Science.gov

Sample records for magnetically deflected dc

  1. DC Magnetics Measurement System Design

    NASA Technical Reports Server (NTRS)

    Mastny, Timothy

    2012-01-01

    This report will detail the updates to the magnetics measurement system design and testing procedures that are required for performing static (DC) magnetics testing of future flight hardware. An older magnetics testing system had to be integrated with new procedures and hardware to meet the demands of future testing programs and accommodate an upcoming magnetics tests. The next test will be for the Geostationary Operational Environmental Satellite R-Series (GOES-R), which will verify that the SAFT Battery component meets its specifications for magnetic cleanliness. The satellite is scheduled to launch in 2015 with magnetics testing to be completed on the battery in November 2012.

  2. Theory of using magnetic deflections to combine charged particle beams

    SciTech Connect

    Steckbeck, Mackenzie K.; Doyle, Barney Lee

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  3. DC CICC retrofit magnet

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-10-30

    The coil system presented here for the MHD retrofit magnet incorporates many features of the latest in superconducting magnet technology and finite element modeling to create an efficient and viable design concept. At the core of the design is the niobium titanium (NbTi) superconducting Cable-in-Conduit Conductor (CICC). Engineered to create moderately high magnetic fields (up to 8 T) with essentially no power loss, this specific CICC design provides good load carrying capacity, operating margin from a perturbation such as a local heat input, and coil protection in the event of a quench transient. The CICC is wound on a mandrel into long, tapered, saddle shaped single conductor thickness pancakes. By defining the appropriate number of conductor turns in each pancake, the saddle coils can be stacked to form a semi-elliptical winding pack cross section. Extruded aluminum filler blocks are fitted into the steps, at the edge of the pancake and present a smooth surface to the supporting structure. The semi-elliptical conductor array is supported by an identically shaped strap at all locations except where the end turns sweep over the MHD channel. The strap resists the electromagnetic forces tending to separate the coils on each side of the channel. Low friction surfaces are placed between conductor pancakes, and between the inside skin of the support straps and the outside surface of the conductor winding pack. This allows relative movement between pancakes, and between the strap and coil, thereby reducing shear stresses and coulombic friction heating which would otherwise tend to crack insulation, load joints, and initiate a quench in the superconducting cable.

  4. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  5. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  6. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    NASA Astrophysics Data System (ADS)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  7. Reduction of Thermal Loss in HTS Windings by Using Magnetic Flux Deflection

    NASA Astrophysics Data System (ADS)

    Tsuzuki, K.; Miki, M.; Felder, B.; Koshiba, Y.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yanamoto, T.

    Efforts on the generation of intensified magnetic flux have been made for the optimized shape of HTS winding applications. This contributes to the high efficiency of the rotating machines using HTS windings. Heat generation from the HTS windings requires to be suppressed as much as possible, when those coils are under operation with either direct or alternative currents. Presently, the reduction of such thermal loss generated by the applied currents on the HTS coils is reported with a magnetic flux deflection system. The HTS coils are fixed together with flattened magnetic materials to realize a kind of redirection of the flux pathway. Eventually, the magnetic flux density perpendicular to the tape surface (equivalent to the a-b plane) of the HTS tape materials is reduced to the proximity of the HTS coil. To verify the new geometry of the surroundings of the HTS coils with magnetic materials, a comparative study of the DC coil voltage was done for different applied currents in prototype field-pole coils of a ship propulsion motor.

  8. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    SciTech Connect

    Lillaney, Prasheel Caton, Curtis; Martin, Alastair J.; Losey, Aaron D.; Evans, Leland; Saeed, Maythem; Cooke, Daniel L.; Wilson, Mark W.; Hetts, Steven W.

    2014-02-15

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheterin vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image based methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R{sup 2} = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles measured

  9. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    PubMed Central

    Lillaney, Prasheel; Caton, Curtis; Martin, Alastair J.; Losey, Aaron D.; Evans, Leland; Saeed, Maythem; Cooke, Daniel L.; Wilson, Mark W.; Hetts, Steven W.

    2014-01-01

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheter in vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image based methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R2 = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles measured

  10. Observation of the Faraday effect via beam deflection in a longitudinal magnetic field

    SciTech Connect

    Ghosh, Ambarish; Hill, Winfield; Fischer, Peer

    2007-11-15

    We show that magnetic-field-induced circular differential deflection of light can be observed in reflection or refraction at a single interface. The difference in the reflection or refraction angles between the two circular polarization components is a function of the magnetic-field strength and the Verdet constant, and permits the observation of the Faraday effect not via polarization rotation in transmission, but via changes in the propagation direction. Deflection measurements do not suffer from n-{pi} ambiguities and are shown to be another means to map magnetic fields with high axial resolution, or to determine the sign and magnitude of magnetic-field pulses in a single measurement.

  11. Magnetically-assisted remote control (MARC) steering of endovascular catheters for interventional MRI: a model for deflection and design implications.

    PubMed

    Settecase, Fabio; Sussman, Marshall S; Wilson, Mark W; Hetts, Steven; Arenson, Ronald L; Malba, Vincent; Bernhardt, Anthony F; Kucharczyk, Walter; Roberts, Timothy P L

    2007-08-01

    Current applied to wire coils wound at the tip of an endovascular catheter can be used to remotely steer a catheter under magnetic resonance imaging guidance. In this study, we derive and validate an equation that characterizes the relationship between deflection and a number of physical factors: theta/sin(gamma-theta) = nIABL/EI(A) where theta is the deflection angle, n is the number of solenoidal turns, I is the current, A is the cross-sectional area of the catheter tip, B is the magnetic resonance (MR) scanner main magnetic field, L is the unconstrained catheter length, E is Young's Modulus for the catheter material, and I(A) is the area moment of inertia, and y is the initial angle between the catheter tip and B. Solenoids of 50, 100, or 150 turns were wound on 1.8 F and 5 F catheters. Varying currents were applied remotely using a DC power supply in the MRI control room. The distal catheter tip was suspended within a phantom at varying lengths. Images were obtained with a 1.5 T or a 3 T MR scanner using "real-time" MR pulse sequences. Deflection angles were measured on acquired images. Catheter bending stiffess was determined using a tensile testing apparatus and a stereomicroscope. Predicted relationships between deflection and various physical factors were observed (R2 = 0.98-0.99). The derived equation provides a framework for modeling of the behavior of the specialized catheter tip. Each physical factor studied has implications for catheter design and device implementation.

  12. ForeCAT - A model for magnetic deflections of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Kay, Christina D.

    2016-01-01

    Frequently, the Sun explosively releases bubbles of magnetized plasma known as coronal mass ejections (CMEs), which can produce adverse space weather effects at Earth. Accurate space weather forecasting requires knowledge of the trajectory of CMEs. Decades of observations show that CMEs can deflect from a purely radial trajectory, however, no consensus exists as to the cause of these deflections. We developed a model for CME deflection and rotation from magnetic forces, called Forecasting a CME's Altered Trajectory (ForeCAT). ForeCAT has been designed to run fast enough for large parameter phase space studies, and potentially real-time predictions. ForeCAT reproduces the general trends seen in observed CME deflections. In particular, CMEs deflect toward regions of minimum magnetic energy - frequently the Heliospheric Current Sheet (HCS) on global scales. The background magnetic forces decrease rapidly with distance and quickly become negligible. Most deflections and rotations can be well-described by assuming constant angular momentum beyond 10 Rs. ForeCAT also reproduces individual observed CME deflections - the 2008 December 12, 2008 April 08, and 2010 July 12 CMEs. By determining the reduced chi-squared best fit between the ForeCAT results and the observations we constrain parameters related to the CME and the background solar wind. Additionally, we constrain whether different models for the low corona magnetic backgrounds can produce the observed CME deflection. We explore the space weather of cool M dwarfs (dMs) with surface magnetic field strengths of order kG. dMs have extreme CMEs and flares and close-in habitable zones. We use ForeCAT to explore the deflections corresponding to the range of plausible CME masses and speeds for the dM V374 Peg. The deflection of the dM CMEs exceeds their solar counterparts, and the strong magnetic gradients surrounding the dM's Astrospheric Current Sheet (ACS, analogous to the Sun's HCS) can trap the CMEs that reach it

  13. Magnetically-Assisted Remote Controlled Microcatheter Tip Deflection under Magnetic Resonance Imaging.

    PubMed

    Hetts, Steven W; Saeed, Maythem; Martin, Alastair; Lillaney, Prasheel; Losey, Aaron; Yee, Erin Jeannie; Sincic, Ryan; Do, Loi; Evans, Lee; Malba, Vincent; Bernhardt, Anthony F; Wilson, Mark W; Patel, Anand; Arenson, Ronald L; Caton, Curtis; Cooke, Daniel L

    2013-04-04

    X-ray fluoroscopy-guided endovascular procedures have several significant limitations, including difficult catheter navigation and use of ionizing radiation, which can potentially be overcome using a magnetically steerable catheter under MR guidance. The main goal of this work is to develop a microcatheter whose tip can be remotely controlled using the magnetic field of the MR scanner. This protocol aims to describe the procedures for applying current to the microcoil-tipped microcatheter to produce consistent and controllable deflections. A microcoil was fabricated using laser lathe lithography onto a polyimide-tipped endovascular catheter. In vitro testing was performed in a waterbath and vessel phantom under the guidance of a 1.5-T MR system using steady-state free precession (SSFP) sequencing. Various amounts of current were applied to the coils of the microcatheter to produce measureable tip deflections and navigate in vascular phantoms. The development of this device provides a platform for future testing and opportunity to revolutionize the endovascular interventional MRI environment.

  14. An analytical solution to proton Bragg peak deflection in a magnetic field.

    PubMed

    Wolf, Russell; Bortfeld, Thomas

    2012-09-07

    The role of MR imaging for image-guided radiation therapy (IGRT) is becoming more and more important thanks to the excellent soft tissue contrast offered by MRI. Hybrid therapy devices with integrated MRI scanners are under active development for x-ray therapy. The combination of proton therapy with MRI imaging has only been investigated at the theoretical or conceptual level. Of concern is the deflection of the proton beam in the homogeneous magnetic field. A previous publication has come to the conclusion that the impact of a 0.5 T magnetic field on the dose distribution for proton therapy is very small and lateral deflections stay well below 2 mm. The purpose of this study is to provide new insights into the effects of magnetic fields on a proton beam coming to rest in a patient. We performed an analytical calculation of the lateral deflection of protons with initial energies between 50 MeV and 250 MeV, perpendicular to the beam direction and the magnetic field. We used a power-law range-energy relationship and the Lorentz force in both relativistic and non-relativistic conditions. Calculations were done for protons coming to rest in water or soft tissue, and generalized to other uniform and non-uniform media. Results were verified by comparisons with numerical calculations and Monte Carlo simulations. A key result of our calculations is that the maximum lateral deflection at the end of range is proportional to the third power of the initial energy. Accordingly, due to the strong dependence on the energy, even a relatively small magnetic field of 0.5 T will cause a deflection of the proton beam by 1 cm at the end of range of a 200 MeV beam. The maximum deflection at 200 MeV is more than 10 times larger than that of a 90 MeV beam. Relativistic corrections of the deflection are generally small but they can become non-negligible at higher energies around 200 MeV and above. Contrary to previous findings, the lateral deflection of a proton beam can be significant (1

  15. Biological effects of high DC magnetic fields

    SciTech Connect

    Tenforde, T.S.

    1981-06-01

    The principal focus of the program is the analysis of magnetic field effects on physiological functions in experimental animals and selected organ and tissue systems. A major research effort has involved the use of electrical recording techniques to detect functional alterations in the cardiovascular, neural, and visual systems during the application of DC magnetic fields. These systems involve ionic conduction processes, and are therefore potentially sensitive to electrodynamic interactions with an applied magnetic field. In the specific case of the visual system, magnetic interactions could also arise through orientational effects on the magnetically anisotropic photopigment molecules within retinal photoreceptor cells. In addition to studies with potentially sensitive target tissues, an evaluation is being made of magnetic field effects on a broad range of other physiological functions in laboratory mammals, including the measurement of circadian rhythms using noninvasive recording techniques. Results of investigations of magnetic field effects on the conformation of DNA, and on the growth and development of plants and insects are also reported. Figures and tables provide a brief summary of some representative observations in each of the research areas described. No significant alterations were observed in any of the physiological parameters examined to date, with the exception of major changes that occur in the electrocardiogram during magnetic field exposure. Studies with several species of animals have provided evidence that this phenomenon is attributable to electrical potentials that are induced during pulsatile blood flow in the aorta and in other major vessels of the circulatory system.

  16. Materials with low DC magnetic susceptibility for sensitive magnetic measurements

    NASA Astrophysics Data System (ADS)

    Khatiwada, R.; Dennis, L.; Kendrick, R.; Khosravi, M.; Peters, M.; Smith, E.; Snow, W. M.

    2016-02-01

    Materials with very low DC magnetic susceptibility have many scientific applications. To our knowledge however, relatively little research has been conducted with the goal to produce a totally nonmagnetic material. This phrase in our case means after spatially averaging over macroscopic volumes, it possesses an average zero DC magnetic susceptibility. We report measurements of the DC magnetic susceptibility of three different types of nonmagnetic materials at room temperature: (I) solutions of paramagnetic salts and diamagnetic liquids, (II) liquid gallium-indium alloys and (III) pressed powder mixtures of tungsten and bismuth. The lowest measured magnetic susceptibility among these candidate materials is in the order of 10-9 cgs volume susceptibility units, about two orders of magnitude smaller than distilled water. In all cases, the measured concentration dependence of the magnetic susceptibility is consistent with that expected for the weighted sum of the susceptibilities of the separate components within experimental error. These results verify the well-known Wiedemann additivity law for the magnetic susceptibility of inert mixtures of materials and thereby realize the ability to produce materials with small but tunable magnetic susceptibility. For our particular scientific application, we are also looking for materials with the largest possible number of neutrons and protons per unit volume. The gallium-indium alloys fabricated and measured in this work possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature liquid, and the tungsten-bismuth pressed powder mixtures possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature solid. This ratio is a figure of merit for a certain class of precision experiments that search for possible exotic spin-dependent forces of Nature.

  17. Counterrotating brushless DC permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.; Bailey, J. M.

    1990-07-01

    A brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of embedded permanent magnets. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and the drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs, and rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  18. A d.c. magnetic metamaterial.

    PubMed

    Magnus, F; Wood, B; Moore, J; Morrison, K; Perkins, G; Fyson, J; Wiltshire, M C K; Caplin, D; Cohen, L F; Pendry, J B

    2008-04-01

    Electromagnetic metamaterials are a class of materials that have been artificially structured on a subwavelength scale. They are currently the focus of a great deal of interest because they allow access to previously unrealizable properties such as a negative refractive index. Most metamaterial designs have so far been based on resonant elements, such as split rings, and research has concentrated on microwave frequencies and above. Here, we present the first experimental realization of a non-resonant metamaterial designed to operate at zero frequency. Our samples are based on a recently proposed template for an anisotropic magnetic metamaterial consisting of an array of superconducting plates. Magnetometry experiments show a strong, adjustable diamagnetic response when a field is applied perpendicular to the plates. We have calculated the corresponding effective permeability, which agrees well with theoretical predictions. Applications for this metamaterial may include non-intrusive screening of weak d.c. magnetic fields.

  19. Ion Velocimetry In Magnetized DC Sheaths

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Lucca Fabris, Andrea; Cappelli, Mark

    2013-09-01

    Particle dynamics near the magnetic cusps in cusped field plasma thrusters are still not well understood; characterizing the ion velocity distribution functions in these regions can help thruster designs maximize electron trapping and minimize erosion of the channel wall. To that end, a robust argon ion velocity sensor is developed using a three-level laser-induced fluorescence (LIF) technique. The 3d4F7 / 2 --> 4p4D5/ 2 0 ArII transition at 668.61 nm is pumped with a 25 mW tunable external cavity diode laser, and fluorescence down to the 4s4P3 / 2 state at 442.72 nm is collected with phase-sensitive detection. The Doppler shift in the acquired signal peak, compared to a stationary reference, gives the ion velocity component parallel to the exciting laser. We demonstrate this LIF scheme by obtaining the argon ion velocity profile through a magnetized DC sheath. The LIF measurement is used to validate a new optogalvanic velocimetry technique in which two lasers (chopped at different frequencies) intersect one another at 90° in the measurement volume. Using a lock-in amplifier, changes observed in the DC discharge current at the sum and difference of the two chopping frequencies may be related back to the mean ion velocity at that point. The authors acknowledge support from the Air Force Office of Scientific Research (AFOSR). CY acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  20. Read-out electronics for DC squid magnetic measurements

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.

  1. Multisubband transport and magnetic deflection of Fermi electron trajectories in three terminal junctions and rings

    NASA Astrophysics Data System (ADS)

    Poniedziałek, M. R.; Szafran, B.

    2012-02-01

    We study the electron transport in three terminal junctions and quantum rings looking for the classical deflection of electron trajectories in the presence of intersubband scattering. We indicate that although the Aharonov-Bohm oscillations and the Lorentz force effects co-exist in the low subband transport, for higher Fermi energies a simultaneous observation of both effects is difficult and calls for carefully formed structures. In particular, in quantum rings with channels wider than the input lead the Lorentz force is well resolved but the Aharonov-Bohm periodicity is lost in chaotic scattering events. In quantum rings with equal lengths of the channels and T-shaped junctions the Aharonov-Bohm oscillations are distinctly periodic but the Lorentz force effects are not well pronounced. We find that systems with wedge-shaped junctions allow for observation of both the periodic Aharonov-Bohm oscillations and the magnetic deflection.

  2. Realizing a Deflection-type D.C. Bridge-based Thermometer under Project-based Learning Approach

    NASA Astrophysics Data System (ADS)

    Warsahemas, T.; Ramadhiansyah; Ulum, A. I. N.; Yuliza, E.; Khairurrijal

    2016-08-01

    In addition to conventional learning, project-based learning (PBL) helps students developing skills and becoming more engaged in learning as they have a chance to solve real life problems of actual projects. As the name suggests, PBL is a model that organizes learning around projects. In this paper, the project that will be completed by a group of three students is about making a water temperature measuring instrument using a simple deflection-type d.c. bridge circuit. The project was done in the period of January to April 2015 when they was taking the Measurement and Data Processing Techniques, which is a compulsory course in the fourth semester of undergraduate program in Department of Physics at Institut Teknologi Bandung. With the help of a lecturer and a tutor as facilitators, they have followed this series of steps: 1. Start with a driving question, a problem to be solved, 2. Exploring the driving question by participating in authentic, situated inquiry, 3. Engaging collaborative activities with lecturer and tutor to find solutions to the driving question, 4. Scaffolding with learning technologies that help students participating in activities normally beyond their ability, and 5. Creating a set of tangible products that address the driving question. With this series of steps, the students have become easier to understand the lectures that have been given and the instrument has been realized to measure the temperature of water properly. When realizing the project under the PBL method, we learned other materials beside that have been taught in the course. Due to this project, we have had more skills like designing and soldering as well as problem-solving, teamwork, critical thinking, synthesis and analysis.

  3. Investigation of current-density modification during magnetic reconnection by analysis of hydrogen-pellet deflection.

    PubMed

    Waller, V; Pégourié, B; Giruzzi, G; Huysmans, G T A; Garzotti, L; Géraud, A

    2003-11-14

    A pellet penetrating the inner region of a tokamak discharge, where the safety factor drops below unity, triggers an instability analogous to a sawtooth crash. Because of the simultaneity of the crash and pellet crossing, the latter is an appropriate probe for investigating the current distribution during reconnection. In this Letter, pellet deflection is used to characterize the associated electron distribution function. The perturbation compatible with the observed trajectory requires a negative current layer on the q=1 magnetic surface between 3 and 12 times the equilibrium current density and an expulsion of high energy electrons from the plasma core.

  4. Current patterns and orbital magnetism in mesoscopic dc transport.

    PubMed

    Walz, Michael; Wilhelm, Jan; Evers, Ferdinand

    2014-09-26

    We present ab initio calculations of the local current density j(r) as it arises in dc-transport measurements. We discover pronounced patterns in the local current density, ring currents ("eddies"), that go along with orbital magnetism. Importantly, the magnitude of the ring currents can exceed the (average) transport current by orders of magnitude. We find associated magnetic fields that exhibit drastic fluctuations with field gradients reaching 1  T nm⁻¹ V⁻¹. The relevance of our observations for spin relaxation in systems with very weak spin-orbit interaction, such as organic semiconductors, is discussed. In such systems, spin relaxation induced by bias driven orbital magnetism competes with relaxation induced by the hyperfine interaction and appears to be of similar strength. We propose a NMR-type experiment in the presence of dc-current flow to observe the spatial fluctuations of the induced magnetic fields.

  5. Photovoltaic-wind hybrid system for permanent magnet DC motor

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  6. Experimental observation of further frequency upshift from dc to ac radiation converter with perpendicular dc magnetic field

    PubMed

    Higashiguchi; Yugami; Gao; Niiyama; Sasaki; Takahashi; Ito; Nishida

    2000-11-20

    A frequency upshift of a short microwave pulse is generated by the interaction between a relativistic underdense ionization front and a periodic electrostatic field with a perpendicular dc magnetic field. When the dc magnetic field is applied, further frequency upshift of 3 GHz is observed with respect to an unmagnetized case which has typically a GHz range. The radiation frequency depends on both the plasma density and the strength of the dc magnetic field, i.e., the plasma frequency and the cyclotron frequency. The frequency of the emitted radiation is in reasonable agreement with the theoretical values.

  7. Analysis of splitting patterns from Stern-Gerlach magnetic deflection of supersonic molecular beams: application to M J -state-resolved deflection of J=2 atoms

    NASA Astrophysics Data System (ADS)

    Weiser, C.; Siska, P. E.

    1988-06-01

    Measurements of M J -state resolved Stern-Gerlach deflection patterns for the3 P 2 states of noble gas metastable atoms in supersonic beams are analyzed using a modification of the method originally worked out by Otto Stern. Velocity distribution breadth and beam collimation required to resolve the M J states are explored, and the modeling is improved by including variation in the field gradient along the deflected atomic trajectories.

  8. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  9. Distortion of magnetic field and magnetic force of a brushless dc motor due to deformed rubber magnet

    NASA Astrophysics Data System (ADS)

    Lee, C. J.; Jang, G. H.

    2008-04-01

    This paper investigates the distortion of magnetic field of a brushless dc (BLDC) motor due to deformed rubber magnet. Global or local deformation of rubber magnet in the BLDC motor is mathematically modeled by using the Fourier series. Distorted magnetic field is calculated by using the finite element method, and unbalanced magnetic force is calculated by using the Maxwell stress tensor. When the rubber magnet is globally or locally deformed, the unbalanced magnetic force has the frequencies with the first harmonic and the harmonics of slot number ±1. However, the harmonic deformation with multiple of common divisor of pole and slot does not generate unbalanced magnetic force due to the rotational symmetry.

  10. Re-direction of dc magnetic flux in magnetically isotropic multilayered structures

    NASA Astrophysics Data System (ADS)

    Tarkhanyan, Roland H.; Niarchos, Dimitris G.

    2016-07-01

    Analytical design of a periodic composite structure allowing re-direction (bending) of dc magnetic flux with respect to applied external field is presented using methods of transformation optics. The composite structure is made of micrometer scale alternating layers of two different homogeneous and magnetically isotropic materials. Dependence of the magnetic flux bending angle on geometrical orientation of the layers as well as on the magnetic permeability ratio is examined. Such structures can find use in various devices based on the control and manipulations of the magnetic flux.

  11. DC magnetic field sensor based on electric driving and magnetic tuning in piezoelectric/magnetostrictive bilayer

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Wing Or, Siu; Ming Leung, Chung; Ho, S. L.

    2014-05-01

    A dc magnetic field sensor possessing an interestingly high electric voltage-driven, magnetic field-tuned dc magnetoelectric (ME) effect is developed based on a bilayer of Pb(Zr, Ti)O3 piezoelectric transformer and Tb0.3Dy0.7Fe1.92 magnetostrictive substrate. The dc ME effect in the sensor, as evaluated experimentally and theoretically, is induced by driving the bilayer at its zero-field longitudinal resonance frequency (fr0) using an ac electric voltage (Vac) referenced at the input of the piezoelectric transformer, as well as, by tuning the field-dependent compliance and resonance characteristics of the bilayer with the dc magnetic field to be measured (Hdc) upon the negative-ΔE effect intrinsic in the magnetostrictive substrate. The sensor shows a good linear negative response of ac ME voltage (VME) at the output of the piezoelectric transformer to a broad range of Hdc of 0-350 Oe under a small Vac of 2.5 V peak at the designated fr0 of 125.3 kHz. This gives a high negative dc magnetic field sensitivity (S) of -1.58 mV/Oe.

  12. The embryonic development of frogs under strong DC magnetic fields

    SciTech Connect

    Ueno, S.; Harada, K.; Shiodawa, K.

    1984-09-01

    Possible influence of d.c. magnetic fields in the early embryonic development of frogs was studied. Embryos of African clawed toads, Xenopus laevis, were exposed to 1.0 T magnetic fields with different gradients of a range from 10 T/m to 10/sup 3/ T/m either during cleavage to neurula stage, blastula to neurula stage, or neurula to tail bud stage. The developmental processes of embryos during and after magnetic field exposures were followed to examine a possibility of teratogenic effects. The results suggest that the magnetic field exerts no harmful or modifying effects on the important morphogenetic movements such as gastrulation and neurulation. However, it was observed that embryos which were exposed to the gradient magnetic fields during cleavage to neurula stage occasionally developed into tadpoles with reduced pigmentation or some axial anomalies such as the formation of curled tail. Tadpoles with edema or microcephaly were also observed. Compared with the control, the rate of malformation was higher by about 35 %. The influence of oxygen concentration in Ringer's solution on the embryonic development was also studied, and toxicity of oxygen with high concentration is discussed.

  13. Disc rotors with permanent magnets for brushless DC motor

    DOEpatents

    Hawsey, Robert A.; Bailey, J. Milton

    1992-01-01

    A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  14. DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail

    2016-09-01

    Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT-1 and permitted the measurement of dc magnetic fields in the range of ~10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered.

  15. Anisotropy of magnetic susceptibility in diamagnetic limestones reveals deflection of the strain field near the Dead Sea Fault, northern Israel

    NASA Astrophysics Data System (ADS)

    Issachar, R.; Levi, T.; Marco, S.; Weinberger, R.

    2015-08-01

    To exploit the potential of anisotropy of magnetic susceptibility (AMS) as a tool to estimate the strain field around major faults, we measured the AMS of calcite-bearing diamagnetic rocks that crop out next to the Dead Sea Fault (DSF) in northern Israel. Through integrated magnetic and geochemical methods we found that the rocks are almost pure calcite rocks and therefore the magnetic fabric is primarily controlled by preferred crystallographic orientation (PCO) with the minimum principal AMS axes (k3) parallel to calcite c-axes. We applied a separation procedure in several samples with high Fe content in order to calculate the AMS anisotropy parameters and compare them to pure diamagnetic rocks. AARM, thermo-susceptibility curves and IRM were used to characterize the magnetic phases. We found that for Fe content below 500 ppm the AMS is mostly controlled by the diamagnetic phase and showed that differences in the degree of anisotropy P' up to 3% (P' = 1.005 to 1.023) and in anisotropy difference Δk (up to ~ 0.25 × 10- 6 SI) in diamagnetic rocks are related to differences of strain magnitudes. The spatial distribution of the magnetic fabrics indicates ~ N-S maximum shortening parallel to the strike of the Hula Western Border fault (HWBF), one of the main strands of the DSF in northern Israel. The anisotropy parameters suggest that the strain magnitudes increase eastward with the proximity to the HWBF. These results suggest that the strain field near the HWBF is locally deflected as a consequence of the DSF activity. In light of the "fault weakness" model and geological setting of the study area, we suggest that the area accommodates dominant transtension during the Pleistocene. The present study demonstrates the useful application of AMS measurements in "iron-free" limestones as recorders of the strain field near plate boundaries.

  16. Effects of DC bias on magnetic performance of high grades grain-oriented silicon steels

    NASA Astrophysics Data System (ADS)

    Ma, Guang; Cheng, Ling; Lu, Licheng; Yang, Fuyao; Chen, Xin; Zhu, Chengzhi

    2017-03-01

    When high voltage direct current (HVDC) transmission adopting mono-polar ground return operation mode or unbalanced bipolar operation mode, the invasion of DC current into neutral point of alternating current (AC) transformer will cause core saturation, temperature increasing, and vibration acceleration. Based on the MPG-200D soft magnetic measurement system, the influence of DC bias on magnetic performance of 0.23 mm and 0.27 mm series (P1.7=0.70-1.05 W/kg, B8>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically realized in this paper. For the high magnetic induction GO steels (core losses are the same), greater thickness can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed. Finally, the magnetostriction and A-weighted magnetostriction velocity level of GO steel under DC biased magnetization were researched.

  17. Deflection of the Interstellar Neutral Hydrogen Flow Across the Heliospheric Interface: an Interstellar Magnetic Compass

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Eric, Q.; Jean-Loup, B.; Dimitra, K.; Risto, P.

    2005-05-01

    Analyses of SOHO-SWAN observations show that the interstellar neutral H flow direction differs by about 4 degrees from the neutral He flow direction recently derived with an unprecedented accuracy using combined data sets (Mobius et al, 2004). The most likely explanation is a distortion of the heliospheric interface under the action of an inclined interstellar magnetic field, with imprints of the distorsion on the neutral H flow due to charge-transfer reactions between H atoms and ions. The direction of the ambient interstellar magnetic field and the heliospheric shape can be derived from the observed deviation. Implications for Voyager trajectories are discussed.

  18. APES: Acute Precipitating Electron Spectrometer -- A high time resolution monodirectional magnetic deflection electron spectrometer

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.; Grubbs, G.; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-06-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm × 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm × 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  19. AC losses in a HTS coil carrying DC current in AC external magnetic field

    NASA Astrophysics Data System (ADS)

    Ogawa, J.; Zushi, Y.; Fukushima, M.; Tsukamoto, O.; Suzuki, E.; Hirakawa, M.; Kikukawa, K.

    2003-10-01

    We electrically measured AC losses in a Bi2223/Ag-sheathed pancake coil excited by a DC current in AC external magnetic field. Losses in the coil contain two kinds of loss components that are the magnetization losses and dynamic resistance losses. In the measurement, current leads to supply a current to the coil were specially arranged to suppress electromagnetic coupling between the coil current and the AC external magnetic field. A double pick-up coils method was used to suppress a large inductive voltage component contained in voltage signal for measuring the magnetization losses. It was observed that the magnetization losses were dependent on the coil current and that a peak of a curve of the loss factor vs. amplitude of the AC external magnetic field shifted to lower amplitude of the AC magnetic field as the coil current increased. This result suggests the full penetration magnetic field of the coil tape decreases as the coil current increases. The dynamic resistance losses were measured by measuring a DC voltage appearing between the coil terminals. It was observed that the DC voltage appearing in the coil subject to the AC external magnetic field was much larger than that in the coil subject to DC magnetic field.

  20. The effect of DC Joule-heating on magnetic structure of conventional amorphous wires

    NASA Astrophysics Data System (ADS)

    Aştefănoaei, Iordana; Stancu, Alexandru; Chiriac, Horia

    2007-09-01

    In this paper, we determined the effect of DC Joule-heating on magnetic structure of conventional amorphous wires starting from the stresses that appear during preparation process. For a specified value of applied electrical DC current to some amorphous wires, we have analyzed the thermal stresses that appear during the thermal treatment and we calculated the radius of axial magnetic domain (cylindrical inner core) that results after the preparation and annealing processes. We have obtained that: (a) the total stresses (owing to the successive heating, crystallization and cooling) depend strongly on the applied electrical DC current and the radius of the wires; (b) the axial magnetic domain is bigger for the wire having a bigger radius; (c) the cylindrical inner core enlarges significantly after DC Joule-heating; and (d) smaller internal stresses are obtained at smaller values of the wire's radius.

  1. PIC/MCC simulation for magnetized capacitively coupled plasmas driven by combined dc/rf sources

    NASA Astrophysics Data System (ADS)

    Yang, Shali; Zhang, Ya; Jiang, Wei; Wang, Hongyu; Wang, Shuai

    2016-09-01

    Hybrid dc/rf capacitively coupled plasma (CCP) sources have been popular in substrate etching due to their simplicity in the device structure and better plasma property. In this work, the characteristics of magnetized capacitively coupled plasmas driven by combined dc/rf sources are described by a one-dimensional Particle-in-cell/Monte Carlo collision (PIC/MCC) model. The simulation is using a rf source of 13.56MHz in argon and at a low pressure of 50mTorr. The effects of dc voltage and magnetic field on the plasmas are examined for 200-400V and 0-200Gs. It is found that, to some extent, dc voltage will increase the plasma density, but plasma density drops with increasing dc voltage. The magnetic field will enhance the plasma density significantly, due to the magnetic field will increase the electron life time and decrease the loss to the electrodes. In the bulk plasma, electron temperature is increased with the magnetic field but decreased with the dc voltage. The electron temperature in sheath is higher than in bulk plasma, due to stochastic heating in sheath is greater than Ohmic heating in bulk plasma under low gas pressure. National Natural Science Foundation of China (11405067, 11105057, 11305032, 11275039).

  2. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    SciTech Connect

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  3. Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Vlahos, L.

    1987-01-01

    The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasi-linear code based on the Ritz-Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the Cerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized.

  4. Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas

    SciTech Connect

    Moghaddam-Taaheri, E.; Vlahos, L.

    1987-10-01

    The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasilinear code based on the Ritz--Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the C-hacekerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized.

  5. Numerical characterization of magnetized capacitively coupled argon plasmas driven by combined dc/rf sources

    NASA Astrophysics Data System (ADS)

    Yang, Shali; Zhang, Ya; Wang, Hong-Yu; Wang, Shuai; Jiang, Wei

    2017-03-01

    The characteristics of magnetized capacitively coupled plasmas (CCPs) driven by combined dc/rf sources in argon have been investigated by a one-dimensional implicit Particle-in-cell/Monte Carlo collision model. Discharges operating at 13.56 MHz with a fixed rf voltage of 300 V are simulated at the pressure of 50 mTorr in argon. Four cases, i.e., CCP driven by rf source, rf + dc sources, rf source with magnetic field, and rf + dc sources with magnetic field, are presented and compared at the Vdc = -100 V, B = 50 Gs, and γi = 0.2. It is found that, with the influence of dc voltage and magnetic field, the plasma density has been greatly enhanced by over one order of magnitude over the rf-only case. This is due to the fact that the mean free path of electrons decreases by the cyclotron motion and the energetic secondary electrons are trapped by the magnetic field, leading to a significant increase in heating and ionization rates. Moreover, transition of the stochastic to Ohmic electron heating mechanism takes place as the magnetic field increases because electron kinetics can be strongly affected by the magnetic field. In general, we have demonstrated that such a configuration will enhance the discharge and thus enable CCPs work under extremely high energy density stably that can never be operated by any other configurations. We expect that such a configuration can promote many related applications, like etching, sputtering, and deposition.

  6. Dynamic of the Dust Structures under Magnetic Field Effect in DC Glow Discharges

    SciTech Connect

    Vasiliev, M. M.; D'yachkov, L. G.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    In this work, we investigate dust structures in the striation of DC glow discharges under magnetic field actions. The dependence of rotation frequency of dusty plasma structures as a function of the magnetic field was investigated. For various magnetic fields kinetic temperatures of the dust particles, diffusion coefficients, and effective coupling coefficient {gamma}* have been determined. Obtained results are analyzed and compared with theoretical predictions.

  7. Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed.

    PubMed

    Schellhammer, Sonja M; Hoffmann, Aswin L

    2017-02-21

    The integration of magnetic resonance imaging (MRI) and proton therapy for on-line image-guidance is expected to reduce dose delivery uncertainties during treatment. Yet, the proton beam experiences a Lorentz force induced deflection inside the magnetic field of the MRI scanner, and several methods have been proposed to quantify this effect. We analyze their structural differences and compare results of both analytical and Monte Carlo models. We find that existing analytical models are limited in accuracy and applicability due to critical approximations, especially including the assumption of a uniform magnetic field. As Monte Carlo simulations are too time-consuming for routine treatment planning and on-line plan adaption, we introduce a new method to quantify and correct for the beam deflection, which is optimized regarding accuracy, versatility and speed. We use it to predict the trajectory of a mono-energetic proton beam of energy E 0 traversing a water phantom behind an air gap within an omnipresent uniform transverse magnetic flux density B 0. The magnetic field induced dislocation of the Bragg peak is calculated as function of E 0 and B 0 and compared to results obtained with existing analytical and Monte Carlo methods. The deviation from the Bragg peak position predicted by Monte Carlo simulations is smaller for the new model than for the analytical models by up to 2 cm. The model is faster than Monte Carlo methods, less assumptive than the analytical models and applicable to realistic magnetic fields. To compensate for the predicted Bragg peak dislocation, a numerical optimization strategy is introduced and evaluated. It includes an adjustment of both the proton beam entrance angle and energy of up to 25° and 5 MeV, depending on E 0 and B 0. This strategy is shown to effectively reposition the Bragg peak to its intended location in the presence of a magnetic field.

  8. Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed

    NASA Astrophysics Data System (ADS)

    Schellhammer, Sonja M.; Hoffmann, Aswin L.

    2017-02-01

    The integration of magnetic resonance imaging (MRI) and proton therapy for on-line image-guidance is expected to reduce dose delivery uncertainties during treatment. Yet, the proton beam experiences a Lorentz force induced deflection inside the magnetic field of the MRI scanner, and several methods have been proposed to quantify this effect. We analyze their structural differences and compare results of both analytical and Monte Carlo models. We find that existing analytical models are limited in accuracy and applicability due to critical approximations, especially including the assumption of a uniform magnetic field. As Monte Carlo simulations are too time-consuming for routine treatment planning and on-line plan adaption, we introduce a new method to quantify and correct for the beam deflection, which is optimized regarding accuracy, versatility and speed. We use it to predict the trajectory of a mono-energetic proton beam of energy E 0 traversing a water phantom behind an air gap within an omnipresent uniform transverse magnetic flux density B 0. The magnetic field induced dislocation of the Bragg peak is calculated as function of E 0 and B 0 and compared to results obtained with existing analytical and Monte Carlo methods. The deviation from the Bragg peak position predicted by Monte Carlo simulations is smaller for the new model than for the analytical models by up to 2 cm. The model is faster than Monte Carlo methods, less assumptive than the analytical models and applicable to realistic magnetic fields. To compensate for the predicted Bragg peak dislocation, a numerical optimization strategy is introduced and evaluated. It includes an adjustment of both the proton beam entrance angle and energy of up to 25° and 5 MeV, depending on E 0 and B 0. This strategy is shown to effectively reposition the Bragg peak to its intended location in the presence of a magnetic field.

