Science.gov

Sample records for magnetics resonance diagnosis

  1. [Magnetic-resonance tomography in diagnosis of hepatopancreatoduodenal tumors].

    PubMed

    Portnoĭ, L M; Denisova, L B; Utkina, E V; Safiullina, I M; Denisov, V A; Sachechelashvili, G L

    2003-01-01

    Results of magnetic-resonance tomography (MRT) in 112 patients with diseases of hepatopancreatoduodenal zone were analyzed, 24 of them had tumors of bile ducts and pancreas. New noninvasive diagnostic method--magnetic-resonance cholangiopancreatography (MRCPG)--performed in addition to routine MRT was evaluated. The technique of MRCPG, analysis of results, manetic-resonance semiotics are presented. This method is compared with endoscopic retrograde cholangiopancreatography. It is concluded that combination of consentional MRT with MRCPG increases possibilities in diagnosis of hepatopancreatoduodenal cancers, complicated by obstructive jaundice, as a rule.

  2. [Neonatal cerebral venous thrombosis: diagnosis by magnetic resonance angiography].

    PubMed

    Puig, J; Pedraza, S; Méndez, J; Trujillo, A

    2006-01-01

    Neonatal cerebral venous thrombosis (NCVT) is a rare, severe neuropathology of multiple etiology and variable clinical presentation. We describe the case of a 25-day-old infant that presented with a tonic convulsion. Ultrasound examination showed tetraventricular hemorrhage. Magnetic resonance imaging (MRI) showed the presence of acute thrombosis of the deep and superficial venous systems associated to a hemorrhagic infarct of the left thalamus. Coagulation study revealed a deficit of protein C. Thrombosis of deep cerebral veins must be ruled out as a cause of a neonatal convulsive crisis. The presence of a hemorrhagic thalamic lesion supports the diagnosis of NCVT, which must in turn be confirmed by magnetic resonance angiography (MRA).

  3. [Magnetic resonance imaging in the diagnosis of knee joint sarcomas].

    PubMed

    Shubkin, V N; Gunicheva, N V; Akhadov, T A; Puzhitskiĭ, L B; Keshishian, R A

    2007-01-01

    The purpose of the investigation was to study the potentialities of magnetic resonance imaging (MRI) in the diagnosis of knee joint sarcomas. The paper presents the results of examining 13 patients of different age, shows the potentialities of the technique in the identification of knee joint sarcomas, and describes the MRI semiotics of sarcomas in both the routine study and that using contrast enhancement in lesions of bone and soft tissue elements in the presence of regional metastases.

  4. [Magnetic resonance imaging for the diagnosis of multiple sclerosis].

    PubMed

    Nakashima, Ichiro; Fujihara, Kazuo; Itoyama, Yasuto

    2003-08-01

    Magnetic resonance imaging(MRI) is very useful as a method form confirming the lesion distribution of multiple sclerosis(MS). Although MS should be diagnosed primarily on clinical grounds, MRI aids the diagnosis by providing paraclinical evidence for the dissemination in both time and space. Recently, a new guideline for MS diagnosis was proposed by International Panel. This guideline set out to integrate MRI into the overall diagnostic scheme because of its unique sensitivity to pathological changes. In Japanese, however, the so-called optic-spinal form of MS, which is characterized by the selective involvement of the optic nerves and the spinal cord, is relatively common. Moreover, most of Japanese MS patients without oligoclonal bands show atypical brain lesions which do not fulfill the MRI criteria for brain abnormality.

  5. Magnetic resonance imaging for diagnosis of early Alzheimer's disease.

    PubMed

    Colliot, O; Hamelin, L; Sarazin, M

    2013-10-01

    A major challenge for neuroimaging is to contribute to the early diagnosis of Alzheimer's disease (AD). In particular, magnetic resonance imaging (MRI) allows detecting different types of structural and functional abnormalities at an early stage of the disease. Anatomical MRI is the most widely used technique and provides local and global measures of atrophy. The recent diagnostic criteria of "mild cognitive impairment due to AD" include hippocampal atrophy, which is considered a marker of neuronal injury. Advanced image analysis techniques generate automatic and reproducible measures both in the hippocampus and throughout the whole brain. Recent modalities such as diffusion-tensor imaging and resting-state functional MRI provide additional measures that could contribute to the early diagnosis but require further validation.

  6. Value of Magnetic Resonance Imaging for Diagnosis of Dentigerous Cyst

    PubMed Central

    Galvão, Neiandro dos Santos; Ferreira, Thásia Luiz Dias; Lopes, Sérgio Lúcio Pereira de Castro

    2016-01-01

    Odontogenic cysts have a high prevalence in the dental clinic population, with dentigerous cyst being one of the most frequent ones and whose aetiology involves accumulation of fluid between the reduced enamel epithelium and the crown of an unerupted tooth. In the diagnostic process of these lesions, one should consider complementary imaging exams such as conventional radiography and computed tomography, which are commonly used for providing anatomical information on the tissues compromised by the lesion, but not on the nature of it. Magnetic resonance imaging (MRI) scans are noninvasive modalities which, due to their unique acquisition characteristics, can provide distinct information on the nature of the lesion. This study reports on a case of dentigerous cyst in the mandible of a 9-year-old patient, documented by means of different imaging modalities. MRI played an important role in both diagnosis of the lesion and differential diagnosis between neoplastic lesions presenting similar imagenological behaviour under other techniques of radiography. PMID:27795861

  7. Magnetic resonance cholangiopancreatography in the diagnosis of haemobilia.

    PubMed

    Casazza, Ines; Guglietta, Mara Angela; Argento, Giuseppe

    2013-01-01

    Haemobilia is a rare cause of unrecognized gastrointestinal bleeding and is hard to diagnose. Through the present case report we aim to corroborate magnetic resonance relevance in the evaluation of biliary system and bile features, investigating on its role in patients with acute biliary diseases. We report a case of a Caucasian 48-year-old man who was admitted due to abdominal pain and fever. After an ultrasonography exam we detected multiple cysts in the hepatic left lobe: imaging features, laboratory findings, and patient past work experience (woodcutter) suggested a diagnosis of hepatic Echinococcosis. Once surgery decision was taken, patient underwent an intervention of cystopericystectomy. On the 8th postoperative day, the procedure was complicated by black stool, jaundice, and severe anaemia. Acomputed tomography revealed an inhomogeneous collection with some air bubbles in the area of previous surgical intervention, but it was not able to solve the diagnosis question. At this stage a magnetic resonance study was mandatory. On T2-weighted images we observed an expanse gallbladder with hypointense intraluminal material and a considerable intrahepatic biliary system dilatation due to bloody material. On the basis of these examination results, we supposed haemobilia arising from previous surgical intervention. A therapeutic endoscopic retrograde cholangiopancreatography procedure led to decompression of biliary system through a major papilla sphincterotomy with spillage of bile mixed with blood clots. PMID:24455379

  8. Magnetic resonance imaging differential diagnosis of brainstem lesions in children

    PubMed Central

    Quattrocchi, Carlo Cosimo; Errante, Yuri; Rossi Espagnet, Maria Camilla; Galassi, Stefania; Della Sala, Sabino Walter; Bernardi, Bruno; Fariello, Giuseppe; Longo, Daniela

    2016-01-01

    Differential diagnosis of brainstem lesions, either isolated or in association with cerebellar and supra-tentorial lesions, can be challenging. Knowledge of the structural organization is crucial for the differential diagnosis and establishment of prognosis of pathologies with involvement of the brainstem. Familiarity with the location of the lesions in the brainstem is essential, especially in the pediatric population. Magnetic resonance imaging (MRI) is the most sensitive and specific imaging technique for diagnosing disorders of the posterior fossa and, particularly, the brainstem. High magnetic static field MRI allows detailed visualization of the morphology, signal intensity and metabolic content of the brainstem nuclei, together with visualization of the normal development and myelination. In this pictorial essay we review the brainstem pathology in pediatric patients and consider the MR imaging patterns that may help the radiologist to differentiate among vascular, toxico-metabolic, infective-inflammatory, degenerative and neoplastic processes. Helpful MR tips can guide the differential diagnosis: These include the location and morphology of lesions, the brainstem vascularization territories, gray and white matter distribution and tissue selective vulnerability. PMID:26834941

  9. [Progress in nuclear magnetic resonance spectroscopy for early cancer diagnosis].

    PubMed

    Gao, Xiu-xiang; Xu, Yi-zhuang; Zhao, Mei-xian; Qi, Jian; Li, Hui-zhen; Wu, Jin-guang

    2008-08-01

    Based on more than 100 references, the present paper reviews the progress in the application of nuclear magnetic resonance (NMR) spectroscopy, an effective method to study the variation in chemical composition and molecular structure in biological samples for early diagnosis of cancer at molecular level. In the past several decades, numerous works have demonstrated that NMR spectroscopy may be developed into a sensitive diagnosis method to detect cancer in early stage. Because of the rapid development of NMR spectroscopic techniques, it becomes possible to record NMR spectra of biological samples in both in-vitro and in-vivo manner. Systematic spectral differences between biological samples from cancer patients and normal controls can be observed from both liquid-state and solid-state 1H, 31P NMR spectra and used to reflect the changes in metabolic behavior of malignant tissues. This paper has summarized NMR spectroscopic investigation on biological fluid, cultured cancerous cells, resected tissues, as well as in-vivo malignant tissues by using various advanced NMR techniques including recently developedhigh-resolution magic angle spinning (HR-MAS)and magnetic resonance spectroscopy and imaging (MRSI) methods. First, characteristic peaks, which are related to choline, phosphocholine (PC) and glycerophosphocholine, can be observed in both 1H and 31P NMR spectra of biological fluid samples from cancer patients. These results indicate that alternation in the metabolic pattern occurs with the progression of cancer. The research on cultured cells by using NMR spectroscopy showed that the signal of various phospholipids and their metabolites such as PME increased significantly in cultured cancer cells. For resected tissues, two methods can be utilized. The first one is to investigate the tissues directly by using HR-MAS spectroscopy. The second method is to extract various metabolites with various solvents such as CHCl3/methonal mixtures, HClO4 solutions, etc. and then

  10. [Diagnosis. Radiological study. Ultrasound, computed tomography and magnetic resonance imaging].

    PubMed

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Because of its low cost, availability in primary care and ease of interpretation, simple X-ray should be the first-line imaging technique used by family physicians for the diagnosis and/or follow-up of patients with osteoarthritis. Nevertheless, this technique should only be used if there are sound indications and if the results will influence decision-making. Despite the increase of indications in patients with rheumatological disease, the role of ultrasound in patients with osteoarthritis continues to be limited. Computed tomography (CT) is of some -although limited- use in osteoarthritis, especially in the study of complex joints (such as the sacroiliac joint and facet joints). Magnetic resonance imaging (MRI) has represented a major advance in the evaluation of joint cartilage and subchondral bone in patients with osteoarthritis but, because of its high cost and diagnostic-prognostic yield, this technique should only be used in highly selected patients. The indications for ultrasound, CT and MRI in patients with osteoarthritis continue to be limited in primary care and often coincide with situations in which the patient may require hospital referral. Patient safety should be bourne in mind. Patients should be protected from excessive ionizing radiation due to unnecessary repeat X-rays or inadequate views or to requests for tests such as CT, when not indicated.

  11. [Contribution of magnetic resonance imaging in diagnosis of pericardial mesothelioma: a case report].

    PubMed

    Nana, A; Vorilhon, C; Adjtoutah, D; Azarnoush, K; Kissel, V; Chabin, X; Chailloux, A; Belhakem, A; Tixier, V; Ferrier, N; Croisille, P; Long, J-L; Marcaggi, X

    2012-11-01

    Pericardial mesothelioma is a rare form of pericardial tumor. The invasive investigations such as biopsy make the diagnosis. Non-invasive imaging techniques provide valuable information about its diagnosis and its clinical impact. We report here the results of magnetic resonance imaging of pericardial mesothelioma in a 65-year-old woman. The originality and purpose of this case is to illustrate the additional value of magnetic resonance imaging that should be systematically performed when assessing this pathology. PMID:22959437

  12. Magnetic Resonance Imaging Diagnosis of Volvulus through Mesenteric Defect in Neonate

    PubMed Central

    Leopold, Scott; Al-Qaraghouli, Mohammed; Hussain, Naveed; Finck, Christine

    2016-01-01

    Antenatal midgut volvulus is a rare surgical emergency in which bowel is severely compromised. Rarely the etiology is a mesenteric defect. Early diagnosis is essential and lifesaving in the immediate newborn period. Typically upper gastrointestinal or ultrasound imaging can be suggestive of the diagnosis of volvulus in the neonate. Sometimes, however, the diagnosis may be elusive. Herein, we report on the use of neonatal magnetic resonance imaging to diagnose a midgut volvulus that occurred through a congenital mesenteric defect. PMID:27551577

  13. [Use of magnetic resonance imaging in the diagnosis and prognosis of multiple sclerosis].

    PubMed

    Zivadinov, Robert; Sepcić, Juraj

    2006-01-01

    Multiple sclerosis is an autoimmune disease characterized by demyelination and axonal loss. Conventional magnetic resonance imaging allows the demonstration of spatial and temporal dissemination of multiple sclerosis lesions earlier than is possible from clinical assessments. A variety of conventional magnetic resonance imaging protocols, in conjunction with clinical assessment, are now routinely used to increase the accuracy of diagnosis and long-term prognosis of multiple sclerosis. T2-weighted hyperintense lesions are related primarily to increased water content and thus cannot distinguish between inflammation, edema, demyelination, Wallerian degeneration, and axonal loss, whereas the contrast gadolinium-enhanced lesions on T1-weighted images reflect increased blood-brain barrier permeability associated with active inflammatory activity. Conventional magnetic resonance imaging metrics are not sufficiently sensitive to detect invisible brain damage in the normal appearing brain tissue, and they do not show a reliable correlation with clinical measures of disability. However, numerous studies showed that they can improve accuracy in the diagnosis and prognosis of multiple sclerosis. Recently, non-conventional magnetic resonance imaging techniques have been introduced to increase the accuracy of diagnosis and prognosis of multiple sclerosis. Several studies have used brain atrophy, T1-hypointense lesion volume, magnetization transfer imaging, diffusion-weighted imaging and magnetic resonance spectroscopy to test whether the extent and severity of tissue loss in lesions and in normal appearing gray and white matter at the time of clinically isolated syndrome may have diagnostic and prognostic value. These magnetic resonance imaging techniques represent a powerful tool to non-invasively study different pathological substrates of lesions and microscopic tissue changes. Additional short- and long-term prospective studies are requested to establish their value in the

  14. Abnormal Spinal Cord Magnetic Resonance Signal: Approach to the Differential Diagnosis.

    PubMed

    Morales, Humberto; Betts, Aaron

    2016-10-01

    T2-hyperintense signal abnormalities within the spinal cord on magnetic resonance imaging can evoke a broad differential diagnosis and can present a diagnostic dilemma. Here, we review and provide a succinct and relevant differential diagnosis based on imaging patterns and anatomical or physiopathologic correlation. Clues and imaging pearls are provided focusing on inflammatory, infectious, demyelinating, vascular, and metabolic involvement of the spinal cord. PMID:27616311

  15. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson's Disease.

    PubMed

    de Celis Alonso, Benito; Hidalgo-Tobón, Silvia S; Menéndez-González, Manuel; Salas-Pacheco, José; Arias-Carrión, Oscar

    2015-01-01

    Parkinson's disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson's disease. PMID:26191037

  16. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson’s Disease

    PubMed Central

    de Celis Alonso, Benito; Hidalgo-Tobón, Silvia S.; Menéndez-González, Manuel; Salas-Pacheco, José; Arias-Carrión, Oscar

    2015-01-01

    Parkinson’s disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson’s disease. PMID:26191037

  17. [Magnetic resonance imaging in the diagnosis of oral carcinoma].

    PubMed

    Daura Sáez, A; Rodríguez San Pedro, F; Asenjo García, B; Aparicio Cambreros, J; Valiente Alvarez, A

    1999-05-01

    Oral cancer accounts for 5% of all tumors in men and 2% in women. We analyzed frequency, sex distribution and cervical lymph node involvement in relation to tumor site. Local extension was diagnosed in 66 patients by MR imaging and the results were compared to CT scan. The results of these studies were correlated with the histopathological study of the specimen in relation to the diagnosis of bone infiltration, tumor size and cervical node infiltration. Bone infiltration was similar in MR images and CT scans. Tumor size was better diagnosed by MR imaging. Detection of cervical lymph node involvement was similar in MR imaging and CT scan.

  18. [Magnetic resonance imaging in the diagnosis of nonorganic hydatid disease].

    PubMed

    Dombrovskiĭ, V I; Mineev, N I; Dombrovskaia, E A

    2005-01-01

    This article evaluates MRI diagnostic value in discovering of the non-organic hydatid disease. MRI data of 21 patients, suffering from parasite pathology of liver (n = 12), liver and peritoneum cavity (n = 2), liver and retroperitoneal space (n = 2), liver and thigh's muscles (n = 1), peritoneum cavity (n = 2), retroperitoneal space (n = 1), spine and paravertebral area (n = 1) were analyzed. Based on histopathological results, features of unusually localized hydatid cysts (HC) MRI- semiotics are described in detail and compared with liver echinococcosis. MRI technique for identification of some hydatid cyst's structures is shown. The authors discuss the MRI reliability in differential diagnosis of non-organic HC and several disorders (non-parasite congenital and acquired cysts, hematoma, abscess, metastasis) of the same anatomical region. They underline some MRI advantages in GD disclosing comparing with ultrasonography and computed tomography. However, serological tests are needed for diagnosis verification. The authors also postulate the importance of clinical data being taken into account for radiological conclusion.

  19. [Neuromuscular dynamic scapular winging: Clinical, electromyographic and magnetic resonance imaging diagnosis].

    PubMed

    Nguyen, Christelle; Guérini, Henri; Roren, Alexandra; Zauderer, Jennifer; Vuillemin, Valérie; Seror, Paul; Ouaknine, Michaël; Palazzo, Clémence; Bourdet, Christopher; Pluot, Étienne; Roby-Brami, Agnès; Drapé, Jean-Luc; Rannou, François; Poiraudeau, Serge; Lefèvre-Colau, Marie-Martine

    2015-12-01

    Dyskinesia of the scapula is a clinical diagnosis and includes all disorders affecting scapula positioning and movement whatever its etiology. Scapular winging is a subtype of scapular dyskinesia due to a dynamic prominence of the medial border of the scapula (DSW) secondary to neuromuscular imbalance in the scapulothoracic stabilizer muscles. The two most common causes of DSW are microtraumatic or idiopathic lesions of the long thoracic nerve (that innerves the serratus anterior) or the accessory nerve (that innerves the trapezius). Diagnosis of DSW is clinical and electromyographic. Use of magnetic resonance imaging (MRI) could be of interest to distinguish lesion secondary to a long thoracic nerve from accessory nerve and to rule out scapular dyskinesia related to other shoulder disorders. Causal neuromuscular lesion diagnosis in DSW is challenging. Clinical examinations, combined with scapular MRI, could help to their specific diagnosis, determining their stage, ruling out differential diagnosis and thus give raise to more targeted treatment. PMID:26433832

  20. [Neuromuscular dynamic scapular winging: Clinical, electromyographic and magnetic resonance imaging diagnosis].

    PubMed

    Nguyen, Christelle; Guérini, Henri; Roren, Alexandra; Zauderer, Jennifer; Vuillemin, Valérie; Seror, Paul; Ouaknine, Michaël; Palazzo, Clémence; Bourdet, Christopher; Pluot, Étienne; Roby-Brami, Agnès; Drapé, Jean-Luc; Rannou, François; Poiraudeau, Serge; Lefèvre-Colau, Marie-Martine

    2015-12-01

    Dyskinesia of the scapula is a clinical diagnosis and includes all disorders affecting scapula positioning and movement whatever its etiology. Scapular winging is a subtype of scapular dyskinesia due to a dynamic prominence of the medial border of the scapula (DSW) secondary to neuromuscular imbalance in the scapulothoracic stabilizer muscles. The two most common causes of DSW are microtraumatic or idiopathic lesions of the long thoracic nerve (that innerves the serratus anterior) or the accessory nerve (that innerves the trapezius). Diagnosis of DSW is clinical and electromyographic. Use of magnetic resonance imaging (MRI) could be of interest to distinguish lesion secondary to a long thoracic nerve from accessory nerve and to rule out scapular dyskinesia related to other shoulder disorders. Causal neuromuscular lesion diagnosis in DSW is challenging. Clinical examinations, combined with scapular MRI, could help to their specific diagnosis, determining their stage, ruling out differential diagnosis and thus give raise to more targeted treatment.

  1. Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis.

    PubMed

    Yuen, Clement; Liu, Quan

    2012-01-01

    Hemozoin is a by-product of malaria infection in erythrocytes, which has been explored as a biomarker for early malaria diagnosis. We report magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β-hematin crystals, which are the equivalent of hemozoin biocrystals in spectroscopic features, by using magnetic nanoparticles with iron oxide core and silver shell (Fe(3)O(4)@Ag). The external magnetic field enriches β-hematin crystals and enhances the binding between β-hematin crystals and magnetic nanoparticles, which provides further improvement in SERRS signals. The magnetic field-enriched SERRS signal of β-hematin crystals shows approximately five orders of magnitude enhancement in the resonance Raman signal, in comparison to about three orders of magnitude improvement in the SERRS signal without the influence of magnetic field. The improvement has led to a β-hematin detection limit at a concentration of 5 nM (roughly equivalent to 30 parasites/μl at the early stages of malaria infection), which demonstrates the potential of magnetic field-enriched SERRS technique in early malaria diagnosis.

  2. Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2012-01-01

    Hemozoin is a by-product of malaria infection in erythrocytes, which has been explored as a biomarker for early malaria diagnosis. We report magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β--hematin crystals, which are the equivalent of hemozoin biocrystals in spectroscopic features, by using magnetic nanoparticles with iron oxide core and silver shell (Fe3O4@Ag). The external magnetic field enriches β--hematin crystals and enhances the binding between β--hematin crystals and magnetic nanoparticles, which provides further improvement in SERRS signals. The magnetic field-enriched SERRS signal of β--hematin crystals shows approximately five orders of magnitude enhancement in the resonance Raman signal, in comparison to about three orders of magnitude improvement in the SERRS signal without the influence of magnetic field. The improvement has led to a β--hematin detection limit at a concentration of 5 nM (roughly equivalent to 30 parasites/μl at the early stages of malaria infection), which demonstrates the potential of magnetic field-enriched SERRS technique in early malaria diagnosis.

  3. Value of magnetic resonance imaging for the diagnosis of ovarian tumors: a review.

    PubMed

    Bazot, Marc; Daraï, Emile; Nassar-Slaba, Jinane; Lafont, Clarisse; Thomassin-Naggara, Isabelle

    2008-01-01

    This article reviews the value of magnetic resonance imaging (MRI) for the diagnosis of ovarian tumors especially when ultrasonography is indeterminate. Although ultrasonography is the first imaging technique used to investigate suspected pelvic masses, it has a limited capacity for tissue characterization. In addition to morphological characteristics, many tissue parameters such as T1, T2, perfusion, and diffusion contribute to signal intensity, so MRI is able to identify various types of tissue contained in pelvic masses. Magnetic resonance imaging helps to locate large solid masses and to distinguish benign from malignant ovarian tumors, with an overall accuracy of 88% to 93% for the diagnosis of malignancy. The aims of this review are 3-fold. First, we review state-of-the-art and usual MRI techniques and published findings. Second, we recall the MR features most useful for assessing the main ovarian tumors. Finally, we discuss the relevance of various features for distinguishing between benign, borderline, and invasive ovarian tumors.

  4. Modern techniques of magnetic resonance in the evaluation of primary central nervous system lymphoma: contributions to the diagnosis and differential diagnosis

    PubMed Central

    da Rocha, Antonio José; Sobreira Guedes, Bruno Vasconcelos; da Silveira da Rocha, Talita Maira Bueno; Maia Junior, Antonio Carlos Martins; Chiattone, Carlos Sérgio

    2015-01-01

    In addition to findings from conventional magnetic resonance imaging, modern magnetic resonance imaging techniques have provided important information about tumor metabolism, in vivo metabolite formation, water molecule diffusion, microvascular density, and blood-brain barrier permeability, all of which have improved the in vivo diagnostic accuracy of this method in the evaluation of primary central nervous system lymphoma. These nonconventional magnetic resonance techniques are useful in the clinical practice because they enhance conventional magnetic resonance imaging by reinforcing the possibility of a diagnosis and by allowing the early detection of disease recurrence. This report is a review of the most relevant contributions of nonconventional magnetic resonance techniques to the imaging diagnosis of primary central nervous system lymphoma, the differential diagnosis of this disease, and the prognosis of patients. This paper aims to describe a wide range of presentations of primary central nervous system lymphoma, their appearance in imaging, and the differential diagnoses of this disease. PMID:26969774

  5. [Magnetic resonance imaging (MRI) in the diagnosis of recurrences of ovarian cancer in the small pelvis].

    PubMed

    Bulanova, I M; Bulanova, T V; Burenchev, D V

    2005-01-01

    The paper provides the results of small pelvic magnetic resonance tomography (MRI) in 62 patients with ovarian cancer after primary special treatment. Out of them 50 patients were found to have recurrences and metastases of the underlying disease, 12 patients had clinical remission. The study yielded MR signs and MR semiotics of recurrences of ovarian cancer in the small pelvis. The capacities of MRI with low and high intensities of a magnetic field were comparatively studied in the diagnosis of recurrences and metastases of ovarian cancer.

  6. Trigger finger following partial flexor tendon laceration: Magnetic resonance imaging-assisted diagnosis

    PubMed Central

    Couceiro, Jose; Fraga, Javier; Sanmartin, Marcos

    2015-01-01

    Introduction Post-traumatic trigger finger is considerably rarer than normal trigger finger. The diagnosis is usually made on a clinical basis. This can be obscured; however, by concurrent pathological conditions. We report a case of post-traumatic trigger finger in which diagnosis was aided by magnetic resonance imaging (MRI). Presentation of case Our patient is a 32-year-old male who had a previous laceration with a subsequent surgery for infectious tenosynovitis. The MRI showed the impinging tendon tag. Surgical excision of the tag successfully solved the case. Discussion The use of imaging studies for the diagnosis of post-traumatic trigger finger has been previously reported, the authors described a variation on the contour of the pulley system. The full lacerated tendon tag can be seen on our patient's MRI. Conclusion On this case, the use of MRI was a useful aid for the differential diagnosis of post-traumattic trigger finger. PMID:25765739

  7. Physics of a novel magnetic resonance and electrical impedance combination for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Kallergi, Maria; Heine, John J.; Wollin, Ernest

    2015-03-01

    A new technique is proposed and experimentally validated for breast cancer detection and diagnosis. The technique combines magnetic resonance with electrical impedance measurements and has the potential to increase the specificity of magnetic resonance mammography (MRM) thereby reducing false positive biopsy rates. The new magnetic resonance electrical impedance mammography (MREIM) adds a time varying electric field during a supplementary sequence to a standard MRM examination with an apparatus that is "invisible" to the patient. The applied electric field produces a current that creates an additional magnetic field with a component aligned with the bore magnetic field that can alter the native signal in areas of higher electrical conductivity. The justification for adding the electric field is that the electrical conductivity of cancerous breast tissue is approximately 3-40 times higher than normal breast tissue and, hence, conductivity of malignant tissue represents a known clinical disease biomarker. In a pilot study with custom-made phantoms and experimental protocols, it was demonstrated that MREIM can produce, as theoretically predicted, a detectable differential signal in areas of higher electrical conductivity (tumor surrogate regions); the evidence indicates that the differential signal is produced by the confluence of two different effects at full image resolution without gadolinium chelate contrast agent injection, without extraneous reconstruction techniques, and without cumbersome multi-positioned patient electrode configurations. This paper describes the theoretical model that predicts and explains the observed experimental results that were also confirmed by simulation studies.

  8. [THE ROLE OF MAGNETIC RESONANCE IMAGING IN THE DIAGNOSIS OF STRICTURE DISEASE OF THE MALE URETHRA].

    PubMed

    Dombrowski, V I; Kogan, M I; Banchik, E L; Mitusov, V V

    2015-01-01

    The article presents a comprehensive study of 121 patients with stricture disease of the male urethra. Diagnosis and staging of the disease were made on the basis of medical imaging, namely retrograde urethrography, voiding cystourethrography and magnetic resonance imaging with complex pulse sequences developed by the authors. The results were compared with surgical findings and morphological study of surgical specimens. Detailed semiotics of magnetic resonance imaging of stricture disease, differences in the visualization of traumatic and inflammatory strictures of various locations, as well as features of primary and recurrent lesions are described. Detailed analysis of the data shows significant advantages of MRI in identifying stricture disease of the male urethra over traditional methods of endoscopic visualization. It makes possible to increase the diagnostic accuracy for detection of the disease and better surgical planning strategy. PMID:26237801

  9. [Magnetic resonance cholangiopancreatography and a problem in diagnosis of hepatopancreatoduodenal diseases].

    PubMed

    Portnoi, L; Denisova, L; Utkina, E; Denisov, V; Safiullina, I; Emel'ianova, L

    2001-01-01

    Based on the findings of 54 magnetic resonance studies, the authors used 19 of them authors to study the types of normalcy. A role of the new noninvasive technique magnetic resonance cholangiopancreatography (MRCPG) in the diagnosis of hepatopancreatoduodenal diseases is assessed. The potentialities of MRCPG in the detection of most common diseases and malformations of the biliary system are demonstrated. Comparative studies of MRCPG and endoscopic retrograde cholangiopancreatography (ERCPG) were conducted in 18 cases. The paper shows a methodological approach to MRCPG and analyzes the studies by describing the MR semiotics of major diseases. Emphasis is laid on how it is important to combine routine MRI and MRCPG in certain diagnostic situations. The authors consider that MRCPG is able to replace X-ray endoscopic studies and primarily ERCPG in diagnostic terms, by reserving their therapeutical functions for itself. MRCPG has great potentialities that, require further investigations and analysis.

  10. [THE ROLE OF MAGNETIC RESONANCE IMAGING IN THE DIAGNOSIS OF STRICTURE DISEASE OF THE MALE URETHRA].

    PubMed

    Dombrowski, V I; Kogan, M I; Banchik, E L; Mitusov, V V

    2015-01-01

    The article presents a comprehensive study of 121 patients with stricture disease of the male urethra. Diagnosis and staging of the disease were made on the basis of medical imaging, namely retrograde urethrography, voiding cystourethrography and magnetic resonance imaging with complex pulse sequences developed by the authors. The results were compared with surgical findings and morphological study of surgical specimens. Detailed semiotics of magnetic resonance imaging of stricture disease, differences in the visualization of traumatic and inflammatory strictures of various locations, as well as features of primary and recurrent lesions are described. Detailed analysis of the data shows significant advantages of MRI in identifying stricture disease of the male urethra over traditional methods of endoscopic visualization. It makes possible to increase the diagnostic accuracy for detection of the disease and better surgical planning strategy.

  11. Computed Tomography Enterography and Magnetic Resonance Enterography in the Diagnosis of Crohn's Disease

    PubMed Central

    2015-01-01

    Imaging of the small bowel is complicated by its length and its overlapping loops. Recently, however, the development of crosssectional imaging techniques, such as computed tomography enterography (CTE) and magnetic resonance enterography (MRE) has shifted fundamental paradigms in the diagnosis and management of patients with suspected or known Crohn's disease (CD). CTE and MRE are noninvasive imaging tests that involve the use of intraluminal oral and intravenous contrast agents to evaluate the small bowel. Here, we review recent advances in each cross-sectional imaging modality, their advantages and disadvantages, and their diagnostic performances in the evaluation of small bowel lesions in CD. PMID:25691841

  12. Magnetic resonance imaging applications in early rheumatoid arthritis diagnosis and management.

    PubMed

    Troum, Orrin M; Pimienta, Olga; Olech, Ewa

    2012-05-01

    Early diagnosis and treatment have been recognized as essential for improving clinical outcomes in patients with rheumatoid arthritis (RA). Magnetic resonance imaging (MRI) is a sensitive modality that can assess both inflammatory and structural lesions. MRI can assist in following the disease course in patients treated with traditional disease-modifying antirheumatic drugs and biological therapies both in the clinic and in research trials. Therefore, it is anticipated that MRI becomes the diagnostic imaging modality of choice in RA clinical trials while remaining a useful tool for clinicians evaluating patients with RA.

  13. Spinal Cord in Multiple Sclerosis: Magnetic Resonance Imaging Features and Differential Diagnosis.

    PubMed

    Rovira, Alex; Auger, Cristina

    2016-10-01

    Multiple sclerosis (MS) is an idiopathic inflammatory disorder of the central nervous system that affects not only the brain but also the spinal cord. In the diagnostic and monitoring process of MS, spinal cord magnetic resonance imaging (MRI) is not performed as commonly as brain MRI, mainly because of certain technical difficulties and the increase in total acquisition time. Nonetheless, spinal cord MRI findings are important to establish a prompt accurate diagnosis of MS, impart prognostic information, and provide valuable data for monitoring the disease course in certain cases. In this article, we discuss the technical aspects of spinal cord MRI, the typical MRI features of the spinal cord in MS, the clinical indications for this examination, and the differential diagnosis with other disorders that may produce similar clinical or MRI findings. PMID:27616313

  14. Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury

    NASA Astrophysics Data System (ADS)

    Xu, Yun-Jun; Dong, Liang; Lu, Yang; Zhang, Le-Cheng; An, Duo; Gao, Huai-Ling; Yang, Dong-Mei; Hu, Wen; Sui, Cong; Xu, Wei-Ping; Yu, Shu-Hong

    2016-01-01

    Inorganic non-metallic biomaterials, including the silicon frustule of a unicellular diatom, the carbonate shell of a mollusk and the calcium skeleton of the vertebrate, which are the main constituent part of an organism, serve as the supportive and protective components of soft tissue. Among them, hydroxyapatite, which primarily makes up the enamel and bone, is widely used in tissue engineering. Recently, the inorganic nonmetallic biomaterials, especially the applications of hydroxyapatites have attracted great attention. Herein, we report a novel synthesis method of magnetic functionalized hydroxyapatite nanocomposites. By simply tuning the ratios of reactants, a series of hydroxyapatite-Fe3O4 worm-shaped nanocomposites (HAP-ION nanoworms) are obtained. In addition, layer-by-layer surface modifications with chitosan (CH) and sodium alginate (SA) were employed to improve the solubility and biocompatibility, and low cytotoxicity and no hemolysis were observed. With the increase of iron oxide nanocrystals, the magnetic properties of the magnetic assembled nanoworms were enhanced, which resulted in better performance of magnetic resonance (MR) imaging. Owing to the intravenous injection of HAP-ION nanoworms, the contrast to noise ratio (CNR) of hepatic MR imaging in vivo was enhanced obviously, which should be beneficial for hepatic injury grading and further therapeutic treatment.Inorganic non-metallic biomaterials, including the silicon frustule of a unicellular diatom, the carbonate shell of a mollusk and the calcium skeleton of the vertebrate, which are the main constituent part of an organism, serve as the supportive and protective components of soft tissue. Among them, hydroxyapatite, which primarily makes up the enamel and bone, is widely used in tissue engineering. Recently, the inorganic nonmetallic biomaterials, especially the applications of hydroxyapatites have attracted great attention. Herein, we report a novel synthesis method of magnetic

  15. Utility of magnetic resonance imaging in the diagnosis of unsuspected cases of Parsonage-Turner syndrome: two case reports

    PubMed Central

    2013-01-01

    Introduction MRI is becoming increasingly important in the evaluation of shoulder pain, especially in the diagnosis of rotator cuff injuries and conditions that mimic them. Parsonage-Turner syndrome is a well-defined clinical entity that presents with acute-onset shoulder pain and weakness, often first recognized on magnetic resonance imaging scans. Case presentation We studied magnetic resonance imaging features of two Asian men (ages 24 and 31 years) who presented with variable-onset shoulder pain and weakness. Magnetic resonance imaging revealed increased T2-weighted signal intensity of supraspinatus and infraspinatus muscles in both patients. Conclusion Magnetic resonance imaging findings are distinctive, although nonspecific, in cases of Parsonage-Turner syndrome, and knowledge of the imaging and clinical features of this disease enable clinicians to arrive at the correct diagnosis and guide appropriate management. PMID:24199631

  16. [Secretin-enhanced magnetic resonance cholangiopancreaticography: value for the diagnosis of chronic pancreatitis].

    PubMed

    Heverhagen, J T; Burbelko, M; Schenck zu Schweinsberg, T; Funke, C; Wecker, C; Walthers, E M; Rominger, M

    2007-08-01

    Endoscopic retrograde cholangiopancreaticography (ERCP) is the morphologic gold standard for the diagnosis of chronic pancreatitis. Magnetic Resonance Imaging (MRI) enables the visualization of not only the pancreatic duct but also the surrounding parenchyma using T2- and T1-weighted sequences before and after the application of a contrast agent. Moreover, it allows the depiction of ductal segments distal to a stenosis or occlusion. However, conventional Magnetic Resonance Cholangiopancreaticography (MRCP) was not able to achieve accuracy similar to that of ERCP. Despite many technological innovations, such as fast breath-hold acquisitions or respiratory-gated 3D sequences, this drawback could not be overcome. In recent years, secretin-enhanced MRCP has been used for the diagnosis of chronic pancreatitis. A recent study showed that secretin not only improves the visibility of the pancreatic duct and its side branches but it also enhances the diagnostic accuracy of MRCP. The sensitivity, specificity, and positive and negative predictive values were improved by the application of secretin. Moreover, the agreement between independent observers increased after the use of secretin. In addition, quantitative post-processing tools have been developed that enable the measurement of the exocrine pancreatic output non-invasively using secretin-enhanced MRCP. These tools facilitate applications, such as functional follow-up after pancreaticogastrostomy and pancreaticogastric anastomoses, evaluation of the functional status of the graft after pancreas transplantation and follow-up of pancreatic drainage procedures and duct disruption.

  17. Automated diagnosis and prediction of Alzheimer disease using magnetic resonance image

    NASA Astrophysics Data System (ADS)

    Cai, Zifan; Di, Qian; Chen, Kewei; Reiman, Eric M.; Wang, Liang; Li, Kuncheng; Tang, Jie; Yao, Li; Zhao, Xiaojie

    2007-03-01

    Magnetic resonance image (MRI) has provided an imageological support into the clinical diagnosis and prediction of Alzheimer disease (AD) progress. Currently, the clinical use of MRI data on AD diagnosis is qualitative via visual inspection and less accurate. To provide assistance to physicians in improving the accuracy and sensitivity of the AD diagnose and the clinical outcome of the disease, we developed a computer-assisted analysis package that analyzed the MRI data of an individual patient in comparison with a group of normal controls. The package is based on the principle of the well established and widely used voxel-based morphometry (VBM) and SPM software. All analysis procedure is automated and streamlined. With only one mouse-click, the whole procedure was finished within 15 minutes. With the interactive display and anatomical automatic labeling toolbox, the final result and report supply the brain regional structure difference, the quantitative assessment and visual inspections by physicians and scientific researcher. The brain regions which affected by AD are consonant in the main with the clinical diagnosis, which are reviewed by physicians. In result, the computer package provides physician with an automatic and assistant tool for prediction using MRI. This package could be valuable tool assisting physicians in making their clinical diagnosis decisions.

  18. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography.

    PubMed

    Helfer, Talita Micheletti; Peixoto, Alberto Borges; Tonni, Gabriele; Araujo Júnior, Edward

    2016-09-01

    Craniosynostosis is defined as the process of premature fusion of one or more of the cranial sutures. It is a common condition that occurs in about 1 to 2,000 live births. Craniosynostosis may be classified in primary or secondary. It is also classified as nonsyndromic or syndromic. According to suture commitment, craniosynostosis may affect a single suture or multiple sutures. There is a wide range of syndromes involving craniosynostosis and the most common are Apert, Pffeifer, Crouzon, Shaethre-Chotzen and Muenke syndromes. The underlying etiology of nonsyndromic craniosynostosis is unknown. Mutations in the fibroblast growth factor (FGF) signalling pathway play a crucial role in the etiology of craniosynostosis syndromes. Prenatal ultrasound`s detection rate of craniosynostosis is low. Nowadays, different methods can be applied for prenatal diagnosis of craniosynostosis, such as two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), computed tomography (CT) scan and, finally, molecular diagnosis. The presence of craniosynostosis may affect the birthing process. Fetuses with craniosynostosis also have higher rates of perinatal complications. In order to avoid the risks of untreated craniosynostosis, children are usually treated surgically soon after postnatal diagnosis. PMID:27622416

  19. Magnetic resonance imaging in the diagnosis and follow up of Takayasu's arteritis in children

    PubMed Central

    Aluquin, V; Albano, S; Chan, F; Sandborg, C; Pitlick, P

    2002-01-01

    Background: Takayasu's arteritis (TA) has a mortality rate of up to 40% in children. Because the clinical presentation of TA is often non-specific, accurate and prompt diagnosis depends on a high degree of awareness and appropriate laboratory and imaging studies. Objective: To examine the use of advanced magnetic resonance imaging (MRI) in evaluating, gauging activity, and following the complications of TA. Methods and results: T1 weighted, T2 weighted, contrast enhanced MR images, and MR angiograms of the chest and abdomen were obtained in three children (age range 11–14 years). The MRI studies confirmed the diagnosis of active TA and were repeated to evaluate response to treatment. Two patients showed complete resolution of lesions found on MRI at six and 12 months' follow up, while the third patient showed no significant improvement. Conclusion: MRI can be used to help establish the initial diagnosis of TA in children, and it can also be used to monitor disease activity and to guide treatment. PMID:12006326

  20. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    PubMed Central

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A.

    2015-01-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional. PMID:26644943

  1. Meta-analysis of magnetic resonance imaging for the differential diagnosis of spinal degeneration.

    PubMed

    Hou, Ying-Nuo; Ding, Wen-Yuan; Shen, Yong; Yang, Da-Long; Wang, Lin-Feng; Zhang, Peng

    2015-01-01

    To systematically evaluate the clinical significance of magnetic resonance imaging for the identification and diagnosis of spinal degenerative changes. We searched Cochrane Library, PubMed, EMbase, CNKI, WanFang Data, Medalink, VIP and CBM databases for clinical studies on the significance of magnetic resonance imaging for the differential diagnosis of spinal degeneration; retrieval time was from database building to October 2014. Two reviewers independently screened the literature, extracted data and evaluated methodological quality according to the inclusion and exclusion criteria. Meta-DiSc 1.4 software was used for meta-analysis. The study included six documents, 10 independent results and a total of 505 individuals. Meta-analysis showed that: In the present study, the efficacy of magnetic resonance imaging in the differential diagnosis of cervical and lumbar degeneration was firstly analyzed and discussed using the Meta-Disc 1.4 software. SPE: χ(2) = 77.59, P = 0.000, I(2) = 88.4%; SEN: χ(2) = 167.25, P = 0.000, I(2) = 94.6%; DOR: Cochran-Q = 71.64, P = 0.000. Meta-analysis of random effect model showed that: SEN merge = 0.849 [95% CI (0.816,0.878)], SPE merge = 0.745 [95% CI (0.695, 0.792)], + LR = 2.735 [95% CI (1.600, -4.676)], - LR = 0.245 [95% CI (0.122, -0.493)], DOR merge = 21.158 [95% CI (5.234, -85.529)], SROC AUC = 0.8698; the results had good stability. Then the efficacy of magnetic resonance imaging in the differential diagnosis of cervical degeneration was analyzed and the results showed that: SPE: χ(2) = 6.92, P = 0.075, I(2) = 56.6%; SEN: χ(2) = 81.73, P = 0.000, I(2) = 96.3%; DOR: Cochran-Q = 12.71, P = 0.005. Meta-analysis of random effect model showed that: SEN merge = 0.799 [95% CI (0.741, 0.850)], SPE merge = 0.769 [95% CI (0.683, -0.840)], + LR = 2.506 [95% CI (1.399, -4.489)], - LR = 0.363 [95% CI (0.149, -0.882)], DOR merge = 11.949 [95% CI (2.195, -65.036)], SROC AUC = 0.8210. The stability was good. Finally, analysis of six

  2. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias

    PubMed Central

    Hsu, Yuan-Yu; Du, An-Tao; Schuff, Norbert; Weiner, Michael W.

