Be stars

    PubMed Central

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J. O.

    2016-01-01

    discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars. PMID:27346978

  11. AC Losses in the MICE Channel Magnets -- Is This a Curse or aBlessing?

    SciTech Connect

    Green, M.A.; Wu, H.; Wang, L.; Kai, L.L.; Jia, L.X.; Yang, S.Q.

    2008-01-31

    This report discusses the AC losses in the MICE channelmagnets during magnet charging and discharging. This report talks aboutthe three types of AC losses in the MICE magnets; the hysteretic AC lossin the superconductor, the coupling AC loss in the superconductor and theeddy current AC loss in the magnet mandrel and support structure. AClosses increase the heat load at 4 K. The added heat load increases thetemperature of the second stage of the cooler. In addition, AC losscontributes to the temperature rise between the second stage cold headand the high field point of the magnet, which is usually close to themagnet hot spot. These are the curses of AC loss in the MICE magnet thatcan limit the rate at which the magnet can be charge or discharged. Ifone is willing to allow some of the helium that is around the magnet toboil away during a magnet charge or discharge, AC losses can become ablessing. The boil off helium from the AC losses can be used to cool theupper end of the HTS leads and the surrounding shield. The AC losses arepresented for all three types of MICE magnets. The AC loss temperaturedrops within the coupling magnet are presented as an example of how boththe curse and blessing of the AC losses can be combined.

  12. GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Rath, Nikolaus

    Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control

  13. Magnetic topology and current channels in plasmas with toroidal current density inversions

    NASA Astrophysics Data System (ADS)

    Ciro, D.; Caldas, I. L.

    2013-10-01

    The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current density is considered. Previous works have shown that internal regions with negative current density lead to non-nested magnetic surfaces inside the plasma. Following these results, we derive a general expression relating the positive and negative currents inside the non-nested surfaces. This is done in terms of an anisotropy parameter that is model-independent and is based in very general properties of the magnetic field. We demonstrate that the positive currents in axisymmetric islands screen the negative one in the plasma center by reaching about twice its magnitude. Further, we illustrate these results by developing a family of analytical local solutions for the poloidal magnetic field in a region of interest that contains the inverted current. These local solutions exhibit non-nested magnetic surfaces with a combined current of at least twice the magnitude of the negative one, as prescribed from the topological arguments, and allow to study topological transitions driven by geometrical changes in the current profile. To conclude, we discuss the signatures of internal current density inversions in a confinement device and show that magnetic pitch measurements may be inappropriate to differentiate current reversals and small current holes in plasmas.

  14. Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels

    ERIC Educational Resources Information Center

    Wang, Han

    2010-01-01

    Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…

  15. EVIDENCE OF THE SOLAR EUV HOT CHANNEL AS A MAGNETIC FLUX ROPE FROM REMOTE-SENSING AND IN SITU OBSERVATIONS

    SciTech Connect

    SONG, H. Q.; CHEN, Y.; Wang, B.; ZHANG, J.; CHENG, X.; HU, Q.; LI, G.; WANG, Y. M.

    2015-07-20

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  16. Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate

    PubMed Central

    Candini, A.; Klar, D.; Marocchi, S.; Corradini, V.; Biagi, R.; De Renzi, V.; del Pennino, U.; Troiani, F.; Bellini, V.; Klyatskaya, S.; Ruben, M.; Kummer, K.; Brookes, N. B.; Huang, H.; Soncini, A.; Wende, H.; Affronte, M.

    2016-01-01

    Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc2) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world. PMID:26907811

  17. Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate.

    PubMed

    Candini, A; Klar, D; Marocchi, S; Corradini, V; Biagi, R; De Renzi, V; Del Pennino, U; Troiani, F; Bellini, V; Klyatskaya, S; Ruben, M; Kummer, K; Brookes, N B; Huang, H; Soncini, A; Wende, H; Affronte, M

    2016-01-01

    Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc2) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world. PMID:26907811

  18. Electric field induced spin and valley polarization within a magnetically confined silicene channel

    SciTech Connect

    Liu, Yiman; Zhou, Xiaoying; Zhou, Ma; Zhou, Guanghui; Long, Meng-Qiu

    2014-12-28

    We study the electronic structure and transport properties of Dirac electrons along a channel created by an exchange field through the proximity of ferromagnets on a silicene sheet. The multiple total internal reflection induces localized states in the channel, which behaves like an electron waveguide. An effect of spin- and valley-filtering originating from the coupling between valley and spin degrees is predicted for such a structure. Interestingly, this feature can be tuned significantly by locally applying electric and exchange fields simultaneously. The parameter condition for observing fully spin- and valley-polarized current is obtained. These findings may be observable in todays' experimental technique and useful for spintronic and valleytronic applications based on silicene.

  19. Effects of Magnetic Field on the Turbulent Wake of a Cylinder in MHD Channel Flow

    SciTech Connect

    John Rhoads; Edlundd, Eric; Ji, Hantao

    2013-04-01

    Results from a free-surface MHD flow experiment are presented detailing the modi cation of vortices in the wake of a circular cylinder with its axis parallel to the applied magnetic fi eld. Experiments were performed with a Reynolds number near Re ~ 104 as the interaction parameter, N = |j x B| / |ρ (υ • ∇), was increased through unity. By concurrently sampling the downstream fluid velocity at sixteen cross-stream locations in the wake, it was possible to extract an ensemble of azimuthal velocity profi les as a function of radius for vortices shed by the cylinder at varying strengths of magnetic field. Results indicate a signi cant change in vortex radius and rotation as N is increased. The lack of deviations from the vortex velocity pro file at high magnetic fi elds suggests the absence of small-scale turbulent features. By sampling the wake at three locations downstream in subsequent experiments, the decay of the vortices was examined and the effective viscosity was found to decrease as N-049±0.4. This reduction in effective viscosity is due to the modi cation of the small-scale eddies by the magnetic fi eld. The slope of the energy spectrum was observed to change from a k-1.8 power-law at low N to a k-3.5 power-law for N > 1. Together, these results suggest the flow smoothly transitioned to a quasi-two-dimensional state in the range 0 < N < 1.

  20. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase III: Comparison of Theory with Experiment

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2012-01-01

    A proof-of-principle effort to demonstrate a technique by which erosion of the acceleration channel in Hall thrusters of the magnetic-layer type can be eliminated has been completed. The first principles of the technique, now known as "magnetic shielding," were derived based on the findings of numerical simulations in 2-D axisymmetric geometry. The simulations, in turn, guided the modification of an existing 6-kW laboratory Hall thruster. This magnetically shielded (MS) thruster was then built and tested. Because neither theory nor experiment alone can validate fully the first principles of the technique, the objective of the 2-yr effort was twofold: (1) to demonstrate in the laboratory that the erosion rates can be reduced by >order of magnitude, and (2) to demonstrate that the near-wall plasma properties can be altered according to the theoretical predictions. This paper concludes the demonstration of magnetic shielding by reporting on a wide range of comparisons between results from numerical simulations and laboratory diagnostics. Collectively, we find that the comparisons validate the theory. Near the walls of the MS thruster, theory and experiment agree: (1) the plasma potential has been sustained at values near the discharge voltage, and (2) the electron temperature has been lowered by at least 2.5-3 times compared to the unshielded (US) thruster. Also, based on carbon deposition measurements, the erosion rates at the inner and outer walls of the MS thruster are found to be lower by at least 2300 and 1875 times, respectively. Erosion was so low along these walls that the rates were below the resolution of the profilometer. Using a sputtering yield model with an energy threshold of 25 V, the simulations predict a reduction of 600 at the MS inner wall. At the outer wall ion energies are computed to be below 25 V, for which case we set the erosion to zero in the simulations. When a 50-V threshold is used the computed ion energies are below the threshold at both

  1. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel

    NASA Astrophysics Data System (ADS)

    Kothandapani, M.; Prakash, J.

    2015-03-01

    Theoretical analyses on the effect of radiation and MHD on the peristaltic flow of a nanofluid through a porous medium in a two dimensional tapered asymmetric channel has been made. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. The transport equation accounts the both Brownian motion and thermophoresis along with the radiation reaction. The problem has been further simplified with the authentic assumptions of long wavelength and small Reynolds number. The analytical expressions obtained for the axial velocity, stream function, temperature field, nanoparticle fraction field and pressure gradient provide satisfactory explanation. Influence of various parameters on the flow characteristics have been discussed with the help of graphical results. The trapping phenomenon has also been discussed in detail.

  2. Inhibition of the cancer-associated TASK 3 channels by magnetically induced thermal release of Tetrandrine from a polymeric drug carrier.

    PubMed

    Shi, Chen; Thum, Carolin; Zhang, Qian; Tu, Wei; Pelaz, Beatriz; Parak, Wolfgang J; Zhang, Yu; Schneider, Marc

    2016-09-10

    Two-pore domain (K2P) potassium channels have recently attracted growing interest in the field of cancer research. These channels play an important role in cancer biology specifically for cancer progression, including proliferation, migration, and apoptosis, which makes them an attractive target for novel cancer therapies. Here, we examined the effect of Tetrandrine (Tet), a natural compound known as a channel modulator, which is associated with anticancer activities, as potential drug in this regard. Xenopus oocyte with overexpression of K2P 9.1 (TASK 3) channels has been chosen as model system for this purpose. In order to release Tet and trigger the channels we developed a polymeric magnetic delivery system: Tetrandrine-Magnetite co-loaded poly (lactic-co-glycolic) acid particles. The embedded iron oxide magnetite (Fe3O4) nanoparticles (NPs) allow to inductively heat the particles by applying a high frequency alternating magnetic field, and thus trigger the release of the co-encapsulated Tet. As a proof of concept the nanoparticulate drug delivery system was heated by raising the suspension's temperature proving the temperature dependent release behaviour. Both heating approaches were then successfully applied for measuring the TASK 3 channels current in response to the released drug. It was found that the released Tet amount is sufficient to inhibit the TASK 3 channels in a dose dependent manner. Thus, such a stimulus responsive drug delivery system holds great promise as a novel approach for the treatment of various cancer types such as for the interaction with the two-pore domain potassium channels K2P 9.1. PMID:27374629

  3. Electron acceleration in the inverse free electron laser with a helical wiggler by axial magnetic field and ion-channel guiding

    NASA Astrophysics Data System (ADS)

    Reza, Khazaeinezhad; Mahdi, Esmaeilzadeh

    2012-09-01

    Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article. The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration. In free electron lasers, electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser. The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method. The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.

  4. Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer's disease model mice.

    PubMed

    Wang, Furong; Zhang, Yu; Wang, Li; Sun, Peng; Luo, Xianwen; Ishigaki, Yasuhito; Sugai, Tokio; Yamamoto, Ryo; Kato, Nobuo

    2015-10-01

    Transcranial magnetic stimulation (TMS) is fragmentarily reported to be beneficial to Alzheimer's patients. Its underlying mechanism was investigated. TMS was applied at 1, 10 or 15 Hz daily for 4 weeks to young Alzheimer's disease model mice (3xTg), in which intracellular soluble amyloid-β is notably accumulated. Hippocampal long-term potentiation (LTP) was tested after behavior. TMS ameliorated spatial learning deficits and enhanced LTP in the same frequency-dependent manner. Activity of the large conductance calcium-activated potassium (Big-K; BK) channels was suppressed in 3xTg mice and recovered by TMS frequency-dependently. These suppression and recovery were accompanied by increase and decrease in cortical excitability, respectively. TMS frequency-dependently enhanced the expression of the activity-dependently expressed scaffold protein Homer1a, which turned out to enhance BK channel activity. Isopimaric acid, an activator of the BK channel, magnified LTP. Amyloid-β lowering was detected after TMS in 3xTg mice. In 3xTg mice with Homer1a knocked out, amyloid-β lowering was not detected, though the TMS effects on BK channel and LTP remained. We concluded that TMS facilitates BK channels both Homer1a-dependently and -independently, thereby enhancing hippocampal LTP and decreasing cortical excitability. Reduced excitability contributed to amyloid-β lowering. A cascade of these correlated processes, triggered by TMS, was likely to improve learning in 3xTg mice.

  5. 2D simulations of the line-driven instability in hot-star winds. II. Approximations for the 2D radiation force

    NASA Astrophysics Data System (ADS)

    Dessart, L.; Owocki, S. P.

    2005-07-01

    We present initial attempts to include the multi-dimensional nature of radiation transport in hydrodynamical simulations of the small-scale structure that arises from the line-driven instability in hot-star winds. Compared to previous 1D or 2D models that assume a purely radial radiation force, we seek additionally to treat the lateral momentum and transport of diffuse line-radiation, initially here within a 2D context. A key incentive is to study the damping effect of the associated diffuse line-drag on the dynamical properties of the flow, focusing particularly on whether this might prevent lateral break-up of shell structures at scales near the lateral Sobolev angle of ca. 1^o. Based on 3D linear perturbation analyses that show a viscous diffusion character for the damping at these scales, we first explore nonlinear simulations that cast the lateral diffuse force in the simple, local form of a parallel viscosity. We find, however, that the resulting strong damping of lateral velocity fluctuations only further isolates azimuthal zones, leading again to azimuthal incoherence down to the grid scale. To account then for the further effect of lateral mixing of radiation associated with the radial driving, we next explore models in which the radial force is azimuthally smoothed over a chosen scale, and thereby show that this does indeed translate to a similar scale for the resulting density and velocity structure. Accounting for both the lateral line-drag and the lateral mixing in a more self-consistent way thus requires a multi-ray computation of the radiation transport. As a first attempt, we explore further a method first proposed by Owocki (1999), which uses a restricted 3-ray approach that combines a radial ray with two oblique rays set to have an impact parameter p < Rast within the stellar core. From numerical simulations with various grid resolutions (and p), we find that, compared to equivalent 1-ray simulations, the high-resolution 3-ray models show

  6. THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS

    SciTech Connect

    Ji Suoqing; Fisher, Robert T.; Garcia-Berro, Enrique; Loren-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-08-20

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths {approx}2 Multiplication-Sign 10{sup 8} G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  7. Unsteady Two-Layered Fluid Flow and Heat Transfer of Conducting Fluids in a Channel Between Parallel Porous Plates Under Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Raju, T. Linga; Nagavalli, M.

    2013-08-01

    The unsteady magnetohydrodynamic flow of two immiscible fluids in a horizontal channel bounded by two parallel porous isothermal plates in the presence of an applied magnetic and electric field is investigated. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, one being stationary and the other oscillating, when both fluids are considered as electrically conducting. Also, both fluids are assumed to be incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing equations are partial in nature, which are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for velocity and temperature distributions are obtained in both fluid regions of the channel. Profiles of these solutions are plotted to discuss the effect on the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, porous parameter, ratios of the viscosities, heights, electrical and thermal conductivities

  8. Influence of Heat Source, Thermal Radiation and Inclined Magnetic Field on Peristaltic Flow of a Hyperbolic Tangent Nanofluid in a Tapered Asymmetric Channel.

    PubMed

    Kothandapani, Munirathinam; Prakash, Jayavel

    2014-10-31

    In the present analytic thinking, we have modeled the governing equations of a two dimensional peristaltic transport of a Hyperbolic tangent nanofluid in the presence of a heat source/sink with the combined effects of thermal radiation and inclined magnetic field in a tapered asymmetric channel. The propagation of waves on the non-uniform walls to have different amplitudes and phase but the same wave speed is produced the tapered asymmetric channel. The equations of dimensionless temperature and nanoparticle concentration are solved analytically under assumptions of long wavelength and low Reynolds number. The governing equations of momentum of a hyperbolic tangent nanofluid for the tapered asymmetric channel have also been solved analytically using the regular perturbation method. The expression for average rise in pressure has been figured using numerical integrations. The effects of various physical parameters entering into the problem are discussed numerically and graphically. The phenomenon of trapping is also investigated. Furthermore, the received results show that the maximum pressure rise gets increased in case of non-Newtonian fluid when equated with Newtonian fluid. PMID:25373110

  9. Evidence of dual channel electron transfer induced negative magnetic field effect on exciplex emission at very high permittivity of medium

    NASA Astrophysics Data System (ADS)

    Jana, Amit Kumar; Roy, Partha; Nath, Deb Narayan

    2012-05-01

    Magnetic field induced change in the pyrene-N,N-dimethylaniline exciplex fluorescence has been studied in condensed phase with very high permittivity. In contrast to the commonly observed enhancement of exciplex fluorescence in presence of magnetic field (for 7 < ɛ < 33), the effect shows a complete reversal at low DMA concentration in DMSO which is observed only at the blue end of fluorescence. At high DMA concentration the negative MFE at blue end slowly reverts back to the normal. At the red end of the emission the MFE retains its normal character for all donor concentrations even at very high permittivity.

  10. The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Afrand, Masoud; Karimipour, Arash; Nadooshan, Afshin Ahmadi; Akbari, Mohammad

    2016-10-01

    Simulation of forced convection of FMWNT-water (functionalized multi-walled carbon nano-tubes) nano-fluid in a micro-channel under a magnetic field in slip flow regime is performed. The micro-channel wall is divided into two portions. The micro-channel entrance is insulated while the rest of length of the micro-channel has constant temperature (TC). Moreover, the micro-channel domain is exposed to a magnetic field with constant strength of B0. High temperature nano-fluid (TH) enters the micro-channel and exposed to its cold walls. Slip velocity boundary condition along the walls of the micro-channel is considered. Governing equations are numerically solved using FORTRAN computer code based on the SIMPLE algorithm. Results are presented as the velocity, temperature, and Nusselt number profiles. Greater Reynolds number, Hartmann number, and volume fraction related to more heat transfer rate; however, the effects of Ha and ϕ are more noteworthy at higher Re.

  11. Performance evaluation of signal dependent noise predictive maximum likelihood detector for two-dimensional magnetic recording read/write channel

    NASA Astrophysics Data System (ADS)

    Kawamura, S.; Okamoto, Y.; Nakamura, Y.; Osawa, H.; Kanai, Y.; Muraoaka, H.

    2015-05-01

    Two-dimensional magnetic recording is affected by the inter-track interference (ITI) from the adjacent tracks. We investigate the improvement of partial response maximum likelihood (PRML) systems with signal dependent noise predictor (SDNP) in the bit error rate performance. The systems reduce the influence of ITI by two dimensional finite impulse response filter using the waveforms reproduced by triple readers from the adjacent tracks. The results show that the SDNP provides larger improvement to PR(2,6,1)ML system compare with PR1ML system.

  12. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  13. Unsteady two-layered fluid flow of conducting fluids in a channel between parallel porous plates under transverse magnetic field in a rotating system

    NASA Astrophysics Data System (ADS)

    Linga Raju, T.; Neela Rao, B.

    2016-05-01

    An unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be incompressible, electrically conducting with different viscosities and electrical conductivities. The governing partial differential equations are reduced to the linear ordinary differential equations using two-term series. The resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and secondary) in the two regions respectively, by assuming their solutions as a combination of both the steady state and time dependent components of the solutions. Numerical values of the velocity distributions are computed for different sets of values of the governing parameters involved in the study and their corresponding profiles are also plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and heights are discussed. Also an observation is made how the velocity distributions vary with the rotating hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases both the primary and secondary velocity distributions in the two regions.

  14. A large volume double channel 1H-X RF probe for hyperpolarized magnetic resonance at 0.0475 T.

    PubMed

    Coffey, Aaron M; Shchepin, Roman V; Wilkens, Ken; Waddell, Kevin W; Chekmenev, Eduard Y

    2012-07-01

    In this work we describe a large volume 340 mL (1)H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. (1)H/(13)C and (1)H/(15)N probe configurations are demonstrated with the potential for extension to (1)H/(129)Xe. The primary applications of this probe are preparation and quality assurance of (13)C and (15)N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 μs (13)C excitation pulses at 5.3 W, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to (13)C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with (13)C hyperpolarized 2-hydroxyethyl propionate-1-(13)C,2,3,3-d(3).

  15. Combined Parallel and Partial Fourier MR Reconstruction for Accelerated 8-Channel Hyperpolarized Carbon-13 In Vivo Magnetic Resonance Spectroscopic Imaging (MRSI)

    PubMed Central

    Ohliger, Michael A.; Larson, Peder E.Z.; Bok, Robert A.; Shin, Peter; Hu, Simon; Tropp, James; Robb, Fraser; Carvajal, Lucas; Nelson, Sarah J.; Kurhanewicz, John; Vigneron, Daniel B.

    2013-01-01

    Purpose To implement and evaluate combined parallel magnetic resonance imaging (MRI) and partial Fourier acquisition and reconstruction for rapid hyperpolarized carbon-13 (13C) spectroscopic imaging. Short acquisition times mitigate hyperpolarized signal losses that occur due to T1 decay, metabolism, and radiofrequency (RF) saturation. Human applications additionally require rapid imaging to permit breath-holding and to minimize the effects of physiologic motion. Materials and Methods Numerical simulations were employed to validate and characterize the reconstruction. In vivo MR spectroscopic images were obtained from a rat following injection of hyperpolarized 13C pyruvate using an 8-channel array of carbon-tuned receive elements. Results For small spectroscopic matrix sizes, combined parallel imaging and partial Fourier undersampling resulted primarily in decreased spatial resolution, with relatively less visible spatial aliasing. Parallel reconstruction qualitatively restored lost image detail, although some pixel spectra had persistent numerical error. With this technique, a 30 × 10 × 16 matrix of 4800 3D MR spectroscopy imaging voxels from a whole rat with isotropic 8 mm3 resolution was acquired within 11 seconds. Conclusion Parallel MRI and partial Fourier acquisitions can provide the shorter imaging times and wider spatial coverage that will be necessary as hyperpolarized 13C techniques move toward human clinical applications. PMID:23293097

  16. Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room

    NASA Astrophysics Data System (ADS)

    Qiu, Yang; Li, Hua; Zhang, Shu-Lin; Wang, Yong-Liang; Kong, Xiang-Yan; Zhang, Chao-Xiang; Zhang, Yong-Sheng; Xu, Xiao-Feng; Yang, Kang; Xie, Xiao-Ming

    2015-07-01

    We constructed a 36-channel magnetocardiography (MCG) system based on low-Tc direct current (DC) superconducting quantum interference device (SQUID) magnetometers operated inside a magnetically shielded room (MSR). Weakly damped SQUID magnetometers with large Steward-McCumber parameter βc (βc ≈ 5), which could directly connect to the operational amplifier without any additional feedback circuit, were used to simplify the readout electronics. With a flux-to-voltage transfer coefficient ∂ V/∂ Φ larger than 420 μV/Φ 0, the SQUID magnetometers had a white noise level of about 5.5 fT·Hz-1/2 when operated in MSR. 36 sensing magnetometers and 15 reference magnetometers were employed to realize software gradiometer configurations. The coverage area of the 36 sensing magnetometers is 210×210 mm2. MCG measurements with a high signal-to-noise ratio of 40 dB were done successfully using the developed system. Project supported by “One Hundred Persons Project” of the Chinese Academy of Sciences and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200).

  17. Near-field and far-field sound radiation from a line-driven fluid-loaded infinite flat plate having periodic and non-periodic attached rib stiffeners

    NASA Astrophysics Data System (ADS)

    Cray, Benjamin A.

    1992-03-01

    The far-field and near-field solutions for the radiated acoustic pressure from a line-driven fluid-loaded, rib-stiffened thin elastic plate have been obtained. The plate has been configured to have two sets of rib-stiffeners, though the formulation given may be extended to include additional rib-stiffener sets. The stiffeners composing a given set are identical and are spaced periodically with distance l. However, one set of stiffeners is shifted by an amount from the other set. In this manner, portions of the plate may be configured with repeating sections having non-periodic rib spacing. The stiffeners exert reactive forces upon the plate, but not angular moments. Fluid loading is included on the upper surface of the plate while the lower surface is unloaded, except for a time harmonic line force applied normal to the lower surface. Expressions are derived, for the special case of periodic inter-rib spacing, which give the wavenumbers at which the magnitude of the wavenumber response obtains relative maximum and minimum values. For a stiffened plate, it is seen that excitation frequencies below coincidence generate large magnitude supersonic wavenumber components.

  18. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  19. Tests of the standard (30 hz) NCER FM multiplex telemetry system, augmented by two timing channels and a compensation reference signal, used to record multiplexed seismic network data on magnetic tape

    USGS Publications Warehouse

    Eaton, Jerry P.

    1976-01-01

    The application of subtractive compensation to USGS seismic magnetic tape recording and playback systems was examined in a recent USGS Open-file report (1). It was found, for the standard (30 Hz) NCER multiplex system, that subtractive compensation utilizing a 4688 Hz reference signal multiplexed onto each data track was more effective than that utilizing a 3125 Hz reference signal recorded separately on a different track. Moreover, it was found that the portion of the spectrum between the uppermost data channel (3060 Hz + or - 125 Hz) and the compensation reference signal (4688 Hz) could be used to record an additional timing signal, with a center frequency of 3700 Hz and a broader playback bandwidth (ca 0 to 100 Hz) than that of the standard data channels. Accordingly, for the tests described in that report, the standard 8-datachannel multiplex system was augmented by one additional timing channel with a center frequency of 3700 Hz. The 3700 Hz discriminator used in those tests was not successfully set up to utilize subtractive compensation; so its output from a tape playback was quite noisy. Subsequently, further tests have been carried out on the application of subtractive compensation to a 4-channel broad-band multiplex system and to the standard multiplex system, both recorded on field tape recorders with relatively poor tape speed control (2), (3). In the course of these experiments, it was discovered that two separate timing channe1s, not just one, can be inserted between the uppermost data channel and the compensation reference signal, Furthermore, it was possible to adjust the discriminators used to playback these timing channels so that they profited significantly from subtractive compensation even though the playback bandwidth was 0 to 100 Hz (for short rise times of square wave timing signals). The advantages of recording two timing signals on each data track include: 1) one standard time signal to be used for critical timing, e.g. IRIG E, can be

  20. Signal enhancement using a switchable magnetic trap

    DOEpatents

    Beer, Neil Reginald

    2012-05-29

    A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.

  1. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  2. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed Central

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  3. Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Farooq, S.; Alsaedi, A.; Ahmad, B.

    2016-08-01

    The purpose of present investigation is to study the Hall and MHD effects on peristaltic flow of Carreau-Yasuda fluid in a convectively curved configuration. Thermal radiation, Soret and Dufour effects are also accounted. The channel walls comprised the no slip and compliant properties. Constitutive equations for mass, momentum, energy and concentration are first modeled in view of considered assumptions and then simplified under long wavelength and low Reynolds number approximation. Solution of the resulting system of equations is carried out via a regular perturbation technique. Physical behaviors of velocity, temperature, concentration and streamlines are discussed with the help of graphical representation.