  9. DC magnetic fields from the human body generally: a historical overview.

    PubMed

    Cohen, D

    2004-11-30

    A review is presented of the earliest dc magnetic field (dcMF) measurements, made between 1969 and 1983, due to natural currents in the body. The measurements were essentially a mapping over the whole body, except for the brain (dcMEG), which was omitted because of interfering non-neural sources in the head. This mapping can be useful today in interpreting new measurements over the body, especially dcMEG data, where the new authors assume only a neural source in the head; our mapping suggests that this assumption may be in error. Briefly, in our mapping, dcMFs were found over almost the entire body; they were larger over the limbs and head than over the torso proper except over the abdomen, where it was usually the largest in the body Some of the sources were: 1. A strong and complicated reflex in the abdomen due to drinking cold water, suggesting that other dcMF reflexes might be common in the body. 2. Long muscle fibers in the limbs, suggesting sources also in scalp muscles. 3. Hair follicles due to touching the scalp; these sources could also exist, unrecognized, in recent dcMEG whole-head measurements. 4. Injury currents from the ischemic human heart, suggesting dcMFs could arise from injured muscle in the body generally. One major mechanism for producing dcMFs appeared to be a change in the potassium ion concentration in the vicinity of long excitable fibers. Overall, we concluded that the dcMFs were complicated, and it may be difficult to identify each source, especially in the head.

  10. DC Control Effort Minimized for Magnetic-Bearing-Supported Shaft

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2001-01-01

    A magnetic-bearing-supported shaft may have a number of concentricity and alignment problems. One of these involves the relationship of the position sensors, the centerline of the backup bearings, and the magnetic center of the magnetic bearings. For magnetic bearings with permanent magnet biasing, the average control current for a given control axis that is not bearing the shaft weight will be minimized if the shaft is centered, on average over a revolution, at the magnetic center of the bearings. That position may not yield zero sensor output or center the shaft in the backup bearing clearance. The desired shaft position that gives zero average current can be achieved if a simple additional term is added to the control law. Suppose that the instantaneous control currents from each bearing are available from measurements and can be input into the control computer. If each control current is integrated with a very small rate of accumulation and the result is added to the control output, the shaft will gradually move to a position where the control current averages to zero over many revolutions. This will occur regardless of any offsets of the position sensor inputs. At that position, the average control effort is minimized in comparison to other possible locations of the shaft. Nonlinearities of the magnetic bearing are minimized at that location as well.

  11. Experimental Study of Magnetic Field Effect on dc Corona Discharge in Low Vacuum

    NASA Astrophysics Data System (ADS)

    Elabbas, K.

    2014-09-01

    In the present paper, an attempt was made to investigate the effect of applying a transverse magnetic field on the dc corona discharge behavior in low vacuum. In general, two experiments were carried out in this work: the first is the ionization-region magnetic field experiment, and the second was the drift region magnetic field experiment. In these experiments, permanent magnets were used to produce magnetic field. The degree of vacuum used in this test was 0.4×105 Pa. It is found that the effect of the magnetic field increases as the degree of vacuum increases. It is also seen from this study that the corona current values are higher with magnetic fields than without magnetic fields. The experimental results indicate that the enhancement of the magnetic field near the wire discharge electrode has a significant influence on the increment of the discharge current. The effect of the magnetic field on the discharge current is the most significant with the negative corona discharges rather than with positive corona discharge. In contrast to, the curves were demonstrated that the application of magnetic fields in drift region magnetic field does not significantly change the corona discharge current. Discharge characteristics of magnetically enhanced corona discharges, extracted from this study, can be applied to various industrial applications, such as, in an electrostatic enhancement filter for the purpose of capturing fine particles, and as effective method for production of high ozone concentrations in a generator as compared to the ultraviolet (UV) radiation method.

  12. Nonlinear dynamics of Josephson vortices in a film screen under dc and ac magnetic fields

    NASA Astrophysics Data System (ADS)

    Sheikhzada, A.; Gurevich, A.

    2014-11-01

    We present detailed numerical simulations of Josephson vortices in a long Josephson junction perpendicular to a thin film screen under strong dc and ac magnetic fields. By solving the sine-Gordon equation, we calculated the threshold magnetic field for penetration of fluxons as a function of frequency, and the power dissipated by oscillating fluxons as functions of the ac field amplitude and frequency. We considered the effects of superimposed ac and dc fields, and a bi-harmonic magnetic field resulting in a vortex ratchet dynamics. The results were used to evaluate the contribution of weak-linked grain boundaries to the nonlinear surface resistance of polycrystalline superconductors under strong electromagnetic fields, particularly thin film screens and resonator cavities.

  13. Generation and Characterization of Magnetized Bunched Electron Beam from a DC High Voltage Photogun

    NASA Astrophysics Data System (ADS)

    Suleiman, Riad; Poelker, Matthew; Benesch, Jay; Hannon, Fay; Hernandez-Garcia, Carlos; Wang, Yan

    2016-03-01

    To maintain ion beam emittance and extend luminosity lifetime, the Jefferson Lab design of the Electron Ion Collider includes a bunched magnetized electron beam cooler as part of the Collider Ring. We are building a prototype magnetized gun using our newly commissioned 325 kV inverted-insulator DC high voltage photogun. This contribution describes planned measurements of beam magnetization as a function of bunch charge and average current, and laser beam size and magnetic field strength at the photocathode. Results will be compared to particle tracking code simulations. Photocathode lifetime at milli-ampere current will be compared to beam lifetime with no magnetization, to explore the impact of the magnetic field on photogun operation. Combined, these measurements and simulations will benchmark our design tools and provide insights on ways to optimize the electron cooler. This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177.

  14. DC CICC retrofit magnet. Quarterly progress report, July 1992

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-10-30

    The coil system presented here for the MHD retrofit magnet incorporates many features of the latest in superconducting magnet technology and finite element modeling to create an efficient and viable design concept. At the core of the design is the niobium titanium (NbTi) superconducting Cable-in-Conduit Conductor (CICC). Engineered to create moderately high magnetic fields (up to 8 T) with essentially no power loss, this specific CICC design provides good load carrying capacity, operating margin from a perturbation such as a local heat input, and coil protection in the event of a quench transient. The CICC is wound on a mandrel into long, tapered, saddle shaped single conductor thickness pancakes. By defining the appropriate number of conductor turns in each pancake, the saddle coils can be stacked to form a semi-elliptical winding pack cross section. Extruded aluminum filler blocks are fitted into the steps, at the edge of the pancake and present a smooth surface to the supporting structure. The semi-elliptical conductor array is supported by an identically shaped strap at all locations except where the end turns sweep over the MHD channel. The strap resists the electromagnetic forces tending to separate the coils on each side of the channel. Low friction surfaces are placed between conductor pancakes, and between the inside skin of the support straps and the outside surface of the conductor winding pack. This allows relative movement between pancakes, and between the strap and coil, thereby reducing shear stresses and coulombic friction heating which would otherwise tend to crack insulation, load joints, and initiate a quench in the superconducting cable.

  15. Evolution of an electron energy distribution function in a weak dc magnetic field in solenoidal inductive plasma

    SciTech Connect

    Lee, Min-Hyong; Choi, Seong Wook

    2008-12-01

    We investigated the evolution of the electron energy distribution function (EEDF) in a solenoidal inductively coupled plasma surrounded by an axial dc magnetic field. The increase in the dc magnetic field caused the EEDF to evolve from a bi-Maxwellian to a Maxwellian distribution. At the discharge center, the number of low energy electrons was significantly reduced while the high energy electron population showed little change when a weak dc magnetic field was present. However, at the discharge radial boundary, the high energy electron population decreased significantly with the magnetic field while the change in low energy population was not prominent compared to the discharge boundary. These changes in EEDFs at the boundary and center of the discharge are due to the radial confinement and the restriction of radial transport of electrons by dc magnetic field.

  16. Effect of design variables on irreversible magnet demagnetization in brushless dc motor

    NASA Astrophysics Data System (ADS)

    Kim, Tae Heoung; Lee, Ju

    2005-05-01

    The large demagnetizing currents in brushless dc (BLdc) motor are generated by the short-circuited stator windings and the fault of a drive circuit. So, irreversible magnet demagnetization occurs due to the external demagnetizing field by these currents. In this paper, we deal with the effect of design variables on irreversible magnet demagnetization in BLdc motor through the modeling approach using a two-dimensional finite-element method (2D FEM). The nonlinear analysis of a permanent magnet is added to 2D FEM to consider irreversible demagnetization. As a result, it is shown that magnet thickness, teeth surface width, and rotor back yoke thickness are the most important geometrical dimensions of BLdc motor in terms of irreversible magnet demagnetization.

  17. Noninvasive detection of unevenly magnetized permanent magnet of a brushless dc motor by characterizing back electromotive force

    NASA Astrophysics Data System (ADS)

    Lee, C. I.; Jang, G. H.

    2009-04-01

    Uneven magnetization of permanent magnets (PMs) is one of the major sources of unbalanced magnetic force and torque ripple, which excite a brushless dc (BLDC) motor. This paper investigates the frequency contents of the back electromotive force (BEMF) due to the unevenly magnetized PMs in a BLDC motor. The magnetic field of a BLDC motor is solved by using the finite element method, and the BEMF is calculated by differentiating the flux linkage with respect to time. The characteristics of BEMF are investigated by using the spectral analysis. Magnetic flux density of the ideally magnetized PMs has the harmonics of the pole-pair number, but unevenly magnetized PMs generate the additional harmonics. This research shows numerically and experimentally that the frequency components of the BEMF are determined by the least common multiple between the frequency contents of magnetic flux density from the PMs and the slot number per phase. It also shows that the magnetized status of the PMs of a BLDC can be noninvasively identified by monitoring the frequencies and the amplitudes of BEMF.

  18. Thermal relaxation of a two dimensional plasma in a dc magnetic field. Part 2: Numerical simulation

    NASA Technical Reports Server (NTRS)

    Hsu, J. Y.; Joyce, G.; Montgomery, D.

    1974-01-01

    The thermal relaxation process for a spatially uniform two dimensional plasma in a uniform dc magnetic field is simulated numerically. Thermal relaxation times are defined in terms of the time necessary for the numerically computer Boltzman H-function to decrease through a given part of the distance to its minimum value. Dependence of relaxation time on two parameters is studied: number of particles per Debye square and ratio of gyrofrequency to plasma frequency.

  19. Influence of the permanent magnet overhang on the performance of the brushless dc motor

    NASA Astrophysics Data System (ADS)

    Wang, J. P.; Lieu, D. K.; Lorimer, W. L.; Hartman, A.

    1998-06-01

    Axial overhang of the permanent magnets has been used to enhance the performance of radial flux brushless dc motors, but its precise contribution to performance is not well known. This article aims at the investigation of the overhang effects by finite element and lumped parameter modeling. An empirical formula which allows two-dimensional analysis to account for overhang effects is proposed. A three-dimensional equivalent magnetic circuit model is developed and its ability to accurately predict overhang effects is assessed. Results of finite element and lumped parameter models are compared and a design methodology is forwarded.

  20. Dependences of microwave surface resistance of HTS thin films on applied dc magnetic fields parallel and normal to the substrate

    NASA Astrophysics Data System (ADS)

    Sato, K.; Sato, S.; Ichikawa, K.; Watanabe, M.; Honma, T.; Tanaka, Y.; Oikawa, S.; Saito, A.; Ohshima, S.

    2014-05-01

    We investigated the dc magnetic field and temperature dependences of microwave surface resistance (Rs) of high-temperature superconductor (HTS) films. Previously, we reported that the surface resistance RsRs(n) under a dc magnetic field applied normaly to the substrate increased when increasing the applied magnetic field. For NMR application, we have to examine the Rs(p) under the dc magnetic field parallel to the substrate. We measured the Rs(p) of the YBCO and DyBCO thin films with a thickness of 500 nm deposited on a MgO (100) substrate using the dielectric resonator method at 21.8 GHz, and a dc magnetic field of up to 5 T. In a zero magnetic field, the values of Rs(n) and Rs(p) were 0.35 mQ at 20 K. Under the dc magnetic field, the Rs(n) and the Rs(p) also increased with increasing magnetic field, however, the Rs(p) had a lower magnetic field dependence and the value was about 1/10 of that of the Rs(n). The Rs(p) at 16.4 T and at 700 MHz could be estimated by the two-fluid model. The Rs(p) value was about 1/2600 compared with that of copper at 20 K. As a result, we clarified that 500 nm thick YBCO and DyBCO thin films could provide advantages for NMR application.

  1. Computational studies of suppression of microwave gas breakdown by crossed dc magnetic field using electron fluid model

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-08-01

    The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.

  2. An analytical nonlinear model for laminate multiferroic composites reproducing the DC magnetic bias dependent magnetoelectric properties.

    PubMed

    Lin, Lizhi; Wan, Yongping; Li, Faxin

    2012-07-01

    In this work, we propose an analytical nonlinear model for laminate multiferroic composites in which the magnetic-field-induced strain in magnetostrictive phase is described by a standard square law taking the stress effect into account, whereas the ferroelectric phase retains a linear piezoelectric response. Furthermore, differing from previous models which assume uniform deformation, we take into account the stress attenuation and adopt non-uniform deformation along the layer thickness in both piezoelectric and magnetostrictive phases. Analysis of this model on L-T and L-L modes of sandwiched Terfenol-D/lead zirconate titanate/Terfenol-D composites can well reproduce the observed dc magnetic field (H(dc)) dependent magnetoelectric coefficients, which reach their maximum with the H(dc) all at about 500 Oe. The model also suggests that stress attenuation along the layer thickness in practical composites should be taken into account. Furthermore, the model also indicates that a high volume fraction of magnetostrictive phase is required to get giant magnetoelectric coupling, coinciding with existing models.

  3. Deflection of high-intensity pulsed ion beam in focusing magnetically insulated ion diode with a passive anode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Q.; Ding, L.; Zhang, Z. C.; Yu, N.; Pushkarev, A.; Lei, M. K.

    2016-12-01

    The focused high-intensity pulsed ion beam (HIPIB) of 100 ns order pulse is generated with respect to its spatial stability in two types of magnetically insulated ion diodes (MIDs) with geometrical focusing configuration using the passive anode, i.e., insulation of electrons with an external magnetic-field and a self-magnetic field, respectively. Anode plasma formation for the ion beam generation is based on different processes in the two types of MIDs, as the surface breakdown on the polymer-coated anode operated in the unipolar pulse mode for the external-magnetic field MID and the explosive electron emission on the graphite anode in the bipolar-pulse mode for the self-magnetic field MID. Typical energy density per pulse is in the range of 3-6 J/cm2, at an accelerating voltage of 200-300 kV with a pulse duration of 120-150 ns. The spatial deviations of the HIPIB is evaluated by measuring the energy density distribution by using an infrared diagnostic method considering neutralizing during the ion beam propagation to the focal plane with a spatial resolution of 1 mm. The ion beam deviation is about ±1.5 mm for the external-magnetic field MID and ±2.5 mm for the self-magnetic field MID, leading to a fluctuation in the energy density of 1%-12%, and 9%-27% within a 10 mm range at the focal point, respectively. It is revealed that the displacement of different parts of a beam spot occurs nonsynchronously, mainly attributable to the intrinsic diode processes of plasma generation and expansion, and ion beam extraction from the anode-cathode gap, while the influence of magnetic field in the transportation region is negligible. The ion beam spatial deviation has a major influence on the shot-to-shot stability of ion beam, and it is suggested that the stability can be enhanced via diode process improvement.

  4. New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT

    NASA Astrophysics Data System (ADS)

    Zeng, Wubing; Ding, Yonghua; Yi, Bin; Xu, Hangyu; Rao, Bo; Zhang, Ming; Liu, Minghai

    2014-11-01

    In order to advance the research on suppressing tearing modes and driving plasma rotation, a DC power supply (PS) system has been developed for dynamic resonant magnetic perturbation (DRMP) coils and applied in the J-TEXT experiment. To enrich experimental phenomena in the J-TEXT tokamak, applying the circulating current four-quadrant operation mode in the DRMP DC PS system is proposed. By using the circulating current four-quadrant operation, DRMP coils can be smoothly controlled without the dead-time when the current polarity reverses. Essential circuit analysis, control optimization and simulation of desired scenarios have been performed for normal current. Relevant simulation and test results are also presented.

  5. Measurements of AC Loss In Second-Generation HTS Tapes in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Osofsky, M. S.; Soulen, R. J.; Gubser, D. U.; Datta, T.

    2008-03-01

    The successful application of superconductivity to motors and other power system components depends on the characterization and subsequent minimization of the ac loss in the superconductor used for fabrication of the component. The superconductive component, excited by an ac power source, may be exposed to large dc magnetic fields and/or ac fields. To further complicate the situation, the transport properties of the tapes are strongly dependent on the angle between the applied field and the YBCO c-axis (normal to the tape surface). We report on measurements of the transport ac loss of a YBaCuO tape at 65 K, at several frequencies, in applied dc fields of 1-3 T with the field parallel and perpendicular to the tape normal.

  6. DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    TonThat, Dinh M.

    1998-04-01

    The dc Superconducting Quantum Interference Device (SQUJD) is a very sensitive detector of magnetic flux, with a typical flux noise of the order of 1 μΦ0Hz-1/2 at liquid helium temperature (Φ0=h/2e). This inherent flux sensitivity of the SQUID is used in a spectrometer for the detection of nuclear magnetic resonance (NMR.)and nuclear quadruple resonance (NQR). The processing magnetic field from the nuclear spins is coupled to the SQUID by mean of a flux transformer. The SQUID NMR spectrometer is used to measure the longitudinal relaxation time T1 of solid 129Xe at 4.2 K down to 0.1 mT.

  7. Numerical analysis of the electromechanically coupled magnetic field in brushless DC motors

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Chang, J. H.

    2001-05-01

    This paper presents a numerical method to solve the electromechanically coupled equations in a brushless DC (BLDC) motor, i.e. Maxwell equation, voltage equation and Newton's equations by introducing the nonlinear finite element analysis and the time stepping method. It also investigates the coupling effect of the eccentric motion of a rotor on the characteristics of the magnetic force and the resulting motion of a BLDC motor by analyzing the free response and Fourier transform of the excitation force and the resulting displacement.

  8. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  9. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  10. Technique for the direct measurement of DC-like magnetic biosignals demonstrated by the cold reflex of the abdomen.

    PubMed

    Schnabel, A; Thiel, F; Mueller, W; Burghoff, M

    2004-11-30

    Very low frequency dc-like signals, such as the cold reflex, could only be measured up to now by moving the subject repeatedly, up to the magnetic detector. PTB's novel magnetically shielded room BMSR 2, together with a low noise 16 channel SQUID magnetometer, allow the recording of dc-like signals without moving the subject; these are direct measurements. The total observed magnetic drifts are limited by 1/f-noise and external disturbances to a value below 6 pT/h. The measurement is continuous in time, therefore provides frequency resolution from dc to several kHz. This allows us to also observe the changing pattern between two different static magnetic states. As an example, the measurement of the cold reflex of the abdomen is shown and discussed. Not only the expected cold reflex, but other periodic and spontaneous signals from the human body can be seen with this method.

  11. DC CIRCUIT POWERED BY ORBITAL MOTION: MAGNETIC INTERACTIONS IN COMPACT OBJECT BINARIES AND EXOPLANETARY SYSTEMS

    SciTech Connect

    Lai Dong

    2012-09-20

    The unipolar induction DC circuit model, originally developed by Goldreich and Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such a model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to the breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultracompact white dwarf binaries, we find that unipolar induction does not provide adequate energy dissipation to explain the observed X-ray luminosities of several sources. For exoplanetary systems containing close-in Jupiters or super-Earths, the magnetic torque and energy dissipation induced by the orbital motion are negligible, except possibly during the early T Tauri phase, when the stellar magnetic field is stronger than 10{sup 3} G.

  12. Genetic algorithm based design optimization of a permanent magnet brushless dc motor

    NASA Astrophysics Data System (ADS)

    Upadhyay, P. R.; Rajagopal, K. R.

    2005-05-01

    Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.

  13. Microwave Deflection Sensor

    NASA Technical Reports Server (NTRS)

    Shores, Paul; Kobayashi, Herb; Ngo, Phong; Lichtenberg, C. L.

    1988-01-01

    Doppler-radar instrument measures small deflections or vibrations of reflecting surface. Acting as interferometric micrometer, instrument includes combination of analog and digital circuits measuring change in phase of radar return due to movement of reflecting surface along signal-propagation path. Includes homodyne Doppler-radar transceiver and digital signal-processing circuitry to measure change in phase shift as target deflects.

  14. The 100,000 amp dc power supply for a staged hadron collider superferric magnet

    SciTech Connect

    Hays, Steven L.; Claypool, Bradley; Foster, G.William; /Fermilab

    2005-09-01

    A 1.5 volt 100,000 amp DC switcher power supply was developed for testing a superferric magnet string at FNAL. This supply was used during testing as both the ramping supply and holding supply powering a single magnet load with a total load resistance of 0.7{micro} Ohms. The supply consists of ten paralleled switcher cells, powered by a 400 volt/600 Amp DC power supply. Each cell consists of an IGBT H-bridge driving a step-down transformer at a switching frequency of 2 kHz. The transformer has an effective turns ratio of 224:1. The secondary consists of 32 parallel single-turn full wave rectifier windings. The rectification is done with 64 Shottky diodes. Each cell is rated at 1.5 volts/10,000 amps. During this test each cell was operated as a constant power source without load current or field feedback. This paper will describe the design of the switcher cell and control system used during testing. We will also describe the next level of improvements to the current feedback system to improve the ramp control.

  15. Prediction and analysis of magnetic forces in permanent magnet brushless dc motor with rotor eccentricity

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, J. T.; Jabbar, M. A.

    2006-04-01

    In design of permanent magnet motors for high-precision applications, it is sometimes necessary, early in the design stage, to have a detailed analysis of the effect of rotor eccentricity that may result from manufacturing imperfectness or use of fluid dynamic or aerodynamic bearings. This paper presents an analytical model for electromagnetic torque and forces in permanent magnet motors with rotor eccentricity. The model gives an insight to the relationship between the effect of the eccentricity and the other motor design parameters on the electromagnetic forces. It is shown that the calculated magnetic forces obtained from this model agree well with those obtained from numerical simulations that are very computationally demanding.

  16. A universal DC characterisation system for hard and soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Anderson, Philip

    A fully automatic system has been designed for the accurate measurement of the DC magnetic properties of soft and hard ferromagnetic materials utilising discrete calibrated instruments in order to provide a traceable calibration route separate from the transfer of standard magnetic test samples. Custom written software is used to operate the system in one of three modes, constant d H/d t, variable d H/d t and a second quadrant demagnetisation curve mode. The first two of these modes are utilised for soft magnetic materials with the second mode varying d H/d t in order to keep d B/d t relatively constant. Both modes use cycle times of between 60 and 300 s and may utilise a variety of test configurations including a bar permeameter, electromagnet, ring samples or Epstein frame. The minimum cycle time and the most appropriate mode is dependent on the particular sample and the effect of this on materials with a large d B/d H is significant. Measurements on soft materials include major BH loop, minor BH loops, first-order reversal curves, remanence, coercivity, normal magnetisation curve, peak permeability and loop area. The third mode is used with an electromagnet to measure the demagnetisation curve of hard magnetic materials up to a maximum demagnetisation field of 1.6 MA/m. The measurement algorithm modulates d H/d t depending on d B/d t and incorporates holdback in order to accommodate rare earth materials which exhibit high viscosity.

  17. Mixed mode oscillations in presence of inverted fireball in an excitable DC glow discharge magnetized plasma

    NASA Astrophysics Data System (ADS)

    Mitra, Vramori; Prakash, N. Hari; Solomon, Infant; Megalingam, Mariammal; Sekar Iyengar, A. N.; Marwan, Norbert; Kurths, Jürgen; Sarma, Arun; Sarma, Bornali

    2017-02-01

    The typical phenomena of mixed mode oscillations and their associated nonlinear behaviors have been investigated in collisionless magnetized plasma oscillations in a DC glow discharge plasma system. Plasma is produced between a cylindrical mesh grid and a constricted anode. A spherical mesh grid of 80% optical transparency is kept inside a cylindrical grid to produce an inverted fireball. Three Langmuir probes are kept in the ambient plasma to measure the floating potential fluctuations at different positions of the chamber. It has been observed that under certain conditions of discharge voltages and magnetic fields, the mixed mode oscillation phenomena (MMOs) appears, and it shows a sequential alteration with the variation of the magnetic fields and probe positions. Low frequency instability has been observed consistently in various experimental conditions. The mechanisms of the low frequency instabilities along with the origin of the MMOs have been qualitatively explained. Extensive linear and nonlinear analysis using techniques such as fast Fourier transform, recurrence quantification analysis, and the well-known statistical computing, skewness, and kurtosis are carried out to explore the complex dynamics of the MMO appearing in the plasma oscillations under various discharge conditions and external magnetic fields.

  18. DC Magnetization and FMR results of Fibonacci Distortions on the Honeycomb Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Woods, Justin; Farmer, Barry; Hastings, Todd; Visak, Justin; de Long, Lance

    Nanofabrication techniques allow magnetic thin films to be lithographically-patterned into arrays of interacting macro-spins that can be designed to study emergent physical properties. Here we discuss the effects of continuous symmetry breaking on the equilibrium and dynamic magnetic properties of frustrated magnetic metamaterials. We have pattered five Permalloy (Ni0.80Fe0.20) samples of distorted Kagome ASI arrays that are generated by repeated application of a substitution algorithm. This algorithm employs an aperiodic Fibonacci sequence of binary digits that can be mapped into short (d1) and long (d2) distances. This distorts film segment lengths while the width (nominally 70 nm) and thickness (25 nm) remain constant. Additionally, the coordination of each three-fold Kagome vertex is continuously modified via these distortions. Micromagnetic simulations predict the Fibonacci distortions causes jamming of Dirac String propagation. We report DC magnetization and FMR dispersion for different magnitudes of distortion, and compare these results to simulation. Research at University of Kentucky supported by U.S. Nationsal Science Foundation Grant No. DMR-1506979.

  19. Investigation of multifractal nature of floating potential fluctuations obtained from a dc glow discharge magnetized plasma

    NASA Astrophysics Data System (ADS)

    Shaw, Pankaj Kumar; Saha, Debajyoti; Ghosh, Sabuj; Janaki, M. S.; Iyengar, A. N. Sekar

    2017-03-01

    In this paper, multifractal detrended fluctuation analysis (MF-DFA) has been used to analyze the floating potential fluctuations obtained with a Langmuir probe from a dc glow discharge magnetized plasma device. The generalized Hurst exponents (h(q)) , local fluctuation function (Fq(s)) , the Rényi exponents (τ(q)) and the multifractal spectrum F(α) have been calculated by applying the MF-DFA method. The result of the MF-DFA shows the multifractal nature of these fluctuations. We have investigated the influence of magnetic field on the multifractal nature of the fluctuations and it is seen that degree of multifractality is reduced with the increase in the magnetic field strength. The values of h(q) have been restricted between 0.7 and 1 for the magnetized fluctuations. This result is evidence of the existence of long-range correlations in the fluctuations. Furthermore, we employed shuffle and surrogate approaches to analyze the origins of multifractality. Comparing the MF-DFA results for the data set to those for shuffled and surrogate series, we have found that its multifractal nature is due to the existence of significant long-term correlation.

  20. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    SciTech Connect

    Kim, Keun Su

    2009-03-23

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field.

  1. Current deflection NDE for pipeline inspection and monitoring

    NASA Astrophysics Data System (ADS)

    Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.

    2016-02-01

    Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.

  2. Plasma kinetic processes in a strong d.c. magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1976-01-01

    Recent results in the kinetic theory of a strongly magnetized plasma are surveyed. Emphasis is on the electrostatic guiding-center plasma in two dimensions, in both the fluid and 'charged rod' descriptions. The basic kinetic description of the plasma is in terms of the statistically-distributed Fourier coefficients associated with the velocity and 'enstrophy' (charge density) fields. It is a universal tendency in such media for enstrophy to flow to shorter wavelengths but for energy to flow to longer wavelengths. A consequence of the energy flow to longer wavelengths is the generation of long-range order in the form of macroscopic vortices. These kinds of structure have been called 'convection cells' and can be extraordinarily efficient in transporting particles transverse to a magnetic field. The tendency to vortex formation can be disrupted by collisions between particles. Modifications of the Fokker-Planck equation for a plasma produced by a strong dc magnetic field are considered in both two and three dimensions.

  3. Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance

    SciTech Connect

    Su, G.J.

    2001-10-29

    Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency. This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.

  4. Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1977-01-01

    Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.

  5. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  6. Development of integrated AC-DC magnetometer using high-Tc SQUID for magnetic properties evaluation of magnetic nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Mawardi Saari, Mohd; Takagi, Ryuki; Kusaka, Toki; Ishihara, Yuichi; Tsukamoto, Yuya; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2014-05-01

    We developed an integrated AC-DC magnetometer using a high critical temperature superconducting quantum interference device (high-Tc SQUID) to evaluate the static and dynamic magnetic properties of magnetic nanoparticles (MNPs) in solution. The flux-transformer method consisted of first-order planar and axial differential coils that were constructed for static and dynamic magnetization measurements, respectively. Vibrating-sample and harmonic detection techniques were used to reduce interference from excitation magnetic fields in the static and dynamic magnetization measurements, respectively. Static and dynamic magnetization measurements were performed on commercially available iron oxide nanoparticles in diluted solutions. The magnetic responses increased with the increase in concentration of the solutions in both measurement results. The magnetization curves showed that the diamagnetic signal due to the carrier liquid of the iron oxide nanoparticles existed in a dilute solution. Biasing with a proper DC magnetic field in the dynamic magnetization measurement resulted in improved signals of the second and third harmonics. Therefore, highly sensitive magnetic characterizations of MNPs utilizing the static and dynamic magnetization measurement are possible via the developed system.

  7. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

    PubMed Central

    Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.

    2013-01-01

    We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies.

  8. Particle beam and crabbing and deflecting structure

    DOEpatents

    Delayen, Jean [Yorktown, VA

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  9. Effect of maximum torque according to the permanent magnet configuration of a brushless dc motor with concentrated winding

    NASA Astrophysics Data System (ADS)

    Lee, Kab-Jae; Kim, Sol; Lee, Ju; Oh, Jae-Eung

    2003-05-01

    A brushless dc (BLDC) motor, which has a permanent magnet (PM) component, is a potential candidate for hybrid or electric vehicle applications. Minimizing the BLDC motor size is an important requirement for application. This requirement is usually satisfied by adopting a high performance permanent magnet or improved winding methods. The PM configuration is also a critical point in design. This article presents the effect of the PM configuration on motor performance, especially the maximum torque. Four representative BLDC motor types are analytically investigated under the condition that the volume of the PM and magnetic material is constant. An embedded interior permanent magnet motor has the best torque performance the maximum torque of which is more than 1.5 times larger than that of the surface mounted permanent magnet motor. The performance of back electromotive force, instantaneous torques is also investigated.

  10. Draft air deflecting device

    SciTech Connect

    Riley, J.E.

    1982-05-18

    A draft air deflecting device is mountable proximate to a window contained in a firebox and serves as a conduit which directs draft air across the inner surface of the window prior to its supporting combustion of the fuel in the firebox. In this respect , the draft air deflecting device is formed as a box which communicates with draft air holes located in the firebox and which includes a forwardly extending lip serving to define a nozzle for both increasing the velocity and directing the incoming draft air across the firebox window. The incoming draft air is thus utilized to cool and to prevent soot, creosote and other particulates from accumulating on the window.

  11. Undulator Gravitational Deflection

    SciTech Connect

    Bowden, G.

    2005-01-31

    This note estimates distortions imposed by gravity on LCLS undulator strong-backs. Because of the strongback's asymmetric cross section, gravitational forces cause both torsion as well as simple bending. The superposition of these two effects yields a 4.4 {micro}m maximum deflection and a 0.16 milli radian rotation of the undulator axis. The choice of titanium is compared to aluminum.

  12. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  13. Double deflection system for an electron beam device

    DOEpatents

    Parker, Norman W.; Golladay, Steven D.; Crewe, Albert V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations.

  14. dc properties of series-parallel arrays of Josephson junctions in an external magnetic field

    SciTech Connect

    Lewandowski, S.J. )

    1991-04-01

    A detailed dc theory of superconducting multijunction interferometers has previously been developed by several authors for the case of parallel junction arrays. The theory is now extended to cover the case of a loop containing several junctions connected in series. The problem is closely associated with high-{ital T}{sub {ital c}} superconductors and their clusters of intrinsic Josephson junctions. These materials exhibit spontaneous interferometric effects, and there is no reason to assume that the intrinsic junctions form only parallel arrays. A simple formalism of phase states is developed in order to express the superconducting phase differences across the junctions forming a series array as functions of the phase difference across the weakest junction of the system, and to relate the differences in critical currents of the junctions to gaps in the allowed ranges of their phase functions. This formalism is used to investigate the energy states of the array, which in the case of different junctions are split and separated by energy barriers of height depending on the phase gaps. Modifications of the washboard model of a single junction are shown. Next a superconducting inductive loop containing a series array of two junctions is considered, and this model is used to demonstrate the transitions between phase states and the associated instabilities. Finally, the critical current of a parallel connection of two series arrays is analyzed and shown to be a multivalued function of the externally applied magnetic flux. The instabilities caused by the presence of intrinsic serial junctions in granular high-{ital T}{sub {ital c}} materials are pointed out as a potential source of additional noise.

  15. Evaluation of the intragrain critical current density in a multidomain FeSe crystal by means of dc magnetic measurements

    NASA Astrophysics Data System (ADS)

    Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S.

    2015-11-01

    The magnetic behavior of an iron-based FeSe crystal sample has been studied by means of dc magnetization measurements as a function of the temperature (T), the dc magnetic field (H) and the time (t). The M(T) curves show a discrepancy in the determination of the onset of the critical temperature T C with respect to what is observed in the superconducting M(H) measurements obtained by subtracting the ferromagnetic background from the curves measured at various temperatures. By using magnetic relaxation measurements M(t), the correct value of T C has been obtained. Moreover, the superconducting M(H) loops show the presence of a noisy signal up to an anomalous ‘peak effect’ only found for positive and negative increasing fields. These features have been analyzed by fitting the temperature dependence of the critical current density J c(T), extracted from the M(H) loops, with the help of the J c(T) dependencies governing an S-N-S junction network. This analysis has allowed us to interpret the behavior found in the M(H) loops and to obtain the value of the intrinsic critical current density J 0 which is not influenced by the presence of the junctions.

  16. Enhancing DC Glow Discharge Tube Museuum Displays using a Theremin Controlled Helmholtz Coil to Demonstrate Magnetic Confinement

    NASA Astrophysics Data System (ADS)

    Siu, Theodore; Wissel, Stephanie; Guttadora, Larry; Liao, Susan; Zwicker, Andrew

    2010-11-01

    Since their discovery in the mid 1800's, DC glow discharge apparatuses have commonly been used for spectral analysis, the demonstration of the Frank-Hertz experiment, and to study plasma breakdown voltages following from the Paschen Curve. A DC glow discharge tube museum display was outfitted with a Helmholtz Coil electromagnet in order to demonstrate magnetic confinement for a science museum display. A device commonly known as a ``theremin'' was designed and built in order to externally control the Helmholtz Coil current and the plasma current. Originally a musical instrument, a theremin has two variable capacitors connected to two radio frequency oscillators which determine pitch and volume. Using a theremin to control current and ``play'' the plasma adds appeal and durability by providing a new innovative means of interacting with a museum exhibit. Educationally, students can use the display to not only learn about plasma properties but also electronic properties of the human body.

  17. Nuclear magnetic resonance with dc SQUID (Super-conducting QUantum Interference Device) preamplifiers

    SciTech Connect

    Fan, N.Q.; Heaney, M.B.; Clark, J.; Newitt, D.; Wald, L.; Hahn, E.L.; Bierlecki, A.; Pines, A.

    1988-08-01

    Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by /sup 35/Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 /times/ 10/sup 16/ nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing /sup 35/Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in /sup 119/Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10/sup 18/ nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in /sup 195/Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs.

  18. Development of a DC Glow Discharge Exhibit for the Demonstration of Plasma Behavior in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bruder, Daniel

    2010-11-01

    The DC Glow Discharge Exhibit is intended to demonstrate the effects a magnetic field produces on a plasma in a vacuum chamber. The display, which will be featured as a part of The Liberty Science Center's ``Energy Quest Exhibition,'' consists of a DC glow discharge tube and information panels to educate the general public on plasma and its relation to fusion energy. Wall posters and an information booklet will offer brief descriptions of fusion-based science and technology, and will portray plasma's role in the development of fusion as a viable source of energy. The display features a horse-shoe magnet on a movable track, allowing viewers to witness the effects of a magnetic field upon a plasma. The plasma is created from air within a vacuum averaging between 100-200 mTorr. Signage within the casing describes the hardware components. The display is pending delivery to The Liberty Science Center, and will replace a similar, older exhibit presently at the museum.

  19. Mean field analysis of the high temperature magnetic properties of terbium iron garnet in strong DC fields

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine; Wang, Wei

    2015-11-01

    This paper is devoted to the description of the magnetic phase diagrams (MPD) together with a special interest to the determination of more precise values of some reliable parameters at the compensation point, Tcomp=243.5±0.5 K of the terbium iron garnet, Tb3Fe5O12 or TbIG. Using isothermal magnetizations performed on single crystal in strong DC magnetic fields up to 200 kOe applied along the <111>, <110> and <100> directions within the temperature range 128-295 K, field-induced phase transitions between collinear and canted phases are observed in the vicinity of Tcomp at critical fields, Hc2. In comparison with the measurement at zero external magnetic field, the specific heat, Cp(T) at 80 kOe along <111> shows an excess around Tcomp characterized by an anomaly which has a width in the boundaries of the canted phase and a maximum at 252 K, the more accurate value of the critical temperature, TC* of the MPD in the (Hc2-T) plane. Better determinations of the molecular field coefficients which represent the magnetic interactions on the Tb sublattice are obtained by an improved molecular field model based on the saturation effects of the Tb sublattice and the differential susceptibility contribution due to the Fe sublattices to the total magnetic susceptibility of TbIG. The results are discussed in terms of the previous theoretical studies of the MPD predicted for weakly anisotropic ferrimagnets.

  20. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    NASA Astrophysics Data System (ADS)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  1. Development of a dc motor with virtually zero powered magnetic bearing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The development of magnetic bearings for use in direct current electric motors is discussed. The characteristics of the magnets used in the construction of the bearings are described. A magnetic bearing using steel armoring on permanent magnets was selected for performance tests. The specifications of the motor are presented. The test equipment used in the evaluation is described.

  2. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field

    DOEpatents

    Casada, D.A.; Haynes, H.D.

    1993-08-17

    One or more sources of steady magnetic field are carefully located on the outside of a valve body. The constant magnetic field is transmitted into the valve body and valve internals. A magnetic field detector carefully located on the outside of the valve body detects the intensity of the magnetic field at its location. As the position of a valve internal part is changed, there is an alteration in the magnetic field in the valve, and a consequent change in the detected magnetic field. Changes in the detected signal provide an indication of the position and motion of the valve internals.