    2007-01-01

    This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection of affected individuals, monitoring disease progression, and evaluation of therapeutic effect. PMID:11563438

  3. Non-invasive magnetic resonance imaging diagnosis of presumed intermedioradial carpal bone avascular necrosis in the dog.

    PubMed

    Pownder, Sarah L; Cooley, Stacy; Hayashi, Kei; Bezuidenhout, Abraham; Koff, Matthew F; Potter, Hollis G

    2016-08-01

    A 5-year-old, spayed female Weimaraner dog was evaluated for progressive left forelimb lameness localized to the carpus. Magnetic resonance imaging (MRI) was used to arrive at a presumptive diagnosis of intermedioradial carpal (IRC) bone fracture with avascular necrosis (AVN). To the authors' knowledge, this is the first report of naturally occurring AVN of the canine IRC diagnosed using MRI.

  4. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection

    NASA Astrophysics Data System (ADS)

    Fook Kong, Tian; Ye, Weijian; Peng, Weng Kung; Wei Hou, Han; Marcos; Preiser, Peter Rainer; Nguyen, Nam-Trung; Han, Jongyoon

    2015-06-01

    Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially highly sensitive tool for malaria diagnosis. A key challenge for making MRR based malaria diagnostics suitable for clinical testing is the fact that MRR baseline fluctuation exists between individuals, making it difficult to detect low level parasitemia. To overcome this problem, it is important to establish the MRR baseline of each individual while having the ability to reliably determine any changes that are caused by the infection of malaria parasite. Here we show that an approach that combines the use of microfluidic cell enrichment with a saponin lysis before MRR detection can overcome these challenges and provide the basis for a highly sensitive and reliable diagnostic approach of malaria parasites. Importantly, as little as 0.0005% of ring stage parasites can be detected reliably, making this ideally suited for the detection of malaria parasites in peripheral blood obtained from patients. The approaches used here are envisaged to provide a new malaria diagnosis solution in the near future.

  5. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection

    PubMed Central

    Fook Kong, Tian; Ye, Weijian; Peng, Weng Kung; Wei Hou, Han; Marcos, M; Preiser, Peter Rainer; Nguyen, Nam-Trung; Han, Jongyoon

    2015-01-01

    Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially highly sensitive tool for malaria diagnosis. A key challenge for making MRR based malaria diagnostics suitable for clinical testing is the fact that MRR baseline fluctuation exists between individuals, making it difficult to detect low level parasitemia. To overcome this problem, it is important to establish the MRR baseline of each individual while having the ability to reliably determine any changes that are caused by the infection of malaria parasite. Here we show that an approach that combines the use of microfluidic cell enrichment with a saponin lysis before MRR detection can overcome these challenges and provide the basis for a highly sensitive and reliable diagnostic approach of malaria parasites. Importantly, as little as 0.0005% of ring stage parasites can be detected reliably, making this ideally suited for the detection of malaria parasites in peripheral blood obtained from patients. The approaches used here are envisaged to provide a new malaria diagnosis solution in the near future. PMID:26081638

  6. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection.

    PubMed

    Kong, Tian Fook; Ye, Weijian; Peng, Weng Kung; Hou, Han Wei; Marcos; Preiser, Peter Rainer; Nguyen, Nam-Trung; Han, Jongyoon

    2015-01-01

    Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially highly sensitive tool for malaria diagnosis. A key challenge for making MRR based malaria diagnostics suitable for clinical testing is the fact that MRR baseline fluctuation exists between individuals, making it difficult to detect low level parasitemia. To overcome this problem, it is important to establish the MRR baseline of each individual while having the ability to reliably determine any changes that are caused by the infection of malaria parasite. Here we show that an approach that combines the use of microfluidic cell enrichment with a saponin lysis before MRR detection can overcome these challenges and provide the basis for a highly sensitive and reliable diagnostic approach of malaria parasites. Importantly, as little as 0.0005% of ring stage parasites can be detected reliably, making this ideally suited for the detection of malaria parasites in peripheral blood obtained from patients. The approaches used here are envisaged to provide a new malaria diagnosis solution in the near future. PMID:26081638

  7. The value of magnetic resonance imaging in the differential diagnosis of parapharyngeal space tumours.

    PubMed

    Leverstein, H; Castelijns, J A; Snow, G B

    1995-10-01

    Between 1987 and 1993 14 patients with a parapharyngeal space tumour were imaged by magnetic resonance imaging (MRI). The vagal body tumours, presenting in the poststyloid compartment, all showed flow voids with anterior and medial displacement of the internal carotid artery. None of the salivary gland tumours, all presenting in the prestyloid compartment with posterior displacement of the internal carotid artery, showed flow voids. MRI is superior compared with other modalities in evaluating the differential diagnosis, especially regarding vascular vs non-vascular tumours. It should encompass T1 SE images to assess the presence or absence of flow voids. In vascular tumours angiography must be used to assess feeding vessels, multiplicity, and sides involved. T1 GE images are useful as they allow superior identification of the internal carotid artery and its relation with the tumour accordingly. In addition to T1 SE images, T2 SE images may help in the evaluation of the differential diagnosis. In all non-vascular tumours aspiration cytology is required to differentiate between benign and malignant disease.

  8. A magnetic-field enriched surface-enhanced resonance Raman spectroscopy strategy towards the early diagnosis of malaria

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2012-03-01

    Early malaria diagnosis is important because malaria disease can develop into fatal illness within hours upon the appearance of the first symptom. The low concentration of the diagnosis biomarker, hemozoin, at the early stage of malaria disease makes early diagnosis difficult. In this paper, we present a magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) strategy for the sensitive detection of β - hematin crystals, which is equivalent to hemozoin in the characteristics of Raman spectrum, by using magnetic nanoparticles. We observe several orders of magnitude enhancement in the SERRS signal of enriched β - hematin in comparison to the Raman signal of β - hematin in the cases of SERRS alone or magnetic enrichment alone, showing the great potential of this method towards early malaria diagnosis.

  9. A magnetic-field enriched surface-enhanced resonance Raman spectroscopy strategy towards the early diagnosis of malaria

    NASA Astrophysics Data System (ADS)

    Clement, Yuen; Liu, Quan

    2012-02-01

    Early malaria diagnosis is important because malaria disease can develop into fatal illness within hours upon the appearance of the first symptom. The low concentration of the diagnosis biomarker, hemozoin, at the early stage of malaria disease makes early diagnosis difficult. In this paper, we present a magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) strategy for the sensitive detection of β - hematin crystals, which is equivalent to hemozoin in the characteristics of Raman spectrum, by using magnetic nanoparticles. We observe several orders of magnitude enhancement in the SERRS signal of enriched β - hematin in comparison to the Raman signal of β - hematin in the cases of SERRS alone or magnetic enrichment alone, showing the great potential of this method towards early malaria diagnosis.

  10. A modified method for locating parapharyngeal space neoplasms on magnetic resonance images: implications for differential diagnosis

    PubMed Central

    Liu, Xue-Wen; Wang, Ling; Li, Hui; Zhang, Rong; Geng, Zhi-Jun; Wang, De-Ling; Xie, Chuan-Miao

    2014-01-01

    The parapharyngeal space (PPS) is an inverted pyramid-shaped deep space in the head and neck region, and a variety of tumors, such as salivary gland tumors, neurogenic tumors, nasopharyngeal carcinomas with parapharyngeal invasion, and lymphomas, can be found in this space. The differential diagnosis of PPS tumors remains challenging for radiologists. This study aimed to develop and test a modified method for locating PPS tumors on magnetic resonance (MR) images to improve preoperative differential diagnosis. The new protocol divided the PPS into three compartments: a prestyloid compartment, the carotid sheath, and the areas outside the carotid sheath. PPS tumors were located in these compartments according to the displacements of the tensor veli palatini muscle and the styloid process, with or without blood vessel separations and medial pterygoid invasion. This protocol, as well as a more conventional protocol that is based on displacements of the internal carotid artery (ICA), was used to assess MR images captured from a series of 58 PPS tumors. The consequent distributions of PPS tumor locations determined by both methods were compared. Of all 58 tumors, our new method determined that 57 could be assigned to precise PPS compartments. Nearly all (13/14; 93%) tumors that were located in the pre-styloid compartment were salivary gland tumors. All 15 tumors within the carotid sheath were neurogenic tumors. The vast majority (18/20; 90%) of trans-spatial lesions were malignancies. However, according to the ICA-based method, 28 tumors were located in the pre-styloid compartment, and 24 were located in the post-styloid compartment, leaving 6 tumors that were difficult to locate. Lesions located in both the pre-styloid and the post-styloid compartments comprised various types of tumors. Compared with the conventional ICA-based method, our new method can help radiologists to narrow the differential diagnosis of PPS tumors to specific compartments. PMID:25104280

  11. The efficacy of magnetic resonance imaging and color Doppler ultrasonography in diagnosis of salivary gland tumors.

    PubMed

    Davachi, Behrooz; Imanimoghaddam, Mahrokh; Majidi, Mohamad Reza; Sahebalam, Ahmad; Johari, Masoomeh; Javadian Langaroodi, Adineh; Shakeri, Mohamad Taghi

    2014-01-01

    Background and aims. Although salivary gland tumors are not very common, early diagnosis and treatment is crucial because of their proximity to vital organs, and therefore, determining the efficacy of new imaging procedures becomes important. This study aimed to evaluate the efficacy of magnetic resonance imaging (MRI) and color doppler ultrasonography parameters in the diagnosis and differentiation of benign and malignant salivary gland tumors. Materials and methods. In this cross-sectional study, color doppler ultrasonography and MRI were performed for 22 patients with salivary gland tumor. Demographic data as well as MRI, color doppler ultrasonography, and surgical parameters including tumor site, signal in MRI images, ultrasound echo, tumor border, lymphadenopathy, invasion, perfusion, vascular resistance index (RI), vascular pulse index (PI) were analyzed using Chi-square test, Fisher's exact test, and independent t-test. Results. The mean age of patients was 46.59±13.97 years (8 males and 14females). Patients with malignant tumors were older (P < 0.01). The most common tumors were pleomorphic adenoma (36.4%), metastasis (36.4%), and mucoepidermoid carcinoma (9%). Nine tumors (40.9%) were benign and 13 (59.1%) were malignant. The overall accuracy of MRI and color doppler ultrasonography in determining tumor site was 100% and 95%, respectively. No significant difference observed between RI and PI and the diagnosis of tumor. Conclusion. Both MRI and ultrasonography have high accuracy in the localization of tumors. Well-identified border was a sign of benign tumors. Also, invasion to adjacent structures was a predictive factor for malignancy.

  12. Easy Diagnosis of Aortic Invasion in Patients with Lung Cancer Using Cine Magnetic Resonance Imaging.

    PubMed

    Uramoto, Hidetaka; Kinoshita, Hiroyasu; Nakajima, Yuki; Akiyama, Hirohiko

    2015-01-01

    Selecting the proper treatment strategy for locally advanced lung cancer, such as T4 tumors, is difficult. Therefore, obtaining an accurate diagnosis of T4 tumors is required. It can be difficult to determine whether the tumor invades adjacent structures. We describe the case of a patient easily diagnosed to be without aortic invasion using cine magnetic resonance imaging (MRI). We herein report the case of an 80-year-old male who presented a lung tumor. The transbronchial lung washing cytology findings were consistent with those of adenocarcinoma. In addition, the computed tomography findings indicated suspected aortic invasion of the lung tumor, as the mass girdled the descending aorta beyond 120° adjoining at a length of 10 cm. However, cine MRI display clearly demonstrated a clear area of isolation between the aorta and lung tissue based on differences in the heart rhythm from the patient's respiratory movements. Therefore, the lesion was clinically diagnosed as a stage IIB (T3N0M0) tumor. Radiation was administered due to the patient's advanced age and comorbidities such as chronic obstructive pulmonary disease. He remains alive without disease progression 6 months after the therapy. Our findings, therefore, indicate the usefulness of easily diagnosing the absence of aortic invasion in patients with lung cancer using cine MRI without the need for a special software program.

  13. Review article: Magnetic resonance imaging and computed tomography in the diagnosis of occult proximal femur fractures.

    PubMed

    Chatha, Hamid A; Ullah, Sana; Cheema, Zulfiqar Z

    2011-04-01

    Electronic databases of MEDLINE, EMBASE, CINAHL, and the Cochrane Library as well as the Google Scholar search engine were used. Studies written in the English language highlighting the use of magnetic resonance imaging (MRI) and computed tomography in diagnosing occult proximal femoral fractures despite negative or equivocal plain radiographs were included. Two reviewers independently extracted data from each article. Raw frequencies for each of the details investigated were calculated. 15 prospective and 7 retrospective studies from 1989 to 2009 were included in this systematic review. A total of 996 patients (mean age, 75 years; standard deviation, 5 years) with suspected occult proximal femur fractures underwent MRI for further assessment. 350 (35%) of the patients tested positive for proximal femoral fractures, of whom 295 (84%) underwent further treatment/surgical interventions. MRI also detected other fractures and soft-tissue injuries. MRI was superior to other imaging modalities in diagnosing occult proximal femoral fractures and should be performed within 24 hours of injury. Early diagnosis and management may avoid substantial displacement and complications, and improve overall mortality and morbidity.

  14. Accuracy of Ultrasonography and Magnetic Resonance Imaging in the Diagnosis of Placenta Accreta

    PubMed Central

    Riteau, Anne-Sophie; Tassin, Mikael; Chambon, Guillemette; Le Vaillant, Claudine; de Laveaucoupet, Jocelyne; Quéré, Marie-Pierre; Joubert, Madeleine; Prevot, Sophie; Philippe, Henri-Jean; Benachi, Alexandra

    2014-01-01

    Purpose To evaluate the accuracy of ultrasonography and magnetic resonance imaging (MRI) in the diagnosis of placenta accreta and to define the most relevant specific ultrasound and MRI features that may predict placental invasion. Material and Methods This study was approved by the institutional review board of the French College of Obstetricians and Gynecologists. We retrospectively reviewed the medical records of all patients referred for suspected placenta accreta to two university hospitals from 01/2001 to 05/2012. Our study population included 42 pregnant women who had been investigated by both ultrasonography and MRI. Ultrasound images and MRI were blindly reassessed for each case by 2 raters in order to score features that predict abnormal placental invasion. Results Sensitivity in the diagnosis of placenta accreta was 100% with ultrasound and 76.9% for MRI (P = 0.03). Specificity was 37.5% with ultrasonography and 50% for MRI (P = 0.6). The features of greatest sensitivity on ultrasonography were intraplacental lacunae and loss of the normal retroplacental clear space. Increased vascularization in the uterine serosa-bladder wall interface and vascularization perpendicular to the uterine wall had the best positive predictive value (92%). At MRI, uterine bulging had the best positive predictive value (85%) and its combination with the presence of dark intraplacental bands on T2-weighted images improved the predictive value to 90%. Conclusion Ultrasound imaging is the mainstay of screening for placenta accreta. MRI appears to be complementary to ultrasonography, especially when there are few ultrasound signs. PMID:24733409

  15. Diagnosis of congenital pericardial defects, including a pathognomic sign for dangerous apical ventricular herniation, on magnetic resonance imaging.

    PubMed Central

    Gassner, I.; Judmaier, W.; Fink, C.; Lener, M.; Waldenberger, F.; Scharfetter, H.; Hammerer, I.

    1995-01-01

    OBJECTIVE--To establish criteria for the accurate diagnosis of different forms of left sided pericardial defects on magnetic resonance imaging. Early detection of a partial apical defect is essential as it is potentially fatal. DESIGN--Examination of four children with congenital pericardial defects by magnetic resonance imaging, the results being compared with the features on conventional chest radiography and echocardiography and with published data. RESULTS--Magnetic resonance imaging improved the ability to diagnose and distinguish between complete and partial left sided pericardial defects. A deep myocardial crease was visualised in a patient with apical pericardial defect, indicating the risk of a life threatening ventricular strangulation. A prominent left atrial appendage was, in contrast to many reports, not a reliable sign for partial left sided pericardial defect. CONCLUSIONS--The various forms of congenital left sided pericardial defects cannot reliably be diagnosed in plain chest radiographs or on echocardiography. Their diagnosis and the distinction between partial and complete defects, however, is of clinical importance and can be accomplished more confidently by magnetic resonance imaging. Images PMID:7662456

  16. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  17. Current technological advances in magnetic resonance with critical impact for clinical diagnosis and therapy.

    PubMed

    Runge, Val M

    2013-12-01

    The last 5 years of technological advances with major impact on clinical magnetic resonance (MR) are discussed, with greater emphasis on those that are most recent. These developments have already had a critical positive effect on clinical diagnosis and therapy and presage continued rapid improvements for the next 5 years. This review begins with a discussion of 2 topics that encompass the breadth of MR, in terms of anatomic applications, contrast media, and MR angiography. Subsequently, innovations are discussed by anatomic category, picking the areas with the greatest development, starting with the brain, moving forward to the liver and kidney, and concluding with the musculoskeletal system, breast, and prostate. Two final topics are then considered, which will likely, with time, become independent major fields in their own right, interventional MR and MR positron emission tomography (PET).The next decade will bring a new generation of MR contrast media, with research focused on substantial improvements (>100-fold) in relaxivity (contrast effect), thus providing greater efficacy, safety, and tissue targeting. Magnetic resonance angiography will see major advances because of the use of compressed sensing, in terms of spatial and temporal resolution, with movement away from nondynamic imaging. The breadth of available techniques and tissue contrast has greatly expanded in brain imaging, benefiting both from the introduction of new basic categories of imaging techniques, such as readout-segmented echo planar imaging and 3D fast spin echo imaging with variable flip angles, and from new refinements specific to anatomic areas, such as double inversion recovery and MP2RAGE. Liver imaging has benefited from the development of techniques to easily and rapidly assess lipid, and will see, overall, a marked improvement in the next 5 years from new techniques on the verge of clinical introduction, such as controlled aliasing in parallel imaging results in higher acceleration

  18. Differential diagnosis of parotid gland tumours: which magnetic resonance findings should be taken in account?

    PubMed

    Tartaglione, T; Botto, A; Sciandra, M; Gaudino, S; Danieli, L; Parrilla, C; Paludetti, G; Colosimo, C

    2015-10-01

    Our aim was to define typical magnetic resonance (MRI) findings in malignant and benign parotid tumours. This study is based on retrospective evaluation of pre-surgical MRI of 94 patients with parotid gland tumours. Histology results were available for all tumours. There were 69 cases of benign (73%) and 25 cases of malignant (27%) tumours, including 44 pleomorphic adenomas, 18 Warthin's tumours, 7 various benign tumours, 6 squamous cell carcinomas, 3 carcinoma ex pleomorphic adenomas, 2 mucoepidermoid carcinomas, 1 adenoid cystic carcinoma and 13 various malignant tumours. The following MRI parameters were evaluated: shape, site, size, margins, signal intensity (SI) on T1w and T2w images, contrast enhancement, signal of cystic content, presence or absence of a capsule, perineural spread, extraglandular growth pattern and cervical adenopathy. Statistical analysis was performed to identify the MRI findings most suggestive of malignancy, and to define the most typical MRI pattern of the most common histologies. Ill-defined margins (p < 0.001), adenopathies (p < 0.001) and infiltrative grown pattern (p < 0.001) were significantly predictive of malignancy. Typical findings of pleomorphic adenoma included hyperintensity on T2w images (p = 0.02), strong contrast enhancement (p < 0.001) and lobulated shape (p = 0.04). Typical findings of Warthin's tumour included hyperintense components on T1w images (p < 0.001), location in the parotid inferior process (p < 0.001) and mild or incomplete contrast enhancement (p = 0.01). SI on T1w and T2w images and contrast enhancement enables differential diagnosis between pleomorphic adenoma and Warthin's tumour. PMID:26824912

  19. [Combined application of magnetic resonance imaging and electrognathography for TMJ diagnosis].

    PubMed

    Kordass, B; Böttger, H; Assheuer, J; Hugger, A; Mai, J K

    1989-12-01

    Based on the case of one patient with persistent TMJ disorders a method is described where the use of electrognathographic measurements allows the localization of particularly interesting functional TMJ positions for magnetic resonance imaging. This method renders morphological TMJ alterations of functional importance more easy to detect.

  20. Use of magnetic resonance imaging in the diagnosis of upper respiratory obstruction in a calf

    PubMed Central

    Buczinski, Sébastien; Fecteau, Gilles; Alexander, Kate; Norman-Carmel, Eric

    2008-01-01

    In a calf with dyspnea, a mass located dorsal to the pharynx was visualized by ultrasonography. Magnetic resonance imaging (MRI) revealed a severe enlargement of the left medial retropharyngeal lymph node, compatible with an abscess. This is the first reported case of MRI use in bovine upper respiratory disease. PMID:18390100

  1. Association of magnetic resonance imaging findings and histologic diagnosis in dogs with nasal disease: 78 cases (2001-2004).

    PubMed

    Miles, Macon S; Dhaliwal, Ravinder S; Moore, Michael P; Reed, Ann L

    2008-06-15

    OBJECTIVE-To determine whether magnetic resonance imaging (MRI) features correlated with histologic diagnosis in dogs with nasal disease. DESIGN-Retrospective case series. ANIMALS-78 Dogs undergoing MRI for evaluation of nasal disease. PROCEDURES-Medical records and MRI reports of dogs were reviewed to identify MRI features associated with histologic diagnosis. Features evaluated were presence of a mass effect, frontal sinus involvement, sphenoid sinus involvement, maxillary recess involvement, nasopharyngeal infiltration by soft tissue, nasal turbinate destruction, vomer bone lysis, paranasal bone destruction, cribriform plate erosion, and lesion extent (ie, unilateral vs bilateral). RESULTS-33 Dogs had neoplastic disease, 38 had inflammatory rhinitis, and 7 had fungal rhinitis. Lesion extent was not significantly associated with histologic diagnosis. Absence of a mass effect was significantly associated with inflammatory disease. However, presence of a mass was not specific for neoplasia. In dogs with evidence of a mass on magnetic resonance (MR) images, nasal turbinate destruction, frontal sinus invasion, and maxillary recess invasion were not useful in distinguishing neoplastic from nonneoplastic disease, but cribriform plate erosion, vomer bone lysis, paranasal bone destruction, sphenoid sinus invasion, and nasopharyngeal invasion were. CONCLUSIONS AND CLINICAL RELEVANCE-Results suggested that in dogs with nasal disease, the lack of a mass effect on MR images was significantly associated with inflammatory disease. In dogs with a mass effect on MR images, vomer bone lysis, cribriform plate erosion, paranasal bone destruction, sphenoid sinus invasion by a mass, and nasopharyngeal invasion by a mass were significantly associated with a diagnosis of neoplasia. PMID:18598154

  2. Diagnosis of Popliteal Venous Entrapment Syndrome by Magnetic Resonance Imaging Using Blood-Pool Contrast Agents

    SciTech Connect

    Beitzke, Dietrich Wolf, Florian; Juelg, Gregor; Lammer, Johannes; Loewe, Christian

    2011-02-15

    Popliteal vascular entrapment syndrome is caused by aberrations or hypertrophy of the gastrocnemius muscles, which compress the neurovascular structures of the popliteal fossa, leading to symptoms of vascular and degeneration as well as aneurysm formation. Imaging of popliteal vascular entrapment may be performed with ultrasound, magnetic resonance imaging (MRI), computed tomography angiography, and conventional angiography. The use of blood-pool contrast agents in MRI when popliteal vascular entrapment is suspected offers the possibility to perform vascular imaging with first-pass magnetic resonance angiographic, high-resolution, steady-state imaging and allows functional tests all within one examination with a single dose of contrast agent. We present imaging findings in a case of symptomatic popliteal vein entrapment diagnosed by the use of blood pool contrast-enhanced MRI.

  3. [The use of magnetic resonance venography in diagnosis of cerebral venous blood flow disorders].

    PubMed

    Semenov, S E; Abalmasov, V G

    2000-01-01

    The paper presents an examination of 85 patients aged 16-72 years with cerebral venous dyscirculation resulted from the obstruction of cerebral venous sinuses, major veins of the neck and upper regions of the mediastenum. 70 healthy volunteers were also observed. Magnetic-resonance venography of brachyocephal veins and venous sinuses and ultrasound duplex scanning of internal jugular veins together with colored mapping of the blood flow were performed. Both the causes and the magnetic-resonance semiotics of the obstructive damages of brachyocephal veins and of the cerebral venous sinuses were described. The criteria for hemodynamic significance of the obstruction of brachyocephal veins were defined in case of extravasal compression of brachyocephal veins.

  4. [Differential magnetic resonance diagnosis of central lung cancer and acute pneumonia].

    PubMed

    Gamova, E V; Nudnov, N V

    2006-01-01

    The paper analyzes the authors' own data of chest magnetic resonance imaging (MRI) in 86 patients with verified central lung cancer and acute pneumonia. The MRI signs of lung cancer are systematized in exo-, endo-, and peribronchial forms of growth. The additional capacities of contrast enhancement are analyzed. The MRI semiotics of acute pneumonia has been developed. The differential diagnostic criteria for recognizing central lung cancer and acute pneumonia have been also elaborated.

  5. Efficacy of Proton Magnetic Resonance Spectroscopy in Neurological Diagnosis and Neurotherapeutic Decision Making

    PubMed Central

    Lin, Alexander; Ross, Brian D.; Harris, Kent; Wong, Willis

    2005-01-01

    Summary: Anatomic and functional neuroimaging with magnetic resonance imaging (MRI) includes the technology more widely known as magnetic resonance spectroscopy (MRS). Now a routine automated “add-on” to all clinical magnetic resonance scanners, MRS, which assays regional neurochemical health and disease, is therefore the most accessible diagnostic tool for clinical management of neurometabolic disorders. Furthermore, the noninvasive nature of this technique makes it an ideal tool for therapeutic monitoring of disease and neurotherapeutic decision making. Among the more than 100 brain disorders that fall within this broad category, MRS contributes decisively to clinical decision making in a smaller but growing number. In this review, we will cover how MRS provides therapeutic impact in brain tumors, metabolic disorders such as adrenoleukodystrophy and Canavan's disease, Alzheimer's disease, hypoxia, secondary to trauma or ischemia, human immunodeficiency virus dementia and lesions, as well as systemic disease such as hepatic and renal failure. Together, these eight indications for MRS apply to a majority of all cases seen. This review, which examines the role of MRS in enhancing routine neurological practice and treatment concludes: 1) there is added value from MRS where MRI is positive; 2) there is unique decision-making information in MRS when MRI is negative; and 3) MRS usefully informs decision making in neurotherapeutics. Additional efficacy studies could extend the range of this capability. PMID:15897945

  6. Usefulness of Magnetic Resonance Imaging for the Diagnosis of Hemochromatosis with Severe Hepatic Steatosis in Nonalcoholic Fatty Liver Disease.

    PubMed

    Nozaki, Yuichi; Sato, Noriko; Tajima, Tsuyoshi; Hasuo, Kanehiro; Kojima, Yasushi; Umemoto, Kumiko; Mishima, Saori; Mikami, Shintaro; Nakayama, Tomohiro; Igari, Toru; Akiyama, Junichi; Imamura, Masatoshi; Masaki, Naohiko; Yanase, Mikio

    2016-01-01

    The ratio of the number of patients with non-alcoholic steatohepatitis (NASH) to the total number of patients with liver dysfunction has increased in many countries around the world. Liver dysfunction is also caused by multiple blood transfusions in patients with leukemia and other hematological diseases, with liver dysfunction often accompanied by secondary hemochromatosis. This study describes a 25-year-old man with secondary hemochromatosis combined with NASH. Magnetic resonance imaging was useful for visualizing the distributions of both iron and fat in the liver of this patient in order to make a differential diagnosis and to evaluate the effect of treatment. PMID:27580542

  7. Diagnosis of Alzheimer-type dementia: a preliminary comparison of positron emission tomography and proton magnetic resonance

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Brant-Zawadzki, M.; Jagust, W.J.

    1984-11-16

    The use of positron emission tomography with (18F)-2-fluoro-2-deoxy-D-glucose (FDG) to study glucose metabolism in dementia is described and compared with the use of magnetic resonance imaging. These studies suggest that physiological imaging with PET may be superior to MR as it is currently used in the diagnosis of dementia-like diseases. Pet is currently limited to a few centers; however, single photon emission CT can provide regional physiological data without the need for a local cyclotron. 15 references, 2 tables.

  8. Magnetic resonance imaging (MRI) in the diagnosis of head and neck disease.

    PubMed

    Supsupin, Emilio P; Demian, Nagi M

    2014-05-01

    Magnetic resonance imaging (MRI) is the modality of choice to identify intracranial or perineural spread from a head and neck primary tumor. Perineural spread is a form of metastatic disease in which primary tumors spread along neural pathways. Orbital cellulitis is a sight-threatening, and potentially life-threatening condition. Urgent imaging is performed to assess the anatomic extent of disease, including postseptal, cavernous sinus, and intracranial involvement, and identify orbital abscesses that require exploration and drainage. MRI is useful in the evaluation of the brachial plexus.

  9. Magnetic resonance imaging (MRI) in the diagnosis of head and neck disease.

    PubMed

    Supsupin, Emilio P; Demian, Nagi M

    2014-05-01

    Magnetic resonance imaging (MRI) is the modality of choice to identify intracranial or perineural spread from a head and neck primary tumor. Perineural spread is a form of metastatic disease in which primary tumors spread along neural pathways. Orbital cellulitis is a sight-threatening, and potentially life-threatening condition. Urgent imaging is performed to assess the anatomic extent of disease, including postseptal, cavernous sinus, and intracranial involvement, and identify orbital abscesses that require exploration and drainage. MRI is useful in the evaluation of the brachial plexus. PMID:24794270

  10. Role of magnetic resonance imaging in the diagnosis and management of ameloblastoma

    SciTech Connect

    Heffez, L.; Mafee, M.F.; Vaiana, J.

    1988-01-01

    Magnetic resonance (MR) images of ameloblastoma are compared with computed tomographic (CT) images with the use of three parameters: artifact degradation, edge definition, and conspicuity. As a basis for comparison, MR imaging characterization of normal tissues is reviewed. The three cases studied demonstrate the importance of weighing heavily on MR for evaluation of tumor-normal tissue interface. MR generally proved to be superior to CT in the evaluation of recurrent disease because of its ability to differentiate tissues on the basis of their proton composition. CT images reflect the electron densities of tissues. Hence, interpreting inflammatory and postsurgical changes and differentiating them from neoplasm may be difficult. At the present time, familiarity with CT dictates that the MR evaluation complement and not substitute the CT evaluation.

  11. Cerebral abnormalities: use of calculated T1 and T2 magnetic resonance images for diagnosis

    SciTech Connect

    Mills, C.M.; Crooks, L.E.; Kaufman, L.; Brant-Zawadzki, M.

    1984-01-01

    The potential clinical importance of T1 and T2 relaxation times in distinguishing normal and pathologic tissue with magnetic resonance (MR) is discussed and clinical examples of cerebral abnormalities are given. Five patients with cerebral infarction, 15 with multiple sclerosis, two with Wilson disease, and four with tumors were imaged. Hemorrhagic and ischemic cerebrovascular accidents were distinguished using the spin echo technique. In the patients with multiple sclerosis, lesions had prolonged T1 and T2 times, but the definition of plaque was limited by spatial resolution. No abnormalities in signal intensity were seen in the patient with Wilson disease who was no longer severly disabled; abnormal increased signal intensity in the basal ganglia was found in the second patient with Wilson disease. Four tumors produced abnormal T1 and T2 relaxation times but these values alone were not sufficient for tumor characterization.

  12. [Diagnosis of pediatric multiple sclerosis initially presenting with tumefactive demyelinating lesion using ¹H-magnetic resonance spectroscopy].

    PubMed

    Kageyama, Takashi; Gotoh, Yoko; Sano, Fumie; Katoh, Takeo; Nambu, Mituhiko; Okada, Tsutomu; Suenaga, Toshihiko

    2011-09-01

    We report a case of tumefactive demyelinating lesion (TDL) diagnosed using (1)H-magnetic resonance spectroscopy (¹H-MRS) and conventional magnetic resonance imaging (MRI). A 7-year-old girl was admitted to our hospital with complaints of sleepiness and clumsiness of the right limbs. Neurological examination showed somnolence, right-sided apraxia, and hemiparesis with enhanced tendon reflexes and Babinski sign. Conventional brain MRI revealed extensive hyperintensity in the subcortical white matter of the left frontal lobe in both T₂ weighted and fluid attenuated inversion recovery images. Gadolinium-enhanced T₁ weighted images showed a tumor-like lesion in this area with interrupted rim enhancement, termed open ring sign, and a periventricular lesion along the inferior horn of the right lateral ventricle and a juxtacortical lesion under the right motor cortex. In ¹H-MRS, both single voxel spectroscopy (SVS) and chemical shift imaging showed elevation of choline and reduction of N-acetylaspartate in the left frontal lobe lesion. Furthermore, SVS with a short echo time revealed elevated peaks for glutamate/glutamine complex in this lesion. These results suggested the demyelinating nature of this tumor-like lesion, in accordance with the concept of TDL. Based on this diagnosis, we treated the patient with three sets of methylprednisolone pulse therapy, which resulted in the reduction of TDL and neurological improvement. A follow-up study using MRI also demonstrated two more lesions in the corona radiata and internal capsule of the left hemisphere, supporting a diagnosis of multiple sclerosis based on the revised McDonald's criteria (2010). We concluded that ¹H-MRS may be beneficial in the differential diagnosis of TDL. PMID:21946426

  13. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  14. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  15. Pitfalls and Limitations of Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Urinary Bladder Cancer.

    PubMed

    Lin, Wei-Ching; Chen, Jeon-Hor

    2015-06-01

    Adequately selecting a therapeutic approach for bladder cancer depends on accurate grading and staging. Substantial inaccuracy of clinical staging with bimanual examination, cystoscopy, and transurethral resection of bladder tumor has facilitated the increasing utility of magnetic resonance imaging to evaluate bladder cancer. Diffusion-weighted imaging (DWI) is a noninvasive functional magnetic resonance imaging technique. The high tissue contrast between cancers and surrounding tissues on DWI is derived from the difference of water molecules motion. DWI is potentially a useful tool for the detection, characterization, and staging of bladder cancers; it can also monitor posttreatment response and provide information on predicting tumor biophysical behaviors. Despite advancements in DWI techniques and the use of quantitative analysis to evaluate the apparent diffusion coefficient values, there are some inherent limitations in DWI interpretation related to relatively poor spatial resolution, lack of cancer specificity, and lack of standardized image acquisition protocols and data analysis procedures that restrict the application of DWI and reproducibility of apparent diffusion coefficient values. In addition, inadequate bladder distension, artifacts, thinness of bladder wall, cancerous mimickers of normal bladder wall and benign lesions, and variations in the manifestation of bladder cancer may interfere with diagnosis and monitoring of treatment. Recognition of these pitfalls and limitations can minimize their impact on image interpretation, and carefully applying the analyzed results and combining with pathologic grading and staging to clinical practice can contribute to the selection of an adequate treatment method to improve patient care.

  16. Potential diagnosis of hemodynamic abnormalities in patent ductus arteriosus by cine magnetic resonance imaging.

    PubMed

    Chien, C T; Lin, C S; Hsu, Y H; Lin, M C; Chen, K S; Wu, D J

    1991-10-01

    Cine magnetic resonance imaging was performed in 11 patients with communication between systemic and pulmonary circulation. In five patients with uncomplicated patent ductus arteriosus (PDA), ductus arteriosus was delineated by a persistent band of low signal intensity, whereas in two patients who also had severe pulmonary hypertension the signal intensity was varied. Two separate low signal intensities in the main pulmonary artery and the descending aorta were each uniformly recorded in the five patients with uncomplicated PDA, consistent with continuous left-to-right shunt and turbulent flow acceleration, respectively. In one of the patients with severe pulmonary hypertension but not Eisenmenger's syndrome, the areas of low signal intensity from left-to-right shunt and turbulent flow acceleration diminished. In the patient with Eisenmenger's PDA the right-to-left shunt was also characterized by an area of low signal intensity but with a reversal in direction. Cine MR imaging has the potential to be a noninvasive and supplemental method for evaluating PDA.

  17. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: cardiovascular magnetic resonance and nuclear cardiology.

    PubMed

    Pepe, Alessia; Pizzino, Fausto; Gargiulo, Paola; Perrone-Filardi, Pasquale; Cadeddu, Christian; Mele, Donato; Monte, Ines; Novo, Giuseppina; Zito, Concetta; Di Bella, Gianluca

    2016-05-01

    Chemotherapy-induced cardiotoxicity (CTX) is a determining factor for the quality of life and mortality of patients administered potentially cardiotoxic drugs and in long-term cancer survivors. Therefore, prevention and early detection of CTX are highly desirable, as is the exploration of alternative therapeutic strategies and/or the proposal of potentially cardioprotective treatments. In recent years, cardiovascular imaging has acquired a pivotal role in this setting. Although echocardiography remains the diagnostic method most used to monitor cancer patients, the need for more reliable, reproducible and accurate detection of early chemotherapy-induced CTX has encouraged the introduction of second-line advanced imaging modalities, such as cardiac magnetic resonance (CMR) and nuclear techniques, into the clinical setting. This review of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology aims to afford an overview of the most important findings from the literature about the role of CMR and nuclear techniques in the management of chemotherapy-treated patients, describe conventional and new parameters for detecting CTX from both diagnostic and prognostic perspectives and provide integrated insight into the role of CMR and nuclear techniques compared with other imaging tools and versus the positions of the most important international societies.

  18. Magnetic Resonance Angiography in the Diagnosis of Cerebral Arteriovenous Malformation and Dural Arteriovenous Fistulas: Comparison of Time-Resolved Magnetic Resonance Angiography and Three Dimensional Time-of-Flight Magnetic Resonance Angiography

    PubMed Central

    Cheng, Yu-Ching; Chen, Hung-Chieh; Wu, Chen-Hao; Wu, Yi-Ying; Sun, Ming-His; Chen, Wen-Hsien; Chai, Jyh-Wen; Chi-Chang Chen, Clayton

    2016-01-01

    Background Traditional digital subtraction angiography (DSA) is currently the gold standard diagnostic method for the diagnosis and evaluation of cerebral arteriovenous malformation (AVM) and dural arteriovenous fistulas (dAVF). Objectives The aim of this study was to analyze different less invasive magnetic resonance angiography (MRA) images, time-resolved MRA (TR-MRA) and three-dimensional time-of-flight MRA (3D TOF MRA) to identify their diagnostic accuracy and to determine which approach is most similar to DSA. Patients and Methods A total of 41 patients with AVM and dAVF at their initial evaluation or follow-up after treatment were recruited in this study. We applied time-resolved angiography using keyhole (4D-TRAK) MRA to perform TR-MRA and 3D TOF MRA examinations simultaneously followed by DSA, which was considered as a standard reference. Two experienced neuroradiologists reviewed the images to compare the diagnostic accuracy, arterial feeder and venous drainage between these two MRA images. Inter-observer agreement for different MRA images was assessed by Kappa coefficient and the differences of diagnostic accuracy between MRA images were evaluated by the Wilcoxon rank sum test. Results Almost all vascular lesions (92.68%) were correctly diagnosed using 4D-TRAK MRA. However, 3D TOF MRA only diagnosed 26 patients (63.41%) accurately. There were statistically significant differences regarding lesion diagnostic accuracy (P = 0.008) and venous drainage identification (P < 0.0001) between 4D-TRAK MRA and 3D TOF MRA. The results indicate that 4D-TRAK MRA is superior to 3D TOF MRA in the assessment of lesions. Conclusion Compared with 3D TOF MRA, 4D-TRAK MRA proved to be a more reliable screening modality and follow-up method for the diagnosis of cerebral AVM and dAVF.

  19. Magnetic Resonance Angiography in the Diagnosis of Cerebral Arteriovenous Malformation and Dural Arteriovenous Fistulas: Comparison of Time-Resolved Magnetic Resonance Angiography and Three Dimensional Time-of-Flight Magnetic Resonance Angiography

    PubMed Central

    Cheng, Yu-Ching; Chen, Hung-Chieh; Wu, Chen-Hao; Wu, Yi-Ying; Sun, Ming-His; Chen, Wen-Hsien; Chai, Jyh-Wen; Chi-Chang Chen, Clayton

    2016-01-01

    Background Traditional digital subtraction angiography (DSA) is currently the gold standard diagnostic method for the diagnosis and evaluation of cerebral arteriovenous malformation (AVM) and dural arteriovenous fistulas (dAVF). Objectives The aim of this study was to analyze different less invasive magnetic resonance angiography (MRA) images, time-resolved MRA (TR-MRA) and three-dimensional time-of-flight MRA (3D TOF MRA) to identify their diagnostic accuracy and to determine which approach is most similar to DSA. Patients and Methods A total of 41 patients with AVM and dAVF at their initial evaluation or follow-up after treatment were recruited in this study. We applied time-resolved angiography using keyhole (4D-TRAK) MRA to perform TR-MRA and 3D TOF MRA examinations simultaneously followed by DSA, which was considered as a standard reference. Two experienced neuroradiologists reviewed the images to compare the diagnostic accuracy, arterial feeder and venous drainage between these two MRA images. Inter-observer agreement for different MRA images was assessed by Kappa coefficient and the differences of diagnostic accuracy between MRA images were evaluated by the Wilcoxon rank sum test. Results Almost all vascular lesions (92.68%) were correctly diagnosed using 4D-TRAK MRA. However, 3D TOF MRA only diagnosed 26 patients (63.41%) accurately. There were statistically significant differences regarding lesion diagnostic accuracy (P = 0.008) and venous drainage identification (P < 0.0001) between 4D-TRAK MRA and 3D TOF MRA. The results indicate that 4D-TRAK MRA is superior to 3D TOF MRA in the assessment of lesions. Conclusion Compared with 3D TOF MRA, 4D-TRAK MRA proved to be a more reliable screening modality and follow-up method for the diagnosis of cerebral AVM and dAVF. PMID:27679690

  20. Diagnosis of pulmonary hypertension from magnetic resonance imaging-based computational models and decision tree analysis.

    PubMed

    Lungu, Angela; Swift, Andrew J; Capener, David; Kiely, David; Hose, Rod; Wild, Jim M

    2016-06-01

    Accurately identifying patients with pulmonary hypertension (PH) using noninvasive methods is challenging, and right heart catheterization (RHC) is the gold standard. Magnetic resonance imaging (MRI) has been proposed as an alternative to echocardiography and RHC in the assessment of cardiac function and pulmonary hemodynamics in patients with suspected PH. The aim of this study was to assess whether machine learning using computational modeling techniques and image-based metrics of PH can improve the diagnostic accuracy of MRI in PH. Seventy-two patients with suspected PH attending a referral center underwent RHC and MRI within 48 hours. Fifty-seven patients were diagnosed with PH, and 15 had no PH. A number of functional and structural cardiac and cardiovascular markers derived from 2 mathematical models and also solely from MRI of the main pulmonary artery and heart were integrated into a classification algorithm to investigate the diagnostic utility of the combination of the individual markers. A physiological marker based on the quantification of wave reflection in the pulmonary artery was shown to perform best individually, but optimal diagnostic performance was found by the combination of several image-based markers. Classifier results, validated using leave-one-out cross validation, demonstrated that combining computation-derived metrics reflecting hemodynamic changes in the pulmonary vasculature with measurement of right ventricular morphology and function, in a decision support algorithm, provides a method to noninvasively diagnose PH with high accuracy (92%). The high diagnostic accuracy of these MRI-based model parameters may reduce the need for RHC in patients with suspected PH. PMID:27252844

  1. Diagnosis of pulmonary hypertension from magnetic resonance imaging-based computational models and decision tree analysis.