  4. Structural Biology of TRP Channels

    PubMed Central

    Hellmich, Ute A.; Gaudet, Rachelle

    2016-01-01

    Membrane proteins remain challenging targets for structural biologists, despite recent technical developments regarding sample preparation and structure determination. We review recent progress towards a structural understanding of TRP channels and the techniques used to that end. We discuss available low-resolution structures from electron microscopy (EM), X-ray crystallography and nuclear magnetic resonance (NMR), and review the resulting insights into TRP channel function for various subfamily members. The recent high-resolution structure of TRPV1 is discussed in more detail in Chapter X. We also consider the opportunities and challenges of using the accumulating structural information on TRPs and homologous proteins for deducing full-length structures of different TRP channel subfamilies, such as building homology models. Finally, we close by summarizing the outlook of the “holy grail” of understanding in atomic detail the diverse functions of TRP channels. PMID:24961976

  5. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  6. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  7. Channeling through Bent Crystals

    SciTech Connect

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  8. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  9. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J. Stephen

    1992-01-01

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet.

  10. The Influenza M2 Ectodomain Regulates the Conformational Equilibria of the Transmembrane Proton Channel: Insights from Solid-State Nuclear Magnetic Resonance.

    PubMed

    Kwon, Byungsu; Hong, Mei

    2016-09-27

    The influenza M2 protein is the target of the amantadine family of antiviral drugs, and its transmembrane (TM) domain structure and dynamics have been extensively studied. However, little is known about the structure of the highly conserved N-terminal ectodomain, which contains epitopes targeted by influenza vaccines. In this study, we synthesized an M2 construct containing the N-terminal ectodomain and the TM domain, to understand the site-specific conformation and dynamics of the ectodomain and to investigate the effect of the ectodomain on the TM structure. We incorporated (13)C- and (15)N-labeled residues into both domains and measured their chemical shifts and line widths using solid-state nuclear magnetic resonance. The data indicate that the entire ectodomain is unstructured and dynamic, but the motion is slower for residues closer to the TM domain. (13)C line shapes indicate that this ecto-TM construct undergoes fast uniaxial rotational diffusion, like the isolated TM peptide, but drug binding increases the motional rates of the TM helix while slowing the local motion of the ectodomain residues that are close to the TM domain. Moreover, (13)C and (15)N chemical shifts indicate that the ectodomain shifts the conformational equilibria of the TM residues toward the drug-bound state even in the absence of amantadine, thus providing a molecular structural basis for the lower inhibitory concentration of full-length M2 compared to that of the ectodomain-truncated M2. We propose that this conformational selection may result from electrostatic repulsion between negatively charged ectodomain residues in the tetrameric protein. Together with the recent study of the M2 cytoplasmic domain, these results show that intrinsically disordered extramembrane domains in membrane proteins can regulate the functionally relevant conformation and dynamics of the structurally ordered TM domains.

  11. Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI

    DOEpatents

    Ledbetter, Micah P.; Savukov, Igor M.; Budker, Dmitry; Shah, Vishal K.; Knappe, Svenja; Kitching, John; Michalak, David J.; Xu, Shoujun; Pines, Alexander

    2011-08-09

    An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.

  12. Advanced magnetorheological damper with a spiral channel bypass valve

    NASA Astrophysics Data System (ADS)

    McLaughlin, G.; Hu, W.; Wereley, N. M.

    2014-05-01

    Magnetorheological (MR) fluid has a yield stress that is readily controllable using an applied magnetic field. MR dampers adjust this yield stress in a magnetic valve to accommodate a wide range of shock or vibration loads. In this study, the performance of an MR damper with a spiral channel bypass valve is examined. Three bypass damper configurations, i.e., a spiral channel, a spiral channel with beads, and a straight channel with beads, are subject to sinusoidal forcing at constant amplitude, while varying frequency, and applied field (current). These configurations are characterized using tortuosity and porosity parameters. The spiral channel without beads had the largest porosity and smallest tortuosity, which produced the smallest damper force, but the widest controllable damping range. The spiral channel with beads had the smallest porosity, and a comparable tortuosity, which produced the largest damping force, but similar controllable damping range to the straight channel with beads.

  13. Equalization in redundant channels

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor); Cominelli, Donald F. (Inventor); O'Neill, Richard D. (Inventor)

    1988-01-01

    A miscomparison between a channel's configuration data base and a voted system configuration data base in a redundant channel system having identically operating, frame synchronous channels triggers autoequalization of the channel's historical signal data bases in a hierarchical, chronological manner with that of a correctly operating channel. After equalization, symmetrization of the channel's configuration data base with that of the system permits upgrading of the previously degraded channel to full redundancy. An externally provided equalization command, e.g., manually actuated, can also trigger equalization.

  14. Magnetic Trapping of Bacteria at Low Magnetic Fields.

    PubMed

    Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  15. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  16. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  17. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  18. Age of Martian channels

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1976-01-01

    The ages of large Martian channels have been studied by determining the relative abundances of craters superimposed on channels and adjacent terrains and by examining superposition relationships between channels and plains and mantle materials. The channels are extremely old, are spatially confined and temporally related to the ancient cratered terrain, and in many cases are related to the as yet poorly understood genetic processes of fretting and chaos formation. No evidence is found for recent channel activity.

  19. Quench Protection and Magnet Supply Requirements for the MICEFocusingand Coupling Magnets

    SciTech Connect

    Green, Michael A.; Witte, Holger

    2005-06-08

    This report discusses the quench protection and power supply requirements of the MICE superconducting magnets. A section of the report discusses the quench process and how to calculate the peak voltages and hotspot temperature that result from a magnet quench. A section of the report discusses conventional quench protection methods. Thermal quench back from the magnet mandrel is also discussed. Selected quench protection methods that result in safe quenching of the MICE focusing and coupling magnets are discussed. The coupling of the MICE magnets with the other magnets in the MICE is described. The consequences of this coupling on magnet charging and quenching are discussed. Calculations of the quenching of a magnet due quench back from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. The conclusion of this report describes how the MICE magnet channel will react when one or magnets in that channel are quenched.

  20. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  1. Gramicidin Channels: Versatile Tools

    NASA Astrophysics Data System (ADS)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  2. Interaction of Two Filament Channels of Different Chiralities

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Filippov, Boris; Schmieder, Brigitte; Magara, Tetsuya; moon, Young-Jae; Uddin, Wahab

    2016-07-01

    We present observations of the interactions between the two filament channels of different chiralities and associated dynamics that occurred during 2014 April 18-20. While two flux ropes of different helicity with parallel axial magnetic fields can only undergo a bounce interaction when they are brought together, the observations at first glance show that the heated plasma is moving from one filament channel to the other. The SDO/AIA 171 Å observations and the potential-field source-surface magnetic field extrapolation reveal the presence of a fan-spine magnetic configuration over the filament channels with a null point located above them. Three different events of filament activations, partial eruptions, and associated filament channel interactions have been observed. The activation initiated in one filament channel seems to propagate along the neighboring filament channel. We believe that the activation and partial eruption of the filaments brings the field lines of flux ropes containing them closer to the null point and triggers the magnetic reconnection between them and the fan-spine magnetic configuration. As a result, the hot plasma moves along the outer spine line toward the remote point. Utilizing the present observations, for the first time we have discussed how two different-chirality filament channels can interact and show interrelation.

  3. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  4. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  5. Feshbach Correlations and Closed Channel Amplitudes

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas; Tsai, Shan-Wen; Timmermans, Eddy

    2012-02-01

    The magnetically controlled Feshbach resonance is a prominent member of the cold atom toolkit. The ability to tune binary particle interactions in a quantum many body system has given access to collapsing BEC-physics in bosenovas, to BEC-BCS crossover physics, to the unitarity regime, and to quantum phase transitions. The resonance is accessed by tuning the energy of a quasi-bound spin-rearranged molecular state near the vaccuum of the interacting particles. Does the amplitude of the spin-rearranged or ``closed channel'' state play a significant role in the many body physics? We present a microscopic derivation of the Feshbach resonance interactions and obtain the parameters of the two-channel model in a optical lattice. We study two atoms interacting in a harmonic oscillator potential near a Feshbach resonance to derive the closed channel probabibilty and to uncover the validity-range of the two channel lattice model.

  6. Optimal channels for channelized quadratic estimators.

    PubMed

    Kupinski, Meredith K; Clarkson, Eric

    2016-06-01

    We present a new method for computing optimized channels for estimation tasks that is feasible for high-dimensional image data. Maximum-likelihood (ML) parameter estimates are challenging to compute from high-dimensional likelihoods. The dimensionality reduction from M measurements to L channels is a critical advantage of channelized quadratic estimators (CQEs), since estimating likelihood moments from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. The channelized likelihood is then used to form ML estimates of the parameter(s). In this work we choose an imaging example in which the second-order statistics of the image data depend upon the parameter of interest: the correlation length. Correlation lengths are used to approximate background textures in many imaging applications, and in these cases an estimate of the correlation length is useful for pre-whitening. In a simulation study we compare the estimation performance, as measured by the root-mean-squared error (RMSE), of correlation length estimates from CQE and power spectral density (PSD) distribution fitting. To abide by the assumptions of the PSD method we simulate an ergodic, isotropic, stationary, and zero-mean random process. These assumptions are not part of the CQE formalism. The CQE method assumes a Gaussian channelized likelihood that can be a valid for non-Gaussian image data, since the channel outputs are formed from weighted sums of the image elements. We have shown that, for three or more channels, the RMSE of CQE estimates of correlation length is lower than conventional PSD estimates. We also show that computing CQE by using a standard nonlinear optimization method produces channels that yield RMSE within 2% of the analytic optimum. CQE estimates of anisotropic correlation length estimation are reported to demonstrate this technique on a two-parameter estimation problem. PMID:27409452

  7. Ion channels and cancer.

    PubMed

    Kunzelmann, Karl

    2005-06-01

    Membrane ion channels are essential for cell proliferation and appear to have a role in the development of cancer. This has initially been demonstrated for potassium channels and is meanwhile also suggested for other cation channels and Cl- channels. For some of these channels, like voltage-gated ether à go-go and Ca2+-dependent potassium channels as well as calcium and chloride channels, a cell cycle-dependent function has been demonstrated. Along with other membrane conductances, these channels control the membrane voltage and Ca2+ signaling in proliferating cells. Homeostatic parameters, such as the intracellular ion concentration, cytosolic pH and cell volume, are also governed by the activity of ion channels. Thus it will be an essential task for future studies to unravel cell cycle-specific effects of ion channels and non-specific homeostatic functions. When studying the role of ion channels in cancer cells, it is indispensable to choose experimental conditions that come close to the in vivo situation. Thus, environmental parameters, such as low oxygen pressure, acidosis and exposure to serum proteins, have to be taken into account. In order to achieve clinical application, more studies on the original cancer tissue are required, and improved animal models. Finally, it will be essential to generate more potent and specific inhibitors of ion channels to overcome the shortcomings of some of the current approaches.

  8. Helical channel design and technology for cooling of muon beams

    SciTech Connect

    Yonehara, K; Derbenev, Y.S.; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  9. Ion channels in plants

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  10. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  11. C. elegans TRP channels.

    PubMed

    Xiao, Rui; Xu, X Z Shawn

    2011-01-01

    Transient receptor potential (TRP) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  12. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  13. C. elegans TRP channels

    PubMed Central

    Xiao, Rui; Xu, X.Z. Shawn

    2010-01-01

    TRP (transient receptor potential) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  14. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    regime by a buried oxide layer / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- A positron source using channeling in crystals for linear colliders / X. Artru ... [et al.] -- Parametric channeling and collapse of charged particles beams in crystals / M. Vysotskyy and V. Vysotskii.The formation and usage of coherent correlated charged particles states in the physics of channeling in crystals / S. V. Adamenko, V. I. Vysotskii and M. V. Vysotskyy -- Surface channeling of magnetic-charged particles on multilayer surface / S. V. Adamenko and V. I. Vysotskii -- Coherent creation of anti-hydrogen atoms in a crystal by relativistic antiproton / Yu. P. Kunashenko -- Thermal equilibrium of light ions in heavy crystals / E. Tsyganov -- Photon emission of electrons in a crystalline undulator / H. Backe ... [et al.] -- Channeling radiation from relativistic electrons in a crystal target as complementary x-ray and gamma ray source at synchrotron light facilities / K. B. Korotchenko, Yu. L. Pivovarov and T. A. Tukhfatullin -- Diffracted channeling radiation and other compound radiation processes / H. Nitta -- Collective scattering on the atom planes under the condition of full transition / A. R. Mkrtchyan ... [et al.] -- The proposal of the experiment on the research of the diffracted channeling radiation / D. A. Baklanov ... [et al.] -- Positron channeling at the DaOne BTF Facility: the cup experiment / L. Quintieri ... [et al.] -- Radiation spectra of 200 MeV electrons in diamond and silicon crystals at axial and planar orientations / K. Fissum ... [et al.] -- Channeling experiments with electrons at the Mainz Microtron Mami / W. Lauth ... [et al.] -- Dechanneling of positrons by dislocations: effects of anharmonic interactions / J. George and A. P. Pathak -- Diffracted channeling radiation from axially channeled relativistic electrons / K. B. Korotchenko ... [et al.] -- Intensive quasi-monochromatic, directed x-ray radiation of planar channeled positron bunch / L. Gevorgian

  15. Ultrasonic Concentration in a Line-Driven Cylindrical Tube

    SciTech Connect

    Goddard, Gregory Russ

    2004-01-01

    The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle concentration within the system. The effects of tubing, fluid, and particle material properties, tube geometry, fluid flow, and tube length on the structural excitation and consequently power requirements and concentration quality within the tube were investigated theoretically and experimentally. Limitations of the method are discussed, as well as ways to minimize or compensate for deleterious effects. Finally a preliminary demonstration of the efficacy of acoustic concentration is presented.

  16. Thoughts on Incorporating HPRF in a Linear Cooling Channel

    SciTech Connect

    Gallardo, Juan C.; Zisman, Michael S

    2009-08-20

    We discuss a possible implementation of high-pressure gas-filled RF (HPRF) cavities in a linear cooling channel for muons and some of the technical issues that must be dealt with. The approach we describe is a hybrid approach that uses high-pressure hydrogen gas to avoid cavity breakdown, along with discrete LiH absorbers to provide the majority of the energy loss. Initial simulations show that the channel performs as well as the original vacuum RF channel while potentially avoiding the degradation in RF gradient associated with the strong magnetic field in the cooling channel.

  17. MULTI-CHANNEL PULSE HEIGHT ANALYZER

    DOEpatents

    Boyer, K.; Johnstone, C.W.

    1958-11-25

    An improved multi-channel pulse height analyzer of the type where the device translates the amplitude of each pulse into a time duration electrical quantity which is utilized to control the length of a train of pulses forwarded to a scaler is described. The final state of the scaler for any one train of pulses selects the appropriate channel in a magnetic memory in which an additional count of one is placed. The improvement consists of a storage feature for storing a signal pulse so that in many instances when two signal pulses occur in rapid succession, the second pulse is preserved and processed at a later time.

  18. Magnetic study of turbidites

    NASA Astrophysics Data System (ADS)

    Tanty, Cyrielle; Valet, Jean Pierre; Carlut, Julie

    2015-04-01

    Turbidites induce sedimentary reworking and re-deposition caused by tsunami, earthquake, volcanic processes, and other catastrophic events. They result from rapid depositional processes and are thus considered not being pertinent for comparison with pelagic sediments. Turbidites are evidently ruled out from paleomagnetic records dealing with time-series. Consequently, no attention has ever been paid to the magnetization of turbidites which is fully justified if the high level of turbulence governing the depositional processes influences the acquisition of magnetization. In certain conditions like channeled turbidity currents, levees of sediment are generated and then associated with relatively calm although very fast redeposition processes. Such conditions will thus govern the subsequent acquisition of magnetization through mechanical lock-in of the magnetic grains. This situation is actually quite similar to what happens during the experiences of artificial redeposition that are conducted in laboratory. Therefore, combining laboratory experiments and studies of natural turbidites could reveal important information on the processes involved in the acquisition of magnetization, especially if the comparison with the overlying hemipelagic sediments does not show any striking difference. We will present the results of magnetic measurements performed on four different and relatively recent turbidites. We selected different origins associated either with spillover of channeled turbidity currents or with co-seismic faulting. Each event is characterized by a different thickness (ten to few tens of cm), lithology and mean granulometry (few tens of μm to hundreds of μm). We have carried out measurements of magnetic susceptibility, magnetic remanence, anisotropy of magnetic susceptibility (AMS) and we also scrutinize the evolution of various rock magnetic parameters (ARM, IRM, S ratio, magnetic grain sizes, hysteresis parameters…). The magnetic characteristics of the

  19. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  20. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J.S.

    1992-11-03

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet. 6 figs.

  1. Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    NASA Technical Reports Server (NTRS)

    Lin, Adam Y. (Inventor); Wong, Tak S. (Inventor)

    2013-01-01

    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.

  2. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Steel, Fiona

    2011-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. Grain heights are less than their diameter so the grains resemble antacid tablets, coins, or poker chips. These grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by grain and channel sizes. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  3. Mechanosensitive channels in microbes.

    PubMed

    Kung, Ching; Martinac, Boris; Sukharev, Sergei

    2010-01-01

    All cells, including microbes, detect and respond to mechanical forces, of which osmotic pressure is most ancient and universal. Channel proteins have evolved such that they can be directly stretched open when the membrane is under turgor pressure. Osmotic downshock, as in rain, opens bacterial mechanosensitive (MS) channels to jettison osmolytes, relieving pressure and preventing cell lysis. The ion flux through individual channel proteins can be observed directly with a patch clamp. MS channels of large and small conductance (MscL and MscS, respectively) have been cloned, crystallized, and subjected to biophysical and genetic analyses in depth. They are now models to scrutinize how membrane forces direct protein conformational changes. Eukaryotic microbes have homologs from animal sensory channels of the TRP superfamily. The MS channel in yeast is also directly sensitive to membrane stretch. This review examines the key concept that proteins embedded in the lipid bilayer can respond to the changes in the mechanical environment the lipid bilayer provides.

  4. Amyloid peptide channels.

    PubMed

    Kagan, B L; Azimov, R; Azimova, R

    2004-11-01

    At least 16 distinct clinical syndromes including Alzheimer's disease (AD), Parkinson's disease (PD), rheumatoid arthritis, type II diabetes mellitus (DM), and spongiform encephelopathies (prion diseases), are characterized by the deposition of amorphous, Congo red-staining deposits known as amyloid. These "misfolded" proteins adopt beta-sheet structures and aggregate spontaneously into similar extended fibrils despite their widely divergent primary sequences. Many, if not all, of these peptides are capable of forming ion-permeable channels in vitro and possibly in vivo. Common channel properties include irreversible, spontaneous insertion into membranes, relatively large, heterogeneous single-channel conductances, inhibition of channel formation by Congo red, and blockade of inserted channels by Zn2+. Physiologic effects of amyloid, including Ca2+ dysregulation, membrane depolarization, mitochondrial dysfunction, inhibition of long-term potentiation (LTP), and cytotoxicity, suggest that channel formation in plasma and intracellular membranes may play a key role in the pathophysiology of the amyloidoses. PMID:15702375

  5. Applying alpha-channeling to mirror machines

    SciTech Connect

    Zhmoginov, A. I.; Fisch, N. J.

    2012-05-15

    The {alpha}-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic {alpha} particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of {alpha} channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the {alpha}-channeling mechanism. For practical implementation of the {alpha}-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the {alpha}-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the {alpha}-channeling wave to the fuel ions.

  6. Applying alpha-channeling to mirror machines

    NASA Astrophysics Data System (ADS)

    Zhmoginov, A. I.; Fisch, N. J.

    2012-05-01

    The α-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic α particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of α channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the α-channeling mechanism. For practical implementation of the α-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the α-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the α-channeling wave to the fuel ions.

  7. HIPPI and Fibre Channel

    SciTech Connect

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background.

  8. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  9. Symmetrization for redundant channels

    NASA Technical Reports Server (NTRS)

    Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)

    1988-01-01

    A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.

  10. Phosphoinositides regulate ion channels

    PubMed Central

    Hille, Bertil; Dickson, Eamonn J.; Kruse, Martin; Vivas, Oscar; Suh, Byung-Chang

    2014-01-01

    Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. PMID:25241941

  11. IBEX channel formation

    SciTech Connect

    Jones, E.E.; Frost, C.A.; Freeman, J.R.; Jojola, J.M.

    1987-01-01

    Exploding wire experiments have been conducted to form a low-density channel for endoatmospheric channel-tracking experiments to be performed on the IBEX accelerator. Stainless steel and tungsten wires as small as six microns radius have been exploded using a 50 kJ, 200 kV fast capacitor bank designed and constructed for the purpose. Density channels have been produced. Preliminary results will be compared with a simple circuit model and hydrocode analysis. Efforts to diagnose the low-density channel are beginning. 5 refs.

  12. A case study of a density structure over a vertical magnetic field region in the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Diéval, C.; Morgan, D. D.; Pisa, D.; Lundin, R.

    2016-05-01

    One of the discoveries made by the radar sounder on the Mars Express spacecraft is the existence of magnetically controlled structures in the ionosphere of Mars, which result in bulges in the ionospheric electron density contours. These bulges lead in turn to oblique echoes, which show up as hyperbola-shaped features in the echograms. A hyperbola-shaped feature observed over an isolated region of strong crustal magnetic field is associated with a plasma cavity in the upper ionosphere and a corresponding density enhancement in the lower levels of the ionosphere. We suggest that along open magnetic field lines, the solar wind electrons are accelerated downward and the ionospheric ions are accelerated upward in a manner similar to the field line-driven auroral acceleration at Earth. This heating due to precipitating electrons may cause an increase in the scale height and may drive a loss of ionospheric plasma at high altitudes.

  13. Off-center magnetic resonance imaging with permanent magnets

    NASA Astrophysics Data System (ADS)

    Abele, Manlio G.; Rusinek, Henry

    2008-04-01

    Magnets for magnetic resonance imaging are currently designed as structures that are symmetric with respect to the geometric center O of the magnet cavity. This symmetry results in a symmetric field configuration, where point O coincides with the imaging center S defined as the point where the field gradient is zero. However, in many clinical applications such as breast or spine imaging, the region of interest is displaced from the geometric center. We present a design method for yokeless permanent magnets, where the position of point S is dictated by the imaging requirements. The magnet is composed of uniformly magnetized triangular prisms and it does not require a ferromagnetic yoke to channel the magnetic flux. Given an arbitrary polygonal cavity, the design depends on the position of point F, where the magnetostatic potential is assumed to be equal to the magnetostatic potential of the external medium. For a long magnet, the position of the imaging center S coincides with point F. As an example of the off-center design, we analyze a three-dimensional yokeless magnet with cavity of width=length=80cm and height=45cm. The magnet generates a field above 0.5T when constructed using the NdFeB alloy of remanence larger than 1.3T. The off-center configuration offers flexibility in magnet design that makes it possible to focus on a particular region of the human body, without increasing magnet cavity, magnet size, or its weight

  14. MRI channel flows in vertically stratified models of accretion discs

    NASA Astrophysics Data System (ADS)

    Latter, Henrik N.; Fromang, Sebastien; Gressel, Oliver

    2010-08-01

    Simulations of the magnetorotational instability (MRI) in `unstratified' shearing boxes exhibit powerful coherent flows, whereby the fluid vertically splits into countermoving planar jets or `channels'. Channel flows correspond to certain axisymmetric linear MRI modes, and their preponderance follows from the remarkable fact that they are approximate non-linear solutions of the MHD equations in the limit of weak magnetic fields. We show in this paper, analytically and with one-dimensional numerical simulations, that this property is also shared by certain axisymmetric MRI modes in vertically stratified shearing boxes. These channel flows rapidly capture significant amounts of magnetic and kinetic energy, and thus are vulnerable to secondary shear instabilities. We examine these parasites in the vertically stratified context, and estimate the maximum amplitudes that channels attain before they are destroyed. These estimates suggest that a dominant channel flow will usually drive the disc's magnetic field to thermal strengths. The prominence of these flows and their destruction place enormous demands on simulations, but channels in their initial stages also offer a useful check on numerical codes. These benchmarks are especially valuable given the increasing interest in the saturation of the stratified MRI. Lastly, we speculate on the potential connection between `run-away' channel flows and outburst behaviour in protostellar and dwarf nova discs.

  15. Evaluation of detection algorithms for perpendicular recording channels with intertrack interference

    NASA Astrophysics Data System (ADS)

    Tan, Weijun; Cruz, J. R.

    2005-02-01

    Channel detection algorithms for handling intertrack interference (ITI) in perpendicular magnetic recording channels are studied in this paper. The goal is to optimize channel detection to attain the best possible performance for a practical system. Two channel detection models, namely, the single-track model and the joint-track model are evaluated using information rate analysis as well as simulations. Numerical results show that joint-track detection may be needed when ITI is severe.

  16. A linearization of quantum channels

    NASA Astrophysics Data System (ADS)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  17. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  18. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  19. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-11-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  20. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  1. Generalized channeled polarimetry.

    PubMed

    Alenin, Andrey S; Tyo, J Scott

    2014-05-01

    Channeled polarimeters measure polarization by modulating the measured intensity in order to create polarization-dependent channels that can be demodulated to reveal the desired polarization information. A number of channeled systems have been described in the past, but their proposed designs often unintentionally sacrifice optimality for ease of algebraic reconstruction. To obtain more optimal systems, a generalized treatment of channeled polarimeters is required. This paper describes methods that enable handling of multi-domain modulations and reconstruction of polarization information using linear algebra. We make practical choices regarding use of either Fourier or direct channels to make these methods more immediately useful. Employing the introduced concepts to optimize existing systems often results in superficial system changes, like changing the order, orientation, thickness, or spacing of polarization elements. For the two examples we consider, we were able to reduce noise in the reconstruction to 34.1% and 57.9% of the original design values. PMID:24979633

  2. Athermalized channeled spectropolarimeter enhancement.

    SciTech Connect

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  3. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  4. Superconducting magnet system for muon beam cooling

    SciTech Connect

    Andreev, N.; Johnson, R.P.; Kashikhin, V.S.; Kashikhin, V.V.; Novitski, I.; Yonehara, K.; Zlobin, A.; /Fermilab

    2006-08-01

    A helical cooling channel has been proposed to quickly reduce the six-dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. A novel superconducting magnet system for a muon beam cooling experiment is being designed at Fermilab. The inner volume of the cooling channel is filled with liquid helium where passing muon beam can be decelerated and cooled in a process of ionization energy loss. The magnet parameters are optimized to match the momentum of the beam as it slows down. The results of 3D magnetic analysis for two designs of magnet system, mechanical and quench protection considerations are discussed.