  3. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field

    DOEpatents

    Casada, Donald A.; Haynes, Howard D.

    1993-01-01

    One or more sources of steady magnetic field are carefully located on the outside of a valve body. The constant magnetic field is transmitted into the valve body and valve internals. A magnetic field detector carefully located on the outside of the valve body detects the intensity of the magnetic field at its location. As the position of a valve internal part is changed, there is an alteration in the magnetic field in the valve, and a consequent change in the detected magnetic field. Changes in the detected signal provide an indication of the position and motion of the valve internals.

  4. THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR

    SciTech Connect

    Kay, C.; Opher, M.

    2015-10-01

    Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which the CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.

  5. Surface Resistance of YBCO Thin Films under High DC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ohshima, S.; Kitamura, K.; Noguchi, Y.; Sekiya, N.; Saito, A.; Hirano, S.; Okai, D.

    2006-06-01

    We have studied the magnetic dependence of the surface resistance (Rs) of YBa2Cu3Oy (YBCO) thin films by changing the direction of an applied magnetic field by mean of a micriostrip line resonator method (MLRM). We measured Rs(0), Rs(90) and Rs(45) to which the direction of the applied magnetic field was respectively normal, parallel and at 45° to the film surface. In the low temperature region, (below 40 K), the Rs(0) had low magnetic dependence; however, the Rs(90) and Rs(45) had high magnetic dependence, even below 10 K. We examined the magnetic field dependence of Rs (90) and Rs(0) using the London equation, and found that Rs(90) in the higher temperature region could be mostly explained by the theory.

  6. High frequency AC response, DC resistivity and magnetic studies of holmium substituted Ni-ferrite: A novel electromagnetic material

    NASA Astrophysics Data System (ADS)

    Pervaiz, Erum; Gul, I. H.

    2014-01-01

    Nanoparticles of holmium substituted nickel ferrites (NiHoxFe2-xO4) with x ranging from 0.0 to 0.15 have been prepared by the sol-gel auto-combustion method. Structural and morphology studies have been performed by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). XRD patterns revealed the formation of pure spinel phase ferrites without any impurity phase. Lattice parameter increases along with a decrease in crystallite size with increasing the concentration of Ho3+ in the parent nickel ferrite due to large ionic radius of Ho3+ (0.901 Å) as compared to Fe3+ (0.67 Å). SEM shows the spherical, uniformly distributed homogenous nanoparticles grown by controlled reaction parameters of the sol-gel method. Complex permittivity (ɛ*) and complex electric modulus (M*) have been studied for the present nanoferrites in the frequency ranges of 1 MHz-1 GHz. Frequency dependent dielectric parameters (relative permittivity (ɛ'), dielectric loss (ɛ″), dielectric loss tangent (tan δ)) decreases due to holmium substitution in nickel ferrites, showing the electrical conduction is decreasing in the nickel holmium ferrites with increase in the concentration of holmium. Complex modulus plots shows the poorly resolved semi circles and relaxation of nanoferrite is studied in the high frequency region. Also the relaxation time increases due to increase in x (0.0-0.15). DC electrical resistivity increases (107 Ω-cm-1010 Ω-cm) due to holmium ions substitution in nickel ferrites. Magnetic behavior was also characterized using a Vibrating Sample Magnetometer (VSM) under an applied magnetic field of 10 kOe and shows that magnetization decreases with increase in composition of holmium in nickel ferrites. High frequency behavior, low losses and very high DC electrical resistivity made the material a novel one for electromagnetic devices.

  7. Three-Dimensional Finite Element Magnetic Field Computations and Performance Simulation of Brushless DC Motor Drives with Skewed Permanent Magnet Mounts.

    NASA Astrophysics Data System (ADS)

    Alhamadi, Mohd A. Wahed

    1992-01-01

    A three dimensional finite element (3D-FE) method for the computation of global distributions of 30 magnetic fields in electric machines containing permanent magnets is presented. The formulation of this 3D-FE method is based on a coupled magnetic vector potential - magnetic scalar potential (CMVP-MSP) approach. In this CMVP-MSP method, the modeling and formulations of permanent magnet volumes, suited to first and second order MVP 3D-FE environments as well as first order MSP 3D-FE environment, are developed in this dissertation. The development of the necessary 3D-FE grids and algorithms for the application of the CMVP -MSP method to an example brushless dc motor, whose field is three dimensional due to the skewed permanent magnet mounts on its rotor, is also given here. It should be mentioned that the entire volume of the case-study machine from one end to another is considered in the global magnetic field computations. A complete set of results of application of the CMVP-MSP method to the computation of the global 3D field distributions and associated motor parameters under no-load and load conditions are presented in this dissertation. In addition, a complete simulation of the dynamic performance of the motor drive system using the parameters obtained from the 3D-FE field solutions are presented for no-load and various other load conditions. All the above mentioned results are experimentally verified by corresponding oscillograms obtained in the laboratory. These results are also compared with results obtained from motor parameters based on various 2D-FE approaches, showing that for certain types of skewed permanent magnet mounts, 3D-FE based parameters can make significant qualitative and quantitative improvements in motor-drive simulation results.

  8. Quantitative Analysis of CME Deflections in the Corona

    NASA Astrophysics Data System (ADS)

    Gui, Bin; Shen, Chenglong; Wang, Yuming; Ye, Pinzhong; Liu, Jiajia; Wang, Shui; Zhao, Xuepu

    2011-07-01

    In this paper, ten CME events viewed by the STEREO twin spacecraft are analyzed to study the deflections of CMEs during their propagation in the corona. Based on the three-dimensional information of the CMEs derived by the graduated cylindrical shell (GCS) model (Thernisien, Howard, and Vourlidas in Astrophys. J. 652, 1305, 2006), it is found that the propagation directions of eight CMEs had changed. By applying the theoretical method proposed by Shen et al. ( Solar Phys. 269, 389, 2011) to all the CMEs, we found that the deflections are consistent, in strength and direction, with the gradient of the magnetic energy density. There is a positive correlation between the deflection rate and the strength of the magnetic energy density gradient and a weak anti-correlation between the deflection rate and the CME speed. Our results suggest that the deflections of CMEs are mainly controlled by the background magnetic field and can be quantitatively described by the magnetic energy density gradient (MEDG) model.

  9. Review of russian literature on biological action of DC and low-frequency AC magnetic fields.

    PubMed

    Zhadin, M N

    2001-01-01

    This review considers the Russian scientific literature on the influence of weak static and of low-frequency alternating magnetic fields on biological systems. The review covers the most interesting works and the main lines of investigation during the period 1900 to the present. Shown here are the historical roots, beginning with the ideas of V. Vernadsky and A. Chizhevsky, which led in the field of Russian biology to an increasing interest in magnetic fields, based on an intimate connection between solar activity and life on the Earth, and which determined the peculiar development of Russian magnetobiology. The variety of studies on the effects of magnetic storms and extremely low-frequency, periodic variations of the geomagnetic field on human beings and animals as well as on social phenomena are described. The diverse experiments involving artificial laboratory magnetic fields acting on different biological entities under different conditions are also considered. A series of theoretical advances are reviewed that have paved the way for a step-by-step understanding of the mechanisms of magnetic field effects on biological systems. The predominantly unfavorable influence of magnetic fields on living beings is shown, but the cases of favorable influence of magnetic fields on human beings and lower animals are demonstrated as well. The majority of Russian investigations in this area of science has been unknown among the non-Russian speaking audience for many reasons, primarily because of a language barrier. Therefore, it is hoped that this review may be of interest to the international scientific community.

  10. Comparison study of the magnetic permeability and dc conductivity of Co-Ni-Li ferrite nanoparticles and their bulk counterparts

    NASA Astrophysics Data System (ADS)

    Assar, S. T.; Abosheiasha, H. F.; El Nimr, M. K.

    2014-03-01

    The temperature dependence of relative permeability and dc electrical conductivity of nanosamples and their bulk counterparts of Co0.5Ni0.5-2xLixFe2+xO4 (from x=0.00 to 0.25 in step of 0.05) was investigated. The values of the relative permeability of the nano-samples are lower than their bulk counterparts as a result of porous and nano-grained structure besides the effect of the larger volume of grain boundaries in the nanosamples. Moreover, the dc conductivity of the nanosamples is higher than their bulk counterparts. This is probable explained according to the shorter metal-oxygen bonding length and higher lattice vibrations of the nanosamples. Also, the values of the relative permeability of both nano and bulk samples exhibit stability over a considerable range of temperatures. This may make them useful in practical applications that require stability. All the nanosamples show high rising Curie temperature values with increasing the Li content up to the sample of x=0.15 thereafter a decrease of the Curie temperature occurs while the inverse behavior was observed in their bulk counterparts. The interpretation of these findings is explained in the discussion. Moreover, in general doping Co-Ni ferrites with Li ions improves their electrical and magnetic properties and this is clearly observed in the nanosample of x=0.15 which can be regarded as the most promising sample for microwave applications.

  11. An enhanced Z-source inverter topology-based permanent magnet brushless DC motor drive speed control

    NASA Astrophysics Data System (ADS)

    Geno Peter, P.; Rajaram, M.

    2015-08-01

    In this paper, an enhanced Z-source inverter (ZSI) is introduced for controlling the speed of permanent magnet brushless DC motor (PMBLDCM) drive. It is the extension of the conventional ZSI and the elements used in the circuit are the same as those of the conventional ZSI, except that the position of Inverter Bridge and diode would be exchanged from the classical circuit diagram. This exchanged circuit avoids the startup path of the inrush current and hence reduces the inrush current and improves the motor efficiency. Different modes of enhanced ZSI are studied with PMBLDCM. The voltage polarity of Z-source capacitors in the proposed circuit is the same as that of the input voltage polarity. Furthermore, to get the same voltage boost, the capacitor voltage stress is reduced to a significant extent. The speed control capability of the proposed brushless DC motor drive is compared with that of the conventional ZSI. The proposed ZSI is implemented in MATLAB/Simulink working platform and the output performance is evaluated. Also, the performance of voltage ratio is analysed both by simulation and mathematical models. All these analyses are known to express the innovative features of the proposed system.

  12. Efficiency of plasma density control with dc discharge and magnetic field for different surface types in low pressure hypersonic flow

    NASA Astrophysics Data System (ADS)

    Schweigert, Irina

    2013-09-01

    Recently the problem of communication blackout during reentrant flight still remains unsolved. The spacecrafts enter the upper atmospheric layers with a hypersonic speed and the shock heated air around them becomes weakly ionized. The gas ionization behind the shock front is associative in nature and occurs through chemical reactions between fragments of molecules. The formation of a plasma layer near the surfaces of spacecraft causes serious problems related to the blocking of communication channels with the Earth and other spacecrafts. A promising way of restoring the radio communications is the application of electrical and magnetic fields for controlling the plasma layer parameters. Nevertheless the flux of electrons and ions on the surface charges it that essentially decrease the effect of electro-magnetic control of local plasma density. In Ref. it is shown that there is the way to remove the surface charge using the lateral diode string structures. Based on two dimensional kinetic Particle in cell Monte Carlo collision simulations, we study the possibility of local control the plasma layer parameters near a flat surface of two different types. The gas velocity distribution is set with a model profile. We apply DC voltage up to 4 kV and magnetic field B up to 200 G.

  13. DC response of hot carriers under circularly polarized intense microwave fields and intense magnetic fields in quantum wells

    SciTech Connect

    Ishida, Norihisa

    2013-12-04

    Hot carrier dynamics under intense microwave and crossed magnetic fields are investigated theoretically for the case that the dominant scattering process is inelastic collision, especially intersubband and intrasubband transition in Quantum wells. If the applied electric fields are circularly polarized, the equation of motion forms symmetric on the x-y plane. But the carrier motions are complicated to accumulate because of acceleration and emission process. This situation makes possible to create a variation of the carrier motion, typically the carrier bunching is occurred. This state is a sort of population inversion. The DC response of this system attains strongly negative at appropriate field conditions. Through the simulation for the real case described below, it may include a type of induced emission.

  14. Use of Second Generation Coated Conductors for Efficient Shielding of dc Magnetic Fields (Postprint)

    DTIC Science & Technology

    2010-07-15

    Similar to Ref. 15, along the center line of each 150 mm long section a 1 mm wide, 124 mm long slit was milled leaving a superconducting film in the form of...layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes...appears to be especially promising for the realization of large scale high-Tc superconducting screens. 15. SUBJECT TERMS magnetic screens, current

  15. Peak divergence in the curve of magnetoelectric coefficient versus dc bias magnetic field at resonance region for bi-layer magnetostrictive/piezoelectric composites

    SciTech Connect

    Zuo, Z. J.; Pan, D. A. Zhang, S. G.; Qiao, L. J.; Jia, Y. M.

    2013-12-15

    Magnetoelectric (ME) coefficient dependence on the bias magnetic field at resonance frequencies for the bi-layered bonded Terfenol-D/Pb(Zr,Ti)O{sub 3} composite was investigated. The resonance frequency decreases first and then increases with the bias magnetic field (H{sub DC}), showing a “V” shape in the range of 0 ∼ 5 kOe. Below the resonance frequency, the pattern of ME coefficient dependence on the H{sub DC} shows a single peak, but splits into a double-peak pattern when the testing frequency increases into a certain region. With increasing the frequency, a divergent evolution of the H{sub DC} patterns was observed. Domain motion and ΔE effect combined with magnetostriction-piezoelectric coupling effect were employed to explain this experimental result.

  16. Dynamics of the magnetization of single domain particles having triaxial anisotropy subjected to a uniform dc magnetic field

    NASA Astrophysics Data System (ADS)

    Ouari, Bachir; Kalmykov, Yury P.

    2006-12-01

    Thermally induced relaxation of the magnetization of single domain ferromagnetic particles with triaxial (orthorhombic) anisotropy in the presence of a uniform external magnetic field H0 is considered in the context of Brown's continuous diffusion model. Simple analytic equations, which allow one to describe qualitatively the field effects in the relaxation behavior of the system for wide ranges of the field strength and damping parameters are derived. It is shown that these formulas are in complete agreement with the exact matrix continued fraction solution of the infinite hierarchy of linear differential-recurrence equations for the statistical moments, which governs the magnetization dynamics of an individual particle (this hierarchy is derived by averaging the underlying stochastic Landau-Lifshitz-Gilbert equation over its realizations). It is also demonstrated that in strong fields the longitudinal relaxation of the magnetization is essentially modified by the contribution of the high-frequency "intrawell" modes to the relaxation process. This effect discovered for uniaxial particles by Coffey et al. [Phys. Rev. B 51, 15947 (1995)] is the natural consequence of the depletion of population of the shallow potential well. However, in contrast to uniaxial anisotropy, for orthorhombic crystals there is an inherent geometric dependence of the complex magnetic susceptibility and the relaxation time on the damping parameter α arising from the coupling of longitudinal and transverse relaxation modes.

  17. Three-dimensional magnetic cloak working from d.c. to 250 kHz

    PubMed Central

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-01-01

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways. PMID:26596641

  18. Three-dimensional magnetic cloak working from d.c. to 250 kHz

    NASA Astrophysics Data System (ADS)

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-11-01

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways.

  19. Three-dimensional magnetic cloak working from d.c. to 250 kHz.

    PubMed

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-11-24

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways.

  20. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND STEP-BY-STEP SOLUTIONS OF THE…

  1. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, AND PROBLEMS. SOME OF THE LESSONS…

  2. Applied AC and DC magnetic fields cause alterations in the mitotic cycle of early sea urchin embryos

    SciTech Connect

    Levin, M.; Ernst, S.G.

    1995-09-01

    This study demonstrates that exposure to 60 Hz magnetic fields (3.4--8.8 mt) and magnetic fields over the range DC-600 kHz (2.5--6.5 mT) can alter the early embryonic development of sea urchin embryos by inducing alterations in the timing of the cell cycle. Batches of fertilized eggs were exposed to the fields produced by a coil system. Samples of the continuous cultures were taken and scored for cell division. The times of both the first and second cell divisions were advanced by ELF AC fields and by static fields. The magnitude of the 60 Hz effect appears proportional to the field strength over the range tested. the relationship to field frequency was nonlinear and complex. For certain frequencies above the ELF range, the exposure resulted in a delay of the onset of mitosis. The advance of mitosis was also dependent on the duration of exposure and on the timing of exposure relative to fertilization.

  3. High β phase content in PVDF/CoFe2O4 nanocomposites induced by DC magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, Shenglin; Wan, Hongyan; Liu, Huan; Zeng, Yike; Liu, Jianguo; Wu, Yunyi; Zhang, Guangzu

    2016-09-01

    Flexible ferroelectrics being exploited as energy harvesting and conversion materials are highly desirable for wearable and skin-mountable electronic devices. As one of the most typical ferroelectric polymers, poly(vinylidene fluoride) (PVDF) has been widely used in modern electronic systems and devices, whose ferroelectric performance relies heavily on its β phase content. In this work, to achieve high-β-phase-content PVDF, we first introduced CoFe2O4 nanoparticles into PVDF. With the incorporation of CoFe2O4 nanoparticles used as an effective polymer nucleation agent, the percentage of the β phase in the PVDF has been significantly enhanced, e.g., 84% in the nanocomposite with 5 wt. % CoFe2O4 versus only 73% in the pure PVDF. In order to further increase the β phase content in PVDF, we subsequently proposed an easily realized strategy. By applying DC magnetic fields during the solution-casting process of the PVDF/CoFe2O4 nanocomposites, a further improved β phase content as high as 95% can be achieved. The further improvement of the β phase content is attributable to the tensile stress at the CoFe2O4/PVDF interfaces created by the coupling of magnetic field and CoFe2O4 by means of the magnetostriction effect. The high β-phase content makes the PVDF/CoFe2O4 nanocomposites a promising candidate for flexible and wearable electronic device applications.

  4. Magnetic, structural and dc electrical resistivity studies on the divalent cobalt substituted Ni-Zn ferrite system

    NASA Astrophysics Data System (ADS)

    Siva Ram Prasad, M.; Prasad, B. B. V. S. V.; Rajesh Babu, B.

    2015-02-01

    Polycrystalline cobalt substituted Ni-Zn ferrite with composition Ni0.65-xCox Zn0.35Fe2O4(x = 0.00-0.25 insteps of 0.05) have been prepared through the conventional solid state ceramic method. Calcination and sintering have been performed in air atmosphere at 950°C and 1250°C for 4 h and 2 h, respectively followed by natural cooling to room temperature. X-ray diffraction patterns of all samples indicated the formation of the single spinel structure and the accurate lattice parameter for each composition has been determined using the Nelson-Riley error function. The increase in lattice constant on cobalt substitution is attributed to the ionic radius difference between the displaced and the substituted ion. The variation in lattice constant on incorporation of Co2+ ion indicates its solubility into the spinel lattice and noticeable modification in structural properties have been observed. The observed increase in the saturation magnetization and Curie temperature with the increase in the Co2+ substitution is due to its higher magnetic moment compared to that of Ni2+, improvement in the A-B exchange interaction mechanism and large positive contribution to magnetic anisotropy due to presence of Co2+ when they are at the octahedral sites. The observed variation in the initial magnetic permeability and the magnetic loss factor with cobalt substitution measured at a low frequency of 1 KHz have been attributed to the modification in the density, porosity, grain size and anisotropy contributions. A nearly comparable variation is observed in the room temperature dc electrical resistivity and activation energy for conduction and is attributed to the modification in structure, role and nature of cobalt ions and the microstructure aspects like grain size and pore concentration. The activation energy values in the range of 0.28 to 0.36 eV suggest a possible electron hopping. The observed changes in the structural and the magnetic and electrical properties have all been

  5. Hysteresis losses in MgB2 superconductors exposed to combinations of low AC and high DC magnetic fields and transport currents

    NASA Astrophysics Data System (ADS)

    Magnusson, N.; Abrahamsen, A. B.; Liu, D.; Runde, M.; Polinder, H.

    2014-11-01

    MgB2 superconductors are considered for generator field coils for direct drive wind turbine generators. In such coils, the losses generated by AC magnetic fields may generate excessive local heating and add to the thermal load, which must be removed by the cooling system. These losses must be evaluated in the design of the generator to ensure a sufficient overall efficiency. A major loss component is the hysteresis losses in the superconductor itself. In the high DC - low AC current and magnetic field region experimental results still lack for MgB2 conductors. In this article we reason towards a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting equations use the DC in-field critical current, the geometry of the superconductor and the magnitude of the AC magnetic field component as parameters. This simplified approach can be valuable in the design of MgB2 DC coils in the 1-4 T range with low AC magnetic field and current ripples.

  6. Compact, Low-Noise Magnetic Sensor with Fluxgate (DC) and Induction (AC) Modes of Operation

    DTIC Science & Technology

    2009-07-01

    complete bi-polar cycle, and 20 stacked measurements are selected. Two obstacles to dual-mode operation are magnetic hysteresis in the ferrite cores and...13 Figure 5.2 - Dual mode receiver probe. Left: a photo of the 3-axis probe; Right: details of the probe. Two ferrite core excitation coils...response of coil #1 with different core materials (a) Nanocrystalline bar; (b) Ferrite 78 rods; (c) P-1103 rods

  7. Benchmark calculations of nonconservative charged-particle swarms in dc electric and magnetic fields crossed at arbitrary angles.

    PubMed

    Dujko, S; White, R D; Petrović, Z Lj; Robson, R E

    2010-04-01

    A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coefficients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at arbitrary angles when nonconservative collisions are present. The hierarchy resulting from a spherical-harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. Results are given for electron swarms in certain collisional models for ionization and attachment over a range of angles between the fields and field strengths. The implicit and explicit effects of ionization and attachment on the electron-transport coefficients are considered using physical arguments. It is found that the difference between the two sets of transport coefficients, bulk and flux, resulting from the explicit effects of nonconservative collisions, can be controlled either by the variation in the magnetic field strengths or by the angles between the fields. In addition, it is shown that the phenomena of ionization cooling and/or attachment cooling/heating previously reported for dc electric fields carry over directly to the crossed electric and magnetic fields. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. The comparison confirms the theoretical basis and numerical integrity of the moment method for solving the Boltzmann equation and gives a set of well-established data that can be used to test future codes and plasma models.

  8. Benchmarking Asteroid-Deflection Experiment

    NASA Astrophysics Data System (ADS)

    Remington, Tane; Bruck Syal, Megan; Owen, John Michael; Miller, Paul L.

    2016-10-01

    An asteroid impacting Earth could have devastating consequences. In preparation to deflect or disrupt one before it reaches Earth, it is imperative to have modeling capabilities that adequately simulate the deflection actions. Code validation is key to ensuring full confidence in simulation results used in an asteroid-mitigation plan. We are benchmarking well-known impact experiments using Spheral, an adaptive smoothed-particle hydrodynamics code, to validate our modeling of asteroid deflection. We describe our simulation results, compare them with experimental data, and discuss what we have learned from our work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-695540

  9. High Sensitivity Magnetoresisitive Sensors for both DC and EMI Magnetic Field Mapping

    DTIC Science & Technology

    2012-05-01

    acquisition DMM - discarded military munitions EMI – electromagnetic induction FM – ferromagnetic HPF - high-pass-filter LPF - low-pass-filter...layer The MTJ layer structure for the ferromagnetic –ferro- magnetic coupling study (MTJ-A) is 1.5 nm Ta/15 nm Ru/3 nm Co40Fe60/10 nm Ir20Mn80...believe the roll off of the response above few kHz is from the flux concentrator which is made of mu- metal . The sensor noise was measured by

  10. Noncontact measurement of angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L.

    1978-01-01

    Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.

  11. Effect of Si addition on AC and DC magnetic properties of (Fe-P)-Si alloy

    NASA Astrophysics Data System (ADS)

    Gautam, Ravi; Prabhu, D.; Chandrasekaran, V.; Gopalan, R.; Sundararajan, G.

    2016-05-01

    We report a new (Fe-P)-Si based alloy with relatively high induction (1.8-1.9 T), low coercivity (< 80 A/m), high resistivity (˜38 μΩ cm) and low core loss (217 W/kg @ 1 T/1 kHz) comparable to the commercially available M530-50 A5 Si-steel. The attractive magnetic and electrical properties are attributed to i) the two phase microstructure of fine nano precipitates of Fe3P dispersed in α-Fe matrix achieved by a two-step heat-treatment process and ii) Si addition enhancing the resistivity of the α-Fe matrix phase. As the alloy processing is by conventional wrought metallurgy method, it has the potential for large scale production.

  12. Modeling magnetic fields from a DC power cable buried beneath San Francisco Bay based on empirical measurements

    SciTech Connect

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter; Carretero, Luis

    2016-02-25

    Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the San Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured values. The

  13. Modeling Magnetic Fields from a DC Power Cable Buried Beneath San Francisco Bay Based on Empirical Measurements

    PubMed Central

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter

    2016-01-01

    The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the San Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia-Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured values. The

  14. Modeling magnetic fields from a DC power cable buried beneath San Francisco Bay based on empirical measurements

    DOE PAGES

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter; ...

    2016-02-25

    Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the Sanmore » Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured

  15. Comparison of effects of overload on parameters and performance of samarium-cobalt and strontium-ferrite radially oriented permanent magnet brushless DC motors

    SciTech Connect

    Demerdash, N.A.; Nehl, T.W.; Nyamusa, T.A.

    1985-08-01

    Effects of high momentary overloads on the samarium-cobalt and strontium-ferrite permanent magnets and the magnetic field in electronically commutated brushless dc machines, as well as their impact on the associated machine parameters were studied. The effect of overload on the machine parameters, and subsequently on the machine system performance was also investigated. This was accomplished through the combined use of finite element analysis of the magnetic field in such machines, perturbation of the magnetic energies to determine machine inductances, and dynamic simulation of the performance of brushless dc machines, when energized from voltage source inverters. These effects were investigated through application of the above methods to two equivalent 15 hp brushless dc motors, one of which was built with samarium-cobalt magnets, while the other was built with strontium- ferrite magnets. For momentary overloads as high as 4.5 p.u. magnet flux reductions of 29% and 42% of the no load flux were obtained in the samarium-cobalt and strontiumferrite machines, respectively. Corresponding reductions in the line to line armature inductances of 52% and 46% of the no load values were reported for the samarium-cobalt and strontium-ferrite cases, respectively. The overload affected the profiles and magnitudes of armature induced back emfs. Subsequently, the effects of overload on machine parameters were found to have significant impact on the performance of the machine systems, where findings indicate that the samarium-cobalt unit is more suited for higher overload duties than the strontium-ferrite machine.

  16. A wideband deflected reflection based on multiple resonances

    NASA Astrophysics Data System (ADS)

    Chen, Hongya; Ma, Hua; Wang, Jiafu; Qu, Shaobo; Li, Yongfeng; Wang, Jun; Yan, Mingbao; Pang, Yongqiang

    2015-07-01

    We propose to realize wideband deflected reflection in microwave regime through multiple resonances. A wideband deflected reflection of a phase gradient metasurface is designed using a double-head arrow structure, which has demonstrated an ultra-wideband cross-polarized reflection caused by multiple electric and magnetic resonances. The wideband effect benefits from the wideband cross-polarized reflection and flexible phase modulation of the double-head arrow structure. Simulated and experimental results agree well with theoretical predictions. Furthermore, relative bandwidths of deflected reflection reach to 71 % for both x- and y-polarized waves under normal incidence. Our method of expansion bandwidth may pave the way in many practical applications, such as RCS reduction, stealth surfaces.

  17. AIDA: Asteroid Impact & Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  18. Single phase bi-directional AC-DC converter with reduced passive components size and common mode electro-magnetic interference

    DOEpatents

    Mi, Chris; Li, Siqi

    2017-01-31

    A bidirectional AC-DC converter is presented with reduced passive component size and common mode electro-magnetic interference. The converter includes an improved input stage formed by two coupled differential inductors, two coupled common and differential inductors, one differential capacitor and two common mode capacitors. With this input structure, the volume, weight and cost of the input stage can be reduced greatly. Additionally, the input current ripple and common mode electro-magnetic interference can be greatly attenuated, so lower switching frequency can be adopted to achieve higher efficiency.

  19. Reduction in Current Consumption of Small DC Motor with Rare-Earth Flexible Bonded Magnets Prepared by Powder Compacting Press and Hot Rolling

    NASA Astrophysics Data System (ADS)

    Yamashita, Fumitoshi; Watanabe, Akihiko; Fukunaga, Hirotoshi

    The usage of high-performance rare-earth magnets is one of the key technologies in the development of efficient small motors. Ring-shaped melt-spun Nd-Fe-B bonded magnets, prepared using a powder compacting press and/or injection molding, are generally used in typical applications to small efficient motors. For exploiting the maximum characteristics according to the variety of magnetic powder, however, the preparation method of the magnet, the magnet form, and the motor design needs to be changed for high-productivity as well as for improving total performance, including the magnetic properties of bonded magnets. This paper reports recent achievements in new preparation processes for rare-earth bonded magnets and small motors using new materials other than Nd-Fe-B melt-spun powder. This paper especially focuses on the method for maximally exploiting certain rare-earth magnetic powders . Furthermore, reduction in the current consumption of the small DC motor using the developed technique is reported.

  20. The Seven Habits of Highly Deflective Colleagues

    ERIC Educational Resources Information Center

    Maher, Michelle; Chaddock, Katherine

    2009-01-01

    The authors define deflection as a strategy to bounce action or responsibility away from oneself and toward another person, time, or place. Although they contend that deflection occurs in all areas of personal and professional life, the authors limit their focus to the deflective colleague ("collega deflectivus") in academe. In this article, the…

  1. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems

    NASA Astrophysics Data System (ADS)

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  2. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  3. Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows.

    PubMed

    Liang, Litao; Zhu, Junjie; Xuan, Xiangchun

    2011-09-01

    Magnetic field-induced particle manipulation is a promising technique for biomicrofluidics applications. It is simple, cheap, and also free of fluid heating issues that accompany other common electric, acoustic, and optical methods. This work presents a fundamental study of diamagnetic particle motion in ferrofluid flows through a rectangular microchannel with a nearby permanent magnet. Due to their negligible magnetization relative to the ferrofluid, diamagnetic particles experience negative magnetophoresis and are repelled away from the magnet. The result is a three-dimensionally focused particle stream flowing near the bottom outer corner of the microchannel that is the farthest to the center of the magnet and hence has the smallest magnetic field. The effects of the particle's relative position to the magnet, particle size, ferrofluid flow rate, and concentration on this three-dimensional diamagnetic particle deflection are systematically studied. The obtained experimental results agree quantitatively with the predictions of a three-dimensional analytical model.

  4. Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current

    NASA Astrophysics Data System (ADS)

    Berdiyorov, Golibjon R.; Savel'ev, Sergey; Kusmartsev, Feodor V.; Peeters, François M.

    2015-11-01

    We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a "superradiant" vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.

  5. AIDA: Asteroid Impact & Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Rivkin, A.; Galvez, A.; Carnelli, I.; Michel, P.; Reed, C.

    2012-10-01

    Near Earth objects are small bodies orbiting the Sun near Earth’s orbit, some of which impact the Earth. The impact of an object as large as 30 m in diameter occurs every few centuries. The impact of such an object would already release an energy of at least a megaton of TNT, and the impact of a larger object, which would occur less often, would be even more hazardous. To protect the Earth from a potential asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. The Double Asteroid Redirection Test (DART) is such an asteroid mitigation mission concept. This mission would be a valuable precursor to human spaceflight to an asteroid, as it would return unique information on an asteroid’s strength and internal structure and would be particularly relevant to a human mission for asteroid mitigation. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART study is coordinated with an ESA study of an Asteroid Impact Monitoring (AIM) mission, which would rendezvous with the same target. AIDA follows the previous Don Quijote mission study performed by ESA in 2005-2007, with the objective of demonstrating the ability to modify the trajectory of an asteroid and measure the trajectory change. Don Quijote involved an orbiter and an impactor spacecraft, with the orbiter arriving first and measuring the deflection, and with the orbiter making additional characterization measurements. Unlike Don Quijote, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid, with ground-based observations to measure the deflection as well as additional spacecraft observations from AIM. Low cost mission approaches will be presented.

  6. Experimental modelling of eddy currents and deflection for tokamak limiters

    SciTech Connect

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-11-01

    During plasma disruptions in a tokamak fusion reactor, eddy currents are induced in the limiters and other conducting structures surrounding the plasma. Interactions between these currents with the toroidal field causes deflection and stress in the structural components. The structural motion in the strong magnetic field induces additional eddy current opposing the initial eddy current and modifying subsequent structural dynamics. Therefore, the motion and current are coupled and must be solved simultaneously. The coupling between current and deflection in cantilevered beams was investigated experimentally. The beams provide a simple model for the limiter blade of a tokamak fusion reactor. Several test pieces and various magnetic field conditions were employed to study the extend of the coupling effect from weak to strong coupling. Experimental results are compared with analytical predictions.

  7. Mechanistic interpretation of nondestructive pavement testing deflections

    NASA Astrophysics Data System (ADS)

    Hoffman, M. S.

    1980-06-01

    A method is proposed for the backcalculation of material properties in flexible pavements based on the interpretation of surface deflection measurements. ILLI-PAVE, a stress dependent finite element pavement model, was used to generate data for developing algorithms and nomographs for deflection basin interpretation. Over 11,000 deflection measurements for 24 different flexible pavement sections were collected and analyzed. Deflections were measured using the Benkelman Beam, the IDOT Road Rater, the Falling Weight Deflectometer, and an accelerometer to measure deflections under moving trucks. Loading mode effects on pavement response were investigated using dynamic and viscous pavement models. The factors controlling the pavement response to different loading modes were explained and identified. Correlations between different devices were developed. The proposed evaluation procedure is illustrated for three different flexible pavements using deflection data collected on several testing dates.

  8. Damping of unwanted modes in SRF deflecting/crabbing cavities

    SciTech Connect

    Burt, Graeme; Wang, Haipeng

    2014-01-01

    As deflecting and crab cavities do not use the fundamental acceleration mode for their operation, the spectrum of unwanted modes is significantly different from that of accelerating cavities. The fundamental acceleration mode is now unwanted and can cause energy spread in the beam; in addition this mode frequency is often close to or lower than that of the deflecting mode, making it difficult to damp. This is made more complex in some of the compact crab cavities as there small beampipes often attenuate the fields very sharply. In addition in some crab cavities there can be an orthogonal transverse mode similar to the deflecting mode, known as the same order mode. The degeneracy of these modes must be split by polarising the cavity and if the polarisation is not large enough, dampers should be placed at either an electric or magnetic field null of the crabbing mode to effectively damp the unwanted polarisation. Various concepts for dealing with unwanted modes in various SRF deflecting cavities will be reviewed.

  9. Measurement of Deflection Line on Bridges

    NASA Astrophysics Data System (ADS)

    Urban, Rudolf; Štroner, Martin

    2013-12-01

    Prestressed concrete bridges are very sensitive to the increase in long-term deflections. Reliable forecasts of deflections of bridge structures during construction and durability are crucial for achieving good durability. The main results of measurements are the changes of the deflection line of the bridge structures, which places special demands on the measurement procedure. Results from measurements are very useful for the improvement of mathematical prediction methods of behaviour of long span prestressed concrete structures.

  10. Effect of a strong, DC-induced magnetic field on circadian singing activity of the house cricket (orthoptera:gryllidae)

    SciTech Connect

    Shaw, K.C.; Bitzer, R.J.; Galliart, L.

    1995-05-01

    We investigated the effect of a strong, DC-induced electromagnetic field (EMF) on the circadian singing activity of the house cricket, Acheta domesticus (L.). Groups of 10 crickets were exposed to strong, DC-induced EMFs under two light regimes, 12:12 (L:D) h and 0:24 (L:D) h. Exposure to the strong EMF resulted in an increase in mean time per hour during which one or more crickets were singing and in number of crickets singing per hour. Correcting for phase shift during O:24 (L:D) h, the daily pattern of singing was apparently unaffected by any treatment. The greatest percentage of singing and number of crickets singing per hour occurred during actual or expected scotophase. This is the first report of an increase in insect activity during exposure to a strong DC-induced EMF.

  11. Report of the Workshop on Magnetic Information Technology - MINT (Washington, D.C., June 22-24, 1983).

    ERIC Educational Resources Information Center

    Bortz, Alfred B.; Dunkle, Susan B.

    Magnetic Information Technology (MINT), which involves use of magnetic techniques and materials to store information, is a critical growth industry in the United States. However, experts from both industry and academe forecast the inability of the United States to meet demand in this area. According to these experts, growth of magnetic information…

  12. Bidirectional DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  13. Laser deflection of space objects -- An overview

    SciTech Connect

    Canavan, G.H.

    1997-04-01

    Lasers provide the two major attributes required for effective deflection of space objects: agility and efficiency. Lasers act instantaneously over long distances with little losses, but deliver energy at modest power levels. Material interceptors provide large impulses, but deliver only a fraction of the mass launched into space at low speeds. The two deflection concepts are compared, as are some important additional applications.

  14. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  15. M3D-C1 simulations of the plasma response to n = 3 magnetic perturbations applied to the NSTX-U snowflake divertor

    NASA Astrophysics Data System (ADS)

    Canal, G. P.; Ferraro, N. M.; Evans, T. E.; Osborne, T. H.; Menard, J. E.; Ahn, J.-W.; Maingi, R.; Wingen, A.; Ciro, D.; Frerichs, H.; Schmitz, O.; Soukhanoviskii, V.; Waters, I.

    2016-10-01

    Single- and two-fluid resistive magnetohydrodynamic simulations, performed with the code M3D-C1, are used to investigate the effect of n = 3 magnetic perturbations on the SF divertor configuration. The calculations are based on simulated NSTX-U plasmas and the results show that additional and longer magnetic lobes are created in the null-point region of the SF configuration, compared to those in the conventional single-null. The intersection of these additional and longer lobes with the divertor plates are expected to cause more striations in the particle and heat flux target profiles. In addition, the results indicate that the size of the magnetic lobes, in both single-null and SF configurations, are more sensitive to resonant than to non-resonant magnetic perturbations. The results also suggest that lower values of current in non-axisymmetric control coils close enough to the primary x-point would be required to suppress edge localized modes in plasmas with the SF configuration. This work has been supported by the US Department of Energy, Office of Science, Office of Fusion Energy Science under DOE Award DE-SC0012706.

  16. Deflection angle in the strong deflection limit in a general asymptotically flat, static, spherically symmetric spacetime

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki

    2017-03-01

    Gravitational lensing by the light sphere of compact objects like black holes and wormholes will give us information on the compact objects. In this paper, we provide an improved strong deflection limit analysis in a general asymptotically flat, static, spherically symmetric spacetime. The strong deflection limit analysis also works in ultrastatic spacetimes. As an example of an ultrastatic spacetime, we reexamine the deflection angle in the strong deflection limit in an Ellis wormhole spacetime. Using the strong deflection limit, we obtain the deflection angle analytically for the Reissner-Nordström spacetime. The point of the improvement is the definition of a standard variable in the strong deflection limit analysis. We show that the choice of the variable is as important as the choice of the coordinates and we conclude that one should choose a proper variable for a given spacetime.