    PubMed

    Lungu, Angela; Swift, Andrew J; Capener, David; Kiely, David; Hose, Rod; Wild, Jim M

    2016-06-01

    Accurately identifying patients with pulmonary hypertension (PH) using noninvasive methods is challenging, and right heart catheterization (RHC) is the gold standard. Magnetic resonance imaging (MRI) has been proposed as an alternative to echocardiography and RHC in the assessment of cardiac function and pulmonary hemodynamics in patients with suspected PH. The aim of this study was to assess whether machine learning using computational modeling techniques and image-based metrics of PH can improve the diagnostic accuracy of MRI in PH. Seventy-two patients with suspected PH attending a referral center underwent RHC and MRI within 48 hours. Fifty-seven patients were diagnosed with PH, and 15 had no PH. A number of functional and structural cardiac and cardiovascular markers derived from 2 mathematical models and also solely from MRI of the main pulmonary artery and heart were integrated into a classification algorithm to investigate the diagnostic utility of the combination of the individual markers. A physiological marker based on the quantification of wave reflection in the pulmonary artery was shown to perform best individually, but optimal diagnostic performance was found by the combination of several image-based markers. Classifier results, validated using leave-one-out cross validation, demonstrated that combining computation-derived metrics reflecting hemodynamic changes in the pulmonary vasculature with measurement of right ventricular morphology and function, in a decision support algorithm, provides a method to noninvasively diagnose PH with high accuracy (92%). The high diagnostic accuracy of these MRI-based model parameters may reduce the need for RHC in patients with suspected PH.

  2. Diagnosis of pulmonary hypertension from magnetic resonance imaging–based computational models and decision tree analysis

    PubMed Central

    Swift, Andrew J.; Capener, David; Kiely, David; Hose, Rod; Wild, Jim M.

    2016-01-01

    Abstract Accurately identifying patients with pulmonary hypertension (PH) using noninvasive methods is challenging, and right heart catheterization (RHC) is the gold standard. Magnetic resonance imaging (MRI) has been proposed as an alternative to echocardiography and RHC in the assessment of cardiac function and pulmonary hemodynamics in patients with suspected PH. The aim of this study was to assess whether machine learning using computational modeling techniques and image-based metrics of PH can improve the diagnostic accuracy of MRI in PH. Seventy-two patients with suspected PH attending a referral center underwent RHC and MRI within 48 hours. Fifty-seven patients were diagnosed with PH, and 15 had no PH. A number of functional and structural cardiac and cardiovascular markers derived from 2 mathematical models and also solely from MRI of the main pulmonary artery and heart were integrated into a classification algorithm to investigate the diagnostic utility of the combination of the individual markers. A physiological marker based on the quantification of wave reflection in the pulmonary artery was shown to perform best individually, but optimal diagnostic performance was found by the combination of several image-based markers. Classifier results, validated using leave-one-out cross validation, demonstrated that combining computation-derived metrics reflecting hemodynamic changes in the pulmonary vasculature with measurement of right ventricular morphology and function, in a decision support algorithm, provides a method to noninvasively diagnose PH with high accuracy (92%). The high diagnostic accuracy of these MRI-based model parameters may reduce the need for RHC in patients with suspected PH. PMID:27252844

  3. Diffusion-weighted Magnetic Resonance Imaging in the Diagnosis of Bone Tumors: Preliminary Results

    PubMed Central

    Pekcevik, Yeliz; Kahya, Mehmet Onur; Kaya, Ahmet

    2013-01-01

    Objective: The study aims to determine whether apparent diffusion coefficient (ADC) can help differentiate benign and malignant bone tumors. Materials and Methods: From January 2012 to February 2013, we prospectively included 26 patients. Of these 15 patients were male and 11 were female; ranging in age from 8 to 76 years (mean age, 34.5 years). Diffusion-weighted magnetic resonance (MR) imaging was obtained with a single-shot echo-planar imaging sequence using a 1.5T MR scanner. We grouped malignant lesions as primary, secondary, and primary tumor with chondroid matrix. The minimum ADC was measured in the tumors and mean minimum ADC values were selected for statistical analysis. ADC values were compared between malignant and benign tumors using the Mann-Whitney U-test and receiver operating curve analysis were done to determine optimal cut-off values. Results: The mean ADC values from the area with lowest ADC values of benign and malignant tumors were 1.99 ± 0.57 × 10−3 mm2/s and 1.02 ± 1.0 × 10−3 mm2/s, respectively. The mean minimum ADC values of benign and malignant tumors were statistically different (P = 0.029). With cut-off value of 1.37 (10−3 mm2/s), sensitivity was 77.8% and specificity was 82.4%, for distinguishing benign and malignant lesion. Benign and secondary malignant tumors showed statistically significant difference (P = 0.002). There was some overlap in ADC values between benign and malignant tumors. The mean minimum ADC values of benign and malignant chondroid tumors were high. Giant cell tumor, non-ossifying fibroma and fibrous dysplasia showed lower ADC values. Conclusion: Although there is some overlap, ADC values of benign and malignant bone tumors seem to be different. Further studies with larger patient groups are needed to find an optimal cut-off ADC value. PMID:24605258

  4. [Magnetic resonance diagnosis of aortic dissection: with special reference to the communicating orifice between the true and false lumens].

    PubMed

    Mukohara, N; Yoshida, Y; Nakamura, K

    1986-09-01

    Magnetic resonance imaging (MRI) was performed in thirty-one patients with aortic dissection to evaluate its usefulness in diagnosing the site of communicating orifice between the true and false lumens and the presence of retrograde dissection. MRI revealed the site of the entry as a defect in the intimal flap in the images of 12 of 15 patients (80%). The site of the communicating orifice between the true and false lumens in the abdominal aorta could be determined in six of eight patients (75%). MRI diagnosis of retrograde dissection was successful in three patients. Cross-sectional analysis of the abdominal aorta based on the location of the true lumen revealed that the celiac and superior mesenteric arteries tended to arise from the true lumen when the latter was situated in the anterior part of the abdominal aorta. The right and left renal arteries arose from the true lumen when it was positioned anterolaterally. In conclusion, MRI was a useful diagnostic method for aortic dissection, especially for determining the site of entry in the thoracic aorta. The changes in signal intensity in the false lumen provided useful information for locating the communicating orifice between the true and false lumens and for diagnosis of retrograde dissection. Cross-sectional analysis of dissection in the abdominal aorta was useful for predicting the branching of the main arteries from the true or false lumen.

  5. Use of magnetic resonance cholangiography in the diagnosis of choledocholithiasis: prospective comparison with a reference imaging method

    PubMed Central

    Zidi, S; Prat, F; Le Guen, O; Rondeau, Y; Rocher, L; Fritsch, J; Choury, A; Pelletier, G

    1999-01-01

    Background—Magnetic resonance cholangiography (MRC) is a new technique for non-invasive imaging of the biliary tract. 
Aim—To assess the results of MRC in patients with suspected bile duct stones as compared with those obtained with reference imaging methods. 
Patients/Methods—70 patients (34 men and 36 women, mean (SD) age 71 (15.5) years; median 75) with suspected bile duct stones were included (cholangitis, 33; pancreatitis, three; suspected post-cholecystectomy choledocholithiasis, nine; cholestasis, six; stones suspected on ultrasound or computed tomography scan, 19). MR cholangiograms with two dimensional turbo spin echo sequences were acquired. Endoscopic retrograde cholangiography with or without sphincterotomy (n = 63), endosonography (n = 5), or intraoperative cho- langiography (n = 2) were the reference imaging techniques used for the study and were performed within 12 hours of MRC. Radiologists were blinded to the results of endoscopic retrograde cholangiography and previous investigations. 
Results—49 patients (70%) had bile duct stones on reference imaging (common bile duct, 44, six of which impacted in the papilla; intrahepatic, four; cystic duct stump, one). Stone size ranged from 1 to 20 mm (mean 6.1, median 5.5). Twenty seven patients (55%) had bile duct stones smaller than 6 mm. MRC diagnostic accuracy for bile duct lithiasis was: sensitivity, 57.1%; specificity, 100%; positive predictive value, 100%; negative predictive value, 50%. 
Conclusions—Stones smaller than 6 mm are still often missed by MRC when standard equipment is used. The general introduction of new technical improvements is needed before this method can be considered reliable for the diagnosis of bile duct stones. 

 Keywords: bile duct calculi; endoscopic retrograde cholangiography; magnetic resonance cholangiography PMID:9862837

  6. [Magnetic resonance imaging in the diagnosis of gastric cancer: X-ray versus MRI anatomic findings].

    PubMed

    Portnoĭ, L M; Denisova, L B; Stashuk, G A; Nefedova, V O

    2000-01-01

    The paper assesses the present-day role of MRI in the diagnosis of gastric cancer. The authors consider the major prerequisites for the main aim of their study to be: 1) a dramatic incidence of diffuse (endophytic) gastric carcinoma, which requires significant correction of today's approaches to its diagnosis and 2) a rather biased and, in the authors' opinion, present-day mainly negative attitude towards MRI of the stomach as a diagnostic method for its tumor lesions. By applying the X-ray-MRI anatomic principle to the comparative study of MRI findings in 50 patients with predominantly gastric intramural carcinoma and in 25 patients without gastric tumors (controls), the authors present their methods for gastric MRI, the MRI semiotics of gastric cancer by concurrently touching upon a variety of problems that characterize the potentialities of MRI of the stomach in the diagnosis of its tumor lesions, including their differential diagnosis. As a result, the authors highly appreciate gastric MRI and consider this method to be included into the diagnostic algorithm of radiation techniques used in the diagnosis of gastric cancer, which should occupy its definite diagnostic place.

  7. Scimitar syndrome: morphological diagnosis and assessment of hemodynamic significance by magnetic resonance imaging.

    PubMed

    Kramer, Ulrich; Dörnberger, Volker; Fenchel, Michael; Stauder, Norbert; Claussen, Claus D; Miller, Stephan

    2003-12-01

    Scimitar syndrome has a variable presentation depending on the age at which the diagnosis is made. We report a case of a young woman (age 18 years) with suspected right pulmonary hypoplasia in whom a scimitar syndrome was diagnosed. Using MRI morphological findings and hemodynamic significance of the syndrome were assessed. Left-to-right shunt was calculated from blood flow measurements performed in the ascending aorta, the main pulmonary artery, and the aberrant scimitar vein.

  8. Cardiovascular Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  9. Comparison of ultrasound and magnetic resonance imaging for diagnosis and follow-up of joint lesions in patients with haemophilia.

    PubMed

    Sierra Aisa, C; Lucía Cuesta, J F; Rubio Martínez, A; Fernández Mosteirín, N; Iborra Muñoz, A; Abío Calvete, M; Guillén Gómez, M; Moretó Quintana, A; Rubio Félix, D

    2014-01-01

    Haematomas and recurrent haemarthroses are a common problem in haemophilia patients from early age. Early diagnosis is critical in preventing haemophilic arthritis, and recent years have seen excellent advances in musculoskeletal ultrasound as a diagnostic tool in soft tissue lesions. In this study, we compared the results of ultrasound imaging for the diagnosis of musculoskeletal injuries in haemophilia patients with scores obtained using magnetic resonance (MRI) scans. A total of 61 haemophilia patients aged 4-82 years were included in this study. Both knees and ankles of each patient were assessed using the Gilbert (clinical assessment) and Pettersson scores (X-ray assessment). Patients with severe haemophilia (n = 30) were examined using ultrasound and MRI (Denver scoring system). Results obtained with ultrasound and MRI in severe patients were correlated using the Pearson test. In patients with severe haemophilia, normal joints were similarly assessed with MRI and ultrasound (κ = 1.000). By component of joint assessment, haemarthrosis was similarly diagnosed with both techniques in all joints (κ = 1.000). A good positive correlation was found between these techniques in detecting and locating synovial hyperplasia (κ = 0.839-1.000, knees and ankles respectively), and erosion of margins (κ = 0.850-1.000). The presence of bone cysts or cartilage loss was better detected with MRI (κ = 0.643-0.552 for knees and ankles, and κ = 0.643-0.462 respectively). Ultrasound is useful in detecting joint bleeds, synovial hyperplasia and joint erosions, with results comparable to those of MRI. A quick and affordable technique, ultrasound imaging may be useful for monitoring joint bleeds and structure normalization and maintenance in routine practice.

  10. Magnetic resonance imaging in the diagnosis of asymmetrical bilateral masseteric hypertrophy.

    PubMed

    Fyfe, E C; Kabala, J; Guest, P G

    1999-01-01

    Asymmetrical bilateral masseteric hypertrophy or unilateral masseteric hypertrophy may present a diagnostic dilemma. While the history and clinical examination are important in differentiating this benign condition from parotid and dental pathology, they cannot necessarily exclude rarer malignant lesions of or within the muscle itself. We present a case where MRI provided clear and elegant confirmation of our provisional clinical diagnosis by illustrating both the soft tissue features and the logical corresponding bony features of this condition, thus obviating the need for further invasive investigations.

  11. Investigation of magnetic field enriched surface enhanced resonance Raman scattering performance using Fe3O4@Ag nanoparticles for malaria diagnosis

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2014-03-01

    Recently, we have demonstrated the magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β-hematin by using nanoparticles with iron oxide core and silver shell (Fe3O4@Ag) for the potential application in the early malaria diagnosis. In this study, we investigate the dependence of the magnetic field-enriched SERRS performance of β-hematin on the different core and shell sizes of the Fe3O4@Ag nanoparticles. We note that the core and shell parameters are critical in the realization of the optimal magnetic field-enrich SERRS β-hematin signal. These results are consistent with our simulations that will guide the optimization of the magnetic SERRS performance for the potential early diagnosis in the malaria disease.

  12. [Magnetic-resonance tomography in differential diagnosis of brain lesions in demyelinating and systemic autoimmune diseases].

    PubMed

    Totolian, N A

    2005-01-01

    An aim of the study was to establish MRT signs that may be useful for differential diagnosis of multiple sclerosis (MS). Three groups of patients have been examined: 300 patients with MS, 35 with demyelinating diseases (acute disseminated encephalomyelitis, neuromyelitis optica--Devic's syndrome); 90 patients with systemic autoimmune diseases (systemic lupus erythematosus, primary antiphospholipid syndrome, sclerodermatitis, Sjugren's syndrome, autoimmune thyroiditis, vasculitis and vasculopathy). Classification of MRT syndromes in MS and their frequency are presented: syndrome of chronic inflammatory demyelination (79%), syndrome of acute inflammatory demyelination (9%), syndrome of multifocal degenerative leucoencephalopathy (8%), syndrome of combined multifocal diffusive leucoencephalopathy (4%). The similarity and differences in MRT semiotics of the above diseases and MS are described.

  13. Brainstem tegmental lesions in neonates with hypoxic-ischemic encephalopathy: Magnetic resonance diagnosis and clinical outcome

    PubMed Central

    Quattrocchi, Carlo Cosimo; Fariello, Giuseppe; Longo, Daniela

    2016-01-01

    Lesions of the brainstem have been reported in the clinical scenarios of hypoxic-ischemic encephalopathy (HIE), although the prevalence of these lesions is probably underestimated. Neuropathologic studies have demonstrated brainstem involvement in severely asphyxiated infants as an indicator of poor outcome. Among survivors to HIE, the most frequent clinical complaints that may be predicted by brainstem lesions include feeding problems, speech, language and communication problems and visual impairments. Clinical series, including vascular and metabolic etiologies, have found selective involvement of the brainstem with the demonstration of symmetric bilateral columnar lesions of the tegmentum. The role of brainstem lesions in HIE is currently a matter of debate, especially when tegmental lesions are present in the absence of supra-tentorial lesions. Differential diagnosis of tegmental lesions in neonates and infants include congenital metabolic syndromes and drug-related processes. Brainstem injury with the presence of supratentorial lesions is a predictor of poor outcome and high rates of mortality and morbidity. Further investigation will be conducted to identify specific sites of the brainstem that are vulnerable to hypoxic-ischemic and toxic-metabolic insults. PMID:26981220

  14. Magnetic resonance sees lesions of multiple sclerosis

    SciTech Connect

    Ziporyn, T.

    1985-02-15

    The value of nuclear magnetic resonance imaging in the diagnosis and quantitation of the progression of multiple sclerosis is discussed. Magnetic resonance imaging generates images that reflect differential density and velocity of hydrogen nuclei between cerebral gray and white matter, as well as between white matter and pathological lesions of the disease.

  15. Diagnosis of symptomatic disc by magnetic resonance imaging: T2-weighted and gadolinium-DTPA-enhanced T1-weighted magnetic resonance imaging.

    PubMed

    Yoshida, Hiroyuki; Fujiwara, Atsushi; Tamai, Kazuya; Kobayashi, Naoki; Saiki, Kazuhiko; Saotome, Koichi

    2002-06-01

    Although radial tear of the annulus fibrosus can be detected on T2-weighted and Gd-DTPA-enhanced magnetic resonance (MR) images, the association between the annular tear on MR images and the symptomatic discs is unclear. The purpose of this study was to investigate the relationship between T2-weighted, gadolinium-DTPA-enhanced MR images and pain response through discography in patients with chronic low back pain. A total of 56 lumbar discs from 23 patients with chronic low back pain (13 to 47 years old) underwent MR imaging (T2-weighted, gadolinium-DTPA-enhanced MR images) followed by provocative discography. The sensitivity, specificity, positive predictive value, and negative predictive value of T2-weighted and gadolinium-DTPA-enhanced MR images in detecting the symptomatic discs were calculated. The sensitivity, specificity, positive predictive value, and negative predictive value of T2-weighted images in detecting the symptomatic disc were 94%, 71%, 59%, and 97%, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of gadolinium-DTPA-enhanced images were 71%, 75%, 56%, and 86%, respectively. The high sensitivity and the high negative predictive value of T2-weighted MR imaging in detecting the symptomatic disc indicated that MR imaging can be a useful screening tool in avoiding unnecessary discography in patients with chronic low back pain.

  16. Prenatal diagnosis of alobar holoprosencephaly, by use of ultrasound and magnetic resonance imaging in the second trimester.

    PubMed

    Huibers, Marieke; Papatsonis, Dimitri N M

    2009-12-01

    We describe a case concerning alobar holoprosencephaly and proboscis diagnosed at 20+3 weeks gestation during routine sonographic scanning. The internal neural and craniofacial malformations of the fetus were confirmed using magnetic resonance imaging (MRI). Amniocentesis demonstrated trisomy 13 of a male fetus. PMID:19916719

  17. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  18. Optimization of Fe3O4@Ag nanoshells in magnetic field-enriched surface-enhanced resonance Raman scattering for malaria diagnosis.

    PubMed

    Yuen, Clement; Liu, Quan

    2013-11-01

    The great potential of magnetic field enriched surface enhanced resonance Raman spectroscopy (SERRS) for early malaria diagnosis has been demonstrated previously. This technique is able to detect β-hematin, which is equivalent to a malaria biomarker (hemozoin) in Raman features, at a concentration of 5 nM. In this study, we present the optimization of nanoparticles used in the magnetic field enriched SERRS by tuning the core size and shell thickness of nanoparticles with an iron oxide core and a silver shell (Fe3O4@Ag). The discrete dipole approximation (DDA) model was introduced to investigate the localized electromagnetic field distributions and extinction efficiencies of the aggregate of Fe3O4@Ag and β-hematin, in correlation with their magnetic field enriched SERRS performance. We find that the optimal core-shell size of Fe3O4@Ag leading to the effective aggregation of Fe3O4@Ag and β-hematin under an external magnetic field with superior extinction efficiencies is the key to realize highly augmented Raman signals in this strategy. Furthermore, it is noted that the optimized result differs from the case without the external magnetic field to that with the external magnetic field. Therefore, this work demonstrates experimentally and theoretically the potential of tuning the core-shell Fe3O4@Ag for achieving the efficient magnetic field-enriched SERRS detection of β-hematin for early malaria diagnosis.

  19. Magnetic resonance imaging of the maxilla and mandible: signal characteristics and features in the differential diagnosis of common lesions.

    PubMed

    Mosier, Kristine M

    2015-02-01

    The maxilla and mandible are among the most difficult areas of the body to image with magnetic resonance techniques owing to the geometry of the jaws as well as the frequent susceptibility artifacts from dental restorations or appliances. This chapter briefly reviews the essentials of imaging techniques and basic anatomy and discusses the most common inflammatory conditions, benign and malignant lesions of the jaws, and temporomandibular joint. This review emphasizes and illustrates specific magnetic resonance features that facilitate characterization and diagnostic differentiation of these lesions. As the focus of this review is on the differentiation of infection and benign and malignant disease, a discussion of internal derangements and associated inflammatory disorders of the temporomandibular joint is beyond the scope of this review and is not discussed.

  20. Myocardial edema in Takotsubo syndrome mimicking apical hypertrophic cardiomyopathy: An insight into diagnosis by cardiovascular magnetic resonance.

    PubMed

    Izgi, Cemil; Ray, Sanjoy; Nyktari, Evangelia; Alpendurada, Francisco; Lyon, Alexander R; Rathore, Sudhir; Baksi, Arun John

    2015-01-01

    Myocardial edema is one of the characteristic features in the pathogenesis of Takotsubo syndrome. We report a middle aged man who presented with typical clinical and echocardiographic features of apical variant of Takotsubo syndrome. However, a cardiovascular magnetic resonance study performed 10 days after presentation did not show any apical 'ballooning' but revealed features of an apical hypertrophic cardiomyopathy on cine images. Tissue characterization with T2 weighted images proved severe edema as the cause of significantly increased apical wall thickness. A follow-up cardiovascular magnetic resonance study was performed 5 months later which showed that edema, wall thickening and the appearance of apical hypertrophic cardiomyopathy all resolved, confirming Takotsubo syndrome as the cause of the initial appearance. As the affected myocardium most commonly involves the apical segments, an edema induced increase in apical wall thickness may lead to appearances of an apical hypertrophic cardiomyopathy rather than apical ballooning in the acute to subacute phase of Takotsubo syndrome.

  1. Agnathia-otocephaly: prenatal diagnosis by two- and three-dimensional ultrasound and magnetic resonance imaging. Case report.

    PubMed

    Hisaba, Wagner Jou; Milani, Hérbene José Figuinha; Araujo Júnior, Edward; Passos, Jurandir Piassi; Barreto, Enoch Quinderé Sá; Carvalho, Natália Silva; Helfer, Talita Micheletti; Pares, David Batista Silva; Nardozza, Luciano Marcondes Machado; Moron, Antonio Fernandes

    2014-12-01

    A case of prenatally diagnosed otocephaly is reported. Otocephaly is an extremely rare malformation characterized by absence or hypoplasia of the mandible and abnormal horizontal position of the ears. 2D ultrasound performed at 25 weeks of gestation revealed agnathia, proboscis and hypotelorism. 3D ultrasound (rendering mode) and magnetic resonance imaging were used to evaluate the facial features, and were essential for characterization of facial malformations in otocephaly and for the demonstration and correct prenatal counseling of the couple. PMID:25463893

  2. Role of saccadic analysis in the diagnosis of multiple sclerosis in the era of magnetic resonance imaging.

    PubMed Central

    Tedeschi, G; Allocca, S; Di Costanzo, A; Diano, A; Bonavita, V

    1989-01-01

    Magnetic resonance imaging (MRI) has recently been recognised as the most sensitive method with which to detect clinically silent lesions in patients affected by multiple sclerosis. Visually guided horizontal saccadic eye movements (SEM) were studied, together with MRI, in 57 multiple sclerosis patients. A very similar sensitivity was found for both MRI (78.2%) and SEM analysis (76.3%). Significant associations between peak saccadic velocity and brain stem signs and between saccadic latency and visual signs were observed. PMID:2795066

  3. Magnetic resonance annual, 1988

    SciTech Connect

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

  4. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  5. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  6. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  7. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  8. Resonant magnetic vortices

    SciTech Connect

    Decanini, Yves; Folacci, Antoine

    2003-04-01

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.

  9. The role of positron emission tomography-computed tomography and magnetic resonance imaging in diagnosis and follow up of multiple myeloma

    PubMed Central

    Caers, Jo; Withofs, Nadia; Hillengass, Jens; Simoni, Paolo; Zamagni, Elena; Hustinx, Roland; Beguin, Yves

    2014-01-01

    Multiple myeloma is the second most common hematologic malignancy and occurs most commonly in elderly patients. Almost all multiple myeloma patients develop bone lesions in the course of their disease or have evidence of bone loss at initial diagnosis. Whole-body conventional radiography remains the gold standard in the diagnostic evaluation, but computed tomography, magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography are increasingly used as complementary techniques in the detection of bone lesions. Moreover, the number of lesions detected and the presence of extramedullary disease give strong prognostic information. These new techniques may help to assess treatment response in solitary plasmacytoma or in multiple myeloma. In this article, we review recent data on the different imaging techniques used at diagnosis and in the assessment of treatment response, and discuss some current issues. PMID:24688111

  10. [Magnetic resonance tomography in the diagnosis of nonorganic bulky masses of the retroperitoneal space. Part 1. Cysts, abscesses and flegmons].

    PubMed

    Dombrovskiĭ, V I

    2003-01-01

    The paper considers the diagnostic capacities of magnetic resonance imaging (MRI) in detecting non-organic bulky masses of the retroperitoneal space. Based on the analysis of tomographic findings in 23 patients with non-organic cysts of the retroperitoneal space and 27 patients with its abscesses and phlegmons, the first part of the paper describes the MRI semiotics of these diseases in detail and proposes methodic approaches to their identification. Comparison of the data of MRI and pathomorphological analysis of operation materials has yielded the rates of sensitivity, specificity, and accuracy of the method, which are equal to 100, 88.5, and 94.2% for non-organic cysts and 100, 87.1, and 93.5%, respectively. The authors note the lower efficiency of MRI in recognizing hydatid cysts and foreign bodies than ultrasound study and X-ray computed tomography and show it necessary to take into account clinical information in making a radiological conclusion.

  11. Magnetic resonance imaging in the diagnosis and follow-up of giant cell arteritis: case report and review of literature

    PubMed Central

    Gračanin, Ana Gudelj; Ćurić, Josip; Lončarević, Jelena; Morović-Vergles, Jadranka

    2015-01-01

    A female patient with giant cell vasculitis of the abdominal aorta and its branches and strongly suspected of having extrapulmonary tuberculosis is presented. The diagnoses were based on the clinical picture, laboratory findings, and magnetic resonance imaging (MRI) findings. MRI is highly useful in cases where echosonography and/or vascular biopsy for histopathological analyses are not possible. A combination of giant cell vasculitis and extrapulmonary tuberculosis is extremely rare, and therefore, choosing the right treatment presents a considerable challenge. MRI performed after 6-month antituberculous therapy and 1-year glucocorticoid plus methotrexate therapy showed normal wall of the aorta and its branches, which was consistent with clinical and laboratory remission. Patients with large vessel vasculitis require regular follow-up by MRI.

  12. Magnetic resonance sialography.

    PubMed

    Jungehülsing, M; Fischbach, R; Schröder, U; Kugel, H; Damm, M; Eckel, H E

    1999-10-01

    To evaluate a new noninvasive sialographic technique, we applied a new magnetic resonance technique to 10 healthy volunteers and 21 patients with lesions of the parotid gland. In addition to the usually performed T(1) and T(2) cross-sectional sequences, a heavily T(2)-weighted sequence (TR = 3600 msec, TE = 800 msec) was performed that allowed depiction of the fluid-filled parotid duct system. Twenty-one patients with benign as well as malignant parotid gland pathologies were examined: sialadenitis (n = 6), sicca syndrome (n = 2), pleomorphic adenoma (n = 4), carcinoma of the parotid gland (n = 2), lymphoepithelial carcinoma (n = 1), cystadenolymphoma (n = 3), non-Hodgkin's lymphoma (n = 2), and congenital duct dilatation (n = 1). Stenseńs duct was reliably depicted in all volunteers and patients. The primary branching ducts were reliably depicted in all normal cases. Intraglandular and extraglandular duct dilatations and duct strictures were well depicted in patients with chronic sialadenitis. Sialolithiasis with a calculus obstructing the duct was demonstrated in 2 cases. In conclusion, Initial experience indicates that magnetic resonance sialography can be applied successfully to investigate the duct system of the parotid gland. The usually performed cross-sectional MRI (T(1)- and T(2)-weighted images, gadolinium-DTPA) depicts the internal architecture of the parotid gland with high reliability. Magnetic resonance sialography with heavily T(2)-weighted images adds important information about the ductal system. Because it is completely noninvasive, the only contraindications are the ones generally accepted for MRI.

  13. Magnetic resonance safety.

    PubMed

    Sammet, Steffen

    2016-03-01

    Magnetic resonance imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation, and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy, and the potential risks of MRI contrast agents will also be discussed, and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented. PMID:26940331

  14. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  15. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  16. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  17. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  18. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  19. Magnetic resonance imaging diagnosis of intervertebral disc disease and myelomalacia in an American black bear (Ursus americanus).

    PubMed

    Knafo, S Emmanuelle; Divers, Stephen J; Rech, Raquel; Platt, Simon R

    2012-06-01

    A 23-yr-old black bear (Ursus americanus) was examined because of paralysis of unknown duration. The precise onset of clinical signs was unknown as a result of seasonal torpor. The bear was immobilized and transported to a university veterinary teaching hospital for further evaluation and treatment. Radiography revealed increased mineral opacity and ventral bridging across vertebral segments T8-11. Magnetic resonance imaging demonstrated dorsal and ventral compression of the spinal cord at T8-9. Given the bear's advanced age, the unknown duration of spinal cord compression, unknown presence of deep pain perception, and thus an unknown prognosis for surgical success, euthanasia was elected. Postmortem examination revealed severe spondylosis deformans from T7 to L3 and dorsal extradural extruded disc material in the area of T8-9. Histopathology demonstrated the dorsal horns of the spinal cord at T9 were replaced by foamy macrophages extending into the dorsal and lateral funiculi of the white matter compatible with focal, severe, chronic myelomalacia. This is the first report of intervertebral disc disease and myelomalacia diagnosed using MRI in a large carnivore. PMID:22779249

  20. The Application of Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging in the Diagnosis and Therapy of Acute Cerebral Infarction

    PubMed Central

    Li, Enzhong; Tian, Jie; Chen, Jian; Wang, Huifang; Dai, Jianping

    2006-01-01

    Diffusion- and perfusion-weighted magnetic resonance imaging (DWI and PWI) was applied for stroke diagnose in 120 acute (< 48 h) ischemic stroke patients. At hyperacute (< 6 h) stage, it is difficult to find out the infarction zone in conventional T1 or T2 image, but it is easy in DWI, apparent diffusion coefficient (ADC) map; when at 3–6-hour stage it is also easy in PWI, cerebral blood flow (CBF) map, cerebral blood volume (CBV) map, and mean transit time (MTT) map; at acute (6–48 h) stage, DWI or PWI is more sensitive than conventional T1 or T2 image too. Combining DWI with ADC, acute and chronic infarction can be distinguished. Besides, penumbra which should be developed in meaning was used as an indication or to evaluate the therapeutic efficacy. There were two cases (< 1.5 h) that broke the model of penumbra because abnormity was found in DWI but not that in PWI, finally they recovered without any sequela. PMID:23165020

  1. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael

    2011-05-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is currently in phase 4 of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. The micro-NMRG technology is pushing the boundaries of size, weight, power, and performance allowing new small platform applications of navigation grade Inertial Navigation System (INS) technology. Information on the historical development of the technology, basics of operation, task performance goals, application opportunities, and a phase 2 sample of earth rate measurement data will be presented. Funding Provided by the Defense Advanced Research Projects Agency (DARPA)

  2. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

    PubMed Central

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N′-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor. PMID:26316749

  3. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging.

    PubMed

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor.

  4. Usefulness of Magnetic Resonance Neurography for Diagnosis of Piriformis Muscle Syndrome and Verification of the Effect After Botulinum Toxin Type A Injection

    PubMed Central

    Yang, Hea Eun; Park, Jung Hyun; Kim, Sungjun

    2015-01-01

    Abstract Piriformis muscle syndrome (PMS) is a controversial neuromuscular disorder that is presumed to involve compression neuropathy of the sciatic nerve at the level of the piriformis muscle. Botulinum toxin A (BTX-A) injection into the piriformis muscle is widely used as a treatment aimed at relieving sciatic nerve compression. In 2 patients with PMS, magnetic resonance neurography (MRN) was taken before and after BTX-A injection. The first MRN was performed as a diagnostic tool, and the second to identify the effect of the treatment. Signal change of the sciatic nerve under the hypertrophied piriformis muscle was confirmed by MRN. In follow-up MRN performed after BTX-A injection into the piriformis muscle, changes of the sciatic nerve and piriformis muscle were noticed as well as improvement of clinical symptoms. MRN is a useful tool to add certainty of diagnosis and verify the effect of treatment in PMS. PMID:26402805

  5. Magnetic Resonance Imaging Duodenoscope.

    PubMed

    Syms, Richard R A; Young, Ian R; Wadsworth, Christopher A; Taylor-Robinson, Simon D; Rea, Marc

    2013-12-01

    A side-viewing duodenoscope capable of both optical and magnetic resonance imaging (MRI) is described. The instrument is constructed from MR-compatible materials and combines a coherent fiber bundle for optical imaging, an irrigation channel and a side-opening biopsy channel for the passage of catheter tools with a tip saddle coil for radio-frequency signal reception. The receiver coil is magnetically coupled to an internal pickup coil to provide intrinsic safety. Impedance matching is achieved using a mechanically variable mutual inductance, and active decoupling by PIN-diode switching. (1)H MRI of phantoms and ex vivo porcine liver specimens was carried out at 1.5 T. An MRI field-of-view appropriate for use during endoscopic retrograde cholangiopancreatography (ERCP) was obtained, with limited artefacts, and a signal-to-noise ratio advantage over a surface array coil was demonstrated. PMID:23807423

  6. Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance Imaging and Multidetector-Row Computed Tomography for the Diagnosis of Hepatocellular Carcinoma

    PubMed Central

    Ye, Feng; Liu, Jun; Ouyang, Han

    2015-01-01

    Abstract The purpose of this meta-analysis was to compare the diagnostic accuracy of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and multidetector-row computed tomography (MDCT) for hepatocellular carcinoma (HCC). Medline, Cochrane, EMBASE, and Google Scholar databases were searched until July 4, 2014, using combinations of the following terms: gadoxetic acid disodium, Gd-EOB-DTPA, multidetector CT, contrast-enhanced computed tomography, and magnetic resonance imaging. Inclusion criteria were as follows: confirmed diagnosis of primary HCC by histopathological examination of a biopsy specimen; comparative study of MRI using Gd-EOB-DTPA and MDCT for diagnosis of HCC; and studies that provided quantitative outcome data. The pooled sensitivity and specificity of the 2 methods were compared, and diagnostic accuracy was assessed with alternative-free response receiver-operating characteristic analysis. Nine studies were included in the meta-analysis, and a total of 1439 lesions were examined. The pooled sensitivity and specificity for 1.5T MRI were 0.95 and 0.96, respectively, for 3.0T MRI were 0.91 and 0.96, respectively, and for MDCT were 0.74 and 0.93, respectively. The pooled diagnostic odds ratio for 1.5T and 3.0T MRI was 242.96, respectively, and that of MDCT was 33.47. To summarize, Gd-EOB-DTPA-enhanced MRI (1.5T and 3.0T) has better diagnostic accuracy for HCC than MDCT. PMID:26266348

  7. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  8. Role of Perfusion at Rest in the Diagnosis of Myocardial Infarction Using Vasodilator Stress Cardiovascular Magnetic Resonance.

    PubMed

    Patel, Mita B; Mor-Avi, Victor; Kawaji, Keigo; Nathan, Sandeep; Kramer, Christopher M; Lang, Roberto M; Patel, Amit R

    2016-04-01

    In clinical practice, perfusion at rest in vasodilator stress single-photon emission computed tomography is commonly used to confirm myocardial infarction (MI) and ischemia and to rule out artifacts. It is unclear whether perfusion at rest carries similar information in cardiovascular magnetic resonance (CMR). We sought to determine whether chronic MI is associated with abnormal perfusion at rest on CMR. We compared areas of infarct and remote myocardium in 31 patients who underwent vasodilator stress CMR (1.5 T), had MI confirmed by late gadolinium enhancement (LGE scar), and coronary angiography within 6 months. Stress perfusion imaging during gadolinium first pass was followed by reversal with aminophylline (75 to 125 mg), rest perfusion, and LGE imaging. Resting and peak-stress time-intensity curves were used to obtain maximal upslopes (normalized by blood pool upslopes), which were compared between infarcted and remote myocardial regions of interest. At rest, there was no significant difference between the slopes in the regions of interest supplied by arteries with and without stenosis >70% (0.31 ± 0.16 vs 0.26 ± 0.15 1/s), irrespective of LGE scar. However, at peak stress, we found significant differences (0.20 ± 0.11 vs 0.30 ± 0.22 1/s; p <0.05), reflecting the expected stress-induced ischemia. Similarly, at rest, there was no difference between infarcted and remote myocardium (0.27 ± 0.14 vs 0.30 ± 0.17 1/s), irrespective of stenosis, but significant differences were seen during stress (0.21 ± 0.16 vs 0.28 ± 0.18 1/s; p <0.001), reflecting inducible ischemia. In conclusion, abnormalities in myocardial perfusion at rest associated with chronic MI are not reliably detectable on CMR images. Accordingly, unlike single-photon emission computed tomography, normal CMR perfusion at rest should not be used to rule out chronic MI.

  9. Role of Perfusion at Rest in the Diagnosis of Myocardial Infarction Using Vasodilator Stress Cardiovascular Magnetic Resonance.

    PubMed

    Patel, Mita B; Mor-Avi, Victor; Kawaji, Keigo; Nathan, Sandeep; Kramer, Christopher M; Lang, Roberto M; Patel, Amit R

    2016-04-01

    In clinical practice, perfusion at rest in vasodilator stress single-photon emission computed tomography is commonly used to confirm myocardial infarction (MI) and ischemia and to rule out artifacts. It is unclear whether perfusion at rest carries similar information in cardiovascular magnetic resonance (CMR). We sought to determine whether chronic MI is associated with abnormal perfusion at rest on CMR. We compared areas of infarct and remote myocardium in 31 patients who underwent vasodilator stress CMR (1.5 T), had MI confirmed by late gadolinium enhancement (LGE scar), and coronary angiography within 6 months. Stress perfusion imaging during gadolinium first pass was followed by reversal with aminophylline (75 to 125 mg), rest perfusion, and LGE imaging. Resting and peak-stress time-intensity curves were used to obtain maximal upslopes (normalized by blood pool upslopes), which were compared between infarcted and remote myocardial regions of interest. At rest, there was no significant difference between the slopes in the regions of interest supplied by arteries with and without stenosis >70% (0.31 ± 0.16 vs 0.26 ± 0.15 1/s), irrespective of LGE scar. However, at peak stress, we found significant differences (0.20 ± 0.11 vs 0.30 ± 0.22 1/s; p <0.05), reflecting the expected stress-induced ischemia. Similarly, at rest, there was no difference between infarcted and remote myocardium (0.27 ± 0.14 vs 0.30 ± 0.17 1/s), irrespective of stenosis, but significant differences were seen during stress (0.21 ± 0.16 vs 0.28 ± 0.18 1/s; p <0.001), reflecting inducible ischemia. In conclusion, abnormalities in myocardial perfusion at rest associated with chronic MI are not reliably detectable on CMR images. Accordingly, unlike single-photon emission computed tomography, normal CMR perfusion at rest should not be used to rule out chronic MI. PMID:26830261

  10. [The comparative role of computed tomography and magnetic resonance imaging in the diagnosis of extracapsular spread of malignant lymphomatous masses invading blood vessels].

    PubMed

    Dobrovolskiene, Laima; Griniûtë, Rasa

    2003-01-01

    Aim of the study was to search for an optimal method an of investigation in diagnosis of extracapsular spread of the malignant lymphomas and invading the blood vessels. In the period of 1998 to 2002, 81 patients with malignant lymphomas with coverage of neck and body areas were examined in the Department of Tomography of Kaunas University of Medicine Hospital. It was performed by computed tomography (CT) and magnetic resonance imaging (MRI), with or without iv. application of contrast media. The data were processed with SPSS 10.1 (Statistical package for Social Sciences 10.1 for Windows), including application of chi(2), t-test. Specificity, sensitivity and diagnostic accuracy of CT and MRI methods were calculated and compared according to recommendations by Gefland D. W. and Ott D. J., 1985. Diagnosis of extracapsular spread of the lymphomatous tissue and invading the blood vessels was best performed by MR method (specificity, sensitivity, accuracy in this case 91-95%). Bolus CT angiography because of low resolution in the range of soft tissues, insufficient opacification of blood vessels with contrast medium and differences in blood flow was not informative enough (specificity, sensitivity, accuracy in this case 80-85%).

  11. Preliminary assessment of dispersion versus absorption analysis of high spectral and spatial resolution magnetic resonance images in the diagnosis of breast cancer

    PubMed Central

    Weiss, William A.; Medved, Milica; Karczmar, Gregory S.; Giger, Maryellen L.

    2015-01-01

    Abstract. Water resonance lineshapes observed in breast lesions imaged with high spectral and spatial resolution (HiSS) magnetic resonance imaging have been shown to contain diagnostically useful non-Lorentzian components. The purpose of this work is to update a previous method of breast lesion diagnosis by including phase-corrected absorption and dispersion spectra. This update includes information about the shape of the complex water resonance, which could improve the performance of a computer-aided diagnosis breast lesion classification scheme. The non-Lorentzian characteristics observed in complex breast lesion water resonance spectra are characterized by comparing a plot of the real versus imaginary components of the spectrum to that of a perfect complex Lorentzian spectrum, a “dispersion versus absorption” (DISPA) analysis technique. Distortion in the shape of the observed spectra indicates underlying physiologic changes, which have been shown to be correlated with malignancy. These spectral shape distortions in each lesion voxel are quantified by summing the deviations in DISPA radius from an ideal complex Lorentzian spectrum over all Fourier components, yielding a “total radial difference” (TRD). We limited our analysis to those voxels in each lesion with the largest TRD. The number of voxels considered was dependent on the lesion size. The TRD was used to classify voxels from 15 malignant and 8 benign lesions (∼2400 voxels after voxel elimination). Lesion discrimination performance was evaluated for both the average and variance of the TRD within each lesion. Area under the receiver operating characteristic curve (ROC AUC) was used to assess both the voxel- and lesion-based discrimination methods in the task of distinguishing between malignant and benign. In the task of distinguishing voxels from malignant and benign lesions, TRD yielded an AUC of 0.89 (95% confidence interval [0.84, 0.91]). In the task of distinguishing malignant from benign

  12. Magnetic Resonance Imaging of Perirenal Pathology.

    PubMed

    Glockner, James F; Lee, Christine U

    2016-05-01

    The perirenal space can be involved by a variety of neoplastic, inflammatory, infectious, and proliferative disorders. Magnetic resonance imaging is often an ideal technique for identification and staging of lesions arising within the perirenal space, with its superior soft tissue characterization as well as its ability to visualize extension into blood vessels and adjacent organs. This pictorial essay describes the magnetic resonance imaging appearance of a variety of pathologies which can arise from or involve the perirenal space, and provides a framework for categorization and differential diagnosis of these lesions.

  13. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  14. Superconducting Magnets for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Feenan, Peter

    2000-03-01

    MRI is now a well established diagnostic technique in medicine. The richness of information provided by magnetic resonance gives rise to a variety of techniques which in turn leads to a variety of magnet designs. Magnet designers must consider suitable superconduting materials for the magnet, but need also to consider the overall fomat of the magnet to maximise patient comfort, access for clinicians and convenience of use - in some examples magnets are destined for use within the operating theatre and special considerations are required for this. Magnet types include; (1) low-field general purpose imagers, (2) extremity imaging, (3) open magnets with exellent all-round access often employing iron or permanent magnetic materials, (4) high-field magnets, and (5) very high-field (7 Tesla and more) magnets for spectroscopy and functional imaging research. Examples of these magnet varieties will be shown and some of the design challenges discussed.

  15. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  16. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. PMID:27432660

  17. Coronary magnetic resonance angiography.

    PubMed

    Stuber, Matthias; Weiss, Robert G

    2007-08-01

    Coronary magnetic resonance angiography (MRA) is a powerful noninvasive technique with high soft-tissue contrast for the visualization of the coronary anatomy without X-ray exposure. Due to the small dimensions and tortuous nature of the coronary arteries, a high spatial resolution and sufficient volumetric coverage have to be obtained. However, this necessitates scanning times that are typically much longer than one cardiac cycle. By collecting image data during multiple RR intervals, one can successfully acquire coronary MR angiograms. However, constant cardiac contraction and relaxation, as well as respiratory motion, adversely affect image quality. Therefore, sophisticated motion-compensation strategies are needed. Furthermore, a high contrast between the coronary arteries and the surrounding tissue is mandatory. In the present article, challenges and solutions of coronary imaging are discussed, and results obtained in both healthy and diseased states are reviewed. This includes preliminary data obtained with state-of-the-art techniques such as steady-state free precession (SSFP), whole-heart imaging, intravascular contrast agents, coronary vessel wall imaging, and high-field imaging. Simultaneously, the utility of electron beam computed tomography (EBCT) and multidetector computed tomography (MDCT) for the visualization of the coronary arteries is discussed. PMID:17610288

  18. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks.