  5. State Machine Operation of the MICE Cooling Channel

    NASA Astrophysics Data System (ADS)

    Hanlet, Pierrick; Mice Collaboration

    2014-06-01

    The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The cooling channel for MICE has between 12 and 18 superconductnig solenoid coils in 3 to 7 magnets, depending on the staged development of the experiment. The magnets are coaxial and in close proximity which requires coordinated operation of the magnets when ramping, responding to quench conditions, and quench recovery. To reliably manage the operation of the magnets, MICE is implementing state machines for each magnet and an over-arching state machine for the magnets integrated in the cooling channel. The state machine transitions and operating parameters are stored/restored to/from the configuration database and coupled with MICE Run Control. Proper implementation of the state machines will not only ensure safe operation of the magnets, but will help ensure reliable data quality. A description of MICE, details of the state machines, and lessons learned from use of the state machines in recent magnet training tests will be discussed.

  6. Rotating magnetic poles used to pump mercury

    NASA Technical Reports Server (NTRS)

    Ebihara, B. T.; Lowdermilk, W. H.; Vary, A.

    1966-01-01

    Rotating magnetic pump with redesigned pump cell is used for pumping mercury. The modified pump has better electrical continuity, more efficient heat removal, and good wetting characteristics in the mercury flow channel.

  7. RF Integration into Helical Magnet for Muon 6-Dimensional Beam Cooling

    SciTech Connect

    Yonehara, K.; Kashikhin, V.; Lamm, M.; Lee, A.; Lopes, M.; Zlobin, A.; Johnson, R.P.; Kahn, S.; Neubauer, M.; /Muons Inc., Batavia

    2009-05-01

    The helical cooling channel is proposed to make a quick muon beam phase space cooling in a short channel length. The challenging part of the helical cooling channel magnet design is how to integrate the RF cavity into the compact helical cooling magnet. This report shows the possibility of the integration of the system.

  8. Fine Channel Networks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  9. Why are Channels Sinuous?

    NASA Astrophysics Data System (ADS)

    Constantine, J. A.; Lazarus, E.

    2012-12-01

    Sinuosity is a ubiquitous property of channelized flow patterns on Earth and other planetary bodies. Sinuosity is typically discussed as an emergent consequence of migration processes in meandering rivers, but meandering rivers are only one type of sinuous channel: there are many examples that show little or no indication of meandering, such as bedrock river canyons, drainage channels in tidal mudflats, and volcanic rilles. In some of these patterns, sinuosity is described as "inherited" from a preexisting morphology, which elides an explanation for how the inherited sinuosity originated. Even in river meandering theory there is ongoing debate regarding how initial channel sinuosity arises. Comparing the results of a generalized flow-routing model to observations of natural flow patterns, we find that the ratio of floodplain resistance (R, representing topographic roughness, substrate erodibility, or vegetation density) relative to floodplain slope (m) produces a range of sinuous planforms with natural analogs. We offer a unifying theory for channel sinuosity in which this ratio of resistance to slope (R:m) exerts the primary landscape control on planform shape and predicts the range of sinuosity a floodplain may express. Resistance-dominated floodplains produce channels with higher sinuosity than those of slope-dominated floodplains because increased resistance impedes down-slope flow. Measurement of "relative resistance" (R:m) could inform how riparian restoration projects evaluate the floodplains of artificially straightened rivers. Our analysis suggests that if the sinuosity of a formerly natural channel derived from a high R:m, then even a channel redesigned to be sinuous will straighten if the relative resistance of its floodplain is suppressed or inherently low. (Alternatively, increasing floodplain resistance might foster a higher sinuosity than hydraulic geometry would forecast.) The explanation for sinuosity that we propose is universal enough to account

  10. Micro-channel plates and vacuum detectors

    NASA Astrophysics Data System (ADS)

    Gys, T.

    2015-07-01

    A micro-channel plate is an array of miniature electron multipliers that are each acting as a continuous dynode chain. The compact channel structure results in high spatial and time resolutions and robustness to magnetic fields. Micro-channel plates have been originally developed for night vision applications and integrated as an amplification element in image intensifiers. These devices show single-photon sensitivity with very low noise and have been used as such for scintillating fiber tracker readout in high-energy physics experiments. Given their very short transit time spread, micro-channel plate photomultiplier tubes are also being used in time-of-flight and particle identification detectors. The present paper will cover the history of the micro-channel plate development, basic features, and some of their applications. Emphasis will be put on various new manufacturing processes that have been developed over the last few years, and that result in a significant improvement in terms of efficiency, noise, and lifetime performance.

  11. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  12. Channel Access in Erlang

    SciTech Connect

    Nicklaus, Dennis J.

    2013-10-13

    We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PV monitors.

  13. Magnetic Resonance Imaging Duodenoscope.

    PubMed

    Syms, Richard R A; Young, Ian R; Wadsworth, Christopher A; Taylor-Robinson, Simon D; Rea, Marc

    2013-12-01

    A side-viewing duodenoscope capable of both optical and magnetic resonance imaging (MRI) is described. The instrument is constructed from MR-compatible materials and combines a coherent fiber bundle for optical imaging, an irrigation channel and a side-opening biopsy channel for the passage of catheter tools with a tip saddle coil for radio-frequency signal reception. The receiver coil is magnetically coupled to an internal pickup coil to provide intrinsic safety. Impedance matching is achieved using a mechanically variable mutual inductance, and active decoupling by PIN-diode switching. (1)H MRI of phantoms and ex vivo porcine liver specimens was carried out at 1.5 T. An MRI field-of-view appropriate for use during endoscopic retrograde cholangiopancreatography (ERCP) was obtained, with limited artefacts, and a signal-to-noise ratio advantage over a surface array coil was demonstrated. PMID:23807423

  14. Alpha Channeling in Rotating Plasma with Stationary Waves

    SciTech Connect

    A. Fetterman and N.J. Fisch

    2010-02-15

    An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high nθ can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

  15. Dual channel self-oscillating optical magnetometer

    SciTech Connect

    Belfi, J.; Bevilacqua, G.; Biancalana, V.; Dancheva, Y.; Khanbekyan, K.; Moi, L.; Cartaleva, S.

    2009-05-15

    We report on a two-channel magnetometer based on nonlinear magneto-optical rotation in a Cs glass cell with buffer gas. The Cs atoms are optically pumped and probed by free running diode lasers tuned to the D{sub 2} line. A wide frequency modulation of the pump laser is used to produce both synchronous Zeeman optical pumping and hyperfine repumping. The magnetometer works in an unshielded environment, and a spurious signal from distant magnetic sources is rejected by means of differential measurement. In this regime the magnetometer simultaneously gives the magnetic field modulus and the field difference. Rejection of the common-mode noise allows for high-resolution magnetometry with a sensitivity of 2 pT/{radical}(Hz). This sensitivity, in conjunction with long-term stability and a large bandwidth, makes it possible to detect water proton magnetization and its free induction decay in a measurement volume of 5 cm{sup 3}.

  16. Synthesis, characterization and magnetic property of a new 3D iron phosphite: |C{sub 4}N{sub 3}H{sub 14}|[Fe{sub 3}(HPO{sub 3}){sub 4}F{sub 2}(H{sub 2}O){sub 2}] with intersecting channels

    SciTech Connect

    Qiao Jian; Zhang Lirong; Yu Yang; Li Guanghua; Jiang Tianchan; Huo Qisheng; Liu Yunling

    2009-07-15

    A new open-framework iron (III) phosphite |C{sub 4}N{sub 3}H{sub 14}|[Fe{sub 3}(HPO{sub 3}){sub 4}F{sub 2}(H{sub 2}O){sub 2}] has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent. Single-crystal X-ray diffraction analysis reveals that the compound crystallizes in the monoclinic space group C2/c having unit cell parameters a=12.877(3) A, b=12.170(2) A, c=12.159(2) A, beta=93.99(3){sup o}, V=1900.9(7) A{sup 3}, and Z=4 with R{sub 1}=0.0447, wR{sub 2}=0.0958. The complex structure consists of HPO{sub 3} pseudo-tetrahedra and {l_brace}Fe{sub 3}O{sub 14}F{sub 2}{r_brace} trimer building units. The assembly of these building units generates 3D inorganic framework with intersecting 6-, 8-, and 10-ring channels. The DETA cations are located in the 10-ring channels linked by hydrogen bonds. The Moessbauer spectrum shows that there exhibit two crystallographically independent iron (III) atoms. And the magnetic investigation shows the presence of antiferromagnetic interactions. Further characterization of the title compound was performed using X-ray powder diffraction (XRD), infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP) and elemental analyses. - Graphical abstract: A new three-dimensional iron phosphite with intersecting 6-, 8-, 10-ring channels has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent.

  17. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays.

    PubMed

    Hejazian, Majid; Nguyen, Nam-Trung

    2016-07-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  18. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays.

    PubMed

    Hejazian, Majid; Nguyen, Nam-Trung

    2016-07-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis.

  19. Calcium Channel Signaling Complexes with Receptors and Channels.

    PubMed

    Zamponi, Gerald W

    2015-01-01

    Voltage-gated calcium channels are not only mediators of cell signalling events, but also are recipients of signalling inputs from G protein coupled receptors (GPCRs) and their associated second messenger pathways. The coupling of GPCRs to calcium channels is optimized through the formation of receptor-channel complexes. In addition, this provides a mechanism for receptorchannel co-trafficking to and from the plasma membrane. On the other hand, voltage-gated calcium channel activity affects other types of ion channels such as voltage-and calcium-activated potassium channels. Coupling efficiency between these two families of channels is also enhanced through the formation of channel-channel complexes. This review provides a concise overview of the current state of knowledge on the physical interactions between voltage-gated calcium channels and members of the GPCR family, and with other types of ion channels.

  20. Channel in Kasei

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 November 2004 The Kasei Valles are a suite of very large, ancient outflow channels. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the youngest channel system in the Kasei Valles. Torrents of mud, rocks, and water carved this channel as flow was constricted through a narrow portion of the valley. Layers exposed by the erosion that created the channel can be seen in its walls. This 1.4 meters (5 feet) per pixel image is located near 21.1oN, 72.6oW. The picture covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  1. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  2. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  3. Calcium channel blocker overdose

    MedlinePlus

    ... Goldschlager N. Cardiovascular toxicology. In: Shannon MW, Borron SW, Burns MJ, eds. Haddad and Winchester's Clinical Management ... SD. Calcium channel antagonists. In: Shannon MW, Borron SW, Burns MJ, eds. Haddad and Winchester's Clinical Management ...

  4. TRP channels in disease.

    PubMed

    Jordt, S E; Ehrlich, B E

    2007-01-01

    The transient receptor potential (TRP) channels are a large family of proteins with six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) groups. The sheer number of different TRPs with distinct functions supports the statement that these channels are involved in a wide range of processes ranging from sensing of thermal and chemical signals to reloading intracellular stores after responding to an extracellular stimulus. Mutations in TRPs are linked to pathophysiology and specific diseases. An understanding of the role of TRPs in normal physiology is just beginning; the progression from mutations in TRPs to pathophysiology and disease will follow. In this review, we focus on two distinct aspects of TRP channel physiology, the role of TRP channels in intracellular Ca2+ homeostasis, and their role in the transduction of painful stimuli in sensory neurons. PMID:18193640

  5. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  6. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  7. Channel-tunnels.

    PubMed

    Koronakis, V; Andersen, C; Hughes, C

    2001-08-01

    TolC and its many homologues comprise an alpha-helical transperiplasmic tunnel embedded in the bacterial outer membrane by a contiguous beta-barrel channel, providing a large exit duct for diverse substrates. The 'channel-tunnel' is closed at its periplasmic entrance, but can be opened by an 'iris-like' mechanism when recruited by substrate-engaged proteins in the cytosolic membrane.

  8. Four-channel optically pumped atomic magnetometer for magnetoencephalography.

    PubMed

    Colombo, Anthony P; Carter, Tony R; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N; Dagel, Amber L; Schwindt, Peter D D

    2016-07-11

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization.

  9. Four-channel optically pumped atomic magnetometer for magnetoencephalography.

    PubMed

    Colombo, Anthony P; Carter, Tony R; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N; Dagel, Amber L; Schwindt, Peter D D

    2016-07-11

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization. PMID:27410816

  10. Magnetic Spinner

    NASA Astrophysics Data System (ADS)

    Ouseph, P. J.

    2006-12-01

    A science toy sometimes called the "magnetic spinner" is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays above two triangular magnets fixed to the base. The magnetic repulsive force experienced by the circular magnets is independent of their orientation; therefore, the holder of these magnets can be rotated without affecting its stability. The holder with the circular magnets can be oscillated up and down as a horizontally suspended physical pendulum.

  11. Design and performance of the LANL 158-channel magnetoencephalography system

    SciTech Connect

    Matlachov, A. N.; Kraus, Robert H., Jr.; Espy, M. A.; Best, E. D.; Briles, M. Carolyn; Raby, E. Y.; Flynn, E. R.

    2002-01-01

    Design and performance for a recently completed whole-head magnetoencephalography (MEG) system using a superconducting imaging-surface (SIS) surrounding an array of SQUID magnetometers is reported. The helmet-like SIS is hemispherical in shape with a brim. The SIS images nearby sources while shields sensors from ambient magnetic noise. The shielding factor depends on magnetometer position and orientation. Typical shielding values of 200 in central sulcus area have been observed. Nine reference channels form three vector magnetometers, which are placed outside SIS. Signal channels consist of 149 SQUID magnetometers with 0.84nT/{Phi}{sub 0} field sensitivity and less then 3 fT/{radical}Hz noise. Typical SQUID - room temperature separations are about 20mm in the cooled state. Twelve 16-channel flux-lock loop units are connected to two 96-channel control units allowing up to 192 total SQUID channels. The control unit includes signal conditioning circuits as well as system test and control circuits. After conditioning all signals are fed to 192-channel, 24-bit data acquisition system capable of sampling up to 48kSa/sec/channel. The SIS-MEG system enables high-quality human functional brain data to be recorded in a one-layer magnetically shielded room.

  12. Morphodynamics of Floodplain Chute Channels

    NASA Astrophysics Data System (ADS)

    David, S. R.; Edmonds, D. A.

    2015-12-01

    Floodplain chute channel formation is a key process that can enable rivers to transition from single-thread to multi-thread planform geometries. Floodplain chute channels are usually incisional channels connecting topographic lows across point bars and in the floodplain. Surprisingly, it is still not clear what conditions promote chute channel formation and what governs their morphodynamic behavior. Towards this end we have initiated an empirical and theoretical study of floodplain chute channels in Indiana, USA. Using elevation models and satellite imagery we mapped 3064 km2 of floodplain in Indiana, and find that 37.3% of mapped floodplains in Indiana have extensive chute channel networks. These chute channel networks consist of two types of channel segments: meander cutoffs of the main channel and chute channels linking the cutoffs together. To understand how these chute channels link meander cutoffs together and eventually create floodplain channel networks we use Delft3D to explore floodplain morphodynamics. Our first modeling experiment starts from a generic floodplain prepopulated with meander cutoffs to test under what conditions chute channels form.We find that chute channel formation is optimized at an intermediate flood discharge. If the flood discharge is too large the meander cutoffs erosively diffuse, whereas if the floodwave is too small the cutoffs fill with sediment. A moderately sized floodwave reworks the sediment surrounding the topographic lows, enhancing the development of floodplain chute channels. Our second modeling experiments explore how floodplain chute channels evolve on the West Fork of the White River, Indiana, USA. We find that the floodplain chute channels are capable of conveying the entire 10 yr floodwave (Q=1330m3/s) leaving the inter-channel areas dry. Moreover, the chute channels can incise into the floodplain while the margins of channels are aggrading, creating levees. Our results suggest that under the right conditions

  13. Optical Communications Channel Combiner

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  14. The Effect of Extending the Length of the Coupling Coils in a MuonIonization Cooling Channel

    SciTech Connect

    Green, Michael A.

    2007-11-10

    RF cavities are used to re-accelerate muons that have beencooled by absorbers that are in low beta regions of a muon ionizationcooling channel. A superconducting coupling magnet (or magnets) arearound or among the RF cavities of a muon ionization-cooling channel. Thefield from the magnet guides the muons so that they are kept within theiris of the RF cavities that are used to accelerate the muons. Thisreport compares the use of a single short coupling magnet with anextended coupling magnet that has one or more superconducting coils aspart of a muon-cooling channel of the same design as the muon ionizationcooling experiment (MICE). Whether the superconducting magnet is shortand thick or long and this affects the magnet stored energy and the peakfield in the winding. The magnetic field distribution also affects is themuon beam optics in the cooling cell of a muon coolingchannel.

  15. Cylindrical Hall Thrusters with Permanent Magnets

    SciTech Connect

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-10-18

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT. __________________________________________________

  16. Magnetic translator bearings

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  17. Organellar Channels and Transporters

    PubMed Central

    Xu, Haoxing; Martinoia, Enrico; Szabo, Ildiko

    2015-01-01

    Decades of intensive research has led to the discovery of most plasma membrane ion channels and transporters and the characterization of their physiological functions. In contrast, although over 80% of transport processes occur inside the cells, the ion flux mechanisms across intracellular membranes (the endoplasmic reticulum, Golgi apparatus, endosomes, lysosomes, mitochondria, chloroplasts, and vacuoles) are difficult to investigate and remain poorly understood. Recent technical advances in super-resolution microscopy, organellar electrophysiology, organelle-targeted fluorescence imaging, and organelle proteomics have pushed a large step forward in the research of intracellular ion transport. Many new organellar channels are molecularly identified and electrophysiologically characterized. Additionally, molecular identification of many of these ion channels/transporters has made it possible to study their physiological functions by genetic and pharmacological means. For example, organellar channels have been shown to regulate important cellular processes such as programmed cell death and photosynthesis, and are involved in many different pathologies. This Special Issue (SI) on Organellar Channels and Transporters aims to provide a forum to discuss the recent advances and to define the standard and open questions in this exciting and rapidly-developing field. Along this line, a new Gordon Research Conference dedicated to the multidisciplinary study of intracellular membrane transport proteins will be launched this coming summer. PMID:25795199

  18. TRP Channels and Analgesia

    PubMed Central

    Premkumar, Louis S.; Abooj, Mruvil

    2013-01-01

    Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control etc. PMID:22910182

  19. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  20. Channel Identification Machines

    PubMed Central

    Lazar, Aurel A.; Slutskiy, Yevgeniy B.

    2012-01-01

    We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits. PMID:23227035

  1. Stretchable inductor with liquid magnetic core

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Meyer, C. D.

    2016-03-01

    Adding magnetic materials is a well-established method for improving performance of inductors. However, traditional magnetic cores are rigid and poorly suited for the emerging field of stretchable electronics, where highly deformable inductors are used to wirelessly couple power and data signals. In this work, stretchable inductors are demonstrated based on the use of ferrofluids, magnetic liquids based on distributed magnetic particles, to create a compliant magnetic core. Using a silicone molding technique to create multi-layer fluidic channels, a liquid metal solenoid is fabricated around a ferrofluid channel. An analytical model is developed for the effects of mechanical strain, followed by experimental verification using two different ferrofluids with different permeabilities. Adding ferrofluid was found to increase the unstrained inductance by up to 280% relative to a similar inductor with a non-magnetic silicone core, while retaining the ability to survive uniaxial strains up to 100%.

  2. Neodymium Magnets.

    ERIC Educational Resources Information Center

    Wida, Sam

    1992-01-01

    Uses extremely strong neodymium magnets to demonstrate several principles of physics including electromagnetic induction, Lenz's Law, domain theory, demagnetization, the Curie point, and magnetic flux lines. (MDH)

  3. Dequantization Via Quantum Channels

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas

    2016-08-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large-m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  4. Chaos in quantum channels

    NASA Astrophysics Data System (ADS)

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  5. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  6. Dequantization Via Quantum Channels

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas

    2016-10-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large- m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  7. Entanglement-saving channels

    NASA Astrophysics Data System (ADS)

    Lami, L.; Giovannetti, V.

    2016-03-01

    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ is said to be ES if its powers ψn are not entanglement-breaking for all integers n. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps that not only preserve entanglement for all finite n but which also sustain an explicitly not null level of entanglement in the asymptotic limit n → ∞. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.

  8. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  9. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  10. Vortex matter driven through mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Kes, P. H.; Kokubo, N.; Besseling, R.

    2004-08-01

    The dynamics of vortex matter confined to mesoscopic channels has been investigated by means of mode locking experiments. When vortices are coherently driven through the potential provided by static vortices pinned in the channel edges, interference between the washboard frequency of the moving vortex lattice and the frequency of the superimposed rf-drive causes (Shapiro-like) steps in the dc- I- V curves. The position of the voltage steps uniquely determines the number of moving rows in each channel. It also shows how the frustration between row spacing and channel width behaves as a function of magnetic field. Maxima in flow stress (∼ Ic) occur at mismatch conditions. They are related to the traffic-jam-like flow impedance caused by the disorder in the edges. At higher fields, near the 2D-melting line Bm( T), the mode-locking interference characteristic for crystalline motion, strongly depends on the velocity, i.e. the applied frequency at which the vortex motion is probed. The minimum velocity at which coherent motion could be observed, diverges when the melting line is approached from below. Above the melting line interference is absent for any frequency. These observations give the first direct evidence for a dynamic phase transition of vortex matter driven through a disorder potential as predicted by Koshelev and Vinokur.

  11. A superconducting magnet for Stanford University

    NASA Astrophysics Data System (ADS)

    Parmer, J. F.; Magnuson, G. D.; Jones, R. G.; Taylor, W. D.; Peck, S. D.; Waszczak, J. P.; Williams, J. E. C.; Bobrov, E. S.

    1981-01-01

    Three MHD superconducting magnets are being developed for coal power generation. A rectangular saddle magnet uses a nonmetallic substructure for conductor support; a circular magnet contains the radial Lorentz forces by interlayer bands instead of a superstructure; and a circular saddle magnet supports conductors with a metallic substructure. A substructure support provides conductor movement within the winding controlled by the limits of frictional heating of the conductor and reacts with a significant part of the magnetically induced loads. During a seismic event or MHD channel-induced vibration of the winding, eddy currents induced in the vacuum vessel provide damping for the controls of resonant amplitude.

  12. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b

    PubMed Central

    DeBerg, Hannah A.; Bankston, John R.; Rosenbaum, Joel C.; Brzovic, Peter S.; Zagotta, William N.; Stoll, Stefan

    2015-01-01

    Summary Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cAMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide-binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance (NMR), we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels. PMID:25800552

  13. Sodium channels and pain.

    PubMed

    Habib, Abdella M; Wood, John N; Cox, James J

    2015-01-01

    Human and mouse genetic studies have led to significant advances in our understanding of the role of voltage-gated sodium channels in pain pathways. In this chapter, we focus on Nav1.7, Nav1.8, Nav1.9 and Nav1.3 and describe the insights gained from the detailed analyses of global and conditional transgenic Nav knockout mice in terms of pain behaviour. The spectrum of human disorders caused by mutations in these channels is also outlined, concluding with a summary of recent progress in the development of selective Nav1.7 inhibitors for the treatment of pain. PMID:25846613

  14. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  15. Edge-channel interferometer at the graphene quantum Hall pn junction

    SciTech Connect

    Morikawa, Sei; Moriya, Rai; Masubuchi, Satoru Machida, Tomoki; Watanabe, Kenji; Taniguchi, Takashi

    2015-05-04

    We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharonov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels is confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.

  16. Flexible and stretchable polymers with embedded magnetic nanostructures.

    PubMed

    Donolato, Marco; Tollan, Christopher; Porro, Jose Maria; Berger, Andreas; Vavassori, Paolo

    2013-01-25

    A novel pathway is presented to transfer and embed functional patterned magnetic nanostructures into flexible and stretchable polymeric membranes. The geometrical and magnetic properties are maintained through the process, realized even directly inside a microfluidic channel. These results pave the way to the realization of smart biomedical systems and devices based on the integration of magnetic nanostructures into new classes of substrates.

  17. Multidimensional Simulations of Filament Channel Structure and Evolution

    NASA Astrophysics Data System (ADS)

    Karpen, J. T.

    2007-10-01

    Over the past decade, the NRL Solar Theory group has made steady progress toward formulating a comprehensive model of filament-channel structure and evolution, combining the results of our sheared 3D arcade model for the magnetic field with our thermal nonequilibrium model for the cool, dense material suspended in the corona. We have also discovered that, when a sheared arcade is embedded within the global dipolar field, the resulting stressed filament channel can erupt through the mechanism of magnetic breakout. Our progress has been largely enabled by the development and implementation of state-of-the-art 1D hydrodynamic and 3D magnetohydrodynamic (MHD) codes to simulate the field-aligned plasma thermodynamics and large-scale magnetic-field evolution, respectively. Significant questions remain, however, which could be answered with the advanced observations anticipated from Solar-B. In this review, we summarize what we have learned from our simulations about the magnetic and plasma structure, evolution, and eruption of filament channels, and suggest key observational objectives for Solar-B that will test our filament-channel and CME-initiation models and augment our understanding of the underlying physical processes.

  18. Channels of Propaganda.

    ERIC Educational Resources Information Center

    Sproule, J. Michael

    Defining propaganda as "efforts by special interests to win over the public covertly by infiltrating messages into various channels of public expression ordinarily viewed as politically neutral," this book argues that propaganda has become pervasive in American life. Pointing out that the 1990s society is inundated with propaganda from numerous…

  19. Learning in Tactile Channels

    ERIC Educational Resources Information Center

    Gescheider, George A.; Wright, John H.

    2012-01-01

    Vibrotactile intensity-discrimination thresholds for sinusoidal stimuli applied to the thenar eminence of the hand declined as a function of practice. However, improvement was confined to the tactile information-processing channel in which learning had occurred. Specifically, improvements in performance with training within the Pacinian-corpuscle…

  20. SK channels and calmodulin.

    PubMed

    Adelman, John P

    2016-01-01

    Calcium ions are Nature's most widely used signaling mechanism, mediating communication between pathways at virtually every physiological level. Ion channels are no exception, as the activities of a wide range of ion channels are intricately shaped by fluctuations in intracellular Ca(2+) levels. Mirroring the importance and the breadth of Ca(2+) signaling, free Ca(2+) levels are tightly controlled, and a myriad of Ca(2+) binding proteins transduce Ca(2+) signals, each with its own nuance, comprising a constantly changing symphony of metabolic activity. The founding member of Ca(2+) binding proteins is calmodulin (CaM), a small, acidic, modular protein endowed with gymnastic-like flexibility and E-F hand motifs that chelate Ca(2+) ions. In this review, I will trace the history that led to the realization that CaM serves as the Ca(2+)-gating cue for SK channels, the experiments that revealed that CaM is an intrinsic subunit of SK channels, and itself a target of regulation. PMID:25942650

  1. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  2. Developments in relativistic channeling

    SciTech Connect

    Carrigan, R.A. Jr.

    1996-10-01

    The possibility of using channeling as a tool for high energy accelerator applications and particle physics has now been extensively investigated. Bent crystals have been used for accelerator extraction and for particle deflection. Applications as accelerating devices have been discussed but have not yet been tried. 61 refs., 1 fig.

  3. Controlling the magnetic field distribution on the micrometer scale and generation of magnetic bead patterns for microfluidic applications.