  17. Large Deflections of Elastic Rectangular Plates

    NASA Astrophysics Data System (ADS)

    Razdolsky, A. G.

    2015-11-01

    It is known that elastic large deflections of thin plates are governed by von Karman nonlinear equations. The analytical solution of these equations in the general case is unfeasible. Samuel Levy, in 1942, showed that large deflections of the rectangular plate can be expressed as a double series of sine-shaped harmonics (deflection harmonics). However, this method gave no way of creating the computer algorithm of solving the problem. The stress function expression taken in the Levy's method must be revised to find the approach that takes into account of all possible products of deflection coefficients. The algorithm of solving the problem for the rectangular plate with an arbitrary aspect ratio under the action of the lateral distributed load is reported in this paper. The approximation of the plate deflection is taken in the form of double series proposed by Samuel Levy. However, the expression for the stress function is presented in the form that incorporates products of deflection coefficients in the explicit form in distinction to the Levy's expression. The number of harmonics in the deflection expression may be arbitrary. The algorithm provides composing the system of governing cubic equations, which includes the deflection coefficients in the explicit form. Solving the equation system is based on using the principle of minimum potential energy. A method of the gradient descent is applied to find the equilibrium state of the plate as the minimum point of the potential energy. A computer program is developed on the basis of the present algorithm. Numerical examples carried out for the plate model with 16 deflection harmonics illustrate the potentialities of the program. The results of solving the examples are presented in the graphical form for the plates with a different aspect ratio and may be used under designing thin-walled elements of airplane and ship structures.

  18. Milliwatt dc/dc Inverter

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  19. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.47 Deflection...) Use a deflection measuring device with an accuracy of ±.001 inches to measure the deflection of...

  20. Detail study on ac-dc magnetic and dye absorption properties of Fe3O4 hollow spheres for biological and industrial application.

    PubMed

    Sarkar, Debasish; Mandal, Kalyan; Mandal, Madhuri

    2014-03-01

    Here solvo-thermal technique has been used to synthesize hollow-nanospheres of magnetite. We have shown that PVP plays an important role to control the particle size and also helps the particles to take the shape of hollow spheres. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM were performed to confirm the hollow type spherical particles formation and their shape and sizes were also investigated. The detail ac-dc magnetic measurements give an idea about the application of these nano spheres for hyperthermia therapy and spontaneous dye adsorption properties (Gibbs free energy deltaG0 = -0.526 kJ/mol for Eosin and -1.832 kJ/mol for MB) of these particles indicate its use in dye manufacturing company. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, arsenic and heavy metal removal by adsorption technique, magnetic separation etc.

  1. Optical measurement of unducted fan blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitiative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  2. Optical measurement of unducted fan blade deflections

    NASA Astrophysics Data System (ADS)

    Kurkov, A. P.

    1990-10-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  3. Noncontacting method for measuring angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L. (Inventor)

    1980-01-01

    An apparatus is described for indicating the instantaneous angular deflection of an object about a selected axis without mechanical contact with the object. Light from a light source is transmitted through a flat refractor to a converging lens which focuses the light through another flat refractor onto a differential photocell. The first flat refractor is attached to the object such that when the object is deflected about the selected axis the refractor is also deflected about that axis. The two flat refractors are identical and they are placed an equal distance from the converging lens as are the light source and the photocell. The output of the photocell which is a function of image displacement is fed to a high gain amplifier that drives a galvanometer which rotates the second flat refractor. The second refractor is rotated so that the image displacement is very nearly zero making the galvanometer current a measure of the deflection of the object about the selected axis.

  4. Optical measurement of propeller blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measurement of propeller blade deflections is described and evaluated. It does not depend on the reflectivity of the blade surface but only on its opaqueness. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained using a single light beam generated by a low-power helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured deflections from a static and a high-speed test are compared with available predicted deflections which are also used to evaluate systematic errors.

  5. Free-run Startup Techniques for Sensorless Drive Systems of Permanent Magnet Machine with Phase Current or DC-bus Current Detection

    NASA Astrophysics Data System (ADS)

    Toba, Akio; Sato, Michihiko-; Inatama, Shigeki; Fujita, Kouetsu

    Starting methods for the inverter that drives a permanent magnet machine with only current sensors, while the rotor is rotating, (“free-run startup techniques") are proposed. The proposed methods are based on whether current flows or does not when one switch of the inverter is turned on, which depends on the electrical angle of the emf and the reverse blocking function of the freewheeling diodes. The merit of the proposed methods is that the calculation to determine the rotor position is simple. The variety of the methods is with the types of current detection. Proposed are the methods not only for the phase current detection but also for the DC-bus line current detection that are utilized in low-cost drive systems. Theoretical analysis, design issues, and experimental verifications of the proposed methods are set forth.

  6. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  7. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  8. Observation of self-magnetic field relaxations in Bi2223 and Y123 HTS tapes after over-current pulse and DC current operation

    NASA Astrophysics Data System (ADS)

    Tallouli, M.; Sun, J.; Chikumoto, N.; Otabe, E. S.; Shyshkin, O.; Charfi-Kaddour, S.; Yamaguchi, S.

    2016-07-01

    The development of power transmission lines based on long-length HTS tapes requires the production of high quality tapes. Due to fault conditions, technical mistakes and human errors during the operation of a DC power transmission line, an over-current pulse, several times larger than the rated current, could occur. To study the effect of such over-current pulses on the transport current density distribution in the HTS tapes, we simulated two start-up scenarios for one BSCCO and two YBCO tapes. The first start-up scenario is an initial over-current pulse during which the transport current was turned on rapidly, rising to 900 A during the first milliseconds, then reduced to a 100 A DC current. The second start-up scenario is normal operation, and involved increasing the transport current slowly from 0 A to 100 A at a rate of 1 A/s. For both scenarios, we then measured the vertical component of the self-magnetic field by means of a Hall probe above the tape, and afterward, by solving a linear equation of the inverse problem we obtain the current density profiles. We observe a change of the self-magnetic field above the edge of the BSCCO and YBCO tapes during 30 min after the 5 ms of over-current pulse and during the normal operation. The current density profiles are peaked in the centre for over-current pulse, and more peaked around the edge of the HTS tape for normal operation, which means that the limited time over-current pulse changes the current density profiles of the HTS tapes. We observe also a loop of current for YBCO tapes and we show the role of the HTS tape stabilizer.

  9. Beam loading in magnicon deflection cavities

    SciTech Connect

    Hafizi, B.; Gold, S.H.

    1997-02-01

    The radio frequency (RF) source for the next linear collider (NLC) is required to generate a power of 1/2--1 GW per tube in a 200-ns pulse, or 100--200 J of energy in a pulse of up to a few {micro}s in duration, at a frequency of 10--20 GHz. A variety of RF sources are under investigation at the present time aimed at fulfilling the needs of the NLC. These include the X-band klystron, Gyroklystron, traveling-wave tube, harmonic convertor, chopper-driven traveling-wave tube, and magnicon. Here, analysis of the beam-deflection cavity interaction in a magnicon is presented and compared with experiment. For a driven cavity a dispersion relation is obtained wherein the interaction modifies the cold-cavity factor and the resonance frequency. In terms of a lumped-parameter equivalent circuit the interaction corresponds to a complex-values beam admittance Y{sub b} in parallel with the cavity admittance. The response of the gain cavities is modified by the same admittance. In a magnicon, Y{sub b} is a sensitive function of the solenoidal focusing magnetic field B{sub 0}, thus providing a convenient means of adjusting the cavity properties in experiments. When the relativistic gyrofrequency is twice the drive frequency, ImY{sub b} = 0 and the beam does not load the cavity. Analytical expressions of the variation of the detuning, instantaneous bandwidth (i.e., loaded quality factor) and gain with B{sub 0} are derived. Simulation results are presented to verify the linear analysis with ideal beams and to illustrate the modifications due to finite beam emittance. Results of the magnicon experiment at the Naval Research Laboratory are examined in the light of the analysis.

  10. Spin transfer torque and dc bias magnetic field effects on the magnetization reversal time of nanoscale ferromagnets at very low damping: Mean first-passage time versus numerical methods

    NASA Astrophysics Data System (ADS)

    Byrne, D. J.; Coffey, W. T.; Dowling, W. J.; Kalmykov, Y. P.; Titov, S. V.

    2016-02-01

    Spin transfer torque and bias field effects on the magnetization reversal time of a nanoscale ferromagnet are investigated in the very-low-damping regime via the energy-controlled diffusion equation. That equation is rooted in a generalization of the Kramers escape rate theory for point Brownian particles in a potential to the magnetic relaxation of a macrospin. Using the mean first-passage method, the reversal time is then evaluated in closed integral form for a nanomagnet with the free-energy density given in the standard form of superimposed easy-plane and in-plane easy-axis anisotropies with the dc bias field along the easy axis. The results completely agree with those yielded by independent numerical methods.

  11. Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos

    SciTech Connect

    Levin, M.; Ernst, S.G.

    1997-05-01

    Most work on magnetic field effects focuses on AC fields. The present study demonstrates that exposure to medium-strength (10 mT--0.1 T) static magnetic fields can alter the early embryonic development of two species of sea urchin embryos. Batches of fertilized eggs from two species of urchin were exposed to fields produced by permanent magnets. Samples of the continuous cultures were scored for the timing of the first two cell divisions, time of hatching, and incidence of exogastrulation. It was found that static fields delay the onset of mitosis in both species by an amount dependent on the exposure timing relative to fertilization. The exposure time that caused the maximum effect differed between the two species. Thirty millitesla fields, but not 15 mT fields, caused an eightfold increase in the incidence of exogastrulation in Lytechinus pictus, whereas neither of these fields produced exogastrulation in Strongylocentrotus purpuratus.

  12. A magnetically driven PDMS peristaltic micropump.

    PubMed

    Pan, Tingrui; Kai, Eleanor; Stay, Matthew; Barocas, Victor; Ziaie, Babak

    2004-01-01

    We present a robust low-cost PDMS peristaltic micropump with magnetic drive. The fabrication process is based on the soft molding and bonding of three PDMS layers. A base layer incorporates the microchannel while a middle layer contains the actuation membrane. The top layer encapsulates three small permanent magnetic rods (Ni-plated-NdFeB) in three small chambers. A small DC motor (6 mm in diameter and 15 mm in length) with three permanent magnets stagger-mounted on its shaft is used to pull down and actuate the membrane-mounted magnets to generate a peristaltic waveform. A maximum pumping rate of about 24 muL/min at the speed of 1700 rpm with power consumption of 11 mW was demonstrated. A preliminary numerical analysis of the peristaltic pump was performed, which showed the characteristic membrane deflection and fluid flow of pumping.

  13. Base deflection and microleakage of composite restorations.

    PubMed

    Paulillo, L A; de Goes, M F; Consani, S

    1994-06-01

    The flexural deflections of human dentin, Herculite XR, Dycal, Vidrion F, zinc phosphate base, and combinations of composite-base were determined. The influence of the flexural deflections in the marginal microleakage was also determined for the composite-base combinations. The flexural deflection test for dentin showed no statistically significant differences between the two floor cavity depths studied. There were significant differences among cements when the thickness of the base was 1 mm whereas no differences occurred at 2 mm. The composite-base combinations did not present statistical differences. There were no statistically significant differences in the microleakage levels among loaded and non-loaded specimens; however, dye penetration was visually greater in loaded samples.

  14. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  15. Transverse photothermal beam deflection within a solid

    SciTech Connect

    Spear, J.D.; Russo, R.E. )

    1991-07-15

    The mirage effect within a transparent solid substrate was used for monitoring optical absorption of a thin film. Refractive index gradients, which accompany thermal gradients below the film-coated surface, cause a probe laser beam to be deflected. The spectrum of copper, deposited onto a piece of clear acrylic, was recorded by this method of photothermal deflection. The influence of thermally induced mechanical stresses can alter the effective value of the thermo-optic coefficient of the solid, {ital dn}/{ital dT}.

  16. Compliant Robot Wrist Senses Deflections And Forces

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.; Strempek, Franklin; Premack, Timothy

    1989-01-01

    Precise parts assembled without damage. Goddard Space Flight Center developed compliant wrist that moves in any direction and rotates about any axis in response to applied forces. Deflection calibrated and instrumented so control computer measures degree of deflection and derives magnitude and direction of applied forces and torques. Compliant wrist brings to robots important capabilities humans use in manipulating objects. Helps prevent damage to precise, delicate parts during assembly by robot. Rod lengths, spring stiffnesses, and type of displacement sensor changed to suit different applications.

  17. Deflection of large near-earth objects

    SciTech Connect

    Canavan, G.H.

    1999-01-11

    The Earth is periodically hit by near Earth objects (NEOs) ranging in size from dust to mountains. The small ones are a useful source of information, but those larger than about 1 km can cause global damage. The requirements for the deflection of NEOs with significant material strength are known reasonably well; however, the strength of large NEOs is not known, so those requirements may not apply. Meteor impacts on the Earth`s atmosphere give some information on strength as a function of object size and composition. This information is used here to show that large, weak objects could also be deflected efficiently, if addressed properly.

  18. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, Charles L.; Spector, Jerome

    1994-01-01

    A shielded serpentine slow wave deflection structure (10) having a serpene signal conductor (12) within a channel groove (46). The channel groove (46) is formed by a serpentine channel (20) in a trough plate (18) and a ground plane (14). The serpentine signal conductor (12) is supported at its ends by coaxial feed through connectors 28. A beam interaction trough (22) intersects the channel groove (46) to form a plurality of beam interaction regions (56) wherein an electron beam (54) may be deflected relative to the serpentine signal conductor (12).

  19. Compensations of beamlet deflections for 1 MeV accelerator of ITER NBI

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Mieko; Taniguchi, Masaki; Umeda, Naotaka; Dairaku, Masayuki; Tobari, Hiroyuki; Yamanaka, Haruhiko; Watanabe, Kazuhiro; Inoue, Takashi; de Esch, H. P. L.; Grisham, Larry R.; Boilson, Deirdre; Hemsworth, Ronald S.; Tanaka, Masanobu

    2013-02-01

    Compensation methods of beamlet deflections have been studied in a three dimensional (3D) beam analysis using OPERA-3d code for 1 MeV accelerator of the ITER neutral beam injector (NBI). The beamlet deflection is caused by i) magnetic field generated by permanent magnets embedded in the extraction grid (EXG) for electron suppression and ii) space charge repulsion between the beamlets and beam groups. Moreover, the beamlet deflection is caused due to electric field distortion formed by a grid support structure. In order to compensate the beamlet deflections due to i) and ii), an aperture offset of 0.6 mm was applied in the electron suppression grid (ESG) and a metal bar with 3 mm in thickness, so-called a kerb, was attached around the aperture area at the back side of the ESG, respectively. Detailed configuration of the compensation methods was also considered so as to suppress the beam spread due to the electric field distortion and to lower electric field concentrations at the edge of the kerb. For the beamlets near the grid support structure, the beamlet deflection due to the space charge repulsion could be negated due to the electric field distortion formed by the grid support structure.

  20. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  1. Rural Youth and Anticipatory Goal Deflection.

    ERIC Educational Resources Information Center

    Curry, Evans W.; And Others

    Race, sex, community size, occupation of major wage earner, father's education, mother's education, and certainty of expectations were the variables used in this study to determine the "anticipatory occupational goal deflection" (AOGD) of urban and rural youth (blacks and whites) in Louisiana. Least squares analysis of variance and other…

  2. Simplified deflection-coil linearity testing

    NASA Technical Reports Server (NTRS)

    Kramer, G. P.

    1976-01-01

    Mask placed over face of image-dissecting photomultiplier tube has precision array of pinholes that permit light to impinge on tube at known points. Signals are fed to deflection coil which sweeps beam across each point without complex operator procedures.

  3. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  4. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  5. Deflection of uncooperative targets using laser ablation

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2015-09-01

    Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which are thought to limit seriously the potential efficiency of a laser-deflection method: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. In this paper, we developed a steady-state analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a laser deflection system in absence of the two aforementioned issues. A numerical model was then implemented to solve the transient heat equation in presence of vaporization and melting and account for the tumbling rate of the target. This model was also translated to the case where the target is a space debris by considering material properties of an aluminium 6061-T6 alloy and adapting at every time-step the size of the computational domain along with the recession speed of the interface in order to account for the finite thickness of the debris component. The comparison between the numerical results and the analytical predictions allow us to draw interesting conclusions regarding the momentum coupling achievable by a given laser deflection system both for asteroids and space debris in function of the flux, the rotation rate of the target and its material properties. In the last section of this paper, we show how a reasonably small spacecraft could deflect a 56m asteroid with a laser system requiring less than 5kW of input power.

  6. Structural, magnetic, DC-AC electrical conductivities and thermo electric studies of MgCuZn Ferrites for microinductor applications.

    PubMed

    Varalaxmi, N; Sivakumar, K V

    2013-01-01

    Multilayer chip inductors (MLCIs) have been rapidly developed for electromagnetic applications. NiCuZn ferrites are the most preferred ferrite materials to produce MLCIs. MgCuZn ferrites have similar properties to those of NiCuZn ferrites. MgCuZn ferrites owing to their superior properties like low magnetostriction, environmental stability, low stress sensitivity, high resistivity and low cost can replace NiCuZn ferrites, which have a wide range of electronic applications. In view of this, a series of polycrystalline MgCuZn ferrites with generic formula MgxCu0.5Zn0.5-xFe2O4 (X=0.0 0.1, 0.2, 0.3, 0.4 and 0.5) are successfully synthesized by conventional double sintering technique. The samples were then characterized by the X-ray diffraction patterns (XRD) microstructural studies and the grain size was estimated using SEM micrographs. The sintered ferrites have been investigated in their magnetic, electrical and thermoelectric effect studies, which were carried out in the temperature range from 30 °C to 490 °C. The investigated ferrites are found to exhibit excellent properties that are suitable for the core materials in multilayer chip inductors, and the results are discussed.

  7. Initial Results of DC Electric Fields, Associated Plasma Drifts, Magnetic Fields, and Plasma Waves Observed on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Klenzing, J.; Rowland, D.; Maynard, N.

    2010-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. Finally, the data set includes a wide range of ELF/VLF/HF oscillations corresponding to a variety of plasma waves

  8. Deflection Angle and R-Charged Black Holes

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2013-10-01

    In this paper we consider R-charged black holes with three electrical charges and study deflection angle. We confirmed result of previous study that the black hole charges increased the deflection angle.

  9. A discrete time model of a power conditioner fed permanent magnet brushless dc motor system for aerospace and electric vehicle applications for design purpose using finite elements for machine parameter determination

    NASA Astrophysics Data System (ADS)

    Nehl, T. W.

    1980-12-01

    A discrete state space model of a power conditioner fed permanent magnet brushless dc motor for aerospace and electric vehicle applications is developed. The parameters which describe that machine portion of this model are derived from a two dimensional nonlinear magnetic field analysis using the finite element method. The model predicts the instantaneous mechanical and electrical behavior of a prototype electromechanical actuator for possible use on board the shuttle orbiter. The model is also used to simulate the instantaneous performance of an advanced electric vehicle propulsion unit. The results of the computer simulations are compared with experimental test data and excellent agreement between the two is found in all cases.

  10. Dark matter prospects in deflected mirage mediation

    SciTech Connect

    Holmes, Michael; Nelson, Brent D. E-mail: b.nelson@neu.edu

    2009-07-01

    The recently introduced deflected mirage mediation (DMM) model is a string-motivated paradigm in which all three of the major supersymmetry-breaking transmission mechanisms are operative. We begin a systematic exploration of the parameter space of this rich model context, paying special attention to the pattern of gaugino masses which arise. In this work we focus on the dark matter phenomenology of the DMM model as such signals are the least influenced by the model-dependent scalar masses. We find that a large portion of the parameter space in which the three mediation mechanisms have a similar effective mass scale of 1 TeV or less will be probed by future direct and indirect detection experiments. Distinguishing deflected mirage mediation from the mirage model without gauge mediation will prove difficult without collider input, though we indicate how gamma ray signals may provide an opportunity for distinguishing between the two paradigms.

  11. Deflection And Stress In Preloaded Square Membrane

    NASA Technical Reports Server (NTRS)

    Hermida, Alfonso

    1991-01-01

    Theoretical analysis yields equations for transverse deflection of, and stresses in, square membrane subject to both uniform transverse load and tension preloads applied uniformly along the edges. Follows energy/virtual-displacement approach. Basic equation expresses strain energy in membrane as double integral, over x and y coordinates of square, of function of longitudinal strains, shear strain, thickness of membrane, and Young's modulus and Poissons's ratio of membrane material.

  12. Compact Superconducting Crabbing and Deflecting Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika

    2012-09-01

    Recently, new geometries for superconducting crabbing and deflecting cavities have been developed that have significantly improved properties over those the standard TM{sub 110} cavities. They are smaller, have low surface fields, high shunt impedance and, more importantly for some of them, no lower-order-mode with a well-separated fundamental mode. This talk will present the status of the development of these cavities.

  13. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets

    SciTech Connect

    Baltador, C. Veltri, P.; Agostinetti, P.; Chitarin, G.; Serianni, G.

    2016-02-15

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.

  14. Adaptable DC offset correction

    NASA Technical Reports Server (NTRS)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  15. Polyhedron tracking and gravity tractor asteroid deflection

    NASA Astrophysics Data System (ADS)

    Ummen, N.; Lappas, V.

    2014-11-01

    In the wake of the Chelyabinsk airburst, the defense against hazardous asteroids is becoming a topic of high interest. This work improves the gravity tractor asteroid deflection approach by tracking realistic small body shapes with tilted ion engines. An algorithm for polyhedron tracking was evaluated in a fictitious impact scenario. The simulations suggest a capability increase up to 38.2% with such improved tilting strategies. The long- and short-term effects within polyhedron tracking are illustrated. In particular, the orbital reorientation effect is influential when realistic asteroid shapes and rotations are accounted for. Also analyzed is the subject of altitude profiles, a way to tailor the gravity tractor performance, and to achieve a steering ability within the B-plane. A novel analytical solution for the classic gravity tractor is derived. It removes the simulation need for classic tractor designs to obtain comparable two body model Δv figures. This paper corroborates that the asteroid shape can be exploited for maximum performance. Even a single engine tilt adjustment at the beginning of deflection operations yields more deflection than a fixed preset tilt.

  16. Experiments with a DC Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  17. Analysis on the Deflection Angle of Columnar Dendrites of Continuous Casting Steel Billets Under the Influence of Mold Electromagnetic Stirring

    NASA Astrophysics Data System (ADS)

    Wang, Xincheng; Wang, Shengqian; Zhang, Lifeng; Sridhar, Seetharaman; Conejo, Alberto; Liu, Xuefeng

    2016-11-01

    In the current study, the deflection angle of columnar dendrites on the cross section of steel billets under mold electromagnetic stirring (M-EMS) was observed. A mathematical model was developed to define the effect of M-EMS on fluid flow and then to analyze the relationship between flow velocities and deflection angle. The model was validated using experimental data that was measured with a Tesla meter on magnetic intensity. By coupling the numerical results with the experimental data, it was possible to define a relationship between the velocities of the fluid with the deflection angle of high-carbon steel. The deflection angle of high-carbon steel reached maximum values from 18 to 23 deg for a velocity from 0.35 to 0.40 m/s. The deflection angles of low-carbon steel under different EM parameters were discussed. The deflection angle of low-carbon steel was increased as the magnetic intensity, EM force, and velocity of molten steel increased.

  18. Accurate analytical approximation of asteroid deflection with constant tangential thrust

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio; Baù, Giulio

    2012-11-01

    We present analytical formulas to estimate the variation of achieved deflection for an Earth-impacting asteroid following a continuous tangential low-thrust deflection strategy. Relatively simple analytical expressions are obtained with the aid of asymptotic theory and the use of Peláez orbital elements set, an approach that is particularly suitable to the asteroid deflection problem and is not limited to small eccentricities. The accuracy of the proposed formulas is evaluated numerically showing negligible error for both early and late deflection campaigns. The results will be of aid in planning future low-thrust asteroid deflection missions.

  19. Deflection Missions for Asteroid 2011 AG5

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel; Landau, Damon; Bhaskaran, Shyam; Chodas, Paul; Chesley, Steven; Yeomans, Don; Petropoulos, Anastassios; Sims, Jon

    2012-01-01

    The recently discovered asteroid 2011 AG5 currently has a 1-in-500 chance of impacting Earth in 2040. In this paper, we discuss the potential of future observations of the asteroid and their effects on the asteroid's orbital uncertainty. Various kinetic impactor mission scenarios, relying on both conventional chemical as well as solar-electric propulsion, are presented for deflecting the course of the asteroid safely away from Earth. The times for the missions range from pre-keyhole passage (pre-2023), and up to five years prior to the 2040 Earth close approach. We also include a brief discussion on terminal guidance, and contingency options for mission planning.

  20. Combustion Diagnostics by Photo-Deflection Spectroscopy

    DTIC Science & Technology

    1992-03-01

    Laser Deflection Techniques," S.W. Kizirnis, R.J. Brecha , B.N. Ganguly, L.P. Goss, and R. Gupta, Applied Optics 23, 3873 (1984). 4. "The Photoacoustic...signal DIGITIZE " from the entire flame-laser beam interaction length. How- ever, PADS has a good potential for obtaining spatial reso- P .R.T. lution by...proportional to the position of the probe beam. _The difference signal is digitized by a LeCroy WD 8256 -transient digitizer and transferred to a

  1. Dark matter signals in deflected mirage mediation

    SciTech Connect

    Holmes, Michael

    2010-02-10

    We investigate the parameter space of a specific class of model within the deflected mirage mediation (DMM) scenario. We look at neutralino properties and compute the thermal relic density as well as interaction rates with xenon direct detection experiments. We find that there are portions of the parameter space which are in line with the current WMAP constraints. Further we find that none of the investigated parameter space is in conflict with current bounds from the Xenon10 experiment and that future large-scale liquid xenon experiments will probe a large portion of the model space.

  2. Electroweak naturalness and deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Barger, Vernon; Everett, Lisa L.; Garon, Todd S.

    2016-04-01

    We investigate the question of electroweak naturalness within the deflected mirage mediation (DMM) framework for supersymmetry breaking in the minimal supersymmetric standard model. The class of DMM models considered are nine-parameter theories that fall within the general classification of the 19-parameter phenomenological minimal supersymmetric standard model. Our results show that these DMM models have regions of parameter space with very low electroweak fine-tuning, at levels comparable to the phenomenological minimal supersymmetric standard model. These parameter regions should be probed extensively in the current LHC run.

  3. Deflection of Propeller Blades While Running

    NASA Technical Reports Server (NTRS)

    Katzmayr, R

    1922-01-01

    The forces acting on the blades of a propeller proceed from the mass of the propeller and the resistance of the surrounding medium. The magnitude, direction and point of application of the resultant to the propeller blade is of prime importance for the strength calculation. Since it was obviously impracticable to bring any kind of testing device near the revolving propeller, not so much on account of the element of danger as on account of the resulting considerable disturbance of the air flow, the deflection in both cases was photographically recorded and subsequently measured at leisure.

  4. DC/DC Power Converter for Super-Capacitor Supplied by Electric Power Splitter

    NASA Astrophysics Data System (ADS)

    Haubert, T.; Mindl, P.

    The aim of the article is design of DC/DC converter and discussing of problematic supply using electric power splitter. The electric power splitter with AC/DC converter is source for the DC/DC converter, which is dedicated for charging and discharging of hybrid car drive super-capacitor energy storage. The electric power splitter is synchronous machine with two rotating parts. First rotor contains permanent magnet and the second rotor contains three-phase windings. The amplitude of output voltage depends on difference between first and second rotor speed. The main role of the DC/DC converter is to optimize energy content in super-capacitor storage used to acceleration and deceleration driving period of the passenger car with hybrid electric vehicle (HEV) drive system using electric power splitter.

  5. Ion Deflection for Final Optics In Laser Inertial Fusion Power Plants

    SciTech Connect

    Abbott, R P; Latkowski, J F

    2006-11-17

    Left unprotected, both transmissive and reflective final optics in a laser inertial fusion power plant would quickly fail from melting, pulsed thermal stresses, or degradation of optical properties as a result of ion implantation. One potential option for mitigating this threat is to magnetically deflect the ions such that they are directed into a robust energy dump. In this paper we detail integrated studies that have been carried out to asses the viability of this approach for protecting final optics.

  6. Ion Deflection for Final Optics in Laser Inertial Fusion Power Plants

    SciTech Connect

    Abbott, Ryan P.

    2005-12-01

    Left unprotected, both transmissive and reflective final optics in a laser-driven inertial fusion power plant would quickly fail from melting, pulsed thermal stress, or degradation of optical properties as a result of ion implantation. One potential option for mitigating this threat is to magnetically deflect the ions such that they are directed to a robust energy dump. In this paper we detail integrated studies that have been carried out to assess the viability of this approach for protecting final optics.

  7. Magnetic actuated FR4 scanners for compact spectrometers

    NASA Astrophysics Data System (ADS)

    Ataman, Çağlar; Urey, Hakan

    2008-04-01

    A novel magnetic actuated polymer optical platform is integrated into a Michelson interferometer type Fourier transform infrared spectrometer. The proposed advantages of the novel platform over existing approaches, such as MEMS spectrometers, or bulky FTIR systems, include millimeter range dimensions providing a large clear aperture and enabling conventional machining for device fabrication, a controllable AC and/or DC motion both in rotational and translational modes, and low frequency operation. It has been demonstrated that the platform is capable of achieving 400μm DC deflection in ambient pressure in the translational mode, and a total optical scan angle exceeding 60 degrees in the resonant rotational mode. A Michelson type Fourier transform spectrometer was built using a retro-reflector bearing FR4 platform and a spectral resolution of 25cm -1 is demonstrated with this setup. In addition, possible use of the same platform in various other spectrometer configurations and methods to improve the motion precision are discussed.

  8. Analysis of engineering characteristics of pavement deflection trends

    SciTech Connect

    Kerali, H.R.; Lawrance, A.J.

    1999-05-01

    This paper describes analysis of pavement deflection data collected by the Transport Research Laboratory at two experimental road sites in England during 1960--1985. Measurements of Benkelman beam deflections together with records of traffic loading were taken at 6 to 12 month intervals. The analysis investigates the deflection trend as a function of road base material and thickness. The deflection trend was represented by a negative exponential curve form. Engineering aspects of the curve form were extracted and statistically analyzed. The results obtained focus on the dependency of deflection progression on both road base material and thickness, which are shown to act either jointly or singly, depending on the engineering characteristic of the pavement deflection trend.

  9. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  10. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  11. Scanning Light Sheet Would Measure Deflection Of Beam

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Monteith, James H.; Weisenborn, Michael D.; Franke, John M.; Jordan, Thomas L.

    1992-01-01

    Scanning-light-sheet apparatus designed to measure linear and angular displacement or deflection of structure. Intended specifically to measure deflection of beam-shaped truss structure. Includes conventional low-powered laser, lenses, mounts, single-axis optical scanner, several photodiodes, and electronic controller. Apparatus measures motion of structure and also used to determine positions, deflections, and velocities. Besides use in aerospace field, displacement measurements have many applications in construction-equipment and automotive industries.

  12. Beam-beam deflection and signature curves for elliptic beams

    SciTech Connect

    Ziemann, V.

    1990-10-22

    In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.

  13. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.

    1998-01-01

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.

  14. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.

    1998-09-29

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.

  15. Igniter adapter-to-igniter chamber deflection test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.

  16. Efficient dc-to-dc converter

    NASA Technical Reports Server (NTRS)

    Black, J. M.

    1978-01-01

    Circuit consists of chopper section which converts input dc to square wave, followed by bridge-rectifier stage. Chopper gives nearly-ideal switching characteristics, and bridge uses series of full-wave stages rather than less-efficient half-wave rectifiers found in previous circuits. Special features of full-wave circuit allow redundant components to be eliminated, lowering parts count. Circuit can also be adapted for use as dc-to-dc converter or as combination dc-and-ac source.

  17. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  18. Teach Deflection Concepts with Hacksaw Blades and Rubber Bands

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    Technology and engineering educators can use a simple hacksaw blade to help students learn about deflection, as that which occurs in a beam. Here the beam is fixed at one end and allowed to deflect in a manner that is easy to see and measure--the hacksaw blade represents a cantilever, an overhanging structure. This simple and very inexpensive…

  19. AIDA: the Asteroid Impact & Deflection Assessment mission

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the

  20. A computational study of asymmetric glottal jet deflection during phonation.

    PubMed

    Zheng, X; Mittal, R; Bielamowicz, S

    2011-04-01

    Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier-Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called "Coanda effect" in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection.

  1. A computational study of asymmetric glottal jet deflection during phonation

    PubMed Central

    Zheng, X.; Mittal, R.; Bielamowicz, S.

    2011-01-01

    Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier–Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called “Coanda effect” in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection. PMID:21476669

  2. Optimized frequency dependent photothermal beam deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Korte, D.; Cabrera, H.; Toro, J.; Grima, P.; Leal, C.; Villabona, A.; Franko, M.

    2016-12-01

    In the letter the optimization of the experimental setup for photothermal beam deflection spectroscopy is performed by analyzing the influence of its geometrical parameters (detector and sample position, probe beam radius and its waist position etc) on the detected signal. Furthermore, the effects of the fluid’s thermo-optical properties, for optimized geometrical configuration, on the measurement sensitivity and uncertainty determination of sample thermal properties is also studied. The examined sample is a recently developed CuFeInTe3 material. It is seen from the obtained results, that it is a complex problem to choose the proper geometrical configuration as well as sensing fluid to enhance the sensitivity of the method. A signal enhancement is observed at low modulation frequencies by placing the sample in acetonitrile (ACN), while at high modulation frequencies the sensitivity is higher for measurements made in air. For both, detection in air and acetonitrile the determination of CuFeInTe3 thermal properties is performed. The determined values of thermal diffusivity and thermal conductivity are (0.048  ±  0.002)  ×  10-4 m2 s-1 and 4.6  ±  0.2 W m-1 K-1 and (0.056  ±  0.005)  ×  10-4 m2 s-1 and 4.8  ±  0.4 W m-1 K-1 for ACN and air, respectively. It is seen, that the determined values agree well within the range of their measurement uncertainties for both cases, although the measurement uncertainty is two times lower for the measurements in ACN providing more accurate results. The analysis is performed by the use of recently developed theoretical description based on the complex geometrical optics. It is also shown, how the presented work fits into the current status of photothermal beam deflection spectroscopy.

  3. Design of a Quasi-waveguide Multicell Deflecting Cavity for the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Lunin, A.; Gonin, I.; Awida, M.; Khabiboulline, T.; Yakovlev, V.; Zholents, A.

    This paper reports the design of a 2815 MHz Quasi-waveguide Multicell Resonator (called QMiR) being considered as a transverse RF deflecting cavity for the Advanced Photon Source's (APS) Short Pulse X-ray project. QMiR forms a trapped dipole mode inside a beam vacuum chamber, while High Order Modes (HOM) are heavily loaded. This results in a sparse HOM spectrum, makes HOM couplers unnecessary and allows simplifying the cavity mechanical design. The form of electrodes is optimized for producing 2 MV of deflecting voltage and keeping low peak surface electric and magnetic fields of 54 MV/m and 75 mT respectively. Results of detailed EM analysis, including HOM damping, thermal and mechanical calculations for proposed QMiR cavity are presented.

  4. Load Deflection Characteristics of Nickel Titanium Initial Archwires

    PubMed Central

    Aghili, Hossein; Yasssaei, Sogra; Ahmadabadi, Mahmoud Nilli

    2015-01-01

    Objectives: The aim of this study was to assess and compare the characteristics of commonly used initial archwires by their load deflection graphs. Materials and Methods: This study tested three wire designs namely copper nickel titanium (CNT), nickel titanium (NiTi), and multi-strand NiTi (MSNT) archwires engaged in passive self-ligating (PSL) brackets, active self-ligating (ASL) brackets or conventional brackets. To evaluate the mechanical characteristics of the specimens, a three-point bending test was performed. The testing machine vertically applied force on the midpoint of the wire between the central incisor and canine teeth to obtain 2 and 4mm of deflection. The force level at maximum deflection and characteristics of plateau (the average plateau load and the plateau length) were recorded. Two-way ANOVA and Tukey’s test were used at P <0.05 level of significance. Results: Force level at maximum deflection and plateau length were significantly affected by the amount of deflection. The type of archwires and brackets had significant effects on force level at maximum deflection, and plateau length. However, the bracket type had no significant effect on the average plateau force. Conclusion: With any type of brackets in deflections of 2 and 4mm, MSNT wire exerted the lowest while NiTi wire exerted the highest force level at maximum deflection and plateau phase. The force level at maximum deflection and the plateau length increased with raising the amount of primary deflection; however the average plateau force did not change significantly. PMID:27148381

  5. Mission Designs for Demonstrating Gravity Tractor Asteroid Deflection

    NASA Astrophysics Data System (ADS)

    Busch, M.; Faber, N.; Eggl, S.; Morrison, D.; Clark, A.; Frost, C.; Jaroux, B. A.; Khetawat, V.

    2015-12-01

    Gravity tractor asteroid deflection relies on the gravitational attraction between the target and a nearby spacecraft; using low-thrust propulsion to change the target's trajectory slowly but continuously. Our team, based at the NASA Ames Mission Design Center, prepared designs for a Gravity Tractor Demonstration Mission (GTDM) for the European Commission's NEOShield initiative. We found five asteroids with well-known orbits and opportunities for efficient stand-alone demonstrations in the 2020s. We selected one object, 2000 FJ10, for a detailed design analysis. Our GTDM design has a 4 kW solar-electric propulsion system and launch mass of 1150 kg. For a nominal asteroid mass of 3 x 109 kg and diameter 150 m, and a hovering altitude 125 m above the asteroid's surface, GTDM would change FJ10's semi-major axis by 10 km over 2 years. To measure the deflection clearly and to permit safe hovering by the spacecraft, several months of survey and characterization are required prior to the active tractoring phase of the mission. Accurate tracking is also required after the tractoring phase, to ensure that the asteroid has indeed been deflected as intended. The GTDM design includes both spacecraft and Earth-based observations of FJ10 to verify the deflection. The estimated cost of GTDM is $280 million. Trajectory analysis for GTDM confirmed that the outcome of a deflection of any asteroid depends on when that deflection is performed. Compared to kinetic impactor deflection, the gradual deflection from a gravity tractor produces comparable results for a given total momentum transfer. However, a gravity tractor can have greater flexibility in the direction in which the target asteroid can be deflected. Asteroid deflection scenarios must be modeled carefully on a case-to-case basis. We will review implications of the results of the GTDM study to other proposed gravity tractor demonstrations, such as that included in NASA's Asteroid Redirect Mission.