  19. Magnetic resonance energy and topological resonance energy.

    PubMed

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference.

  20. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  1. Magnetic resonance imaging of iliotibial band syndrome.

    PubMed

    Ekman, E F; Pope, T; Martin, D F; Curl, W W

    1994-01-01

    Seven cases of iliotibial band syndrome and the pathoanatomic findings of each, as demonstrated by magnetic resonance imaging, are presented. These findings were compared with magnetic resonance imaging scans of 10 age- and sex-matched control knees without evidence of lateral knee pain. Magnetic resonance imaging signal consistent with fluid was seen deep to the iliotibial band in the region of the lateral femoral epicondyle in five of the seven cases. Additionally, when compared with the control group, patients with iliotibial band syndrome demonstrated a significantly thicker iliotibial band over the lateral femoral epicondyle (P < 0.05). Thickness of the iliotibial band in the disease group was 5.49 +/- 2.12 mm, as opposed to 2.52 +/- 1.56 mm in the control group. Cadaveric dissections were performed on 10 normal knees to further elucidate the exact nature of the area under the iliotibial band. A potential space, i.e., a bursa, was found between the iliotibial band and the knee capsule. This series suggests that magnetic resonance imaging demonstrates objective evidence of iliotibial band syndrome and can be helpful when a definitive diagnosis is essential. Furthermore, correlated with anatomic dissection, magnetic resonance imaging identifies this as a problem within a bursa beneath the iliotibial band and not a problem within the knee joint.

  2. Novel Magnetic Resonance Imaging Techniques in Brain Tumors.

    PubMed

    Nechifor, Ruben E; Harris, Robert J; Ellingson, Benjamin M

    2015-06-01

    Magnetic resonance imaging is a powerful, noninvasive imaging technique with exquisite sensitivity to soft tissue composition. Magnetic resonance imaging is primary tool for brain tumor diagnosis, evaluation of drug response assessment, and clinical monitoring of the patient during the course of their disease. The flexibility of magnetic resonance imaging pulse sequence design allows for a variety of image contrasts to be acquired, including information about magnetic resonance-specific tissue characteristics, molecular dynamics, microstructural organization, vascular composition, and biochemical status. The current review highlights recent advancements and novel approaches in MR characterization of brain tumors.

  3. Severe Left Ventricular Hypertrophy, Small Pericardial Effusion, and Diffuse Late Gadolinium Enhancement by Cardiac Magnetic Resonance Suspecting Cardiac Amyloidosis: Endomyocardial Biopsy Reveals an Unexpected Diagnosis

    PubMed Central

    Hofmann, Nina P.; Giusca, Sorin; Klingel, Karin; Nunninger, Peter; Korosoglou, Grigorios

    2016-01-01

    Left ventricular (LV) hypertrophy can be related to a multitude of cardiac disorders, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis, and hypertensive heart disease. Although the presence of LV hypertrophy is generally associated with poorer cardiac outcomes, the early differentiation between these pathologies is crucial due to the presence of specific treatment options. The diagnostic process with LV hypertrophy requires the integration of clinical evaluation, electrocardiography (ECG), echocardiography, biochemical markers, and if required CMR and endomyocardial biopsy in order to reach the correct diagnosis. Here, we present a case of a patient with severe LV hypertrophy (septal wall thickness of 23 mm, LV mass of 264 g, and LV mass index of 147 g/m2), severely impaired longitudinal function, and preserved radial contractility (ejection fraction = 55%), accompanied by small pericardial effusion and diffuse late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR). Due to the imaging findings, an infiltrative cardiomyopathy, such as cardiac amyloidosis, was suspected. However, amyloid accumulation was excluded by endomyocardial biopsy, which revealed the presence of diffuse myocardial fibrosis in an advanced hypertensive heart disease. PMID:27247807

  4. Diffusion-Weighted Magnetic Resonance Imaging and ADC Maps in the Diagnosis of Intracranial Cystic or Necrotic Lesions. A Retrospective Study on 49 Patients.

    PubMed

    Greco Crasto, S; Soffietti, R; Rudà, R; Cassoni, P; Ducati, A; Davini, O; De Lucchi, R; Rizzo, L

    2007-12-31

    This study evaluated the usefulness of diffusion-weighted (DW) magnetic resonance imaging (MRI) and ADC maps in the differential diagnosis of brain abscesses from cystic or necrotic neoplasms. MR images of 49 patients with 54 lesions were examined retrospectively. All patients underwent conventional MRI and DWI, and ADC values were calculated by placing ROIs of 30 mm(2) manually over the cystic part of the lesions. On DWI, all cystic portions of abscesses were hyperintense. Mean ADC values were 0.48×10 mm(2)/s (range 0.41-0.54×10 mm/s) for pyogenic abscesses, 0.73×10 mm(2)/s (range 0.65-0.91×10 mm/s) for mycotic abscesses and 0.6 mm(2)/s for Nocardia abscess. Cystic areas appeared hypointense on DWI in 33/44 tumours (mean value ADC 1.96 mm(2)/s). Eleven tumours (11/44) appeared hyperintense on DWI: eight metastases from lung cancer (mean ADC value 0.86 mm(2)/s, range 0.75-1.2 mm(2)/s), two GBMs (mean 0.7 mm(2)/s, range 0.67-0.76 mm(2)/s) and one anaplastic astrocytoma (ADC value 1.24 mm(2)/s). ADC values may help in differentiating pyogenic abscess from brain tumors or metastatic lesions.

  5. Intraoperative magnetic resonance imaging.

    PubMed

    Hall, Walter A; Truwit, Charles L

    2011-01-01

    Neurosurgeons have become reliant on image-guidance to perform safe and successful surgery both time-efficiently and cost-effectively. Neuronavigation typically involves either rigid (frame-based) or skull-mounted (frameless) stereotactic guidance derived from computed tomography (CT) or magnetic resonance imaging (MRI) that is obtained days or immediately before the planned surgical procedure. These systems do not accommodate for brain shift that is unavoidable once the cranium is opened and cerebrospinal fluid is lost. Intraoperative MRI (ioMRI) systems ranging in strength from 0.12 to 3 Tesla (T) have been developed in part because they afford neurosurgeons the opportunity to accommodate for brain shift during surgery. Other distinct advantages of ioMRI include the excellent soft tissue discrimination, the ability to view the surgical site in three dimensions, and the ability to "see" tumor beyond the surface visualization of the surgeon's eye, either with or without a surgical microscope. The enhanced ability to view the tumor being biopsied or resected allows the surgeon to choose a safe surgical corridor that avoids critical structures, maximizes the extent of the tumor resection, and confirms that an intraoperative hemorrhage has not resulted from surgery. Although all ioMRI systems allow for basic T1- and T2-weighted imaging, only high-field (>1.5 T) MRI systems are capable of MR spectroscopy (MRS), MR angiography (MRA), MR venography (MRV), diffusion-weighted imaging (DWI), and brain activation studies. By identifying vascular structures with MRA and MRV, it may be possible to prevent their inadvertent injury during surgery. Biopsying those areas of elevated phosphocholine on MRS may improve the diagnostic yield for brain biopsy. Mapping out eloquent brain function may influence the surgical path to a tumor being resected or biopsied. The optimal field strength for an ioMRI-guided surgical system and the best configuration for that system are as yet

  6. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  7. Magnetic resonance angiography

    MedlinePlus

    ... radiation. To date, no side effects from the magnetic fields and radio waves have been reported. The most ... health care provider before the test. The strong magnetic fields created during an MRI can cause heart pacemakers ...

  8. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  9. The role of the diffusion sequence in magnetic resonance imaging for the differential diagnosis between hepatocellular carcinoma and benign liver lesions

    PubMed Central

    CARAIANI, COSMIN-NICOLAE; MARIAN, DAN; MILITARU, CLAUDIA; CALIN, ADRIANA; BADEA, RADU

    2016-01-01

    Background and aim To assess the role of diffusion weighted imaging sequence (DWI), routinely used in hepatic magnetic resonance imaging (MRI) for the differentiation of hepatocellular carcinoma (HCC) from benign liver lesions. Methods A number of 56 liver MRI examinations were retrospectively analyzed independently by two experienced radiologists, blinded to each other results. A total number of 70 Focal Liver Lesions (FLLs) assessed by liver MRI in 56 patients were included in the present study. All lesions were retrospectively analyzed by two experienced radiologists, independently from each other and who were not aware of the previous results given by using different imaging techniques. All included FLLs had a final histological diagnosis, or the final diagnosis was based on consensus reading by two experienced radiologists. The signal of the included FLLs was qualitatively appreciated on the b-800 sequences and on the apparent diffusion coefficient (ADC) map. The ADC value of each FLL was measured and the ADC ratio between the ADC value of the assessed FLL and that of the surrounding liver parenchyma was calculated. Results The mean ADC value for benign FLLs as assessed by the two independent readers was 1.75 × 10−3 and 1.72 × 10−3. The mean ADC value for HCC nodules was 0.92 × 10−3 for the first reader and 0.91 × 10−3 for the second reader respectively. The mean ADC ratio for benign FLLs was 1.81 and 1.84 for the two readers, respectively. The ADC ratio for HCC nodules was 0.91 and 0.91, respectively. The ADC value is an indicator which is less prone to interobserver variability (correlation of 0.919→1). The ADC ratio has, as the analysis of the ROC curve shows, the best predictive value for differentiation between benign FLLs and HCC nodules. Analysis of the signal intensity on the DWI b-800 image alone is of no significance in differentiating benign FLLs from HCC nodules (p>0.005). Conclusions The ADC value and the ADC ratio assessed on liver

  10. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  11. Magnetic resonance imaging in central pontine myelinolysis.

    PubMed Central

    Thompson, P D; Miller, D; Gledhill, R F; Rossor, M N

    1989-01-01

    Magnetic resonance imaging (MRI) was performed in two patients in whom a clinical diagnosis of central pontine myelinolysis (CPM) had been made. MRI showed lesions in the pons in both cases about 2 years after the illness, at a time when the spastic quadriparesis and pseudobulbar palsy had recovered. The persisting abnormal signals in CPM are likely to be due to fibrillary gliosis. Persistence of lesions on MRI means that the diagnosis of CPM may be electively, after the acute illness has resolved. Images PMID:2732743

  12. Role of sonography and magnetic resonance imaging in detecting deltoideal acromial enthesopathy: an early finding in the diagnosis of spondyloarthritis and an under-recognized cause of posterior shoulder pain.

    PubMed

    Arend, Carlos Frederico

    2014-04-01

    The acromial origin of the deltoid is a target structure of ankylosing spondylitis and related spondyloarthritis, which are often overlooked and underdiagnosed as causes of posterior shoulder pain. The objective of this article is to review the roles of sonography and magnetic resonance imaging in detecting deltoideal acromial enthesopathy and their importance for optimizing management in individuals with posterior shoulder pain. Adequate awareness of such enthesopathy as a potential manifestation of inflammatory rheumatic disorders is critical for early diagnosis of spondyloarthritis.

  13. Basics of magnetic resonance imaging

    SciTech Connect

    Oldendorf, W.; Oldendorf, W. Jr.

    1988-01-01

    Beginning with the behavior of a compass needle in a magnetic field, this text uses analogies from everyday experience to explain the phenomenon of nuclear magnetic resonance and how it is used for imaging. Using a minimum of scientific abbreviations and symbols, the basics of tissue visualization and characterization are presented. A description of the various types of magnets and scanners is followed by the practical advantages and limitations of MRI relative to x-ray CT scanning.

  14. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  15. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance

    PubMed Central

    Rao, Krishnasree; Matulevicius, Susan

    2016-01-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis. PMID:27303242

  16. Cost effectiveness of magnetic resonance imaging in the neurosciences.

    PubMed Central

    Szczepura, A K; Fletcher, J; Fitz-Patrick, J D

    1991-01-01

    OBJECTIVES--To measure, in a service setting, the effect of magnetic resonance imaging on diagnosis, diagnostic certainty, and patient management in the neurosciences; to measure the cost per patient scanned; to estimate the marginal cost of imaging and compare this with its diagnostic impact; to measure changes in patients' quality of life; and to record the diagnostic pathway leading to magnetic resonance imaging. DESIGN--Controlled observational study using questionnaires on diagnosis and patient management before and after imaging. Detailed costing study. Quality of life questionnaires at the time of imaging and six months later. Diagnostic pathways extracted from medical records for a representative sample. SETTING--Regional superconducting 1.5 T magnetic resonance service. SUBJECTS--782 consecutive neuroscience patients referred by consultants for magnetic resonance imaging during June 1988-9; diagnostic pathways recorded for 158 cases. MAIN OUTCOME MEASURES--Costs of magnetic resonance imaging and preliminary investigations; changes in planned management and resulting savings; changes in principal diagnosis and diagnostic certainty; changes in patients' quality of life. RESULTS--Average cost of magnetic resonance imaging was estimated at 206.20/patient pounds (throughput 2250 patients/year, 1989-90 prices including contrast and upgrading). Before magnetic resonance imaging diagnostic procedures cost 164.40/patient pounds (including inpatient stays). Management changed after imaging in 208 (27%) cases; saving an estimated 80.90/patient pounds. Confidence in planned management increased in a further 226 (29%) referrals. Consultants' principal diagnosis changed in 159 of 782 (20%) referrals; marginal cost per diagnostic change was 626 pounds. Confidence in diagnosis increased in 236 (30%) referrals. No improvement in patients' quality of life at six month assessment. CONCLUSIONS--Any improvement in diagnosis with magnetic resonance imaging is achieved at a

  17. Comparison of Analytical Mathematical Approaches for Identifying Key Nuclear Magnetic Resonance Spectroscopy Biomarkers in the Diagnosis and Assessment of Clinical Change of Diseases

    PubMed Central

    Nikas, Jason B.; Keene, C. Dirk; Low, Walter C.

    2010-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a rapidly emerging technology that can be used to assess tissue metabolic profile in the living animal. At the present time, no approach has been developed 1) to systematically identify profiles of key chemical alterations that can be used as biomarkers to diagnose diseases and to monitor disease progression; and 2) to assess mathematically the diagnostic power of potential biomarkers. To address this issue, we have evaluated mathematical approaches that employ receiver operating characteristic (ROC) curve analysis, linear discriminant analysis, and logistic regression analysis to systematically identify key biomarkers from NMR spectra that have excellent diagnostic power and can be used accurately for disease diagnosis and monitoring. To validate our mathematical approaches, we studied the striatal concentrations of 17 metabolites of 13 R6/ 2 transgenic mice with Huntington's disease, as well as those of 17 wild-type (WT) mice, which were obtained via in vivo proton NMR spectroscopy (9.4 Tesla). We developed diagnostic biomarker models and clinical change assessment models based on our three aforementioned mathematical approaches, and we tested all of them, first, with the 30 original mice and, then, with 31 unknown mice. Their prediction results were compared with genotyping—the gold standard. All models correctly diagnosed all of the 30 original mice (17 WT and 13 R6/2) and all of the 31 unknown mice (20 WT and 11 R6/2), with a positive likelihood ratio approximating infinity [1/0 (→ ∞)], and with a negative likelihood ratio equal to zero [0/1 = 0]. PMID:20878778

  18. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  19. Evaluation of the Prostate Imaging Reporting and Data System for Magnetic Resonance Imaging Diagnosis of Prostate Cancer in Patients with Prostate-specific Antigen <20 ng/ml

    PubMed Central

    Wang, Xuan; Wang, Jian-Ye; Li, Chun-Mei; Zhang, Ya-Qun; Wang, Jian-Long; Wan, Ben; Zhang, Wei; Chen, Min; Li, Sa-Ying; Wan, Gang; Liu, Ming

    2016-01-01

    Background: The European Society of Urogenital Radiology has built the Prostate Imaging Reporting and Data System (PI-RADS) for standardizing the diagnosis of prostate cancer (PCa). This study evaluated the PI-RADS diagnosis method in patients with prostate-specific antigen (PSA) <20 ng/ml. Methods: A total of 133 patients with PSA <20 ng/ml were prospectively recruited. T2-weighted (T2WI) and diffusion-weighted (DWI) magnetic resonance images of the prostate were acquired before a 12-core transrectal prostate biopsy. Each patient's peripheral zone was divided into six regions on the images; each region corresponded to two of the 12 biopsy cores. T2WI, DWI, and T2WI + DWI scores were computed according to PI-RADS. The diagnostic accuracy of the PI-RADS score was evaluated using histopathology of prostate biopsies as the reference standard. Results: PCa was histologically diagnosed in 169 (21.2%) regions. Increased PI-RADS score correlated positively with increased cancer detection rate. The cancer detection rate for scores 1 to 5 was 2.8%, 15.0%, 34.6%, 52.6%, and 88.9%, respectively, using T2WI and 12.0%, 20.2%, 48.0%, 85.7%, and 93.3%, respectively, using DWI. For T2WI + DWI, the cancer detection rate was 1.5% (score 2), 13.5% (scores 3–4), 41.3% (scores 5–6), 75.9% (scores 7–8), and 92.3% (scores 9–10). The area under the curve for cancer detection was 0.700 (T2WI), 0.735 (DWI) and 0.749 (T2WI + DWI). The sensitivity and specificity were 53.8% and 89.2%, respectively, when using scores 5–6 as the cutoff value for T2WI + DWI. Conclusions: The PI-RADS score correlates with the PCa detection rate in patients with PSA <20 ng/ml. The summed score of T2WI + DWI has the highest accuracy in detection of PCa. However, the sensitivity should be further improved. PMID:27270538

  20. Cranial magnetic resonance imaging

    SciTech Connect

    Elster, A.D.

    1987-01-01

    This illustrated work covers the diagnosis of central nervous system diseases by MRI. It focuses on strategies for detecting a wide range of intracranial disorders and includes protocols for cranial MRI. For each disease discussed, characteristic MR findings are described, and contrasted with CT and angiography where appropriate. Offers useful appendices on functional neuroanatomy and a glossary of terminology and abbreviations.

  1. Magnetic resonance apparatus

    DOEpatents

    Jackson, Jasper A.; Cooper, Richard K.

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  2. Optically induced parametric magnetic resonances

    NASA Astrophysics Data System (ADS)

    Jimenez, Ricardo; Knappe, Svenja; Kitching, John

    2011-05-01

    Optically pumped vector magnetometers based on zero-field resonances have reached very high sensitivities by operating at high atomic densities where dephasing due to spin-exchange collisions can be suppressed. Simplified setups, with just one laser beam have measured magnetic fields from the human brain and heart. A key feature in these magnetometers is the introduction of an rf magnetic field along the measurement axis to generate a parametric resonance. Lock-in detection of the transmitted light, at an odd harmonic of the modulation frequency, allows the reduction of the low frequency noise and generates a resonance with dispersive shape. Here we study a zero-field vector magnetometer where the parametric resonances are induced by the vector AC stark-shift of light. This approach does not produce any external magnetic field that could disturb the reading of other magnetometers in the vicinity and could provide an alternative in applications where an applied AC-field cannot be used. We have characterized the vector AC stark-shift effect of light on Rb atoms contained in a micromachined vapor cell with buffer gas. We have obtained parametric resonances induced by modulation of the light-shift. We also analyze the detunings and intensities of the light-shift beam that maintain the magnetometer within the spin-exchange relaxation-free regime.

  3. Magnetic resonance apparatus

    DOEpatents

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  4. Early diagnosis and follow-up of chronic active Epstein–Barr-virus-associated cardiovascular complications with cardiovascular magnetic resonance imaging

    PubMed Central

    Jiang, Shu; Li, Xiao; Cao, Jian; Wu, Di; Kong, Lingyan; Lin, Lu; Jin, Zhengyu; An, Jing; Wang, Yining

    2016-01-01

    Abstract Introduction: Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is characterized as chronic or recurrent mononucleosis-like symptoms and elevated EBV deoxyribonucleic acid (EBV-DNA) copies. Cardiovascular complications have high morbidity and mortality. The treatment regimen for CAEBV has not been established yet, resulting in poor prognoses. Herein, we present a case of cardiovascular magnetic resonance imaging (CMRI) evaluation with a series of sequences for CAEBV-associated cardiovascular involvement, which has never been reported. Case presentation: A 16-year-old female (body weight, 55 kg) developed a persistent fever and a positive EBV-DNA level of 28,000 copies/mL. Computed tomography angiography (CTA) showed aneurysms involving the aorta and its major branches, as well as multiple aneurysms and stenoses of the coronary arteries. CMRI of the coronary arteries depicted the dilution and stenosis of the arterial lumen as well as the thickening of the arterial wall. Late gadolinium enhancement (LGE) showed subendocardial and transmural delayed enhancement of the left ventricle, suggesting myocardial infarction. CAEBV and associated cardiovascular complications were diagnosed. After treatment with Medrol and Leflunomide, the clinical manifestation and serological parameters reversed to normal. However, the EBV-DNA level increased again to 13,900 copies/mL 2 months later. A follow-up with aorta CTA showed that the arterial walls of the bilateral common iliac artery aneurysms were thicker with new-onset mural thrombi. The aorta CTA also showed new-onset occlusion of the right coronary artery, but a follow-up of CMRI at the same day did not find new-onset delayed enhancement lesion. Conclusion: This case reminds clinicians of the vital importance of early diagnosis and close follow-up of CAEBV-associated cardiovascular complications. With cine imaging, coronary artery imaging, LGE imaging, and other novel techniques, CMRI can effectively and

  5. Cardiovascular magnetic resonance in systemic hypertension

    PubMed Central

    2012-01-01

    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension. PMID:22559053

  6. Magnetic Resonance Imaging of Spinal Emergencies.

    PubMed

    Kawakyu-O'Connor, Daniel; Bordia, Ritu; Nicola, Refky

    2016-05-01

    Magnetic resonance (MR) imaging of the spine is increasingly being used in the evaluation of spinal emergencies because it is highly sensitive and specific in the diagnosis of acute conditions of the spine. The prompt and accurate recognition allows for appropriate medical and surgical intervention. This article reviews the MR imaging features of common emergent conditions, such as spinal trauma, acute disc herniation, infection, and tumors. In addition, we describe common MR imaging sequences, discuss challenges encountered in emergency imaging of the spine, and illustrate multiple mimics of acute conditions. PMID:27150322

  7. Magnetic resonance images of chronic patellar tendinitis.

    PubMed

    Bodne, D; Quinn, S F; Murray, W T; Bolton, T; Rudd, S; Lewis, K; Daines, P; Bishop, J; Cochran, C

    1988-01-01

    Chronic patellar tendinitis can be a frustrating diagnostic and therapeutic problem. This report evaluates seven tendons in five patients with chronic patellar tendinitis. The etiologies included "jumper's knee" and Osgood-Schlatter disease. In all cases magnetic resonance images (MRI) showed thickening of the tendon. Some of the tendons had focal areas of thickening which helped establish the etiology. All cases had intratendinous areas of increased signal which, in four cases, proved to be chronic tendon tears. MRI is useful in evaluating chronic patellar tendinitis because it establishes the diagnosis, detects associated chronic tears, and may help determine appropriate rehabilitation.

  8. Resonant magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Byrnes, Christian T.; Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R.

    2012-03-01

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of Script O(10-15 Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

  9. Limits to magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Mansfield, Peter, Sir

    2002-10-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit.

  10. Severe mitral stenosis as the first manifestation of systemic lupus erythematosus in a 20-year-old woman: the value of magnetic resonance imaging in the diagnosis of Libman-Sacks endocarditis.

    PubMed

    Gouya, Hervé; Cabanes, Laure; Mouthon, Luc; Pavie, Alain; Legmann, Paul; Vignaux, Olivier

    2014-06-01

    We report a case of severe mitral stenosis caused by Libman-Sacks endocarditis, as an initial manifestation of systemic lupus erythematosus (SLE) in a 20-year-old woman. Cardiac magnetic resonance imaging (MRI) demonstrated a thickening of the mitral valve with basal endocardial thickening exhibiting defect on first-pass perfusion short-axis acquisition and delayed enhancement in keeping with extensive fibrous endocarditis. The patient underwent successful mechanical mitral valve replacement. This case illustrates that MRI is useful in diagnosing this recognised but uncommon cardiac complication of SLE and excluding differential diagnosis such as valve tumour and infective endocarditis with perivalvular abscesses.

  11. [Gastric magnetic resonance study (methods, semiotics)].

    PubMed

    Stashuk, G A

    2003-01-01

    The paper shows the potentialities of gastric study by magnetic resonance imaging (MRI). The methodic aspects of gastric study have been worked out. The MRI-semiotics of the unchanged and tumor-affected wall of the stomach and techniques in examining patients with gastric cancer of various sites are described. Using the developed procedure, MRI was performed in 199 patients, including 154 patients with gastric pathology and 45 control individuals who had no altered gastric wall. Great emphasis is placed on the role of MRI in the diagnosis of endophytic (diffuse) gastric cancer that is of priority value in its morphological structure. MRI was found to play a role in the diagnosis of the spread of a tumorous process both along the walls of the stomach and to its adjacent anatomic structures.

  12. Magnetic Resonance Imaging of Pituitary Tumors.

    PubMed

    Bonneville, Jean-François

    2016-01-01

    Magnetic Resonance Imaging (MRI) is currently considered a major keystone of the diagnosis of diseases of the hypothalamic-hypophyseal region. However, the relatively small size of the pituitary gland, its location deep at the skull base and the numerous physiological variants present in this area impede the precise assessment of the anatomical structures and, particularly, of the pituitary gland itself. The diagnosis of the often tiny lesions of this region--such as pituitary microadenomas--is then difficult if the MRI technology is not optimized and if potential artifacts and traps are not recognized. Advanced MRI technology can not only depict small lesions with greater reliability, but also help in the differential diagnosis of large tumors. In these, defining the presence or absence of invasion is a particularly important task. This review describes and illustrates the radiological diagnosis of the different tumors of the sellar region, from the common prolactinomas, nonfunctioning adenomas and Rathke's cleft cysts, to the less frequent and more difficult to detect corticotroph pituitary adenomas in Cushing's disease, and other neoplastic and nonneoplastic entities. Finally, some hints are given to facilitate the differential diagnosis of sellar lesions. PMID:27003878

  13. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    SciTech Connect

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  14. Nuclear magnetic resonance imaging of liver hemangiomas

    SciTech Connect

    Sigal, R.; Lanir, A.; Atlan, H.; Naschitz, J.E.; Simon, J.S.; Enat, R.; Front, D.; Israel, O.; Chisin, R.; Krausz, Y.

    1985-10-01

    Nine patients with cavernous hemangioma of the liver were examined by nuclear magnetic resonance imaging (MRI) with a 0.5 T superconductive magnet. Spin-echo technique was used with varying time to echo (TE) and repetition times (TR). Results were compared with /sup 99m/Tc red blood cell (RBC) scintigraphy, computed tomography (CT), echography, and arteriography. Four illustrated cases are reported. It was possible to establish a pattern for MRI characteristics of cavernous hemangiomas; rounded or smooth lobulated shape, marked increase in T1 and T2 values as compared with normal liver values. It is concluded that, although more experience is necessary to compare the specificity with that of ultrasound and CT, MRI proved to be very sensitive for the diagnosis of liver hemangioma, especially in the case of small ones which may be missed by /sup 99m/Tc-labeled RBC scintigraphy.

  15. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  16. Magnetic resonance imaging in endourology.

    PubMed

    Chan, A J; Prasad, P V; Saltzman, B

    2001-02-01

    Historically, the utilization of magnetic resonance imaging (MRI) in endourology has been limited. The availability of faster and stronger gradient systems has given rise to a number of data acquisition strategies that have significantly broadened the scope of MRI applications. These methods have led to the evaluation of anatomy and function using a single modality, and we describe our experience with MRI for comprehensive evaluation of the obstructed ureteropelvic junction. We also utilize these new imaging sequences in the investigation of alterated renal hemodynamics after extracorporeal shockwave lithotripsy and present our preliminary data on the application of MR perfusion imaging as a noninvasive technique for the evaluation of renal blood flow.

  17. Evanescent Waves Nuclear Magnetic Resonance

    PubMed Central

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  18. Evanescent Waves Nuclear Magnetic Resonance.

    PubMed

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging.

  19. Optically Detected Scanned Probe Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher; Bhallamudi, Vidya; Wang, Hailong; Du, Chunhui; Manuilov, Sergei; Adur, Rohan; Yang, Fengyuan; Hammel, P. Chris

    2014-03-01

    Magnetic resonance is a powerful tool for studying magnetic properties and dynamics of spin systems. Scanned magnetic probes can induce spatially localized resonance due to the strong magnetic field and gradient near the magnetic tip., Nitrogen vacancy centers (NV) in diamond provide a sensitive means of measuring magnetic fields at the nanoscale. We report preliminary results towards using the high sensitivity of NV detection with a scanned magnetic probe to study local magnetic phenomena. This work is supported by the Center for Emergent Materials at The Ohio State University, a NSF Materials Research Science and Engineering Center (DMR-0820414).

  20. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  1. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  2. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  3. Apparatus for investigating resonance with application to magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; Jones, Dyan L.; Gross, Josh; Zollman, Dean

    2015-11-01

    Resonance is typically studied in the context of either a pendulum or a mass on a spring. We have developed an apparatus that enables beginning students to investigate resonant behavior of changing magnetic fields, in addition to the properties of the magnetic field due to a wire and the superposition of magnetic fields. In this resonant system, a compass oscillates at a frequency determined by the compass's physical properties and an external magnetic field. While the analysis is mathematically similar to that of the pendulum, this apparatus has an advantage that the magnetic field is easily controlled, while it is difficult to control the strength of gravity. This apparatus has been incorporated into a teaching module on magnetic resonance imaging.

  4. [Magnetic resonance--personal experience with its use in otorhinolaryngology].

    PubMed

    Skerík, P; Belán, A; Lízler, J; Dolejs, Z

    1989-07-01

    The authors present their initial experience with the visualization by magnetic resonance (MR) in otorhinolaryngology in the CSR. Due to multidimensional and high contrast visualization, MR facilitates greatly spatial orientation as regards localization and size of the pathological process. Its importance otorhinolaryngology is in particular in the diagnosis of neoplastic diseases. For some localizations of tumours MR is the method of choice. PMID:2791047

  5. Voriconazole-related periostitis presenting on magnetic resonance imaging.

    PubMed

    Davis, Derik L

    2015-01-01

    Painful periostitis is a complication of long-term antifungal therapy with voriconazole. A high clinical suspicion coupled with imaging and laboratory assessment is useful to establish the diagnosis. Prompt discontinuance of voriconazole typically results in the resolution of symptoms and signs. This report describes the presentation of voriconazole-related periostitis on magnetic resonance imaging.

  6. Voriconazole-related periostitis presenting on magnetic resonance imaging

    PubMed Central

    Davis, Derik L.

    2015-01-01

    Summary Painful periostitis is a complication of long-term antifungal therapy with voriconazole. A high clinical suspicion coupled with imaging and laboratory assessment is useful to establish the diagnosis. Prompt discontinuance of voriconazole typically results in the resolution of symptoms and signs. This report describes the presentation of voriconazole-related periostitis on magnetic resonance imaging. PMID:26136804

  7. Recent advances in magnetic resonance imaging of prostate cancer

    PubMed Central

    Lawrentschuk, Nathan

    2010-01-01

    This concise review attempts to highlight the recent advances in magnetic resonance imaging (MRI) in relation to all the different aspects of prostate cancer (PCa), and outlines future implications of MRI in the diagnosis, treatment, and surveillance of PCa. PMID:21283654

  8. Advances in mechanical detection of magnetic resonance

    PubMed Central

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge. PMID:18266413

  9. Magnetic resonance elastography hardware design: a survey.

    PubMed

    Tse, Z T H; Janssen, H; Hamed, A; Ristic, M; Young, I; Lamperth, M

    2009-05-01

    Magnetic resonance elastography (MRE) is an emerging technique capable of measuring the shear modulus of tissue. A suspected tumour can be identified by comparing its properties with those of tissues surrounding it; this can be achieved even in deep-lying areas as long as mechanical excitation is possible. This would allow non-invasive methods for cancer-related diagnosis in areas not accessible with conventional palpation. An actuating mechanism is required to generate the necessary tissue displacements directly on the patient in the scanner and three different approaches, in terms of actuator action and position, exist to derive stiffness measurements. However, the magnetic resonance (MR) environment places considerable constraints on the design of such devices, such as the possibility of mutual interference between electrical components, the scanner field, and radio frequency pulses, and the physical space restrictions of the scanner bore. This paper presents a review of the current solutions that have been developed for MRE devices giving particular consideration to the design criteria including the required vibration frequency and amplitude in different applications, the issue of MR compatibility, actuation principles, design complexity, and scanner synchronization issues. The future challenges in this field are also described.

  10. Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.

  11. Magnetic Resonance Imaging of the Knee

    PubMed Central

    Hash, Thomas W.

    2013-01-01

    Context: Magnetic resonance imaging (MRI) affords high-resolution visualization of the soft tissue structures (menisci, ligaments, cartilage, etc) and bone marrow of the knee. Evidence Acquisition: Pertinent clinical and research articles in the orthopaedic and radiology literature over the past 30 years using PubMed. Results: Ligament tears can be accurately assessed with MRI, but distinguishing partial tears from ruptures of the anterior cruciate ligament (ACL) can be challenging. Determining the extent of a partial tear is often extremely difficult to accurately assess. The status of the posterolateral corner structures, menisci, and cartilage can be accurately evaluated, although limitations in the evaluation of certain structures exist. Patellofemoral joint, marrow, tibiofibular joint, and synovial pathology can supplement physical examination findings and provide definitive diagnosis. Conclusions: MRI provides an accurate noninvasive assessment of knee pathology. PMID:24381701

  12. Magnetic resonance imaging of the heart.

    PubMed

    Tscholakoff, D; Higgins, C B

    1985-01-01

    Magnetic resonance imaging (MRI) is a completely noninvasive technique for the evaluation of the cardiovascular system. With a multi-section technique and the spin echo pulse sequence the entire heart can be examined within six to ten minutes. All our cardiac MR studies were performed with electrocardiographic (ECG) gating, to obtain adequate resolution of the cardiac structures. With this technique, patients and animals with a variety of cardiac abnormalities were studied. The examined pathologic conditions included acute and chronic myocardial infarctions and their complications, hypertrophic and congestive cardiomyopathies, congenital heart diseases and pericardial diseases. MRI offers an enormous potential for cardiovascular diagnosis, even beyond the demonstration of pathoanatomy, because of the capability for direct tissue characterization and blood flow measurements.

  13. Magnetic resonance imaging in amyotrophic lateral sclerosis.

    PubMed

    Kollewe, Katja; Körner, Sonja; Dengler, Reinhard; Petri, Susanne; Mohammadi, Bahram

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder which is incurable to date. As there are many ongoing studies with therapeutic candidates, it is of major interest to develop biomarkers not only to facilitate early diagnosis but also as a monitoring tool to predict disease progression and to enable correct randomization of patients in clinical trials. Magnetic resonance imaging (MRI) has made substantial progress over the last three decades and is a practical, noninvasive method to gain insights into the pathology of the disease. Disease-specific MRI changes therefore represent potential biomarkers for ALS. In this paper we give an overview of structural and functional MRI alterations in ALS with the focus on task-free resting-state investigations to detect cortical network failures. PMID:22848820

  14. Magnetic Resonance Elastography of Abdomen

    PubMed Central

    Venkatesh, Sudhakar K.; Ehman, Richard L.

    2015-01-01

    Many diseases cause substantial changes in the mechanical properties of tissue and this provides motivation for developing methods to non-invasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate non-invasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  15. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  16. Magnetic Resonance Imaging of Electrolysis.

    NASA Astrophysics Data System (ADS)

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  17. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  18. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  19. Efficacy of magnetic resonance imaging in the diagnosis of perianal hidradenitis suppurativa, complicated by anal fistulae: A report of two cases and review of the literature

    PubMed Central

    Takiyama, Hirotoshi; Kazama, Shinsuke; Tanoue, Yusuke; Yasuda, Koji; Otani, Kensuke; Nishikawa, Takeshi; Tanaka, Toshiaki; Tanaka, Junichiro; Kiyomatsu, Tomomichi; Hata, Keisuke; Kawai, Kazushige; Nozawa, Hiroaki; Miyagawa, Takuya; Yamada, Daisuke; Yamaguchi, Hironori; Ishihara, Soichiro; Sunami, Eiji; Watanabe, Toshiaki

    2015-01-01

    Background Perianal hidradenitis suppurativa (PHS) is a chronic recurrent inflammatory disease of the apocrine glands present in the skin and soft tissue adjacent to the anus. It is often misdiagnosed or treatment is delayed, resulting in the formation of an abscess or, in the worst case, leading to sepsis. It is difficult to treat perianal lesions merged with fistulae completely due to its high recurrence rate. Therefore, we should diagnose it correctly and treat it with appropriate methods. Presentation of case We report two cases of PHS with anal fistulae that were examined preoperatively using magnetic resonance imaging (MRI) and treated safely by surgery without any recurrence. Discussion The anal sphincter area cannot be visualized and evaluated directly by fistulography. Also CT has only limited resolution, making it difficult to distinguish between soft tissues and inflammatory streaks. Endosonography is not suitable for the examination of supra-sphincteric or extra-sphincteric extensions, as it is limited by insufficient penetration of the ultrasonic beams. MRI can demonstrate the entire course of the fistulae owing to its high contrast resolution. Conclusion Our findings support the idea that PHS with complicated anal fistulae can be diagnosed accurately using MRI and treated safely and completely with surgery. PMID:26339787

  20. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  1. Artifacts and pitfalls in shoulder magnetic resonance imaging.

    PubMed

    Marcon, Gustavo Felix; Macedo, Tulio Augusto Alves

    2015-01-01

    Magnetic resonance imaging has revolutionized the diagnosis of shoulder lesions, in many cases becoming the method of choice. However, anatomical variations, artifacts and the particularity of the method may be a source of pitfalls, especially for less experienced radiologists. In order to avoid false-positive and false-negative results, the authors carried out a compilation of imaging findings that may simulate injury. It is the authors' intention to provide a useful, consistent and comprehensive reference for both beginner residents and skilled radiologists who work with musculoskeletal magnetic resonance imaging, allowing for them to develop more precise reports and helping them to avoid making mistakes.

  2. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled.

  3. Diffusion weighted magnetic resonance imaging and its recent trend-a survey.

    PubMed

    Chilla, Geetha Soujanya; Tan, Cher Heng; Xu, Chenjie; Poh, Chueh Loo

    2015-06-01

    Since its inception in 1985, diffusion weighted magnetic resonance imaging has been evolving and is becoming instrumental in diagnosis and investigation of tissue functions in various organs including brain, cartilage, and liver. Even though brain related pathology and/or investigation remains as the main application, diffusion weighted magnetic resonance imaging (DWI) is becoming a standard in oncology and in several other applications. This review article provides a brief introduction of diffusion weighted magnetic resonance imaging, challenges involved and recent advancements.

  4. Artifacts in magnetic resonance imaging.

    PubMed

    Krupa, Katarzyna; Bekiesińska-Figatowska, Monika

    2015-01-01

    Artifacts in magnetic resonance imaging and foreign bodies within the patient's body may be confused with a pathology or may reduce the quality of examinations. Radiologists are frequently not informed about the medical history of patients and face postoperative/other images they are not familiar with. A gallery of such images was presented in this manuscript. A truncation artifact in the spinal cord could be misinterpreted as a syrinx. Motion artifacts caused by breathing, cardiac movement, CSF pulsation/blood flow create a ghost artifact which can be reduced by patient immobilization, or cardiac/respiratory gating. Aliasing artifacts can be eliminated by increasing the field of view. An artificially hyperintense signal on FLAIR images can result from magnetic susceptibility artifacts, CSF/vascular pulsation, motion, but can also be found in patients undergoing MRI examinations while receiving supplemental oxygen. Metallic and other foreign bodies which may be found on and in patients' bodies are the main group of artifacts and these are the focus of this study: e.g. make-up, tattoos, hairbands, clothes, endovascular embolization, prostheses, surgical clips, intraorbital and other medical implants, etc. Knowledge of different types of artifacts and their origin, and of possible foreign bodies is necessary to eliminate them or to reduce their negative influence on MR images by adjusting acquisition parameters. It is also necessary to take them into consideration when interpreting the images. Some proposals of reducing artifacts have been mentioned. Describing in detail the procedures to avoid or limit the artifacts would go beyond the scope of this paper but technical ways to reduce them can be found in the cited literature.

  5. Artifacts in Magnetic Resonance Imaging

    PubMed Central

    Krupa, Katarzyna; Bekiesińska-Figatowska, Monika

    2015-01-01

    Summary Artifacts in magnetic resonance imaging and foreign bodies within the patient’s body may be confused with a pathology or may reduce the quality of examinations. Radiologists are frequently not informed about the medical history of patients and face postoperative/other images they are not familiar with. A gallery of such images was presented in this manuscript. A truncation artifact in the spinal cord could be misinterpreted as a syrinx. Motion artifacts caused by breathing, cardiac movement, CSF pulsation/blood flow create a ghost artifact which can be reduced by patient immobilization, or cardiac/respiratory gating. Aliasing artifacts can be eliminated by increasing the field of view. An artificially hyperintense signal on FLAIR images can result from magnetic susceptibility artifacts, CSF/vascular pulsation, motion, but can also be found in patients undergoing MRI examinations while receiving supplemental oxygen. Metallic and other foreign bodies which may be found on and in patients’ bodies are the main group of artifacts and these are the focus of this study: e.g. make-up, tattoos, hairbands, clothes, endovascular embolization, prostheses, surgical clips, intraorbital and other medical implants, etc. Knowledge of different types of artifacts and their origin, and of possible foreign bodies is necessary to eliminate them or to reduce their negative influence on MR images by adjusting acquisition parameters. It is also necessary to take them into consideration when interpreting the images. Some proposals of reducing artifacts have been mentioned. Describing in detail the procedures to avoid or limit the artifacts would go beyond the scope of this paper but technical ways to reduce them can be found in the cited literature. PMID:25745524

  6. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  7. Magnetic plasmonic Fano resonance at optical frequency.

    PubMed

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials.

  8. Enhancement of artificial magnetism via resonant bianisotropy.

    PubMed

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  9. Enhancement of artificial magnetism via resonant bianisotropy

    NASA Astrophysics Data System (ADS)

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-03-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses.

  10. Could magnetic resonance provide in vivo histology?

    PubMed Central

    Dominietto, Marco; Rudin, Markus

    2014-01-01

    The diagnosis of a suspected tumor lesion faces two basic problems: detection and identification of the specific type of tumor. Radiological techniques are commonly used for the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced contrast between normal and neoplastic tissue. Identification of the tumor type is still based on histological analysis. The result depends critically on the sampling sites, which given the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo imaging might overcome this limitation providing comprehensive three-dimensional morphological, physiological, and metabolic information as well as the possibility for longitudinal studies. In this context, magnetic resonance based techniques are quite attractive since offer at the same time high spatial resolution, unique soft tissue contrast, good temporal resolution to study dynamic processes and high chemical specificity. The goal of this paper is to review the role of magnetic resonance techniques in characterizing tumor tissue in vivo both at morphological and physiological levels. The first part of this review covers methods, which provide information on specific aspects of tumor phenotypes, considered as indicators of malignancy. These comprise measurements of the inflammatory status, neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue morphology. Even if the spatial resolution is not sufficient to characterize the tumor phenotype at a cellular level, this multiparametric information might potentially be used for classification of tumors. The second part discusses mathematical tools, which allow characterizing tissue based on the acquired three-dimensional data set. In particular, methods addressing tumor heterogeneity will be highlighted. Finally, we address the potential and limitation of using MRI as a tool to provide in vivo tissue characterization. PMID:24454320

  11. Septic sacroiliitis during the postpartal period. Diagnostic contribution of magnetic resonance imaging.

    PubMed

    Tisserant, R; Loeuille, D; Péré, P; Gaucher, A; Pourel, J; Blum, A

    1999-10-01

    Septic sacroiliitis is an uncommon condition that is often diagnosed late. Two cases in the immediate postpartal period are reported. Magnetic resonance imaging contributed decisively to the early diagnosis.