    PubMed

    Yu, Xu; Feng, Xuan; Hu, Jun; Zhang, Zhi-Ling; Pang, Dai-Wen

    2011-04-19

    As is well known, controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip is significant and has many applications in bioanalysis based on magnetic beads. However, it is a challenge to tailor the magnetic field introduced by external permanent magnets or electromagnets on the micrometer scale. Here, we demonstrated a simple approach to controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip by nickel patterns encapsulated in a thin poly(dimethylsiloxane) (PDMS) film under the fluid channel. With the precisely controlled magnetic field, magnetic bead patterns were convenient to generate. Moreover, two kinds of fluorescent magnetic beads were patterned in the microfluidic channel, which demonstrated that it was possible to generate different functional magnetic bead patterns in situ, and could be used for the detection of multiple targets. In addition, this method was applied to generate cancer cell patterns.

  4. Magnetic Spinner

    ERIC Educational Resources Information Center

    Ouseph, P. J.

    2006-01-01

    A science toy sometimes called the "magnetic spinner" is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays…

  5. Magnetic Levitation.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  6. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  7. Linear Stability Analysis Of A Magnetic/Non-Magnetic Fluid Coflow In The Presence Of A Magnetic Field

    NASA Astrophysics Data System (ADS)

    de, Anindya; Puri, Ishwar

    2007-11-01

    Ferrofluids are colloidal suspensions of magnetic nanoparticles in carrier liquids. Being both magnetic and a liquid, they are readily maneuvered from a distance using magnetic fields. When functionalized with different antibodies or medicinal compounds, the ferrofluid can be used for various purposes, e.g., to detect bacteria or for targeted drug delivery. We have considered a coflow where two fluids are separated by a vertical surface parallel to the direction of gravity. For simplicity the flow is assumed to be inviscid and incompressible. We have investigated two configurations depending on the position of the magnet relative to the channel. When the magnet is placed adjacent to the vertical wall along which the magnetic fluid is flowing, the magnetic fluid stays close to the wall unless perturbed by the shear due to a velocity difference. It results in a very stable system. In the second case, the magnet is placed close to the wall along which the non-magnetic fluid flows. The magnetic fluid gets attracted towards the magnet and tries to flow toward it when it gets resisted by the non-magnetic fluid. This configuration is inherently unstable and responds to small perturbations. The surface tension force resists the perturbation of smaller wavelengths. The relative effects of different forces are characterized by magnetic pressure number, Weber number and magnetic Weber number.

  8. Detection of New Dissociative Electron Attachment Channels in NO

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.

    1995-01-01

    Three dissociative electron attachment channels have been detected and identified in NO via measurement of the O minus (exp 2)P fragment energy. In addition to the known N((exp 2 D(exp 0)) + O minus (exp 2)P channel, two new channels N((exp 1 S(exp 0)) + 0 (2 P) and N(exp 2)P(exp 0) + O(exp 2)P were detected. Cross sections for each of the channels are reported by normalizing the scattering intensities to previously measured total cross sections. The experimental approach uses solenoidal magnetic confinement of the electrons and ions, and trochoidal energy analysis of the low-energy ions.

  9. Cell research with physically modified microfluidic channels: a review.

    PubMed

    Kim, Sun Min; Lee, Sung Hoon; Suh, Kahp Yang

    2008-07-01

    An overview of the use of physically modified microfluidic channels towards cell research is presented. The physical modification can be realized either by combining embedded physical micro/nanostructures or a topographically patterned substrate at the micro- or nanoscale inside a channel. After a brief description of the background and the importance of the physically modified microfluidic system, various fabrication methods are described based on the materials and geometries of physical structures and channels. Of many operational principles for microfluidics (electrical, magnetic, optical, mechanical, and so on), this review primarily focuses on mechanical operation principles aided by structural modification of the channels. The mechanical forces are classified into (i) hydrodynamic, (ii) gravitational, (iii) capillary, (iv) wetting, and (v) adhesion forces. Throughout this review, we will specify examples where necessary and provide trends and future directions in the field.

  10. Learning Channels and Verbal Behavior

    ERIC Educational Resources Information Center

    Lin, Fan-Yu; Kubina, Richard M., Jr.

    2004-01-01

    This article reviews the basics of learning channels and how specification of stimuli can help enhance verbal behavior. This article will define learning channels and the role of the ability matrix in training verbal behavior.

  11. Fluid channeling system

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)

    1994-01-01

    A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.

  12. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  13. Athermal channeled spectropolarimeter

    SciTech Connect

    Jones, Julia Craven

    2015-12-08

    A temperature insensitive (athermal) channeled spectropolarimeter (CSP) is described. The athermal CSP includes a crystal retarder formed of a biaxial crystal. The crystal retarder has three crystal axes, wherein each axis has its own distinct index of refraction. The axes are oriented in a particular manner, causing an amplitude modulating carrier frequency induced by the crystal retarder to be thermally invariant. Accordingly, a calibration beam technique can be used over a relatively wide range of ambient temperatures, with a common calibration data set.

  14. Aquaglyceroporins: generalized metalloid channels

    PubMed Central

    Mukhopadhyay, Rita; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2014-01-01

    Background: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. Scope of Review: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. Major Conclusions: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. General Significance: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. PMID:24291688

  15. Radar channel balancing with commutation

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  16. Superconducting magnet development in Japan

    SciTech Connect

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  17. Ion channeling revisited

    SciTech Connect

    Doyle, Barney Lee; Corona, Aldo; Nguyen, Anh

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  18. Micro-channel plate detector

    SciTech Connect

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  19. Cascading blockages in channel bundles.

    PubMed

    Barré, C; Talbot, J

    2015-11-01

    Flow in channel networks may involve a redistribution of flux following the blockage or failure of an individual link. Here we consider a simplified model consisting of N(c) parallel channels conveying a particulate flux. Particles enter these channels according to a homogeneous Poisson process and an individual channel blocks if more than N particles are simultaneously present. The behavior of the composite system depends strongly on how the flux of entering particles is redistributed following a blockage. We consider two cases. In the first, the intensity on each open channel remains constant while in the second the total intensity is evenly redistributed over the open channels. We obtain exact results for arbitrary N(c) and N for a system of independent channels and for arbitrary N(c) and N=1 for coupled channels. For N>1 we present approximate analytical as well as numerical results. Independent channels block at a decreasing rate due to a simple combinatorial effect, while for coupled channels the interval between successive blockages remains constant for N=1 but decreases for N>1. This accelerating cascade is due to the nonlinear dependence of the mean blocking time of a single channel on the entering particle flux that more than compensates for the decrease in the number of active channels.

  20. Nonlinear study of an ion-channel guiding free-electron laser

    SciTech Connect

    Ouyang, Zhengbiao; Zhang, Shi-Chang

    2015-04-15

    A nonlinear model and simulations of the output power of an ion-channel guiding free-electron laser (FEL) are presented in this paper. Results show that the nonlinear output power of an ion-channel guiding FEL is comparable to that of an axial guide magnetic field FEL. Compared to an axial guide magnetic field FEL, an ion-channel guiding FEL substantially weakens the negative effect of the electron-beam energy spread on the output power due to its advantageous focusing mechanism on the electron motion.

  1. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.

    1988-05-10

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.

  2. E-beam ionized channel guiding of an intense relativistic electron beam

    DOEpatents

    Frost, Charles A.; Godfrey, Brendon B.; Kiekel, Paul D.; Shope, Steven L.

    1988-01-01

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.

  3. 1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.

  4. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  5. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1981-01-01

    A synoptic view of early and recent data on the planetary magnetism of Mercury, Venus, the moon, Mars, Jupiter, and Saturn is presented. The data on Mercury from Mariner 10 are synthesized with various other sources, while data for Venus obtained from 120 orbits of Pioneer Venus give the upper limit of the magnetic dipole. Explorer 35 Lunar Orbiter data provided the first evidence of lunar magnetization, but it was the Apollo subsatellite data that measured accurately the magnetic dipole of the moon. A complete magnetic survey of Mars is still needed, and only some preliminary data are given on the magnetic dipole of the planet. Figures on the magnetic dipoles of Jupiter and Saturn are also suggested. It is concluded that if the magnetic field data are to be used to infer the interior properties of the planets, good measures of the multiple harmonics in the field are needed, which may be obtained only through low altitude polar orbits.

  6. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  7. Roughness characteristics of natural channels

    USGS Publications Warehouse

    Barnes, Harry Hawthorne

    1967-01-01

    Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .

  8. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  9. Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Ting, Samuel

    2012-07-01

    The Alpha Magnetic Spectrometer (AMS) is a precision particle physics magnetic spectrometer designed to measure electrons, positrons, gamma rays and various nuclei and anti-nuclei from the cosmos up to TeV energy ranges. AMS weighs 7.5 tons and measures 5 meters by 4 meters by 3 meters. It contains 300,000 channels of electronics and 650 onboard microprocessors. It was delivered to the International Space Station onboard space shuttle Endeavour and installed on May 19, 2011. Since that time, more than 14 billion cosmic ray events have been collected. All the detectors function properly. At this moment, we are actively engaged in data analysis. AMS is an international collaboration involving 16 countries and 60 institutes. It took 16 years to construct and test. AMS is the only major physical science experiment on the International Space Station and will continue to collect data over the entire lifetime of the Space Station (10-20 years).

  10. Effects of volatile anesthetic on channel structure of gramicidin A.

    PubMed Central

    Tang, Pei; Mandal, Pravat K; Zegarra, Martha

    2002-01-01

    Volatile anesthetic agent, 1-chloro-1,2,2-trifluorocyclobutane (F3), was found to alter gramicidin A channel function by enhancing Na(+) transport (. Biophys. J. 77:739-746). Whether this functional change is associated with structural alternation is evaluated by circular dichroism and nuclear magnetic resonance spectroscopy. The circular dichroism and nuclear magnetic resonance results indicate that at low millimolar concentrations, 1-chloro-1,2,2-trifluorocyclobutane causes minimal changes in gramicidin A channel structure in sodium dodecyl sulfate micelles. All hydrogen bonds between channel backbones are well maintained in the presence of 1-chloro-1,2,2-trifluorocyclobutane, and the channel structure is stable. The finding supports the notion that low affinity drugs such as volatile anesthetics and alcohols can cause significant changes in protein function without necessarily producing associated changes in protein structure. To understand the molecular mechanism of general anesthesia, it is important to recognize that in addition to structural changes, other protein properties, including dynamic characteristics of channel motions, may also be of functional significance. PMID:12202367

  11. Position and Trajectrories of helical microswimmers inside circular channels

    NASA Astrophysics Data System (ADS)

    Caldag, Hakan; Yesilyurt, Serhat

    2015-11-01

    This work reports the position and orientation of helical mm-sized microswimmers in circular channels obtained by image processing of recorded images. Microswimmers are biologically inspired structures with huge potential for medical practices such as delivery of potent drugs into tissues. In order to understand the hydrodynamic effects of confinement on the velocity and stability of trajectories of swimmers, we developed helical microswimmers with a magnetic head and a rigid helical tail, similar to those of E. coli bacteria. The experiments are recorded using a digital camera, which is placed above the experimental setup that consists of three Helmholtz pairs, generating a rotating magnetic field. A channel containing the microswimmer is placed along the axis of the innermost coil. Image processing tools based on contrast-enhancement are used to obtain the centroid of the head of the swimmer and orientation of the whole swimmer in the channel. Swimmers that move in the direction of the head, i.e. pushed kinematically by the tail, has helical trajectories, which are more unstable in the presence of Poiesuille flow inside the channel; and the swimmers that are pulled by the tail, have trajectories that stabilize at the centerline of the channel.

  12. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  13. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    PubMed

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-01

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection. PMID:20949198

  14. Magnetic microbeads for sampling and mixing in a microchannel

    NASA Astrophysics Data System (ADS)

    Owen, Drew; Ballard, Matt; Mao, Wenbin; Alexeev, Alexander; Hesketh, Peter J.

    2014-03-01

    Microfluidics provides exciting possibilities for miniaturized biosensors systems allowing for highly parallel automated high throughput tests to be performed. Detection of low concentrations of bacteria, viral particles and parasites in food samples is a challenging process. The capture of the target can be more effectively carried out with efficient mixing. We present a simple microfluidic system capable of controlled transport of rotating magnetic beads among soft magnetic patterns. Low aspect ratio NiFe discs (200 nm tall, diameter 3 μm) are patterned onto a silicon wafer. A PDMS channel is bonded onto the wafer to create the microfluidic channel. An external permanent magnet attached to a motor provides a magnetic field, which can be rotated at different speeds while magnetizing the NiFe disks in the channel. Microbeads (Dynabeads M-280, Invitrogen) introduced into the channel with a syringe pump are trapped at the poles of the now magnetized soft magnetic discs. Rotation of the external permanent magnet induced magnetic poles in the soft magnetic discs which will in turn rotate the trapped microbeads. We have already demonstrated the capacity to capture particles from flow with rotating M-280 beads in this device.

  15. Freely Oriented, Portable Superconducting Magnet

    NASA Astrophysics Data System (ADS)

    Schmierer, E. N.; Charles, B.; Efferson, R.; Hill, D.; Jankowski, T.; Laughon, G.; Prenger, C.

    2008-03-01

    A high-field low-temperature superconducting solenoidal magnet was developed that is portable and can be operated in any orientation relative to gravity. The design consists of several features that make this feasible; 1) bulk liquid cryogen storage occurs in a separate Dewar rather than as part of the magnet assembly, which allows single-person transport due to each component of the system having low relative weight, 2) vapor generated pressurization that circulates cryogenic fluid to and from the magnet with flexible transfer lines allowing operation in any orientation, and 3) composite, low-conducting structural members are used to suspend the magnet and shield layers within the vacuum vessel that provide a robust low heat loss design. Cooling is provided to the magnet through fluid channels that are in thermal contact with the magnet. The overall design of this magnet system, some of the analyses performed that address unique behavior of this system (pressure rise during a magnet quench and transient cooldown), and test results are presented.

  16. Superconducting magnets

    SciTech Connect

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  17. Channels and Erosion

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 20 June 2003

    The dissected and eroded channel observed in this THEMIS image taken of plains materials southwest of the volcano Elysium Mons shows typical erosional islands and depositional features. The interesting thing about this channel is that it appears to start out of nowhere. The MOLA context image shows that the channel originates from a fissure within the ground, whose origin is likely volcanic, but may also be related to volatile processes.

    Image information: VIS instrument. Latitude 19.5, Longitude 126.8 East (233.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Turbulent supersonic channel flow

    NASA Astrophysics Data System (ADS)

    Lechner, Richard; Sesterhenn, Jörn; Friedrich, Rainer

    2001-01-01

    The effects of compressibility are studied in low Reynolds number turbulent supersonic channel flow via a direct numerical simulation. A pressure-velocity-entropy formulation of the compressible Navier-Stokes equations which is cast in a characteristic, non-conservative form and allows one to specify exact wall boundary conditions, consistent with the field equations, is integrated using a fifth-order compact upwind scheme for the Euler part, a fourth-order Padé scheme for the viscous terms and a third-order low-storage Runge-Kutta time integration method. Coleman et al fully developed supersonic channel flow at M?=?1.5 and Re?=?3000 is used to test the method. The nature of fluctuating variables is investigated in detail for the wall layer and the core region based on scatter plots. Fluctuations conditioned on sweeps and ejections in the wall layer are especially instructive, showing that positive temperature, entropy and total temperature fluctuations are mainly due to sweep events in this specific situation of wall cooling. The effect of compressibility on the turbulence structure is in many respects similar to that found in homogeneous shear turbulence and in mixing layers. The normal components of the Reynolds stress anisotropy tensor are increased due to compressibility, while the shear stress component is slightly reduced. Characteristic of the Reynolds stress transport is a suppression of the production of the longitudinal and the shear stress component, a suppression of all velocity-pressure-gradient correlations and most of the dissipation rates. Comparison with incompressible channel flow data reveals that compressibility effects manifest themselves in the wall layer only.

  19. The superconducting solenoid magnets for MICE

    SciTech Connect

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.

  20. Magnetizing of permanent magnets using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  1. Permeation in potassium channels: implications for channel structure.

    PubMed

    Yellen, G

    1987-01-01

    The SR K+ channel is a single-ion channel with a tunnel that is not very selective, while the DR and CaK channels are both more selective, multi-ion channels. The permeation mechanisms of the three channels are probably most systematically distinguished by the length of their tunnels; the SR has the shortest and the DR the longest. Although different in their mechanisms of activation, the DR and CaK channels have very similar permeation characteristics, down to the details of selectivity and blockade. The longer tunnel and reduced conductance (perhaps a result of the extra tunnel length) of the DR K+ channel are the main differences. The selectivity of the rate-limiting barriers and the binding sites within the channels, however, are strikingly similar. A successful potassium channel must satisfy two criteria: It must let potassium ions through and not much else, and it must let many potassium ions through. To be selective the channel must have a narrow selectivity filter, so that an ion must shed some of its waters of hydration to pass through. Sodium ions are excluded because they are more reluctant to lose their water, and they are not adequately compensated for this loss by interaction with the selectivity filter. To carry a large current the narrow region must be short, with wide antechambers to reduce the diffusional access resistance (48). Energetically, the channel must strike a balance. There must be enough binding energy to compensate the ions for their lost hydration energy, so that the energy barrier to permeation is small. If the channel binds the ion too tightly, however, the ion will not be able to exit, and the current will be small. Some of the shared properties of different potassium channels are probably consequences of these requirements; others may be incidental to function, suggesting a common origin. Barium ions have almost exactly the same radius as potassium ions but twice the charge, so it is perhaps not surprising that barium can block

  2. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  3. Channel Wall Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation.

    Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Minio Vallis Channel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This VIS image is of the southern reach of Minio Vallis, a small fluvial channel located near the larger Mangala Vallis. Both channels are in the Tharsis region, in the area west of Arsia Mons and southeast of Medusae Fossae.

    Image information: VIS instrument. Latitude -8.2, Longitude 208.1 East (151.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  6. Magnetic Helical Microswimmers in Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Acemoglu, Alperen; Yesilyurt, Serhat

    2014-11-01

    We analyze the motion of artificial magnetic microswimmers which mimic the swimming of natural organisms at low Reynolds numbers. Artificial magnetic microswimmers consist of a rigidly connected helical tail and a magnetic head. Magnetic swimmers are actuated with three orthogonal electromagnetic coil pairs. The swimmer motion is examined in the laminar flow which is introduced to channel with syringe pump. We recorded videos for forward (pusher-like swimming / in the head direction) and backward (puller-like swimming / in the tail direction) motion of swimmers. Swimmers have non-stable helical trajectories for forward motion and stable straight trajectories for backward motion. The flow effects on trajectories are observed for swimmers with different geometric parameters in the circular channels. Experiment results show that helical wavelengths of the trajectories are affected with the flow. Additionally, the flow has more pronounced effect on the trajectories of the swimmers in wide channels. Moreover, circular confinement in narrow channels leads to more stable trajectories; in wide channels swimmers follow complex trajectories. A CFD model is used to compare experiments with simulations and to analyze the effects of hydrodynamic interactions.

  7. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells.

    PubMed

    Sun, Chen; Hassanisaber, Hamid; Yu, Richard; Ma, Sai; Verbridge, Scott S; Lu, Chang

    2016-01-01

    In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples. PMID:27388549

  8. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells

    PubMed Central

    Sun, Chen; Hassanisaber, Hamid; Yu, Richard; Ma, Sai; Verbridge, Scott S.; Lu, Chang

    2016-01-01

    In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples. PMID:27388549

  9. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Hassanisaber, Hamid; Yu, Richard; Ma, Sai; Verbridge, Scott S.; Lu, Chang

    2016-07-01

    In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples.

  10. Muon Beam Helical Cooling Channel Design

    SciTech Connect

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  11. Ion channel therapeutics for pain

    PubMed Central

    Skerratt, Sarah E; West, Christopher W

    2015-01-01

    Pain is a complex disease which can progress into a debilitating condition. The effective treatment of pain remains a challenge as current therapies often lack the desired level of efficacy or tolerability. One therapeutic avenue, the modulation of ion channel signaling by small molecules, has shown the ability to treat pain. However, of the 215 ion channels that exist in the human genome, with 85 ion channels having a strong literature link to pain, only a small number of these channels have been successfully drugged for pain. The focus of future research will be to fully explore the possibilities surrounding these unexplored ion channels. Toward this end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the treatment of pain. PMID:26218246

  12. Phosphoinositide regulation of TRP channels

    PubMed Central

    Rohacs, Tibor

    2015-01-01

    Transient Receptor Potential (TRP) channels are activated by stimuli as diverse as heat, cold, noxious chemicals, mechanical forces, hormones, neurotransmitters, spices, and voltage. Besides their presumably similar general architecture, probably the only common factor regulating them is phosphoinositides. The regulation of TRP channels by phosphoinositides is complex. There is a large number of TRP channels where phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2 or PIP2], acts as a positive cofactor, similarly to many other ion channels. In several cases however, PI(4,5)P2 inhibits TRP channel activity, sometimes even concurrently with the activating effect. This review will provide a comprehensive overview of the literature on regulation of TRP channels by membrane phosphoinositides. PMID:24961984

  13. Molecular Mechanism of TRP Channels

    PubMed Central

    Zheng, Jie

    2013-01-01

    Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation. PMID:23720286

  14. Peptide models for membrane channels.

    PubMed Central

    Marsh, D

    1996-01-01

    Peptides may be synthesized with sequences corresponding to putative transmembrane domains and/or pore-lining regions that are deduced from the primary structures of ion channel proteins. These can then be incorporated into lipid bilayer membranes for structural and functional studies. In addition to the ability to invoke ion channel activity, critical issues are the secondary structures adopted and the mode of assembly of these short transmembrane peptides in the reconstituted systems. The present review concentrates on results obtained with peptides from ligand-gated and voltage-gated ion channels, as well as proton-conducting channels. These are considered within the context of current molecular models and the limited data available on the structure of native ion channels and natural channel-forming peptides. PMID:8615800

  15. The Channel Tunnel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Channel Tunnel is a 50.5 km-long rail tunnel beneath the English Channel at the Straits of Dover. It connects Dover, Kent in England with Calais, northern France. The undersea section of the tunnel is unsurpassed in length in the world. A proposal for a Channel tunnel was first put forward by a French engineer in 1802. In 1881, a first attempt was made at boring a tunnel from the English side; the work was halted after 800 m. Again in 1922, English workers started boring a tunnel, and advanced 120 m before it too was halted for political reasons. The most recent attempt was begun in 1987, and the tunnel was officially opened in 1994. At completion it was estimated that the project cost around $18 billion. It has been operating at a significant loss since its opening, despite trips by over 7 million passengers per year on the Eurostar train, and over 3 million vehicles per year.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring

  16. EPR Studies of Gating Mechanisms in Ion Channels

    PubMed Central

    Chakrapani, Sudha

    2015-01-01

    Ion channels open and close in response to diverse stimuli, and the molecular events underlying these processes are extensively modulated by ligands of both endogenous and exogenous origin. In the past decade, high-resolution structures of several channel types have been solved, providing unprecedented details of the molecular architecture of these membrane proteins. Intrinsic conformational flexibility of ion channels critically governs their functions. However, the dynamics underlying gating mechanisms and modulations are obscured in the information from crystal structures. While nuclear magnetic resonance spectroscopic methods allow direct measurements of protein dynamics, they are limited by the large size of these membrane protein assemblies in detergent micelles or lipid membranes. Electron paramagnetic resonance (EPR) spectroscopy has emerged as a key biophysical tool to characterize structural dynamics of ion channels and to determine stimulus-driven conformational transition between functional states in a physiological environment. This review will provide an overview of the recent advances in the field of voltage- and ligand-gated channels and highlight some of the challenges and controversies surrounding the structural information available. It will discuss general methods used in site-directed spin labeling and EPR spectroscopy and illustrate how findings from these studies have narrowed the gap between high-resolution structures and gating mechanisms in membranes, and have thereby helped reconcile seemingly disparate models of ion channel function. PMID:25950970

  17. TRANSIENT BRIGHTENINGS ASSOCIATED WITH FLUX CANCELLATION ALONG A FILAMENT CHANNEL

    SciTech Connect

    Wang, Y.-M.; Muglach, K. E-mail: karin.muglach@nasa.gov

    2013-02-15

    Filament channels coincide with large-scale polarity inversion lines of the photospheric magnetic field, where flux cancellation continually takes place. High-cadence Solar Dynamics Observatory (SDO) images recorded in He II 30.4 nm and Fe IX 17.1 nm during 2010 August 22 reveal numerous transient brightenings occurring along the edge of a filament channel within a decaying active region, where SDO line-of-sight magnetograms show strong opposite-polarity flux in close contact. The brightenings are elongated along the direction of the filament channel, with linear extents of several arcseconds, and typically last a few minutes; they sometimes have the form of multiple two-sided ejections with speeds on the order of 100 km s{sup -1}. Remarkably, some of the brightenings rapidly develop into larger scale events, forming sheetlike structures that are eventually torn apart by the diverging flows in the filament channel and ejected in opposite directions. We interpret the brightenings as resulting from reconnections among filament-channel field lines having one footpoint located in the region of canceling flux. In some cases, the flow patterns that develop in the channel may bring successive horizontal loops together and cause a cascade to larger scales.

  18. Magnetic investigations

    SciTech Connect

    Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G.; Baldwin, M.J.

    1983-12-31

    Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.

  19. Single-channel kinetics of BK (Slo1) channels

    PubMed Central

    Geng, Yanyan; Magleby, Karl L.

    2014-01-01

    Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states. PMID:25653620

  20. Specification for wide channel bandwidth one-inch video tape

    NASA Technical Reports Server (NTRS)

    Perry, Jimmy L.

    1988-01-01

    Standards and controls are established for the procurement of wide channel bandwidth one inch video magnetic recording tapes for Very Long Base Interferometer (VLBI) system applications. The Magnetic Tape Certification Facility (MTCF) currently maintains three specifications for the Quality Products List (QPL) and acceptance testing of magnetic tapes. NASA-TM-79724 is used for the QPL and acceptance testing of new analog tapes; NASA-TM-80599 is used for QPL and acceptance testing of new digital tapes; and NASA-TM-100702 is used for the QPL and acceptance testing of new IBM/IBM compatible 3480 magnetic tape cartridges. This specification will be used for the QPL and acceptance testing of new wide channel bandwidth one inch video magnetic recording tapes. The one inch video tapes used by the Jet Propulsion Lab., the Deep Space Network and the Haystack Observatory will be covered by this specification. These NASA stations will use the video tapes for their VLBI system applications. The VLBI system is used for the tracking of quasars and the support of interplanetary exploration.

  1. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  2. Ultrasound modulates ion channel currents.