  6. High power density dc/dc converter: Selection of converter topology

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  7. Novel bidirectional DC-DC converters based on the three-state switching cell

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, José Carlos; Robles Balestero, Juan Paulo; Lessa Tofoli, Fernando

    2016-05-01

    It is well known that there is an increasing demand for bidirectional DC-DC converters for applications that range from renewable energy sources to electric vehicles. Within this context, this work proposes novel DC-DC converter topologies that use the three-state switching cell (3SSC), whose well-known advantages over conventional existing structures are ability to operate at high current levels, while current sharing is maintained by a high frequency transformer; reduction of cost and dimensions of magnetics; improved distribution of losses, with consequent increase of global efficiency and reduction of cost associated to the need of semiconductors with lower current ratings. Three distinct topologies can be derived from the 3SSC: one DC-DC converter with reversible current characteristic able to operate in the first and second quadrants; one DC-DC converter with reversible voltage characteristic able to operate in the first and third quadrants and one DC-DC converter with reversible current and voltage characteristics able to operate in four quadrants. Only the topology with bidirectional current characteristic is analysed in detail in terms of the operating stages in both nonoverlapping and overlapping modes, while the design procedure of the power stage elements is obtained. In order to validate the theoretical assumptions, an experimental prototype is also implemented, so that relevant issues can be properly discussed.

  8. Saturation magnetostriction coefficient measurement of CoCrPt alloy thin films using a highly sensitive optical deflection-detecting system

    SciTech Connect

    Im, Mi-Young; Jeong, Jong-Ryul; Shin, Sung-Chul

    2005-05-15

    We report on the saturation magnetostriction coefficient of 500 A (Co{sub 82}Cr{sub 18}){sub 100-x}Pt{sub x} and x A (Co{sub 82}Cr{sub 18}){sub 79}Pt{sub 21} alloy thin films with perpendicular magnetic anisotropy. The CoCrPt alloy films were prepared by dc magnetron sputtering and the magnetostriction coefficients were measured via a highly sensitive optical deflection-detecting system using a one-dimensional position sensitive detector. The saturation magnetostriction coefficient is increased from -7.23x10{sup -6} to 8.5x10{sup -6} and from -8x10{sup -6} to 14x10{sup -6} with increasing the Pt concentration from 0 to 35 at. % and the film thickness from 400 to 800 A, respectively. X-ray diffractometry study revealed that crystalline orientation in CoCrPt alloy film, which depends on the Pt concentration and the CoCrPt film thickness, strongly influences the evolution of saturation magnetostriction coefficient.

  9. Asteroid Deflection Mission Design Considering On-Ground Risks

    NASA Astrophysics Data System (ADS)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter

    The deflection of an Earth-threatening asteroid requires high transparency of the mission design process. The goal of such a mission is to move the projected point of impact over the face of Earth until the asteroid is on a miss trajectory. During the course of deflection operations, the projected point of impact will match regions that were less affected before alteration of the asteroid’s trajectory. These regions are at risk of sustaining considerable damage if the deflecting spacecraft becomes non-operational. The projected impact point would remain where the deflection mission put it at the time of mission failure. Hence, all regions that are potentially affected by the deflection campaign need to be informed about this risk and should be involved in the mission design process. A mission design compromise will have to be found that is acceptable to all affected parties (Schweickart, 2004). A software tool that assesses the on-ground risk due to deflection missions is under development. It will allow to study the accumulated on-ground risk along the path of the projected impact point. The tool will help determine a deflection mission design that minimizes the on-ground casualty and damage risk due to deflection operations. Currently, the tool is capable of simulating asteroid trajectories through the solar system and considers gravitational forces between solar system bodies. A virtual asteroid may be placed at an arbitrary point in the simulation for analysis and manipulation. Furthermore, the tool determines the asteroid’s point of impact and provides an estimate of the population at risk. Validation has been conducted against the solar system ephemeris catalogue HORIZONS by NASA’s Jet Propulsion Laboratory (JPL). Asteroids that are propagated over a period of 15 years show typical position discrepancies of 0.05 Earth radii relative to HORIZONS’ output. Ultimately, results from this research will aid in the identification of requirements for

  10. Simulations of directed energy comet deflection

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2016-09-01

    Earth-crossing asteroids and comets pose a long-term hazard to life and property on Earth. Schemes to mitigate the impact threat have been studied extensively but tend to focus on asteroid diversion while neglecting the possibility of a comet threat. Such schemes often demand physically intercepting the target by spacecraft, a task feasible only for targets identified decades in advance in a restricted range of orbits. A threatening comet is unlikely to satisfy these criteria and so necessitates a fundamentally different approach for diversion. Comets are naturally perturbed from purely gravitational trajectories through solar heating of their surfaces which activates sublimation-driven jets. Artificial heating of a comet, such as by a high-powered laser array in Earth orbit, may supplement natural heating by the Sun to purposefully manipulate its path to avoid an impact. The effectiveness of any particular laser array for a given comet depends on the comet's heating response which varies dramatically depending on factors including nucleus size, orbit and dynamical history. These factors are incorporated into a numerical orbital model using established models of nongravitational perturbations to evaluate the effectiveness and feasibility of using high-powered laser arrays in Earth orbit or on the ground to deflect a variety of comets. Simulation results suggest that orbital arrays of 500m and 10GW operating for 10 min=d over 1 yr may be adequate for mitigating impacts by comets up to 500m in diameter. Continuously operating ground-based arrays of 100m and 10GW may be similarly effective when appropriately located.

  11. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  12. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    SciTech Connect

    Onar, Omer C

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  13. DC-Powered Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2016-02-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.

  14. RF deflecting cavity design for Berkeley ultrafast X-ray source

    NASA Astrophysics Data System (ADS)

    Li, D.; Corlett, J.

    2002-05-01

    Our proposed source for production of ultra-short (less than 100 fs FWHM) x-ray pulses utilizes a scheme for manipulation of the relatively long (2 ps) electron bunch in transverse phase-space, followed by compression of the emitted x-ray pulse in crystal optics. In order to compress the x-ray pulses, RF cavities operating in a dipole mode (TM110-like) are required to deflect the head and tail of a 2.5 GeV bunch in opposite directions. For a 2 ps duration electron bunch, an 8.5 MV deflecting voltage is required at a RF frequency of 3.9 GHz. In this paper, we will present a preliminary cavity design based on numerical simulations performed by MAFIA and URMEL codes. Seven-cell superconducting p mode dipole RF cavities are proposed to provide the necessary deflecting voltage. Due to the presence of beam iris, the mavities operate in a hybrid mode where TM and TE like modes co-exist. Even on mhe beam axis, both magnetic and electric fields contribute to the transverse mick. Lower order monopole modes (LOMs) in the cavities may cause energy spread of the electron beam and need to be damped. The effects of the LOMs on beam dynamics are estimated. Possible damping schemes will be discussed.

  15. RF deflecting cavity design for Berkeley ultrafast X-ray source

    SciTech Connect

    Li, Derun; Corlett, J.

    2002-05-30

    Our proposed source for production of ultra-short (less than 100 fs FWHM) x-ray pulses utilizes a scheme for manipulation of the relatively long ({approx}2 ps) electron bunch in transverse phase-space, followed by compression of the emitted x-ray pulse in crystal optics [1]. In order to compress the x-ray pulses, RF cavities operating in a dipole mode (TM{sub 110}-like) are required to deflect the head and tail of a 2.5 GeV bunch in opposite directions. For a 2 ps duration electron bunch, an 8.5 MV deflecting voltage is required at a RF frequency of 3.9 GHz. In this paper, we will present a preliminary cavity design based on numerical simulations performed by MAFIA and URMEL codes. Seven-cell superconducting {pi} mode dipole RF cavities are proposed to provide the necessary deflecting voltage. Due to the presence of beam iris, the cavities operate in a hybrid mode where TM and TE like modes co-exist. Even on the beam axis, both magnetic and electric fields contribute to the transverse kick. Lower order monopole modes (LOMs) in the cavities may cause energy spread of the electron beam and need to be damped. The effects of the LOMs on beam dynamics are estimated. Possible damping schemes will be discussed.

  16. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  17. Possible influences on bullet trajectory deflection in ballistic gelatine.

    PubMed

    Riva, Fabiano; Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T

    2017-02-01

    The influence of the distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots on a bullet's trajectory, when passing through ballistic gelatine, was studied. No significant difference in deflection was found when trajectories of 9mm Luger bullets, fired at a 3.5cm distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots, were compared to trajectories of bullets fired 7cm or more away from any of the aforementioned aspects. A surprisingly consistent 6.5° absolute deflection angle was found when these bullets passed through 22.5 to 23.5cm of ballistic gelatine. The projection angle, determined by the direction of the deflection, appeared to be random. The consistent absolute angle, in combination with the random projection angle, resulted in a cone-like deflection pattern.

  18. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, Neil J.; Hudson, Charles L.

    1992-01-01

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse.

  19. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  20. Deflection of a Reflected Intense Vortex Laser Beam

    NASA Astrophysics Data System (ADS)

    Zhang, Lingang; Shen, Baifei; Zhang, Xiaomei; Huang, Shan; Shi, Yin; Liu, Chen; Wang, Wenpeng; Xu, Jiancai; Pei, Zhikun; Xu, Zhizhan

    2016-09-01

    An interesting deflection effect deviating the optical reflection law is revealed in the relativistic regime of intense vortex laser plasma interaction. When an intense vortex laser obliquely impinges onto an overdense plasma target, the reflected beam deflects out of the plane of incidence with an experimentally observable deflection angle. The mechanism is demonstrated by full three-dimensional particle-in-cell simulation as well as analytical modeling using the Maxwell stress tensor. The deflection results from the rotational symmetry breaking of the foil driven by the unsymmetrical shear stress of the vortex beam. The l -dependent shear stress, where l is the topological charge, as an intrinsic characteristic to the vortex beam, plays an important role as the ponderomotive force in relativistic vortex laser matter interaction.

  1. Studies with sample conductivity, insertion rates, and particle deflection in a continuous flow electrophoresis system

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1982-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.

  2. A general small-deflection theory for flat sandwich plates

    NASA Technical Reports Server (NTRS)

    Libove, Charles; Batdorf, S B

    1948-01-01

    A small-deflection theory is developed for the elastic behavior of orthotropic flat plates in which deflections due to shear are taken into account. In this theory, which covers all types of flat sandwich construction, a plate is characterized by seven physical constants (five stiffnesses and two Poisson ratios) of which six are independent. Both the energy expression and the differential equations are developed. Boundary conditions corresponding to simply supported, clamped, and elastically restrained edges are considered.

  3. Comparison of Spinal Needle Deflection in a Ballistic Gel Model

    PubMed Central

    Rand, Ethan; Christolias, George; Visco, Christopher; R. Singh, Jaspal

    2016-01-01

    Background Percutaneous diagnostic and therapeutic procedures are commonly used in the treatment of spinal pain. The success of these procedures depends on the accuracy of needle placement, which is influenced by needle size and shape. Objectives The purpose of this study is to examine and quantify the deviation of commonly used spinal needles based on needle tip design and gauge, using a ballistic gel tissue simulant. Materials and Methods Six needles commonly used in spinal procedures (Quincke, Short Bevel, Chiba, Tuohy, Hustead, Whitacre) were selected for use in this study. Ballistic gel samples were made in molds of two depths, 40mm and 80 mm. Each needle was mounted in a drill press to ensure an accurate needle trajectory. Distance of deflection was recorded for each needle. Results In comparing the mean deflection of 22 gauge needles of all types at 80 mm of depth, deflection was greatest among beveled needles [Short Bevel (9.96 ± 0.77 mm), Quincke (8.89 ± 0.17 mm), Chiba (7.71 ± 1.16 mm)], moderate among epidural needles [Tuohy (7.64 ± 0.16 mm) and least among the pencil-point needles [Whitacre (0.73 ± 0.34 mm)]. Increased gauge (25 g) led to a significant increase in deflection among beveled needles. The direction of deflection was away from the bevel with Quincke, Chiba and Short Beveled needles and toward the bevel of the Tuohy and Hustead needles. Deflection of the Whitacre pencil-point needle was minimal. Conclusions There is clinical utility in knowing the relative deflection of various needle tips. When a procedure requires a needle to be steered around obstacles, or along non-collinear targets, the predictable and large amount of deflection obtained through use of a beveled spinal needle may prove beneficial. PMID:27847693

  4. Design of Superconducting Parallel Bar Deflecting and Crabbing rf Structures

    SciTech Connect

    Jean Delayen, Haipeng Wang

    2009-05-01

    A new concept for a deflecting and crabbing rf structure based on half-wave resonant lines was introduced recently*. It offers significant advantages to existing designs and, because of it compactness, allows low frequency operation. This concept has been further refined and optimized for superconducting implementation. Results of this optimization and application to a 400 MHz crabbing cavity and a 499 MHz deflecting cavity are presented.

  5. Cantilever deflection associated with hybridization of monomolecular DNA film

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Ganapathysubramanian, Baskar; Shrotriya, Pranav

    2012-04-01

    Recent experiments show that specific binding between a ligand and surface immobilized receptor, such as hybridization of single stranded DNA immobilized on a microcantilever surface, leads to cantilever deflection. The binding-induced deflection may be used as a method for detection of biomolecules, such as pathogens and biohazards. Mechanical deformation induced due to hybridization of surface-immobilized DNA strands is a commonly used system to demonstrate the efficacy of microcantilever sensors. To understand the mechanism underlying the cantilever deflections, a theoretical model that incorporates the influence of ligand/receptor complex surface distribution and empirical interchain potential is developed to predict the binding-induced deflections. The cantilever bending induced due to hybridization of DNA strands is predicted for different receptor immobilization densities, hybridization efficiencies, and spatial arrangements. Predicted deflections are compared with experimental reports to validate the modeling assumptions and identify the influence of various components on mechanical deformation. Comparison of numerical predictions and experimental results suggest that, at high immobilization densities, hybridization-induced mechanical deformation is determined, primarily by immobilization density and hybridization efficiency, whereas, at lower immobilization densities, spatial arrangement of hybridized chains need to be considered in determining the cantilever deflection.

  6. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    SciTech Connect

    Crapo, A.D.; Lloyd, J.D. )

    1991-03-01

    This paper reports on two motors designed and built for use with high temperature superconductor (HTSC) materials. They are a homopolar DC motor that will use HTSC field windings and a brushless DC motor that will use bulk HTSC material to trap flux in steel rotor poles. The HTSC field windings of the homopolar DC motor are designed to operate at 1000 Amperes/cm{sup 2} in a 0.010 Tesla (100 Gauss) field. In order to maximize torque in the homopolar DC motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar DC motor has been tested while the authors wait for 575 Ampere turn HTSC coils.

  7. A SQUID series array dc current sensor

    NASA Astrophysics Data System (ADS)

    Beyer, J.; Drung, D.

    2008-09-01

    Superconducting quantum interference device (SQUID) sensors are used to sense changes in various physical quantities, which can be transformed into changes in the magnetic flux threading the SQUID loop. We have developed a novel SQUID array dc current sensor. The device is based on a series array of identical dc SQUIDs. An input signal current to be measured is coupled tightly but non-uniformly to the SQUID array elements. The input signal coupling to the individual array elements is chosen such that a single-valued, non-periodic overall voltage response is obtained. Flux offsets in the individual SQUIDs which would compromise the sensor voltage response are avoided or can be compensated. We present simulations and experimental results on the SQUID Array for Dc (SQUAD) current sensor current sensor performance. A dc current resolution of <1 nA in a measurement bandwidth of 0-25 Hz is achieved for an input inductance of LIn<3 nH.

  8. Full sky harmonic analysis hints at large ultra-high energy cosmic ray deflections

    SciTech Connect

    Tinyakov, P. G. Urban, F. R.

    2015-03-15

    The full-sky multipole coefficients of the ultra-high energy cosmic ray (UHECR) flux have been measured for the first time by the Pierre Auger and Telescope Array collaborations using a joint data set with E > 10 EeV. We calculate these harmonic coefficients in the model where UHECR are protons and sources trace the local matter distribution, and compare our results with observations. We find that the expected power for low multipoles (dipole and quadrupole, in particular) is sytematically higher than in the data: the observed flux is too isotropic. We then investigate to which degree our predictions are influenced by UHECR deflections in the regular Galactic magnetic field. It turns out that the UHECR power spectrum coefficients C{sub l} are quite insensitive to the effects of the Galactic magnetic field, so it is unlikely that the discordance can be reconciled by tuning the Galactic magnetic field model. On the contrary, a sizeable fraction of uniformly distributed flux (representing for instance an admixture of heavy nuclei with considerably larger deflections) can bring simulations and observations to an accord.

  9. Optimized anisotropic magnetoelectric response of Fe61.6Co16.4Si10.8B11.2/PVDF/Fe61.6Co16.4Si10.8B11.2 laminates for AC/DC magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Reis, S.; Silva, M. P.; Castro, N.; Correia, V.; Gutierrez, J.; Lasheras, A.; Lanceros-Mendez, S.; Martins, P.

    2016-05-01

    The anisotropic magnetoelectric (ME) effect on a Fe61.6Co16.4Si10.8B11.2/PVDF Fe61.6Co16.4Si10.8B11.2 laminate composite has been used for the development of a magnetic field sensor able to detect both the magnitude and direction of AC and DC magnetic fields. The accuracy (99% for both AC and DC sensors), linearity (92% for the DC sensor and 99% for the AC sensor) and reproducibility (99% for both sensors) indicate the suitability of the sensor for applications. Furthermore, the sensitivity of the Fe61.6Co16.4Si10.8B11.2/PVDF/Fe61.6Co16.4Si10.8B11.2 anisotropic magnetic sensor—15 and 1400 mV Oe-1 for the DC and AC fields, respectively—are the highest reported in the literature for polymer-based ME materials. Such features, combined with its flexibility, versatility, light weight, low cost and low-temperature fabrication, lead to the suitability of the developed sensor for use in magnetic sensor applications.

  10. 76 FR 13926 - Airworthiness Directives; The Boeing Company Model DC-8-11, DC-8-12, DC-8-21, DC-8-31, DC-8-32...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Model DC-8-11, DC-8- 12, DC-8-21, DC-8-31, DC-8-32, DC-8-33, DC-8-41, DC-8-42, and DC-8-43 Airplanes; DC-8-50 Series Airplanes; DC-8F-54 and DC-8F-55 Airplanes; DC-8-60 Series Airplanes; DC-8-60F Series Airplanes; DC-8-70 Series Airplanes; and DC-8-70F Series Airplanes AGENCY:......

  11. 75 FR 61989 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-8-31, DC-8-32, DC-8-33, DC-8-41...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Corporation Model DC- 8-31, DC-8-32, DC-8-33, DC-8-41, DC-8-42, and DC-8-43 Airplanes; Model DC-8-50 Series Airplanes; Model DC-8F-54 and DC-8F-55 Airplanes; Model DC-8-60 Series Airplanes; Model DC-8-60F Series Airplanes; Model DC-8- 70 Series Airplanes; and Model DC-8-70F Series Airplanes AGENCY:......

  12. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    NASA Astrophysics Data System (ADS)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  13. A passive DC current sensing methodology

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Liu, Huan; Li, Xiaodong; Li, Yang; Xian, Weikang

    2016-10-01

    This paper proposes a method for passive sensing a two-wire DC current without using any cord separator. In this method, a piezoelectric thin-film cantilever with a micro-magnet on its end is positioned near a power cord. The DC current in the power cord induces a magnetic field, which generates a magnetic force acting on the micro-magnet. Consequently, the piezoelectric cantilever is bent and induces an output voltage that is sensitive to small variations of DC currents. A prototype device has been fabricated and experimentally studied. It was found that the initial peak amplitude of the piezoelectric output voltage increases linearly with the DC current value upon "ON-OFF" switching. Compared to the Hall-effect based sensing, this method has the advantages of no need of driving voltage or cord separators even for two-wire appliance cords. Apart from the conventional consumer electronics, this method may have a wide application foreground in the new emerging fields, such as energy vehicles, lithium ion battery, or smart power grid.

  14. DC-to-DC switching converter

    NASA Technical Reports Server (NTRS)

    Cuk, Slobodan M. (Inventor); Middlebrook, Robert D. (Inventor)

    1980-01-01

    A dc-to-dc converter having nonpulsating input and output current uses two inductances, one in series with the input source, the other in series with the output load. An electrical energy transferring device with storage, namely storage capacitance, is used with suitable switching means between the inductances to DC level conversion. For isolation between the source and load, the capacitance may be divided into two capacitors coupled by a transformer, and for reducing ripple, the inductances may be coupled. With proper design of the coupling between the inductances, the current ripple can be reduced to zero at either the input or the output, or the reduction achievable in that way may be divided between the input and output.

  15. Magnetization of ferromagnetic clusters

    SciTech Connect

    Onishi, Naoki; Bertsch, G.; Yabana, Kazuhiro

    1995-02-01

    The magnetization and deflection profiles of magnetic clusters in a Stern-Gerlach magnet are calculated for conditions under which the magnetic moment is fixed in the intrinsic frame of the cluster, and the clusters enter the magnetic field adiabatically. The predicted magnetization is monotonic in the Langevin parameter, the ratio of magnetic energy {mu}{sub 0}B to thermal energy k{sub B}T. In low field the average magnetization is 2/3 of the Langevin function. The high-field moment approaches saturation asymptotically as B{sup {minus}1/2} instead of the B{sup {minus}1} dependence in the Langevin function.

  16. Improvement in the microstructure and magnetic properties in arrays of dc pulse electrodeposited Co nanowires induced by Cu pre-plating

    NASA Astrophysics Data System (ADS)

    Ghaffari, M.; Ramazani, A.; Almasi Kashi, M.

    2013-07-01

    Co nanowire arrays were pulse electrodeposited into nanoporous alumina templates via the dendrite pores of a thinned barrier layer formed by exponentially non-equilibrium anodization, either without or with Cu pre-plating. Electrolyte acidity (pH) dependence of the microstructure and magnetic properties of the prepared Co nanowires was investigated and compared. The process of Cu pre-plating prior to electrodeposition of Co nanowires along with an adjustment of the pH value was shown to significantly improve the magnetic properties of the Co nanowires and ultimately result in a high coercivity (about 3000 Oe) and squareness up to 98% at pH ∼ 5.7. The improvement of magnetic properties may be caused by the rotation of the hexagonal close packed c-axis of more crystal grains along with the wire axis, which supplements the shape anisotropy of the nanowires. The angular dependence of the coercivity (Hc(θ)) of both types of prepared Co nanowires was also studied.

  17. Development of pneumatic thrust-deflecting powered-lift systems

    NASA Technical Reports Server (NTRS)

    Englar, R. J.; Nichols, J. H., Jr.; Harris, M. J.; Eppel, J. C.; Shovlin, M. D.

    1986-01-01

    Improvements introduced into the Circulation Control Wing/Upper Surface Blowing (CCW/USB) STOL concept (Harris et al., 1982) are described along with results of the full-scale static ground tests and model-scale wind tunnel investigations. Tests performed on the full-scale pneumatic thrust-deflecting system installed on the NASA QSRA aircraft have demonstrated that, relative to the original baseline configuration, a doubling of incremental thrust deflection due to blowing resulted from improvements that increased the blowing span and momentum, as well as from variations in blowing slot height and geometry of the trailing edge. A CCW/Over the Wing model has been built and tested, which was shown to be equivalent to the CCW/USB system in terms of pneumatic thrust deflection and lift generation, while resolving the problem of cruise thrust loss due to exhaust scrubbing on the wing upper surface.

  18. Novel deflecting cavity design for eRHIC

    SciTech Connect

    Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.

    2011-07-25

    To prevent significant loss of the luminosity due to large crossing angle in the future ERL based Electron Ion Collider at BNL (eRHIC), there is a demand for crab cavities. In this article, we will present a novel design of the deflecting/crabbing 181 MHz superconducting RF cavity that will fulfil the requirements of eRHIC. The quarter-wave resonator structure of the new cavity possesses many advantages, such as compact size, high R{sub t}/Q, the absence of the same order mode and lower order mode, and easy higher order mode damping. We will present the properties and characteristics of the new cavity in detail. As the accelerator systems grow in complexity, developing compact and efficient deflecting cavities is of great interest. Such cavities will benefit situations where the beam line space is limited. The future linac-ring type electron-ion collider requires implementation of a crab-crossing scheme for both beams at the interaction region. The ion beam has a long bunches and high rigidity. Therefore, it requires a low frequency, large kicking angle deflector. The frequency of the deflecting mode for the current collider design is 181 MHz, and the deflecting angle is {approx}5 mrad for each beam. At such low frequency, the previous designs of the crab cavities will have very large dimensions, and also will be confronted by typical problems of damping the Lower Order Mode (LOM), the Same Order Mode (SOM), and as usual, the Higher Order Modes (HOM). In this paper we describe how one can use the concept of a quarter-wave (QW) resonator for a deflecting/crabbing cavity, and use its fundamental mode to deflect the beam. The simplicity of the cavity geometry and the large separation between its fundamental mode and the first HOM make it very attractive.

  19. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, B.E.

    1997-12-09

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.

  20. Deflection angle of light in an Ellis wormhole geometry

    NASA Astrophysics Data System (ADS)

    Nakajima, Koki; Asada, Hideki

    2012-05-01

    We reexamine the light deflection by an Ellis wormhole. The bending angle as a function of the ratio between the impact parameter and the throat radius of the wormhole is obtained in terms of a complete elliptic integral of the first kind. This result immediately yields asymptotic expressions in the weak field approximation. It is shown that an expression for the deflection angle derived (and used) in recent papers is valid at the leading order but it breaks down at the next order because of the nontrivial spacetime topology.

  1. Nuclear cycler: An incremental approach to the deflection of asteroids

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  2. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  3. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, Bruce E.

    1997-01-01

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

  4. Optimum vibrating beams with stress and deflection constraints

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1976-01-01

    The fundamental frequency of vibration of an Euler-Bernoulli or a Timoshenko beam of a specified constant volume is maximized subject to the constraint that under a prescribed loading the maximum stress or maximum deflection at any point along the beam axis will not exceed a specified value. In contrast with the inequality constraint which controls the minimum cross-section, the present inequality constraints lead to more meaningful designs. The inequality constraint on stresses is as easily implemented as the minimum cross-section constraint but the inequality constraint on deflection uses a treatment which is an extension of the matrix partitioning technique of prescribing displacements in finite element analysis.

  5. Ac magnetotransport in La 0.7Sr 0.3Mn 0.95Fe 0.05O 3 at low dc magnetic fields

    NASA Astrophysics Data System (ADS)

    Barik, S. K.; Mahendiran, R.

    2011-12-01

    We report the ac electrical response of La 0.7Sr 0.3Mn 1- xFe xO 3(x=0.05) as a function of temperature, magnetic field (H) and frequency of radio frequency ( rf) current ( f=0.1-20 MHz). The ac impedance (Z) was measured while rf current directly passes through the sample as well as in a coil surrounding the sample. It is found that with increasing frequency of the rf current, Z(T) shows an abrupt increase accompanied by a peak at the ferromagnetic Curie temperature. The peak decreases in magnitude and shifts down with increasing value of H. We find a magnetoimpedance of ΔZ/Z=-21% for ΔH=500 Oe at f=1 MHz around room temperature when the rf current flows directly through the sample and ΔZ/Z=-65.9% when the rf current flows through a coil surrounding the sample. It is suggested that the magnetoimpedance observed is a consequence of suppression of transverse permeability which enhances skin depth for current flow. Our results indicate that the magnetic field control of high frequency impedance of manganites is more useful than direct current magnetoresistance for low-field applications.

  6. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    SciTech Connect

    Marlino, Laura D; Zhu, Lizhi

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  7. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  8. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOEpatents

    Hagen, E.C.; Hudson, C.L.

    1995-07-25

    A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.

  9. Orthogonally interdigitated shielded serpentine travelling wave cathod ray tube deflection structure

    SciTech Connect

    Hagen, E.C.; Hudson, C.L.

    1993-10-27

    This invention comprises a new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes and is deflected by the deflection field to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks and forms an internal serpentine trough within these ground blocks for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame and which are electrically connected to the serpentine set.

  10. 75 FR 6160 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Douglas Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10... airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC- 10A and... would require a one-time installation of electrical bonding jumpers for the fill valve controllers...

  11. Forback DC-to-DC converter

    NASA Technical Reports Server (NTRS)

    Lukemire, Alan T. (Inventor)

    1993-01-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  12. Forback DC-to-DC converter

    NASA Technical Reports Server (NTRS)

    Lukemire, Alan T. (Inventor)

    1995-01-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  13. Deflection of Light by Gravity: A Physical Approach.

    ERIC Educational Resources Information Center

    Diamond, Joshua B.

    1982-01-01

    Einstein's equivalence principle relates effects seen by an accelerating observer to those experienced by an observer in a gravitational field, providing an explanation of bending of a light beam by gravity. Because the calculations lead to results one-half the value found experimentally, obtaining the correct light deflection is discussed.…

  14. 75 FR 12981 - Eligibility for Commercial Flats Failing Deflection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... included new deflection standards, previously applicable only to automation flats, for all commercial flat... should be eligible for full-service IMb pricing. If automation prices are denied, pieces that are... standards are not currently eligible for any automation flats prices, including full- service...

  15. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  16. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  17. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  18. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  19. Visually Controlled Robots For Unpacking And Mounting Television Deflection Units

    NASA Astrophysics Data System (ADS)

    Saraga, P.; Newcomb, C. V.; Lloyd, P. R.; Humphreys, D. R.; Burnett, D. J.

    1984-10-01

    There are many real factory problems that can be solved by the use of robots equipped with computer vision. Typical of these tasks are the unpacking and assembly of loosely constrained objects. This paper describes a system in which TV deflection units are unpacked from a large carton and mounted onto the necks of picture tubes. The unpacking is performed by a cartesian gantry robot carrying a TV camera equipped with parallel-projection optics. The asso-ciated vision system is used to determine the position of the deflection units in the carton. Once a deflection unit has been unpacked, it is picked up by a PUMA 560 robot and then mounted in a specific orientation onto a picture tube. The mounting system is equipped with three TV cameras to locate the deflection unit and the neck of the tube. The paper describes the structure and operation of both systems, including gray-level picture processing, camera calibration with-out operator intervention, and the use of a general purpose, robot operating system, ROBOS, to control the two tasks.

  20. On guided versus deflected fields in controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  1. The effect of asteroid topography on surface ablation deflection

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  2. Charge control switch responsive to cell casing deflection

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E. (Inventor)

    1981-01-01

    A switch structure, adapted for sensing the state-of-charge of a rechargeable cell, includes a contact element which detects cell casing deflection that occurs as a result of an increase in gaseous pressure within the cell when the cell is returned to its fully charged state during a recharging operation.

  3. Paleoremanence dispersal across a transpressed Archean terrain: Deflection by anisotropy or by late compression?

    NASA Astrophysics Data System (ADS)

    Werner, Tomasz; Borradaile, Graham J.

    1996-03-01

    The Quetico Belt is an Archean metasedimentary terrain sandwiched between greenstone subprovinces. A single regional schistosity is subparallel to magnetic foliation defined by anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanence (AARM). Aligned micas are the primary cause of AMS. Aligned pyrrhotite is the sole cause of AARM. Each magnetic subfabric is due to minerals that grew in overlapping intervals in the strain history. Their slight obliquity may be due to crystallization during noncoaxial strain. Magnetic fabric ellipsoids suggest varying severity of flattening: very strong flattening on the northern boundary, less severe on the southern boundary, and least severe in the interior. The interior and the southern boundary of the belt stretched horizontally and the shortening direction varies gradually, from NS in the north to NNW in the south. The paleomagnetic record carried by pyrrhotite shows characteristic remanences dispersed around a great circle subparallel to the regional schistosity and magnetic foliations. Late stress effects rotated paleoremanences into this pattern; we discount deflection of the paleofield by anisotropy. The pattern of dispersal indicates uniaxial oblate flattening of the region with NNW-SSE shortening, late in the metamorphic cooling history (<300°C). This postdates schistosity, AMS and AARM fabrics but it is controlled by the same kinematic pattern.

  4. Deflections from two types of human surrogates in oblique side impacts.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A

    2008-10-01

    The objective of the study was to obtain time-dependent thoracic and abdominal deflections of an anthropomorphic test device, the WorldSID dummy, in oblique impact using sled tests, and compare with post mortem human subject (PMHS) data. To simulate the oblique loading vector, the load wall was configured such that the thorax and abdominal plates were offset by twenty or thirty degrees. Deflections were obtained from a chestband placed at the middle thoracic level and five internal deflection transducers. Data were compared from the chestband and the transducer located at the same level of the thorax. In addition, data were compared with deflections from similar PMHS tests obtained using chestbands placed at the level of the axilla, xyphoid process, and tenth rib, representing the upper thorax, middle thorax, and abdominal region of the biological specimen. Peak deflections ranged from 30 to 85 mm in the dummy tests. Peak deflections ranged from 60 to 115 mm in PMHS. Under both obliquities, dummy deflection-time histories at the location along the chestband in close proximity to the internal deflection transducer demonstrated similar profiles. However, the peak deflection magnitudes from the chestband were approximately 20 mm greater than those from the internal transducer. Acknowledging that the chestband measures external deflections in contrast to the transducer which records internal ribcage deformations, peak deflections match from the two sensors. Deflection time histories were also similar between the dummy and PMHS in terms of morphology, although thoracic deflection magnitudes from the dummy matched more closely with PMHS than abdominal deflection magnitudes. The dummy deformed in such a way that peak deflections occurred along the lateral vector. This was in contrast to PMHS tests wherein maximum deflections occurred along the antero-lateral direction, suggesting differing deformation responses in the two models. In addition, peak deflections occurred

  5. Halbach array DC motor/generator

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  6. Halbach array DC motor/generator

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  7. Experimental and Theoretical Deflections and Natural Frequencies of an Inflatable Fabric Plate

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson

    1961-01-01

    Static and vibration tests were performed on an inflatable square fabric plate supported on all edges. Lateral deflections and natural frequencies showed good agreement with calculations made using a linear small-deflection theory.

  8. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  9. Correction of deflection under mask's own weight by bending mask technology

    NASA Astrophysics Data System (ADS)

    Yagami, Takashi; Kambayashi, Takashi; Azumi, Minako

    2016-10-01

    It is known that the photomask substrate deflects when the mask is set on the frame and the deflection is an obstacle to light exposure. In this study, we introduce "the bending mask" to cancel out the deflection. The surface of the bending mask has the height distribution in advance to cancel out the deflection, owing to Nikon's accurate polishing technology and Nikon's accurate measurement machine.

  10. Modelling of crack deflection at core junctions in sandwich structures

    NASA Astrophysics Data System (ADS)

    Jakobsen, J.; Andreasen, J. H.; Thomsen, O. T.

    2009-08-01

    The paper treats the problem of crack propagation in sandwich panels with interior core junctions. When a face-core interface crack approaches a trimaterial wedge, as it may occur at a sandwich core junction, two options exist for further crack advance; one is for the interface crack to penetrate the wedge along the face-core interface, and the second is deflection along the core junction interface. Crack deflection is highly relevant and a requirement for the functionality of a newly developed peel stopper for sandwich structures. The physical model presented in this paper enables the quantitative prediction of the ratio of the toughnesses of the two wedge interfaces required to control the crack propagation, and the derived results can be applied directly in future designs of sandwich structures. The solution strategy is based on finite element analysis (FEA), and a realistic engineering practice example of a tri-material composition corresponding to face and core materials is presented.

  11. Evolutionary optimization of deflection missions with fly-by manoeuvre .

    NASA Astrophysics Data System (ADS)

    Costanza, L.; Casalino, L.

    The Earth, as the other celestial bodies in Solar System, is continuously exposed to impact hazard with bodies coming from space. The goal of this study is to find the optimal solution for a PHO (Potentially Hazardous Object) deflection mission with a kinetic impactor. An evolutionary algorithm, which combines the results obtained in parallel by differential evolution (DE), genetic algorithm (GA) and particle swarm optimization (PSO), is employed. Once identified a reference PHO, it has been considered an Earth-Asteroid mission that exploits the high mass of Jupiter to obtain a free velocity change performing a fly-by of the planet. The higher relative velocity at impact involves a higher deflection effect on PHO's trajectory. Spacecraft's direct and retrograde motion has been considered.

  12. Deflected Mirage Mediation: A Framework for Generalized Supersymmetry Breaking

    SciTech Connect

    Kim, Ian-Woo

    2008-11-23

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. Competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by the stabilization of the gauge singlet field responsible for the masses of the messenger fields. We analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra.

  13. Flow visualisation studies on growth of area of deflected jets

    NASA Astrophysics Data System (ADS)

    Sivadas, V.; Pani, B. S.; Bütefisch, K. A.; Meier, G. E. A.

    Laser light sheet visualisation, coupled with image processing, was utilised to understand the effect of exit geometry on the integral properties of jets in cross flow. The study involved jets emanating from circular and rectangular nozzles of different aspect ratios deflected by a uniform free-stream. The investigation considers incompressible momentum jets with exit Reynolds number in the range of 4400-9200, the velocity ratios being 3.9, 5.9 and 7.8. In contrast to a deflected circular jet, those jets emanating from blunt configurations tend to have higher growth rates initially and are devoid of the horse-shoe or the bound vortex system in their cross section.

  14. Ion Beam Deflection (AKA Push-Me/Pull-You)

    NASA Technical Reports Server (NTRS)

    Brophy, John

    2013-01-01

    The Ion Beam Deflection provides the following potential advantages over other asteroid deflection systems. Like the gravity tractor, it doesn't require despinning of the asteroid. Unlike the gravity tractor, it provides a significantly higher coupling force that is independent of the asteroid size. The concept could be tested as part of the baseline Asteroid Redirect Robotic Mission. The thrust and total impulse are entirely within the design of the SEP vehicle. The total impulse is potentially competitive with kinetic impactors and eliminates the need for a second rendezvous spacecraft.?Gridded ion thrusters provide beam divergence angles of a few degrees enabling long stand-off distances from the asteroid. Mitigating control issues. Minimizing back-sputter contamination risks

  15. SUPERCONDUCTING RF-DIPOLE DEFLECTING AND CRABBING CAVITIES

    SciTech Connect

    Delayen, Jean; De Silva, Paygalage Subashini

    2013-09-01

    Recent interests in designing compact deflecting and crabbing structures for future accelerators and colliders have initiated the development of novel rf structures. The superconducting rf-dipole cavity is one of the first compact designs with attractive properties such as higher gradients, higher shunt impedance, the absence of lower order modes and widely separated higher order modes. Two rf-dipole designs of 400 MHz and 499 MHz have been designed, fabricated and tested as proof-of-principle designs of compact deflecting and crabbing cavities for the LHC high luminosity upgrade and Jefferson Lab 12 GeV upgrade. The first rf tests have been performed on the rf-dipole geometries at 4.2 K and 2.0 K in a vertical test assembly with excellent results. The cavities have achieved high gradients with high intrinsic quality factors, and multipacting levels were easily processed.