  12. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  13. Pocket atlas of cranial magnetic resonance imaging

    SciTech Connect

    Haughton, V.M.; Daniels, D.L.

    1986-01-01

    This atlas illustrates normal cerebral anatomy in magnetic resonance images. From their studies in cerebral anatomy utilizing cryomicrotome and other techniques, the authors selected more than 100 high-resolution images that represent the most clinically useful scans.

  14. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus

    ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) ... time and for your attention! Spotlight Recently posted: Video: Ultrasound-guided Breast Biopsy Video: Breast MRI Video: ...

  15. Chronic liver disease: evaluation by magnetic resonance

    SciTech Connect

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR.

  16. Clinical applications of magnetic resonance imaging - current status

    SciTech Connect

    Cammoun, D.; Hendee, W.R.; Davis, K.A.

    1985-12-01

    Magnetic resonance imaging has far-reaching real and possible clinical applications. Its usefulness has been best explored and realized in the central nervous system, especially the posterior fossa and brain stem, where most abnormalities are better identified than with computed tomography. Its lack of ionizing radiation and extreme sensitivity to normal and abnormal patterns of myelination make magnetic resonance imaging advantageous for diagnosing many neonatal and pediatric abnormalities. New, reliable cardiac gating techniques open the way for promising studies of cardiac anatomy and function. The ability to image directly in three orthogonal planes gives us new insight into staging and follow-up of pelvic tumors and other pelvic abnormalities. Exquisite soft tissue contrast, far above that attainable by other imaging modalities, has made possible the early diagnosis of traumatic ligamentous knee injury, avascular necrosis of the hip and diagnosis, treatment planning and follow-up of musculoskeletal neoplasms. 59 references, 9 figures.

  17. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus.

    PubMed

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  18. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  19. Fano resonances in magnetic metamaterials

    SciTech Connect

    Naether, Uta; Molina, Mario I.

    2011-10-15

    We study the scattering of magnetoinductive plane waves by internal (external) capacitive (inductive) defects coupled to a one-dimensional split-ring resonator array. We examine a number of simple defect configurations where Fano resonances occur and study the behavior of the transmission coefficient as a function of the controllable external parameters. We find that for embedded capacitive defects, the addition of a small amount of coupling to second neighbors is necessary for the occurrence of Fano resonance. For external inductive defects, Fano resonances are commonplace, and they can be tuned by changing the relative orientation or distance between the defect and the SSR array.

  20. Magnetic resonance force detection using a membrane resonator.

    PubMed

    Scozzaro, N; Ruchotzke, W; Belding, A; Cardellino, J; Blomberg, E C; McCullian, B A; Bhallamudi, V P; Pelekhov, D V; Hammel, P C

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q∼10(6)[1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300K is 4fN/Hz, indicating a potential low temperature (4K) sensitivity of 25aN/Hz. Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches. PMID:27522542

  1. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, N.; Ruchotzke, W.; Belding, A.; Cardellino, J.; Blomberg, E. C.; McCullian, B. A.; Bhallamudi, V. P.; Pelekhov, D. V.; Hammel, P. C.

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q ∼106 [1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300 K is 4 fN/√{Hz } , indicating a potential low temperature (4 K) sensitivity of 25 aN/√{Hz } . Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches.

  2. Introduction to magnetic resonance methods in photosynthesis.

    PubMed

    Huber, Martina

    2009-01-01

    Electron paramagnetic resonance (EPR) and, more recently, solid-state nuclear magnetic resonance (NMR) have been employed to study photosynthetic processes, primarily related to the light-induced charge separation. Information obtained on the electronic structure, the relative orientation of the cofactors, and the changes in structure during these reactions should help to understand the efficiency of light-induced charge separation. A short introduction to the observables derived from magnetic resonance experiments is given. The relation of these observables to the electronic structure is sketched using the nitroxide group of spin labels as a simple example.

  3. Children's (Pediatric) Magnetic Resonance Imaging

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the inside of ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  4. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... uses radio waves, a magnetic field and a computer to produce detailed pictures of the spine and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  5. Trapped Ion Magnetic Resonance: Concepts and Designs

    NASA Astrophysics Data System (ADS)

    Pizarro, Pedro Jose

    A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra and resolve the apparent incompatibility in existing techniques between high information content and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established techniques for trapping ions in high magnetic field and observing electrically the trapping frequencies with high resolution (<1 Hz) and sensitivity (single -ion). A magnetic bottle field gradient couples the spin and spatial motions together and leads to the small spin -dependent force on the ion exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment. A series of fundamental innovations is described to extend magnetic resonance to molecular ions ( cong 100 amu) and nuclear magnetic moments. It is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Methods of inducing spin -dependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency. The first proposal presented builds on Dehmelt's experiment to reveal ESR spectra. A more powerful technique for ESR is then designed where axially synchronized spin transitions perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. The most general approach presented is a continuous Stern-Gerlach effect in which a magnetic field

  6. Overview of left ventricular outpouchings on cardiac magnetic resonance imaging

    PubMed Central

    Kumar, Sanjeev

    2015-01-01

    Left ventricular outpouchings commonly include aneurysm, pseudoaneurysm, and diverticulum and are now being increasingly detected on imaging. Distinction between these entities is of prime importance to guide proper management as outcomes for these entities differ substantially. Chest radiograph is usually nonspecific in their diagnosis. Echocardiography, multi-detector computed tomography evaluation and angiography are helpful in the diagnosis with their inherit limitations. Cardiac magnetic resonance imaging (MRI) is emerging as a very useful tool that allows simultaneous anatomical and functional evaluation along with tissue characterization, which has diagnostic, theraputic and prognostic implications. This article gives an overview of left ventricular outpouchings with special emphasis on their differentiation using cardiac MRI. PMID:26675616

  7. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  8. Magnetic resonance based noninvasive RF nerve stimulator.

    PubMed

    Ganesh Bharadwaj, C V; Yuanjin, Zheng

    2012-01-01

    A noninvasive method of stimulating the nerve by applying radiofrequency has been presented. The design is based on the concept of magnetic resonance based power transfer. A comparison between electric field on the nerve at the frequency of 450-550 KHz with vacuum placed under a human tissue and the case where it is replaced with a resonant and non-resonant structure was analysed. Calculations were performed by using Ansoft HFSS. Power savings of 7.15% was observed when resonant structures were used, compared to vacuum. Theoretical calculation and simulation of fields were presented.

  9. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    PubMed

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  10. Magnetic resonance imaging: effects of magnetic field strength

    SciTech Connect

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-04-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields.

  11. Magnetic resonance imaging: present and future applications

    PubMed Central

    Johnston, Donald L.; Liu, Peter; Wismer, Gary L.; Rosen, Bruce R.; Stark, David D.; New, Paul F.J.; Okada, Robert D.; Brady, Thomas J.

    1985-01-01

    Magnetic resonance (MR) imaging has created considerable excitement in the medical community, largely because of its great potential to diagnose and characterize many different disease processes. However, it is becoming increasingly evident that, because MR imaging is similar to computed tomography (CT) scanning in identifying structural disorders and because it is more costly and difficult to use, this highly useful technique must be judged against CT before it can become an accepted investigative tool. At present MR imaging has demonstrated diagnostic superiority over CT in a limited number of important, mostly neurologic, disorders and is complementary to CT in the diagnosis of certain other disorders. For most of the remaining organ systems its usefulness is not clear, but the lack of ionizing radiation and MR's ability to produce images in any tomographic plane may eventually prove to be advantageous. The potential of MR imaging to display in-vivo spectra, multinuclear images and blood-flow data makes it an exciting investigative technique. At present, however, MR imaging units should be installed only in medical centres equipped with the clinical and basic research facilities that are essential to evaluate the ultimate role of this technique in the care of patients. ImagesFig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14 PMID:3884120

  12. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched β-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of β-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  13. DIAGNOSIS OF MALARIA BY MAGNETIC DEPOSITION MICROSCOPY

    PubMed Central

    ZIMMERMAN, PETER A.; THOMSON, JODI M.; FUJIOKA, HISASHI; COLLINS, WILLIAM E.; ZBOROWSKI, MACIEJ

    2013-01-01

    Although malaria contributes to a significant public health burden, malaria diagnosis relies heavily on either non-specific clinical symptoms or blood smear microscopy methods developed in the 1930s. These approaches severely misrepresent the number of infected individuals and the reservoir of parasites in malaria-endemic communities and undermine efforts to control disease. Limitations of conventional microscopy-based diagnosis center on time required to examine slides, time required to attain expertise sufficient to diagnose infection accurately, and attrition from the limited number of existing malaria microscopy experts. Earlier studies described magnetic properties of Plasmodium falciparum but did not refine methods to diagnosis infection by all four human malaria parasite species. Here, following specific technical procedures, we show that it is possible to concentrate all four human malaria parasite species, at least 40-fold, on microscope slides using very inexpensive magnets through an approach termed magnetic deposition microscopy. This approach delivered greater sensitivity than a thick smear preparation while maintaining the clarity of a thin smear to simplify species-specific diagnosis. Because the magnetic force necessary to concentrate parasites on the slide is focused at a precise position relative to the magnet surface, it is possible to examine a specific region of the slide for parasitized cells and avoid the time-consuming process of scanning the entire slide surface. These results provide insight regarding new strategies for performing malaria blood smear microscopy. PMID:16606985

  14. Scanning ferromagnetic resonance microscopy and resonant heating of magnetite nanoparticles: Demonstration of thermally detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Sakran, F.; Copty, A.; Golosovsky, M.; Davidov, D.; Monod, P.

    2004-05-01

    We report a 9 GHz microwave scanning probe based on a slit aperture for spatially resolved magnetic resonance detection. We use patterned layers of dispersed magnetite Fe3O4 nanoparticles and demonstrate low-field ferromagnetic resonance images with a spatial resolution of 15 μm. We also demonstrate localized heating of magnetite nanoparticles via ferromagnetic resonance absorption which can be controlled by an external dc magnetic field. Using our microwave probe as a transmitter and a temperature sensor (thermocouple or infrared detector), we show thermally detected magnetic resonance at room temperature.

  15. Magnetic resonance imaging in cardiac amyloidosis

    SciTech Connect

    O'Donnell, J.K.; Go, R.T.; Bott-Silverman, C.; Feiglin, D.H.; Salcedo, E.; MacIntyre, W.J.

    1984-01-01

    Primary amyloidosis (AL) involves the myocardium in 90% of cases and may present as apparent ischemia, vascular disease, or congestive heart failure. Two-dimensional echocardiography (echo) has proven useful in the diagnosis, particularly in differentiating AL from constrictive pericarditis. The findings of thickened RV and LV myocardium, normal LV cavity dimension, and a diffuse hyperrefractile ''granular sparkling'' appearance are virtually diagnostic. Magnetic resonance (MR) imaging may improve the resolution of anatomic changes seen in cardiac AL and has the potential to provide more specific information based on biochemical tissue alterations. In this preliminary study, the authors obtained both MR and echo images in six patients with AL and biopsy-proven myocardial involvement. 5/6 patients also had Tc-99 PYP myocardial studies including emission tomography (SPECT). MR studies utilized a 0.6 Tesla superconductive magnet. End diastolic gated images were obtained with TE=30msec and TR=R-R interval on the ECG. 6/6 pts. showed LV wall thickening which was concentric and included the septum. Papillary muscles were identified in all and were enlarged in 3/6. 4/6 pts. showed RV wall thickening but to a lesser degree than LV. Pericardial effusions were present in 4 cases. These findings correlated well with the results of echo although MR gave better RV free wall resolution. PYP scans were positive in 3 pts. but there was no correlation with degree of LV thickening. The authors conclude that there are no identifiable MR findings in patients with cardiac AL which encourage further attempts to characterize myocardial involvement by measurement of MR relaxation times in vivo.

  16. Development of the 1.2 T~1.5 T Permanent Magnetic Resonance Imaging Device and Its Application for Mouse Imaging

    PubMed Central

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Zhao, Qiang; Li, Shiyu

    2015-01-01

    By improving the main magnet, gradient, and RF coils design technology, manufacturing methods, and inventing new magnetic resonance imaging (MRI) special alloy, a cost-effective and small animal specific permanent magnet-type three-dimensional magnetic resonance imager was developed. The main magnetic field strength of magnetic resonance imager with independent intellectual property rights is 1.2~1.5 T. To demonstrate its effectiveness and validate the mouse imaging experiments in different directions, we compared the images obtained by small animal specific permanent magnet-type three-dimensional magnetic resonance imager with that obtained by using superconductor magnetic resonance imager for clinical diagnosis. PMID:26539531

  17. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  18. Magnetic resonance imaging by using nano-magnetic particles

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.; Khorramdin, A.; Isapour, Gh.

    2014-11-01

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants.

  19. Magnetic resonance of magnetic fluid and magnetoliposome preparations

    NASA Astrophysics Data System (ADS)

    Morais, Paulo C.; Santos, Judes G.; Skeff Neto, K.; Pelegrini, Fernando; De Cuyper, Marcel

    2005-05-01

    In this study, magnetic resonance was used to investigate lauric acid-coated magnetite-based magnetic fluid particles and particles which are surrounded by a double layer of phospholipid molecules (magnetoliposomes). The data reveal the presence of monomers and dimers in both samples. Whereas evidence for a thermally induced disruption of dimers is found in the magnetic fluid, apparently, the bilayer phospholipid envelop prevents the dissociation in the magnetoliposome samples.

  20. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  1. Magnetic resonance imaging of the body

    SciTech Connect

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  2. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  3. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  4. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. PMID:25700116

  5. Three dimensional magnetic resonance imaging by magnetic resonance force microscopy with a sharp magnetic needle.

    PubMed

    Tsuji, S; Yoshinari, Y; Park, H S; Shindo, D

    2006-02-01

    An electropolished magnetic needle made of Nd(2)Fe(14)B permanent magnet was used for obtaining better spatial resolution than that achieved in our previous work. We observed the magnetic field gradient |G(Z)|=80.0G/microm and the field strength B=1250G at Z approximately 8.8 microm from the top of the needle. The use of this needle for three dimensional magnetic resonance force microscopy at room temperature allowed us to achieve the voxel resolution to be 0.6 microm x 0.6 microm x 0.7 microm in the reconstructed image of DPPH phantom. The acquisition time spent for the whole data collection over 64 x 64 x 16 points, including an iterative signal average by six times per point, was about 10 days.

  6. Prenatal magnetic resonance imaging as a useful adjunctive to ultrasound-enhanced diagnosis in case of a giant foetal tumour of the neck.

    PubMed

    Mittermayer, C; Brugger, P C; Lee, A; Horcher, E; Hayde, M; Bernaschek, G; Prayer, D

    2005-02-01

    Large cervical masses in the prenatal period are rare and can cause life threatening situations after birth. All available diagnostic techniques should therefore be used to determine the best mode of delivery in the case of such malformation. A large cervical mass was detected by ultrasound in a 41-year-old women, gravida 4, para 3, at 29 + 5 weeks of gestation. US imaging was most consistent with the diagnosis of a large cervical teratoma, but it was not possible to sufficiently evaluate the cervical anatomy of the oropharynx and trachea. An MRI scan demonstrated a distorted oropharynx and a trachea displaced to the right and posteriorly, but not detectable from the middle of the neck up to the larynx. Based on these facts, an EXIT procedure was planned and performed at 30 + 5 weeks of gestation. Foetal MRI provided valuable anatomical information for all specialists deciding on the indication and the pre-therapeutic planning of the EXIT procedure. PMID:15700228

  7. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  8. Clinical applications of magnetic resonance cholangiopancreatography.

    PubMed

    Prasad, S R; Sahani, D; Saini, S

    2001-01-01

    Magnetic resonance cholangiopancreatography (MRCP) is a novel imaging technique used for noninvasive work-up of patients with pancreaticobiliary disease. Magnetic resonance cholangiopancreatography is useful in the evaluation of a host of pancreaticobiliary disorders, such as congenital disorders, calculus disease, biliary strictures, sclerosing cholangitis, chronic pancreatitis, and cystic pancreatic lesions. It not only provides useful preoperative information to surgeons and gastroenterologists but also serves as a valuable tool in the assessment of postoperative pancreaticobiliary ductal anatomy. Recent refinement of techniques allows faster imaging with superior image resolution. This review summarizes the role of MRCP in clinical practice.

  9. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  10. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  11. Ferromagnetic resonance with a magnetic Josephson junction

    NASA Astrophysics Data System (ADS)

    Barnes, S. E.; Aprili, M.; Petković, I.; Maekawa, S.

    2011-02-01

    We show experimentally and theoretically that there is a coupling via the Aharonov-Bohm phase between the order parameter of a ferromagnet and a singlet, s-wave, Josephson super-current. We have investigated the possibility of measuring the dispersion of such spin-waves by varying the magnetic field applied in the plane of the junction and demonstrated the electromagnetic nature of the coupling by the observation of magnetic resonance side-bands to microwave induced Shapiro steps.

  12. Magnetic resonances of ions in biological systems.

    PubMed

    Engström, Stefan; Bowman, Joseph D

    2004-12-01

    A magnetic field transduction mechanism based on an ion oscillator model is derived from an explicit quantum mechanical description. The governing equation prescribes how the electric dipole moment of an ion oscillating in a symmetric potential well evolves under the influence of an arbitrary magnetic field. The resulting equation is an analog of the Bloch equation, a well-studied model for magnetic resonances in atomic and molecular spectroscopy. The differential equation for this ion oscillator model is solved numerically for a few illustrative magnetic field exposures, showing when those resonances occur with single frequency, linearly polarized fields. Our formulation makes explicit the conditions that must be present for magnetic fields to produce observable biological effects under the ion oscillator model. The ion's potential well must have symmetry sufficient to produce a degenerate excited state, e.g., octahedral or trigonal bipyramid potentials. The impulse that excites the ion must be spatially correlated with the orientation of the detector that reads off the final state of the oscillator. The orientation between the static and oscillating magnetic fields that produces resonance is a complicated function of the field magnitudes and frequency. We suggest several classes of experiments that could critically test the validity of the model presented here.

  13. High-Resolution Vessel Wall Magnetic Resonance Imaging in Varicella-Zoster Virus Vasculitis.

    PubMed

    Tsivgoulis, Georgios; Lachanis, Stefanos; Magoufis, Georgios; Safouris, Apostolos; Kargiotis, Odysseas; Stamboulis, Elefterios

    2016-06-01

    Varicella-zoster virus vasculopathy is a rare but potentially treatable condition. Diagnosis has been based on angiography, brain magnetic resonance imaging (MRI), and cerebrospinal fluid analysis. High-resolution vessel wall MRI may aid to the diagnosis by differentiating inflammation from other vessel wall pathologies. We present the characteristic MRI findings of this condition in a young patient presenting with ischemic stroke.

  14. The "Penumbra Sign" on Magnetic Resonance Images of Brodie's Abscess: A Case Report.

    PubMed

    Afshar, Ahmadreza; Mohammadi, Afshin

    2011-12-01

    This report presents the "penumbra sign" of a Brodie's abscess in a 69-year-old male patient. The lesion was located in the proximal metaphysis of the left tibia. Histopathology confirmed the diagnosis of subacute osteomyelitis. The penumbra sign on magnetic resonance (MR) images is a helpful sign for the diagnosis of Brodie's abscess.

  15. Enhancement of artificial magnetism via resonant bianisotropy

    PubMed Central

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  16. Functional magnetic resonance imaging in oncology: state of the art*

    PubMed Central

    Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson

    2014-01-01

    In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate. PMID:25741058

  17. Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications.

    PubMed

    Schuster, Andreas; Hor, Kan N; Kowallick, Johannes T; Beerbaum, Philipp; Kutty, Shelby

    2016-04-01

    Heart failure-induced cardiovascular morbidity and mortality constitute a major health problem worldwide and result from diverse pathogeneses, including coronary artery disease, nonischemic cardiomyopathies, and arrhythmias. Assessment of cardiovascular performance is important for early diagnosis and accurate management of patients at risk of heart failure. During the past decade, cardiovascular magnetic resonance myocardial feature tracking has emerged as a useful tool for the quantitative evaluation of cardiovascular function. The method allows quantification of biatrial and biventricular mechanics from measures of deformation: strain, torsion, and dyssynchrony. The purpose of this article is to review the basic principles, clinical applications, accuracy, and reproducibility of cardiovascular magnetic resonance myocardial feature tracking, highlighting the prognostic implications. It will also provide an outlook on how this field might evolve in the future. PMID:27009468

  18. Functional magnetic resonance imaging in oncology: state of the art.

    PubMed

    Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson

    2014-01-01

    In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate.

  19. Multimodal imaging in diagnosis of Alzheimer's disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region.

    PubMed

    Zimny, Anna; Szewczyk, Pawel; Trypka, Elzbieta; Wojtynska, Renata; Noga, Leszek; Leszek, Jerzy; Sasiadek, Marek

    2011-01-01

    The purpose of this study was to assess metabolic, perfusion, and microstructural changes within the posterior cingulate area in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) using advanced MR techniques such as: spectroscopy (MRS), perfusion weighted imaging (PWI), and diffusion tensor imaging (DTI). Thirty patients with AD (mean age 71.5 y, MMSE 18), 23 with aMCI (mean age 66 y, MMSE 27.4), and 15 age-matched normal controls (mean age 69 y, MMSE 29.5) underwent conventional MRI followed by MRS, PWI, and DTI on 1.5 Tesla MR unit. Several metabolite ratios (N-acetylaspartate [NAA]/creatine [Cr], choline [Ch]/Cr, myoinositol [mI]/Cr, mI/NAA, mI/Cho) as well as parameters of cerebral blood volume relative to cerebellum and fractional anisotropy were obtained in the posterior cingulate region. The above parameters were correlated with the results of neuropsychological tests. AD patients showed significant abnormalities in all evaluated parameters while subjects with aMCI showed only perfusion and diffusion changes in the posterior cingulate area. Only PWI and DTI measurements revealed significant differences among the three evaluated subject groups. DTI, PWI, and MRS results showed significant correlations with neuropsychological tests. DTI changes correlated with both PWI and MRS abnormalities. Of neuroimaging methods, DTI revealed the highest accuracy in diagnosis of AD and aMCI (0.95, 0.79) followed by PWI (0.87, 0.67) and MRS (0.82, 0.47), respectively. In conclusion, AD is a complex pathology regarding both grey and white matter. DTI seems to be the most useful imaging modality to distinguish between AD, aMCI, and control group, followed by PWI and MRS. PMID:21841260

  20. Off-center magnetic resonance imaging with permanent magnets

    NASA Astrophysics Data System (ADS)

    Abele, Manlio G.; Rusinek, Henry

    2008-04-01

    Magnets for magnetic resonance imaging are currently designed as structures that are symmetric with respect to the geometric center O of the magnet cavity. This symmetry results in a symmetric field configuration, where point O coincides with the imaging center S defined as the point where the field gradient is zero. However, in many clinical applications such as breast or spine imaging, the region of interest is displaced from the geometric center. We present a design method for yokeless permanent magnets, where the position of point S is dictated by the imaging requirements. The magnet is composed of uniformly magnetized triangular prisms and it does not require a ferromagnetic yoke to channel the magnetic flux. Given an arbitrary polygonal cavity, the design depends on the position of point F, where the magnetostatic potential is assumed to be equal to the magnetostatic potential of the external medium. For a long magnet, the position of the imaging center S coincides with point F. As an example of the off-center design, we analyze a three-dimensional yokeless magnet with cavity of width=length=80cm and height=45cm. The magnet generates a field above 0.5T when constructed using the NdFeB alloy of remanence larger than 1.3T. The off-center configuration offers flexibility in magnet design that makes it possible to focus on a particular region of the human body, without increasing magnet cavity, magnet size, or its weight

  1. Small Animal Imaging with Magnetic Resonance Microscopy

    PubMed Central

    Driehuys, Bastiaan; Nouls, John; Badea, Alexandra; Bucholz, Elizabeth; Ghaghada, Ketan; Petiet, Alexandra; Hedlund, Laurence W.

    2009-01-01

    Small animal magnetic resonance microscopy (MRM) has evolved significantly from testing the boundaries of imaging physics to its expanding use today as a tool in non-invasive biomedical investigations. This review is intended to capture the state-of-the-art in MRM for scientists who may be unfamiliar with this modality, but who want to apply its capabilities to their research. We therefore include a brief review of MR concepts and methods of animal handling and support before covering a range of MRM applications including the heart, lung, brain, and the emerging field of MR histology. High-resolution anatomical imaging reveals increasingly exquisite detail in healthy animals and subtle architectural aberrations that occur in genetically altered models. Resolution of 100 µm in all dimensions is now routinely attained in living animals, and 10 µm3 is feasible in fixed specimens. Such images almost rival conventional histology while allowing the object to be viewed interactively in any plane. MRM is now increasingly used to provide functional information in living animals. Images of the beating heart, breathing lung, and functioning brain can be recorded. While clinical MRI focuses on diagnosis, MRM is used to reveal fundamental biology or to non-invasively measure subtle changes in the structure or function of organs during disease progression or in response to experimental therapies. The ability of MRM to provide a detailed functional and anatomical picture in rats and mice, and to track this picture over time, makes it a promising platform with broad applications in biomedical research. PMID:18172332

  2. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  3. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  4. Magnetic Resonance Imaging in Biomedical Engineering

    NASA Astrophysics Data System (ADS)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  5. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  6. Analytical Methods for Characterizing Magnetic Resonance Probes

    PubMed Central

    Manus, Lisa M.; Strauch, Renee C.; Hung, Andy H.; Eckermann, Amanda L.; Meade, Thomas J.

    2012-01-01

    SUMMARY The efficiency of Gd(III) contrast agents in magnetic resonance image enhancement is governed by a set of tunable structural parameters. Understanding and measuring these parameters requires specific analytical techniques. This Feature describes strategies to optimize each of the critical Gd(III) relaxation parameters for molecular imaging applications and the methods employed for their evaluation. PMID:22624599

  7. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  8. Sports health magnetic resonance imaging challenge.

    PubMed

    Howell, Gary A; Stadnick, Michael E; Awh, Mark H

    2010-11-01

    Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians.

  9. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  10. Use of Magnetic Resonance in Pancreaticobiliary Emergencies.

    PubMed

    Bates, David D B; LeBedis, Christina A; Soto, Jorge A; Gupta, Avneesh

    2016-05-01

    This article presents the magnetic resonance protocols, imaging features, diagnostic criteria, and complications of commonly encountered emergencies in pancreaticobiliary imaging. Pancreatic trauma, bile leak, acute cholecystitis, biliary obstruction, and pancreatitis are discussed. Various classifications and complications that can arise with these conditions, as well as artifacts that may mimic pathology, are also included. PMID:27150328

  11. Magnetic resonance imaging of neonates in the magnetic resonance compatible incubator

    PubMed Central

    Helwich, Ewa; Rutkowska, Magdalena; Stankiewicz, Joanna; Terczyńska, Iwona

    2016-01-01

    Introduction The authors present the first experience in neonatal magnetic resonance imaging (MRI) examinations using an MR compatible incubator (INC) at the Institute of Mother and Child. Material and methods Forty-nine examinations of 47 newborns (20 girls, 27 boys) were performed using the GE Signa HDxt 1.5T system and INC Nomag IC 1.5. Demographic data, anesthetic methods and MRI findings in the INC in comparison with previously performed imaging were analyzed. Results Thirty-two neonates were prematurely born (68.1%) at gestational age 23–37 weeks, mean: 29.9 weeks. They were examined at 26 weeks postmenstrual age to 1 month corrected age, mean: 37.5 weeks. Body weight of newborns on the study day was 600–4300 g, mean: 2724 g. Seventeen (34.7%) children were examined in physiological sleep, 32 (65.3%) anesthetized. In none of them did anesthesiological complications or disease worsening occur. In 43 (91.5%) children brain MRI was performed, in 4 (8.5%) MRI of the spinal cord and canal and of the abdomen/pelvis. In children prenatally examined by MRI, the INC provided new diagnostic information in 5 (83.3%) cases, in neonates studied after birth by ultrasound in 32 (82%). Magnetic resonance imaging in the INC did not entail additional knowledge in 9 (18.7%) cases. Conclusions The INC enables MRI in preterm newborns and those with low/extremely low body weight. These studies are necessary to assess the extent of changes in the central nervous system and other organs. Incubator coils, designed specifically for neonates, allow more accurate diagnosis than previously used coils for adults. MRI results allow one to determine prognosis, for more accurate planning of diagnostics, helping to make appropriate therapeutic decisions. PMID:27695498

  12. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  13. Gadolinium-enhanced magnetic resonance angiography in brain death

    NASA Astrophysics Data System (ADS)

    Luchtmann, M.; Beuing, O.; Skalej, M.; Kohl, J.; Serowy, S.; Bernarding, J.; Firsching, R.

    2014-01-01

    Confirmatory tests for the diagnosis of brain death in addition to clinical findings may shorten observation time required in some countries and may add certainty to the diagnosis under specific circumstances. The practicability of Gadolinium-enhanced magnetic resonance angiography to confirm cerebral circulatory arrest was assessed after the diagnosis of brain death in 15 patients using a 1.5 Tesla MRI scanner. In all 15 patients extracranial blood flow distal to the external carotid arteries was undisturbed. In 14 patients no contrast medium was noted within intracerebral vessels above the proximal level of the intracerebral arteries. In one patient more distal segments of the anterior and middle cerebral arteries (A3 and M3) were filled with contrast medium. Gadolinium-enhanced MRA may be considered conclusive evidence of cerebral circulatory arrest, when major intracranial vessels fail to fill with contrast medium while extracranial vessels show normal blood flow.

  14. Specific Pathogen Detection Using Bioorthogonal Chemistry and Diagnostic Magnetic Resonance

    PubMed Central

    Liong, Monty; Fernandez-Suarez, Marta; Issadore, David; Min, Changwook; Tassa, Carlos; Reiner, Thomas; Fortune, Sarah M.; Toner, Mehmet; Lee, Hakho; Weissleder, Ralph

    2011-01-01

    The development of faster and more sensitive detection methods capable of identifying specific bacterial types and strains has remained a longstanding clinical challenge. Thus to date, the diagnosis of bacterial infections continues to rely on the performance of time-consuming cultures. Here, we demonstrate the use of bioorthogonal chemistry for magnetically labeling specific pathogens to enable their subsequent detection by nuclear magnetic resonance. Antibodies against a bacterial target of interest were first modified with trans-cyclooctene and then coupled to tetrazine-modified magnetic nanoprobes, directly on the bacteria. This labeling method was verified using surface plasmon resonance as well as by using a miniaturized diagnostic magnetic resonance device capable of highly specific detection of Staphylococcus aureus. Compared to other copper-free bioorthogonal chemistries, the cycloaddition reaction described displayed faster kinetics and yielded higher labeling efficiency. Considering the short assay times and the portability of the necessary instrumentation, it is feasible that this approach could be adapted for clinical use in resource-limited settings. PMID:22043803

  15. Magnetic Resonance Force Microscopy Detected Long-Lived Spin Magnetization

    PubMed Central

    Chen, Lei; Longenecker, Jonilyn G.; Moore, Eric W.; Marohn, John A.

    2015-01-01

    Magnetic resonance force microscopy (MRFM), which combines magnetic resonance imaging with scanning probe microscopy together, is capable of performing ultra-sensitive detection of spin magnetization. In an attempt to observe dynamic nuclear polarization (DNP) in an MRFM experiment, which could possibly further improve its sensitivity towards a single proton spin, a film of perdeuterated polystyrene doped with a nitroxide electron-spin probe was prepared. A high-compliance cantilever with a 4 μm diameter magnetic tip was brought near the film at a temperature of 7.3 K and in a background magnetic field of ~0.6 T. The film was irradiated with 16.7 GHz microwaves while the resulting transient change in cantilever frequency was recorded in real time. In addition to observing the expected prompt change in cantilever frequency due to saturation of the nitroxide’s electron-spin magnetization, we observed a persistent cantilever frequency change. Based on its magnitude, lifetime, and field dependence, we tentatively attribute the persistent signal to polarized deuteron magnetization created via transfer of magnetization from electron spins. Further measurements of the persistent signal’s dependence on the cantilever amplitude and tip-sample separation are presented and explained by the cross-effect DNP mechanism in high magnetic field gradients. PMID:26097251

  16. Interaction of magnetic resonators studied by the magnetic field enhancement

    NASA Astrophysics Data System (ADS)

    Hou, Yumin

    2013-12-01

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters-shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  17. Interaction of magnetic resonators studied by the magnetic field enhancement

    SciTech Connect

    Hou, Yumin

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  18. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    PubMed Central

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  19. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions.

    PubMed

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-09-15

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including nonalcoholic fatty liver disease, will be elaborated. PMID:27563019

  20. An introduction to nuclear magnetic resonance in biomedicine.

    PubMed

    Andrew, E R

    1990-02-01

    In this paper the author illustrates the historical aspects of the development, first, of the fundamental principles of nuclear magnetic resonance and, second, the extension of these principles to magnetic resonance imaging and in vivo spectroscopy.

  1. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  2. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  3. Volume coil based on hybridized resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Jouvaud, C.; Abdeddaim, R.; Larrat, B.; de Rosny, J.

    2016-01-01

    We present an electromagnetic device based on hybridization of four half-wavelength dipoles which increases the uniformity and the strength of the radio-frequency (RF) field of a Magnetic Resonant Imaging (MRI) apparatus. Numerical results show that this Hybridized Coil (HC) excited with a classical loop coil takes advantage of the magnetic hybrid modes. The distribution of the RF magnetic field is experimentally confirmed on a 7-T MRI with a gelatin phantom. Finally, the HC is validated in vivo by imaging the head of an anesthetized rat. We measure an overall increase of the signal to noise ratio with up to 2.4 fold increase in regions of interest far from the active loop coil.

  4. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  5. Imaging medullary cystic kidney disease with magnetic resonance.

    PubMed

    Meier, Pascal; Farres, Maria Teresa; Mougenot, Béatrice; Jacob, Laurent; Le Goas, Françoise; Antignac, Corinne; Ronco, Pierre

    2003-07-01

    Medullary cystic kidney disease is characterized by multiple renal cysts at the corticomedullary boundary area, by autosomal dominant inheritance, and by onset of chronic renal failure in the third decade of life. Its clinical manifestations are often insignificant and nonspecific. Furthermore, its diagnosis may be difficult in sporadic forms where genetic linkage analysis cannot be performed. The authors report the case of a patient presenting with a sporadic form of medullary cystic kidney disease whose diagnosis was confirmed using computerized tomography with 3-dimensional reconstruction at the nephrography-excretion time and magnetic resonance imaging (MRI) with magnetic resonance angiography and urography after the injection of gadolinium, a nonnephrotoxic compound. Both imaging techniques showed normal-sized, normal-shaped kidneys containing multiple cysts from 1 to 30 mm in diameter in the medulla and at the corticomedullary junction. A characteristic medullary nephrogram appeared after injection of iodinated contrast medium or gadolinium corresponding to contrast-filled dilated collecting ducts. This report shows that MRI with gadolinium injection can substitute for computerized tomography in azotemic patients. MRI seems particularly promising for the diagnosis of cystic diseases of the kidney and must also be considered when investigating a patient with chronic renal failure of unknown origin. PMID:12830488

  6. Neonatal life support during magnetic resonance imaging.

    PubMed

    Groenendaal, F; Leusink, C; Nijenhuis, M; Janssen, M J H

    2002-01-01

    Magnetic resonance techniques are required frequently for the assessment of the brain of ill neonates. In the present study, the effects of a 1.5 T MR scanner on devices for life support were assessed. A ventilator (Dräger Babylog 2000) was tested in the 1.5 T magnet, using a neonatal ventilation tester and 1.5-5 m tubes. In a special MR incubator, temperature and humidity were measured at 1-min intervals. Infusion was tested with the pump outside the magnet room: infusion rates and time to alarm were tested with 7-m tubes. The ventilator performed normally at a magnetic field line of 2 mT, although the alarms failed. The incubator created a temperature of 35.9 degrees C and humidity of 40.7%, which was acceptable for examinations of 45 min. The alarm limits of the infusion pump placed outside the magnet at 7 m were within company limits. The study indicates that magnetic resonance examinations can be performed safely in ill preterm neonates who require life-support devices.

  7. Magnetic resonance of calcified tissues

    PubMed Central

    Wehrli, Felix W.

    2016-01-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues – key among them bone – are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author’s laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI. PMID:23414678

  8. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  9. [Magnetic resonance compatibility research for coronary mental stents].

    PubMed

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect. PMID:26027299

  10. [Magnetic resonance compatibility research for coronary mental stents].

    PubMed

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  11. Magnetic resonance imaging of pancreatic metastases from renal cell carcinoma.

    PubMed

    Sikka, Amrita; Adam, Sharon Z; Wood, Cecil; Hoff, Frederick; Harmath, Carla B; Miller, Frank H

    2015-01-01

    Pancreatic metastases are rare but are thought to be most commonly from renal cell carcinoma (RCC). These metastases can present many years after the initial tumor is resected, and accordingly, these patients require prolonged imaging follow-up. Although the computed tomographic findings of these metastases have been extensively reviewed in the literature, little has been written about the magnetic resonance imaging appearance of these metastases. Pancreatic metastases from RCC are typically T1 hypointense and T2 hyperintense. After intravenous administration of gadolinium, they are typically hypervascular and less commonly hypovascular. Chemical shift and diffusion-weighted imaging can aid in the diagnosis of these metastases.

  12. Imaging tumor metabolism using in vivo magnetic resonance spectroscopy.

    PubMed

    Li, Yan; Park, Ilwoo; Nelson, Sarah J

    2015-01-01

    Magnetic resonance spectroscopy (MRS) is a powerful tool for noninvasively investigating normal and abnormal metabolism. When used in combination with imaging strategies, multinuclear MRS methods provide detailed biochemical information that can be directly correlated with anatomical features. Hyperpolarized C MRS is a new technology that reflects real-time metabolic conversion and is likely to be extremely valuable in managing patients with cancer. This article reviews the use of in vivo P, H, and C MRS for assessing cancer metabolism in order to provide information for diagnosis, planning treatment, assessing response to therapy, and predicting survival for patients with cancer.

  13. Magnetic resonance imaging with an optical atomicmagnetometer

    SciTech Connect

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-05-09

    Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

  14. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  15. A hyperpolarized equilibrium for magnetic resonance

    PubMed Central

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10−3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  16. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  17. Tissue discrimination in magnetic resonance imaging of the rotator cuff

    NASA Astrophysics Data System (ADS)

    Meschino, G. J.; Comas, D. S.; González, M. A.; Capiel, C.; Ballarin, V. L.

    2016-04-01

    Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health.

  18. Magnetic resonance imaging of the abdomen and pelvis

    SciTech Connect

    Not Available

    1989-01-20

    Magnetic resonance imaging (MRI) of the abdomen presents greater inherent difficulties than other anatomic regions. However, new techniques now allow imaging comparable in quality to computed tomography (CT). Magnetic resonance imaging offers the advantages of greater tissue contrast, multiplanar imaging, and lack of ionizing radiation or risk of toxic reactions from iodinated contrast media. Its use remains limited by high cost, limited availability, lack of a bowel contrast agent, and long imaging time, which some patients cannot tolerate. In many areas of abdominal imaging, MRI is now comparable to CT, but because of the greater availability and lesser cost, CT remains the procedure of choice. Magnetic resonance imaging is more accurate for staging neoplasms of the liver, adrenal glands, kidneys, bladder, prostate, uterus, and cervix and may aid in diagnosis of hepatic, adrenal, and uterine masses. In selected patients, especially those in whom CT is inconclusive or those who cannot tolerate iodinated contrast material, MRI can provide valuable information. Development of faster scanning techniques and MRI contrast agents and wider availability will probably increase the usefulness of abdominal MRI. At this time, MRI complements other abdominal imaging procedures. In a small number of patients, however, it can provide unique information in a virtually risk-free manner.

  19. Foundations of Advanced Magnetic Resonance Imaging

    PubMed Central

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B.; Krueger, Gunnar; Moseley, Michael E.; Glover, Gary H.

    2005-01-01

    Summary: During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now—within a few minutes—acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths. PMID:15897944

  20. Foundations of advanced magnetic resonance imaging.

    PubMed

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B; Krueger, Gunnar; Moseley, Michael E; Glover, Gary H

    2005-04-01

    During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now-within a few minutes-acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths.

  1. Magnetic resonance angiography: physical principles and applications.

    PubMed

    Kiruluta, Andrew J M; González, R Gilberto

    2016-01-01

    Magnetic resonance angiography (MRA) is the visualization of hemodynamic flow using imaging techniques that discriminate flowing spins in blood from those in stationary tissue. There are two classes of MRA methods based on whether the magnetic resonance imaging signal in flowing blood is derived from the amplitude of the moving spins, the time-of-flight methods, or is based on the phase accumulated by these flowing spins, as in phase contrast methods. Each method has particular advantages and limitations as an angiographic imaging technique, as evidenced in their application space. Here we discuss the physics of MRA for both classes of imaging techniques, including contrast-enhanced approaches and the recent rapid expansion of the techniques to fast acquisition and processing techniques using parallel imaging coils as well as their application in high-field MR systems such as 3T and 7T. PMID:27432663

  2. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  3. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  4. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  5. Nuclear magnetic resonance in Kondo lattice systems.

    PubMed

    Curro, Nicholas J

    2016-06-01

    Nuclear magnetic resonance has emerged as a vital tool to explore the fundamental physics of Kondo lattice systems. Because nuclear spins experience two different hyperfine couplings to the itinerant conduction electrons and to the local f moments, the Knight shift can probe multiple types of spin correlations that are not accessible via other techniques. The Knight shift provides direct information about the onset of heavy electron coherence and the emergence of the heavy electron fluid.

  6. Nuclear magnetic resonance quantum information processing

    PubMed Central

    Serra, R. M.; Oliveira, I. S.

    2012-01-01

    For the past decade, nuclear magnetic resonance (NMR) has been established as a main experimental technique for testing quantum protocols in small systems. This Theme Issue presents recent advances and major challenges of NMR quantum information possessing (QIP), including contributions by researchers from 10 different countries. In this introduction, after a short comment on NMR-QIP basics, we briefly anticipate the contents of this issue. PMID:22946031

  7. Cardiovascular magnetic resonance phase contrast imaging.

    PubMed

    Nayak, Krishna S; Nielsen, Jon-Fredrik; Bernstein, Matt A; Markl, Michael; D Gatehouse, Peter; M Botnar, Rene; Saloner, David; Lorenz, Christine; Wen, Han; S Hu, Bob; Epstein, Frederick H; N Oshinski, John; Raman, Subha V

    2015-01-01

    Cardiovascular magnetic resonance (CMR) phase contrast imaging has undergone a wide range of changes with the development and availability of improved calibration procedures, visualization tools, and analysis methods. This article provides a comprehensive review of the current state-of-the-art in CMR phase contrast imaging methodology, clinical applications including summaries of past clinical performance, and emerging research and clinical applications that utilize today's latest technology. PMID:26254979

  8. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  9. Utility of Magnetic Resonance Imaging in Cardiac Venous Anatomic Variants

    SciTech Connect

    Eckart, Robert E. Leitch, W. Shad; Shry, Eric A.; Krasuski, Richard A.; Lane, Michael J.; Leclerc, Kenneth M.

    2003-06-15

    The incidence of persistent left superior venacava (PLSVC) is approximately 0.5% in the general population; however,the coexistent absence of the right SVC has a reported incidence in tertiary centers of 0.1%. The vast majority of reports are limited to pediatric cardiology. Likewise, sinus of Valsalva aneurysm is a rare congenital anomaly, with a reported incidence of 0.1-3.5% of all congenital heart defects. We present a 71-year-old patient undergoing preoperative evaluation for incidental finding of aortic root aneurysm,and found to have all three in coexistence. Suggestive findings were demonstrated on cardiac catheterization and definitive diagnosis was made by magnetic resonance imaging. The use of MRI for the diagnosis of asymptomatic adult congenital heart disease will be reviewed.