    PubMed

    Kubanek, Jan; Shi, Jingyi; Marsh, Jon; Chen, Di; Deng, Cheri; Cui, Jianmin

    2016-01-01

    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3-4.9 W/cm(2)) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics. PMID:27112990

  3. Flag flapping in a channel

    NASA Astrophysics Data System (ADS)

    Alben, Silas; Shoele, Kourosh; Mittal, Rajat; Jha, Sourabh; Glezer, Ari

    2015-11-01

    We study the flapping of a flag in an inviscid channel flow. We focus especially on how quantities vary with channel spacing. As the channel walls move inwards towards the flag, heavier flags become more unstable, while light flags' stability is less affected. We use a vortex sheet model to compute large-amplitude flapping, and find that the flag undergoes a series of jumps to higher flapping modes as the channel walls are moved towards the flag. Meanwhile, the drag on the flag and the energy lost to the wake first rise as the walls become closer, then drop sharply as the flag moves to a higher flapping mode.

  4. Designed membrane channels and pores.

    PubMed

    Bayley, H

    1999-02-01

    Advances in the synthesis and assembly of designed membrane channels and pores include addressable template-assisted synthetic protein (TASP) syntheses of helix bundles, the production of a new class of nanotubes and the ability to purify hetero-oligomeric pores. Channels and pores with altered functional properties and with built-in triggers and switches have been prepared. Progress in applications has been greatest in sensor technology, where sensor elements based on ligand activation, channel selectivity and channel block have been made. Structural information about natural membrane proteins is emerging to inspire new designs.

  5. Ultrasound modulates ion channel currents

    PubMed Central

    Kubanek, Jan; Shi, Jingyi; Marsh, Jon; Chen, Di; Deng, Cheri; Cui, Jianmin

    2016-01-01

    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3–4.9 W/cm2) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics. PMID:27112990

  6. Demystifying Mechanosensitive Piezo Ion Channels.

    PubMed

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  7. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  8. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  9. Multi-channel atomic magnetometer for magnetoencephalography: a configuration study.

    PubMed

    Kim, Kiwoong; Begus, Samo; Xia, Hui; Lee, Seung-Kyun; Jazbinsek, Vojko; Trontelj, Zvonko; Romalis, Michael V

    2014-04-01

    Atomic magnetometers are emerging as an alternative to SQUID magnetometers for detection of biological magnetic fields. They have been used to measure both the magnetocardiography (MCG) and magnetoencephalography (MEG) signals. One of the virtues of the atomic magnetometers is their ability to operate as a multi-channel detector while using many common elements. Here we study two configurations of such a multi-channel atomic magnetometer optimized for MEG detection. We describe measurements of auditory evoked fields (AEF) from a human brain as well as localization of dipolar phantoms and auditory evoked fields. A clear N100m peak in AEF was observed with a signal-to-noise ratio of higher than 10 after averaging of 250 stimuli. Currently the intrinsic magnetic noise level is 4fTHz(-1/2) at 10Hz. We compare the performance of the two systems in regards to current source localization and discuss future development of atomic MEG systems.

  10. Littoral steering of deltaic channels

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Ashton, Andrew D.; Giosan, Liviu

    2016-11-01

    The typically single-threaded channels on wave-influenced deltas show striking differences in their orientations, with some channels oriented into the incoming waves (e.g., Ombrone, Krishna), and others oriented away from the waves (e.g., Godavari, Sao Francisco). Understanding the controls on channel orientation is important as the channel location greatly influences deltaic morphology and sedimentology, both subaerially and subaqueously. Here, we explore channel orientation and consequent feedbacks with local shoreline dynamics using a plan-form numerical model of delta evolution. The model treats fluvial sediment delivery to a wave-dominated coast in two ways: 1) channels are assumed to prograde in a direction perpendicular to the local shoreline orientation and 2) a controlled fraction of littoral sediment transport can bypass the river mouth. Model results suggest that channels migrate downdrift when there is a significant net littoral transport and alongshore transport bypassing of the river mouth is limited. In contrast, river channels tend to orient themselves into the waves when fluvial sediment flux is relatively large, causing the shoreline of the downdrift delta flank to attain the orientation of maximum potential sediment transport for the incoming wave climate. Using model results, we develop a framework to estimate channel orientations for wave-influenced deltas that shows good agreement with natural examples. An increase in fluvial sediment input can cause a channel to reorient itself into incoming waves, behavior observed, for example, in the Ombrone delta in Italy. Our results can inform paleoclimate studies by linking channel orientation to fluvial sediment flux and wave energy. In particular, our approach provides a means to quantify past wave directions, which are notoriously difficult to constrain.

  11. Planetary Magnetism

    SciTech Connect

    Russell, C.T.

    1980-02-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io.

  12. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  13. Magnetic shielding

    DOEpatents

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  14. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io.

  15. Proper horizontal photospheric flows in a filament channel

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Roudier, T.; Mein, N.; Mein, P.; Malherbe, J. M.; Chandra, R.

    2014-04-01

    Context. An extended filament in the central part of the active region NOAA 11106 crossed the central meridian on Sept. 17, 2010 in the southern hemisphere. It has been observed in Hα with the THEMIS telescope in the Canary Islands and in 304 Å with the EUV imager (AIA) onboard the Solar Dynamic Observatory (SDO). Counterstreaming along the Hα threads and bright moving blobs (jets) along the 304 Å filament channel were observed during 10 h before the filament erupted at 17:03 UT. Aims: The aim of the paper is to understand the coupling between magnetic field and convection in filament channels and relate the horizontal photospheric motions to the activity of the filament. Methods: An analysis of the proper photospheric motions using SDO/HMI continuum images with the new version of the coherent structure tracking (CST) algorithm developed to track granules, as well as the large scale photospheric flows, was performed for three hours. Using corks, we derived the passive scalar points and produced a map of the cork distribution in the filament channel. Averaging the velocity vectors in the southern hemisphere in each latitude in steps of 3.5 arcsec, we defined a profile of the differential rotation. Results: Supergranules are clearly identified in the filament channel. Diverging flows inside the supergranules are similar in and out of the filament channel. Converging flows corresponding to the accumulation of corks are identified well around the Hα filament feet and at the edges of the EUV filament channel. At these convergence points, the horizontal photospheric velocity may reach 1 km s-1, but with a mean velocity of 0.35 km s-1. In some locations, horizontal flows crossing the channel are detected, indicating eventually large scale vorticity. Conclusions: The coupling between convection and magnetic field in the photosphere is relatively strong. The filament experienced the convection motions through its anchorage points with the photosphere, which are

  16. Mirrored serpentine flow channels for fuel cell

    SciTech Connect

    Rock, Jeffrey Allan

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  17. DC CICC retrofit magnet

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-10-30

    The coil system presented here for the MHD retrofit magnet incorporates many features of the latest in superconducting magnet technology and finite element modeling to create an efficient and viable design concept. At the core of the design is the niobium titanium (NbTi) superconducting Cable-in-Conduit Conductor (CICC). Engineered to create moderately high magnetic fields (up to 8 T) with essentially no power loss, this specific CICC design provides good load carrying capacity, operating margin from a perturbation such as a local heat input, and coil protection in the event of a quench transient. The CICC is wound on a mandrel into long, tapered, saddle shaped single conductor thickness pancakes. By defining the appropriate number of conductor turns in each pancake, the saddle coils can be stacked to form a semi-elliptical winding pack cross section. Extruded aluminum filler blocks are fitted into the steps, at the edge of the pancake and present a smooth surface to the supporting structure. The semi-elliptical conductor array is supported by an identically shaped strap at all locations except where the end turns sweep over the MHD channel. The strap resists the electromagnetic forces tending to separate the coils on each side of the channel. Low friction surfaces are placed between conductor pancakes, and between the inside skin of the support straps and the outside surface of the conductor winding pack. This allows relative movement between pancakes, and between the strap and coil, thereby reducing shear stresses and coulombic friction heating which would otherwise tend to crack insulation, load joints, and initiate a quench in the superconducting cable.

  18. The EMBL-EBI channel.

    PubMed

    McEntyre, Jo; Birney, Ewan

    2016-01-01

    This editorial introduces the EMBL-EBI channel in F1000Research. The aims of the channel are to present EMBL-EBI outputs and collate research published on F1000Research contributed, in whole or in part, EMBL-EBI researchers. PMID:26913196

  19. A channel simulator design study

    NASA Technical Reports Server (NTRS)

    Devito, D. M.; Goutmann, M. M.; Harper, R. C.

    1971-01-01

    A propagation path simulator was designed for the channel between a Tracking and Data Relay Satellite in geostationary orbit and a user spacecraft orbiting the earth at an altitude between 200 and 4000 kilometers. The simulator is required to duplicate the time varying parameters of the propagation channel.

  20. Phenomics of Cardiac Chloride Channels

    PubMed Central

    Duan, Dayue Darrel

    2014-01-01

    Forward genetic studies have identified several chloride (Cl−) channel genes, including CFTR, ClC-2, ClC-3, CLCA, Bestrophin, and Ano1, in the heart. Recent reverse genetic studies using gene targeting and transgenic techniques to delineate the functional role of cardiac Cl− channels have shown that Cl− channels may contribute to cardiac arrhythmogenesis, myocardial hypertrophy and heart failure, and cardioprotection against ischemia reperfusion. The study of physiological or pathophysiological phenotypes of cardiac Cl− channels, however, is complicated by the compensatory changes in the animals in response to the targeted genetic manipulation. Alternatively, tissue-specific conditional or inducible knockout or knockin animal models may be more valuable in the phenotypic studies of specific Cl− channels by limiting the effect of compensation on the phenotype. The integrated function of Cl− channels may involve multiprotein complexes of the Cl− channel subproteome. Similar phenotypes can be attained from alternative protein pathways within cellular networks, which are influenced by genetic and environmental factors. The phenomics approach, which characterizes phenotypes as a whole phenome and systematically studies the molecular changes that give rise to particular phenotypes achieved by modifying the genotype under the scope of genome/proteome/phenome, may provide more complete understanding of the integrated function of each cardiac Cl− channel in the context of health and disease. PMID:23720326

  1. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  2. Dynamo Activity in Strongly Magnetized Accretion Disks

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Simon, Jacob B.; Armitage, Philip J.; Begelman, Mitchell C.

    2016-01-01

    Strongly magnetized accretion disks around black holes have many attractive features that may explain the enigmatic behavior observed from X-ray binaries. The physics and structure of these disks are governed by a dynamo-like mechanism, which channels the accretion power liberated by the magnetorotational instability into an ordered toroidal magnetic field. To study dynamo activity, we performed three-dimensional, stratified, isothermal, ideal magnetohydrodynamic shearing box simulations. In our simulations, the strength of this self-sustained toroidal magnetic field depends on the net vertical magnetic flux we impose, which allows us to study weak-to-strong magnetization regimes. We find that the entire disk develops into a magnetic pressure-dominated state for a sufficiently strong net vertical magnetic flux. Over the two orders of magnitude in net vertical magnetic flux that we consider, the effective α-viscosity parameter scales as a power-law. We quantify dynamo properties of toroidal magnetic flux production and its buoyant escape as a function of disk magnetization. Finally, we compare our simulations to an analytic model for the vertical structure of strongly magnetized disks applicable to the high/soft state of X-ray binaries.

  3. Young Channel, Old Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 18 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    This daytime IR image was collected on February 3, 2003 during the northern summer season. This image shows a younger channel cutting through an older crater.

    Image information: IR instrument. Latitude 30.8, Longitude 19 East (341 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System

  4. Channel Floor Yardangs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 19 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    The yardangs in this image are forming in channel floor deposits. The channel itself is funneling the wind to cause the erosion.

    Image information: VIS instrument. Latitude 4.5, Longitude 229.7 East (133.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are

  5. Lipid Regulation of Sodium Channels.

    PubMed

    D'Avanzo, N

    2016-01-01

    The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed. PMID:27586290

  6. Targeting potassium channels in cancer

    PubMed Central

    2014-01-01

    Potassium channels are pore-forming transmembrane proteins that regulate a multitude of biological processes by controlling potassium flow across cell membranes. Aberrant potassium channel functions contribute to diseases such as epilepsy, cardiac arrhythmia, and neuromuscular symptoms collectively known as channelopathies. Increasing evidence suggests that cancer constitutes another category of channelopathies associated with dysregulated channel expression. Indeed, potassium channel–modulating agents have demonstrated antitumor efficacy. Potassium channels regulate cancer cell behaviors such as proliferation and migration through both canonical ion permeation–dependent and noncanonical ion permeation–independent functions. Given their cell surface localization and well-known pharmacology, pharmacological strategies to target potassium channel could prove to be promising cancer therapeutics. PMID:25049269

  7. Requirements for signaling channel authentication

    SciTech Connect

    Tarman, T.D.

    1995-12-11

    This contribution addresses requirements for ATM signaling channel authentication. Signaling channel authentication is an ATM security service that binds an ATM signaling message to its source. By creating this binding, the message recipient, and even a third party, can confidently verify that the message originated from its claimed source. This provides a useful mechanism to mitigate a number of threats. For example, a denial of service attack which attempts to tear-down an active connection by surreptitiously injecting RELEASE or DROP PARTY messages could be easily thwarted when authenticity assurances are in place for the signaling channel. Signaling channel authentication could also be used to provide the required auditing information for accurate billing which is impervious to repudiation. Finally, depending on the signaling channel authentication mechanism, end-to-end integrity of the message (or at least part of it) can be provided. None of these capabilities exist in the current specifications.

  8. Voltage-gated Proton Channels

    PubMed Central

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  9. Voltage-gated proton channels.

    PubMed

    Decoursey, Thomas E

    2012-04-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely, the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance approximately 10(3) times smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn(2+) (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B-lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H(+) for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens.

  10. A software channel compression technique for faster reconstruction with many channels.

    PubMed

    Huang, Feng; Vijayakumar, Sathya; Li, Yu; Hertel, Sarah; Duensing, George R

    2008-01-01

    In magnetic resonance imaging, highly parallel imaging using coil arrays with a large number of elements is an area of growing interest. With increasing channel numbers for parallel acquisition, the increased reconstruction time and extensive computer memory requirements have become significant concerns. In this work, principal component analysis (PCA) is used to develop a channel compression technique. This technique efficiently reduces the size of parallel imaging data acquired from a multichannel coil array, thereby significantly reducing the reconstruction time and computer memory requirement without undermining the benefits of multichannel coil arrays. Clinical data collected with a 32-channel cardiac coil are used in all of the experiments. The performance of the proposed method on parallel, partially acquired data, as well as fully acquired data, was evaluated. Experimental results show that the proposed method dramatically reduces the processing time without considerable degradation in the quality of reconstructed images. It is also demonstrated that this PCA technique can be used to perform intensity correction in parallel imaging applications.

  11. Magnetic Recording.

    ERIC Educational Resources Information Center

    Lowman, Charles E.

    A guide to the technology of magnetic recorders used in such fields as audio recording, broadcast and closed-circuit television, instrumentation recording, and computer data systems is presented. Included are discussions of applications, advantages, and limitations of magnetic recording, its basic principles and theory of operation, and its…

  12. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  13. Methods of channeling simulation

    SciTech Connect

    Barrett, J.H.

    1989-06-01

    Many computer simulation programs have been used to interpret experiments almost since the first channeling measurements were made. Certain aspects of these programs are important in how accurately they simulate ions in crystals; among these are the manner in which the structure of the crystal is incorporated, how any quantity of interest is computed, what ion-atom potential is used, how deflections are computed from the potential, incorporation of thermal vibrations of the lattice atoms, correlations of thermal vibrations, and form of stopping power. Other aspects of the programs are included to improve the speed; among these are table lookup, importance sampling, and the multiparameter method. It is desirable for programs to facilitate incorporation of special features of interest in special situations; examples are relaxations and enhanced vibrations of surface atoms, easy substitution of an alternate potential for comparison, change of row directions from layer to layer in strained-layer lattices, and different vibration amplitudes for substitutional solute or impurity atoms. Ways of implementing all of these aspects and features and the consequences of them will be discussed. 30 refs., 3 figs.

  14. Magnetic nanoparticles for "smart liposomes".

    PubMed

    Nakayama, Yoshitaka; Mustapić, Mislav; Ebrahimian, Haleh; Wagner, Pawel; Kim, Jung Ho; Hossain, Md Shahriar Al; Horvat, Joseph; Martinac, Boris

    2015-12-01

    Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs. PMID:26184724

  15. Magnet Healing?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2000-03-01

    Many people are convinced that static magnets—applied to their skin—will heal ills, and many businesses sell such magnets. The biophysics of such healing was reviewed [1] together with the general biophysics of static fields. Birds and insects do use the earth’s magnetic field for navigation. While insect and frog egg development can clearly be influenced by high fields (7 T and 17 T respectively), there is no experimental evidence that small magnetic fields (of less than 0.5 T) might heal, and much evidence that they cannot heal. A puzzle to the physics community is: How to show laypersons that simple magnets (very probably) do not heal, however attractive that idea might be. [1] L. Finegold, The Physics of "Alternative Medicine": Magnet Therapy, The Scientific Review of Alternative Medicine 3:26-33 (1999).

  16. Magnetic nanotubes

    DOEpatents

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  17. Measurements of gravity driven granular channel flows

    NASA Astrophysics Data System (ADS)

    Facto, Kevin

    This dissertation presents experiments that studied two gravity driven granular channel flows. The first experiment used magnetic resonance imaging to measure the density and displacement distributions of poppy seeds flowing in a rough walled channel. Time-averaged measurements of normalized velocity and density showed little flow speed dependence. Instantaneous measurements, however, showed marked velocity dependence in the displacement distributions. There was evidence of aperiodic starting and stopping at lower flow speeds and the onset of density waves on a continuous flow at higher speeds. The second experiment measured forces in all three spatial directions at the boundary of a flow of steel balls. The relationship between the normal and the tangential forces were examined statistically and compared to the Coulomb friction model. For both large and small forces, the tangential and normal forces are unrelated, as there appears to be a strong tendency for the tangential force to maintain a value that will bear the weight the weight of the particles in flow.

  18. Channel Guided Standard LWFA (CGSL) Project

    SciTech Connect

    Hafizi, B.; Zigler, A.

    2006-03-04

    During the project we have demonstrated control of several important parameters of capillary channels. We achieved the required profiles for guiding, we have demonstrated channels in density range between 10{sup 17}-10{sup 19}cm{sup -3} in both short and long capillaries. The plasma temperature and density profiles were measured in both radial and longitudinal directions. The Boron Nitride capillary has provided a guiding medium that can withstand more than 1000 shots. The laser ignition of capillary discharge provided reliable almost jitter free approach. Both laser and experimental set up were upgraded. The laser system upgrade included development of a 10 TW Ti-sapphire laser facility that will be used for acceleration experiments instead T cube. We have conducted high intensity (above 10{sup 17}W/cm{sup 2}) guiding experiments through various capillaries. The concerns related to influence of relatively high current density flow through capillary on the injected electrons were studied extensively by us both theoretically and experimentally using a simple injection method. The method is based on the interaction of a high intensity laser pulse with a thin wire placed near capillary entrance. The influence of magnetic fields was found to be insignificant. Using this method we have studied transport of electrons though capillary discharge. We have simulated beam injection into a channel guided LWFA and found that under certain conditions the injected electron distribution can be very broad. Finally, prior to the staging of the capillary based accelerators, we performed a proof-of-principal experiment on staged optical injection and laser wakefield acceleration using two different short laser pulses focused into two spatially separated gas jets.

  19. M channel enhancers and physiological M channel block.

    PubMed

    Linley, John E; Pettinger, Louisa; Huang, Dongyang; Gamper, Nikita

    2012-02-15

    M-type (Kv7, KCNQ) K(+) channels control the resting membrane potential of many neurons, including peripheral nociceptive sensory neurons. Several M channel enhancers were suggested as prospective analgesics, and targeting M channels specifically in peripheral nociceptors is a plausible strategy for peripheral analgesia. However, receptor-induced inhibition of M channels in nociceptors is often observed in inflammation and may contribute to inflammatory pain. Such inhibition is predominantly mediated by phospholipase C. We investigated four M channel enhancers (retigabine, flupirtine, zinc pyrithione and H(2)O(2)) for their ability to overcome M channel inhibition via two phospholipase C-mediated mechanisms, namely depletion of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) and a rise in intracellular Ca(2+) (an action mediated by calmodulin). Data from overexpressed Kv7.2/Kv7.3 heteromers and native M currents in dorsal root ganglion neurons suggest the following conclusions. (i) All enhancers had a dual effect on M channel activity, a negative shift in voltage dependence and an increase of the maximal current at saturating voltages. The enhancers differed in their efficacy to produce these effects. (ii) Both PIP(2) depletion and Ca(2+)/calmodulin strongly reduced the M current amplitude; however, at voltages near the threshold for M channel activation (-60 mV) all enhancers were able to restore M channel activity to a control level or above, while at saturating voltages the effects were more variable. (iii) Receptor-mediated inhibition of M current in nociceptive dorsal root ganglion neurons did not reduce the efficacy of retigabine or flupirtine to hyperpolarize the resting membrane potential. In conclusion, we show that all four M channel enhancers tested could overcome both PIP(2) and Ca(2+)-calmodulin-induced inhibition of Kv7.2/7.3 at voltages close to the threshold for action potential firing (-60 mV) but generally had reduced efficacy at a

  20. Single-Channel Recording of Ligand-Gated Ion Channels.

    PubMed

    Plested, Andrew J R

    2016-01-01

    Single-channel recordings reveal the microscopic properties of individual ligand-gated ion channels. Such recordings contain much more information than measurements of ensemble behavior and can yield structural and functional information about the receptors that participate in fast synaptic transmission in the brain. With a little care, a standard patch-clamp electrophysiology setup can be adapted for single-channel recording in a matter of hours. Thenceforth, it is a realistic aim to record single-molecule activity with microsecond resolution from arbitrary cell types, including cell lines and neurons. PMID:27480725

  1. Localized reconnection in the magnetotail driven by lobe flow channels: Global MHD simulation

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Lyons, L. R.

    2016-02-01

    Recent ionospheric measurements suggest polar cap flow channels often trigger nightside auroral brightening. However, measurements were limited to the ionosphere, and it was not understood if such flow channels can exist in the lobe and can trigger magnetotail reconnection in a localized cross-tail extent. We examined if localized flow channels can form self-consistently in a global MHD regime, and if so, how such flow channels originate and relate to localized magnetotail reconnection. We show that lobe convection became nonuniform with azimuthally narrow flow channels (enhanced dawn-dusk electric fields) of ~3 RE cross-tail width. The flow channels propagated from the dayside toward the plasma sheet as an interplanetary magnetic field (IMF) discontinuity swept tailward. The plasma sheet around the lobe flow channels became thinner with a similar cross-tail extent and then localized reconnection occurred. These results suggest that localized flow channels can propagate tailward across the lobe and drive localized magnetotail reconnection, that the cross-tail width of reconnection and resulting plasma sheet flow channels and dipolarization fronts are related to the width of inflow from the lobe, and that IMF discontinuities drive lobe flow channels.

  2. Bioluminescence under static magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.

    1998-06-01

    In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.

  3. Fragmentation of magnetism in artificial kagome dipolar spin ice.

    PubMed

    Canals, Benjamin; Chioar, Ioan-Augustin; Nguyen, Van-Dai; Hehn, Michel; Lacour, Daniel; Montaigne, François; Locatelli, Andrea; Menteş, Tevfik Onur; Burgos, Benito Santos; Rougemaille, Nicolas

    2016-05-13

    Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature states of matter, such as the ones observed in spin ices. Here we report the imaging of the magnetic states of a thermally active artificial magnetic ice that reveal the fingerprints of a spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic degree of freedom into two channels and is evidenced in both real and reciprocal space. Furthermore, the internal organization of both channels is interpreted within the framework of a hybrid spin-charge model that directly emerges from the parent spin model of the kagome dipolar spin ice. Our experimental and theoretical results provide insights into the physics of frustrated magnets and deepen our understanding of emergent fields through the use of tailor-made magnetism.

  4. Fragmentation of magnetism in artificial kagome dipolar spin ice

    NASA Astrophysics Data System (ADS)

    Canals, Benjamin; Chioar, Ioan-Augustin; Nguyen, Van-Dai; Hehn, Michel; Lacour, Daniel; Montaigne, François; Locatelli, Andrea; Menteş, Tevfik Onur; Burgos, Benito Santos; Rougemaille, Nicolas

    2016-05-01

    Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature states of matter, such as the ones observed in spin ices. Here we report the imaging of the magnetic states of a thermally active artificial magnetic ice that reveal the fingerprints of a spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic degree of freedom into two channels and is evidenced in both real and reciprocal space. Furthermore, the internal organization of both channels is interpreted within the framework of a hybrid spin-charge model that directly emerges from the parent spin model of the kagome dipolar spin ice. Our experimental and theoretical results provide insights into the physics of frustrated magnets and deepen our understanding of emergent fields through the use of tailor-made magnetism.

  5. Fragmentation of magnetism in artificial kagome dipolar spin ice.

    PubMed

    Canals, Benjamin; Chioar, Ioan-Augustin; Nguyen, Van-Dai; Hehn, Michel; Lacour, Daniel; Montaigne, François; Locatelli, Andrea; Menteş, Tevfik Onur; Burgos, Benito Santos; Rougemaille, Nicolas

    2016-01-01

    Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature states of matter, such as the ones observed in spin ices. Here we report the imaging of the magnetic states of a thermally active artificial magnetic ice that reveal the fingerprints of a spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic degree of freedom into two channels and is evidenced in both real and reciprocal space. Furthermore, the internal organization of both channels is interpreted within the framework of a hybrid spin-charge model that directly emerges from the parent spin model of the kagome dipolar spin ice. Our experimental and theoretical results provide insights into the physics of frustrated magnets and deepen our understanding of emergent fields through the use of tailor-made magnetism. PMID:27173154

  6. Fragmentation of magnetism in artificial kagome dipolar spin ice

    PubMed Central

    Canals, Benjamin; Chioar, Ioan-Augustin; Nguyen, Van-Dai; Hehn, Michel; Lacour, Daniel; Montaigne, François; Locatelli, Andrea; Menteş, Tevfik Onur; Burgos, Benito Santos; Rougemaille, Nicolas

    2016-01-01

    Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature states of matter, such as the ones observed in spin ices. Here we report the imaging of the magnetic states of a thermally active artificial magnetic ice that reveal the fingerprints of a spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic degree of freedom into two channels and is evidenced in both real and reciprocal space. Furthermore, the internal organization of both channels is interpreted within the framework of a hybrid spin–charge model that directly emerges from the parent spin model of the kagome dipolar spin ice. Our experimental and theoretical results provide insights into the physics of frustrated magnets and deepen our understanding of emergent fields through the use of tailor-made magnetism. PMID:27173154

  7. MICE Spectrometer Magnet System Progress

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  8. Information geometry of Gaussian channels

    SciTech Connect

    Monras, Alex; Illuminati, Fabrizio

    2010-06-15

    We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).