  16. RISK D/C

    NASA Technical Reports Server (NTRS)

    Dias, W. C.

    1994-01-01

    RISK D/C is a prototype program which attempts to do program risk modeling for the Space Exploration Initiative (SEI) architectures proposed in the Synthesis Group Report. Risk assessment is made with respect to risk events, their probabilities, and the severities of potential results. The program allows risk mitigation strategies to be proposed for an exploration program architecture and to be ranked with respect to their effectiveness. RISK D/C allows for the fact that risk assessment in early planning phases is subjective. Although specific to the SEI in its present form, RISK D/C can be used as a framework for developing a risk assessment program for other specific uses. RISK D/C is organized into files, or stacks, of information, including the architecture, the hazard, and the risk event stacks. Although predefined, all stacks can be upgraded by a user. The architecture stack contains information concerning the general program alternatives, which are subsequently broken down into waypoints, missions, and mission phases. The hazard stack includes any background condition which could result in a risk event. A risk event is anything unfavorable that could happen during the course of a specific point within an architecture, and the risk event stack provides the probabilities, consequences, severities, and any mitigation strategies which could be used to reduce the risk of the event, and how much the risk is reduced. RISK D/C was developed for Macintosh series computers. It requires HyperCard 2.0 or later, as well as 2Mb of RAM and System 6.0.8 or later. A Macintosh II series computer is recommended due to speed concerns. The standard distribution medium for this package is one 3.5 inch 800K Macintosh format diskette. RISK D/C was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Macintosh and HyperCard are trademarks of Apple Computer, Inc.

  17. 75 FR 23571 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40,......

  18. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity.

  19. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  20. Tool deflection in the milling of titanium alloy: case study

    NASA Astrophysics Data System (ADS)

    Zebala, W.

    2015-09-01

    Tool deflection strongly influences on the workpiece quality. Author of the paper built a simulation model of the down milling process of titanium alloy (Ti6Al4V) with a tool made of sintered carbides. Material model consists of strain, strain rate and thermal sensitivity formulations to predict the stress field distribution in the cutting zone. Numerical calculations were experimentally verified on the milling center, equipped with measuring devices: force dynamometer, thermo-vision and high-speed video cameras.

  1. DC Breakdown Experiments

    SciTech Connect

    Calatroni, S.; Descoeudres, A.; Levinsen, Y.; Taborelli, M.; Wuensch, W.

    2009-01-22

    In the context of the CLIC (Compact Linear Collider) project investigations of DC breakdown in ultra high vacuum are carried out in parallel with high power RF tests. From the point of view of saturation breakdown field the best material tested so far is stainless steel, followed by titanium. Copper shows a four times weaker breakdown field than stainless steel. The results indicate clearly that the breakdown events are initiated by field emission current and that the breakdown field is limited by the cathode. In analogy to RF, the breakdown probability has been measured in DC and the data show similar behaviour as a function of electric field.

  2. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  3. Application of photothermal deflection spectroscopy to electrochemical interfaces

    SciTech Connect

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A ``secondary gradient technique`` is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  4. Application of photothermal deflection spectroscopy to electrochemical interfaces

    SciTech Connect

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A secondary gradient technique'' is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  5. Experimental modeling of eddy currents and deflections for tokamak limiters

    SciTech Connect

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-01-01

    In this study, experiments were performed to investigate deflection, current, and material stress in cantilever beams with the Fusion ELectromagnetic Induction eXperiment (FELIX) at the Argonne National Laboratory. Since structures near the plasma are typically cantilevered, the beams provide a good model for the limiter blades of a tokamak fusion reactor. The test pieces were copper, aluminum, phosphor bronze, and brass cantilever beams, clamped rigidly at one end with a nonconducting support frame inside the FELIX test volume. The primary data recorded as functions of time were the beam deflection measured with a noncontact electro-optical device, the total eddy current measured with a Rogowski coil and linking through a central hole in the beam, and the material stress extracted from strain gauges. Measurements of stress and deflection were taken at selected positions along the beam. The extent of the coupling effect depends on several factors. These include the size, the electrical and mechanical properties of the beam, segmenting of the beam, the decay rate of the dipole field, and the strength of the solenoid field.

  6. Planetary Defense: Options for Deflection of Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Alexander, Reginald; Bonometti, Joseph; Chapman, Jack; Fincher, Sharon; Hopkins, Randall; Kalkstein, Matthew; Philips, Al; Polsgrove, Tara; Statham, Geoffrey

    2002-01-01

    In FY 2002 a team of engineers and scientists at MSFC conducted a preliminary investigation of the options for deflecting a Near Earth Object (NEO) fiom a collision course with the earth. A general discussion of the current threat facing the earth from NEO s is outlined. A suite of tools were developed to model inbound and outbound trajectories, propulsive options, and assessment of threat. Propulsive options considered included; staged chemical, nuclear ablation and deflagration, mass driver and solar sail concepts. Trajectory tools plotted the outbound course to intercept the NE0 and the deflection requirements to cause the inbound NE0 to miss the earth. Threat assessment tools estimated the number of lives saved over a given time frame by deploying a system capable of deflecting an NE0 of a certain size and velocity. All of these tools were integrated into a routine to find the most effective vehicle for a given mission mass and mission time. Discussion of desired future efforts is given. This work was funded under the Revolutionary Aerospace Systems Concepts activity from NASA HQ.

  7. Bio-mimetic optical sensor for structural deflection measurement

    NASA Astrophysics Data System (ADS)

    Frost, Susan A.; Wright, Cameron H. G.; Streeter, Robert W.; Khan, Md. A.; Barrett, Steven F.

    2014-03-01

    Reducing the environmental impact of aviation is a primary goal of NASA aeronautics research. One approach to achieve this goal is to build lighter weight aircraft, which presents complex challenges due to a corresponding increase in structural flexibility. Wing flexibility can adversely affect aircraft performance from the perspective of aerodynamic efficiency and safety. Knowledge of the wing position during flight can aid active control methods designed to mitigate problems due to increased wing flexibility. Current approaches to measuring wing deflection, including strain measurement devices, accelerometers, or GPS solutions, and new technologies such as fiber optic strain sensors, have limitations for their practical application to flexible aircraft control. Hence, it was proposed to use a bio-mimetic optical sensor based on the fly-eye to track wing deflection in real-time. The fly-eye sensor has several advantages over conventional sensors used for this application, including light weight, low power requirements, fast computation, and a small form factor. This paper reports on the fly-eye sensor development and its application to real-time wing deflection measurement.

  8. Kidnapping small icy asteroids in Earth near encounter to harbour life and to deflect trajectory

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The inter-planetary flight for human being is under danger because of unscreened and lethal solar flare radioactive showers. The screening of the astronauts by huge superconducting magnetic fields is unrealistic by many reasons. On the contrary the ability to reach nearby icy asteroids, to harbour there a complete undergound room where ecological life systems are first set, this goal may offer a later natural and safe currier for future human stations and enterprise. The need to deflect such a small size (a few thousands tons objects) maybe achieved by micro nuclear engines able to dig the asteroid icy skin, to heat and propel the soil by a synchronous jet engine array, bending and driving it to any desired trajectories. The need for such a wide collection of icy asteroid stations, often in a robotic ibernated state, it will offer the safe help station, raft in the wide space sea, where to collect material or energy in long human planetary travels.

  9. Magnetic latching solenoid

    DOEpatents

    Marts, D.J.; Richardson, J.G.; Albano, R.K.; Morrison, J.L. Jr.

    1995-11-28

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized. 2 figs.

  10. Magnetic latching solenoid

    DOEpatents

    Marts, Donna J.; Richardson, John G.; Albano, Richard K.; Morrison, Jr., John L.

    1995-01-01

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

  11. DYLOS DC110

    EPA Science Inventory

    The Dylos DC1100 air quality monitor measures particulate matter (PM) to provide a continuous assessment of indoor air quality. The unit counts particles in two size ranges: large and small. According to the manufacturer, large particles have diameters between 2.5 and 10 micromet...

  12. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  13. Electromagnetic Induction with Neodymium Magnets

    ERIC Educational Resources Information Center

    Wood, Deborah; Sebranek, John

    2013-01-01

    In April 1820, Hans Christian Ørsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831…

  14. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  15. Optimization of spin-torque switching using AC and DC pulses

    SciTech Connect

    Dunn, Tom; Kamenev, Alex

    2014-06-21

    We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.

  16. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  17. The 2017 Eclipse: Centenary of the Einstein Light Deflection Experiment

    NASA Astrophysics Data System (ADS)

    Kennefick, Daniel

    2017-01-01

    August 21st, 2017 will see a total eclipse of the Sun visible in many parts of the United States. Coincidentally this date marks the centenary of the first observational attempt to test Einstein's General Theory of Relativity by measuring gravitational deflection of light by the Sun. This was attempted by the Kodaikanal Observatory in India during the conjunction of Regulus with the Sun in daylight on August 21st, 1917. The observation was attempted at the urging of the amateur German-British astronomer A. F. Lindemann, with his son, F. A. Lindemann, a well-known physicist, who later played a significant role as Churchill's science advisor during World War II. A century later Regulus will once again be in conjunction with the Sun, but by a remarkable coincidence, this will occur during a solar eclipse! Efforts will be made to measure the star deflection during the eclipse and the experiment is contrasted with the famous expeditions of 1919 which were the first to actually measure the light deflection, since the 1917 effort did not meet with success. Although in recent decades there have been efforts made to suggest that the 1919 eclipse team, led by Arthur Stanley Eddington and Sir Frank Watson Dyson, over-interpreted their results in favor of Einstein this talk will argue that such claims are wrong-headed. A close study of their data analysis reveals that they had good grounds for the decisions they made and this conclusion is reinforced by comparison with a modern re-analysis of the plates by the Greenwich Observatory conducted in 1977.

  18. Reservation information sharing enhancement for deflection routing in OBS network.

    PubMed

    Gao, Donghui; Zhang, Hanyi; Zhou, Zhiyu

    2005-03-07

    The resource contention problem is critical in Just-Enough-Time (JET) based optical burst switching (OBS) networks. Although deflection routing (DR) reduces the contention probability in some degree, it does not give much improvement under heavy traffic load. This paper analyzed the inducement causing contention in OBS networks, and proposed Resource Information Sharing Enhancement (RISE) scheme. Theoretical analysis shows that this scheme achieves shorter length of the detour path than normal DR. We simulated this scheme on both full mesh network and practical 14-node NSFNET. The simulation results show that it gives at best 2 orders magnitude improvement in reducing the burst contention probability over its previous routing approaches.

  19. Self-referenced prism deflection measurement schemes with microradian precision

    SciTech Connect

    Olson, Rebecca; Paul, Justin; Bergeson, Scott; Durfee, Dallin S

    2005-08-01

    We have demonstrated several inexpensive methods that can be used to measure the deflection angles of prisms with microradian precision. The methods are self-referenced, where various reversals are used to achieve absolute measurements without the need of a reference prism or any expensive precision components other than the prisms under test. These techniques are based on laser interferometry and have been used in our laboratory to characterize parallel-plate beam splitters, penta prisms, right-angle prisms, and corner cube reflectors using only components typically available in an optics laboratory.

  20. Henry Cavendish, Johann von Soldner, and the deflection of light

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    1988-05-01

    The gravitational deflection of light based on Newtonian theory and the corpuscular model of light was calculated, but never published, around 1784 by Henry Cavendish, almost 20 years earlier than the first published calculation by Johann Georg von Soldner. The two results are slightly different because, while Cavendish treated a light ray emitted from infinity, von Soldner treated a light ray emitted from the surface of the gravitating body. At the first order of approximation, they agree with each other; both are one-half the value predicted by general relativity and confirmed by experiment.

  1. Force feedback microscopy based on an optical beam deflection scheme

    SciTech Connect

    Vitorino, Miguel V.; Rodrigues, Mario S.; Carpentier, Simon; Costa, Luca

    2014-07-07

    Force feedback microscopy circumvents the jump to contact in atomic force microscopy when using soft cantilevers and quantitatively measures the interaction properties at the nanoscale by simultaneously providing force, force gradient, and dissipation. The force feedback microscope developed so far used an optical cavity to measure the tip displacement. In this Letter, we show that the more conventional optical beam deflection scheme can be used to the same purpose. With this instrument, we have followed the evolution of the Brownian motion of the tip under the influence of a water bridge.

  2. Deflected mirage mediation: a phenomenological framework for generalized supersymmetry breaking.

    PubMed

    Everett, Lisa L; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M

    2008-09-05

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a "deflected" scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider.

  3. Deflected Mirage Mediation: A Phenomenological Framework for Generalized Supersymmetry Breaking

    SciTech Connect

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-09-05

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a ''deflected'' scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider.

  4. Optical beam deflection signal from a single microparticle

    NASA Astrophysics Data System (ADS)

    Wu, Jiaqi; Kitamori, Takehiko; Sawada, Tsuguo

    1990-07-01

    The optical beam deflection (OBD) method was applied to the measurement of a single microparticle, and the signal from one resin microparticle of 200-600 μm in diameter could be detected. Based on the frequency characteristics and size dependence of the OBD signal, this method was found to be more sensitive for a smaller particle, and more effective than the photoacoustic method. Theoretical considerations showed that these characteristics were attributable to the enhancement of the temperature field gradient due to the curvature of the microparticle.

  5. Abrupt fiber taper based Michelson interferometric deflection sensor

    NASA Astrophysics Data System (ADS)

    Tian, Zhaobing; Yam, Scott S.-H.

    2008-06-01

    A new compact standard single mode fiber Michelson interferometer deflection sensor was proposed, tested and simulated. The new interferometer consists of a symmetrical abrupt 3 dB taper region with a 40 μm waist diameter, a 700 μm length and a 500nm thick gold layer coating. Compared with similar interferometric devices based on long period gratings that need microfabrication technology and photosensitive fibers, the proposed sensor uses a much simplified fabrication process and normal single mode fiber, and has a linear response of 1.1nm/mm.

  6. Direct measurement of Vorticella contraction force by micropipette deflection.

    PubMed

    France, Danielle; Tejada, Jonathan; Matsudaira, Paul

    2017-02-01

    The ciliated protozoan Vorticella convallaria is noted for its exceptionally fast adenosine triphosphate-independent cellular contraction, but direct measurements of contractile force have proven difficult given the length scale, speed, and forces involved. We used high-speed video microscopy to image live Vorticella stalled in midcontraction by deflection of an attached micropipette. Stall forces correlate with both distance contracted and the resting stalk length. Estimated isometric forces range from 95 to 177 nanonewtons (nN), or 1.12 nN·μm(-1) of the stalk. Maximum velocity and work are also proportional to distance contracted. These parameters constrain proposed biochemical/physical models of the contractile mechanism.

  7. Observation of Femtosecond Bunch Length Using a Transverse Deflecting Structure

    SciTech Connect

    Huning, M.; Bolzmann, A.; Schlarb, H.; Frisch, J.; McCormick, D.; Ross, M.; Smith, T.; Rossbach, J.; /Hamburg U.

    2005-12-14

    The design of the VUV-FEL at DESY demands bunch lengths in the order of 50 fs and below. For the diagnostic of such very short bunches a transverse deflecting RF structure (LOLA) has been installed which streaks the beam according to the longitudinal distribution. Tests in the VUV-FEL yielded a rich substructure of the bunches. The most pronounced peak in the has a rms length of approximately 50 fs during FEL operation and below 20 fs FWHM at maximum compression. Depending on the transverse focusing a resolution well below 50 fs was achieved.

  8. AC/DC converter

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.

    1992-08-01

    In a system such as a 20 kHz space station primary electrical power distribution system, power conversion from AC to DC is required. Some of the basic requirements for this conversion are high efficiency, light weight and small volume, regulated output voltage, close to unity input power factor, distortionless input current, soft-starting, low electromagnetic interference, and high reliability. An AC-to-DC converter is disclosed which satisfies the main design objectives of such converters for use in space. The converter of the invention comprises an input transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input transformer is for connection to a single phase, high frequency, sinusoidal waveform AC voltage source and provides a matching voltage isolating from the AC source. The resonant network converts this voltage to a sinusoidal, high frequency bidirectional current output, which is received by the current controller to provide the desired output current. The diode rectifier is connected in parallel with the current controller to convert the bidirectional current into a unidirectional current output. The output filter is connected to the rectifier to provide an essentially ripple-free, substantially constant voltage DC output.

  9. 76 FR 18022 - Airworthiness Directives; The Boeing Company Model DC-9-14, DC-9-15, and DC-9-15F Airplanes; and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Model DC-9-14, DC-9- 15, and DC-9-15F Airplanes; and DC-9-20, DC-9-30, DC-9-40, and DC-9-50 Series..., Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION CONTACT...) This AD applies to The Boeing Company Model DC-9-14, DC-9- 15, DC-9-15F, DC-9-21, DC-9-31,......

  10. 75 FR 47242 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-14, DC-9-15, and DC-9-15F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... Corporation Model DC- 9-14, DC-9-15, and DC-9-15F Airplanes; and Model DC-9-20, DC-9-30, DC- 9-40, and DC-9-50... airworthiness directive (AD) that applies to certain Model DC-9-14 and DC-9-15 airplanes; and Model DC-9-20, DC-9-30, DC-9-40, and DC-9-50 series airplanes. The existing AD currently......

  11. High torque DC motor fabrication and test program

    NASA Technical Reports Server (NTRS)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  12. Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Application

    DTIC Science & Technology

    2006-06-13

    34Approved for public release: distribution is unlimited" Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Applications Sonya...requirements for DC-DC converters for electric and hybrid vehicles . This paper introduces a bidirectional, isolated DC-DC converter for medium power...the design and build of a medium power DC-DC converter . Key words: Power Converter , DC-DC, Hybrid Electric Vehicle , Battery, Galvanically Isolation

  13. Table-aided design of the energy-storage reactor in dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Owen, H. A., Jr.

    1975-01-01

    A new procedure for the selection of magnetic cores for use in energy-storage dc-to-dc power converters which eliminates the need for an automated computer search algorithm and stored data file is presented. The converter configurations included in the procedure are the three commonly encountered single-winding converters for voltage step-up, for current step-up and for voltage step-up/current step-up, and for the two-winding converter for voltage step-up/current step-up. For each converter configuration, three types of controllers are considered - constant-frequency, constant on-time and constant off-time. Using concepts developed from analyses of these converters by considering the transfer of energy by means of an energy-storage inductor or transformer, a special table of parameters calculated from magnetic core data is constructed and leads to a considerably simplified design procedure.

  14. Transformation magneto-statics and illusions for magnets

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2014-10-01

    Based on the form-invariant of Maxwell's equations under coordinate transformations, we extend the theory of transformation optics to transformation magneto-statics, which can design magnets through coordinate transformations. Some novel DC magnetic field illusions created by magnets (e.g. rescaling magnets, cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our research will open a new door to designing magnets and controlling DC magnetic fields.

  15. Transformation magneto-statics and illusions for magnets

    PubMed Central

    Sun, Fei; He, Sailing

    2014-01-01

    Based on the form-invariant of Maxwell's equations under coordinate transformations, we extend the theory of transformation optics to transformation magneto-statics, which can design magnets through coordinate transformations. Some novel DC magnetic field illusions created by magnets (e.g. rescaling magnets, cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our research will open a new door to designing magnets and controlling DC magnetic fields. PMID:25307319

  16. Electronically commutated dc motors for electric vehicles

    NASA Technical Reports Server (NTRS)

    Maslowski, E. A.

    1981-01-01

    A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.

  17. Electronically commutated dc motors for electric vehicles

    NASA Astrophysics Data System (ADS)

    Maslowski, E. A.

    A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.

  18. Design and Field Test of a Galvanometer Deflected Streak Camera

    SciTech Connect

    Lai, C C; Goosman, D R; Wade, J T; Avara, R

    2002-11-08

    We have developed a compact fieldable optically-deflected streak camera first reported in the 20th HSPP Congress. Using a triggerable galvanometer that scans the optical signal, the imaging and streaking function is an all-optical process without incurring any photon-electron-photon conversion or photoelectronic deflection. As such, the achievable imaging quality is limited mainly only by optical design, rather than by multiple conversions of signal carrier and high voltage electron-optics effect. All core elements of the camera are packaged into a 12 inch x 24 inch footprint box, a size similar to that of a conventional electronic streak camera. At LLNL's Site-300 Test Site, we have conducted a Fabry-Perot interferometer measurement of fast object velocity using this all-optical camera side-by-side with an intensified electronic streak camera. These two cameras are configured as two independent instruments for recording synchronously each branch of the 50/50 splits from one incoming signal. Given the same signal characteristics, the test result has undisputedly demonstrated superior imaging performance for the all-optical streak camera. It produces higher signal sensitivity, wider linear dynamic range, better spatial contrast, finer temporal resolution, and larger data capacity as compared with that of the electronic counterpart. The camera had also demonstrated its structural robustness and functional consistence to be well compatible with field environment. This paper presents the camera design and the test results in both pictorial records and post-process graphic summaries.

  19. Mirage models confront the LHC. III. Deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Everett, Lisa L.; Garon, Todd; Kaufman, Bryan L.; Nelson, Brent D.

    2016-03-01

    We complete the study of a class of string-motivated effective supergravity theories in which modulus-induced soft supersymmetry breaking is sufficiently suppressed in the observable sector so as to be competitive with anomaly-mediated supersymmetry breaking. Here we consider deflected "mirage mediation" (DMM), where contributions from gauge mediation are added to those arising from gravity mediation and anomaly mediation. We update previous work that surveyed the rich parameter space of such theories, in light of data from the CERN Large Hadron Collider (LHC) and recent dark matter detection experiments. Constraints arising from LHC superpartner searches at √{s }=8 TeV are considered, and discovery prospects at √{s }=14 TeV are evaluated. We find that deflected mirage mediation generally allows for S U (3 )-charged superpartners of significantly lower mass (given current knowledge of the Higgs mass and neutralino relic density) than was found for the "pure" mirage mediation models of Kachru et al. [Phys. Rev. D 68, 046005 (2003)]. Consequently, discovery prospects are enhanced for many combinations of matter multiplet modular weights. We examine the experimental challenges that will arise due to the prospect of highly compressed spectra in DMM, and the correlation between accessibility at the LHC and discovery prospects at large-scale liquid xenon dark matter detectors.

  20. Theory of optical beam deflection for single microparticles

    NASA Astrophysics Data System (ADS)

    Wu, Jiaqi; Kitamori, Takehiko; Sawada, Tsuguo

    1991-05-01

    A theory was developed for the optical beam deflection (OBD) signal generated from a single microparticle. From the thermal-diffusion equations, the temperature fields inside and outside the microparticle, which has a two-layer structure, was deduced. A three-dimensional theoretical treatment was established for the deflection signal of the probe beam passing through the temperature field formed by photothermal conversion of the excitation beam energy absorbed by the sample. The proprieties of the theoretical model and its results were confirmed by comparing the theoretical values of the frequency characteristics, probe beam offset dependencies, and particle size dependencies of the OBD signal with the experimental ones for 25-300-μm-radius microparticles. From the theory, the unique particle size dependencies and frequency characteristics of the OBD method for the single microparticle, i.e., higher sensitivity for smaller particles and at high frequencies, were identified as due to the microparticle surface curvature. The optimal experimental conditions in the OBD measurement of the single microparticle were also obtained using theoretical analysis.

  1. On-demand beam deflection system for PIXE milliprobe

    NASA Astrophysics Data System (ADS)

    Voltr, J.; Král, J.; Černý, J.; Švejda, J.

    2002-04-01

    Application of an on-demand beam deflection system in PIXE analysis has numerous advantages. The suppression of pile-up is accomplished much better than by using pile-up rejection electronic circuits only. In the case of biological and other sensitive types of samples, it is important to minimize the radiation and thermal load. In the case of samples with very different concentrations, the need for beam current correction between sample analyses is not as critical. An on-demand beam deflection system for the analytical facility at the CTU in Prague has been developed and implemented. A pair of electrodes was inserted in the beam line in front of the target chamber. The electrodes are supplied with positive high voltage up to 1 kV and they are a U-shape cross-section to reduce their beam distortion effect. Temporarily, one of the electrodes is shorted to ground potential. The shorting, by a HEXFET ® transistor, occurs in a period of about 100 ns after the edge of the triggering pulse. A description of the system as well as the results of the tests are presented.

  2. Deflection of resilient materials for reduction of floor impact sound.

    PubMed

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  3. System for deflection measurements of floating dry docks

    NASA Astrophysics Data System (ADS)

    Gorbachev, Alexey A.; Pantyushin, Anton V.; Serikova, Mariya G.; Korotaev, Valery V.; Timofeev, Aleksandr N.

    2015-05-01

    In this paper we introduce a system for deflection measurement of floating dry docks. The system contains two measurement channels observing opposite directions of the dock. It also includes set of reference marks, an industrial computer and a display. Each channel contains CMOS camera with long focal-length lens. Reference marks are implemented as IR LED arrays with 940 nm working wavelength for better performance within bad weather conditions (e.g. fog, rain, high humidity etc.). In the paper we demonstrate results of an analysis of different optical schemes for coupling the oppositely directed channels of the measurement unit and show that the scheme with two image sensors with separated lenses is an optimal option, because it allows usage of nonequidistant location of reference marks and demonstrates the least value of parasitic shift caused by rotations of the measuring unit. The developed system was tested both on specially-designed setup and in real infrastructure of a floating dry dock. The conducted tests proved that a measuring error of the system is smaller than +/- 1.5 mm within the measurement range of +/- 150 mm when deflection of 100 m dock is measured. Obtained results showed that the system demonstrates an ability to work in a harsh environment including poor weather conditions.

  4. Historical Material Analysis of DC745U Pressure Pads

    SciTech Connect

    Ortiz-Acosta, Denisse

    2012-07-30

    As part of the Enhance Surveillance mission, it is the goal to provide suitable lifetime assessment of stockpile materials. This report is an accumulation of historical publication on the DC745U material and their findings. It is the intention that the B61 LEP program uses this collection of data to further develop their understanding and potential areas of study. DC745U is a commercially available silicone elastomer consisting of dimethyl, methyl-phenyl, and methyl-vinyl siloxane repeat units. Originally, this material was manufactured by Dow Corning as Silastic{reg_sign} DC745U at their manufacturing facility in Kendallville, IN. Recently, Dow Corning shifted this material to the Xiameter{reg_sign} brand product line. Currently, DC745U is available through Xiameter{reg_sign} or Dow Corning's distributor R. D. Abbott Company. DC745U is cured using 0.5 wt% vinyl-specific peroxide curing agent known as Luperox 101 or Varox DBPH-50. This silicone elastomer is used in numerous parts, including two major components (outer pressure pads and aft cap support) in the W80 and as pressure pads on the B61. DC745U is a proprietary formulation, thus Dow Corning provides limited information on its composition and properties. Based on past experience with Dow Corning, DC745U is at risk of formulation changes without notification to the costumer. A formulation change for DC745U may have a significant impact because the network structure is a key variable in determining material properties. The purpose of this report is to provide an overview of historical DC745U studies and identify gaps that need to be addressed in future work. Some of the previous studies include the following: 1. Spectroscopic characterization of raw gum stock. 2. Spectroscopic, thermal, and mechanical studies on cured DC745U. 3. Nuclear Magnetic Resonance (NMR) and solvent swelling studies on DC745U with different crosslink densities. 4. NMR, solvent swelling, thermal, and mechanical studies on thermally aged

  5. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-01

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17fm/√Hz by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  6. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    SciTech Connect

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-15

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17 fm/{radical}(Hz) by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  7. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  8. A Differential Magnetic Circuit for Teaching Purposes

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    A differential magnetic circuit (magnetic bridge) is described. The circuit separates the magnetic field sensor and the sample under study. A Hall probe serves as the sensor. The signal from the sensor can be enhanced by concentrating the magnetic flux. The magnetic bridge works even with dc magnetic fields. The device is used for displaying…

  9. DC Cable for Railway

    NASA Astrophysics Data System (ADS)

    Tomita, Masaru

    The development of a superconducting cable for railways has commenced, assuming that a DC transmission cable will be used for electric trains. The cable has been fabricated based on the results of current testing of a superconducting wire, and various evaluation tests have been performed to determine the characteristics of the cable. A superconducting transmission cable having zero electrical resistance and suitable for railway use is expected to enhance regeneration efficiency, reduce power losses, achieve load leveling and integration of sub-stations, and reduce rail potential.

  10. Analysis of self-oscillating dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Burger, P.

    1974-01-01

    The basic operational characteristics of dc-to-dc converters are analyzed along with the basic physical characteristics of power converters. A simple class of dc-to-dc power converters are chosen which could satisfy any set of operating requirements, and three different controlling methods in this class are described in detail. Necessary conditions for the stability of these converters are measured through analog computer simulation whose curves are related to other operational characteristics, such as ripple and regulation. Further research is suggested for the solution of absolute stability and efficient physical design of this class of power converters.

  11. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  12. Using a micromachined magnetostatic relay in commutating a DC motor

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Wright, John A. (Inventor); Lilienthal, Gerald (Inventor)

    2004-01-01

    A DC motor is commutated by rotating a magnetic rotor to induce a magnetic field in at least one magnetostatic relay in the motor. Each relay is activated in response to the magnetic field to deliver power to at least one corresponding winding connected to the relay. In some cases, each relay delivers power first through a corresponding primary winding and then through a corresponding secondary winding to a common node. Specific examples include a four-pole, three-phase motor in which each relay is activated four times during one rotation of the magnetic rotor.

  13. Direct deflection radius measurement of flexible PET substrates by using an optical interferometry.

    PubMed

    Hsu, Jiong-Shiun; Li, Po-Wei

    2015-06-10

    The deflection radius is essential in determining residual stress estimations in flexible electronics. However, the literature provides only indirect methods for obtaining a deflection radius. In this study, we present a measurement methodology for directly measuring the deflection radius of a polyethylene terephthalate (PET) substrate (a popular substrate of flexible electronics) by using an optical interferometer. A Twyman-Green optical interferometer was established and phase-shifting technology was used to increase the measurement resolution. Five PET substrates with known deflection radii were prepared to verify the measurement precision of the proposed measurement methodology. The results revealed that the error variance of our proposed measurement methodology is smaller than 3.5%.

  14. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOEpatents

    Hagen, Edward C.; Hudson, Charles L.

    1995-01-01

    A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).

  15. Permanent magnet energy conversion machine with magnet mounting arrangement

    DOEpatents

    Hsu, John S.; Adams, Donald J.

    1999-01-01

    A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.

  16. Permanent magnet energy conversion machine with magnet mounting arrangement

    SciTech Connect

    Hsu, J.S.; Adams, D.J.

    1999-09-14

    A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.

  17. Improved DC Gun Insulator

    SciTech Connect

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  18. Tunable graphene dc superconducting quantum interference device.

    PubMed

    Girit, Caglar; Bouchiat, V; Naaman, O; Zhang, Y; Crommie, M F; Zettl, A; Siddiqi, I

    2009-01-01

    Graphene exhibits unique electrical properties on account of its reduced dimensionality and "relativistic" band structure. When contacted with two superconducting electrodes, graphene can support Cooper pair transport, resulting in the well-known Josephson effect. We report here the fabrication and operation of a two junction dc superconducting quantum interference device (SQUID) formed by a single graphene sheet contacted with aluminum/palladium electrodes in the geometry of a loop. The supercurrent in this device can be modulated not only via an electrostatic gate but also by an applied magnetic fielda potentially powerful probe of electronic transport in graphene and an ultrasensitive platform for nanomagnetometry.

  19. Development of toroid-type HTS DC reactor series for HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  20. Deflection of light to second order in conformal Weyl gravity

    SciTech Connect

    Sultana, Joseph

    2013-04-01

    We reexamine the deflection of light in conformal Weyl gravity obtained in Sultana and Kazanas (2010), by extending the calculation based on the procedure by Rindler and Ishak, for the bending angle by a centrally concentrated spherically symmetric matter distribution, to second order in M/R, where M is the mass of the source and R is the impact parameter. It has recently been reported in Bhattacharya et al. (JCAP 09 (2010) 004; JCAP 02 (2011) 028), that when this calculation is done to second order, the term γr in the Mannheim-Kazanas metric, yields again the paradoxical contribution γR (where the bending angle is proportional to the impact parameter) obtained by standard formalisms appropriate to asymptotically flat spacetimes. We show that no such contribution is obtained for a second order calculation and the effects of the term γr in the metric are again insignificant as reported in our earlier work.

  1. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  2. Photothermal cantilever deflection spectroscopy of a photosensitive polymer

    SciTech Connect

    Yun, Minhyuk; Lee, Dongkyu; Jung, Namchul; Jeon, Sangmin; Kim, Seonghwan; Chae, Inseok; Thundat, Thomas

    2012-05-14

    The mechanical and chemical information of a poly(methyl methacrylate) (PMMA) film on a microcantilever were simultaneously acquired by photothermal cantilever deflection spectroscopy as a function of ultraviolet (UV) irradiation time. Nanomechanical infrared (IR) spectra from the PMMA-coated microcantilever agreed well with the Fourier transform infrared spectroscopy (FTIR) spectra of PMMA on gold-coated silicon wafer. The decreasing intensities of nanomechanical IR peaks represent chemical as well as mechanical information of UV radiation-induced photodegradation processes in the PMMA which cannot be obtained by a conventional FTIR technique. The observed decrease in the resonance frequency of the microcantilever is related to the change in the Young's modulus of the PMMA under UV exposure.

  3. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  4. Fabrication and Testing of Deflecting Cavities for APS

    SciTech Connect

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  5. Profiling compact toroid plasma density on CTIX with laser deflection

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  6. Light deflection by light: Effect of incidence angle and inhomogeneity

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Dasgupta, Shubhrangshu

    2016-10-01

    We study the angular deflection of the circularly polarized components of a linearly polarized probe field in a weakly birefringent atomic system in tripod configuration. A spatially inhomogeneous control field incident obliquely onto an atomic vapor cell facilitates a large angular divergence between circular components. We show that the angular resolution can be dynamically controlled by optimally choosing the angle of incidence and the transverse profile of the control beam. For instance, by employing a Laguerre-Gaussian profile of the control field, one can impart a large angular divergence to the circular components close to the entry face of the atomic vapor cell. We further demonstrate how such a medium causes the focusing and refocusing of the probe field, thereby acting as a lens with multiple foci. The absorption in the medium remains negligible at resonance due to electromagnetically induced transparency.

  7. Small Deflection Energy Analyzer for Energy and Angular Distributions

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    2009-01-01

    The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.

  8. Planetary Defense: Options for Deflection of Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; Hopkins, R.; Chapman, J.; White, S.; Bonometti, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Kalkstein, M.

    2003-01-01

    Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This document reviews the historical impact record and current understanding of the number and location of Near Earth Objects (NEO's) to address their impact probability. Various ongoing projects intended to survey and catalog the NEO population are also reviewed. Details are then given of an MSFC-led study, intended to develop and assess various candidate systems for protection of the Earth against NEOs. An existing program, used to model the NE0 threat, was extensively modified and is presented here. Details of various analytical tools, developed to evaluate the performance of proposed technologies for protection against the NEO threat, are also presented. Trajectory tools, developed to model the outbound path a vehicle would take to intercept or rendezvous with a target asteroid or comet, are described. Also, details are given of a tool that was created to model both the un-deflected inbound path of an NE0 as well as the modified, post-deflection, path. The number of possible options available for protection against the NE0 threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. The major output from this work was a novel process by which the relative effectiveness of different threat mitigation concepts can be evaluated during future, more detailed, studies. In addition, several new or modified mathematical models were developed to analyze various proposed protection systems. A summary of the major lessons learned during this study is presented, as are recommendations for future work. It is hoped that this study will serve to raise the level attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

  9. Characterization of Small DC Brushed and Brushless Motors

    DTIC Science & Technology

    2013-03-01

    motors, the stator portion might have shunt, series , or compound coil wound stators. However, in small brushed motors permanent magnets are used...of the magnets over the coils also creates a back electromotive force (EMF) on the unenergized stator, which is sensed by the speed controller to...17 DC voltage into three-phase power for the motor. To do this, the speed controller uses a series of Metal-Oxide-Semiconductor Field-Effect

  10. Planetary Defense From Space: Part 2 (Simple) Asteroid Deflection Law

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2006-06-01

    A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement. The mathematical theory developed by the author in the years 2002 2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);the asteroid's size and density (also supposed to be known from astronomical observations of various types);the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;the distance from the Earth of the two Lagrangian points L1 and L3 where the

  11. SCM Handbooks for dc-to-dc Converters

    NASA Technical Reports Server (NTRS)

    Lee, F.; Mohmoud, M.; Yu, Y.

    1984-01-01

    Two documents aid in design of control modules for dc-to-dc converters. Features of SCM include: Adaptive stability, power component stress limiting, implementation of various control laws, unified design approach. Analysis and quidelines contained in handbooks enable engineer to design SCM circuit and confidently predict resulting overall performance.

  12. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  13. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  14. First experimental results from DC/DC and AC/DC plasma-based power transformers

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Gibson, William; Nebel, Richard

    2016-10-01

    A plasma-based power transformer has been built and operated in both DC/DC and AC/DC mode. The proprietary Tibbar Plasma Technologies, Inc. transformer design consists of two cylindrically symmetric helical primary electrodes surrounding a low temperature plasma within which a secondary axial current is generated. Initial experimental results have compared well with simulations and moderate conversion efficiencies have been observed. A new proprietary device is currently being constructed that will utilize 3-phase 480 VAC input to achieve higher conversion efficiency and output power. A description of the apparatus and several potential applications will be presented along with preliminary experimental data demonstrating the DC/DC and AC/DC conversion processes. Work performed under ARPA-E contract DE-AR0000677.

  15. Early Oscillation Detection Technique for Hybrid DC/DC Converters

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s

  16. Hybrid DC/DC Converter for SAR Antenna Power Supply Unit

    NASA Astrophysics Data System (ADS)

    Calcatterra, Paolo; Galantini, Paolo; Scorzafava, Edmondo; Sagnelli, Salvatore; Benettin, Piero

    2014-08-01

    When distributed power supply is mandatory to provide full functional redundancy in a SAR application, a compact design to minimize size and weight became the main driver of the system.In this context a single hermetic DC/DC converter, including magnetic components, has been made in thick-film Hybrid technology.It is designed for state of the art electrical performance, minimum mass and size, maximum reliability for SAR application, where each transmitter / receiver module is powered by one dedicated DC/DC converterIt is characterised by a very simplified design approach to get high reliability and repeatability for large scale production.The Hybrid uses a standard thick film multilayer technology, currently in use for military and Space application.A few passive components are placed outside the Hybrid according to desired Conducted Emission / Susceptibility performance requirements (input and output filters).The Hybrid is manufactured with multilayer ceramic substrate with ad-hoc solution to manage thermal and cross talk signal issues.The trimming of the PSU is via laser active trimming performed during Hybrid manufacturing. No further trimming is needed.The process control is performed according to MIL PRF 38534.The Hybrid is manufactured according ECSS-Q-ST-60- 05C.