  10. Magnetic Resonance Microscopy of Collagen Mineralization

    PubMed Central

    Chesnick, Ingrid E.; Mason, Jeffrey T.; Giuseppetti, Anthony A.; Eidelman, Naomi; Potter, Kimberlee

    2008-01-01

    A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T2) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T2 values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T2 values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 ± 0.02 for control strips to a maximum value of 0.31 ± 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils. PMID:18487295

  11. The application of computed tomography and magnetic resonance imaging at diagnostics of the human maxillofacial system

    NASA Astrophysics Data System (ADS)

    Nikitin, V.; Karavaeva, E.; Cherepennikov, Yu; Miloichikova, I.

    2016-06-01

    The application of computed tomography and magnetic resonance imaging has entered into wide practice at diagnosis of the maxillofacial system. Computed tomography allows us to obtain information about only bone structures. Magnetic resonance imaging gives information about bone and soft tissue structures of the maxillofacial system. The sagittal and coronal projections should make for complete diagnosis of the temporomandibular joint, because the articular disc is very mobile structure. We suggest that the temporomandibular joint can influences the internal carotid artery at medial displacement of the articular disc. As a result of analysis of the literature and our own studies concluded that changes TMJ affect the internal carotid artery.

  12. Magnetic Resonance Imaging of Adhesive Capsulitis: Correlation with Clinical Staging

    PubMed Central

    Ciavarra, Gina A.; Hannafin, Jo A.; Cordasco, Frank A.; Potter, Hollis G.

    2008-01-01

    The purpose of this study was to evaluate non-contrast magnetic resonance imaging (MRI) findings of adhesive capsulitis and correlate them with clinical stages of adhesive capsulitis. This will hopefully define a role for shoulder MR imaging in the diagnosis of adhesive capsulitis as well as in potentially directing appropriate treatment. Forty-seven consecutive non-contrast magnetic resonance imaging examinations of 46 patients with a clinical diagnosis of adhesive capsulitis were retrospectively reviewed and correlated with clinical staging. Specific MRI criteria correlated with the clinical stage of adhesive capsulitis, including the thickness and signal intensity of the joint capsule and synovium as well as the presence and severity of scarring in the rotator interval. Routine MRI of the shoulder without intraarticular administration of gadolinium can be used to diagnose all stages of adhesive capsulitis, including stage 1, where findings may be subtle on clinical examination. We believe that future studies assessing the role of MRI in guiding the initiation of appropriate treatment should be undertaken. PMID:18815860

  13. Compact low field magnetic resonance imaging magnet: Design and optimization

    NASA Astrophysics Data System (ADS)

    Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

    2000-03-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

  14. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians

    PubMed Central

    Grover, Vijay P.B.; Tognarelli, Joshua M.; Crossey, Mary M.E.; Cox, I. Jane; Taylor-Robinson, Simon D.; McPhail, Mark J.W.

    2015-01-01

    The development of magnetic resonance imaging (MRI) for use in medical investigation has provided a huge forward leap in the field of diagnosis, particularly with avoidance of exposure to potentially dangerous ionizing radiation. With decreasing costs and better availability, the use of MRI is becoming ever more pervasive throughout clinical practice. Understanding the principles underlying this imaging modality and its multiple applications can be used to appreciate the benefits and limitations of its use, further informing clinical decision-making. In this article, the principles of MRI are reviewed, with further discussion of specific clinical applications such as parallel, diffusion-weighted, and magnetization transfer imaging. MR spectroscopy is also considered, with an overview of key metabolites and how they may be interpreted. Finally, a brief view on how the use of MRI will change over the coming years is presented. PMID:26628842

  15. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert

    2012-11-01

    Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

  16. Magnetic resonance at the quantum limit

    NASA Astrophysics Data System (ADS)

    Bertet, Patrice

    The detection and characterization of paramagnetic species by electron-spin resonance (ESR) spectroscopy has numerous applications in chemistry, biology, and materials science. Most ESR spectrometers rely on the inductive detection of the small microwave signals emitted by the spins during their Larmor precession into a microwave resonator in which they are embedded. Using the tools offered by circuit Quantum Electrodynamics (QED), namely high quality factor superconducting micro-resonators and Josephson parametric amplifiers that operate at the quantum limit when cooled at 20mK, we report an increase of the sensitivity of inductively detected ESR by 4 orders of magnitude over the state-of-the-art, enabling the detection of 1700 Bismuth donor spins in silicon with a signal-to-noise ratio of 1 in a single echo. We also demonstrate that the energy relaxation time of the spins is limited by spontaneous emission of microwave photons into the measurement line via the resonator, which opens the way to on-demand spin initialization via the Purcell effect. These results constitute a first step towards circuit QED experiments with magnetically coupled individual spins.

  17. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  18. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  19. Magnetic resonance imaging in laboratory petrophysical core analysis

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Holland, D. J.; Gladden, L. F.; Fordham, E. J.

    2013-05-01

    Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2) relaxation time-the industry-standard metric in well-logging-at the laboratory-scale. These T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating

  20. Multiparametric magnetic resonance imaging of prostate cancer.

    PubMed

    Hedgire, Sandeep S; Oei, Tamara N; McDermott, Shaunagh; Cao, Kai; Patel M, Zena; Harisinghani, Mukesh G

    2012-07-01

    In India, prostate cancer has an incidence rate of 3.9 per 100,000 men and is responsible for 9% of cancer-related mortality. It is the only malignancy that is diagnosed with an apparently blind technique, i.e., transrectal sextant biopsy. With increasing numbers of high-Tesla magnetic resonance imaging (MRI) equipment being installed in India, the radiologist needs to be cognizant about endorectal MRI and multiparametric imaging for prostate cancer. In this review article, we aim to highlight the utility of multiparamteric MRI in prostate cancer. It plays a crucial role, mainly in initial staging, restaging, and post-treatment follow-up. PMID:23599562

  1. Creating a magnetic resonance imaging ontology.

    PubMed

    Lasbleiz, Jérémy; Saint-Jalmes, Hervé; Duvauferrier, Régis; Burgun, Anita

    2011-01-01

    The goal of this work is to build an ontology of Magnetic Resonance Imaging. The MRI domain has been analysed regarding MRI simulators and the DICOM standard. Tow MRI simulators have been analysed: JEMRIS, which is developed in XML and C++, has a hierarchical organisation and SIMRI, which is developed in C, has a good representation of MRI physical processes. To build the ontology we have used Protégé 4, owl2 that allows quantitative representations. The ontology has been validated by a reasoner (Fact++) and by a good representation of DICOM headers and of MRI processes. The MRI ontology would improved MRI simulators and eased semantic interoperability. PMID:21893854

  2. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  3. Magnetic Resonance Imaging of Pediatric Neurologic Emergencies.

    PubMed

    Lall, Neil U; Stence, Nicholas V; Mirsky, David M

    2015-12-01

    Although computed tomography is often the first line of imaging in the emergency setting, magnetic resonance imaging (MRI) is of increasing importance in the evaluation of central nervous system emergencies in the pediatric population. As such, it is necessary to understand the indications for which MRI may be necessary. This article reviews the unique pathophysiologic entities affecting the pediatric population and the associated MRI findings. Specifically, utility of emergent MRI and characteristic appearances of traumatic brain injury, traumatic spinal injury, nonaccidental trauma, arterial ischemic stroke, cerebral sinovenous thrombosis, stroke mimics, and central nervous system infections are described. PMID:26636636

  4. Magnetic resonance-guided prostate interventions.

    PubMed

    Haker, Steven J; Mulkern, Robert V; Roebuck, Joseph R; Barnes, Agnieska Szot; Dimaio, Simon; Hata, Nobuhiko; Tempany, Clare M C

    2005-10-01

    We review our experience using an open 0.5-T magnetic resonance (MR) interventional unit to guide procedures in the prostate. This system allows access to the patient and real-time MR imaging simultaneously and has made it possible to perform prostate biopsy and brachytherapy under MR guidance. We review MR imaging of the prostate and its use in targeted therapy, and describe our use of image processing methods such as image registration to further facilitate precise targeting. We describe current developments with a robot assist system being developed to aid radioactive seed placement. PMID:16924169

  5. Magnetic Resonance (MR) Metabolic Imaging in Glioma.

    PubMed

    Chaumeil, Myriam M; Lupo, Janine M; Ronen, Sabrina M

    2015-11-01

    This review is focused on describing the use of magnetic resonance (MR) spectroscopy for metabolic imaging of brain tumors. We will first review the MR metabolic imaging findings generated from preclinical models, focusing primarily on in vivo studies, and will then describe the use of metabolic imaging in the clinical setting. We will address relatively well-established (1) H MRS approaches, as well as (31) P MRS, (13) C MRS and emerging hyperpolarized (13) C MRS methodologies, and will describe the use of metabolic imaging for understanding the basic biology of glioma as well as for improving the characterization and monitoring of brain tumors in the clinic.

  6. Magnetic Resonance of Pelvic and Gastrointestinal Emergencies.

    PubMed

    Wongwaisayawan, Sirote; Kaewlai, Rathachai; Dattwyler, Matthew; Abujudeh, Hani H; Singh, Ajay K

    2016-05-01

    Magnetic resonance (MR) imaging is gaining increased acceptance in the emergency setting despite the continued dominance of computed tomography. MR has the advantages of more precise tissue characterization, superior soft tissue contrast, and a lack of ionizing radiation. Traditional barriers to emergent MR are being overcome by streamlined imaging protocols and newer rapid-acquisition sequences. As the utilization of MR imaging in the emergency department increases, a strong working knowledge of the MR appearance of the most commonly encountered abdominopelvic pathologies is essential. In this article, MR imaging protocols and findings of acute pelvic, scrotal, and gastrointestinal pathologies are discussed. PMID:27150327

  7. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  8. Magnetic resonance imaging of anorectal malformations.

    PubMed

    Podberesky, Daniel J; Towbin, Alexander J; Eltomey, Mohamed A; Levitt, Marc A

    2013-11-01

    Anorectal malformation (ARM) occurs in approximately 1 in 5000 newborns and is frequently accompanied by anomalies of the genitalia, gynecologic system, urinary tract, spine, and skeletal system. Diagnostic imaging plays a central role in ARM evaluation. Because of the lack of ionizing radiation, excellent intrinsic contrast resolution, multiplanar imaging capabilities, technical advances in hardware, and innovative imaging protocols, magnetic resonance (MR) imaging is increasingly important in assessment of ARM patients in utero, postnatally before definitive surgical correction, and in the postoperative period. This article discusses the role of MR imaging in evaluating ARM patients. PMID:24183526

  9. Magnetic resonance imaging in rheumatology. An overview.

    PubMed

    Nissenbaum, M A; Adamis, M K

    1994-05-01

    Magnetic resonance (MR) imaging has revolutionized the assessment of pathology involving the musculoskeletal system. The soft tissue contrast, superb resolution, multiplanar acquisition potential, and the ability to monitor physiologic processes combine the best features of other imaging modalities. The sensitivity and specificity of MR imaging for a wide range of disease processes matches or supersedes conventional radiology, nuclear medicine, and clinical examination. This article provides a brief overview of the use of MR imaging for some of the more common clinical situations confronting the rheumatologist.

  10. Proton Magnetic Resonance Spectroscopy in Multiple Sclerosis

    PubMed Central

    Sajja, Balasrinivasa R.; Wolinsky, Jerry S.

    2008-01-01

    Synopsis Proton magnetic resonance spectroscopy (1H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathological changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understanding its pathogenesis, evaluating the disease severity, establishing a prognosis, and objectively evaluating the efficacy of therapeutic interventions. PMID:19064199

  11. Magnetic resonance imaging of the elbow.

    PubMed

    Steinbach, L S; Fritz, R C; Tirman, P F; Uffman, M

    1997-11-01

    Magnetic resonance imaging (MRI) provides useful information regarding the elbow joint. Many abnormalities seen in the elbow are a result of trauma, often from sports such as baseball and tennis. Elbow problems are frequently related to the medial tension-lateral compression phenomenon where repeated valgus stress produces flexor-pronator strain, ulnar collateral ligament sprain, ulnar traction spurring, and ulnar neuropathy. The lateral compression causes osteochondritis dissecans of the capitellum and radial head, degenerative arthritis, and loose bodies. Other elbow abnormalities seen on MRI include radial collateral ligament injuries, biceps and triceps tendon injuries, other nerve entrapment syndromes, loose bodies, osseous and soft tissue trauma, arthritis, and masses, including bursae.

  12. Magnetization transfer magnetic resonance imaging: a clinical review.

    PubMed

    Mehta, R C; Pike, G B; Enzmann, D R

    1996-08-01

    Magnetic resonance imaging has traditionally used the T1 and T2 relaxation times and proton density (PD) of tissue water (hydrogen protons) to manipulate contrast. Magnetization transfer (MT) is a new form of tissue contrast based on the physical concept that tissues contain two or more separate populations of hydrogen protons: a highly mobile (free) hydrogen (water) pool, Hr, and an immobile (restricted) hydrogen pool, Hr, the latter being those protons bound to large macromolecular proteins and lipids, such as those found in such cellular membranes as myelin. Direct observation of the Hr magnetization pool is normally not possible because of its extremely short T2 time (< 200 microseconds). But saturation of the restricted pool will have a detectable effect on the mobile (free) proton pool. Saturation of the restricted pool decreases the signal of the free pool by transferring the restricted pool's saturation. Exchange of magnetization between the free and restricted hydrogen protons is a substantial mechanism for spin-lattice (T1) relaxation in tissues and the physical basis of MT. Through an appropriately designed pulse sequence, magnetization transfer contrast (MTC) can be produced. MT contrast is different from T1, T2, and PD, and it likely reflects the structural integrity of the tissue being imaged. A variety of clinically important uses of MT have emerged. In this clinical review of the neuroradiological applications of MT, we briefly review the physics of MT, the appearance of normal brain with MT, and the use of MT as a method of contrast enhancement/background suppression and in tissue characterization, such as evaluation of multiple sclerosis and other white-matter lesions and tumors. The role of MT in small-vessel visualization on three-dimensional time-of-flight magnetic resonance angiography and in head and neck disease and newer applications of MT are also elaborated. PMID:8870180

  13. [Fetal ocular anomalies: the advantages of prenatal magnetic resonance imaging].

    PubMed

    Brémond-Gignac, D; Copin, H; Elmaleh, M; Milazzo, S

    2010-05-01

    Congenital ocular malformations are uncommon and require prenatal diagnosis. Severe anomalies are more often detected by trained teams and minor anomalies are more difficult to identify and must be systematically sought, particularly when multiple malformations or a family and maternal history is known. The prenatal diagnosis-imaging tool most commonly used is ultrasound but it can be completed by magnetic resonance imaging (MRI), which contributes crucial information. Fetal dysmorphism can occur in various types of dysfunction and prenatal diagnosis must recognize fetal ocular anomalies. After systematic morphologic ultrasound imaging, different abnormalities detected by MRI are studied. Classical parameters such as binocular and interorbital measurements are used to detect hypotelorism and hypertelorism. Prenatal ocular anomalies such as cataract microphthalmia, anophthalmia, and coloboma have been described. Fetal MRI added to prenatal sonography is essential in detecting cerebral and general anomalies and can give more information on the size and morphology of the eyeball. Fetal abnormality detection includes a detailed family and maternal history, an amniotic fluid sample for karyotype, and other analyses for a better understanding of the images. Each pregnancy must be discussed with all specialists for genetic counseling. With severe malformations, termination of pregnancy is proposed because of risk of blindness and associated cerebral or systemic anomalies. Early prenatal diagnosis of ocular malformations can also detect associated abnormalities, taking congenital cataracts that need surgical treatment into account as early as possible. Finally, various associated syndromes need a pediatric check-up that could lead to emergency treatment.

  14. The magnetic resonance appearance of surfers' knots: a case report.

    PubMed

    McManus, Luke J; Thomson, Andrew; Whan, Andrew

    2016-09-01

    Athletes are at increased risk of developing soft-tissue lesions of the lower limbs. Although the majority of these will be benign, the differential diagnosis is broad and increasingly, doctors are turning to magnetic resonance imaging (MRI) as a first-line investigation when presented with these sorts of lesions, both to narrow the differential diagnosis and exclude malignancy. We report the case of a 28-year-old Caucasian man who presented with 2 soft-tissue lesions of the right foot. History and examination of the nodules fitted with a diagnosis of surfers' knots, an unusual form of acquired, benign, connective tissue nodule that may appear over the tibial tuberosities, dorsum of the feet, and occasionally on the chest of surfers in association with repetitive microtrauma during surfing. MRI findings were consistent with this diagnosis with both lesions exhibiting T1 hypointensity and speckled T2 hypointensity with no significant blooming artifact on gradient echo imaging. When imaged with gadolinium, they demonstrated only mild contrast enhancement. MRI is a valuable tool when investigating athletes with soft-tissue lesions over the lower limbs where the possibility of malignancy must be addressed. In selected cases, MRI may be sufficient to permit a conservative approach to the management of these patients. PMID:27594950

  15. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  16. Near-Zero-Field Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Theis, T.; Blanchard, J. W.; Ring, H.; Ganssle, P.; Appelt, S.; Blümich, B.; Pines, A.; Budker, D.

    2011-09-01

    We investigate nuclear magnetic resonance (NMR) in near zero field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J coupling). This is in stark contrast to the high-field case, where heteronuclear J couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with nontrivial spectra.

  17. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  18. Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

    2014-11-01

    In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

  19. Magnetic Resonance Microscopy of the Lung

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan

    1999-11-01

    The lung presents both challenges and opportunities for study by magnetic resonance imaging (MRI). The technical challenges arise from respiratory and cardiac motion, limited signal from the tissues, and unique physical structure of the lung. These challenges are heightened in magnetic resonance microscopy (MRM) where the spatial resolution may be up to a million times higher than that of conventional MRI. The development of successful techniques for MRM of the lung present enormous opportunities for basic studies of lung structure and function, toxicology, environmental stress, and drug discovery by permitting investigators to study this most essential organ nondestructively in the live animal. Over the last 15 years, scientists at the Duke Center for In Vivo Microscopy have developed techniques for MRM in the live animal through an interdisciplinary program of biology, physics, chemistry, electrical engineering, and computer science. This talk will focus on the development of specialized radiofrequency coils for lung imaging, projection encoding methods to limit susceptibility losses, specialized support structures to control and monitor physiologic motion, and the most recent development of hyperpolarized gas imaging with ^3He and ^129Xe.

  20. General review of magnetic resonance elastography

    PubMed Central

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-01

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  1. PLANTAR THROMBOPHLEBITIS: MAGNETIC RESONANCE IMAGING FINDINGS

    PubMed Central

    Miranda, Frederico Celestino; Carneiro, Renato Duarte; Longo, Carlos Henrique; Fernandes, Túlio Diniz; Rosemberg, Laércio Alberto; de Gusmão Funari, Marcelo Buarque

    2015-01-01

    Objective: Demonstrate the magnetic resonance imaging (MRI) findings in plantar thrombophlebitis. Methods: Retrospective review of twenty patients with pain in the plantar region of the foot, in which the MRI findings indicated plantar thrombophlebitis. Results: A total of fourteen men and six women, mean age 46.7 years were evaluated. Eight of these patients also underwent Doppler ultrasonography, which confirmed the thrombophlebitis. The magnetic resonance images were evaluated in consensus by two radiologists with experience in musculoskeletal radiology (more than 10 years each), showing perivascular edema in all twenty patients (100%) and muscle edema in nineteen of the twenty patients (95%). All twenty patients had intraluminal intermediate signal intensity on T2-weighted (100%) and venous ectasia was present in seventeen of the twenty cases (85%). Collateral veins were visualized in one of the twenty patients (5%). All fourteen cases (100%), in which intravenous contrast was administered, showed perivenular tissues enhancement and intraluminal filling defect. Venous ectasia, loss of compressibility and no flow on Doppler ultrasound were also observed in all eight cases examined by the method. Conclusion: MRI is a sensitive in the evaluation of plant thrombophlebitis in patients with plantar foot pain. PMID:27047898

  2. Magnetic resonance imaging. Application to family practice.

    PubMed Central

    Goh, R. H.; Somers, S.; Jurriaans, E.; Yu, J.

    1999-01-01

    OBJECTIVE: To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. QUALITY OF EVIDENCE: Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. MAIN MESSAGE: For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. CONCLUSIONS: With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:10509224

  3. General review of magnetic resonance elastography.

    PubMed

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-28

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing "virtual palpation", MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  4. Phosphorus 31 nuclear magnetic resonance examination of female reproductive tissues

    SciTech Connect

    Noyszewski, E.A.; Raman, J.; Trupin, S.R.; McFarlin, B.L.; Dawson, M.J. )

    1989-08-01

    Nuclear magnetic resonance spectroscopy is a powerful method of investigating the relationship between metabolism and function in living tissues. We present evidence that the phosphorus 31 spectra of myometrium and placenta are functions of physiologic state and gestational age. Specific spectroscopic abnormalities are observed in association with disorders of pregnancy and gynecologic diseases. Our results suggest that noninvasive nuclear magnetic resonance spectroscopy examinations may sometimes be a useful addition to magnetic resonance imaging examinations, and that nuclear magnetic resonance spectroscopy of biopsy specimens could become a cost-effective method of evaluating certain biochemical abnormalities.

  5. Clear Depiction of Inflammatory Abdominal Aortic Aneurysm with Diffusion-Weighted Magnetic Resonance Imaging

    SciTech Connect

    Orta Kilickesmez, Kadriye; Kilickesmez, Ozgur

    2010-04-15

    We report the case of an inflammatory abdominal aortic aneurysm incidentally detected clearly with diffusion-weighted magnetic resonance imaging (DW-MRI) during the examination of a patient with myelofibrosis with myeloid metaplasia that later converted to acute myeloid leukemia. DW-MRI revealed a hyperintense halo surrounding the abdominal aorta with aneurysmatic dilatation, establishing the diagnosis.

  6. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are

  7. Stable cerasomes for simultaneous drug delivery and magnetic resonance imaging

    PubMed Central

    Cao, Zhong; Zhu, Wenjian; Wang, Wei; Zhang, Chunyang; Xu, Ming; Liu, Jie; Feng, Shi-Ting; Jiang, Qing; Xie, Xiaoyan

    2014-01-01

    Magnetic liposomes have been frequently used as nanocarriers for targeted drug delivery and magnetic resonance imaging in recent years. Despite great potentials, their morphological/structural instability in the physiological environment still remains an intractable challenge for clinical applications. In this study, stable hybrid liposomal cerasomes (ie, liposomes partially coated with silica) which can co-encapsulate Fe3O4 nanoparticles and the anticancer drug paclitaxel were developed using thin film hydration method. Compared with the drug loaded liposomes, the paclitaxel-loaded magnetic cerasomes (PLMCs) exhibited much higher storage stability and better sustained release behavior. Cellular uptake study showed that the utilization of an external magnetic field significantly facilitated the internalization of PLMCs into cancer cells, resulting in potentiated drug efficacy of killing tumor cells. The T2 relaxivity (r2) of our PLMCs was much higher than that of free Fe3O4 nanoparticles, suggesting increased sensitivity in T2-weighted imaging. Given its excellent biocompatibility also shown in the study, such dual functional PLMC is potentially a promising nanosystem for effective cancer diagnosis and therapy. PMID:25395848

  8. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  9. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  10. Acoustic noise during functional magnetic resonance imaging.

    PubMed

    Ravicz, M E; Melcher, J R; Kiang, N Y

    2000-10-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  11. Functional magnetic resonance imaging using RASER

    PubMed Central

    Goerke, Ute; Garwood, Michael; Ugurbil, Kamil

    2010-01-01

    Although functional imaging of neuronal activity by magnetic resonance imaging (fMRI) has become the primary methodology employed in studying the brain, significant portions of the brain are inaccessible by this methodology due to its sensitivity to macroscopic magnetic field inhomogeneities induced near air filled cavities in the head. In this paper, we demonstrate that this sensitivity is eliminated by a novel pulse sequence, RASER (rapid acquisition by sequential excitation and refocusing) (Chamberlain et al., 2007), that can generate functional maps. This is accomplished because RASER acquired signals are purely and perfectly T2 weighted, without any T2*-effects that are inherent in the other image acquisition schemes employed to date. T2-weighted fMRI sequences are also more specific to the site of neuronal activity at ultrahigh magnetic fields than T2*-variations since they are dominated by signal components originating from the tissue in the capillary bed. The RASER based fMRI response is quantified; it is shown to have inherently less noisy time series and to provide fMRI in brain regions, such as the orbitofrontal cortex, which are challenging to image with conventional techniques. PMID:20699123

  12. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia

    2013-07-01

    Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.

  13. Elbow magnetic resonance imaging: imaging anatomy and evaluation.

    PubMed

    Hauptfleisch, Jennifer; English, Collette; Murphy, Darra

    2015-04-01

    The elbow is a complex joint. Magnetic resonance imaging (MRI) is often the imaging modality of choice in the workup of elbow pain, especially in sports injuries and younger patients who often have either a history of a chronic repetitive strain such as the throwing athlete or a distinct traumatic injury. Traumatic injuries and alternative musculoskeletal pathologies can affect the ligaments, musculotendinous, cartilaginous, and osseous structures of the elbow as well as the 3 main nerves to the upper limb, and these structures are best assessed with MRI.Knowledge of the complex anatomy of the elbow joint as well as patterns of injury and disease is important for the radiologist to make an accurate diagnosis in the setting of elbow pain. This chapter will outline elbow anatomy, basic imaging parameters, compartmental pathology, and finally applications of some novel MRI techniques. PMID:25835585

  14. Middle cerebellar peduncles: Magnetic resonance imaging and pathophysiologic correlate

    PubMed Central

    Morales, Humberto; Tomsick, Thomas

    2015-01-01

    We describe common and less common diseases that can cause magnetic resonance signal abnormalities of middle cerebellar peduncles (MCP), offering a systematic approach correlating imaging findings with clinical clues and pathologic mechanisms. Myelin abnormalities, different types of edema or neurodegenerative processes, can cause areas of abnormal T2 signal, variable enhancement, and patterns of diffusivity of MCP. Pathologies such as demyelinating disorders or certain neurodegenerative entities (e.g., multiple system atrophy or fragile X-associated tremor-ataxia syndrome) appear to have predilection for MCP. Careful evaluation of concomitant imaging findings in the brain or brainstem; and focused correlation with key clinical findings such as immunosuppression for progressive multifocal leukoencephalopahty; hypertension, post-transplant status or high dose chemotherapy for posterior reversible encephalopathy; electrolyte disorders for myelinolysis or suspected toxic-drug related encephalopathy; would yield an appropriate and accurate differential diagnosis in the majority of cases. PMID:26751508

  15. Magnetic Resonance of Porous Media (MRPM): A perspective

    NASA Astrophysics Data System (ADS)

    Song, Yi-Qiao

    2013-04-01

    Porous media are ubiquitous in our environment and their application is extremely broad. The common connection between these diverse materials is the importance of the microstructure (μm to mm scale) in determining the physical, chemical and biological functions and properties. Magnetic resonance and its imaging modality have been essential for noninvasive characterization of these materials, in the development of catalysts, understanding cement hydration, fluid transport in rocks and soil, geological prospecting, and characterization of tissue properties for medical diagnosis. The past two decades have witnessed significant development of MRPM that couples advances in physics, chemistry and engineering with a broad range of applications. This article will summarize key advances in basic physics and methodology, examine their limitations and envision future R&D directions.

  16. Early magnetic resonance imaging control after temporomandibular joint arthrocentesis

    PubMed Central

    Ângelo, David Faustino; Sousa, Rita; Pinto, Isabel; Sanz, David; Gil, F. Monje; Salvado, Francisco

    2015-01-01

    Temporomandibular joint (TMJ) lysis and lavage arthrocentesis with viscosupplementation are an effective treatment for acute disc displacement (DD) without reduction. Clinical success seems to be related to multiple factors despite the lack of understanding of its mechanisms. The authors present a case report of 17-year-old women with acute open mouth limitation (12 mm), right TMJ pain-8/10 visual analog scale, right deviation when opening her mouth. The clinical and magnetic resonance imaging (MRI) diagnosis was acute DD without reduction of right TMJ. Right TMJ arthrocentesis was purposed to the patient with lysis, lavage, and viscosupplementation of the upper joint space. After 5 days, a new MRI was performed to confirm upper joint space distension and disc position. Clinical improvement was obtained 5 days and 1 month after arthrocentesis. Upper joint space increased 6 mm and the disc remained displaced. We report the first early TMJ MRI image postoperative, with measurable upper joint space. PMID:26981483

  17. Elbow magnetic resonance imaging: imaging anatomy and evaluation.

    PubMed

    Hauptfleisch, Jennifer; English, Collette; Murphy, Darra

    2015-04-01

    The elbow is a complex joint. Magnetic resonance imaging (MRI) is often the imaging modality of choice in the workup of elbow pain, especially in sports injuries and younger patients who often have either a history of a chronic repetitive strain such as the throwing athlete or a distinct traumatic injury. Traumatic injuries and alternative musculoskeletal pathologies can affect the ligaments, musculotendinous, cartilaginous, and osseous structures of the elbow as well as the 3 main nerves to the upper limb, and these structures are best assessed with MRI.Knowledge of the complex anatomy of the elbow joint as well as patterns of injury and disease is important for the radiologist to make an accurate diagnosis in the setting of elbow pain. This chapter will outline elbow anatomy, basic imaging parameters, compartmental pathology, and finally applications of some novel MRI techniques.

  18. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma

    PubMed Central

    Mastropasqua, Rodolfo; Agnifili, Luca; Mattei, Peter A.; Caulo, Massimo; Fasanella, Vincenzo; Navarra, Riccardo; Mastropasqua, Leonardo; Marchini, Giorgio

    2015-01-01

    Glaucoma is a multifactorial disease that is the leading cause of irreversible blindness. Recent data documented that glaucoma is not limited to the retinal ganglion cells but that it also extends to the posterior visual pathway. The diagnosis is based on the presence of signs of glaucomatous optic neuropathy and consistent functional visual field alterations. Unfortunately these functional alterations often become evident when a significant amount of the nerve fibers that compose the optic nerve has been irreversibly lost. Advanced morphological and functional magnetic resonance (MR) techniques (morphometry, diffusion tensor imaging, arterial spin labeling, and functional connectivity) may provide a means for observing modifications induced by this fiber loss, within the optic nerve and the visual cortex, in an earlier stage. The aim of this systematic review was to determine if the use of these advanced MR techniques could offer the possibility of diagnosing glaucoma at an earlier stage than that currently possible. PMID:26167474

  19. Early magnetic resonance imaging control after temporomandibular joint arthrocentesis.

    PubMed

    Ângelo, David Faustino; Sousa, Rita; Pinto, Isabel; Sanz, David; Gil, F Monje; Salvado, Francisco

    2015-01-01

    Temporomandibular joint (TMJ) lysis and lavage arthrocentesis with viscosupplementation are an effective treatment for acute disc displacement (DD) without reduction. Clinical success seems to be related to multiple factors despite the lack of understanding of its mechanisms. The authors present a case report of 17-year-old women with acute open mouth limitation (12 mm), right TMJ pain-8/10 visual analog scale, right deviation when opening her mouth. The clinical and magnetic resonance imaging (MRI) diagnosis was acute DD without reduction of right TMJ. Right TMJ arthrocentesis was purposed to the patient with lysis, lavage, and viscosupplementation of the upper joint space. After 5 days, a new MRI was performed to confirm upper joint space distension and disc position. Clinical improvement was obtained 5 days and 1 month after arthrocentesis. Upper joint space increased 6 mm and the disc remained displaced. We report the first early TMJ MRI image postoperative, with measurable upper joint space. PMID:26981483

  20. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  1. The magnetic resonance imaging-linac system.

    PubMed

    Lagendijk, Jan J W; Raaymakers, Bas W; van Vulpen, Marco

    2014-07-01

    The current image-guided radiotherapy systems are suboptimal in the esophagus, pancreas, kidney, rectum, lymph node, etc. These locations in the body are not easily accessible for fiducials and cannot be visualized sufficiently on cone-beam computed tomographies, making daily patient set-up prone to geometrical uncertainties and hinder dose optimization. Additional interfraction and intrafraction uncertainties for those locations arise from motion with breathing and organ filling. To allow real-time imaging of all patient tumor locations at the actual treatment position a fully integrated 1.5-T, diagnostic quality, magnetic resonance imaging with a 6-MV linear accelerator is presented. This system must enable detailed dose painting at all body locations. PMID:24931095

  2. Simplifying cardiovascular magnetic resonance pulse sequence terminology.

    PubMed

    Friedrich, Matthias G; Bucciarelli-Ducci, Chiara; White, James A; Plein, Sven; Moon, James C; Almeida, Ana G; Kramer, Christopher M; Neubauer, Stefan; Pennell, Dudley J; Petersen, Steffen E; Kwong, Raymond Y; Ferrari, Victor A; Schulz-Menger, Jeanette; Sakuma, Hajime; Schelbert, Erik B; Larose, Éric; Eitel, Ingo; Carbone, Iacopo; Taylor, Andrew J; Young, Alistair; de Roos, Albert; Nagel, Eike

    2014-01-01

    We propose a set of simplified terms to describe applied Cardiovascular Magnetic Resonance (CMR) pulse sequence techniques in clinical reports, scientific articles and societal guidelines or recommendations. Rather than using various technical details in clinical reports, the description of the technical approach should be based on the purpose of the pulse sequence. In scientific papers or other technical work, this should be followed by a more detailed description of the pulse sequence and settings. The use of a unified set of widely understood terms would facilitate the communication between referring physicians and CMR readers by increasing the clarity of CMR reports and thus improve overall patient care. Applied in research articles, its use would facilitate non-expert readers' understanding of the methodology used and its clinical meaning. PMID:25551695

  3. Cine magnetic resonance imaging of eye movements.

    PubMed

    Bailey, C C; Kabala, J; Laitt, R; Weston, M; Goddard, P; Hoh, H B; Potts, M J; Harrad, R A

    1993-01-01

    Cine magnetic resonance imaging (MRI) is a technique in which multiple sequential static orbital MRI films are taken while the patient fixates a series of targets across the visual field. These are then sequenced to give a graphic animation to the eyes. The excellent soft tissue differentiation of MRI, combined with the dynamic imaging, allows rapid visualisation, and functional assessment of the extraocular muscles. Good assessment of contractility can be obtained, but the technique does not allow study of saccadic or pursuit eye movements. We have used this technique in 36 patients with a range of ocular motility disorders, including thyroid-related ophthalmopathy, blow-out fracture, post-operative lost or slipped muscle, and Duane's syndrome.

  4. Magnetic resonance imaging after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Leblanc, Adrian

    1993-01-01

    A number of physiological changes were demonstrated in bone, muscle, and blood from exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long-duration space missions is an important NASA goal. Historically, NASA has had to rely on tape measures, x-ray, and metabolic balance studies with collection of excreta and blood specimens to obtain this information. The development of magnetic resonance imaging (MRI) offers the possibility of greatly extending these early studies in ways not previously possible; MRI is also non-invasive and safe; i.e., no radiation exposure. MRI provides both superb anatomical images for volume measurements of individual structures and quantification of chemical/physical changes induced in the examined tissues. This investigation will apply MRI technology to measure muscle, intervertebral disc, and bone marrow changes resulting from exposure to microgravity.

  5. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  6. Magnetic resonance imaging of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Tofts, P S; Johnson, G; Landon, D N

    1986-01-01

    Triethyl tin(TET)-induced cerebral oedema has been studied in cats by magnetic resonance imaging (MRI), and the findings correlated with the histology and fine structure of the cerebrum following perfusion-fixation. MRI is a sensitive technique for detecting cerebral oedema, and the distribution and severity of the changes correlate closely with the morphological abnormalities. The relaxation times, T1 and T2 increase progressively as the oedema develops, and the proportional increase in T2 is approximately twice that in T1. Analysis of the magnetisation decay curves reveals slowly-relaxing and rapidly-relaxing components which probably correspond to oedema fluid and intracellular water respectively. The image appearances taken in conjunction with relaxation data provide a basis for determining the nature of the oedema in vivo. Images PMID:3806109

  7. [Structural magnetic resonance imaging in epilepsy].

    PubMed

    Álvarez-Linera Prado, J

    2012-01-01

    Magnetic resonance imaging is the main structural imaging in epilepsy. In patients with focal seizures, detection (and characterization) of a structural lesion consistent with electroclinical data allows therapeutic decisions without having to resort to other more expensive or invasive diagnostic procedures. The identification of some lesions may provide prognostic value, as in the case of Mesial Temporal Sclerosis (MTS) or may contribute to genetic counseling, as in the case of some Malformations of Cortical Development (MCD). The aim of this paper is to review the current state of structural MRI techniques, propose a basic protocol of epilepsy and mention the indications for structural MRI. Also, review the semiology of the main causes of epilepsy, with emphasis on MTS and MCD, by its highest frequency and by the special impact that MRI has shown in dealing with these entities.

  8. Two-dimensional nuclear magnetic resonance petrophysics.

    PubMed

    Sun, Boqin; Dunn, Keh-Jim

    2005-02-01

    Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623

  9. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology.

    PubMed

    Jakab, András; Pogledic, Ivana; Schwartz, Ernst; Gruber, Gerlinde; Mitter, Christian; Brugger, Peter C; Langs, Georg; Schöpf, Veronika; Kasprian, Gregor; Prayer, Daniela

    2015-12-01

    The recent technological advancement of fast magnetic resonance imaging (MRI) sequences allowed the inclusion of diffusion tensor imaging, functional MRI, and proton MR spectroscopy in prenatal imaging protocols. These methods provide information beyond morphology and hold the key to improving several fields of human neuroscience and clinical diagnostics. Our review introduces the fundamental works that enabled these imaging techniques, and also highlights the most recent contributions to this emerging field of prenatal diagnostics, such as the structural and functional connectomic approach. We introduce the advanced image processing approaches that are extensively used to tackle fetal or maternal movement-related image artifacts, and which are necessary for the optimal interpretation of such imaging data. PMID:26614130

  10. Magnetic resonance imaging near metal implants.

    PubMed

    Koch, K M; Hargreaves, B A; Pauly, K Butts; Chen, W; Gold, G E; King, K F

    2010-10-01

    The desire to apply magnetic resonance imaging (MRI) techniques in the vicinity of embedded metallic hardware is increasing. The soft-tissue contrast available with MR techniques is advantageous in diagnosing complications near an increasing variety of MR-safe metallic hardware. Near such hardware, the spatial encoding mechanisms utilized in conventional MRI methods are often severely compromised. Mitigating these encoding difficulties has been the focus of numerous research investigations over the past two decades. Such approaches include view-angle tilting, short echo-time projection reconstruction acquisitions, single-point imaging, prepolarized MRI, and postprocessing image correction. Various technical advances have also enabled the recent development of two alternative approaches that have shown promising clinical potential. Here, the physical principals and proposed solutions to the problem of MRI near embedded metal are discussed.

  11. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  12. Musculoskeletal applications of nuclear magnetic resonance

    SciTech Connect

    Moon, K.L. Jr.; Genant, H.K.; Helms, C.A.; Chafetz, N.I.; Crooks, L.E.; Kaufman, L.

    1983-04-01

    Thirty healthy subjects and 15 patients with a variety of musculoskeletal disorders were examined by conventional radiography, computed tomography (CT), and nuclear magnetic resonance (NMR). NMR proved capable of demonstrating important anatomic structures in the region of the lumbosacral spine. Lumbar disk protrusion was demonstrated in three patients with CT evidence of the disease. NMR appeared to differentiate annulus fibrosus from nucleus pulposus in intervertebral disk material. Avascular necrosis of the femoral head was demonstrated in two patients. The cruciate ligaments of the knee were well defined by NMR. Musceles, tendons and ligaments, and blood vessels could be reliably differentiated, and the excellent soft-tissue contrast of NMR proved useful in the evaluation of bony and soft-tissue tumors. NMR holds promise in the evaluation of musculoskeletal disorders.

  13. A novel digital magnetic resonance imaging spectrometer.

    PubMed

    Liu, Zhengmin; Zhao, Cong; Zhou, Heqin; Feng, Huanqing

    2006-01-01

    Spectrometer is the essential part of magnetic resonance imaging (MRI) system. It controls the transmitting and receiving of signals. Many commercial spectrometers are now available. However, they are usually costly and complex. In this paper, a new digital spectrometer based on PCI extensions for instrumentation (PXI) architecture is presented. Radio frequency (RF) pulse is generated with the method of digital synthesis and its frequency and phase are continuously tunable. MR signal acquired by receiver coils is processed by digital quadrature detection and filtered to get the k-space data, which avoid the spectral distortion due to amplitude and phase errors between two channels of traditional detection. Compared to the conventional design, the presented spectrometer is built with general PXI platform and boards. This design works in a digital manner with features of low cost, high performance and accuracy. The experiments demonstrate its efficiency.

  14. Chest magnetic resonance imaging: a protocol suggestion*

    PubMed Central

    Hochhegger, Bruno; de Souza, Vinícius Valério Silveira; Marchiori, Edson; Irion, Klaus Loureiro; Souza Jr., Arthur Soares; Elias Junior, Jorge; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Escuissato, Dante Luiz; Mançano, Alexandre Dias; Araujo Neto, César Augusto; Guimarães, Marcos Duarte; Nin, Carlos Schuler; Santos, Marcel Koenigkam; Silva, Jorge Luiz Pereira e

    2015-01-01

    In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI) has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation. PMID:26811555

  15. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1993-01-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  16. Stem cell labeling for magnetic resonance imaging.

    PubMed

    Himmelreich, Uwe; Hoehn, Mathias

    2008-01-01

    In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized.

  17. Functional magnetic resonance imaging studies of language.

    PubMed

    Small, Steven L; Burton, Martha W

    2002-11-01

    Functional neuroimaging of language builds on almost 150 years of study in neurology, psychology, linguistics, anatomy, and physiology. In recent years, there has been an explosion of research using functional imaging technology, especially positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), to understand the relationship between brain mechanisms and language processing. These methods combine high-resolution anatomic images with measures of language-specific brain activity to reveal neural correlates of language processing. This article reviews some of what has been learned about the neuroanatomy of language from these imaging techniques. We first discuss the normal case, organizing the presentation according to the levels of language, encompassing words (lexicon), sound structure (phonemes), and sentences (syntax and semantics). Next, we delve into some unusual language processing circumstances, including second languages and sign languages. Finally, we discuss abnormal language processing, including developmental and acquired dyslexia and aphasia.

  18. Magnetic resonance imaging of infectious meningitis and ventriculitis in adults.

    PubMed

    Hazany, Saman; Go, John L; Law, Meng

    2014-10-01

    Magnetic resonance imaging findings of meningitis are usually nonspecific with respect to the causative pathogen because the brain response to these insults is similar in most cases. In this article, we will use a few representative cases to describe the characteristic magnetic resonance findings of meningitis and its complications, including ventriculitis. PMID:25296276

  19. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to present images which reflect the spatial distribution and/or magnetic resonance spectra which reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical parameters derived from the images and/or spectra may also be produced. The device includes...

  20. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to present images which reflect the spatial distribution and/or magnetic resonance spectra which reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical parameters derived from the images and/or spectra may also be produced. The device includes...

  1. Magnetic Resonance Studies of Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Vazquez Reina, Rafael

    In today's society there is high demand to have access to energy for portable devices in different forms. Capacitors with high performance in small package to achieve high charge/discharge rates, and batteries with their ability to store electricity and make energy mobile are part of this demand. The types of internal dielectric material strongly affect the characteristics of a capacitor, and its applications. In a battery, the choice of the electrolyte plays an important role in the Solid Electrolyte Interphase (SEI) formation, and the cathode material for high output voltage. Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopy are research techniques that exploit the magnetic properties of the electron and certain atomic nuclei to determine physical and chemical properties of the atoms or molecules in which they are contained. Both EPR and NMR spectroscopy technique can yield meaningful structural and dynamic information. Three different projects are discussed in this dissertation. First, High energy density capacitors where EPR measurements described herein provide an insight into structural and chemical differences in the dielectric material of a capacitor. Next, as the second project, Electrolyte solutions where an oxygen-17 NMR study has been employed to assess the degree of preferential solvation of Li+ ions in binary mixtures of EC (ethylene carbonate) and DMC (dimethyl carbonate) containing LiPF6 (lithium hexafluo-rophosphate) which may be ultimately related to the SEI formation mechanism. The third project was to study Bismuth fluoride as cathode material for rechargeable batteries. The objective was to study 19F and 7Li MAS NMR of some nanocomposite cathode materials as a conversion reaction occurring during lithiation and delithation of the BiF3/C nanocomposite.