  9. Ion Channels in Brain Metastasis

    PubMed Central

    Klumpp, Lukas; Sezgin, Efe C.; Eckert, Franziska; Huber, Stephan M.

    2016-01-01

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial–mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood–brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation. PMID:27618016

  10. ATP release through pannexon channels.

    PubMed

    Dahl, Gerhard

    2015-07-01

    Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed 'pannexon'. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut. PMID:26009770

  11. Ion Channels in Brain Metastasis.

    PubMed

    Klumpp, Lukas; Sezgin, Efe C; Eckert, Franziska; Huber, Stephan M

    2016-01-01

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial-mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood-brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation. PMID:27618016

  12. Microbial Senses and Ion Channels

    NASA Astrophysics Data System (ADS)

    Kung, Ching; Zhou, Xin-Liang; Su, Zhen-Wei; Haynes, W. John; Loukin, Sephan H.; Saimi, Yoshiro

    The complexity of animals and plants is due largely to cellular arrangement. The structures and activities of macromolecules had, however, evolved in early microbes long before the appearance of this complexity. Among such molecules are those that sense light, heat, force, water, and ligands. Though historically and didactically associated with the nervous system, ion channels also have deep evolutionary roots. For example, force sensing with channels, which likely began as water sensing through membrane stretch generated by osmotic pressure, must be ancient and is universal in extant species. Extant microbial species, such as the model bacterium Escherichia coli and yeast Saccharomyces cerevisiae, are equipped with stretch-activated channels. The ion channel proteins MscL and MscS show clearly that these bacterial channels receive stretch forces from the lipid bilayer. TRPY1, the mechanosensitive channel in yeast, is being developed towards a similar basic understanding of channels of the TRP (transientreceptor- potential) superfamily. TRPY1 resides in the vacuolar membrane and releases Ca2+ from the vacuole to the cytoplasm upon hyperosmotic shock. Unlike in most TRP preparations from animals, the mechanosensitivity of TRPY1 can be examined directly under patch clamp in either whole-vacuole mode or excised patch mode. The combination of direct biophysical examination in vitro with powerful microbial genetics in vivo should complement the study of mechanosensations of complex animals and plants.

  13. Substrate channeling in proline metabolism

    PubMed Central

    Arentson, Benjamin W.; Sanyal, Nikhilesh; Becker, Donald F.

    2012-01-01

    Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism. PMID:22201749

  14. Exotic Magnetic Properties in {sup 17}C

    SciTech Connect

    Suzuki, Toshio; Otsuka, Takaharu

    2008-12-15

    Magnetic dipole transitions in {sup 17}C are investigated by shell model calculations. The important role of the tensor interaction for magnetic dipole transitions in this exotic neutron-rich nucleus is pointed out. The recently observed anomalous quenching of the magnetic dipole transition in 1/2{sub 1}{sup +} {yields}3/2{sub g.s.}{sup +} is shown to be well explained by using a modified shell model Hamiltonian that takes full account of the tensor force and monopole corrections in the isospin T=1 channel. The predicted quadrupole moment of {sup 17}C is smaller than the value obtained by conventional shell model Hamiltonians.

  15. Dynamical Coupled-channels Effects on Pion Photoproduction

    SciTech Connect

    Julia-Diaz, B; Lee, T -S. H.; Matsuyama, A; Sato, T; Smith, L C

    2007-12-18

    The electromagnetic pion production reactions are investigated within the dynamical coupled-channels model developed in {\\bf Physics Reports, 439, 193 (2007)}. The meson-baryon channels included in this study are $\\gamma N$, $\\pi N$, $\\eta N$, and the $\\pi\\Delta$, $\\rho N$ and $\\sigma N$ resonant components of the $\\pi\\pi N$ channel. With the hadronic parameters of the model determined in a recent study of $\\pi N$ scattering, we show that the pion photoproduction data up to the second resonance region can be described to a very large extent by only adjusting the bare $\\gamma N \\rightarrow N^*$ helicity amplitudes, while the non-resonant electromagnetic couplings are taken from previous works. It is found that the coupled-channels effects can contribute about 10 - 20 $\\%$ of the production cross sections in the $\\Delta$ (1232) resonance region, and can drastically change the magnitude and shape of the cross sections in the second resonance region. The importance of the off-shell effects in a dynamical approach is also demonstrated. The meson cloud effects as well as the coupled-channels contributions to the $\\gamma N \\rightarrow N^*$ form factors are found to be mainly in the low $Q^2$ region. For the magnetic M1 $\\gamma N \\rightarrow \\Delta$ (1232) form factor, the results are close to that of the Sato-Lee Model. Necessary improvements to the model and future developments are discussed.

  16. Extending velocity channel analysis for studying turbulence anisotropies

    NASA Astrophysics Data System (ADS)

    Kandel, D.; Lazarian, A.; Pogosyan, D.

    2016-09-01

    We extend the velocity channel analysis (VCA), introduced by Lazarian & Pogosyan, of the intensity fluctuations in the velocity slices of position-position-velocity (PPV) spectroscopic data from Doppler broadened lines to study statistical anisotropy of the underlying velocity and density that arises in a turbulent medium from the presence of magnetic field. In particular, we study analytically how the anisotropy of the intensity correlation in the channel maps changes with the thickness of velocity channels. In agreement with the earlier VCA studies, we find that the anisotropy in the thick channels reflects the anisotropy of the density field, while the relative contribution of density and velocity fluctuations to the thin velocity channels depends on the density spectral slope. We show that the anisotropies arising from Alfvén, slow and fast magnetohydrodynamical modes are different; in particular, the anisotropy in PPV created by fast modes is opposite to that created by Alfvén and slow modes, and this can be used to separate their contributions. We successfully compare our results with the recent numerical study of the PPV anisotropies measured with synthetic observations. We also extend our study to the medium with self-absorption as well as to the case of absorption lines. In addition, we demonstrate how the studies of anisotropy can be performed using interferometers.

  17. Tunable transport in magnetically coupled MoGe/permalloy hybrids.

    SciTech Connect

    Belkin, A.; Novosad, V.; Iavarone, M.; Fedor, J.; Pearson, J.; Petrean-Troncalli, A.; Karapetrov, G.; Materials Science Division; Illinois Inst. of Tech.; Austin Coll.

    2008-08-18

    We demonstrate controlled magnetotransport anisotropy of magnetically coupled superconductor-ferromagnet MoGe/Permalloy hybrids. The rotatable anisotropy Permalloy ferromagnet with stripe domain structure induces in-plane anisotropy in superconducting order parameter. We show that near the superconductor-normal state phase boundary the superconductivity in MoGe is localized in narrow mesoscopic channels just above the magnetic domain walls. Changing the in-plane direction of magnetic stripe domains it is possible to reconfigure the direction of the superconducting channels and controllably rotate the direction of the in-plane anisotropy axis in the superconductor.

  18. Marine Toxins Targeting Ion Channels

    PubMed Central

    Arias, Hugo R.

    2006-01-01

    This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e

  19. Focusing solenoids for the MICE cooling channel

    SciTech Connect

    Green, M.A.; Baynham, E.; Barr, G.; Lau, W.; Rochford, J.H.; Yang, S.

    2003-09-15

    This report describes a design for focusing solenoids for the low beta sections for the proposed Muon Ionization Cooling Experiment (MICE). There are three focusing solenoid pairs that will be around the muon absorbers for MICE. The two solenoid coils have an inside diameter of 510 mm, a length of 180 mm, and a thickness of 100 mm. A distance of 260 mm separates the two coils in the pair. The coils are designed to operate at opposite polarity, in order to create a gradient field in the low beta sections of the MICE cooling channel. As result, the force pushing the coil pair apart approaches 270 metric tons when the coils operate close to the short sample current for the superconductor. The forces between the coils will be carried by a support structure that is both on the inside and the outside the coils. During some modes of operation for MICE, the coils may operate at the same polarity, which means that the force between the coils pushes them together. The focusing magnet must be designed for both modes of operation. This support structure for the coils will be part of the focusing magnet quench protection system.

  20. Differences between Formal and Informal Communicative Channels.

    ERIC Educational Resources Information Center

    Johnson, J. David; And Others

    1994-01-01

    Compares formal and informal organizational communication structures within a large, technically oriented midwestern state governmental agency, specifically focusing on salience, channel factors, and channel usage. Suggests that informal channels in this organization were more highly evaluated in general. (SR)

  1. 33 CFR 117.966 - Galveston Channel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.966 Galveston Channel. Link to an... across Galveston Channel, mile 4.5 of the Galveston Channel, (GIWW mile 356.1) at Galveston, Texas,...

  2. Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.

  3. Lunar magnetism

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  4. Infinitely many kinds of quantum channels

    SciTech Connect

    Hastings, Matthew B

    2008-01-01

    We define the ability of a quantum channel to simulate another by means of suitable encoding and decoding operations. While classical channels have only two equivalence classes under simulation (channels with non-vanishing capacity and those with vanishing capacity), we show that there are an uncountable infinity of different equivalence classes of quantum channels using the example of the quantum erasure channel. Our results also imply a kind of 'Matthew principle' for error correction on certain channels.

  5. Thermosyphon boiling in vertical channels

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, A.; Schweitzer, H.

    The thermal characteristics of ebullient cooling systems for VHSIC and VLSI microelectronic component thermal control are studied by experimentally and analytically investigating boiling heat transfer from a pair of flat, closely spaced, isoflux plates immersed in saturated water. A theoretical model for liquid flow rate through the channel is developed and used as a basis for correlating the rate of heat transfer from the channel walls. Experimental results for wall temperature as a function of axial location, heat flux, and plate spacing are presented. The finding that the wall superheat at constant imposed heat flux decreases as the channel is narrowed is explained with the aid of a boiling thermosiphon analysis which yields the mass flux through the channel.

  6. Aquaglyceroporins: ancient channels for metalloids.

    PubMed

    Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita; Thiyagarajan, Saravanamuthu; Rosen, Barry P

    2008-11-07

    The identification of aquaglyceroporins as uptake channels for arsenic and antimony shows how these toxic elements can enter the food chain, and suggests that food plants could be genetically modified to exclude arsenic while still accumulating boron and silicon.

  7. Ion Channels in Nerve Membranes

    ERIC Educational Resources Information Center

    Ehrenstein, Gerald

    1976-01-01

    Discusses research that indicates that nerve membranes, which play a key role in the conduction of impulses, are traversed by protein channels with ion pathways opened and closed by the membrane electric field. (Author/MLH)

  8. FAITH Water Channel Flow Visualization

    NASA Video Gallery

    Water channel flow visualization experiments are performed on a three dimensional model of a small hill. This experiment was part of a series of measurements of the complex fluid flow around the hi...

  9. Catalytic reaction in confined flow channel

    DOEpatents

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  10. Magnetic Reconnection

    NASA Video Gallery

    This science visualization shows a magnetospheric substorm, during which, magnetic reconnection causes energy to be rapidly released along the field lines in the magnetotail, that part of the magne...

  11. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  12. Magnetic monopoles

    SciTech Connect

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.

  13. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  14. Design and test of a four channel motor for electromechanical flight control actuation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    To provide a suitable electromagnetic torque summing approach to flight control system redundancy, a four channel motor capable of sustaining full performance after any two credible failures was designed, fabricated, and tested. The design consists of a single samarium cobalt permanent magnet rotor with four separate three phase windings arrayed in individual stator quadrants around the periphery. Trade studies established the sensitivities of weight and performance to such parameters as design speed, winding pattern, number of poles, magnet configuration, and strength. The motor electromagnetically sums the torque of the individual channels on a single rotor and eliminate complex mechanical gearing arrangements.

  15. Ion channel screening technologies today.

    PubMed

    Terstappen, Georg C

    2005-01-01

    For every heartbeat, movement and thought, ion channels have to open and close, and thus, it is not surprising that malfunctioning of these membrane proteins leads to serious diseases. Today, only 7% of all marketed drugs act on ion channels but the systematic exploitation of this important target class has started mainly enabled by novel screening technologies. Thus, the discovery of selective and state-dependent drugs is on the horizon, hopefully leading to effective novel medicines.:

  16. Ferrofluid-based Stretchable Magnetic Core Inductors

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Meyer, C. D.

    2015-12-01

    Magnetic materials are commonly used in inductor and transformer cores to increase inductance density. The emerging field of stretchable electronics poses a new challenge since typical magnetic cores are bulky, rigid and often brittle. This paper presents, for the first time, stretchable inductors incorporating ferrofluid as a liquid magnetic core. Ferrofluids, suspensions of nanoscale magnetic particles in a carrier liquid, provide enhanced magnetic permeability without changing the mechanical properties of the surrounding elastomer. The inductor tested in this work consisted of a liquid metal solenoid wrapped around a ferrofluid core in separate channels. The low frequency inductance was found to increase from 255 nH before fill to 390 nH after fill with ferrofluid, an increase of 52%. The inductor was also shown to survive uniaxial strains of up to 100%.

  17. Intracellular calcium channels in protozoa.

    PubMed

    Docampo, Roberto; Moreno, Silvia N J; Plattner, Helmut

    2014-09-15

    Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in six subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa.

  18. Channelized Optical Waveguides On Silicon

    NASA Astrophysics Data System (ADS)

    Hickernell, F. S.; Seaton, C. T.

    1987-02-01

    Silicon provides a natural substrate base for the development of channel waveguides and their integration with optoelectronic components. Using epitaxial growth, selective doping, and plasma etching, channel waveguides can be fabricated using single crystal silicon alone. Oxide layers of low optical index are readily formed by thermal means on silicon to provide a base upon which low-loss film waveguides can be formed by ion exchange and implantation, chemical vapor deposition, and physical vapor deposition. Thermally oxidized and nitrided layers provide a simple means for developing waveguides. The channel shape for ridge waveguides can be delineated by chemical etching and ion milling techniques. The anisotropic etch characteristics of silicon provide a natural channel for imbedding waveguides using organic and inorganic materials. This paper will review common semiconductor processing techniques used for the formation of channel waveguides on silicon and the performance results obtained to date. The use of channel waveguides for specific device developments will be described and the most promising areas for future development will be addressed.

  19. Intracellular Calcium Channels in Protozoa

    PubMed Central

    Docampo, Roberto; Moreno, Silvia N.J.; Plattner, Helmut

    2014-01-01

    Ca2+-signaling pathways and intracellular Ca2+ channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in 6 subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca2+ signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca2+ channels (TRPCs) and intracellular mechanosensitive Ca2+-channels in Paramecium and in parasitic protozoa. PMID:24291099

  20. A three channel telemetry system

    NASA Technical Reports Server (NTRS)

    Lesho, Jeffery C.; Eaton, Harry A. C.

    1993-01-01

    A three channel telemetry system intended for biomedical applications is described. The transmitter is implemented in a single chip using a 2 micron BiCMOS processes. The operation of the system and the test results from the latest chip are discussed. One channel is always dedicated to temperature measurement while the other two channels are generic. The generic channels carry information from transducers that are interfaced to the system through on-chip general purpose operational amplifiers. The generic channels have different bandwidths: one from dc to 250 Hz and the other from dc to 1300 Hz. Each generic channel modulates a current controlled oscillator to produce a frequency modulated signal. The two frequency modulated signals are summed and used to amplitude modulate the temperature signal which acts as a carrier. A near-field inductive link telemeters the combined signals over a short distance. The chip operates on a supply voltage anywhere from 2.5 to 3.6 Volts and draws less than 1 mA when transmitting a signal. The chip can be incorporated into ingestible, implantable and other configurations. The device can free the patient from tethered data collection systems and reduces the possibility of infection from subcutaneous leads. Data telemetry can increase patient comfort leading to a greater acceptance of monitoring.

  1. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  2. MAGNETIC IMAGING OF NANOCOMPOSITE MAGNETS

    SciTech Connect

    VOLKOV,V.V.ZHU,Y.

    2003-08-03

    Understanding the structure and magnetic behavior is crucial for optimization of nanocomposite magnets with high magnetic energy products. Many contributing factors such as phase composition, grain size distribution and specific domain configurations reflect a fine balance of magnetic energies at nanometer scale. For instance, magnetocrystalline anisotropy of grains and their orientations, degree of exchange coupling of magnetically soft and hard phases and specific energy of domain walls in a material. Modern microscopy, including Lorentz microscopy, is powerful tool for visualization and microstructure studies of nanocomposite magnets. However, direct interpretation of magnetically sensitive Fresnel/Foucault images for nanomagnets is usually problematic, if not impossible, because of the complex image contrast due to small grain size and sophisticated domain structure. Recently we developed an imaging technique based on Lorentz phase microscopy [l-4], which allows bypassing many of these problems and get quantitative information through magnetic flux mapping at nanometer scale resolution with a magnetically calibrated TEM [5]. This is our first report on application of this technique to nanocomposite magnets. In the present study we examine a nanocomposite magnet of nominal composition Nd{sub 2}Fe{sub 14+{delta}}B{sub 1.45} (14+{delta}=23.3, i.e. ''hard'' Nd{sub 2}Fe{sub 14}B-phase and 47.8 wt% of ''soft'' {alpha}-Fe phase ({delta}=9.3)), produced by Magnequench International, Inc. Conventional TEM/HREM study (Fig. 1-2) suggests that material has a bimodal grain-size distribution with maximum at d{sub max}=25 nm for Nd{sub 2}Fe{sub 14}B phase and d{sub max} = 15 nm for {alpha}-Fe phase (Fig.1c, Fig.2) in agreement with synchrotron X-ray studies (d{sub max}=23.5 nm for Nd{sub 2}Fe{sub 14}B [6]). Lattice parameters for Nd{sub 2}Fe{sub 14}B phase are a=8.80 and c=12.2 {angstrom}, as derived from SAED ring patterns (Fig.1a), again in good agreement with X-ray data

  3. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel

    PubMed Central

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837

  4. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    PubMed

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837

  5. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    PubMed

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  6. Magnetism. Blowing magnetic skyrmion bubbles.

    PubMed

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M Benjamin; Fradin, Frank Y; Pearson, John E; Tserkovnyak, Yaroslav; Wang, Kang L; Heinonen, Olle; te Velthuis, Suzanne G E; Hoffmann, Axel

    2015-07-17

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics. PMID:26067256

  7. Magnetism. Blowing magnetic skyrmion bubbles.

    PubMed

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M Benjamin; Fradin, Frank Y; Pearson, John E; Tserkovnyak, Yaroslav; Wang, Kang L; Heinonen, Olle; te Velthuis, Suzanne G E; Hoffmann, Axel

    2015-07-17

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics.

  8. Helical muon beam cooling channel engineering design

    SciTech Connect

    Johnson, Rolland

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  9. Low-Power Magnetically Shielded Hall Thrusters

    NASA Astrophysics Data System (ADS)

    Conversano, Ryan William

    This dissertation presents an investigation of the applicability of magnetic shielding to low-power Hall thrusters as a means to significantly improve operational lifetime. The key life-limiting factors of conventional Hall thrusters, including ion-bombardment sputter erosion of the discharge channel and high-energy electron power deposition to the channel walls, have been investigated extensively for a wide range of thruster scales. As thruster power is reduced to the "miniature" (i.e. sub-500 W) power regime, the increased surface-to-volume ratio of the discharge channel and decreased thruster component sizes promotes increased plasma-wall interactions and susceptibility to overheating, thereby reducing thruster operational lifetime and performance. Although methods for compensating for these issues have been investigated, unshielded miniature Hall thrusters are generally limited to sub-45% anode efficiencies and maximum lifetimes on the order of 1,000 h. A magnetically shielded magnetic field topology aims to maintain a low electron temperature along the channel surfaces and a plasma potential near that of the discharge voltage along the entire surface of the discharge channel along its axial length. These features result in a reduction of the kinetic energy of ions that impact the channel surfaces to near to or below the sputtering threshold, thus preventing significant ion-bombardment erosion of the discharge channel. Improved confinement of high-energy electrons is another byproduct of the field structure, aiding in the reduction of electron power deposition to the channel. Magnetic shielding has been shown to dramatically reduce plasma-wall interactions on 4--6 kW Hall thrusters, resulting in significant increases in projected operational lifetimes with minimal effects to thruster performance. In an effort to explore the scalability of magnetic shielding to low-power devices, two magnetically shielded miniature Hall thrusters were designed, fabricated and

  10. High velocity vortex channeling in vicinal YBCO thin films.

    PubMed

    Puica, I; Lang, W; Durrell, J H

    2012-09-01

    We report on electrical transport measurements at high current densities on optimally doped YBa2Cu3O7-δ thin films grown on vicinal SrTiO3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current-voltage characteristics to high supercritical current densities (up to 24 MA cm(-2)) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current-voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects.

  11. Magnetic neurosurgery.

    PubMed

    Howard, M A; Grady, M S; Ritter, R C; Gillies, G T; Broaddus, W C; Dacey, R G

    1996-01-01

    Because of the complex shape of many brain structures, the ideal brain probe would be highly flexible and give the neurosurgeon the ability to independently and precisely control movement of the probe tip. A magnetic surgery system has been developed that implements this concept. Flexible brain probes with small permanent magnetic tips are placed on the brain surface through a small burr hole and then magnetically manipulated within the brain. Drive forces are produced by an array of six superconducting magnets suspended within a cryostatic helmet. They produce a maximum force of 3 times the threshold needed to move the probe through the parenchymal tissues at its normal speed of 1 mm/s. Computer-controlled magnetic impulses precisely direct the probe movement in any direction desired with movement accuracy of 0.47 mm in phantom gels. Probe position is monitored 3 times per second with orthogonally oriented microchannel plate X-ray systems, X-ray dose from a 3-hour simulated procedure is comparable to that of a chest X-ray. In vivo and in vitro feasibility studies have been carried out in dog and pig brains. Preclinical trials are planned for clinical applications including implantation of flexible brachytherapy threads.

  12. Modeling magnetosensitive ion channels in the viscoelastic environment of living cells

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor

    2015-10-01

    We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats, and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor, which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and can open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model channel can operate in the magnetic field of Earth for a small number (five to seven) of single-domain magnetosomes constituting the sensor rod, each of which has a typical size found in magnetotactic bacteria and other organisms or even just one sufficiently large nanoparticle of a characteristic size also found in nature. It is shown that, due to the viscoelasticity of the medium, the bistable gating dynamics generally exhibits power law and stretched exponential distributions of the residence times of the channels in their open and closed states. This provides a generic physical mechanism for the explanation of the origin of such anomalous kinetics for other ionic channels whose sensors move in a viscoelastic environment provided by either cytosol or biological membrane, in a quite general context, beyond the fascinating hypothesis of magnetosensitive ionic channels we explore.

  13. Modeling magnetosensitive ion channels in the viscoelastic environment of living cells.

    PubMed

    Goychuk, Igor

    2015-10-01

    We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats, and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor, which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and can open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model channel can operate in the magnetic field of Earth for a small number (five to seven) of single-domain magnetosomes constituting the sensor rod, each of which has a typical size found in magnetotactic bacteria and other organisms or even just one sufficiently large nanoparticle of a characteristic size also found in nature. It is shown that, due to the viscoelasticity of the medium, the bistable gating dynamics generally exhibits power law and stretched exponential distributions of the residence times of the channels in their open and closed states. This provides a generic physical mechanism for the explanation of the origin of such anomalous kinetics for other ionic channels whose sensors move in a viscoelastic environment provided by either cytosol or biological membrane, in a quite general context, beyond the fascinating hypothesis of magnetosensitive ionic channels we explore. PMID:26565276

  14. Generic theory for channel sinuosity

    PubMed Central

    Lazarus, Eli D.; Constantine, José Antonio

    2013-01-01

    Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as “inherited” from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support. PMID:23610390

  15. River meanders and channel size

    USGS Publications Warehouse

    Williams, G.P.

    1986-01-01

    This study uses an enlarged data set to (1) compare measured meander geometry to that predicted by the Langbein and Leopold (1966) theory, (2) examine the frequency distribution of the ratio radius of curvature/channel width, and (3) derive 40 empirical equations (31 of which are original) involving meander and channel size features. The data set, part of which comes from publications by other authors, consists of 194 sites from a large variety of physiographic environments in various countries. The Langbein-Leopold sine-generated-curve theory for predicting radius of curvature agrees very well with the field data (78 sites). The ratio radius of curvature/channel width has a modal value in the range of 2 to 3, in accordance with earlier work; about one third of the 79 values is less than 2.0. The 40 empirical relations, most of which include only two variables, involve channel cross-section dimensions (bankfull area, width, and mean depth) and meander features (wavelength, bend length, radius of curvature, and belt width). These relations have very high correlation coefficients, most being in the range of 0.95-0.99. Although channel width traditionally has served as a scale indicator, bankfull cross-sectional area and mean depth also can be used for this purpose. ?? 1986.

  16. TRP channels in the skin

    PubMed Central

    Tóth, Balázs I; Oláh, Attila; Szöllősi, Attila Gábor; Bíró, Tamás

    2014-01-01

    Emerging evidence suggests that transient receptor potential (TRP) ion channels not only act as ‘polymodal cellular sensors’ on sensory neurons but are also functionally expressed by a multitude of non-neuronal cell types. This is especially true in the skin, one of the largest organs of the body, where they appear to be critically involved in regulating various cutaneous functions both under physiological and pathophysiological conditions. In this review, we focus on introducing the roles of several cutaneous TRP channels in the regulation of the skin barrier, skin cell proliferation and differentiation, and immune functions. Moreover, we also describe the putative involvement of several TRP channels in the development of certain skin diseases and identify future TRP channel-targeted therapeutic opportunities. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24372189

  17. Gramicidin channels are internally gated.

    PubMed

    Jones, Tyson L; Fu, Riqiang; Nielson, Frederick; Cross, Timothy A; Busath, David D

    2010-04-21

    Gramicidin channels are archetypal molecular subjects for solid-state NMR studies and investigations of single-channel or cation conductance. Until now, the transitions between on and off conductance states have been thought, based on multichannel studies, to represent monomer <--> dimer reactions. Here we use a single-molecule deposition method (vesicle fusion to a planar bilayer) to show that gramicidin dimer channels do not normally dissociate when conductance terminates. Furthermore, the observation of two 13C peaks in solid-state NMR indicates very stable dichotomous conformations for both the first and second peptide bonds in the monomers, and a two-dimensional chemical exchange spectrum with a 12-s mixing time demonstrates that the Val1 carbonyl conformations exchange slowly, with lifetimes of several seconds. It is proposed that gramicidin channels are gated by small conformational changes in the channel near the permeation pathway. These studies demonstrate how regulation of conformations governing closed <--> open transitions may be achieved and studied at the molecular level.

  18. A Case Study of the Density Structure over a Vertical Magnetic Field Region in the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Dieval, C.; Pisa, D.; Lundin, R. N. A.