  17. A DC Transformer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.

    2013-01-01

    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.

  18. A surface work function measurement technique utilizing constant deflected grazing electron trajectories: oxygen uptake on Cu(001).

    PubMed

    Ermakov, A V; Ciftlikli, E Z; Syssoev, S E; Shuttleworth, I G; Hinch, B J

    2010-10-01

    We report on the application of a novel nondestructive in-vacuum technique for relative work function measurements, employing a grazing incidence electron deflection above a sample with a planar surface. Two deflected electron beam detectors are used as a position sensitive detector to control feedback to the sample potential as the sample work function changes. With feedback the sample potential exactly follows the surface sample-size averaged work function variation, so that the deflected beam trajectory remains stable. We also discuss methods to optimize the initial electron trajectories for this method, so as to minimize unwanted effects such as from uncontrolled external magnetic fields. As the electron beam does not impinge on the surface in this new technique electron induced desorption, ionization, dissociation, and/or decomposition is not induced at the interface. Importantly also the technique allows for free access to the surfaces enabling simultaneous deposition/evaporation and/or application of other surface characterization methods. We demonstrate its application in concurrent measurements of helium atom reflectivity and work function changes taking place during molecular oxygen exposure of a Cu(001) surface. A work function measurement sensitivity and stability is demonstrated at ∼10 mV at a sampling rate of 1 Hz and after application of an ∼7 s smoothing routine. In comparison to the helium atom reflectivity measurements, the work function measurements are more sensitive to the initial O uptake, and less so to the final coverage variations and possible surface reordering at higher O coverages.

  19. Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots.

    PubMed

    Bechtold, Peter; Hohenstein, Ralph; Schmidt, Michael

    2013-08-15

    We introduce a method to objectively evaluate systems of differing beam deflection technologies that commonly are described by disparate technical specifications. Using our new approach based on resolvable spots we will compare commercially available random-access beam deflection technologies, namely galvanometer scanners, piezo scanners, MEMS scanners, acousto-optic deflectors, and electro-optic deflectors.

  20. The buckling of a column on equally spaced deflectional and rotational springs

    NASA Technical Reports Server (NTRS)

    Budiansky, Bernard; Seide, Paul; Weinberger, Robert A

    1948-01-01

    A solution is presented for the problem of the buckling of a column on equally spaced deflectional and rotational springs. Useful charts, which relate deflectional spring stiffness, rotational spring stiffness, and buckling load, are given for columns having two, three, four, and infinite number of spans.

  1. A continuous DC-insulator dielectrophoretic sorter of microparticles.

    PubMed

    Srivastava, Soumya Keshavamurthy; Baylon-Cardiel, Javier L; Lapizco-Encinas, Blanca H; Minerick, Adrienne Robyn

    2011-04-01

    A lab-on-a-chip device is described for continuous sorting of fluorescent polystyrene microparticles utilizing direct current insulating dielectrophoresis (DC-iDEP) at lower voltages than previously reported. Particles were sorted by combining electrokinetics and dielectrophoresis in a 250 μm wide PDMS microchannel containing a rectangular insulating obstacle and four outlet channels. The DC-iDEP particle flow behaviors were investigated with 3.18, 6.20 and 10 μm fluorescent polystyrene particles which experience negative DEP forces depending on particle size, DC electric field magnitude and medium conductivity. Due to negative DEP effects, particles are deflected into different outlet streams as they pass the region of high electric field density around the obstacle. Particles suspended in dextrose added phosphate buffer saline (PBS) at conductivities ranging from 0.50 to 8.50 mS/cm at pH 7.0 were compared at 6.85 and 17.1V/cm. Simulations of electrokinetic and dielectrophoretic forces were conducted with COMSOL Multiphysics® to predict particle pathlines. Experimental and simulation results show the effect of medium and voltage operating conditions on particle sorting. Further, smaller particles experience smaller iDEP forces and are more susceptible to competing nonlinear electrostatic effects, whereas larger particles experience greater iDEP forces and prefer channels 1 and 2. This work demonstrates that 6.20 and 10 μm particles can be independently sorted into specific outlet streams by tuning medium conductivity even at low operating voltages. This work is an essential step forward in employing DC-iDEP for multiparticle sorting in a continuous flow, multiple outlet lab-on-a-chip device.

  2. Magnetic effects on thermocouples

    NASA Astrophysics Data System (ADS)

    Beguš, Samo; Bojkovski, Jovan; Drnovšek, Janko; Geršak, Gregor

    2014-03-01

    Thermometers in laboratory environment and industrial applications are often subject to extraneous, usually unwanted and uncontrolled magnetic fields. Magnetic field influence can be minimized, but cannot be fully cancelled out. Even more, in most cases, there is no awareness of the existence of magnetic fields, let alone their effect on measurement instrumentation. In the past, sensitivity to high dc magnetic fields has been investigated in cryogenics and at high temperatures. More recently, the magnetic effect on weak dc magnetic fields was presented. The goal of this paper was to analyse and empirically and experimentally prove the magnetic sensitivity of thermocouples exposed to low magnetic fields: both dc and ac. Precision and uniform alternating and direct magnetic flux densities were generated by means of permanent magnets and power amplifiers with air-cored coils. The magnetic effect on ferromagnetic and non-ferromagnetic thermocouples at liquid-nitrogen-boiling point (-196 °C), ice point (0 °C), in water (17 °C) and at melting point of gallium fixed point cell (29.7646 °C) was investigated. Magnetic-field-dependent temperature errors of up to 700 mK (at 5.3 mT: dc) and up to 1 °C (at 10 mT: ac 50 Hz magnetic fields) were detected. From the results, it can be concluded that, ideally for temperature measurements of the highest accuracy in the above-cryogenic temperature range, magnetic sensitivity should be estimated and taken into account either as the correction of an error and/or as an additional source of measurement uncertainty. Special consideration should be given to thermocouple orientation relative to the magnetic field direction, influence of metal enclosures and magnetization effects on ferromagnetic components of thermocouples.

  3. Four-dimensional visualization of a small-scale flame based on deflection tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liu, Zhigang; Zhao, Minmin

    2016-11-01

    Optical computed tomography is an important technique in the visualization and diagnosis of various flow fields. A small-scale diffusion flame was visualized using deflection tomography. A projection sampling system was proposed for deflection tomography to obtain deflectograms with a pair of gratings. Wave-front retrieval was employed for processing the deflectograms to obtain the deflection angles of the rays. This two-dimensional data extraction method expanded the application of deflection tomography and was suitable for the projection extraction of small-scale combustion. Deflection angle revision reconstruction algorithm was used to reconstruct the temperature distributions in 10 cross sections for each deflectogram in different instants. The flow structure was reconstructed using a visualization toolkit equipped with the marching cube and ray casting algorithms. The performed experiments demonstrated the three-dimensional dynamic visualization of temperature distributions and the flame structures of small-scale diffusion combustion.

  4. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  5. A small-gap electrostatic micro-actuator for large deflections.

    PubMed

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-12-11

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance.

  6. "I'm Not Mentally Ill": Identity Deflection as a Form of Stigma Resistance.

    PubMed

    Thoits, Peggy A

    2016-06-01

    Mental illness identity deflection refers to rebuffing the idea that one is mentally ill. Predictors of identity deflection and its consequences for well-being were examined for individuals with mental disorders in the National Comorbidity Study-Replication (N = 1,368). Respondents more often deflected a mental illness identity if they had a nonsevere disorder, had low impairment in functioning, had no treatment experience, viewed possible treatment as undesirable, and held multiple social roles, consistent with theory about stigma resistance. Persons who deflected a mental illness identity had lower distress and more positive affect than those who accepted it, even net of disorder severity, impairment level, and treatment experience. Among those who had ever been in treatment, deflection buffered the negative effects of serious impairment but exacerbated the effects of having a severe disorder on well-being, suggesting more complex consequences of formal labeling (greater stigma but helpful services), consistent with previous research.

  7. Triple voltage dc-to-dc converter and method

    DOEpatents

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  8. Directed energy deflection laboratory measurements of common space based targets

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  9. A Compact, Soft-Switching DC-DC Converter for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Button, Robert; Redilla, Jack; Ayyanar, Raja

    2003-01-01

    A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.

  10. Bi-Directional DC-DC Converter for PHEV Applications

    SciTech Connect

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  11. GaN Microwave DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Ramos Franco, Ignacio

    Increasing the operating frequency of switching converters can have a direct impact in the miniaturization and integration of power converters. The size of energy-storage passive components and the difficulty to integrate them with the rest of the circuitry is a major challenge in the development of a fully integrated power supply on a chip. The work presented in this thesis attempts to address some of the difficulties encountered in the design of high-frequency converters by applying concepts and techniques usually used in the design of high-efficiency power amplifiers and high-efficiency rectifiers at microwave frequencies. The main focus is in the analysis, design, and characterization of dc-dc converters operating at microwave frequencies in the low gigahertz range. The concept of PA-rectifier duality, where a high-efficiency power amplifier operates as a high-efficiency rectifier is investigated through non-linear simulations and experimentally validated. Additionally, the concept of a self-synchronous rectifier, where a transistor rectifier operates synchronously without the need of a RF source or driver is demonstrated. A theoretical analysis of a class-E self-synchronous rectifier is presented and validated through non-linear simulations and experiments. Two GaN class-E2 dc-dc converters operating at a switching frequency of 1 and 1.2 GHz are demonstrated. The converters achieve 80 % and 75 % dc-dc efficiency respectively and are among the highest-frequency and highest-efficiency reported in the literature. The application of the concepts established in the analysis of a self-synchronous rectifier to a power amplifier culminated in the development of an oscillating, self-synchronous class-E 2 dc-dc converter. Finally, a proof-of-concept fully integrated GaN MMIC class-E 2 dc-dc converter switching at 4.6 GHz is demonstrated for the first time to the best of our knowledge. The 3.8 mm x 2.6 mm chip contains distributed inductors and does not require any

  12. Piezometer completion report for borehold cluster sites DC-19, DC-20 and DC-22

    SciTech Connect

    Jackson, R.L.; Diediker, L.D.; Ledgerwood, R.K.; Veatch, M.D.

    1984-07-01

    This report describes the design and installation of multi-level piezometers at borehole cluster sites DC-19, DC-20 and DC-22. The network of borehole cluster sites will provide facilities for multi-level water-level monitoring across the RRL for piezometer baseline monitoring and for large-scale hydraulic stress testing. These groundwater-monitoring facilities were installed between August 1983 and March 1984. Three series of piezometer nests (A-, C- and D-series) were installed in nine hydrogeologic units (monitoring horizons) within the Columbia River Basalt Group at each borehole cluster site. In addition to the piezometer facilities, a B-series pumping well was installed at borehole cluster sites DC-20 and DC-22. The A-series piezometer nest monitors the basal Ringold sediments and the Rattlesnake Ridge interbed. The C-series piezometer nests monitors the six deepest horizons, which are in increasing depth, the Priest Rapids interflow. 21 refs., 6 figs., 14 tabs.

  13. DETAIL, LOOKING EAST, OF PORTICO OF STANDARDIZING MAGNETIC OBSERVATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, LOOKING EAST, OF PORTICO OF STANDARDIZING MAGNETIC OBSERVATORY. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  14. VIEW OF SOUTH FACADE OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH FACADE OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  15. VIEW, LOOKING EAST, OF PORTICO OF STANDARDIZING MAGNETIC OBSERVATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW, LOOKING EAST, OF PORTICO OF STANDARDIZING MAGNETIC OBSERVATORY. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  16. INTERIOR OF VESTIBULE OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF VESTIBULE OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTHWEST. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  17. VIEW OF WEST AND NORTH FACADES OF STANDARDIZING MAGNETIC OBSERVATORY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WEST AND NORTH FACADES OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING SOUTHWEST. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  18. Three-dimensional parabolic equation modeling of mesoscale eddy deflection.

    PubMed

    Heaney, Kevin D; Campbell, Richard L

    2016-02-01

    The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events.

  19. Plasma Deflection Test Setup for E-Sail Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Andersen, Allen; Vaughn, Jason; Schneider, Todd; Wright, Ken

    2016-01-01

    The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe (DIFP). The DIFP measures the angle and energy of incident ions. The plasma sheath around a charged body can measured by comparing the angular distribution of ions with and without a positively charged test body. These test results will be used to evaluate numerical calculations of expected thrust per unit length of conductor in the solar wind plasma. This work was supported by a NASA Space Technology Research Fellowship.

  20. Moth tails divert bat attack: Evolution of acoustic deflection

    PubMed Central

    Barber, Jesse R.; Leavell, Brian C.; Keener, Adam L.; Breinholt, Jesse W.; Chadwell, Brad A.; McClure, Christopher J. W.; Hill, Geena M.; Kawahara, Akito Y.

    2015-01-01

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator–prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey. PMID:25730869

  1. GPS deflection monitoring of the West Gate Bridge

    NASA Astrophysics Data System (ADS)

    Raziq, Noor; Collier, Philip

    2007-05-01

    The achievable precision and relatively high sampling rates of currently available GPS receivers are well suited for monitoring the movements of long-span engineering structures where the amplitude of movements is often more than a few centimetres and the frequency of vibrations is low (below 10 Hz). However, engineering structures often offer non-ideal environments for GPS data collection due to high multipath interference and obstructions causing cycle slips in the GPS observations. Also, for many engineering structures such as bridge decks, vertical movements are more pronounced and more structurally critical than horizontal movements. Accuracy of GPS determined positions in the vertical direction is typically two to three times poorer than in the horizontal component. This paper describes the results of a GPS deflection monitoring trial on the West Gate Bridge in Melbourne, Australia. The results are compared to the estimated frequencies and movements from the design of the bridge and previous accelerometer campaigns. The frequency information derived from the GPS results is also compared to frequency data extracted from an accelerometer installed close to a GPS receiver. GPS results agree closely to the historical results and recent accelerometer trials for key modal frequencies. This indicates the suitability of GPS receivers to monitor engineering structures that exhibit smaller movements due to their stiffness and in environments not ideally suited to using GPS.

  2. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  3. A simple damage detection indicator using operational deflection shapes

    NASA Astrophysics Data System (ADS)

    Sampaio, R. P. C.; Maia, N. M. M.; Almeida, R. A. B.; Urgueira, A. P. V.

    2016-05-01

    Catastrophic structural failure of aircrafts, bridges, buildings and other structures in modern societies has always been of primary concern because of the loss of human lifes and of negative economic impact. The aging of the structures, the growing dependency on their role in our networks of transportation, energy and comunications, the smaller construction tolerances, the bigger power demanded and the media and society awardness to catastrophic events are sufficient motivations for the growing field of structural health monitoring, which aims at assessing the actual condition of a structure and to identify incipient damage. Damage identification can be considered as a two step process, the detection and the diagnosis. The former, and fundamental step, is the confirmation of an efective damage existence. When the response is affirmative, the latter step begins with the diagnosis, and then the questions are: where?, how much?, what type?, when will it fail? In this paper the authors propose a simple method to detect and relatively quantify structural damage by using measured vibrations data, specifically the operational deflections shapes. Numerical simulations and experimental tests are presented to validate the proposed method.

  4. Operating Deflection Shapes for the Space Shuttle Partial Stack Rollout

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Kappus, Kathy

    2005-01-01

    In November of 2003 a rollout test was performed to gain a better understanding of the dynamic environment for the Space Shuttle during transportation from the Vehicle Assembly Building to the launch pad. This was part of a study evaluating the methodology for including the rollout dynamic loads in the Space Shuttle fatigue life predictions. The rollout test was conducted with a partial stack consisting of the Crawler Transporter, Mobile Launch Platform, and the Solid Rocket Boosters with an interconnecting crossbeam. Instrumentation included over 100 accelerometers. Data was recorded for steady state speeds, start-ups and stops, and ambient wind excitations with the vehicle at idle. This paper will describe the operating deflection shape analysis performed using the measured acceleration response data. The response data for the steady state speed runs were dominated by harmonics of the forcing frequencies, which were proportional to the vehicle speed. Assuming a broadband excitation for the wind, analyses of the data sets with the vehicle at idle were used to estimate the natural frequencies and corresponding mode shapes. Comparisons of the measured modal properties with numerical predictions are presented.

  5. Gravitational and relativistic deflection of X-ray superradiance

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Te; Ahrens, Sven

    2015-03-01

    Einstein predicted that clocks at different altitudes tick at various rates under the influence of gravity. This effect has been observed using 57Fe Mössbauer spectroscopy over an elevation of 22.5 m (ref. 1) or by comparing accurate optical clocks at different heights on a submetre scale. However, challenges remain in finding novel methods for the detection of gravitational and relativistic effects on more compact scales. Here, we investigate a scheme that potentially allows for millimetre- to submillimetre-scale studies of the gravitational redshift by probing a nuclear crystal with X-rays. Also, a rotating crystal can force interacting X-rays to experience inhomogeneous clock tick rates within it. We find that an association of gravitational redshift and special-relativistic time dilation with quantum interference is manifested by a time-dependent deflection of X-rays. The scheme suggests a table-top solution for probing gravitational and special-relativistic effects, which should be within the reach of current experimental technology.

  6. Comet deflection by directed energy: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Madajian, Jonathan; Griswold, Janelle; Gandra, Anush; Hughes, Gary B.; Zhang, Qicheng; Rupert, Nic; Lubin, Philip

    2016-09-01

    Comets and Asteroids are viable threats to our planet; if these space rocks are smaller than 25 meters, they burn up in the atmosphere, but if they are wider than 25 meters they can cause damage to the impact area. Anything more than one to two kilometers can have worldwide effects, furthermore a mile-wide asteroid travelling at 30,000 miles per hour has the energy equal to a megaton bomb and is very likely to wipe out most of the life on Earth. Residents near Chelyabinsk, Russia experienced the detrimental effects of a collision with a Near-Earth Asteroid (NEA) on 15 February 2013 as a 20 m object penetrated the atmosphere above that city. The effective yield from this object was approximately 1/2 Megaton TNT equivalent (Mt), or that of a large strategic warhead. The 1908 Tunguska event, also over Russia, is estimated to have had a yield of approximately 15 Mt and had the potential to kill millions of people had it come down over a large city1. In the face of such danger a planetary defense system is necessary and this paper proposes a design for such a system. DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) is a phased array laser system that can be used to oblate, deflect and de-spin asteroids and comets.

  7. Shaft transducer having dc output proportional to angular velocity

    NASA Technical Reports Server (NTRS)

    Handlykken, M. B. (Inventor)

    1984-01-01

    A brushless dc tachometer is disclosed that includes a high strength toroidal permanent magnet for providing a uniform magnetic field in an air gap, an annular pole piece opposite the magnet, and a pickup coil wound around the pole piece and adapted to rotate about the axis of the pole piece. The pickup coil is rotated by an input shaft to which the coil is coupled with the friction clip. The output of the coil is conducted to circuitry by a twisted wire pair. The input shaft also activates a position transducing potentiometer.

  8. DC-Compensated Current Transformer.

    PubMed

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-20

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.

  9. A Low-Cost Soft-Switched DC/DC Converter for Solid-Oxide Fuel Cells

    SciTech Connect

    Jason Lai

    2009-03-03

    A highly efficient DC to DC converter has been developed for low-voltage high-current solid oxide fuel cells. The newly developed 'V6' converter resembles what has been done in internal combustion engine that split into multiple cylinders to increase the output capacity without having to increase individual cell size and to smooth out the torque with interleaving operation. The development was started with topology overview to ensure that all the DC to DC converter circuits were included in the study. Efficiency models for different circuit topologies were established, and computer simulations were performed to determine the best candidate converter circuit. Through design optimization including topology selection, device selection, magnetic component design, thermal design, and digital controller design, a bench prototype rated 5-kW, with 20 to 50V input and 200/400V output was fabricated and tested. Efficiency goal of 97% was proven achievable through hardware experiment. This DC to DC converter was then modified in the later stage to converter 35 to 63 V input and 13.8 V output for automotive charging applications. The complete prototype was tested at Delphi with their solid oxide fuel cell test stand to verify the performance of the modified DC to DC converter. The output was tested up to 3-kW level, and the efficiency exceeded 97.5%. Multiple-phase interleaving operation design was proved to be reliable and ripple free at the output, which is desirable for the battery charging. Overall this is a very successful collaboration project between the SECA Core Technology Team and Industrial Team.

  10. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  11. Regulated dc-to-dc converter for voltage step-up or step-down with input-output isolation

    NASA Technical Reports Server (NTRS)

    Feng, S. Y.; Wilson, T. G. (Inventor)

    1973-01-01

    A closed loop regulated dc-to-dc converter employing an unregulated two winding inductive energy storage converter is provided by using a magnetically coupled multivibrator acting as duty cycle generator to drive the converter. The multivibrator is comprised of two transistor switches and a saturable transformer. The output of the converter is compared with a reference in a comparator which transmits a binary zero until the output exceeds the reference. When the output exceeds the reference, the binary output of the comparator drives transistor switches to turn the multivibrator off. The multivibrator is unbalanced so that a predetermined transistor will always turn on first when the binary feedback signal becomes zero.

  12. Monte Carlo simulation of a cesium atom beam in a magnetic field

    SciTech Connect

    Chen, Jiang Zhu, Hongwei; Ma, Yinguang; Li, Detian; Liu, Zhidong; Wang, Ji

    2015-03-07

    We present Monte Carlo simulations of the deflection of a beam of {sup 133}Cs atoms in a two wire magnetic field. Our results reveal the relationship between transmission rate of the atoms and incident parameters. Incident angle and position of the beam with maximum transmission are obtained from the simulations. The effect of the deflection field on the spatial distribution (beam profile) of {sup 133}Cs is derived. The method will help with the design of magnetic deflection experiments and to extract the magnetic properties from such experiments.

  13. Greening America's Capitals - Washington, DC

    EPA Pesticide Factsheets

    This Greening America's Capitals report describes design options for the Anacostia Metro station in Washington, DC, that could help people feel safer and more comfortable walking to and from the station.

  14. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  15. Strong deflection limit analysis and gravitational lensing of an Ellis wormhole

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki

    2016-12-01

    Observations of gravitational lenses in strong gravitational fields give us a clue to understanding dark compact objects. In this paper, we extend a method to obtain a deflection angle in a strong deflection limit provided by Bozza [Phys. Rev. D 66, 103001 (2002)] to apply to ultrastatic spacetimes. We also discuss on the order of an error term in the deflection angle. Using the improved method, we consider gravitational lensing by an Ellis wormhole, which is an ultrastatic wormhole of the Morris-Thorne class.

  16. Multipole Field Effects for the Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika; Delayen, Jean Roger

    2012-09-01

    The superconducting parallel-bar deflecting/crabbing cavity is currently being considered as one of the design options in rf separation for the Jefferson Lab 12 GeV upgrade and for the crabbing cavity for the proposed LHC luminosity upgrade. Knowledge of multipole field effects is important for accurate beam dynamics study of rf structures. The multipole components can be accurately determined numerically using the electromagnetic surface field data in the rf structure. This paper discusses the detailed analysis of those components for the fundamental deflecting/crabbing mode and higher order modes in the parallel-bar deflecting/crabbing cavity.

  17. Vibrations of rectangular plates with moderately large initial deflections at elevated temperatures using finite element method

    NASA Technical Reports Server (NTRS)

    Gray, C. C.

    1990-01-01

    A finite-element formulation is developed for the free vibration of rectangular plates which are under the influence of moderately large stress-free initial deflections and large thermal deflections. The von Karman nonlinear strain-displacement relations are used to account for the thermal deflections. The plates are thin, isotropic, and Hookean in nature. The temperature imposed on the plate is assumed to be constant through the thickness of the plate. Uniform and sinusoidal temperature distributions are studied. The material properties of the plates are temperature-dependent due to the relatively high temperatures imposed on the plates.

  18. RF Design of Normal Conducting Deflecting Structures for the Advanced Photon Source

    SciTech Connect

    Dolgashev, V.A.; Borland, Michael; Waldschmidt, Geoff; /Argonne

    2007-11-07

    Use of normal conducting deflecting structures for production of short x-ray pulses is now under consideration at Argonne's Advanced Photon Source (APS). The structures have to produce up to 4 MV maximum deflection per pair of structures with a 1 kHz repetition rate. At the same time, the structures should not cause deterioration of beam properties in the APS ring. Following these requirements, we proposed 2815 MHz standing wave deflecting structures with heavy wakefield damping. In this paper we discuss design considerations and present our current design.

  19. RF design of normal conducting deflecting structures for the Advanced Photon Source.

    SciTech Connect

    Dolgashev, V.; Borland, M.; Waldschmidt, G.; Accelerator Systems Division; SLAC

    2007-08-01

    Use of normal conducting deflecting structures for production of short X-ray pulses is now under consideration at Argonne's Advanced Photon Source (APS). The structures have to produce up to 4 MV maximum deflection per pair of structures with a 1 kHz repetition rate. At the same time, the structures should not cause deterioration of beam properties in the APS ring. Following these requirements, we proposed 2815 MHz standing wave deflecting structures with heavy wakefield damping. In this paper we discuss design considerations and present our current design.

  20. Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results

    SciTech Connect

    Muehlig, Christian; Kufert, Siegfried; Bublitz, Simon; Speck, Uwe

    2011-03-20

    Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

  1. Quiet eye predicts goaltender success in deflected ice hockey shots.

    PubMed

    Panchuk, Derek; Vickers, Joan N; Hopkins, Will G

    2017-02-01

    In interceptive timing tasks, long quiet eye (QE) durations at the release point, along with early tracking on the object, allow performers to couple their actions to the kinematics of their opponent and regulate their movements based on emergent information from the object's trajectory. We used a mobile eye tracker to record the QE of eight university-level ice hockey goaltenders of an equivalent skill level as they responded to shots that deflected off a board placed to their left or right, resulting in a trajectory with low predictability. QE behaviour was assessed using logistic regression and magnitude-based inference. We found that when QE onset occurred later in the shot (950 ± 580 ms, mean ± SD) there was an increase in the proportion of goals allowed (41% vs. 22%) compared to when QE onset occurred earlier. A shorter QE duration (1260 ± 630 ms) predicted a large increase in the proportion of goals scored (38% vs. 14%). More saves occurred when QE duration (2074 ± 47 ms) was longer. An earlier QE offset (2004 ± 66 ms) also resulted in a large increase in the number of goals allowed (37% vs. 11%) compared to a later offset (2132 ± 41 ms). Since an early, sustained QE duration contributed to a higher percentage of saves, it is important that coaches develop practice activities that challenge the goaltender's ability to fixate the puck early, as well as sustain a long QE fixation on the puck until after it is released from the stick.

  2. Magnetoencephalography using a Multilayer hightc DC SQUID Magnetometer

    NASA Astrophysics Data System (ADS)

    Faley, M. I.; Poppe, U.; Borkowski, R. E. Dunin; Schiek, M.; Boers, F.; Chocholacs, H.; Dammers, J.; Eich, E.; Shah, N. J.; Ermakov, A. B.; Slobodchikov, V. Yu.; Maslennikov, Yu. V.; Koshelets, V. P.

    We describe tests of the use of a multilayer highTc DC SQUID magnetometer for magnetoencephalography (MEG) and compare our measurements with results obtained using a lowTc SQUID sensor. The integration of bias reversal readout electronics for highTc DC SQUID magnetometry into a commercial MEG data acquisition system is demonstrated. Results of measurements performed on a salinefilled head phantom are shown and the detection of an auditory evoked magnetic response of the human cortex elicited by a stimulus is illustrated. Future modifications of highTc DC SQUID sensors for applications in MEG, in order to reach a resolution of 1 fT/√Hz at 77.5 K over a wide frequency band, are outlined.

  3. Performance of a Voltage Step-Up/Step-Down Transformerless DC/DC Converter: Analytical Model

    NASA Astrophysics Data System (ADS)

    Suskis, P.; Rankis, I.

    2012-01-01

    The authors present an analytical model for a voltage step-up/step-down DC/DC converter without transformers. The proposed topology is a combination of classic buck and boost converters in one single circuit but with differing operational principles. The converter is developed for a wind power autonomous supply system equipped with a hydrogen electrolytic tank and a fuel cell for energy stabilization. The main power source of the hydrogen-based autonomous supply system is energized by a synchronous generator operating on permanent magnets and equipped with a diode bridge. The input voltage of the converter in this case varies in the range 0-700 V, while its output DC voltage must be 540 V according to the demand of other parts of the system. To maintain the rated voltage, a special electrical load regulation is introduced. The calculations of the converter, the generator (equipped with a diode bridge) as element of the power system supply joint, and the load replaced by resistance are verified with PSIM software.

  4. The use of a deflectable nose on a missile as a control device

    NASA Astrophysics Data System (ADS)

    Thompson, K. D.

    1981-05-01

    Wind tunnel tests have been carried out on a blunted ogive-cylinder with a deflectable nose at Mach numbers between 0.8 and 2.0. Although the results are subject to scale effects, it appears that the deflectable nose could find use as a missile control method. The results have been applied to two missile configurations. For a long slender missile the deflectable nose produces non-linear trim curves at subsonic speeds, approaching linearity at supersonic Mach numbers. Nevertheless, worth-while trimmed incidences can be achieved. Although a deflectable nose on a 105 mm shell at subsonic speeds produces only relatively small normal force coefficients at trim, the trim curves are linear. Furthermore, it appears that when used for terminal control significant deviations in shell impact point are attainable.

  5. An oilspill trajectory analysis model with a variable wind deflection angle

    USGS Publications Warehouse

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  6. Mission analysis for the ion beam deflection of fictitious asteroid 2015 PDC

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio; Amato, Davide; Cano, Juan Luis

    2016-01-01

    Based on a hypothetical asteroid impact scenario proposed during the 2015 IAA Planetary Defense Conference (PDC), we study the deflection of fictitious asteroid 2015 PDC starting from ephemeris data provided by the conference organizers. A realistic mission scenario is investigated that makes use of an ion beam shepherd spacecraft as a primary deflection technique. The article deals with the design of a low-thrust rendezvous trajectory to the asteroid, the estimation of the propagated covariance ellipsoid and the outcome of an ion beam slow-push deflection starting from three worst case scenarios (impacts in New Delhi, Dhaka and Tehran). Displacing the impact point towards an extremely low-populated, easy-to-evacuate region, as opposed to full deflection, is found to be a more effective mitigation approach. Mission design, technical and political aspects are discussed.

  7. DC artifact correction for arbitrary phase-cycling sequence.

    PubMed

    Han, Paul Kyu; Park, HyunWook; Park, Sung-Hong

    2017-05-01

    In magnetic resonance imaging (MRI), a non-zero offset in the receiver baseline signal during acquisition results in a bright spot or a line artifact in the center of the image known as a direct current (DC) artifact. Several methods have been suggested in the past for the removal or correction of DC artifacts in MR images, however, these methods cannot be applied directly when a specific phase-cycling technique is used in the imaging sequence. In this work, we proposed a new, simple technique that enables correction of DC artifacts for any arbitrary phase-cycling imaging sequences. The technique is composed of phase unification, DC offset estimation and correction, and phase restoration. The feasibility of the proposed method was demonstrated via phantom and in vivo experiments with a multiple phase-cycling balanced steady-state free precession (bSSFP) imaging sequence. Results showed successful removal of the DC artifacts in images acquired using bSSFP with phase-cycling angles of 0°, 90°, 180°, and 270°, indicating potential feasibility of the proposed method to any imaging sequence with arbitrary phase-cycling angles.

  8. Development of HTS Magnet for Rotating Gantry

    NASA Astrophysics Data System (ADS)

    Tasaki, Kenji; Koyanagi, Kei; Takayama, S. Shigeki; Ishii, Yusuke; Kurusu, Tsutomu; Amemiya, Naoyuki; Ogitsu, Toru; iwata, Yoshiyuki; Noda, Koji

    The effectiveness of heavy-ion radiotherapy for cancer treatment has been recognized by medical experts and the public. However, due to the large size of the equipment, this therapy has not been widely adopted. In particular, the rotating gantries used to irradiate patients with the heavy-ion beams from any direction may be as heavy as 600 tons in our estimation. By employing high-temperature superconducting (HTS) wires in these rotating gantries and increasing the magnetic field generated by the deflecting coils, the total weight of the rotating gantry can be reduced to around the weight of those used for proton radiotherapy. A project for developing an HTS deflecting magnet for heavy-ion radiotherapy has been underway since 2013, supported by the Japanese Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED). The aim of this project is to develop fundamental technologies for designing and fabricating HTS deflecting magnets, such as irregular magnetic field estimating techniques, design technology for HTS magnets, high-precision HTS coil winding technology, AC loss estimating techniques, and thermal runaway estimating techniques and to fabricate a small model of an HTS deflecting magnet and evaluate its performance. In this paper, the project's progress will be described.

  9. Design and Development of Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    SciTech Connect

    Payagalage Subashini Uddi De Silva, Jean Delayen

    2012-07-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties that is being considered for a number of applications. We present the designs of a 499 MHz deflecting cavity developed for the Jefferson Lab 12 GeV Upgrade and a 400 MHz crabbing cavity for the LHC High Luminosity Upgrade. Prototypes of these two cavities are now under development and fabrication.

  10. Small deflection of a class of clamped thin plates using collocation

    NASA Technical Reports Server (NTRS)

    Worley, W. J.

    1977-01-01

    Equations are given for the optimization of a class of two-and three-dimensional structures. The application of existing analytical techniques to the response of thin clamped plates is described. The ratios of deflections to plate thickness are given for uniform transverse loads as well as for uniform plus linearly varying transverse loads. Deflections are presented at angular increments of 5 degrees and at radial increments of 0.1 of the radius.

  11. Solutions of the heat conduction equation in multilayers for photothermal deflection experiments

    NASA Technical Reports Server (NTRS)

    Mcgahan, William A.; Cole, K. D.

    1992-01-01

    Analytical expressions for temperature and laser beam deflection in multilayer medium is derived using Green function techniques. The approach is based on calculation of the normal component of heat fluxes across the boundaries, from which either the beam deflections or the temperature anywhere in space can be found. A general expression for the measured signals for the case of four-quadrant detection is also presented and compared with previous calculations of detector response for finite probe beams.

  12. Comparison of Theory and Experiment on Aeroacoustic Loads and Deflections

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Bourgine, A.; Bonomi, B.

    1999-01-01

    The correlation of acoustic pressure loads induced by a turbulent wake on a nearby structural panel is considered: this problem is relevant to the acoustic fatigue of aircraft, rocket and satellite structures. Both the correlation of acoustic pressure loads and the panel deflections, were measured in an 8-m diameter transonic wind tunnel. Using the measured correlation of acoustic pressures, as an input to a finite-element aeroelastic code, the panel response was reproduced. The latter was also satisfactorily reproduced, using again the aeroelastic code, with input given by a theoretical formula for the correlation of acoustic pressures; the derivation of this formula, and the semi-empirical parameters which appear in it, are included in this paper. The comparison of acoustic responses in aeroacoustic wind tunnels (AWT) and progressive wave tubes (PWT) shows that much work needs to be done to bridge that gap; this is important since the PWT is the standard test means, whereas the AWT is more representative of real flight conditions but also more demanding in resources. Since this may be the first instance of successful modelling of acoustic fatigue, it may be appropriate to list briefly the essential ``positive'' features and associated physical phenomena: (i) a standard aeroelastic structural code can predict acoustic fatigue, provided that the correlation of pressure loads be adequately specified; (ii) the correlation of pressure loads is determined by the interference of acoustic waves, which depends on the exact evaluation of multiple scattering integrals, involving the statistics of random phase shifts; (iii) for the relatively low frequencies (one to a few hundred Hz) of aeroacoustic fatigue, the main cause of random phase effects is scattering by irregular wakes, which are thin on wavelength scale, and appear as partially reflecting rough interfaces. It may also be appropriate to mention some of the ``negative'' features, to which may be attached illusory

  13. Deflecting APOPHIS with a flotilla of solar shields

    NASA Astrophysics Data System (ADS)

    Prado, Jean-Yves; Perret, Alain; Boisard, Olivier

    2011-12-01

    The possibility to use the photonic pressure from the Sun for acting upon the orbit of a man-made object is well known. What is presented in this paper is the capacity to use a solar sail like vehicle to change the orbit of a small body of the solar system by hovering over its sunlit surface. One of the forces that affect the orbit of small bodies is a tiny but permanent thrust of thermal origin, the intensity and direction of which are directly related to the nature of the soil, the characteristics of the rotation and the physical properties of the body. This effect is known as the Yarkovsky Effect. It concerns mainly hundred meter class asteroids. There are hundred thousands of small bodies of this type. About 10% of them are classified as Near Earth Object and one of them, APOPHIS, is of special interest. APOPHIS has been discovered in 2004. Its diameter is estimated to be 270 m. Its rotation period is around 30 h so the Yarkovsky Effect on its orbit should not be negligible. These parameters and possibly others should be refined in 2012 when this asteroid can be observed again. APOPHIS will make a very close (40,000 km) approach to the Earth in April 2029. Depending on the geometry of its swing-by, it can be placed on an impact orbit to the Earth and present a danger for the future decades. The areas that correspond to such trajectories are called Resonant Orbit Keyholes and are only a few hundred meter wide. From the observation in 2012, it will be possible to determine the magnitude of the Yarkovsky Effect on APOPHIS and to greatly improve the prevision of its 2029 swing-by. If the Yarkovsky Effect is found to be important, cancelling it will be sufficient to avoid any keyhole and prevent any future collision with the Earth. We call Yarkovsky Effect Suppression (YES) this deflection method. This effect can be cancelled by shadowing and cooling down the asteroid with a flotilla of solar shields. This new type of solar sails will have to counter the photonic

  14. 76 FR 68745 - DC Energy, LLC; DC Energy Mid-Atlantic, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... No: 2011-28690] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-8-000] DC Energy, LLC; DC Energy Mid-Atlantic, LLC v. PJM Interconnection, L.L.C.; Notice of Complaint Take notice... Commission (Commission), 18 CFR 385.206 (2011), DC Energy, LLC (DC Energy) and DC Energy Mid-Atlantic...

  15. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  16. Effect of acid solutions on plants studied by the optical beam deflection method.

    PubMed

    Nie, Liangjiao; Kuboda, Mitsutoshi; Inoue, Tomomi; Wu, Xingzheng

    2013-12-01

    The optical beam deflection method was applied to study the effects of acid solution on both a terrestial and aquatic plants Egeria and Cerastium, which are common aquatic plant and terrestial weed respectively. A probe beam from a He-Ne laser was passed through a vicinity of a leaf of the plants, which were put in culture dishes filled with acid solutions. Deflection signals of the probe beam were monitored and compared for acid solutions with different pH values. The results of Egria showed that the deflection signals changed dramatically when pH values of acid solutions were 2.0 and 3.0, while little at pH of 4.0 and 5.0. For Cerastium when pH were below 3.0, deflection signals changed greatly with time at the begining. After a certain period of time, deflection signals changed little with time. When pH value was above 4.0, deflection signals of Cerastium were still changing with time even after 20 hours. The results suggested that the damage threshold of pH was between 3.0 and 4.0 for both the land and aquatic plants.