  2. Cardiovascular Magnetic Resonance Imaging in Experimental Models

    PubMed Central

    Price, Anthony N.; Cheung, King K.; Cleary, Jon O; Campbell, Adrienne E; Riegler, Johannes; Lythgoe, Mark F

    2010-01-01

    Cardiovascular magnetic resonance (CMR) imaging is the modality of choice for clinical studies of the heart and vasculature, offering detailed images of both structure and function with high temporal resolution. Small animals are increasingly used for genetic and translational research, in conjunction with models of common pathologies such as myocardial infarction. In all cases, effective methods for characterising a wide range of functional and anatomical parameters are crucial for robust studies. CMR is the gold-standard for the non-invasive examination of these models, although physiological differences, such as rapid heart rate, make this a greater challenge than conventional clinical imaging. However, with the help of specialised magnetic resonance (MR) systems, novel gating strategies and optimised pulse sequences, high-quality images can be obtained in these animals despite their small size. In this review, we provide an overview of the principal CMR techniques for small animals for example cine, angiography and perfusion imaging, which can provide measures such as ejection fraction, vessel anatomy and local blood flow, respectively. In combination with MR contrast agents, regional dysfunction in the heart can also be identified and assessed. We also discuss optimal methods for analysing CMR data, particularly the use of semi-automated tools for parameter measurement to reduce analysis time. Finally, we describe current and emerging methods for imaging the developing heart, aiding characterisation of congenital cardiovascular defects. Advanced small animal CMR now offers an unparalleled range of cardiovascular assessments. Employing these methods should allow new insights into the structural, functional and molecular basis of the cardiovascular system. PMID:21331311

  3. Burn injury by nuclear magnetic resonance imaging.

    PubMed

    Eising, Ernst G; Hughes, Justin; Nolte, Frank; Jentzen, Walter; Bockisch, Andreas

    2010-01-01

    Nuclear magnetic resonance imaging has become a standard diagnostic procedure in clinical medicine and is well known to have hazards for patients with pacemaker or metallic foreign bodies. Compared to CT, the frequency of MRI examinations is increasing due to the missing exposure of the patients by X-rays. Furthermore, high-field magnetic resonance tomograph (MRT) with 3 T has entered clinical practice, and 7-T systems are installed in multiple scientific institutions. On the other hand, the possibility of burn injuries has been reported only in very few cases. Based on a clinical finding of a burn injury in a 31-year-old male patient during a routine MRI of the lumbar spine with standard protocol, the MR scanner was checked and the examination was simulated in an animal model. The patient received a third-degree burn injury of the skin of the right hand and pelvis in a small region of skin contact. The subsequent control of the MRI scanner indicated no abnormal values for radiofrequency (RF) and power. In the subsequent animal experiment, comparable injuries could only be obtained by high RF power in a microwave stove. It is concluded that 'tissue loops' resulting from a contact between hand and pelvis must be avoided. With regard to forensic aspects, the need to inform patients of such a minimal risk can be avoided if the patients are adequately positioned using an isolating material between the hands and pelvis. These facts must be emphasized more in the future, if high-field MRI with stronger RF gradients is available in routine imaging. PMID:20630342

  4. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOEpatents

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  5. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    SciTech Connect

    Nishimura, Seiya

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  6. Compact electrically detected magnetic resonance setup

    NASA Astrophysics Data System (ADS)

    Eckardt, Michael; Behrends, Jan; Münter, Detlef; Harneit, Wolfgang

    2015-04-01

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a "large-scale" state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  7. Compact electrically detected magnetic resonance setup

    SciTech Connect

    Eckardt, Michael Harneit, Wolfgang; Behrends, Jan; Münter, Detlef

    2015-04-15

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a “large-scale” state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  8. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  9. Open Circuit Resonant Sensors for Composite Damage Detection and Diagnosis

    NASA Technical Reports Server (NTRS)

    Mielnik, John J., Jr.

    2011-01-01

    Under the Integrated Vehicle Health Management (IVHM) program work was begun to investigate the feasibility of sensor systems for detecting and diagnosing damage to aircraft composite structures and materials. Specific interest for this study was in damage initiated by environmental storm hazards and the direct effect of lightning strikes on the material structures of a composite aircraft in flight. A series of open circuit resonant sensors was designed, fabricated, characterized, and determined to be a potentially viable means for damage detection and diagnosis of composite materials. The results of this research and development effort are documented in this report.

  10. Subsecond magnetic resonance angiography and the evaluation of abnormal arteriovasuclar communications

    NASA Astrophysics Data System (ADS)

    Zachariah, Anish B.; Pereles, F. S.; Kaliney, Ryan; Carr, James C.; Collins, Jeremy D.; Wood, Cecil; Finn, John P.

    2003-05-01

    Magnetic resonance (MR) angiography is becoming widely accepted in the diagnosis of vascular diseases. When used for evaluation of arterial stenoses, aneurysm, thrombosis, or occlusion, MR angiography is a robust and accurate technique. Traditional techniques for contrast-enhanced magnetic resonance angiography (MRA) offer the benefit of high spatial resolution in characterizing vascular malformations, but have lacked the temporal resolution to describe dynamic flow events. The purpose of this project is to demonstrate the potential role of a novel technique, sub-second MRA, in the evaluation of abdominal arteriovenous malformation.

  11. Wernicke's Encephalopathy in a Patient with Nasopharyngeal Carcinoma: Magnetic Resonance Imaging Findings.

    PubMed

    Law, Huong Ling; Tan, Suzet; Sedi, Rosleena

    2011-07-01

    We report a case of Wernicke's encephalopathy in a patient with nasopharyngeal carcinoma with a 3-month history of poor oral intake related to nausea and vomiting due to chemotherapy. The patient later developed deep coma while receiving in-patient therapy. Magnetic resonance imaging of the brain revealed typical findings of Wernicke's encephalopathy. The patient was treated with thiamine injections, which resulted in subsequent partial recovery of neurological function. This paper stresses the importance of magnetic resonance imaging for prompt diagnosis of Wernicke's encephalopathy.

  12. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography.

    PubMed

    Hashemiyan, Z; Packo, P; Staszewski, W J; Uhl, T

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  13. Use of diffusion and perfusion magnetic resonance imaging as a tool in acute stroke clinical trials

    PubMed Central

    Warach, Steven

    2001-01-01

    In light of the slow progress in developing effective therapies for ischemic stroke, magnetic resonance imaging techniques have emerged as new tools in stroke clinical trials. Rapid imaging with magnetic resonance imaging, diffusion weighted imaging, perfusion imaging and angiography are being incorporated into phase II and phase III stroke trials to optimize patient selection based on positive imaging diagnosis of the ischemic pathophysiology specifically related to a drug's mechanism of action and as a direct biomarker of the effect of a treatment's effect on the brain. PMID:11806771

  14. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    PubMed Central

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  15. Cardiac imaging using gated magnetic resonance

    SciTech Connect

    Lanzer, P.; Botvinick, E.H.; Schiller, N.B.

    1984-01-01

    To overcome the limitations of magnetic resonance (MR) cardiac imaging using nongated data acquisition, three methods for acquiring a gating signal, which could be applied in the presence of a magnetic field, were tested; an air-filled plethysmograph, a laser-Doppler capillary perfusion flowmeter, and an electrocardiographic gating device. The gating signal was used for timing of MR imaging sequences (IS). Application of each gating method yielded significant improvements in structural MR image resolution of the beating heart, although with both plethysmography and laser-Doppler velocimetry it was difficult to obtain cardiac images from the early portion of the cardiac cycle due to an intrinsic delay between the ECG R wave and peripheral detection of the gating signal. Variations in the temporal relationship between the R wave and plethysmographic and laser-Doppler signals produced inconsistencies in the timing of IS. Since the ECG signal is virtually free of these problems, the preferable gating technique is IS synchronization with an electrocardiogram. The gated images acquired with this method provide sharp definition of internal cardiac morphology and can be temporarily referenced to end diastole and end systole or intermediate points.

  16. Multi-dimensionally encoded magnetic resonance imaging

    PubMed Central

    Lin, Fa-Hsuan

    2013-01-01

    Magnetic resonance imaging typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here we propose the multi-dimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel RF coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. PMID:22926830

  17. Experiments in Nuclear Magnetic Resonance Microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Lu, Wei; Choi, J.-H.; Chia, H. J.; Mirsaidov, U. M.; Guchhait, S.; Cambou, A. D.; Cardenas, R.; Park, K.; Markert, J. T.

    2006-03-01

    We report our group's effort in the construction of an 8-T, ^3 He cryostat based nuclear magnetic resonance force microscope (NMRFM). The probe has two independent 3-D of piezoelectric x-y-z positioners for precise positioning of a fiber optic interferometer and a sample/gradient-producing magnet with respect to a micro-cantilever. The piezoelectric positioners have a very uniform controllable step size with virtually no backlash. A novel RF tuning circuit board design is implemented which allows us to simply swap out one RF component board with another for experiments involving different nuclear species. We successfully fabricated and are characterizing 50μm x50μm x0.2μm double torsional oscillators. We have also been characterizing ultrasoft cantilevers whose spring constant is on the order of 10-4 N/m. We also report NMRFM data for ammonium dihydrogen phosphate(ADP) at room temperature using our 1.2-T system. Observed features include the correct shift of the NMR peak with carrier frequency, increases in signal amplitude with both RF field strength and frequency modulation amplitude, and signal oscillation (spin nutation) as a function of tipping RF pulse length. Experiments in progress on NH4MgF3 (at 1.2 T) and MgB2 (at 8.1 T) will also be briefly reviewed. Robert A. Welch Foundation grant No.F-1191 and the National Science Foundation grant No. DMR-0210383.

  18. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    PubMed

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  19. Microrobotic navigable entities for Magnetic Resonance Targeting.

    PubMed

    Martel, Sylvain

    2010-01-01

    Magnetic Resonance Targeting (MRT) uses MRI for gathering tracking data to determine the position of microscale entities with the goal of guiding them towards a specific target in the body accessible through the vascular network. At full capabilities, a MRT platform designed to treat a human would consist of a clinical MRI scanner running special algorithms and upgraded to provide propulsion gradient up to approximately 400mT/m to enable entities as small as a few tens of micrometers in diameter and containing magnetic nanoparticles (MNP) to be steered at vessel bifurcations based on tracking information. Indeed, using a clinical MRI system, we showed that such single entity with a diameter as small as 15microm is detectable in gradient-echo scans. Among many potential interventions, targeted cancer therapy is a good initial application for such new microrobotic approach since secondary toxicity for the patient could be reduced while increasing therapeutic efficacy using lower dosages. Although many types of such entities are needed to provide a larger set of tools, here, only three initial types designed with different functionalities and for different types of cancer are briefly described. Initially designed for targeted chemo-embolization of liver tumors, the first type known as Therapeutic Magnetic Micro-Carriers (TMMC) consists in its present form of approximately 50 microm PLGA microparticles containing therapeutics and approximately 180 nm FeCo MNP. For the second type, MNP are not only used for propulsion and tracking, but also actuation based on a local elevation of the temperature. In its simplest form, it consists of approxiamtely 20 nm MNP embedded in a thermo-sensitive hydrogel known as PNIPA, allowing additional functionalities such as computer triggered drug release and targeted hyperthermia. The third type initially considered to target colorectal tumors, consists of 1-2 microm MR-trackable and controllable MC-1 Magnetotactic Bacteria (MTB) with

  20. Overhauser-enhanced magnetic resonance elastography.

    PubMed

    Salameh, Najat; Sarracanie, Mathieu; Armstrong, Brandon D; Rosen, Matthew S; Comment, Arnaud

    2016-05-01

    Magnetic resonance elastography (MRE) is a powerful technique to assess the mechanical properties of living tissue. However, it suffers from reduced sensitivity in regions with short T2 and T2 * such as in tissue with high concentrations of paramagnetic iron, or in regions surrounding implanted devices. In this work, we exploit the longer T2 * attainable at ultra-low magnetic fields in combination with Overhauser dynamic nuclear polarization (DNP) to enable rapid MRE at 0.0065 T. A 3D balanced steady-state free precession based MRE sequence with undersampling and fractional encoding was implemented on a 0.0065 T MRI scanner. A custom-built RF coil for DNP and a programmable vibration system for elastography were developed. Displacement fields and stiffness maps were reconstructed from data recorded in a polyvinyl alcohol gel phantom loaded with stable nitroxide radicals. A DNP enhancement of 25 was achieved during the MRE sequence, allowing the acquisition of 3D Overhauser-enhanced MRE (OMRE) images with (1.5 × 2.7 × 9) mm(3) resolution over eight temporal steps and 11 slices in 6 minutes. In conclusion, OMRE at ultra-low magnetic field can be used to detect mechanical waves over short acquisition times. This new modality shows promise to broaden the scope of conventional MRE applications, and may extend the utility of low-cost, portable MRI systems to detect elasticity changes in patients with implanted devices or iron overload.

  1. Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy.

    PubMed

    Yang, Hung-Wei; Liu, Hao-Li; Li, Meng-Lin; Hsi, I-Wen; Fan, Chih-Tai; Huang, Chiung-Yin; Lu, Yu-Jen; Hua, Mu-Yi; Chou, Hsin-Yi; Liaw, Jiunn-Woei; Ma, Chen-Chi M; Wei, Kuo-Chen

    2013-07-01

    Nanomedicine can provide a multi-functional platform for image-guided diagnosis and treatment of cancer. Although gold nanorods (GNRs) have been developed for photoacoustic (PA) imaging and near infra-red (NIR) photothermal applications, their efficiency has remained limited by low thermal stability. Here we present the synthesis, characterization, and functional evaluation of non-cytotoxic magnetic polymer-modified gold nanorods (MPGNRs), designed to act as dual magnetic resonance imaging (MRI) and PA imaging contrast agents. In addition, their high magnetization allowed MPGNRs to be actively localized and concentrated by targeting with an external magnet. Finally, MPGNRs significantly enhanced the NIR-laser-induced photothermal effect due to their increased thermal stability. MPGNRs thus provide a promising new theranostic platform for cancer diagnosis and treatment by combining dual MR/PA imaging with highly effective targeted photothermal therapy.

  2. Magnetic resonance techniques for investigation of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    MacKay, Alex; Laule, Cornelia; Li, David K. B.; Meyers, Sandra M.; Russell-Schulz, Bretta; Vavasour, Irene M.

    2014-11-01

    Multiple sclerosis (MS) is a common neurological disease which can cause loss of vision and balance, muscle weakness, impaired speech, fatigue, cognitive dysfunction and even paralysis. The key pathological processes in MS are inflammation, edema, myelin loss, axonal loss and gliosis. Unfortunately, the cause of MS is still not understood and there is currently no cure. Magnetic resonance imaging (MRI) is an important clinical and research tool for MS. 'Conventional' MRI images of MS brain reveal bright lesions, or plaques, which demark regions of severe tissue damage. Conventional MRI has been extremely valuable for the diagnosis and management of people who have MS and also for the assessment of therapies designed to reduce inflammation and promote repair. While conventional MRI is clearly valuable, it lack pathological specificity and, in some cases, sensitivity to non-lesional pathology. Advanced MR techniques have been developed to provide information that is more sensitive and specific than what is available with clinical scanning. Diffusion tensor imaging and magnetization transfer provide a general but non-specific measure of the pathological state of brain tissue. MR spectroscopy provides concentrations of brain metabolites which can be related to specific pathologies. Myelin water imaging was designed to assess brain myelination and has proved useful for measuring myelin loss in MS. To combat MS, it is crucial that the pharmaceutical industry finds therapies which can reverse the neurodegenerative processes which occur in the disease. The challenge for magnetic resonance researchers is to design imaging techniques which can provide detailed pathological information relating to the mechanisms of MS therapies. This paper briefly describes the pathologies of MS and demonstrates how MS-associated pathologies can be followed using both conventional and advanced MR imaging protocols.

  3. Control of Transport-Barrier Relaxations by Resonant Magnetic Perturbations

    SciTech Connect

    Leconte, M.; Beyer, P.; Benkadda, S.

    2009-01-30

    Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are investigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation oscillations and that this effect is due mainly to a modification of the pressure profile linked to the presence of both residual magnetic island chains and a stochastic layer.

  4. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-25

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  5. Quantifying Mixing using Magnetic Resonance Imaging

    PubMed Central

    Tozzi, Emilio J.; McCarthy, Kathryn L.; Bacca, Lori A.; Hartt, William H.; McCarthy, Michael J.

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media 1, 2. The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile 1H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  6. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  7. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  8. Tunable remanent state resonance frequency in arrays of magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Encinas, Armando; Demand, Marc; Vila, Laurent; Piraux, Luc; Huynen, Isabelle

    2002-09-01

    The zero-field microwave absorption, or natural ferromagnetic resonance, spectra in arrays of electrodeposited magnetic nanowires is studied as a function of the saturation magnetization of NiCu, NiFe, CoNiFe, and CoFe alloys of several compositions. Measurements show that due to the shape anisotropy, these systems present strong absorption peaks in the absence of an applied magnetic field in the GHz range due to the ferromagnetic resonance. Furthermore, the zero-field resonance frequency is observed to be independent of the wire diameter and density as well as the magnetic history and its value depends only on the material, through the saturation magnetization and the gyromagnetic factor. It is shown that, using different electrolytic solutions and depositing at different electrostatic potentials, the alloy composition can be varied and the remanent state resonance frequency can be tailored quasicontinuously between 4 and 31 GHz.

  9. Nuclear magnetic resonance for cultural heritage.

    PubMed

    Brai, Maria; Camaiti, Mara; Casieri, Cinzia; De Luca, Francesco; Fantazzini, Paola

    2007-05-01

    Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T(1) and T(2) relaxation data of fully water-saturated samples to get "pore size" distributions, but the use of T(2) requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time tau is used in Carr-Purcell-Meiboom-Gill experiments. When a portable single-sided NMR apparatus is used, large field gradients due to the instrument, at the scale of the sample, are thought to be the dominant dephasing cause. In this paper, T(1) and T(2) (at different tau values) distributions were measured in natural (Lecce stone) and artificial (brick samples coming from the Greek-Roman Theatre of Taormina) porous media of interest for cultural heritage by a standard laboratory instrument and a portable device. While T(1) distributions do not show any appreciable effect from inhomogeneous fields, T(2) distributions can show strong effects, and a procedure is presented based on the dependence of 1/T(2) on tau to separate pore-scale gradient effects from sample-scale gradient effects. Unexpectedly, the gradient at the pore scale can be, in some cases, strong enough to make negligible the effects of gradients at the sample scale of the single-sided device.

  10. Magnetic resonance imaging of oscillating electrical currents

    PubMed Central

    Halpern-Manners, Nicholas W.; Bajaj, Vikram S.; Teisseyre, Thomas Z.; Pines, Alexander

    2010-01-01

    Functional MRI has become an important tool of researchers and clinicians who seek to understand patterns of neuronal activation that accompany sensory and cognitive processes. However, the interpretation of fMRI images rests on assumptions about the relationship between neuronal firing and hemodynamic response that are not firmly grounded in rigorous theory or experimental evidence. Further, the blood-oxygen-level-dependent effect, which correlates an MRI observable to neuronal firing, evolves over a period that is 2 orders of magnitude longer than the underlying processes that are thought to cause it. Here, we instead demonstrate experiments to directly image oscillating currents by MRI. The approach rests on a resonant interaction between an applied rf field and an oscillating magnetic field in the sample and, as such, permits quantitative, frequency-selective measurements of current density without spatial or temporal cancellation. We apply this method in a current loop phantom, mapping its magnetic field and achieving a detection sensitivity near the threshold required for the detection of neuronal currents. Because the contrast mechanism is under spectroscopic control, we are able to demonstrate how ramped and phase-modulated spin-lock radiation can enhance the sensitivity and robustness of the experiment. We further demonstrate the combination of these methods with remote detection, a technique in which the encoding and detection of an MRI experiment are separated by sample flow or translation. We illustrate that remotely detected MRI permits the measurement of currents in small volumes of flowing water with high sensitivity and spatial resolution. PMID:20421504

  11. Ferromagnetic Resonance Studies of Magnetic Recording Media

    NASA Astrophysics Data System (ADS)

    Yu, Yuwu

    1995-01-01

    Angular dependence of maximum remanence (ADMR) and/or x-ray diffraction (XRD) techniques have been used to determine particle orientation distributions for various recording media, including gamma -rm Fe_2O_3, Co- gamma-rm Fe_2O_3, CrO_2, Ba-ferrite, and MP tapes. A distribution of column directions for metal evaporated (ME) tape has been determined from transmission electron microscopy (TEM) pictures. However, the ferromagnetic resonance (FMR) results suggest a much more narrow distribution of magnetic anisotropy directions. For Ba-ferrite tapes, the distribution functions measured by ADMR are consistent with those by XRD if interparticle interactions are accounted for. The predetermined distribution function has been used to fit FMR spectra for the above tapes. Landau-Lifshitz damping constants have been measured with high accuracy for particulate recording media. An excellent correlation has been found between the damping constants and the switching constants for these media. The results suggest that the FMR technique may be useful in predicting the switching speed of particulate recording media. The FMR technique is also useful in looking for methods of increasing the damping constant of recording media. Possible methods of increasing the switching speed of Ba-ferrite media have been studied. The reduction of Ba-ferrite particles in a hydrogen atmosphere increases the damping constant significantly. It is predicted that reduced Ba-ferrite probably switches faster than ordinary Ba-ferrite. Qualitative discussions on the origin of damping for various recording media have been presented within the framework of magnon relaxation theory. The dependence of the damping constant on magnetic properties, such as particle orientation, media coercivity, and particle interactions are also discussed.

  12. Magnetic resonance imaging findings in horses with septic arthritis.

    PubMed

    Easley, Jeremiah T; Brokken, Matthew T; Zubrod, Chad J; Morton, Alison J; Garrett, Katherine S; Holmes, Shannon P

    2011-01-01

    Fourteen horses with septic arthritis underwent high-field (1.5 T) magnetic resonance imaging (MRI). Septic arthritis was diagnosed based on results from historical and clinical findings, synovial fluid analyses and culture, and radiographic, ultrasonographic, arthroscopic, and histopathologic findings. MR findings included diffuse hyperintensity within bone and extracapsular tissue on fat-suppressed images in 14/14 horses (100%), joint effusion, synovial proliferation, and capsular thickening in 13/14 horses (93%), bone sclerosis in 11/14 horses (79%), and evidence of cartilage and subchondral bone damage in 8/14 horses (57%). Intravenous gadolinium was administered to five of the 14 horses and fibrin deposition was noted in all horses. Other findings after gadolinium administration included synovial enhancement in 4/5 (80%) horses, and bone enhancement in 1/5 (20%) horses. The MR findings of septic arthritis in horses were consistent with those reported in people. MRI may allow earlier and more accurate diagnosis of septic arthritis in horses as compared with other imaging modalities, especially when the clinical diagnosis is challenging. It also provides additional information not afforded by other methods that may influence and enhance treatment.

  13. Orbital cavernous hemangiomas: ultrasound and magnetic resonance imaging evaluation.

    PubMed

    Diamantopoulou, A; Damianidis, Ch; Kyriakou, V; Kotziamani, N; Emmanouilidou, M; Goutsaridou, F; Tsitouridis, I

    2010-03-01

    Cavernous hemangioma is the most common intraorbital lesion in adults. The aim of our study was to evaluate the magnetic resonance imaging (MRI) and ultrasound (US) characteristics of cavernous hemangioma and their role in the differential diagnosis of orbital tumors. Eight patients with orbital cavernous hemangiomas, five women and three men with a mean age of 48 years were examined in a period of six years. All patients underwent MRI examination and four patients were also evaluated by US. In all cases MRI depicted a well-defined intraconal tumor. The lesions were homogeneous, isointense to muscle on T1-weighted sequence and hyperintense to muscle on T2-weighted sequence in six patients. In one patient the mass was isointense on T1WI with heterogeneous signal intensity on T2WI and in one patient the lesion had heterogeneous signal intensity on both T1- and T2-weighted sequences. After intravenous contrast medium administration, the tumors showed initial inhomogeneous enhancement with progressive accumulation of contrast material on delayed images in seven patients and initial homogeneous enhancement in one patient. On ultrasonography, the orbital masses appeared slightly hyperechoic, heterogeneous with small areas of slow blood flow. The analysis of imaging characteristics of a well-defined intraconal lesion in an adult patient with painless progressive proptosis can be highly suggestive of the diagnosis of cavernous hemangioma.

  14. Real-time magnetic resonance imaging investigation of resonance tuning in soprano singing

    PubMed Central

    Bresch, Erik; Narayanan, Shrikanth

    2010-01-01

    This article investigates using real-time magnetic resonance imaging the vocal tract shaping of 5 soprano singers during the production of two-octave scales of sung vowels. A systematic shift of the first vocal tract resonance frequency with respect to the fundamental is shown to exist for high vowels across all subjects. No consistent systematic effect on the vocal tract resonance could be shown across all of the subjects for other vowels or for the second vocal tract resonance. PMID:21110548

  15. Multifrequency inversion in magnetic resonance elastography.

    PubMed

    Papazoglou, Sebastian; Hirsch, Sebastian; Braun, Jürgen; Sack, Ingolf

    2012-04-21

    Time-harmonic shear wave elastography is capable of measuring viscoelastic parameters in living tissue. However, finite tissue boundaries and waveguide effects give rise to wave interferences which are not accounted for by standard elasticity reconstruction methods. Furthermore, the viscoelasticity of tissue causes dispersion of the complex shear modulus, rendering the recovered moduli frequency dependent. Therefore, we here propose the use of multifrequency wave data from magnetic resonance elastography (MRE) for solving the inverse problem of viscoelasticity reconstruction by an algebraic least-squares solution based on the springpot model. Advantages of the method are twofold: (i) amplitude nulls appearing in single-frequency standing wave patterns are mitigated and (ii) the dispersion of storage and loss modulus with drive frequency is taken into account by the inversion procedure, thereby avoiding subsequent model fitting. As a result, multifrequency inversion produces fewer artifacts in the viscoelastic parameter map than standard single-frequency parameter recovery and may thus support image-based viscoelasticity measurement. The feasibility of the method is demonstrated by simulated wave data and MRE experiments on a phantom and in vivo human brain. Implemented as a clinical method, multifrequency inversion may improve the diagnostic value of time-harmonic MRE in a large variety of applications.

  16. Magnetic resonance imaging of total body fat.

    PubMed

    Thomas, E L; Saeed, N; Hajnal, J V; Brynes, A; Goldstone, A P; Frost, G; Bell, J D

    1998-11-01

    In this study we assessed different magnetic resonance imaging (MRI) scanning regimes and examined some of the assumptions commonly made for measuring body fat content by MRI. Whole body MRI was used to quantify and study different body fat depots in 67 women. The whole body MRI results showed that there was a significant variation in the percentage of total internal, as well as visceral, adipose tissue across a range of adiposity, which could not be predicted from total body fat and/or subcutaneous fat. Furthermore, variation in the amount of total, subcutaneous, and visceral adipose tissue was not related to standard anthropometric measurements such as skinfold measurements, body mass index, and waist-to-hip ratio. Finally, we show for the first time subjects with a percent body fat close to the theoretical maximum (68%). This study demonstrates that the large variation in individual internal fat content cannot be predicted from either indirect methods or direct imaging techniques, such as MRI or computed tomography, on the basis of a single-slice sampling strategy. PMID:9804581

  17. Magnetic resonance imaging of urinary calculi.

    PubMed

    Dawson, C; Aitken, K; Ng, K; Dolke, G; Gadian, D; Whitfield, H N

    1994-01-01

    Accurate prediction of the response of an individual patient to lithotripsy remains impossible. Certain factors such as the chemical composition, size, and position of the calculus are known to be important in determining the success rate. This paper reports the use of magnetic resonance imaging (MRI) to evaluate 141 urinary calculi in vitro. A wide range of signals for each chemical type of calculus was found on each of the three imaging sequences used (T1-weighted, T2-weighted, and proton density). None of the chemical groups examined showed a typical MRI profile allowing it to be distinguished from the other groups. Analysis of variance showed a statistical difference between signals for apatite and struvite on the T1-weighted sequence, and between struvite and uric acid on the proton density sequence (both, P < 0.05). These results show for the first time that MRI is capable of distinguishing between different chemical types of stones. This is particularly important for the comparison of struvite and apatite which appear to be similar in conventional investigations but have quite different hardness values. Further work is in progress correlating the results of this study with stone microhardness and extracorporeal shockwave lithotripsy fragility tests to determine whether MRI accurately predicts the success of lithotripsy.

  18. Neural network segmentation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Frederick, Blaise

    1990-07-01

    Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover once trained they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network by varying imaging parameters MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. A neural network classifier for image segmentation was implemented on a Sun 4/60 and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter white matter cerebrospinal fluid bone and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities and the image was subsequently segmented by the classifier. The classifier''s performance was evaluated as a function of network size number of network layers and length of training. A single layer neural network performed quite well at

  19. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  20. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  1. Magnetic resonance imaging of total body fat.

    PubMed

    Thomas, E L; Saeed, N; Hajnal, J V; Brynes, A; Goldstone, A P; Frost, G; Bell, J D

    1998-11-01

    In this study we assessed different magnetic resonance imaging (MRI) scanning regimes and examined some of the assumptions commonly made for measuring body fat content by MRI. Whole body MRI was used to quantify and study different body fat depots in 67 women. The whole body MRI results showed that there was a significant variation in the percentage of total internal, as well as visceral, adipose tissue across a range of adiposity, which could not be predicted from total body fat and/or subcutaneous fat. Furthermore, variation in the amount of total, subcutaneous, and visceral adipose tissue was not related to standard anthropometric measurements such as skinfold measurements, body mass index, and waist-to-hip ratio. Finally, we show for the first time subjects with a percent body fat close to the theoretical maximum (68%). This study demonstrates that the large variation in individual internal fat content cannot be predicted from either indirect methods or direct imaging techniques, such as MRI or computed tomography, on the basis of a single-slice sampling strategy.

  2. Imaging tumor hypoxia by magnetic resonance methods.

    PubMed

    Pacheco-Torres, Jesús; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdán, Sebastián

    2011-01-01

    Tumor hypoxia results from the negative balance between the oxygen demands of the tissue and the capacity of the neovasculature to deliver sufficient oxygen. The resulting oxygen deficit has important consequences with regard to the aggressiveness and malignancy of tumors, as well as their resistance to therapy, endowing the imaging of hypoxia with vital repercussions in tumor prognosis and therapy design. The molecular and cellular events underlying hypoxia are mediated mainly through hypoxia-inducible factor, a transcription factor with pleiotropic effects over a variety of cellular processes, including oncologic transformation, invasion and metastasis. However, few methodologies have been able to monitor noninvasively the oxygen tensions in vivo. MRI and MRS are often used for this purpose. Most MRI approaches are based on the effects of the local oxygen tension on: (i) the relaxation times of (19)F or (1)H indicators, such as perfluorocarbons or their (1)H analogs; (ii) the hemodynamics and magnetic susceptibility effects of oxy- and deoxyhemoglobin; and (iii) the effects of paramagnetic oxygen on the relaxation times of tissue water. (19)F MRS approaches monitor tumor hypoxia through the selective accumulation of reduced nitroimidazole derivatives in hypoxic zones, whereas electron spin resonance methods determine the oxygen level through its influence on the linewidths of appropriate paramagnetic probes in vivo. Finally, Overhauser-enhanced MRI combines the sensitivity of EPR methodology with the resolution of MRI, providing a window into the future use of hyperpolarized oxygen probes.

  3. Fetal magnetic resonance imaging and ultrasound.

    PubMed

    Wataganara, Tuangsit; Ebrashy, Alaa; Aliyu, Labaran Dayyabu; Moreira de Sa, Renato Augusto; Pooh, Ritsuko; Kurjak, Asim; Sen, Cihat; Adra, Abdallah; Stanojevic, Milan

    2016-07-01

    Magnetic resonance imaging (MRI) has been increasingly adopted in obstetrics practice in the past three decades. MRI aids prenatal ultrasound and improves diagnostic accuracy for selected maternal and fetal conditions. However, it should be considered only when high-quality ultrasound cannot provide certain information that affects the counseling, prenatal intervention, pregnancy course, and delivery plan. Major indications of fetal MRI include, but are not restricted to, morbidly adherent placenta, selected cases of fetal brain anomalies, thoracic lesions (especially in severe congenital diaphragmatic hernia), and soft tissue tumors at head and neck regions of the fetus. For fetal anatomy assessment, a 1.5-Tesla machine with a fast T2-weighted single-shot technique is recommended for image requisition of common fetal abnormalities. Individual judgment needs to be applied when considering usage of a 3-Tesla machine. Gadolinium MRI contrast is not recommended during pregnancy. MRI should be avoided in the first half of pregnancy due to small fetal structures and motion artifacts. Assessment of fetal cerebral cortex can be achieved with MRI in the third trimester. MRI is a viable research tool for noninvasive interrogation of the fetus and the placenta. PMID:27092644

  4. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  5. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  6. Magnetic resonance imaging in glenohumeral instability

    PubMed Central

    Jana, Manisha; Gamanagatti, Shivanand

    2011-01-01

    The glenohumeral joint is the most commonly dislocated joint of the body and anterior instability is the most common type of shoulder instability. Magnetic resonance (MR) imaging, and more recently, MR arthrography, have become the essential investigation modalities of glenohumeral instability, especially for pre-procedure evaluation before arthroscopic surgery. Injuries associated with glenohumeral instability are variable, and can involve the bones, the labor-ligamentous components, or the rotator cuff. Anterior instability is associated with injuries of the anterior labrum and the anterior band of the inferior glenohumeral ligament, in the form of Bankart lesion and its variants; whereas posterior instability is associated with reverse Bankart and reverse Hill-Sachs lesion. Multidirectional instability often has no labral pathology on imaging but shows specific osseous changes such as increased chondrolabral retroversion. This article reviews the relevant anatomy in brief, the MR imaging technique and the arthrographic technique, and describes the MR findings in each type of instability as well as common imaging pitfalls. PMID:22007285

  7. TOPICAL REVIEW: Endovascular interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bartels, L. W.; Bakker, C. J. G.

    2003-07-01

    Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.

  8. Nuclear magnetic resonance imaging of the kidney

    SciTech Connect

    Hricak, H.; Crooks, L.; Sheldon, P.; Kaufman, L.

    1983-02-01

    The role of nuclear magnetic resonance (NMR) imaging of the kidney was analyzed in 18 persons (6 normal volunteers, 3 patients with pelvocaliectasis, 2 with peripelvic cysts, 1 with renal sinus lipomatosis, 3 with renal failure, 1 with glycogen storage disease, and 2 with polycystic kidney disease). Ultrasound and/or computed tomography (CT) studies were available for comparison in every case. In the normal kidney distinct anatomical structures were clearly differentiated by NMR. The best anatomical detail ws obtained with spin echo (SE) imaging, using a pulse sequence interval of 1,000 msec and an echo delay time of 28 msec. However, in the evaluation of normal and pathological conditions, all four intensity images (SE 500/28, SE 500/56, SE 1,000/28, and SE 1,000/56) have to be analyzed. No definite advantage was found in using SE imaging with a pulse sequence interval of 1,500 msec. Inversion recovery imaging enhanced the differences between the cortex and medulla, but it had a low signal-to-noise level and, therefore, a suboptimal overall resolution. The advantages of NMR compared with CT and ultrasound are discussed, and it is concluded that NMR imaging will prove to be a useful modality in the evaluation of renal disease.

  9. Magnetic Resonance Image Example Based Contrast Synthesis

    PubMed Central

    Roy, Snehashis; Carass, Aaron; Prince, Jerry L.

    2013-01-01

    The performance of image analysis algorithms applied to magnetic resonance images is strongly influenced by the pulse sequences used to acquire the images. Algorithms are typically optimized for a targeted tissue contrast obtained from a particular implementation of a pulse sequence on a specific scanner. There are many practical situations, including multi-institution trials, rapid emergency scans, and scientific use of historical data, where the images are not acquired according to an optimal protocol or the desired tissue contrast is entirely missing. This paper introduces an image restoration technique that recovers images with both the desired tissue contrast and a normalized intensity profile. This is done using patches in the acquired images and an atlas containing patches of the acquired and desired tissue contrasts. The method is an example-based approach relying on sparse reconstruction from image patches. Its performance in demonstrated using several examples, including image intensity normalization, missing tissue contrast recovery, automatic segmentation, and multimodal registration. These examples demonstrate potential practical uses and also illustrate limitations of our approach. PMID:24058022

  10. Magnetic resonance imaging of skeletal muscle disease.

    PubMed

    Damon, Bruce M; Li, Ke; Bryant, Nathan D

    2016-01-01

    Neuromuscular diseases often exhibit a temporally varying, spatially heterogeneous, and multifaceted pathology. The goals of this chapter are to describe and evaluate the use of quantitative magnetic resonance imaging (MRI) methods to characterize muscle pathology. The following criteria are used for this evaluation: objective measurement of continuously distributed variables; clear and well-understood relationship to the pathology of interest; sensitivity to improvement or worsening of clinical status; and the measurement properties of accuracy and precision. Two major classes of MRI methods meet all of these criteria: (1) MRI methods for measuring muscle contractile volume or cross-sectional area by combining structural MRI and quantitative fat-water MRI; and (2) an MRI method for characterizing the edema caused by inflammation, the measurement of the transverse relaxation time constant (T2). These methods are evaluated with respect to the four criteria listed above and examples from neuromuscular disorders are provided. Finally, these methods are summarized and synthesized and recommendations for additional quantitative MRI developments are made. PMID:27430444

  11. Magnetic Resonance Imaging at Ultrahigh Fields

    PubMed Central

    Uğurbil, Kamil

    2014-01-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229

  12. Multifrequency inversion in magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Papazoglou, Sebastian; Hirsch, Sebastian; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Time-harmonic shear wave elastography is capable of measuring viscoelastic parameters in living tissue. However, finite tissue boundaries and waveguide effects give rise to wave interferences which are not accounted for by standard elasticity reconstruction methods. Furthermore, the viscoelasticity of tissue causes dispersion of the complex shear modulus, rendering the recovered moduli frequency dependent. Therefore, we here propose the use of multifrequency wave data from magnetic resonance elastography (MRE) for solving the inverse problem of viscoelasticity reconstruction by an algebraic least-squares solution based on the springpot model. Advantages of the method are twofold: (i) amplitude nulls appearing in single-frequency standing wave patterns are mitigated and (ii) the dispersion of storage and loss modulus with drive frequency is taken into account by the inversion procedure, thereby avoiding subsequent model fitting. As a result, multifrequency inversion produces fewer artifacts in the viscoelastic parameter map than standard single-frequency parameter recovery and may thus support image-based viscoelasticity measurement. The feasibility of the method is demonstrated by simulated wave data and MRE experiments on a phantom and in vivo human brain. Implemented as a clinical method, multifrequency inversion may improve the diagnostic value of time-harmonic MRE in a large variety of applications.

  13. Scatter-based magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Papazoglou, Sebastian; Xu, Chao; Hamhaber, Uwe; Siebert, Eberhard; Bohner, Georg; Klingebiel, Randolf; Braun, Jürgen; Sack, Ingolf

    2009-04-01

    Elasticity is a sensitive measure of the microstructural constitution of soft biological tissues and increasingly used in diagnostic imaging. Magnetic resonance elastography (MRE) uniquely allows in vivo measurement of the shear elasticity of brain tissue. However, the spatial resolution of MRE is inherently limited as the transformation of shear wave patterns into elasticity maps requires the solution of inverse problems. Therefore, an MRE method is introduced that avoids inversion and instead exploits shear wave scattering at elastic interfaces between anatomical regions of different shear compliance. This compliance-weighted imaging (CWI) method can be used to evaluate the mechanical consistency of cerebral lesions or to measure relative stiffness differences between anatomical subregions of the brain. It is demonstrated that CWI-MRE is sensitive enough to reveal significant elasticity variations within inner brain parenchyma: the caudate nucleus (head) was stiffer than the lentiform nucleus and the thalamus by factors of 1.3 ± 0.1 and 1.7 ± 0.2, respectively (P < 0.001). CWI-MRE provides a unique method for characterizing brain tissue by identifying local stiffness variations.

  14. Magnetic resonance force microscopy with a permanent magnet on the cantilever

    SciTech Connect

    Zhang, Z.; Hammel, P.C.

    1997-02-01

    The magnetic resonance force microscope (MRFM) is a microscopic 3-D imaging instrument based on a recent proposal to detect magnetic resonance signals mechanically using a micro-mechanical resonator. MRFM has been successfully demonstrated in various magnetic resonance experiments including electron spin resonance, ferromagnetic resonances and nuclear magnetic resonance. In order to apply this ultra-high, 3-D spatial resolution technique to samples of arbitrary size and shape, the magnetic particle which generates the field gradient {del}{bold B}, (and, therefore, the force {bold F = (m {center_dot} {del}B)} between itself and the spin magnetization {bold m} of the sample) will need to be mounted on the mechanical resonator. Up to the present, all experiments have been performed with the sample mounted on the resonator. This is done, in part, to avoid the spurious response of the mechanical resonator which is generated by the variation of the magnetization of the magnetic particle as the external field is varied.

  15. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Colton, J. S.; Wienkes, L. R.

    2009-03-01

    We present a newly developed microwave resonant cavity for use in optically detected magnetic resonance (ODMR) experiments. The cylindrical quasi-TE011 mode cavity is designed to fit in a 1 in. magnet bore to allow the sample to be optically accessed and to have an adjustable resonant frequency between 8.5 and 12 GHz. The cavity uses cylinders of high dielectric material, so-called "dielectric resonators," in a double-stacked configuration to determine the resonant frequency. Wires in a pseudo-Helmholtz configuration are incorporated into the cavity to provide frequencies for simultaneous nuclear magnetic resonance (NMR). The system was tested by measuring cavity absorption as microwave frequencies were swept, by performing ODMR on a zinc-doped InP sample, and by performing optically detected NMR on a GaAs sample. The results confirm the suitability of the cavity for ODMR with simultaneous NMR.

  16. Sensitive magnetic force detection with a carbon nanotube resonator

    SciTech Connect

    Willick, Kyle; Haapamaki, Chris; Baugh, Jonathan

    2014-03-21

    We propose a technique for sensitive magnetic point force detection using a suspended carbon nanotube (CNT) mechanical resonator combined with a magnetic field gradient generated by a ferromagnetic gate electrode. Numerical calculations of the mechanical resonance frequency show that single Bohr magneton changes in the magnetic state of an individual magnetic molecule grafted to the CNT can translate to detectable frequency shifts, on the order of a few kHz. The dependences of the resonator response to device parameters such as length, tension, CNT diameter, and gate voltage are explored and optimal operating conditions are identified. A signal-to-noise analysis shows that, in principle, magnetic switching at the level of a single Bohr magneton can be read out in a single shot on timescales as short as 10 μs. This force sensor should enable new studies of spin dynamics in isolated single molecule magnets, free from the crystalline or ensemble settings typically studied.

  17. Magnetic resonance imaging and treatment effects of multiple sclerosis therapeutics.

    PubMed

    Leist, Thomas P; Marks, Steven

    2010-01-01

    MRI is now an important component in the diagnosis and assessment of multiple sclerosis (MS). Evidence gleaned from imaging studies has changed our understanding of the pathophysiology and natural history of the disease and has enabled physicians to visualize the effects of immunomodulatory therapies. Serial MRI following the index CNS event has clarified the evolution of MS, demonstrating that a majority of patients with clinically isolated syndromes already have dissemination of lesions in space and, based on MRI characteristics, likely also in time. Imaging studies have also shown that axonal injury and brain atrophy occur early in the disease. MRI techniques, such as magnetic resonance spectroscopy and magnetization transfer imaging, that are generally not part of the imaging sequences obtained as part of regular care have provided additional insight into the degree and extent of the effect of the disease process on the CNS, tissue repair, and the neuroprotective effects of therapeutics. These data have contributed to improved clinical decision making and treatment outcomes.