    2014-12-01

    One of the discoveries made by Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express spacecraft is the existence of magnetically controlled structures in the ionosphere of Mars, which result in irregularities in the ionospheric electron density contours. These irregularities lead in turn to oblique echoes, which show up as hyperbola-shaped features on the plots of echo intensity measured by MARSIS as a function of altitude and universal time. The study of a hyperbola-shaped feature observed in a pass over an isolated region of strong crustal magnetic field shows that this kind of feature can be associated with a plasma cavity in the upper ionosphere and a corresponding density enhancement in the lower levels of the ionosphere. At the location where the hyperbola-shaped echo is observed, the electron and ion fluxes measured by ASPERA-3 at the location of the spacescraft are depleted and the local electron density from MARSIS shows a small decrease, as well. However, the peak ionospheric density obtained by MARSIS remote sounding shows a clear increase as Mars Express passes over the same region. We conclude that through the open magnetic field lines, the electrons are accelerated downward and ions are accelerated upward in a manner similar to the field-line driven auroral acceleration at Earth. This heating due to precipitating electrons causes a bulge at the altitude of the main ionosphere, which in turn leads to a hyperbola shaped echo, and loss of ionospheric plasma at high altitudes.

  19. A Tunable Magnetic Domain Wall Conduit Regulating Nanoparticle Diffusion.

    PubMed

    Tierno, Pietro; Johansen, Tom H; Sancho, José M

    2016-08-10

    We demonstrate a general and robust method to confine on a plane strongly diffusing nanoparticles in water by using size tunable magnetic channels. These virtual conduits are realized with pairs of movable Bloch walls located within an epitaxially grown ferrite garnet film. We show that once inside the magnetic conduit the particles experience an effective local parabolic potential in the transverse direction, while freely diffusing along the conduit. The stiffness of the magnetic potential is determined as a function of field amplitude that varies the width of the magnetic channel. Precise control of the degree of confinement is demonstrated by tuning the applied field. The magnetic conduit is then used to realize single files of nonpassing particles and to induce periodic condensation of an ensemble of particles into parallel stripes in a completely controllable and reversible manner.

  20. A Tunable Magnetic Domain Wall Conduit Regulating Nanoparticle Diffusion.

    PubMed

    Tierno, Pietro; Johansen, Tom H; Sancho, José M

    2016-08-10

    We demonstrate a general and robust method to confine on a plane strongly diffusing nanoparticles in water by using size tunable magnetic channels. These virtual conduits are realized with pairs of movable Bloch walls located within an epitaxially grown ferrite garnet film. We show that once inside the magnetic conduit the particles experience an effective local parabolic potential in the transverse direction, while freely diffusing along the conduit. The stiffness of the magnetic potential is determined as a function of field amplitude that varies the width of the magnetic channel. Precise control of the degree of confinement is demonstrated by tuning the applied field. The magnetic conduit is then used to realize single files of nonpassing particles and to induce periodic condensation of an ensemble of particles into parallel stripes in a completely controllable and reversible manner. PMID:27434042

  1. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements

    PubMed Central

    Khashan, S. A.; Alazzam, A.; Furlani, E. P.

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  2. Computational analysis of enhanced magnetic bioseparation in microfluidic systems with flow-invasive magnetic elements.

    PubMed

    Khashan, S A; Alazzam, A; Furlani, E P

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  3. Magnetic light

    PubMed Central

    Kuznetsov, Arseniy I.; Miroshnichenko, Andrey E.; Fu, Yuan Hsing; Zhang, JingBo; Luk’yanchuk, Boris

    2012-01-01

    Spherical silicon nanoparticles with sizes of a few hundreds of nanometers represent a unique optical system. According to theoretical predictions based on Mie theory they can exhibit strong magnetic resonances in the visible spectral range. The basic mechanism of excitation of such modes inside the nanoparticles is very similar to that of split-ring resonators, but with one important difference that silicon nanoparticles have much smaller losses and are able to shift the magnetic resonance wavelength down to visible frequencies. We experimentally demonstrate for the first time that these nanoparticles have strong magnetic dipole resonance, which can be continuously tuned throughout the whole visible spectrum varying particle size and visually observed by means of dark-field optical microscopy. These optical systems open up new perspectives for fabrication of low-loss optical metamaterials and nanophotonic devices. PMID:22768382

  4. Researches toward potassium channels on tumor progressions.

    PubMed

    Shen, Zheng; Yang, Qian; You, Qidong

    2009-01-01

    As trans-membrane proteins located in cytoplasm and organelle membrane, potassium (K(+)) channels are generally divided into four super-families: voltage-gated K(+) channels (K(v)), Ca(2+)-activated K(+) channels (K(Ca)), inwardly rectifying K(+) channels (K(ir)) and two-pore domain K(+) channels (K(2P)). Since dysfunctions of K(+) channels would induce many diseases, various studies toward their functions in physiologic and pathologic process have been extensively launched. This review focuses on the recent advances of K(+) channels in tumor progression, including the brief introduction of K(+) channels, the role of K(+) channels in tumor cells, the possible mechanism of action at cellular level, and the possible application of K(+) channel modulators in cancer chemotherapy.

  5. Insect sodium channels and insecticide resistance

    PubMed Central

    2011-01-01

    Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent years, thanks to successful functional expression of insect sodium channels in Xenopus oocytes and intensive efforts to elucidate the molecular basis of insect resistance to insecticides that target sodium channels. In this review, I discuss recent literature on insect sodium channels with emphases on the prominent role of alternative splicing and RNA editing in the generation of functionally diverse sodium channels in insects and the current understanding of the interactions between insect sodium channels and insecticides. PMID:17206406

  6. A Single-band Cold Mass Support System for the MICE Superconducting Coupling Magnet

    SciTech Connect

    Wu, Hong; Wang, Li; Liu, X.K.; Liu, C.S.; Li, L.K.; Xu, Feng Yu; Jia, Lin X.; Green, Michael A.

    2008-04-02

    The cooling channel of the Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils, which are magnetically hooked together and contained in seven modules. The operations of a pair of MICE superconducting coupling magnets are affected directly by the other solenoid coils in the MICE channel. In order to meet the stringent requirement for the magnet center and axis azimuthal angle at 4.2 K, a self-centered tension-band cold mass support system with intermediate thermal interruption was applied for the MICE superconducting coupling magnet. The physical center of the magnet does not change as it is cooled down from 300 K to 4.2 K using this support system. This paper analyzed and calculated force loads on the coupling magnet under various operation modes of the MICE cooling channel. The performance parameters of a single-band cold mass support system were calculated also.

  7. Progress on the Focus Coil for the MICE Channel

    SciTech Connect

    Yang, S.Q.; Lau, W.; Senanayake, R.S.; Witte, H.; Green, M.A.; Drumm, P.; Ivanyushenkov, Y.

    2005-05-13

    This report describes the progress on the magnet part of the absorber focus coil module for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in Feasibility 2 study of a neutrino factory [1]. The MICE absorber focus coil module consists of a pair of superconducting solenoids, mounted on an aluminum mandrel. The coil package is in its own vacuum vessel located around an absorber. The absorber is within a separate vacuum vessel that is within the warm bore of the focusing magnet. The superconducting focus coils may either be run in the solenoid mode (with the two coils at the same polarity) or in the gradient mode (with the coils at opposite polarity, causing the field direction to flip within the magnet bore). The coils will be cooled using a pair of small 4 K coolers. This report discusses the progress on the MICE focusing magnets, the magnet current supply system, and the quench protection system.

  8. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  9. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  10. Continuous equal channel angular pressing

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Raab, Georgy J.

    2006-12-26

    An apparatus that continuously processes a metal workpiece without substantially altering its cross section includes a wheel member having an endless circumferential groove, and a stationary constraint die that surrounds the wheel member, covers most of the length of the groove, and forms a passageway with the groove. The passageway has a rectangular shaped cross section. An abutment member projects from the die into the groove and blocks one end of the passageway. The wheel member rotates relative to the die in the direction toward the abutment member. An output channel in the die adjacent the abutment member has substantially the same cross section as the passageway. A metal workpiece is fed through an input channel into the passageway and carried in the groove by frictional drag in the direction towards the abutment member, and is extruded through the output channel without any substantial change in cross section.

  11. Channeled spectropolarimetry using iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.

    2016-05-01

    Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.

  12. Sodium Channel Inhibiting Marine Toxins

    NASA Astrophysics Data System (ADS)

    Llewellyn, Lyndon E.

    Saxitoxin (STX), tetrodotoxin (TTX) and their many chemical relatives are part of our daily lives. From killing people who eat seafood containing these toxins, to being valuable research tools unveiling the invisible structures of their pharmacological receptor, their global impact is beyond measure. The pharmacological receptor for these toxins is the voltage-gated sodium channel which transports Na ions between the exterior to the interior of cells. The two structurally divergent families of STX and TTX analogues bind at the same location on these Na channels to stop the flow of ions. This can affect nerves, muscles and biological senses of most animals. It is through these and other toxins that we have developed much of our fundamental understanding of the Na channel and its part in generating action potentials in excitable cells.

  13. Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles.

    PubMed

    Kim, Dorothy M; Dikiy, Igor; Upadhyay, Vikrant; Posson, David J; Eliezer, David; Nimigean, Crina M

    2016-08-01

    The process of ion channel gating-opening and closing-involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating. PMID:27432996

  14. High-K MISFET channel mobility from magnetoresistance

    NASA Astrophysics Data System (ADS)

    Bate, R. T.

    2005-03-01

    Carrier trapping in the gate insulator or at the interface with the silicon can depress the effective channel mobility of high-K MISFETs below the drift mobility. This reduction in effective mobility can be distinguished from true mobility reduction due to carrier scattering by using the Hall effect to measure the channel carrier density [1]. However, channel Hall measurements have traditionally required nonstandard multidrain devices, which must be included in the test chip design. We propose measuring the reduction in drain current of conventional transistors by a magnetic field to determine the Hall coefficient. This method, which requires no multidrain devices, could become a routine diagnostic procedure. It is based on a theorem concerning the magnetoresistance of a rectangular plate with perfectly conducting end contacts [2], which has apparently not been tested experimentally, at least on MOSFET's. The validity of the method can be determined by comparison with channel carrier density determined in other ways, including split capacitance on MOSFETS, conventional Hall effect, and Corbino magnetoresistance on MISFETs. Progress toward these goals is described. [1] N.S Saks and A.K Agarwal, Appl. Phys. Letters 77 (20), 3281 -- 3283 (2000); R. T. Bate and W. P. Kirk, Bull. Am. Phys, Soc. March, 2004, Abstract S6.011 [2] H. H. Jenson and H. Smith, J. Phys. C: Solid State, 5, 2867-2880, (1972)

  15. Progress on muon parametric-resonance ionization cooling channel development

    SciTech Connect

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, K.B. Beard, R.P. Johnson, B. Erdelyi, J.A. Maloney

    2012-07-01

    Parametric-resonance Ionization Cooling (PIC) is intended as the final 6D cooling stage of a high-luminosity muon collider. To implement PIC, a continuous-field twin-helix magnetic channel was developed. A 6D cooling with stochastic effects off is demonstrated in a GEANT4/G4beamline model of a system where wedge-shaped Be absorbers are placed at the appropriate dispersion points in the twin-helix channel and are followed by short rf cavities. To proceed to cooling simulations with stochastics on, compensation of the beam aberrations from one absorber to another is required. Initial results on aberration compensation using a set of various-order continuous multipole fields are presented. As another avenue to mitigate the aberration effect, we optimize the cooling channel's period length. We observe a parasitic parametric resonance naturally occurring in the channel's horizontal plane due to the periodic beam energy modulation caused by the absorbers and rf. We discuss options for compensating this resonance and/or properly combining it with the induced half-integer parametric resonance needed for PIC.

  16. Modeling and Navigation of Artificial Helical Swimmers in Channels

    NASA Astrophysics Data System (ADS)

    Temel, Fatma Zeynep; Acemoglu, Alperen; Yesilyurt, Serhat

    2013-11-01

    Recent developments in micro/nanotechnology and manufacturing techniques make use of micro robots for biomedical applications realizable. Controlled in-channel navigation of swimming micro robots is necessary for medical applications performed in conduits and vessels in living bodies. Successful design and control of micro swimmers can be achieved with full understanding of hydrodynamic behavior inside channels and their interaction with channel walls and resultant flows. We performed experimental and modeling studies on untethered mm-sized magnetic helical swimmers inside glycerol-filled rectangular channels. In experiments it is observed that rotation of swimmers in the direction of helical axis leads to forward motion due to fluidic propulsion and lateral motion due to traction forces near the wall. Effects of surface roughness, swimming direction and rotation frequency on the swimmers' speed are analyzed. The flow induced by the tail motion is visualized using micro-particle image velocimetry and analyzed at different radial positions using Computational Fluid Dynamics models. Results indicate that at low frequencies traction forces are effective, however as frequency increases fluid forces become dominant and fluid flow is affecting the swimming motion of helical swimmers. We acknowledge the support from TUBITAK (Techonological & Research Council of Turkey) under the grant no: 111M376.

  17. High field - low energy muon ionization cooling channel

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham; Palmer, Robert B.; Neuffer, David

    2015-09-01

    Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈300 μ m -rad in transverse and ≈1 - 1.5 mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈50 - 25 μ m -rad with an upper limit on the longitudinal emittance of ≈76 mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of low energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25-30 T and low momentum muon beam starting at 135 MeV /c and gradually decreasing. The cooling channel design presented here is the first to reach ≈50 micron scale emittance beam. We present the channel's optimized design parameters including the focusing solenoid fields, absorber parameters and the transverse and longitudinal matching.

  18. Voltage-Gated Sodium Channels

    NASA Astrophysics Data System (ADS)

    Hanck, Dorothy A.; Fozzard, Harry A.

    Voltage-gated sodium channels subserve regenerative excitation throughout the nervous system, as well as in skeletal and cardiac muscle. This excitation results from a voltage-dependent mechanism that increases regeneratively and selectively the sodium conductance of the channel e-fold for a 4-7 mV depolarization of the membrane with time constants in the range of tens of microseconds. Entry of Na+ into the cell without a companion anion depolarizes the cell. This depolarization, called the action potential, is propagated at rates of 1-20 meters/sec. In nerve it subserves rapid transmission of information and, in muscle cells, coordinates the trigger for contraction. Sodium-dependent action potentials depolarize the membrane to inside positive values of about 30-40 mV (approaching the electrochemical potential for the transmembrane sodium gradient). Repolarization to the resting potential (usually between -60 and -90 mV) occurs because of inactivation (closure) of sodium channels, which is assisted in different tissues by variable amounts of activation of voltage-gated potassium channels. This sequence results in all-or-nothing action potentials in nerve and fast skeletal muscle of 1-2 ms duration, and in heart muscle of 100-300 ms duration. Recovery of regenerative excitation, i.e., recovery of the ability of sodium channels to open, occurs after restoration of the resting potential with time constants of a few to several hundreds of milliseconds, depending on the channel isoform, and this rate controls the minimum interval for repetitive action potentials (refractory period).

  19. Noisy quantum phase communication channels

    NASA Astrophysics Data System (ADS)

    Teklu, Berihu; Trapani, Jacopo; Olivares, Stefano; Paris, Matteo G. A.

    2015-06-01

    We address quantum phase channels, i.e communication schemes where information is encoded in the phase-shift imposed to a given signal, and analyze their performances in the presence of phase diffusion. We evaluate mutual information for coherent and phase-coherent signals, and for both ideal and realistic phase receivers. We show that coherent signals offer better performances than phase-coherent ones, and that realistic phase channels are effective ones in the relevant regime of low energy and large alphabets.

  20. Channel incision and water quality

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p < 0.02). Physical aquatic habitat and fish populations in the nonincised urbanizing stream were

  1. Eight-Channel Continuous Timer

    NASA Technical Reports Server (NTRS)

    Cole, Steven

    2004-01-01

    A custom laboratory electronic timer circuit measures the durations of successive cycles of nominally highly stable input clock signals in as many as eight channels, for the purpose of statistically quantifying the small instabilities of these signals. The measurement data generated by this timer are sent to a personal computer running software that integrates the measurements to form a phase residual for each channel and uses the phase residuals to compute Allan variances for each channel. (The Allan variance is a standard statistical measure of instability of a clock signal.) Like other laboratory clock-cycle-measuring circuits, this timer utilizes an externally generated reference clock signal having a known frequency (100 MHz) much higher than the frequencies of the input clock signals (between 100 and 120 Hz). It counts the number of reference-clock cycles that occur between successive rising edges of each input clock signal of interest, thereby affording a measurement of the input clock-signal period to within the duration (10 ns) of one reference clock cycle. Unlike typical prior laboratory clock-cycle-measuring circuits, this timer does not skip some cycles of the input clock signals. The non-cycle-skipping feature is an important advantage because in applications that involve integration of measurements over long times for characterizing nominally highly stable clock signals, skipping cycles can degrade accuracy. The timer includes a field-programmable gate array that functions as a 20-bit counter running at the reference clock rate of 100 MHz. The timer also includes eight 20-bit latching circuits - one for each channel - at the output terminals of the counter. Each transition of an input signal from low to high causes the corresponding latching circuit to latch the count at that instant. Each such transition also sets a status flip-flop circuit to indicate the presence of the latched count. A microcontroller reads the values of all eight status flipflops

  2. Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects.

    PubMed

    Mönch, Ingolf; Makarov, Denys; Koseva, Radinka; Baraban, Larysa; Karnaushenko, Daniil; Kaiser, Claudia; Arndt, Karl-Friedrich; Schmidt, Oliver G

    2011-09-27

    Detection and analysis of magnetic nanoobjects is a crucial task in modern diagnostic and therapeutic techniques applied to medicine and biology. Accomplishment of this task calls for the development and implementation of electronic elements directly in fluidic channels, which still remains an open and nontrivial issue. Here, we present a novel concept based on rolled-up nanotechnology for fabrication of multifunctional devices, which can be straightforwardly integrated into existing fluidic architectures. We apply strain engineering to roll-up a functional nanomembrane consisting of a magnetic sensor element based on [Py/Cu](30) multilayers, revealing giant magnetoresistance (GMR). The comparison of the sensor's characteristics before and after the roll-up process is found to be similar, allowing for a reliable and predictable method to fabricate high-quality ultracompact GMR devices. The performance of the rolled-up magnetic sensor was optimized to achieve high sensitivity to weak magnetic fields. We demonstrate that the rolled-up tube itself can be efficiently used as a fluidic channel, while the integrated magnetic sensor provides an important functionality to detect and respond to a magnetic field. The performance of the rolled-up magnetic sensor for the in-flow detection of ferromagnetic CrO(2) nanoparticles embedded in a biocompatible polymeric hydrogel shell is highlighted.

  3. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  4. Electrically tunable localized tunneling channels in silicene nanoribbons

    SciTech Connect

    Saari, Timo; Huang, Cheng-Yi; Tsai, Wei-Feng; Nieminen, Jouko; Lin, Hsin; Bansil, Arun

    2014-04-28

    The topological phase of a silicene nanoribbon holding edge states in the bulk energy gap can be easily broken by an external electric field. Here, we show through low-energy Green's function calculations that it is possible to localize conducting channels anywhere in a silicene nanoribbon by applying an inhomogeneous electric field. The spin degeneracy of these channels can also be broken in the same manner, allowing conduction of spin as well as charge. On this basis, we suggest design of a ternary logic device, which could be used in low-power circuits. Our study demonstrates that silicene and related group IV elements with honeycomb structure could provide a platform for efficient manipulation of spin currents via external electric fields, without the need to switch magnetic fields for spintronics applications.

  5. Feasibility Studies of Alpha-Channeling in Mirror Machines

    SciTech Connect

    A. I. Zhmoginov and N. J. Fisch

    2010-03-19

    The linear magnetic trap is an attractive concept both for fusion reactors and for other plasma applications due to its relative engineering simplicity and high-beta operation. Applying the α- channeling technique to linear traps, such as mirror machines, can benefit this concept by efficiently redirecting α particle energy to fuel ion heating or by otherwise sustaining plasma confinement, thus increasing the effective fusion reactivity. To identify waves suitable for α-channeling a rough optimization of the energy extraction rate with respect to the wave parameters is performed. After the optimal regime is identified, a systematic search for modes with similar parameters in mirror plasmas is performed, assuming quasi-longitudinal or quasi-transverse wave propagation. Several modes suitable for α particle energy extraction are identified for both reactor designs and for proof- of-principle experiments.

  6. Superconducting Magnets for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Feenan, Peter

    2000-03-01

    MRI is now a well established diagnostic technique in medicine. The richness of information provided by magnetic resonance gives rise to a variety of techniques which in turn leads to a variety of magnet designs. Magnet designers must consider suitable superconduting materials for the magnet, but need also to consider the overall fomat of the magnet to maximise patient comfort, access for clinicians and convenience of use - in some examples magnets are destined for use within the operating theatre and special considerations are required for this. Magnet types include; (1) low-field general purpose imagers, (2) extremity imaging, (3) open magnets with exellent all-round access often employing iron or permanent magnetic materials, (4) high-field magnets, and (5) very high-field (7 Tesla and more) magnets for spectroscopy and functional imaging research. Examples of these magnet varieties will be shown and some of the design challenges discussed.

  7. Magnetic tape

    NASA Technical Reports Server (NTRS)

    Robinson, Harriss

    1992-01-01

    The move to visualization and image processing in data systems is increasing the demand for larger and faster mass storage systems. The technology of choice is magnetic tape. This paper briefly reviews the technology past, present, and projected. A case is made for standards and the value of the standards to users.

  8. Magnetic Liquids

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Ferrofluidics Corporation's recent innovation is a spindle for rotating computer discs that supports the disc's rotating shaft on a film of magnetic fluid instead of conventional ball bearings. According to its developers, the spindle offers greatly increased rotational stability, meaning substantially reduced vibration and mechanical noise, and non- repeatable runout. This allows disc drives to store two to 10 times more information.

  9. The electric field change caused by a ground flash with multiple channels

    NASA Technical Reports Server (NTRS)

    Nakano, Minoru; Takagi, Nobuyuki; Arima, Izumi; Kawasaki, Zen-Ichiro; Takeuti, Tosio

    1991-01-01

    The electric field and the magnetic flux changes caused by a ground flash with multiple channels are measured near the electric power transmission lines during winter thunderstorms. Triggered lightning strokes and the following associated strokes to the transmission line towers produce characteristic waveforms of the field changes. A few examples of the waveforms and a brief discussion are given.

  10. Interacting Tilt and Kink Instabilities in Repelling Current Channels

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Xia, C.

    2014-11-01

    We present a numerical study in resistive magnetohydrodynamics (MHD) where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or flux ropes, which on Alfvénic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extension to two-and-a-half-dimensional (2.5D) and full three-dimensional (3D) scenarios. As long as the third dimension can be ignored, pure tilt evolutions result that are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular current sheets in the far nonlinear saturation regime. In full 3D runs, both current channels can be liable to additional ideal kink deformations. We discuss the effects of having both tilt and kink instabilities acting simultaneously in the violent, reconnection-dominated evolution. In 3D, both the tilt and the kink instabilities can be stabilized by tension forces. As a concrete space plasma application, we argue that interacting tilt-kink instabilities in repelling current channels provide a novel route to initiate solar coronal mass ejections, distinctly different from the currently favored pure kink or torus instability routes.

  11. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect

    Lites, B. W.; Kubo, M.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Okamoto, T. J.; Otsuji, K.

    2010-07-20

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  12. From four- to two-channel Kondo effect in junctions of XY spin chains

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Sodano, Pasquale; Tagliacozzo, Arturo; Trombettoni, Andrea

    2016-08-01

    We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a "critical" line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair) channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.

  13. Metallic, magnetic and molecular nanocontacts

    NASA Astrophysics Data System (ADS)

    Requist, Ryan; Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Modesti, Silvio; Tosatti, Erio

    2016-06-01

    Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained.

  14. Metallic, magnetic and molecular nanocontacts.

    PubMed

    Requist, Ryan; Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Modesti, Silvio; Tosatti, Erio

    2016-06-01

    Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained. PMID:27272139

  15. Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance

    SciTech Connect

    Tojo, Satoshi; Taguchi, Yoshihisa; Masuyama, Yuta; Hayashi, Taro; Hirano, Takuya; Saito, Hiroki

    2010-09-15

    We investigate controlled phase separation of a binary Bose-Einstein condensate in the proximity of a mixed-spin-channel Feshbach resonance in the |F=1,m{sub F}=+1> and |F=2,m{sub F}=-1> states of {sup 87}Rb at a magnetic field of 9.10 G. Phase separation occurs on the lower-magnetic-field side of the Feshbach resonance while the two components overlap on the higher-magnetic-field side. The Feshbach resonance curve of the scattering length is obtained from the shape of the atomic cloud by comparison with the numerical analysis of coupled Gross-Pitaevskii equations.

  16. Magnetohydrodynamic Peristaltic Flow of a Pseudoplastic Fluid in a Curved Channel

    NASA Astrophysics Data System (ADS)

    Noreen, Saima; Hayat, Tasawar; Alsaedi, Ahmed

    2013-05-01

    A mathematical model is developed to examine the effects of an induced magnetic field on the peristaltic flow in a curved channel. The non-Newtonian pseudoplastic fluid model is used to depict the combined elastic and viscous properties. The analysis has been carried out in the wave frame of reference, long wavelength and low Reynolds scheme are implemented. A series solution is obtained through perturbation analysis. Results for stream function, pressure gradient, magnetic force function, induced magnetic field, and current density are constructed. The effects of significant parameters on the flow quantities are sketched and discussed.

  17. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOEpatents

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1990-12-04

    An apparatus is disclosed for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 9 figs.

  18. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOEpatents

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1988-06-17

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent to the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 8 figs.

  19. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOEpatents

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.; Battles, James E.; Hull, John R.; Rote, Donald M.

    1990-01-01

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel.

  20. Drop formation using ferrofluids driven magnetically in a step emulsification device.

    PubMed

    Kahkeshani, Soroush; Di Carlo, Dino

    2016-07-01

    We present a microfluidic droplet generation technique, where instead of pumps, only magnetic field gradient strength adjusted by the position of an external magnet is used for controllable emulsification of ferrofluid containing solutions. Uniform droplet generation at frequencies O(1-100) Hz per channel for long periods of time (10s of minutes) were easily achieved. In this method, adding magnetic nanoparticles (10 nm) into aqueous solutions imparts a magnetic body force on the fluid in the presence of an external magnetic field gradient. Consequently, the aqueous fluid moves toward the position of an external magnet and towards a junction with a larger width and height oil filled reservoir. Emulsification occurs at the junction due to a rapid change in surface tension forces due to the abrupt change in channel height. Droplet generation rate could be controlled by adjusting surface tension/viscosity, number of channels, and strength of the magnetic force. The geometry of the channel, rather than flow rates or magnetic force, plays the dominant role in defining the droplet size. In addition, reagents mixed with ferrofluids could also be introduced from two or more separate inlets and mixed prior to emulsification as they move toward the step driven by magnetic force. Mixing reagents on chip and forming droplets all within a small foot-print defined by movement of an external magnet is a unique feature of this method suitable for point-of-care diagnostics and other bioengineering applications. PMID:27250530

  1. Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.