  17. Finite element analysis modeling of pulse-laser excited photothermal deflection (mirage effect) from aerosols.

    PubMed

    Dada, Oluwatosin O; Bialkowski, Stephen E

    2008-12-01

    A finite element analysis method for numerical modeling of the photothermal deflection spectroscopy of aerosols is presented. The models simulate pulse-laser excited photothermal deflection from aerosols collected on a plane surface substrate in air medium. The influence of the aerosol and substrate properties on the transient photothermal deflection signal is examined. We have previously obtained experimental results for photothermal deflection spectrometry of aerosols deposited onto a plate from an impactor system (O. O. Dada and S. E. Bialkowski, Appl. Spectrosc. 62, 1336 (2008)). This paper supports the validity of the experimental results presented in that paper and helps in answering some of the questions raised. The modeling results presented here demonstrate that the (peak) normalized transient temperature change profile and (peak) normalized transient photothermal deflection profile are a good approximation and invariant with number of particles, inter-particle distance, and particulate shape, which suggests that the photothermal deflection signal amplitude may be calibrated linearly with total mass of aerosols and the method could be applied to analysis of complex aerosols.

  18. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  19. Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors

    PubMed Central

    Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui

    2012-01-01

    A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring. PMID:23112583

  20. Deflection-Based Structural Loads Estimation From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  1. Deflection-Based Aircraft Structural Loads Estimation with Comparison to Flight

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. With a reliable strain and structural deformation measurement system this technique was examined. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  2. Commercial Of-The Shelf DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Denzinger, W.; Baumel, S.

    2011-10-01

    A commercial of-the-shelf (COTS) DC/DC converter for the supply of digital electronics on board of spacecraft has been developed with special emphasis on: *Low cost Readily available *Easy manufacturing *No use of ITAR listed EEE parts like rad-hard mosfets *Minimum number of rad-hard digital and analog IC's *Design tolerance against SEE by appropriate filtering The study was supported by the European Space Agency (ESA) under the contract number 21729/08/NL7LvH.

  3. Light-weight DC to very high voltage DC converter

    DOEpatents

    Druce, R.L.; Kirbie, H.C.; Newton, M.A.

    1998-06-30

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

  4. Light-weight DC to very high voltage DC converter

    DOEpatents

    Druce, Robert L.; Kirbie, Hugh C.; Newton, Mark A.

    1998-01-01

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.

  5. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  6. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    SciTech Connect

    Pilan, N. Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  7. Investigation of electron-distribution function and dynamo mechanisms in a reversed-field pinch by analysis of hydrogen-pellet deflection

    PubMed

    Garzotti; Pegourie; Bartiromo; Innocente; Martini

    2000-06-12

    In reversed-field pinches, two different mechanisms have been proposed to explain the dynamo process which drives the poloidal current needed to sustain the magnetic configuration: the kinetic dynamo theory and the magnetohydrodynamic (MHD) dynamo theory. Experimentally, they can be distinguished by the radial behavior of the electron distribution function. In this Letter the trajectory deflection of frozen hydrogen pellets has been used as a diagnostic of suprathermal electrons in the plasma. The classical Spitzer-Harm distortion of the electron distribution function consistent with the MHD dynamo electric field is found to give a better modeling of the pellet trajectory.

  8. Magnetic characteristics of the D0 detector

    SciTech Connect

    Yamada, R.; Eartly, D.; Ostiguy, J.F.; Jostlein, H. ); Antipov, Y.; Denisov, D.; Chekulaev, S. )

    1991-09-01

    In the D0 detector, muon momentum is measured by deflection through toroidal iron magnets. The general features of these magnets are discussed. We describe design calculations performed with the two-dimensional codes POISSON and ANSYS. Full three-dimensional calculations performed with the code TOSCA are also presented. Magnetic field and flux measurements are described and compared with the calculations. 9 refs., 7 figs., 1 tab.

  9. Design of Energy Storage Reactors for Dc-To-Dc Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.

    1975-01-01

    Two methodical approaches to the design of energy-storage reactors for a group of widely used dc-to-dc converters are presented. One of these approaches is based on a steady-state time-domain analysis of piecewise-linearized circuit models of the converters, while the other approach is based on an analysis of the same circuit models, but from an energy point of view. The design procedure developed from the first approach includes a search through a stored data file of magnetic core characteristics and results in a list of usable reactor designs which meet a particular converter's requirements. Because of the complexity of this procedure, a digital computer usually is used to implement the design algorithm. The second approach, based on a study of the storage and transfer of energy in the magnetic reactors, leads to a straightforward design procedure which can be implemented with hand calculations. An equation to determine the lower-bound volume of workable cores for given converter design specifications is derived. Using this computer lower-bound volume, a comparative evaluation of various converter configurations is presented.

  10. The Use of DC Glow Discharges as Undergraduate Educational Tools

    SciTech Connect

    Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

    2012-10-09

    Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

  11. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    SciTech Connect

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  12. A high current density DC magnetohydrodynamic (MHD) micropump.

    PubMed

    Homsy, Alexandra; Koster, Sander; Eijkel, Jan C T; van den Berg, Albert; Lucklum, F; Verpoorte, E; de Rooij, Nico F

    2005-04-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-microm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum electrodes are located. Current densities up to 4000 A m(-2) could be obtained without noticeable Joule heating in the system. The pump performance was studied as a function of current density and magnetic field intensity, as well as buffer ionic strength and pH. Bead velocities of up to 1 mm s(-1) (0.5 microL min(-1)) were observed in buffered solutions using a 0.4 T NdFeB permanent magnet, at an applied current density of 4000 A m(-2). This pump is intended for transport of electrolyte solutions having a relatively high ionic strength (0.5-1 M) in a DC magnetic field environment. The application of this pump for the study of biological samples in a miniaturized total analysis system (microTAS) with integrated NMR detection is foreseen. In the 7 T NMR environment, a minimum 16-fold increase in volumetric flow rate for a given applied current density is expected.

  13. A planar second-order DC SQUID gradiometer.

    PubMed

    Carelli, P; Chiaventi, L; Leoni, R; Pullano, M; Schirripa Spagnolo, G

    1991-01-01

    In this work we describe a DC SQUID gradiometer, sensitive to the second spatial derivative of the magnetic field. The sensitive area of the gradiometer is the inductive body of the DC SQUID itself. The isoflux line distribution generated by a dipolar source, obtained by performing magnetic measurements with an array of such detectors, is relatively complicated, but its localisation capability is similar to that one usually achieves with axial detector arrays. Planar gradiometers also show a better resolution for near sources and a stronger rejection of far disturbances. The final device is expected to have an inductance of a few hundreds of pH in order to obtain performances typical of a low noise DC SQUID. The pick-up coils will be the combination of four square holes of 500 microns side with a 1.05 cm baseline. Due to the magnetic field concentration (in the final device it can be a factor 10) the gradiometer will have a sensitivity of 10(-11) T m-2 Hz-1/2 and a field sensitivity of about 2 fT Hz-1/2. Some preliminary results, obtained on detectors with an intermediate area between the prototype and final device, are reported here. The process used to fabricate this second-order gradiometer is based on Nb-NbO chi-PbAuIn Josephson tunnel junctions. Some possible improvements will also be described.

  14. Piezometer completion report for borehole cluster sites DC-19, DC-20, and DC-22

    SciTech Connect

    Jackson, R.L.; Diediker, L.D.; Ledgerwood, R.K.; Veatch, M.D.

    1984-07-01

    This report describes the design and installation of multi-level piezometers at borehole cluster sites DC-19, DC-20 and DC-22. The network of borehole cluster sites will provide facilities for multi-level water-level monitoring across the RRL for piezometer baseline monitoring and for large-scale hydraulic stress testing. These groundwater-monitoring facilities were installed between August 1983 and March 1984. Three series of piezometer nests (A-, C- and D-series) were installed in nine hydrogeologic units (monitoring horizons) within the Columbia River Basalt Group at each borehole cluster site. In addition to the piezometer facilities, a B-series pumping well was installed at borehole cluster sites DC-20 and DC-22. The A-series piezometer nest monitors the basal Ringold sediments and the Rattlesnake Ridge interbed. The C-series piezometer nests monitors the six deepest horizons, which are in increasing depth, the Priest Rapids interflow, Sentinel Gap flow top, Ginkgo flow top, Rocky Coulee flow top, Cohassett flow top and Umtanum flow top. The D-series piezometer monitors the Mabton interbed. The B-series pumping well was completed in the Priest Rapids interflow. 21 refs., 6 figs., 6 tabs.

  15. Soft switching active snubbers for DC/DC converters

    SciTech Connect

    Elasser, A.; Torrey, D.A.

    1996-09-01

    A soft-switching active snubber is proposed to reduce the turn-off losses of the insulated gate bipolar transistor (IGBT) in a buck converter. The soft-switching snubber provides zero-voltage switching for the IGBT, thereby reducing its high turn-off losses due to the current tailing. The proposed snubber uses an auxiliary switch to discharge the snubber capacitor. This auxiliary switch also operates at zero-voltage and zero-current switching. The size of the auxiliary switch compared to the main switch makes this snubber a good alternative to the conventional snubber or even to passive low-loss snubbers. The use of the soft-switching active snubber permits the IGBT to operate at high frequencies with an improved RBSOA. In the experimental results reported for a 1 kW, 40 kHz prototype, combined switching/snubbing losses are reduced by 36% through the use of the active snubber compared to a conventional RCD snubber. The use of an active snubber capacitor during turn-off. The generic snubber cell for the buck converter is generalized to support the common nonisolated dc/dc converters (buck, boost, buck-boost, Cuk, sepic, zeta) as well as isolated dc/dc converters (forward, flyback, Cuk, and sepic).

  16. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.

  17. The Direction of the Neutral Hydrogen Velocity in the Inner Heliosphere as a Possible Interstellar Magnetic Field Compass

    NASA Astrophysics Data System (ADS)

    Pogorelov, Nikolai V.; Zank, Gary P.

    2006-01-01

    We discuss the physical reasons that lead to the deflection of the interstellar neutral hydrogen flow from the direction of propagation of neutral helium in the inner heliosheath. On the basis of numerical simulations, the possibilities are investigated for deriving the orientation of the interstellar magnetic field as a function of the deflection angle.

  18. Optimal brushless DC motor design using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Rahideh, A.; Korakianitis, T.; Ruiz, P.; Keeble, T.; Rothman, M. T.

    2010-11-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.

  19. Oblique lateral impact biofidelity deflection corridors from Post Mortem Human Surrogates.

    PubMed

    Yoganandan, Narayan; Humm, John R; Arun, Mike W J W J; Pintar, Frank A

    2013-11-01

    The objective of the study was to determine the thorax and abdomen deflection-time corridors in oblique side impacts. Data were analyzed from Post Mortem Human Surrogate (PMHS) sled tests, certain aspects of which were previously published. A modular and scalable anthropometry-specific segmented load-wall system was fixed to the platform of the sled. Region-specific forces were recorded from load cells attached to the load-wall plates. The thorax and abdomen regions were instrumented with chestbands, and deflection contours were obtained. Biomechanical responses were processed using the impulse-momentum normalization method and scaled to the mid-size male mass, 76-kg. The individual effective masses of the thorax and abdomen were used to determine the scale factors in each sled test, thus using the response from each experiment. The maximum deflections and their times of attainments were obtained, and mean and plus minus one standard deviation corridors were derived. Test-by-test thorax and abdomen force-time histories are given. Deflection-time histories for each specimen for the two body regions and corridors are presented. The mean maximum deflections for the thorax and abdomen body regions were 68.41 ± 16.1 and 68.98 ± 12.69 mm, respectively. Deflections were greater in oblique than pure lateral loading tests for both body regions, indicating the increased sensitivity of oblique side impact vector to the human response. The mean and one standard deviation responses of the thorax and abdomen serve as biofidelity corridors under oblique loading. Because modern instrumentation techniques can accommodate deflection sensors in the thorax and abdomen in devices such as WorldSID, and computer finite element models are flexible enough to extract regional and local deformation fields, the present data can be used to evaluate dummy biofidelity and validate and verify numerical models. They can be used to advance injury assessment reference values in oblique impacts.

  20. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.

    2011-01-01

    There are currently over 8,000 known near-Earth asteroids (NEAs), and more are being discovered on a continual basis. More than 1,200 of these are classified as Potentially Hazardous Asteroids (PHAs) because their Minimum Orbit Intersection Distance (MOID) with Earth's orbit is <= 0.05 AU and their estimated diameters are >= 150 m. To date, 178 Earth impact structures have been discovered, indicating that our planet has previously been struck with devastating force by NEAs and will be struck again. Such collisions are aperiodic events and can occur at any time. A variety of techniques have been proposed to defend our planet from NEA impacts by deflecting the incoming asteroid. However, none of these techniques have been tested. Unless rigorous testing is conducted to produce reliable asteroid deflection systems, we will be forced to deploy completely untested -- and therefore unreliable -- deflection missions when a sizable asteroid on a collision course with Earth is discovered. Such missions will have a high probability of failure. We propose to address this problem with a campaign of deflection technology test missions deployed to harmless NEAs. The objective of these missions is to safely evaluate and refine the mission concepts and asteroid deflection system designs. Our current research focuses on the kinetic impactor, one of the simplest proposed asteroid deflection techniques in which a spacecraft is sent to collide with an asteroid at high relative velocity. By deploying test missions in the near future, we can characterize the performance of this deflection technique and resolve any problems inherent to its execution before needing to rely upon it during a true emergency. In this paper we present the methodology and results of our survey, including lists of NEAs for which safe and effective kinetic impactor test missions may be conducted within the next decade. Full mission designs are also presented for the NEAs which offer the best mission opportunities.

  1. Fabrication of a Zn-Ferrite Thick Film Planar Power Inductor for DC-DC Converter LSI Package

    NASA Astrophysics Data System (ADS)

    Okazaki, Shinya; Takeuchi, Asako; Takeshima, Akihiro; Sonehara, Makoto; Sato, Toshiro; Matsushita, Nobuhiro

    In order to realize the “POL (Point of Load)” dc-dc converter for LSIs, a Zn-ferrite thick film planar power inductor embedded in LSI package has been fabricated and evaluated in this study. 10 μm thick spin-sprayed Zn ferrite film with a high saturation magnetization of 0.57 T was introduced to the magnetic core for planer power inductor consisting of a 20 μm thick, 650 μm square, 2-turn inner copper spiral coil sandwiched by top and bottom magnetic core. Zn ferrite film had a natural resonance frequency of 500 MHz and a static relative permeability of 80. The planar power inductor with a footprint of 850×850 μm exhibited a 10 nH inductance and a quality factor of 20 at 100 MHz. The degradation of inductance owing to the superimposed dc current of 2A was 17%. The planar power inductor will be applied to low-voltage converter with hundreds megahertz switching operation in the future.

  2. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  3. Compact integrated dc SQUID gradiometer

    SciTech Connect

    de Waal, V.J.; Klapwijk, T.M.

    1982-10-01

    An all-niobium integrated system of first-order gradiometer and dc suprconducting quantum interference device (SQUID) has been developed. It is relatively simple to fabricate, has an overall size of 17 x 12 mm and a sensitivity of 3.5 x 10/sup -12/ T m/sup -1/ Hz/sup -1/2/.

  4. Designing dc Inductors With Airgaps

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.

    1986-01-01

    Optimal parameters obtained designing near saturation point. New iterative procedure aids design of dc inductors with airgaps in cores. For given core area and length, technique gives design having specified inductance and peak flux density in core, using minimum required copper weight. Executed rapidly on programmable, hand-held calculator. Applications include lightweight inductors for aircraft electronics.

  5. 76 FR 53346 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Jersey Avenue, SE., Washington, DC 20590. Hand Delivery: Deliver to Mail address above between 9 a.m. and...) This AD applies to The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD-83),...

  6. 75 FR 68686 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-14, DC-9-15, and DC-9-15F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ...; AD 2010-23-10] RIN 2120-AA64 Airworthiness Directives; McDonnell Douglas Corporation Model DC- 9-14, DC-9-15, and DC-9-15F Airplanes; and Model DC-9-20, DC-9-30, DC- 9-40, and DC-9-50 Series Airplanes... Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER...

  7. 75 FR 62331 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-14, DC-9-15, and DC-9-15F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Directives; McDonnell Douglas Corporation Model DC- 9-14, DC-9-15, and DC-9-15F Airplanes; and DC-9-20, DC-9-30, DC-9-40, and DC-9-50 Series Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. Hand Delivery: Deliver to...

  8. 76 FR 1993 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION.... Applicability (c) This AD applies to The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83...

  9. 76 FR 41651 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION...) This AD applies to The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD-83),...

  10. 76 FR 39251 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION CONTACT: Roger Durbin, Aerospace.... Applicability (c) This AD applies to all The Boeing Company Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83...

  11. Effect of alloy formation processes in the Co-Cu system on the magnetic and magnetoresistance properties of multilayer Co/Cu films with ultrathin Co layers prepared by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Khalyapin, D. L.; Kim, P. D.; Kim, J.; Turpanov, I. A.; Beten'kova, A. Ya.; Bondarenko, G. V.; Isaeva, T. N.; Kim, I.

    2010-09-01

    This paper reports on a study of multilayer Co/Cu films with an effective thickness of the Co layer of ˜3.5 Å, which were prepared by magnetron sputtering. The samples prepared have been found to have a metastable multiphase structure. An analysis of the data obtained by structural and, primarily, by magnetic methods has revealed that the main phases are the Co/Cu supersaturated solid solution (alloy) with a Co concentration of about 30 at %, the superparamagnetic phase, and the paramagnetic phase, which is accounted for by the presence of small (a few atoms at most) Co clusters embedded in the Cu matrix. A clearly pronounced maximum in the temperature dependences of the low-field magnetoresistance has been found, which is associated with the temperature of the magnetic phase transition of the supersaturated Co-Cu alloy.

  12. Energy losses in superconductive DC-electromagnets due to ferromagnetic movement

    SciTech Connect

    Ciesla, A.; Matras, A.

    1996-05-01

    A DC-current, superconductive electromagnet is a source of the magnetic field in a separator matrix. This type of separator operates in a cyclic way. Therefore, it appears as very important to ensure the electromagnet stability during operation, i.e., range of parameters` changes that could maintain the magnet winding in the superconductive state. This means selecting parameter changes representing the magnet winding in the superconductive state.

  13. Effect of carbon substitution on low magnetic field AC losses in MgB 2 single crystals

    NASA Astrophysics Data System (ADS)

    Ciszek, M.; Rogacki, K.; Karpiński, J.

    2011-11-01

    The DC magnetization and AC magnetic susceptibilities were measured for MgB2 single crystals, unsubstituted and carbon substituted with the composition of Mg(B0.94C0.06)2. AC magnetic losses were derived from the AC susceptibility data as a function of the AC amplitude and the DC bias magnetic field. From the DC magnetization loops critical current densities were derived as a function of temperature and DC field. Results show that the substitution with carbon decreases critical current densities at low external magnetic fields, in contrast to the well known effect of an increase of the critical current densities at higher magnetic fields.

  14. Magnetic resonance force microscopy with a paramagnetic probe

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  15. Magnetic resonance force microscopy with a paramagnetic probe

    DOE PAGES

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  16. The effect of cracking on the deflection basin of flexible pavements

    NASA Astrophysics Data System (ADS)

    Omar, Hadi Mohamed

    Because of the rapid development of hardware and software during the past decade, it is now possible to use an analytical-empirical (or mechanistic) method of structural pavement evaluation on a routine basis. One reason for using this approach is the increased need for pavement maintenance and rehabilitation. To make the right choice from many potentially feasible maintenance and rehabilitation measures, the engineer must base his decision on a rational evaluation of the mechanical properties of the materials in the existing pavement structure. One of the parameters in terms of pavement response are the deflections; these are of interest to this particular study. The Falling Weight Deflectometer (FWD) has been developed specifically for the purpose of obtaining deflection measurements in order to determine the in-situ elastic moduli. The profile of the deflection at the surface of the pavement is known as the deflection basin, because it resembles a bowl-shaped depression. The magnitude of the deflections and the basin shape are functions of the number of layers making up the pavement cross section, their thicknesses, and their moduli values. A variety of multi-layered linear elastic pavement models are available for use at this present time. A general-purpose finite-element program called ANSYS developed by Swanson Analysis System is very powerful and is capable of solving a layered system such as the pavement. A finite element model was developed to study the effect of the crack on the predicted deflection bowls. A general-purpose finite-element program was used in this study due to its ability to solve this problem and because of the availability of the program. A hypothetical crack problem was assumed and modeled in different ways. The crack depth, crack width, and distance of the crack from the loading point were among the many parameters that were investigated. Considering the shape of the deflection basin, it is very important to study the effect of the

  17. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow.

    PubMed

    Schlitzer, Andreas; Sivakamasundari, V; Chen, Jinmiao; Sumatoh, Hermi Rizal Bin; Schreuder, Jaring; Lum, Josephine; Malleret, Benoit; Zhang, Sanqian; Larbi, Anis; Zolezzi, Francesca; Renia, Laurent; Poidinger, Michael; Naik, Shalin; Newell, Evan W; Robson, Paul; Ginhoux, Florent

    2015-07-01

    Mouse conventional dendritic cells (cDCs) can be classified into two functionally distinct lineages: the CD8α(+) (CD103(+)) cDC1 lineage, and the CD11b(+) cDC2 lineage. cDCs arise from a cascade of bone marrow (BM) DC-committed progenitor cells that include the common DC progenitors (CDPs) and pre-DCs, which exit the BM and seed peripheral tissues before differentiating locally into mature cDCs. Where and when commitment to the cDC1 or cDC2 lineage occurs remains poorly understood. Here we found that transcriptional signatures of the cDC1 and cDC2 lineages became evident at the single-cell level from the CDP stage. We also identified Siglec-H and Ly6C as lineage markers that distinguished pre-DC subpopulations committed to the cDC1 lineage (Siglec-H(-)Ly6C(-) pre-DCs) or cDC2 lineage (Siglec-H(-)Ly6C(+) pre-DCs). Our results indicate that commitment to the cDC1 or cDC2 lineage occurs in the BM and not in the periphery.

  18. An improved equivalent circuit model of a four rod deflecting cavity

    NASA Astrophysics Data System (ADS)

    Apsimon, R.; Burt, G.

    2017-03-01

    In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates the frequencies of the first four modes of the cavity as well as the RT/Q for the deflecting mode. Equivalent circuit models of RF cavities give intuition and understanding about how the cavity operates and what changes can be made to modify the frequency, without the need for RF simulations, which can be time-consuming. We parameterise a generic four rod deflecting cavity into a geometry consisting of simple shapes. Equations are derived for the line impedance of the rods and the capacitance between the rods and these are used to calculate the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-marked against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the equivalent circuit model agree within 4% for both cavities with the LOM frequency and within 1% for the deflecting frequency. RT/Q differs between the model and CST by 37% for the CEBAF separator and 25% for the HL-LHC 4-rod crab cavity; however this is sufficient for understanding how to optimise the cavity design. The model has then been utilised to suggest a method of separating the modal frequencies in the HL-LHC crab cavity and to suggest design methodologies to optimise the cavity geometries.

  19. Control of resonant frequency by currents in graphene: Effect of Dirac field on deflection

    SciTech Connect

    Soodchomshom, Bumned E-mail: fscibns@ku.ac.th

    2014-09-21

    To construct Lagrangian based on plate theory and tight-binding model, deflection-field coupling to Dirac fermions in graphene can be investigated. As have been known, deflection-induced strain may cause an effect on motion of electron, like a pseudo gauge field. In the work, we will investigate the effect of the Dirac field on the motion of the deflection-field in graphene derived from Lagrangian density. Due to the interaction of the deflection- and Dirac-fields, the current-induced surface-tension up to about 4×10⁻³ N/m in graphene membrane is predicted. This result may lead to controllable resonant frequency by currents in graphene. The high resonant frequency is found to be perfectly linearly controlled by both charge and valley currents. Our work reveals the potential of graphene for application of nano-electro-mechanical device and the physics of interaction of electron and deflection-filed in graphene system is investigated.

  20. Feasibility study on a strain based deflection monitoring system for wind turbine blades

    NASA Astrophysics Data System (ADS)

    Lee, Kyunghyun; Aihara, Aya; Puntsagdash, Ganbayar; Kawaguchi, Takayuki; Sakamoto, Hiraku; Okuma, Masaaki

    2017-01-01

    The bending stiffness of the wind turbine blades has decreased due to the trend of wind turbine upsizing. Consequently, the risk of blades breakage by hitting the tower has increased. In order to prevent such incidents, this study proposes a deflection monitoring system that can be installed to already operating wind turbine's blades. The monitoring system is composed of an estimation algorithm to detect blade deflection and a wireless sensor network as a hardware equipment. As for the estimation method for blade deflection, a strain-based estimation algorithm and an objective function for optimal sensor arrangement are proposed. Strain-based estimation algorithm is using a linear correlation between strain and deflections, which can be expressed in a form of a transformation matrix. The objective function includes the terms of strain sensitivity and condition number of the transformation matrix between strain and deflection. In order to calculate the objective function, a simplified experimental model of the blade is constructed by interpolating the mode shape of a blade from modal testing. The interpolation method is effective considering a practical use to operating wind turbines' blades since it is not necessary to establish a finite element model of a blade. On the other hand, a sensor network with wireless connection with an open source hardware is developed. It is installed to a 300 W scale wind turbine and vibration of the blade on operation is investigated.

  1. Aerodynamic performance of a wing with a deflected tip-mounted reverse half-delta wing

    NASA Astrophysics Data System (ADS)

    Lee, T.; Su, Y. Y.

    2012-11-01

    The impact of a tip-mounted 65°-sweep reverse half-delta wing (RHDW), set at different deflections, on the aerodynamic performance of a rectangular NACA 0012 wing was investigated experimentally at Re = 2.45 × 105. This study is a continuation of the work of Lee and Su (Exp Fluids 52(6):1593-1609, 2012) on the passive control of wing tip vortex by the use of a reverse half-delta wing. The present results show that for RHDW deflection with -5° ≤ δ ≤ +15°, the lift was found to increase nonlinearly with increasing δ compared to the baseline wing. The lift increment was accompanied by an increased total drag. For negative RHDW deflection with δ < -5°, the RHDW-induced lift decrement was, however, accompanied by an improved drag. The deflected RHDW also significantly modified and weakened the tip vortex, leading to a persistently lowered lift-induced drag, regardless of its deflection, compared to the baseline wing. Physical mechanisms responsible for the observed RHDW-induced phenomenon were also discussed.

  2. A high frequency sensor for optical beam deflection atomic force microscopy.

    PubMed

    Enning, Raoul; Ziegler, Dominik; Nievergelt, Adrian; Friedlos, Ralph; Venkataramani, Krithika; Stemmer, Andreas

    2011-04-01

    We demonstrate a novel electronic readout for quadrant photodiode based optical beam deflection setups. In our readout, the signals used to calculate the deflections remain as currents, instead of undergoing an immediate conversion to voltages. Bipolar current mirrors are used to perform all mathematical operations at the transistor level, including the signal normalizing division. This method has numerous advantages, leading to significantly simpler designs that avoid large voltage swings and parasitic capacitances. The bandwidth of our readout is solely limited by the capacitance of the quadrant photodiode junctions, making the effective bandwidth a function of the intensity of photocurrents and thus the applied power of the beam deflection laser. Using commercially available components and laser intensities of 1-4 mW we achieved a 3 dB bandwidth of 20 MHz with deflection sensitivities of up to 0.5-1 V/nm and deflection noise levels below 4.5 fm/Hz. Atomic resolution imaging of muscovite mica using FM-AFM in water demonstrates the sensitivity of this novel readout.

  3. Laser heating of a cavity versus a plane surface for metal targets utilizing photothermal deflection measurements

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Greif, R.; Russo, R. E.

    1996-08-01

    The effects of a cylindrical cavity in a metal surface on the energy coupling of a laser beam with the solid were investigated by using a photothermal deflection technique. The photothermal deflection of a probe beam over the cavity was measured while the bottom of the cavity was heated with a Nd-YAG laser with a wavelength of 1064 nm. Cavities in three different materials and with two different aspect ratios were used for the experiment. Temperature distributions in the solid and the surrounding air were computed numerically and used to calculate photothermal deflections for cavity heating and for plane surface heating. Reflection of the heating laser beam inside the cavity increased the photothermal deflection amplitude significantly with larger increases for materials with larger thermal diffusivity. The computed photothermal deflections agreed more closely with the experimental results when reflection of the heating laser beam inside the cavity was included in the numerical model. The overall energy coupling between a heating laser and a solid is enhanced by a cavity.

  4. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand

    PubMed Central

    Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins

    2016-01-01

    Introduction: The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. Methods: A total of 40 nickel-titanium (NiTi) wire segments (Morelli OrtodontiaTM - Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. Results: When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. Conclusion: There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio. PMID:27007760

  5. Predicting tool operator capacity to react against torque within acceptable handle deflection limits in automotive assembly.

    PubMed

    Radwin, Robert G; Chourasia, Amrish; Fronczak, Frank J; Subedi, Yashpal; Howery, Robert; Yen, Thomas Y; Sesto, Mary E; Irwin, Curtis B

    2016-05-01

    The proportion of tool operators capable of maintaining published psychophysically derived threaded fastener tool handle deflection limits were predicted using a biodynamic tool operator model, interacting with the tool, task and workstation. Tool parameters, including geometry, speed and torque were obtained from the specifications for 35 tools used in an auto assembly plant. Tool mass moments of inertia were measured for these tools using a novel device that engages the tool in a rotating system of known inertia. Task parameters, including fastener target torque and joint properties (soft, medium or hard), were ascertained from the vehicle design specifications. Workstation parameters, including vertical and horizontal distances from the operator were measured using a laser rangefinder for 69 tool installations in the plant. These parameters were entered into the model and tool handle deflection was predicted for each job. While handle deflection for most jobs did not exceed the capacity of 75% females and 99% males, six jobs exceeded the deflection criterion. Those tool installations were examined and modifications in tool speed and operator position improved those jobs within the deflection limits, as predicted by the model. We conclude that biodynamic tool operator models may be useful for identifying stressful tool installations and interventions that bring them within the capacity of most operators.

  6. DC to DC power converters and methods of controlling the same

    DOEpatents

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  7. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  8. The Torsional and Bending Deflection of Full-Scale Aluminum-Alloy Propeller Blades Under Normal Operating Conditions

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P; Biermann, David

    1938-01-01

    The torsional deflection of the blades of three full-scale aluminum-alloy propellers operating under various loading conditions was measured by a light-beam method. Angular bending deflections were also obtained as an incidental part of the study. The deflection measurements showed that the usual present-day type of propeller blades twisted but a negligible amount under ordinary flight conditions. A maximum deflection of about 1/10 degree was found at a v/nd of 0.3 and a smaller deflection at higher values of v/nd for the station at 0.70 radius. These deflections are much smaller than would be expected from earlier tests, but the light-beam method is considered to be much more accurate than the direct-reading-transit method used in the previous test.

  9. The Torsional and Bending Deflection of Full-Scale Duralumin Propeller Blades under Normal Operating Conditions, Special Report

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P.; Biermann, David

    1938-01-01

    The torsional deflection of the blades of three full-scale duralumin propellers operating under various loading conditions was measured by a light-beam method. Angular bending deflections were also obtained as an incidental part of the study. The deflection measurements showed that the usual present-day type of propeller blades twisted but a negligible amount under ordinary flight conditions. A maximum deflection of about 1/10th of a degree was found at V/nD of 0.3 and a smaller deflection at higher values of V/nD for the station at 0.70 radius. These deflections are much smaller than would be expected from earlier tests, but the light-beam method is considered to be much more accurate than the direct-reading transit method used in the previous tests.

  10. DC Water: 2009 Presidential Inauguration Supporting Documentation

    EPA Pesticide Factsheets

    DC Water located in Washington, DC incurred costs for activities related to the Presidential Inauguration in January 2009. Support included the purchase and installation of special manhole covers with security features.

  11. Combination of DC Vaccine and Conventional Chemotherapeutics.

    PubMed

    Dong, Wei; Wei, Ran; Shen, Hongchang; Ni, Yang; Meng, Long; Du, Jiajun

    2016-01-01

    Recently mutual interactions of chemotherapy and immunotherapy have been widely accepted, and several synergistic mechanisms have been elucidated as well. Although much attention has focused on the combination of DC vaccine and chemotherapy, there are still many problems remaining to be resolved, including the optimal treatment schedule of the novel strategy. In this article, we methodically examined literature about the combination strategy of DC vaccine and conventional chemotherapy. Based on the published preclinical and clinical trials, treatment schedules of the combinational strategy can be classified as three modalities: chemotherapy with subsequent DC vaccine (post-DC therapy); DC vaccine followed by chemotherapy (pre-DC therapy); concurrent DC vaccine with chemotherapy (con-DC therapy).The safety and efficacy of this combinatorial immunotherapy strategy and its potential mechanisms are discussed. Although we could not draw conclusions on optimal treatment schedule, we summarize some tips which may be beneficial to trial design in the future.

  12. Beam Dynamics Studies of Parallel-Bar Deflecting Cavities

    SciTech Connect

    S. Ahmed, G. Krafft, K. Detrick, S. Silva, J. Delayen, M. Spata ,M. Tiefenback, A. Hofler ,K. Beard

    2011-03-01

    We have performed three-dimensional simulations of beam dynamics for parallel-bar transverse electromagnetic mode (TEM) type RF separators: normal- and super-conducting. The compact size of these cavities as compared to conventional TM$_{110}$ type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a one- or two-cell superconducting structure are enough to produce the required vertical displacement at the Lambertson magnet. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.

  13. Characterization of a high mechanical-Q fiber laser Lorentz force dc magnetometer.

    PubMed

    Cranch, G A; Askins, C G; Miller, G A; Kirkendall, C K

    2011-04-01

    A magnetic field sensor is described based on coupling the field into a time varying strain in a fiber laser strain sensor, through the Lorentzian force. A conducting bridge carries an ac current and oscillates at resonance in the presence of a magnetic field. A fiber laser strain sensor attached to the ribbon measures the deflections. The quality factor is shown to be limited by air damping resulting in a measurement resolution of 704 pT/Hz(1/2)±10% at ambient pressure and 360 pT/Hz(1/2)±10% at a reduced pressure of 1700 Pa at 1 Hz and 75 mA (rms).

  14. Investigation of electron trajectories of an x-ray tube in magnetic fields of MR scanners.

    PubMed

    Wen, Zhifei; Fahrig, Rebecca; Conolly, Steven; Pelc, Norbert J

    2007-06-01

    A hybrid x-ray/MR system combining an x-ray fluoroscopic system and an open-bore magnetic resonance (MR) system offers advantages from both powerful imaging modalities and thus can benefit numerous image-guided interventional procedures. In our hybrid system configurations, the x-ray tube and detector are placed in the MR magnet and therefore experience a strong magnetic field. The electron beam inside the x-ray tube can be deflected by a misaligned magnetic field, which may damage the tube. Understanding the deflection process is crucial to predicting the electron beam deflection and avoiding potential damage to the x-ray tube. For this purpose, the motion of an electron in combined electric (E) and magnetic (B) fields was analyzed theoretically to provide general solutions that can be applied to different geometries. For two specific cases, a slightly misaligned strong field and a perpendicular weak field, computer simulations were performed with a finite-element method program. In addition, experiments were conducted using an open MRI magnet and an inserted electromagnet to quantitatively verify the relationship between the deflections and the field misalignment. In a strong (B > E/c; c: speed of light) and slightly misaligned magnetic field, the deflection in the plane of E and B caused by electrons following the magnetic field lines is the dominant component compared to the deflection in the E X B direction due to the drift of electrons. In a weak magnetic field (B < or = E/c), the main deflection is in the E x B direction and is caused by the perpendicular component of the magnetic field.

  15. Roto-Translational Effects on Deflection of Light and Particle by Moving Kerr Black Hole

    NASA Astrophysics Data System (ADS)

    He, G.; Lin, W.

    2014-02-01

    Velocity effects in first-order Schwarzschild deflection of light and particles have been explored in the previous literature. In this paper, we investigate the roto-translational-motion induced deflection by one moving Kerr black hole with an arbitrary, but constant speed. It is shown that the coupling between the effects of the rotation and the translational motion always exists for both light and particles. The contribution of the roto-translational deflection to the total bending angle is discussed in detail. This ratio takes upper limit for light and it decreases monotonically with increasing translational velocity for a massive particle. For a given translational velocity of black hole, this ratio increases with the particle's velocity. In addition, the post-Newtonian dynamics of the photon and particle is also presented.

  16. Accuracy of vertical deflection determination by present-day inertial instrumentation

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.

    1978-01-01

    An analysis of results obtained in the Canadian Rock Mountains indicates that the observation of deflection differences along the same line can be repeated with a precision of about 0.5 sec but that there are systematic discrepancies between the forward and the backward running of the same line. A comparison with the available astronomically determined deflections also shows systematic differences of 2 sec and 3 sec. These errors are most likely due to the overshooting of the Kalman procedure at gradient changes. It appears that the software can be altered in such a way that deflection differences between stations, not more than half an hour of travel time apart, can be determined by the inertial system with an accuracy of better than + or - 1 sec.

  17. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  18. High power RF system for transverse deflecting structure XFEL TDS INJ

    NASA Astrophysics Data System (ADS)

    Volobuev, E. N.; Zavadtsev, A. A.; Zavadtsev, D. A.; Smirnov, A. J.; Sobenin, N. P.; Churanov, D. V.

    2016-09-01

    The high power RF system (HPRF) is designed for RF feeding of the transverse deflecting structure of the transverse deflecting system XFEL TDS System INJ of the European X-ray Free Electron Laser. The HPRF system includes klystron, waveguide ceramic windows, directional couplers, waveguide vacuum units, spark detector and waveguide line. Operating frequency is 2997.2 MHz. Peak input power is up to 3 MW. The HPRF system has been developed, manufactured and assembled in the XFEL Injector building. The total length of the waveguide line is 55 m from the klystron at the -5 floor to the transverse deflecting structure at the -7 floor. All designed RF parameters have been obtained experimentally at low RF power level.

  19. Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    1999-01-01

    Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.

  20. Large deflection of clamped circular plate and accuracy of its approximate analytical solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Yin

    2016-02-01

    A different set of governing equations on the large deflection of plates are derived by the principle of virtual work (PVW), which also leads to a different set of boundary conditions. Boundary conditions play an important role in determining the computation accuracy of the large deflection of plates. Our boundary conditions are shown to be more appropriate by analyzing their difference with the previous ones. The accuracy of approximate analytical solutions is important to the bulge/blister tests and the application of various sensors with the plate structure. Different approximate analytical solutions are presented and their accuracies are evaluated by comparing them with the numerical results. The error sources are also analyzed. A new approximate analytical solution is proposed and shown to have a better approximation. The approximate analytical solution offers a much simpler and more direct framework to study the plate-membrane transition behavior of deflection as compared with the previous approaches of complex numerical integration.