    2008-01-01

    While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.

  2. Magnetic and Cryogenic Design of the MICE Coupling Solenoid Magnet System

    SciTech Connect

    Wang, Li; Xu, FengYu; Wu, Hong; Liu, XiaoKum; Li, LanKai; Guo, XingLong; Chen, AnBin; Green, Michael A; Li, D.R.; Virostek, Steve; Pan, H.

    2008-08-02

    The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory in the UK. The coupling magnet is a superconducting solenoid mounted around four 201MHz RF cavities, which produces magnetic field up to 2.6 T on the magnet centerline to keep muons within the iris of RF cavities windows. The coupling coil with inner radius of 750mm, length of 285mm and thickness of 102.5mm will be cooled by a pair of 1.5 W at 4.2 K small coolers. This paper will introduce the updated engineering design of the coupling magnet made by ICST in China. The detailed analyses on magnetic fields, stresses induced during the processes of winding, cool down and charging, and cold mass support assembly are presented as well.

  3. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  4. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age.

    PubMed

    Oiki, Shigetoshi

    2015-06-15

    The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane.

  5. Ion channels in analgesia research.

    PubMed

    Rosenbaum, Tamara; Simon, Sidney A; Islas, Leon D

    2010-01-01

    Several recent techniques have allowed us to pinpoint the receptors responsible for the detection of nociceptive stimuli. Among these receptors, ion channels play a fundamental role in the recognition and transduction of stimuli that can cause pain. During the last decade, compelling evidence has been gathered on the role of the TRPV1 channel in inflammatory and neuropathic states. Activation of TRPV1 in nociceptive neurons results in the release of neuropeptides and transmitters, leading to the generation of action potentials that will be sent to higher CNS areas, where they will often be perceived as pain. Its activation will also evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal, or chemical stimuli. For these reasons, and because its continuous activation causes analgesia, TRPV1 is now considered a viable drug target for clinical use in the management of pain. Using the TRPV1 channel as an example, here we describe some basic biophysical approaches used to study the properties of ion channels involved in pain and in analgesia.

  6. Store-Operated Calcium Channels

    PubMed Central

    Lewis, Richard S.

    2015-01-01

    Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca2+ from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca2+ sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca2+ from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca2+ depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease. PMID:26400989

  7. Vascular potassium channels in NVC.

    PubMed

    Yamada, K

    2016-01-01

    It has long been proposed that the external potassium ion ([K(+)]0) works as a potent vasodilator in the dynamic regulation of local cerebral blood flow. Astrocytes may play a central role for producing K(+) outflow possibly through calcium-activated potassium channels on the end feet, responding to a rise in the intracellular Ca(2+) concentration, which might well reflect local neuronal activity. A mild elevation of [K(+)]0 in the end feet/vascular smooth muscle space could activate Na(+)/K(+)-ATPase concomitant with inwardly rectifying potassium (Kir) channels in vascular smooth muscle cells, leading to a hyperpolarization of vascular smooth muscle and relaxation of smooth muscle actin-positive vessels. Also proposed notion is endothelial calcium-activated potassium channels and/or inwardly rectifying potassium channel-mediated hyperpolarization of vascular smooth muscle. A larger elevation of [K(+)]0, which may occur pathophysiologically in such as spreading depression or stroke, can trigger a depolarization of vascular smooth muscle cells and vasoconstriction instead. PMID:27130411

  8. Filament Channels: Isolated Laboratories of Plasma Heating in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Panasenco, O.; Velli, M.

    2015-12-01

    Solar filament channels are complex systems comprising photospheric, chromospheric and coronal components. These components include magnetic neutral lines, supergranule cells, fibrils (spicules), filaments (prominences when observed on the limb), coronal cells, filament cavities and their overlying coronal arcades. Filaments are very highly structured and extend in height from the photosphere to the corona. Filament cores have chromospheric temperatures - 10,000 K (even at coronal heights ~ 100 Mm), surrounded by hotter plasma with temperature up to ~50,000 K. The whole filament is isolated from the rest of the solar corona by an envelope - the filament channel cavity - with temperatures of about 2,000,000 K. The filament channel cavity is even hotter than the solar corona outside the filament channel arcade. The compactness and big temperature variations make filament channels unique ready-to-go laboratories of coronal plasma heating and thermodynamics. In this work we discuss possible sources and mechanisms of heating in the filament channel environment. In particular, we address the mechanisms of magnetic canceling and current sheet dissipation.

  9. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  10. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  11. Magnetic Tethering of Microswimmers in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Chawan, Aschvin; Jana, Saikat; Ghosh, Suvojit; Jung, Sunghwan; Puri, Ishwar

    2013-03-01

    Exercising control over animal locomotion is well known in the macro world. In the micro-scale world, such methods require more sophistication. We magnetize Paramecium multimicronucleatum by internalization of magnetite nanoparticles coated with bovine serum albumin (BSA). This enables control of their motion in a microfluidic device using a magnetic field. Miniature permanent magnets embedded within the device are used to tether the magnetized organisms to specific locations along a micro-channel. Ciliary beatings of the microswimmer generate shear flows nearby. We apply this setup to enhance cross-stream mixing in a microfluidic device by supplementing molecular diffusion. The device is similar to an active micromixer but requires no external power sources or artificial actuators. We optically characterize the effectiveness of the mechanism in a variety of flow situations.

  12. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as Λ* (1520) and Ξ0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ρ0(770) mesons may occur if strong decay channel ρ0 → π+π- is significantly suppressed. CP - violating π+π- decays of pseudoscalar ηc and η(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ηc,b and χc,b(nP) with Ψ(nS), ϒ(nS) mesons in the external field are considered.

  13. Higgs in bosonic channels (CMS)

    NASA Astrophysics Data System (ADS)

    Gori, Valentina

    2015-05-01

    The main Higgs boson decays into bosonic channels will be considered, presenting and discussing results from the latest reprocessing of data collected by the CMS experiment at the LHC, using the full dataset recorded at centre-of-mass energies of 7 and 8 TeV. For this purpose, results from the final Run-I papers for the H → ZZ → 4ℓ, H → γγ and H → WW analyses are presented, focusing on the Higgs boson properties, like the mass, the signal strenght, the couplings to fermions and vector bosons, the spin and parity properties. Furthermore, the Higgs boson width measurement exploiting the on-shell versus the off-shell cross section (in the H → ZZ → 4ℓ and H → ZZ → 2ℓ2ν decay channels) will be shown. All the investigated properties result to be fully consistent with the SM predictions: the signal strength and the signal strength modifiers are consistent with unity in all the bosonic channels considered; the hypothesis of a scalar particle is strongly favored, against the pseudoscalar or the vector/pseudovector or the spin-2 boson hypotheses (all excluded at 99% CL or higher in the H → ZZ → 4ℓ channel). The Higgs boson mass measurement from the combination of H → ZZ → 4ℓ and H → γγ channels gives a value mH = 125.03+0.26-0.27 (stat.) +0.13-0.15 (syst.). An upper limit ΓH < 22 MeV can be put on the Higgs boson width thanks to the new indirect method.

  14. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Decanini, D.; Leroy, L.; Haghiri-Gosnet, A. M.

    2016-03-01

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  15. Magnetically-conformed, Variable Area Discharge Chamber for Hall Thruster, and Method

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R. (Inventor)

    2013-01-01

    The invention is a Hall thruster that incorporates a discharge chamber having a variable area channel including an ionization zone, a transition region, and an acceleration zone. The variable area channel is wider through the acceleration zone than through the ionization zone. An anode is located in a vicinity of the ionization zone and a cathode is located in a vicinity of the acceleration zone. The Hall thruster includes a magnetic circuit which is capable of forming a local magnetic field having a curvature within the transition region of the variable area channel whereby the transition region conforms to the curvature of the local magnetic field. The Hall thruster optimizes the ionization and acceleration efficiencies by the combined effects of the variable area channel and magnetic conformity.

  16. Magnetic bearing. [for supplying magnetic fluxes

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1975-01-01

    A magnetic bearing is described which includes a pair of coaxial, toroidal, and permanent magnets having axially directed poles. Like poles of the permanent magnets are adjacent to each other, whereby the permanent magnets have a tendency to be urged apart along the common axis. An electromagnet is wound coaxially with the permanent magnets in such a manner that the poles are axially directed. Between the poles of each permanent magnet there is a low magnetic reluctance circuit including two series air gaps. Between the poles of the electromagnet a low reluctance path including only one air gap of each of the low magnetic reluctance circuits is provided. The low reluctance path for the electromagnet includes a ring axially translatable relative to the permanent magnets. The ring forms opposite faces of the air gaps in the magnetic circuits for each permanent magnet.

  17. Progress on the Coupling Coil for the MICE Channel

    SciTech Connect

    Green, M.A.; Li, D.; Virostek, S.P.; Lau, W.; Witte, H.; Yang,S.Q.; Drumm, P.; Ivanyushenkov, Y.

    2005-05-08

    This report describes the progress on the coupling magnet for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in the level 2 study of a neutrino factory. The MICE RF coupling coil module (RFCC module) consists of a 1.56 m diameter superconducting solenoid, mounted around four cells of conventional 201.25 MHz closed RF cavities. This report discusses the progress that has been made on the superconducting coupling coil that is around the center of the RF coupling module. This report describes the process by which one would cool the coupling coil using a single small 4 K cooler. In addition, the coupling magnet power system and quench protection system are also described.

  18. Tunable multi-channel terahertz wave power splitter

    NASA Astrophysics Data System (ADS)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-12-01

    The combination of terahertz technology and photonic crystal provides a new approach to realize compact terahertz wave devices. Relying on a conventional photonic crystal waveguide and photonic crystal surface-mode waveguides, a tunable multi-channel terahertz-wave power splitter is proposed. The mechanism of such a power splitter is further theoretically analyzed and numerically investigated with the aid of the plane-wave-expansion method and the finite-difference time-domain method. With an appropriate design, the proposed device can split the input terahertz wave energy equally into six output ports at the frequency of 0.6 THz. When changing the external magnetic field, the input terahertz wave can be equally divided into four output ports with the aid of a magnetic-sensitive material. Furthermore, the present device is very compact and the total size is of 4.4×6.0 mm2.

  19. A model of channel response in disturbed alluvial channels

    USGS Publications Warehouse

    Simon, A.

    1989-01-01

    Dredging and straightening of alluvial channels between 1959 and 1978 in West Tennessee caused a series of morphologic changes along modified reaches and tributary streams. Degradation occurred for 10 to 15 years at sites upstream of the area of maximum disturbance and lowered bed-levels by as much as 6.1 m. Following degradation, reaches upstream of the area of maximum disturbance experienced a secondary aggradation phase in response to excessive incision and gradient reduction. -from Author

  20. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  1. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    PubMed

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system. PMID:25764715

  2. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    PubMed

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  3. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  4. Sodium channel slow inactivation interferes with open channel block

    PubMed Central

    Hampl, Martin; Eberhardt, Esther; O’Reilly, Andrias O.; Lampert, Angelika

    2016-01-01

    Mutations in the voltage-gated sodium channel Nav1.7 are linked to inherited pain syndromes such as erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). PEPD mutations impair Nav1.7 fast inactivation and increase persistent currents. PEPD mutations also increase resurgent currents, which involve the voltage-dependent release of an open channel blocker. In contrast, IEM mutations, whenever tested, leave resurgent currents unchanged. Accordingly, the IEM deletion mutation L955 (ΔL955) fails to produce resurgent currents despite enhanced persistent currents, which have hitherto been considered a prerequisite for resurgent currents. Additionally, ΔL955 exhibits a prominent enhancement of slow inactivation (SI). We introduced mutations into Nav1.7 and Nav1.6 that either enhance or impair SI in order to investigate their effects on resurgent currents. Our results show that enhanced SI is accompanied by impaired resurgent currents, which suggests that SI may interfere with open-channel block. PMID:27174182

  5. Magnetic Reconnection

    SciTech Connect

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  6. Clofilium inhibits Slick and Slack potassium channels

    PubMed Central

    de los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na+ and Cl−, and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels. PMID:23271893

  7. Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register.

    PubMed

    Heedt, S; Manolescu, A; Nemnes, G A; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th

    2016-07-13

    We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov-Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov-de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization. PMID:27347816

  8. Weak and electromagnetic mechanisms of neutrino-pair photoproduction in a strongly magnetized electron gas

    SciTech Connect

    Borisov, A. V.; Kerimov, B. K.; Sizin, P. E.

    2012-11-15

    Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.

  9. Constructive inter-track interference (CITI) codes for perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed Zaki; Davey, Paul J.; Kurihara, Yoshitake

    2005-02-01

    This paper presents new modulation codes to reduce the effect of adjacent track interference (ATI) also known as inter-track interference (ITI). New modulation codes, that is constructive inter-track interference (CITI) codes and partial response (PR) targets, are investigated using computer simulation in perpendicular magnetic channel. CITI codes have been found to increase the resilience of the perpendicular magnetic channel in the presence of ITI and jitter with no increased decoding complexity.

  10. MHD mixed convection flow through a diverging channel with heated circular obstacle

    NASA Astrophysics Data System (ADS)

    Alam, Md. S.; Shaha, J.; Khan, M. A. H.; Nasrin, R.

    2016-07-01

    A numerical study of steady MHD mixed convection heat transfer and fluid flow through a diverging channel with heated circular obstacle is carried out in this paper. The circular obstacle placed at the centre of the channel is hot with temperature Th. The top and bottom walls are non-adiabatic. The basic nonlinear governing partial differential equations are transformed into dimensionless ordinary differential equations using similarity transformations. These equations have been solved numerically for different values of the governing parameters, namely Reynolds number (Re), Hartmann number (Ha), Richardson number (Ri) and Prandtl number (Pr) using finite element method. The streamlines, isotherms, average Nusselt number and average temperature of the fluid for various relevant dimensionless parameters are displayed graphically. The study revealed that the flow and thermal fields in the diverging channel depend significantly on the heated body. In addition, it is observed that the magnetic field acts to increase the rate of heat transfer within the channel.

  11. Echo planar diffusion-weighted imaging: possibilities and considerations with 12- and 32-channel head coils.

    PubMed

    Morelli, John N; Saettele, Megan R; Rangaswamy, Rajesh A; Vu, Lan; Gerdes, Clint M; Zhang, Wei; Ai, Fei

    2012-01-01

    Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss) and an approach to readout-segmented (rs) echo planar imaging (EPI) are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  12. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  13. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  14. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-01-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  15. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-07-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  16. First Taste of Hot Channel in Interplanetary Space

    NASA Astrophysics Data System (ADS)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.

    2015-04-01

    A hot channel (HC) is a high temperature (˜10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (˜1-2 MK). In this paper, we report a high temperature structure (HTS, ˜1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ⊙ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  17. First Taste of Hot Channel in Interplanetary Space

    NASA Astrophysics Data System (ADS)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.

    2015-04-01

    A hot channel (HC) is a high temperature (∼10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (∼1–2 MK). In this paper, we report a high temperature structure (HTS, ∼1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ȯ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  18. Novel method of channel estimation for WCDMA downlink

    NASA Astrophysics Data System (ADS)

    Sheng, Bin; You, XiaoHu

    2001-10-01

    A novel scheme for channel estimation is proposed in this paper for WCDMA Downlink where a pilot channel is simultaneously transmitted with a dada traffic channel. The proposed scheme exploits channel information in both pilot and data traffic channels by combining channel estimates from these two channels. It is demonstrated by computer simulations that the performance of the Rake receiver is improved obviously.

  19. Channel estimation in DCT-based OFDM.

    PubMed

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform-(DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic.

  20. Process tomography for unitary quantum channels

    SciTech Connect

    Gutoski, Gus; Johnston, Nathaniel

    2014-03-15

    We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a d-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only O(d{sup 2}) interactive observables, as opposed to the O(d{sup 4}) required for tomography of arbitrary channels. This result generalizes to the problem of identifying channels with at most q Kraus operators, and slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with q Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.

  1. Membrane lipid modulations remove divalent open channel block from TRP-like and NMDA channels.

    PubMed

    Parnas, Moshe; Katz, Ben; Lev, Shaya; Tzarfaty, Vered; Dadon, Daniela; Gordon-Shaag, Ariela; Metzner, Henry; Yaka, Rami; Minke, Baruch

    2009-02-25

    Open channel block is a process in which ions bound to the inside of a channel pore block the flow of ions through that channel. Repulsion of the blocking ions by depolarization is a known mechanism of open channel block removal. For the NMDA channel, this mechanism is necessary for channel activation and is involved in neuronal plasticity. Several types of transient receptor potential (TRP) channels, including the Drosophila TRP and TRP-like (TRPL) channels, also exhibit open channel block. Therefore, removal of open channel block is necessary for the production of the physiological response to light. Because there is no membrane depolarization before the light response develops, it is not clear how the open channel block is removed, an essential step for the production of a robust light response under physiological conditions. Here we present a novel mechanism to alleviate open channel block in the absence of depolarization by membrane lipid modulations. The results of this study show open channel block removal by membrane lipid modulations in both TRPL and NMDA channels of the photoreceptor cells and CA1 hippocampal neurons, respectively. Removal of open channel block is characterized by an increase in the passage-rate of the blocking cations through the channel pore. We propose that the profound effect of membrane lipid modulations on open channel block alleviation, allows the productions of a robust current in response to light in the absence of depolarization.

  2. Tuning Photochromic Ion Channel Blockers

    PubMed Central

    2011-01-01

    Photochromic channel blockers provide a conceptually simple and convenient way to modulate neuronal activity with light. We have recently described a family of azobenzenes that function as tonic blockers of Kv channels but require UV-A light to unblock and need to be actively switched by toggling between two different wavelengths. We now introduce red-shifted compounds that fully operate in the visible region of the spectrum and quickly turn themselves off in the dark. Furthermore, we have developed a version that does not block effectively in the dark-adapted state, can be switched to a blocking state with blue light, and reverts to the inactive state automatically. Photochromic blockers of this type could be useful for the photopharmacological control of neuronal activity under mild conditions. PMID:22860175

  3. Ion channels meet auxin action.

    PubMed

    Fuchs, I; Philippar, K; Hedrich, R

    2006-05-01

    The regulation of cell division and elongation in plants is accomplished by the action of different phytohormones. Auxin as one of these growth regulators is known to stimulate cell elongation growth in the aerial parts of the plant. Here, auxin enhances cell enlargement by increasing the extensibility of the cell wall and by facilitating the uptake of osmolytes such as potassium ions into the cell. Starting in the late 1990s, the auxin regulation of ion channels mediating K+ import into the cell has been studied in great detail. In this article we will focus on the molecular mechanisms underlying the modulation of K+ transport by auxin and present a model to explain how the regulation of K+ channels is involved in auxin-induced cell elongation growth. PMID:16807828

  4. GMSK co-channel demodulation

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.; Hopkins, J. R.

    2009-08-01

    Gaussian Minimum Shift Keying (GMSK) is a modulation method used by GSM phone networks and the Automatic Identification System (AIS) used by commercial ships. Typically these systems transmit data in short bursts and accomodate a large number of users by time, frequency and power management. Co-channel interference is not a problem unless the system is heavily loaded. This system load is a function of the density of users and the footprint of the receiver. We consider the problem of demodulation of burst GMSK signals in the presence of severe noise and co-channel interference. We further examine the problem of signal detection and blind estimation and tracking of all of the parameters required in the demodulation process. These parameters include carrier frequency, carrier phase, baud rate, baud phase, modulation index and the start and duration of the signal.

  5. Techniques for multilayer channel routing

    NASA Astrophysics Data System (ADS)

    Braun, Douglas; Burns, Jeffrey L.; Romeo, Fabio; Sangiovanni-Vincentelli, Alberto; Mayaram, Kartikeya

    1988-06-01

    The techniques described have been implemented in a multilayer channel router called Chameleon. Chameleon consists of two stages: a partitioner and a detailed router. The partitioner divides the problem into two-layer and three-layer subproblems such that global channel area is minimized. The detailed router then implements the connections using generalizations of the algorithms used in YACR2. In particular, a three-dimensional maze router is used for the vertical connections; this methodology is effective even when cycle constraints are present. Chameleon has produced optimal results on a wide range of industrial and academic examples for a variety of layer and pitch combinations, and can handle a variety of technology constraints.

  6. Double Path Interference and Magnetic Oscillations in Cooper Pair Transport through a Single Nanowire.

    PubMed

    Mironov, S V; Mel'nikov, A S; Buzdin, A I

    2015-06-01

    We show that the critical current of the Josephson junction consisting of superconducting electrodes coupled through a nanowire with two conductive channels can reveal the multiperiodic magnetic oscillations. The multiperiodicity originates from the quantum mechanical interference between the channels affected by both the strong spin-orbit coupling and the Zeeman interaction. This minimal two-channel model is shown to explain the complicated interference phenomena observed recently in Josephson transport through Bi nanowires. PMID:26196639

  7. Channeled and microactiviation of materials

    SciTech Connect

    Maggiore, C.J.; Blacic, J.D.; Blondiaux, G.; Debrun, J.L.; Ali, M.H.; Mathez, E.; Misdaq, M.A.; Valladon, M.

    1988-01-01

    Charged particle activation analysis can be combined with channeling to determine lattice location of impurities at the trace level in single crystal samples. It can also be used with a nuclear microprobe to measure impurities at trace levels in small or spatially inhomogeneous samples. Examples of these extensions of activation analysis to realistic samples are carbon determination in organometallic vapor phase epitaxial layers of GaAlAs on GaAs and oxygen determination in diamonds. 5 refs., 2 figs.

  8. A Latin American Perspective on Ion Channels.

    PubMed

    Elgoyhen, Ana Belén; Barajas-López, Carlos

    2016-09-01

    Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets. PMID:27535998

  9. Detecting Lower Bounds to Quantum Channel Capacities.

    PubMed

    Macchiavello, Chiara; Sacchi, Massimiliano F

    2016-04-01

    We propose a method to detect lower bounds to quantum capacities of a noisy quantum communication channel by means of a few measurements. The method is easily implementable and does not require any knowledge about the channel. We test its efficiency by studying its performance for most well-known single-qubit noisy channels and for the generalized Pauli channel in an arbitrary finite dimension.

  10. Artificial water channels--incipient innovative developments.

    PubMed

    Barboiu, Mihail

    2016-04-28

    Aquaporins (AQPs) are biological water channels known for fast water transport (∼10(8)-10(9) water molecules per s per channel), with complete proton/ion exclusion. Few synthetic channels have been designed to mimic this high water permeability and to reject ions at a significant level. This Feature Article will discuss the incipient developments of the first artificial water channel systems. PMID:27046217

  11. AVHRR channel selection for land cover classification

    USGS Publications Warehouse

    Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.

    2002-01-01

    Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized inter-annual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more

  12. A Latin American Perspective on Ion Channels.

    PubMed

    Elgoyhen, Ana Belén; Barajas-López, Carlos

    2016-09-01

    Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets.

  13. Magnetic energy storage and conversion in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Mariska, J. T.; Boris, J. P.

    1986-01-01

    According to the approach employed in this investigation, particularly important simple configurations of magnetic field and plasma are identified, and it is attempted to achieve an understanding of the large-scale dynamic processes and transformations which these systems can undergo. Fundamental concepts are discussed, taking into account aspects of magnetic energy generation, ideal MHD theory, non-MHD properties, the concept of 'anomalous' resistivity, and global electrodynamic coupling. Questions of magnetically controlled energy conversion are examined, giving attention to magnetic modifications of plasma transport, the transition region structure and flows, channeling and acceleration of plasma, channeling and dissipation of MHD waves, and anomalous dissipation of field-aligned currents. A description of the characteristics of magnetohydrodynamic energy conversion is also provided, and outstanding questions are discussed.

  14. Magnetic field influence on paramecium motility

    SciTech Connect

    Rosen, M.F.; Rosen, A.D. )

    1990-01-01

    The influence of a moderately intense static magnetic field on movement patterns of free swimming Paramecium was studied. When exposed to fields of 0.126 T, these ciliated protozoa exhibited significant reduction in velocity as well as a disorganization of movement pattern. It is suggested that these findings may be explained on the basis of alteration in function of ion specific channels within the cell membrane.

  15. Disintegration of rocks based on magnetically isolated high voltage discharge

    NASA Astrophysics Data System (ADS)

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper.

  16. Water channels in peritoneal dialysis.

    PubMed

    Devuyst, Olivier

    2010-01-01

    Peritoneal dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the modelization of peritoneal transport. Proof-of-principle studies have shown that up-regulation of the expression of AQP1 in peritoneal capillaries is reflected by increased water permeability and ultrafiltration, without affecting the osmotic gradient and the permeability for small solutes. Inversely, studies in Aqp1 mice have shown that haploinsufficiency in AQP1 is reflected by significant attenuation of water transport. Recent studies have identified lead compounds that could act as agonists of aquaporins, as well as putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states. These studies on the peritoneal membrane also provide an experimental framework to investigate the role of water channels in the endothelium and various cell types.

  17. Curved channel MCP improvement program

    NASA Technical Reports Server (NTRS)

    Laprade, Bruce N.; Corbett, Michael B.

    1987-01-01

    Blowholes and blemishes were determined to start at two stages of manufacturing. Sperical blowholes resulted from trapped gas between the high melting temperature bond glass and the MCP wafer. During thermal processing, the trapped gas expanded and displaced the softened channel glass to form a spherical inclusion. This defect was eliminated by grinding the prefritted bond wafer and channel plate wafer to a flatness which ensured intimate contact prior to fusion. Elliptical blowholes or blemishes were introduced during the fiber draw stage. Contaminants trapped between the core bar and clad tubing volatized providing large quantities of expanding gas. These pockets of gas became elongated to an ellipsoidal shape during fiber draw. Special cleanliness procedures were developed for the grinding, polishing, and acid etching of core bars. Improvements in channel curvature fabrication were implemented. The design of the shearing fixture was evaluated. A new design was developed which eliminated an off-axis moment. The shearing furnace design was evaluated. Steady state thermal conditions instead of thermal transient conditions were determined to reduce curvature nonuniformity.

  18. Multiple channel data acquisition system

    DOEpatents

    Crawley, H. Bert; Rosenberg, Eli I.; Meyer, W. Thomas; Gorbics, Mark S.; Thomas, William D.; McKay, Roy L.; Homer, Jr., John F.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.

  19. Multiple channel data acquisition system

    DOEpatents

    Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.

  20. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.

    PubMed

    Magnet, C; Kuzhir, P; Bossis, G; Meunier, A; Nave, S; Zubarev, A; Lomenech, C; Bashtovoi, V

    2014-03-01

    When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces-the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α≥2), the Brownian motion seems not to affect the cloud behavior.