  18. A haptic unit designed for magnetic-resonance-guided biopsy.

    PubMed

    Tse, Z T H; Elhawary, H; Rea, M; Young, I; Davis, B L; Lamperth, M

    2009-02-01

    The magnetic fields present in the magnetic resonance (MR) environment impose severe constraints on any mechatronic device present in its midst, requiring alternative actuators, sensors, and materials to those conventionally used in traditional system engineering. In addition the spatial constraints of closed-bore scanners require a physical separation between the radiologist and the imaged region of the patient. This configuration produces a loss of the sense of touch from the target anatomy for the clinician, which often provides useful information. To recover the force feedback from the tissue, an MR-compatible haptic unit, designed to be integrated with a five-degrees-of-freedom mechatronic system for MR-guided prostate biopsy, has been developed which incorporates position control and force feedback to the operator. The haptic unit is designed to be located inside the scanner isocentre with the master console in the control room. MR compatibility of the device has been demonstrated, showing a negligible degradation of the signal-to-noise ratio and virtually no geometric distortion. By combining information from the position encoder and force sensor, tissue stiffness measurement along the needle trajectory is demonstrated in a lamb liver to aid diagnosis of suspected cancerous tissue. PMID:19278193

  19. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  20. [Magnetic resonance imaging and magnetic resonance spectroscopy methods for measuring intra- and extra-cellular pH: clinical implications].

    PubMed

    Ballesteros, P; Pérez-Mayoral, E; Benito, M; Cerdán, S

    2008-01-01

    We review the different methods for measuring pH by magnetic resonance imaging and magnetic resonance spectroscopy and discuss their potential diagnostic repercussions. We begin with a brief description of intra- and extra-cellular pH regulation in physiological and pathological conditions. Then we present the main 31P or 1H magnetic resonance spectroscopy procedures, which are based on the dependence of the pH on the chemical displacements of the intrinsic intracellular inorganic phosphate or of the H2 proton of imidazole in extrinsic indicators. Finally, we describe the procedures that use magnetic resonance imaging, whose main tool is the dependence of the pH (i) on the relaxivity of certain paramagnetic contrast agents, or (ii) on the processes of magnetic transference between diamagnetic molecules (DIACEST) or paramagnetic molecules (PARACEST) and the free water in the tissues. We briefly illustrate the potential clinical applications of these new procedures.

  1. Magnetic resonance imaging of iron deposition in neurological disorders.

    PubMed

    Brass, Steven D; Chen, Nan-kuei; Mulkern, Robert V; Bakshi, Rohit

    2006-02-01

    Deposition of iron in the brain is proposed to play a role in the pathophysiology of the normal aging process and neurodegenerative diseases. Whereas iron is required for normal neuronal metabolism, excessive levels can contribute to the formation of free radicals, leading to lipid peroxidation and neurotoxicity. Magnetic resonance imaging (MRI) is a powerful tool to detect excessive iron in the brain and longitudinally monitor changes in iron levels. Iron deposition is associated with a reduction in the T2 relaxation time, leading to hypointensity on spin-echo and gradient-echo T2-weighted images. The MRI changes associated with iron deposition have been observed both in normal aging and in various chronic neurological diseases, including multiple sclerosis, Alzheimer disease, and Parkinson disease. Magnetic resonance imaging metrics providing information about iron concentrations include R2, R2', and R2*. The purpose of this review is to discuss the role of iron and its detection by MRI in various neurological disorders. We will review the basic biochemical properties of iron and its influence on MRI signal. We will also summarize the sensitivity and specificity of MRI techniques in detecting iron. The MRI and pathological findings pertaining to brain iron will be reviewed with respect to normal aging and a variety of neurological disorders. Finally, the biochemistry and pathophysiology surrounding iron, oxidative stress, free radicals, and lipid peroxidation in the brain will be discussed, including therapeutic implications. The potential role of iron deposition and its assessment by MRI provides exciting potential applications to the diagnosis, longitudinal monitoring, and therapeutic development for disorders of the brain.

  2. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  3. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  4. Practical magnetic resonance imaging evaluation of peripheral nerves in children: magnetic resonance neurography.

    PubMed

    Cortes, Cesar; Ramos, Yanerys; Restrepo, Ricardo; Restrepo, Jose Andres; Grossman, John A I; Lee, Edward Y

    2013-07-01

    Magnetic resonance (MR) imaging is an excellent tool for the evaluation of peripheral nerves in children not only because of its excellent soft tissue contrast resolution but also because it is noninvasive and does not use ionizing radiation. In nonconclusive cases, MR neurography can be complementary to physical examination and electromyography in identifying a specific affected nerve and the site of the lesion. This article reviews the MR imaging technique used in the evaluation of peripheral nerves (ie, MR neurography), its major indications, and the common pathologic conditions encountered in the pediatric population.

  5. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging

    PubMed Central

    de Assis, Reijâne Alves; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-01-01

    ABSTRACT To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions. PMID:24488397

  6. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  7. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  8. Nuclear magnetic resonance imaging in patients with cardiac pacing devices.

    PubMed

    Buendía, Francisco; Sánchez-Gómez, Juan M; Sancho-Tello, María J; Olagüe, José; Osca, Joaquín; Cano, Oscar; Arnau, Miguel A; Igual, Begoña

    2010-06-01

    Currently, nuclear magnetic resonance imaging is contraindicated in patients with a pacemaker or implantable cardioverter-defibrillator. This study was carried out because the potential risks in this situation need to be clearly defined. This prospective study evaluated clinical and electrical parameters before and after magnetic resonance imaging was performed in 33 patients (five with implantable cardioverter-defibrillators and 28 with pacemakers). In these patients, magnetic resonance imaging was considered clinically essential. There were no clinical complications. There was a temporary communication failure in two cases, sensing errors during imaging in two cases, and a safety signal was generated in one pacemaker at the maximum magnetic resonance frequency and output level. There were no technical restrictions on imaging nor were there any permanent changes in the performance of the cardiac pacing device. PMID:20515632

  9. Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields

    ERIC Educational Resources Information Center

    Reynolds, G. Fredric

    1977-01-01

    Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)

  10. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  11. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  12. Nuclear magnetic resonance data of C10H13ITe

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  13. Nuclear magnetic resonance data of C9H11ITe

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  14. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    NASA Astrophysics Data System (ADS)

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2016-01-01

    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (˜40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.

  15. Functional imaging of the human placenta with magnetic resonance.

    PubMed

    Siauve, Nathalie; Chalouhi, Gihad E; Deloison, Benjamin; Alison, Marianne; Clement, Olivier; Ville, Yves; Salomon, Laurent J

    2015-10-01

    Abnormal placentation is responsible for most failures in pregnancy; however, an understanding of placental functions remains largely concealed from noninvasive, in vivo investigations. Magnetic resonance imaging (MRI) is safe in pregnancy for magnetic fields of up to 3 Tesla and is being used increasingly to improve the accuracy of prenatal imaging. Functional MRI (fMRI) of the placenta has not yet been validated in a clinical setting, and most data are derived from animal studies. FMRI could be used to further explore placental functions that are related to vascularization, oxygenation, and metabolism in human pregnancies by the use of various enhancement processes. Dynamic contrast-enhanced MRI is best able to quantify placental perfusion, permeability, and blood volume fractions. However, the transplacental passage of Gadolinium-based contrast agents represents a significant safety concern for this procedure in humans. There are alternative contrast agents that may be safer in pregnancy or that do not cross the placenta. Arterial spin labeling MRI relies on magnetically labeled water to quantify the blood flows within the placenta. A disadvantage of this technique is a poorer signal-to-noise ratio. Based on arterial spin labeling, placental perfusion in normal pregnancy is 176 ± 91 mL × min(-1) × 100 g(-1) and decreases in cases with intrauterine growth restriction. Blood oxygen level-dependent and oxygen-enhanced MRIs do not assess perfusion but measure the response of the placenta to changes in oxygen levels with the use of hemoglobin as an endogenous contrast agent. Diffusion-weighted imaging and intravoxel incoherent motion MRI do not require exogenous contrast agents, instead they use the movement of water molecules within tissues. The apparent diffusion coefficient and perfusion fraction are significantly lower in placentas of growth-restricted fetuses when compared with normal pregnancies. Magnetic resonance spectroscopy has the ability to extract

  16. Functional imaging of the human placenta with magnetic resonance.

    PubMed

    Siauve, Nathalie; Chalouhi, Gihad E; Deloison, Benjamin; Alison, Marianne; Clement, Olivier; Ville, Yves; Salomon, Laurent J

    2015-10-01

    Abnormal placentation is responsible for most failures in pregnancy; however, an understanding of placental functions remains largely concealed from noninvasive, in vivo investigations. Magnetic resonance imaging (MRI) is safe in pregnancy for magnetic fields of up to 3 Tesla and is being used increasingly to improve the accuracy of prenatal imaging. Functional MRI (fMRI) of the placenta has not yet been validated in a clinical setting, and most data are derived from animal studies. FMRI could be used to further explore placental functions that are related to vascularization, oxygenation, and metabolism in human pregnancies by the use of various enhancement processes. Dynamic contrast-enhanced MRI is best able to quantify placental perfusion, permeability, and blood volume fractions. However, the transplacental passage of Gadolinium-based contrast agents represents a significant safety concern for this procedure in humans. There are alternative contrast agents that may be safer in pregnancy or that do not cross the placenta. Arterial spin labeling MRI relies on magnetically labeled water to quantify the blood flows within the placenta. A disadvantage of this technique is a poorer signal-to-noise ratio. Based on arterial spin labeling, placental perfusion in normal pregnancy is 176 ± 91 mL × min(-1) × 100 g(-1) and decreases in cases with intrauterine growth restriction. Blood oxygen level-dependent and oxygen-enhanced MRIs do not assess perfusion but measure the response of the placenta to changes in oxygen levels with the use of hemoglobin as an endogenous contrast agent. Diffusion-weighted imaging and intravoxel incoherent motion MRI do not require exogenous contrast agents, instead they use the movement of water molecules within tissues. The apparent diffusion coefficient and perfusion fraction are significantly lower in placentas of growth-restricted fetuses when compared with normal pregnancies. Magnetic resonance spectroscopy has the ability to extract

  17. Nuclear magnetic resonance in environmental engineering: principles and applications.

    PubMed

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems.

  18. Use of Magnetic Resonance in the Evaluation of Cranial Trauma.

    PubMed

    Altmeyer, Wilson; Steven, Andrew; Gutierrez, Juan

    2016-05-01

    MR imaging is an extremely useful tool in the evaluation of traumatic brain injury in the emergency department. Although CT still plays the dominant role in urgent patient triage, MR imaging's impact on traumatic brain injury imaging continues to expand. MR imaging has shown superiority to CT for certain traumatic processes, such as diffuse axonal injury, cerebral contusion, and infarction. Magnetic resonance angiography and magnetic resonance venography allow emergent vascular imaging for patients that should avoid ionizing radiation or intravenous contrast. PMID:27150321

  19. Important advances in technology and unique applications related to cardiac magnetic resonance imaging.

    PubMed

    Ghosn, Mohamad G; Shah, Dipan J

    2014-01-01

    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes. PMID:25574343

  20. Important advances in technology and unique applications related to cardiac magnetic resonance imaging.

    PubMed

    Ghosn, Mohamad G; Shah, Dipan J

    2014-01-01

    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes.

  1. Use of magnetic resonance imaging in pharmacogenomics

    PubMed Central

    Viviani, Roberto; Lehmann, Marie-Louise; Stingl, Julia C

    2014-01-01

    Because of the large variation in the response to psychoactive medication, many studies have attempted to uncover genetic factors that determine response. While considerable knowledge exists on the large effects of genetic polymorphisms on pharmacokinetics and plasma concentrations of drugs, effects of the concentration at the target site and pharmacodynamic effects on brain functions in disease are much less known. This article reviews the role of magnetic resonance imaging (MRI) to visualize response to medication in brain behaviour circuits in vivo in humans and assess the influence of pharmacogenetic factors. Two types of studies have been used to characterize effects of medication and genetic variation. In task-related activation studies the focus is on changes in the activity of a neural circuit associated with a specific psychological process. The second type of study investigates resting state perfusion. These studies provide an assessment of vascular changes associated with bioavailability of drugs in the brain, but may also assess changes in neural activity after binding of centrally active agents. Task-related pharmacogenetic studies of cognitive function have characterized the effects in the prefrontal cortex of genetic polymorphisms of dopamine receptors (DRD2), metabolic enzymes (COMT) and in the post-synaptic signalling cascade under the administration of dopamine agonists and antagonists. In contrast, pharmacogenetic imaging with resting state perfusion is still in its infancy. However, the quantitative nature of perfusion imaging, its non-invasive character and its repeatability might be crucial assets in visualizing the effects of medication in vivo in man during therapy. PMID:23802603

  2. Recent advances in cardiac magnetic resonance.

    PubMed

    Greulich, Simon; Arai, Andrew E; Sechtem, Udo; Mahrholdt, Heiko

    2016-01-01

    Cardiac magnetic resonance (CMR) is a non-invasive imaging modality that has rapidly emerged during the last few years and has become a valuable, well-established clinical tool. Beside the evaluation of anatomy and function, CMR has its strengths in providing detailed non-invasive myocardial tissue characterization, for which it is considered the current diagnostic gold standard. Late gadolinium enhancement (LGE), with its capability to detect necrosis and to separate ischemic from non-ischemic cardiomyopathies by distinct LGE patterns, offers unique clinical possibilities. The presence of LGE has also proven to be a good predictor of an adverse outcome in various studies. T2-weighted (T2w) images, which are supposed to identify areas of edema and inflammation, are another CMR approach to tissue characterization. However, T2w images have not held their promise owing to several technical limitations and potential physiological concerns. Newer mapping techniques may overcome some of these limitations: they assess quantitatively myocardial tissue properties in absolute terms and show promising results in studies for characterization of diffuse fibrosis (T1 mapping) and/or inflammatory processes (T2 mapping). However, these techniques are still research tools and are not part of the clinical routine yet. T2* CMR has had significant impact in the management of thalassemia because it is possible to image the amount of iron in the heart and the liver, improving both diagnostic imaging and the management of patients with thalassemia. CMR findings frequently have clinical impact on further patient management, and CMR seems to be cost effective in the clinical routine. PMID:27635240

  3. Magnetic Resonance Imaging of Normal Pressure Hydrocephalus.

    PubMed

    Bradley, William G

    2016-04-01

    Normal pressure hydrocephalus (NPH) is a syndrome found in the elderly, which is characterized by ventriculomegaly and deep white matter ischemia (DWMI) on magnetic resonance imaging (MRI) and the clinical triad of gait disturbance, dementia, and urinary incontinence. NPH has been estimated to account for up to 10% of cases of dementia and is significant because it is treatable by ventriculoperitoneal shunting. Patients with a known cause of chronic communicating hydrocephalus, that is, meningitis or hemorrhage, tend to respond better than patients with the so-called "idiopathic" form, most likely because of poor selection criteria in the past. Good response to shunting has been associated with hyperdynamic cerebrospinal fluid (CSF) flow through the aqueduct. In the early days of MRI, patients with a large CSF flow void extending from the foramen of Monro through the aqueduct to the fourth ventricle had an excellent chance of responding to ventriculoperitoneal shunting (P < 0.003). Today, we use phase-contrast MRI to measure the volume of CSF flowing through the aqueduct in either direction over a cardiac cycle. When this aqueductal CSF stroke volume is sufficiently elevated, there is an excellent chance of shunt responsiveness (100% positive predictive value in 1 study). Idiopathic NPH appears to be a "two-hit" disease-benign external hydrocephalus (BEH) in infancy followed by DWMI in late adulthood. As BEH occurs when the sutures are still open, these infants present with large heads, a finding also noted in patients with NPH. Although BEH has been attributed to immature arachnoidal granulations with decreased CSF resorptive capacity, this now appears to be permanent and may lead to a parallel pathway for CSF resorption via the extracellular space of the brain. With DWMI, the myelin lipid is lost, exposing the polar water molecules to myelin protein, increasing resistance to CSF outflow and leading to backing up of CSF and hydrocephalus.

  4. Recent advances in cardiac magnetic resonance

    PubMed Central

    Greulich, Simon; Arai, Andrew E.; Sechtem, Udo; Mahrholdt, Heiko

    2016-01-01

    Cardiac magnetic resonance (CMR) is a non-invasive imaging modality that has rapidly emerged during the last few years and has become a valuable, well-established clinical tool. Beside the evaluation of anatomy and function, CMR has its strengths in providing detailed non-invasive myocardial tissue characterization, for which it is considered the current diagnostic gold standard. Late gadolinium enhancement (LGE), with its capability to detect necrosis and to separate ischemic from non-ischemic cardiomyopathies by distinct LGE patterns, offers unique clinical possibilities. The presence of LGE has also proven to be a good predictor of an adverse outcome in various studies. T2-weighted (T2w) images, which are supposed to identify areas of edema and inflammation, are another CMR approach to tissue characterization. However, T2w images have not held their promise owing to several technical limitations and potential physiological concerns. Newer mapping techniques may overcome some of these limitations: they assess quantitatively myocardial tissue properties in absolute terms and show promising results in studies for characterization of diffuse fibrosis (T1 mapping) and/or inflammatory processes (T2 mapping). However, these techniques are still research tools and are not part of the clinical routine yet. T2* CMR has had significant impact in the management of thalassemia because it is possible to image the amount of iron in the heart and the liver, improving both diagnostic imaging and the management of patients with thalassemia. CMR findings frequently have clinical impact on further patient management, and CMR seems to be cost effective in the clinical routine. PMID:27635240

  5. Magnetic Resonance Imaging of Normal Pressure Hydrocephalus.

    PubMed

    Bradley, William G

    2016-04-01

    Normal pressure hydrocephalus (NPH) is a syndrome found in the elderly, which is characterized by ventriculomegaly and deep white matter ischemia (DWMI) on magnetic resonance imaging (MRI) and the clinical triad of gait disturbance, dementia, and urinary incontinence. NPH has been estimated to account for up to 10% of cases of dementia and is significant because it is treatable by ventriculoperitoneal shunting. Patients with a known cause of chronic communicating hydrocephalus, that is, meningitis or hemorrhage, tend to respond better than patients with the so-called "idiopathic" form, most likely because of poor selection criteria in the past. Good response to shunting has been associated with hyperdynamic cerebrospinal fluid (CSF) flow through the aqueduct. In the early days of MRI, patients with a large CSF flow void extending from the foramen of Monro through the aqueduct to the fourth ventricle had an excellent chance of responding to ventriculoperitoneal shunting (P < 0.003). Today, we use phase-contrast MRI to measure the volume of CSF flowing through the aqueduct in either direction over a cardiac cycle. When this aqueductal CSF stroke volume is sufficiently elevated, there is an excellent chance of shunt responsiveness (100% positive predictive value in 1 study). Idiopathic NPH appears to be a "two-hit" disease-benign external hydrocephalus (BEH) in infancy followed by DWMI in late adulthood. As BEH occurs when the sutures are still open, these infants present with large heads, a finding also noted in patients with NPH. Although BEH has been attributed to immature arachnoidal granulations with decreased CSF resorptive capacity, this now appears to be permanent and may lead to a parallel pathway for CSF resorption via the extracellular space of the brain. With DWMI, the myelin lipid is lost, exposing the polar water molecules to myelin protein, increasing resistance to CSF outflow and leading to backing up of CSF and hydrocephalus. PMID:27063662

  6. Magnetic Resonance Imaging in Postprostatectomy Radiotherapy Planning

    SciTech Connect

    Sefrova, Jana; Odrazka, Karel; Paluska, Petr; Belobradek, Zdenek; Brodak, Milos; Dolezel, Martin; Prosvic, Petr; Macingova, Zuzana; Vosmik, Milan; Hoffmann, Petr; Louda, Miroslav; Nejedla, Anna

    2012-02-01

    Purpose: To investigate whether the use of magnetic resonance imaging (MRI) in prostate bed treatment planning could influence definition of the clinical target volume (CTV) and organs at risk. Methods and Materials: A total of 21 consecutive patients referred for prostate bed radiotherapy were included in the present retrospective study. The CTV was delineated according to the European Organization for Research and Treatment of Cancer recommendations on computed tomography (CT) and T{sub 1}-weighted (T{sub 1}w) and T{sub 2}-weighted (T{sub 2}w) MRI. The CTV magnitude, agreement, and spatial differences were evaluated on the planning CT scan after registration with the MRI scans. Results: The CTV was significantly reduced on the T{sub 1}w and T{sub 2}w MRI scans (13% and 9%, respectively) compared with the CT scans. The urinary bladder was drawn smaller on the CT scans and the rectum was smaller on the MRI scans. On T{sub 1}w MRI, the rectum and urinary bladder were delineated larger than on T{sub 2}w MRI. Minimal agreement was observed between the CT and T{sub 2}w images. The main spatial differences were measured in the superior and superolateral directions in which the CTV on the MRI scans was 1.8-2.9 mm smaller. In the posterior and inferior border, no difference was seen between the CT and T{sub 1}w MRI scans. On the T{sub 2}w MRI scans, the CTV was larger in these directions (by 1.3 and 1.7 mm, respectively). Conclusions: The use of MRI in postprostatectomy radiotherapy planning resulted in a reduction of the CTV. The main differences were found in the superior part of the prostate bed. We believe T{sub 2}w MRI enables more precise definition of prostate bed CTV than conventional planning CT.

  7. Recent advances in cardiac magnetic resonance

    PubMed Central

    Greulich, Simon; Arai, Andrew E.; Sechtem, Udo; Mahrholdt, Heiko

    2016-01-01

    Cardiac magnetic resonance (CMR) is a non-invasive imaging modality that has rapidly emerged during the last few years and has become a valuable, well-established clinical tool. Beside the evaluation of anatomy and function, CMR has its strengths in providing detailed non-invasive myocardial tissue characterization, for which it is considered the current diagnostic gold standard. Late gadolinium enhancement (LGE), with its capability to detect necrosis and to separate ischemic from non-ischemic cardiomyopathies by distinct LGE patterns, offers unique clinical possibilities. The presence of LGE has also proven to be a good predictor of an adverse outcome in various studies. T2-weighted (T2w) images, which are supposed to identify areas of edema and inflammation, are another CMR approach to tissue characterization. However, T2w images have not held their promise owing to several technical limitations and potential physiological concerns. Newer mapping techniques may overcome some of these limitations: they assess quantitatively myocardial tissue properties in absolute terms and show promising results in studies for characterization of diffuse fibrosis (T1 mapping) and/or inflammatory processes (T2 mapping). However, these techniques are still research tools and are not part of the clinical routine yet. T2* CMR has had significant impact in the management of thalassemia because it is possible to image the amount of iron in the heart and the liver, improving both diagnostic imaging and the management of patients with thalassemia. CMR findings frequently have clinical impact on further patient management, and CMR seems to be cost effective in the clinical routine.

  8. Tools for cardiovascular magnetic resonance imaging

    PubMed Central

    Krishnamurthy, Ramkumar; Cheong, Benjamin

    2014-01-01

    In less than fifteen years, as a non-invasive imaging option, cardiovascular MR has grown from a being a mere curiosity to becoming a widely used clinical tool for evaluating cardiovascular disease. Cardiovascular magnetic resonance imaging (CMRI) is now routinely used to study myocardial structure, cardiac function, macro vascular blood flow, myocardial perfusion, and myocardial viability. For someone entering the field of cardiac MR, this rapid pace of development in the field of CMRI might make it difficult to identify a cohesive starting point. In this brief review, we have attempted to summarize the key cardiovascular imaging techniques that have found widespread clinical acceptance. In particular, we describe the essential cardiac and respiratory gating techniques that form the backbone of all cardiovascular imaging methods. It is followed by four sections that discuss: (I) the gradient echo techniques that are used to assess ventricular function; (II) black-blood turbo spin echo (SE) methods used for morphologic assessment of the heart; (III) phase-contrast based techniques for the assessment of blood flow; and (IV) CMR methods for the assessment of myocardial ischemia and viability. In each section, we briefly summarize technical considerations relevant to the clinical use of these techniques, followed by practical information for its clinical implementation. In each of those four areas, CMRI is considered either as the benchmark imaging modality against which the diagnostic performance of other imaging modalities are compared against, or provides a complementary capability to existing imaging techniques. We have deliberately avoided including cutting-edge CMR imaging techniques practiced at few academic centers, and restricted our discussion to methods that are widely used and are likely to be available in a clinical setting. Our hope is that this review would propel an interested reader toward more comprehensive reviews in the literature. PMID:24834409

  9. Phosphorus magnetic resonance spectroscopy studies in schizophrenia.

    PubMed

    Yuksel, Cagri; Tegin, Cuneyt; O'Connor, Lauren; Du, Fei; Ahat, Ezgi; Cohen, Bruce M; Ongur, Dost

    2015-09-01

    Phosphorus magnetic resonance spectroscopy ((31)P MRS) allows in vivo quantification of phosphorus metabolites that are considered to be related to membrane turnover and energy metabolism. In schizophrenia (SZ), (31)P MRS studies found several abnormalities in different brain regions suggesting that alterations in these pathways may be contributing to the pathophysiology. In this paper, we systematically reviewed the (31)P MRS studies in SZ published to date by taking patient characteristics, medication status and brain regions into account. Publications written in English were searched on http://www.ncbi.nlm.nih.gov/pubmed/, by using the keywords 'phosphomonoester', 'phosphodiester', 'ATP', 'phosphocreatine', 'phosphocholine', 'phosphoethanolamine','glycerophosphocholine', 'glycerophosphoethanolamine', 'pH', 'schizophrenia', and 'MRS'. Studies that measured (31)P metabolites in SZ patients were included. This search identified 52 studies. Reduced PME and elevated PDE reported in earlier studies were not replicated in several subsequent studies. One relatively consistent pattern was a decrease in PDE in chronic patients in the subcortical structures. There were no consistent patterns for the comparison of energy related phosphorus metabolites between patients and controls. Also, no consistent pattern emerged in studies seeking relationship between (31)P metabolites and antipsychotic use and other clinical variables. Despite emerging patterns, methodological heterogeneities and shortcomings in this literature likely obscure consistent patterns among studies. We conclude with recommendations to improve study designs and (31)P MRS methods in future studies. We also stress the significance of probing into the dynamic changes in energy metabolism, as this approach reveals abnormalities that are not visible to steady-state measurements. PMID:26228415

  10. Single Molecule Magnetic Force Detection with a Carbon Nanotube Resonator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Walker, Sean; Baugh, Jonathan

    2015-03-01

    Single molecule magnets (SMMs) sit at the boundary between macroscopic magnetic behaviour and quantum phenomena. Detecting the magnetic moment of an individual SMM would allow exploration of this boundary, and could enable technological applications based on SMMs such as quantum information processing. Detection of these magnetic moments remains an experimental challenge, particularly at the time scales of relaxation and decoherence. We present a technique for sensitive magnetic force detection that should permit such measurements. A suspended carbon nanotube (CNT) mechanical resonator is combined with a magnetic field gradient generated by a ferromagnetic gate electrode, which couples the magnetic moment of a nanomagnet to the resonant motion of the CNT. Numerical calculations of the mechanical resonance show that resonant frequency shifts on the order of a few kHz arise due to single Bohr magneton changes in magnetic moment. A signal-to-noise analysis based on thermomechanical noise shows that magnetic switching at the level of a Bohr magneton can be measured in a single shot on timescales as short as 10 μs. This sensitivity should enable studies of the spin dynamics of an isolated SMM, within the spin relaxation timescales for many available SMMs. Supported by NSERC.

  11. Prostate Cancer: The Role of Multiparametric Magnetic Resonance Imaging.

    PubMed

    Dias, João Lopes; Pina, João Magalhães; João, Raquel; Fialho, Joana; Carmo, Sandra; Leal, Cecília; Bilhim, Tiago; Marques, Rui Mateus; Pinheiro, Luís Campos

    2015-01-01

    Multiparametric magnetic resonance imaging has been increasingly used for detection, localization and staging of prostate cancer over the last years. It combines high-resolution T2 weighted-imaging and at least two functional techniques, which include dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and magnetic resonance imaging spectroscopy. Although the combined use of a pelvic phased-array and an endorectal coil is considered the state-of-the-art for magnetic resonance imaging evaluation of prostate cancer, endorectal coil is only absolute mandatory for magnetic resonance imaging spectroscopy at 1.5 T. Sensitivity and specificity levels in cancer detection and localization have been improving with functional technique implementation, compared to T2 weighted-imaging alone. It has been particularly useful to evaluate patients with abnormal PSA and negative biopsy. Moreover, the information added by the functional techniques may correlate to cancer aggressiveness and therefore be useful to select patients for focal radiotherapy, prostate sparing surgery, focal ablative therapy and active surveillance. However, more studies are needed to compare the functional techniques and understand the advantages and disadvantages of each one. This article reviews the basic principles of prostatic mp-magnetic resonance imaging, emphasizing its role on detection, staging and active surveillance of prostate cancer.

  12. Simultaneous Measurement of Magnetic Resonance and Neuronal Signals

    NASA Astrophysics Data System (ADS)

    Espy, Michelle

    2007-03-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at ultra low magnetic fields (ULF, ˜ microT) have advantages over their counterparts at higher magnetic fields, despite the reduction in signal strength. Among these advantages are that the instrumentation uses superconducting quantum interference devices (SQUIDs), and is now compatible with simultaneous measurements of biomagnetic signals, such as magnetoencephalography (MEG). This presents a new opportunity for noninvasive simultaneous functional and anatomical brain imaging. We present here the physical basis and experimental evidence for a variety of ULF-MRI techniques being developed at Los Alamos to enable simultaneous anatomical and functional imaging of the human brain. We conclude by presenting a novel technique, based on the resonant interaction between the magnetic fields such as those that arise from neural activity and the spin population in ULF-MRI experiments, that may enable direct tomographic imaging of the consequences of neural activity.

  13. Chapter 1 Magnetic Resonance Contributions to Other Sciences

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    In 1947, I.I. Rabi invented the molecular beam magnetic resonance method for the important, but limited purpose, of measuring nuclear magnetic moments and five of us working in his laboratory immediately began such experiments. The first experiments with LiCl gave the expected single resonance for each nucleus, but we were surprised to discover six resonances for the proton in H2, which we soon showed was due to the magnetic effects of the other proton and the rotating charged molecule: from these measurements we could also obtain new information on molecular structure. We had another shock when we studied D2 and found the resonance curves were spread more widely for D2 than H2 even though the magnetic interactions should have been much smaller. We found we could explain this by assuming that the deuteron had an electric quadrupole moment and J. Schwinger pointed out that this would require the existence of a previously unsuspected electric tensor force between the neutron and the proton. With this, the resonance method was giving new fundamental information about nuclear forces. In 1944, Rabi and I pointed out that it should be possible by the Dirac theory and our past resonance experiments to calculate exactly the hyperfine interaction between the electron and the proton in the hydrogen atom and we had two graduate students, Nafe and Nelson do the experiment and they found a disagreement which led J. Schwinger to develop the first successful relativistic quantum field theory and QED. In 1964, Purcell, Bloch and others detected magnetic resonance transitions by the effect of the transition on the oscillator, called NMR, making possible measurements on liquids, solids and gases and giving information on chemical shifts and thermal relaxation times T1 and T2. I developed a magnetic resonance method for setting a limit to the EDM of a neutron in a beam and with others for neutrons stored in a suitably coated bottle. Magnetic resonance measurements provide high

  14. Primary Paratracheal Leiomyoma: Increased Preoperative Diagnostic Specificity With Magnetic Resonance Imaging.

    PubMed

    Levesque, Marie-Hélène; Aisagbonhi, Omonigho; Digumarthy, Subba; Wright, Cameron D; Ackman, Jeanne B

    2016-08-01

    We report the case of a 47-year-old woman whose primary mediastinal leiomyoma was incidentally found during evaluation of her persistent cough. The preoperative diagnosis of mediastinal leiomyoma is challenging because of its rarity and indeterminate features on chest radiography, computed tomography (CT), and positron emission tomography-CT. We highlight how magnetic resonance imaging can substantially contribute to mediastinal mass characterization and diagnostic specificity. PMID:27449453

  15. A comparison of magnetic resonance imaging sequences in evaluating pathological changes in the canine spinal cord.

    PubMed

    Adamiak, Z; Pomianowski, A; Zhalniarovich, Y; Kwiatkowska, M; Jaskólska, M; Bocheńska, A

    2011-01-01

    This paper discusses 28 canine patients subjected to low-field magnetic resonance imaging (MRI) of the spinal cord for neurological indications. The authors describe and compare the used MRI sequences with an indication of the most effective sequences in MRI examinations that require short scanning time. The most effective sequences supporting a quick diagnosis of spinal diseases in dogs were SE (spin echo), FSE (fast spin echo) and 3D HYCE (hybrid contrast enhancement). PMID:21957746

  16. Intraventricular mass lesions at magnetic resonance imaging: iconographic essay - part 2*

    PubMed Central

    de Castro, Felipe Damásio; Reis, Fabiano; Guerra, José Guilherme Giocondo

    2014-01-01

    The present essay is illustrated with magnetic resonance images obtained at the authors' institution over the past 15 years and discusses the main imaging findings of intraventricular tumor-like lesions (colloid cyst, oligodendroglioma, astroblastoma, lipoma, cavernoma) and of inflammatory/infectious lesions (neurocysticercosis and an atypical presentation of neurohistoplasmosis). Such lesions represent a subgroup of intracranial lesions with unique characteristics and some imaging patterns that may facilitate the differential diagnosis. PMID:25741092

  17. Intraventricular mass lesions at magnetic resonance imaging: iconographic essay - part 1*

    PubMed Central

    de Castro, Felipe Damásio; Reis, Fabiano; Guerra, José Guilherme Giocondo

    2014-01-01

    The present essay is illustrated with magnetic resonance images obtained at the authors' institution over the past 15 years and discusses the main imaging findings of intraventricular tumor-like lesions (ependymoma, pilocytic astrocytoma, central neurocytoma, ganglioglioma, choroid plexus papilloma, primitive neuroectodermal tumors, meningioma, epidermoid tumor). Such lesions represent a subgroup of intracranial lesions with unique characteristics and some image patterns that may facilitate the differential diagnosis. PMID:25741075

  18. Magnetic resonance cholangiography: applications in patients with calculus disease of the biliary tract.

    PubMed

    Liu, Terrence H; Organ, Claude H

    2004-04-01

    Magnetic resonance cholangiography (MRC) is a non-invasive imaging modality that has become widely available. In the short time since its introduction, MRC has been shown to possess excellent accuracy for the diagnosis of various biliary pathologies, including choledocholithiasis. Investigations of the clinical applications of MRC are ongoing. This review summarizes the diagnostic capabilities of MRC and discusses its application in the management of patients with gallstone diseases.

  19. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  20. Electron paramagnetic resonance of nitroxide-doped magnetic fluids

    NASA Astrophysics Data System (ADS)

    Morais, P. C.; Alonso, A.; Silva, O.; Buske, N.

    2002-11-01

    Electron paramagnetic resonance was used to investigate surface-coated magnetite-based magnetic fluids doped with TEMPOL. Two magnetic fluid samples, having magnetite nanoparticles with average diameter of 94 Å and coated with different coating layers (lauric acid plus ethoxylated polyalcohol in one case and oleoylsarcosine in the other case), were doped with TEMPOL (6 mM and pH 7.4) and investigated as a function of the nanoparticle concentration. The resonance field and the resonance linewidth both scale linearly with the nanoparticle concentration.

  1. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the pelvic floor, ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  2. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid.

    PubMed

    Li, Xianli; Ding, Hui

    2012-12-15

    All-fiber magnetic-field sensor based on a device consisting of a microfiber knot resonator and magnetic fluid is proposed for the first time in this Letter. Sensor principles and package technology are introduced in detail. Experimental results show that the resonance wavelength of the proposed sensor regularly varies with changes to the applied magnetic field. When the magnetic field is increased to 600 Oe, the wavelength shift reaches nearly 100 pm. Moreover, the sensor responding to the 50 Hz alternating magnetic field is also experimentally investigated, and a minimal detectable magnetic-field strength of 10 Oe is successfully achieved.

  3. Resonant magnetic scattering in holmium at an undulator source

    SciTech Connect

    Gruebel, G.; Als-Nielsen, J.; Vettier, C.; Gibbs, D.; Bohr, J.; Pengra, D.

    1994-06-01

    The resonance properties of the magnetic cross section of antiferromagnetic holmium were studied at the L absorption edges. A polarization analysis of the magnetic cross section was performed at the L{sub III} and L{sub II} edges using {pi} polarized incident x-rays.

  4. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-25

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications.

  5. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  6. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  7. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  8. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-25

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications. PMID:26450363

  9. New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI).

    PubMed

    Ahmed, Naveed; Jaafar-Maalej, Chiraz; Eissa, Mohamed Mahmoud; Fessi, Hatem; Elaissari, Abdelhamid

    2013-09-01

    Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI). In this study, a new oil-in-water magnetic emulsion was used as contrast agent in MRI, after being characterized in terms of particle size, iron oxide content, magnetic properties and colloidal stability using dynamic light scattering (DLS), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM) and zeta potential measurement techniques, respectively. The hydrodynamic size and magnetic content of the magnetic colloidal particles were found to be 250 nm and 75 wt%, respectively. In addition, the used magnetic emulsion possesses superparamagentic properties and high colloidal stability in aqueous medium. Then, the magnetic emulsion was highly diluted and administered intravenously to the Sprague dawley rats to be tested as contrast agent for in vivo MRI. In this preliminary study, MRI images showed significant enhancement in contrast, especially for T2 (relaxation time) contrast enhancement, indicating the distribution of magnetic colloidal nanoparticles within organs, like liver, spleen and kidneys of the Sprague dawley rats. In addition, it was found that 500 microL of the highly diluted magnetic emulsion (0.05 wt%) was found adequate for MRI analysis. This seems to be useful for further investigations especially in theranostic applications of magnetic emulsion.

  10. New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI).

    PubMed

    Ahmed, Naveed; Jaafar-Maalej, Chiraz; Eissa, Mohamed Mahmoud; Fessi, Hatem; Elaissari, Abdelhamid

    2013-09-01

    Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI). In this study, a new oil-in-water magnetic emulsion was used as contrast agent in MRI, after being characterized in terms of particle size, iron oxide content, magnetic properties and colloidal stability using dynamic light scattering (DLS), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM) and zeta potential measurement techniques, respectively. The hydrodynamic size and magnetic content of the magnetic colloidal particles were found to be 250 nm and 75 wt%, respectively. In addition, the used magnetic emulsion possesses superparamagentic properties and high colloidal stability in aqueous medium. Then, the magnetic emulsion was highly diluted and administered intravenously to the Sprague dawley rats to be tested as contrast agent for in vivo MRI. In this preliminary study, MRI images showed significant enhancement in contrast, especially for T2 (relaxation time) contrast enhancement, indicating the distribution of magnetic colloidal nanoparticles within organs, like liver, spleen and kidneys of the Sprague dawley rats. In addition, it was found that 500 microL of the highly diluted magnetic emulsion (0.05 wt%) was found adequate for MRI analysis. This seems to be useful for further investigations especially in theranostic applications of magnetic emulsion. PMID:23980505

  11. Glomus Tumors: A Review of Preoperative Magnetic Resonance Imaging to Detect Satellite Lesions.

    PubMed

    Giugale, Juan M; Fowler, John R

    2015-10-01

    Glomus tumors are malformations of the neuromyoarterial system that commonly develop in the digits and cause exquisite tenderness, especially with cold temperatures. Treatment typically involves surgical excision, although there is a tendency to avoid aggressive resections, which may lead to aesthetically displeasing nail plate deformities. In a minority of patients, symptoms may persist and the tumor may recur. The etiology of the persistent of symptoms is debatable. One theory for the persistence of symptoms is an incomplete initial excision of the glomus tumor. Another theory suggests that clinically unapparent satellite lesions exist at the time of diagnosis that are not excised, and they later mature into symptomatic recurrent tumors. Although not clinically visible, if present, these satellite lesions should be seen on preoperative magnetic resonance imaging. The authors reviewed all cases of pathology-confirmed glomus tumors in the past 7 years at a single institution in which preoperative magnetic resonance imaging using a high-powered 3.0 Tesla (General Electric, Buckinghamshire, United Kingdom) magnet was performed. Six cases met inclusion criteria and only 1 case developed a recurrent glomus tumor. None of the cases were found to have satellite lesions associated with the primary glomus tumor on magnetic resonance imaging. Preventing recurrence seems to be dependent on the completeness of the initial excision. Preoperative magnetic resonance imaging is a valuable tool used to delineate the extent of the tumor for surgical planning. PMID:26488783

  12. 8-Cavity Planar Coil for Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodriguez, A. O.; Favila, R. G.; Salgado, P.; Reynoso, G.; Barrios, F. A.

    2003-09-01

    Multiloop resonator coils have become a good alternative in Magnetic Resonance Spectroscopy of the brain. This is due to the fact that, these type of coils are able to generate high Signal-to-Noise Ratios compared whith the conventional single-loop coils. In this paper, a receiving-only surface coil based on the (8 cavity configuration) magnetron tube is described to perform Magnetic Resonance Spectroscopy. Magnetic Resonance spectra from a spectroscopic phantom were obtained. All spectroscopic experiments were obtained using a 1.5T clinical imager (Signa LX equipped with V. 5.8, General Electric Medical Systems) and the pulse sequence PRESS. To compare performance of the resonator coil, phantom spectra were also measured with a commercial surface coil (7.5 cm diameter). Coil performance comparison shows that the magnetron planar coil is able to produce an important improvement in Signal-to-Noise Ratio. This coil prototype is also fully compatible with clinical scanners and commonly-used spectroscopy sequences. The magnetron resonator coil can generate high-quality magnetic resonance spectra of phantoms.

  13. A Faraday effect position sensor for interventional magnetic resonance imaging.

    PubMed

    Bock, M; Umathum, R; Sikora, J; Brenner, S; Aguor, E N; Semmler, W

    2006-02-21

    An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m(-1) gradient field, a localization uncertainty of 1.5 cm could be achieved.

  14. Structure of magnetic resonance in 87Rb atoms

    NASA Astrophysics Data System (ADS)

    Kozlov, A. N.; Zibrov, S. A.; Zibrov, A. A.; Yudin, V. I.; Taichenachev, A. V.; Yakovlev, V. P.; Tsygankov, E. A.; Zibrov, A. S.; Vassiliev, V. V.; Velichansky, V. L.

    2016-05-01

    Magnetic resonance at the F g = 1 rightleftarrows F e = 1 transition of the D 1 line in 87Rb has been studied with pumping and detection by linearly polarized radiation and detection at the double frequency of the radiofrequency field. The intervals of allowed values of the static and alternating magnetic fields in which magnetic resonance has a single maximum have been found. The structure appearing beyond these intervals has been explained. It has been shown that the quadratic Zeeman shift is responsible for the three-peak structure of resonance; the radiofrequency shift results in the appearance of additional extrema in resonance, which can be used to determine the relaxation constant Γ2. The possibility of application in magnetometry has been discussed.

  15. Effect of magnetic nanoparticle shape on flux amplification in inductive coil magnetic resonance detection

    NASA Astrophysics Data System (ADS)

    Barbic, Mladen; ElBidweihy, Hatem

    2016-09-01

    We model and analyze the effect of particle shape on the signal amplification in inductive coil magnetic resonance detection using the reversible transverse magnetic susceptibility of oriented magnetic nanostructures. Utilizing the single magnetic domain Stoner-Wohlfarth model of uniform magnetization rotation, we reveal that different ellipsoidal particle shapes can have a pronounced effect on the magnetic flux enhancement in detection configurations typical of magnetic resonance settings. We compare and contrast the prolate ellipsoids, oblate ellipsoids, and exchange-biased spheres and show that the oblate ellipsoids and exchange-biased spheres have a significantly higher flux amplification effect than the prolate ellipsoids considered previously. In addition, oblate ellipsoids have a much broader polarizing magnetic field range over which their transverse flux amplification is significant. We show the dependence of transverse flux amplification on magnetic resonance bias field and discuss the resulting signal-to-noise ratio of inductive magnetic resonance detection due to the magnetic nanoparticle-filled core of the magnetic resonance detection coil.

  16. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI

  17. Accelerated nanoscale magnetic resonance imaging through phase multiplexing

    SciTech Connect

    Moores, B. A.; Eichler, A. Takahashi, H.; Navaretti, P.; Degen, C. L.; Tao, Y.

    2015-05-25

    We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species ({sup 1}H, {sup 19}F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.

  18. Milestones in magnetic resonance imaging and transcranial sonography of movement disorders.

    PubMed

    Berg, Daniela; Steinberger, Jonathan D; Warren Olanow, C; Naidich, Thomas P; Yousry, Tarek A

    2011-05-01

    Twenty-five years ago, when this journal was initiated, imaging of movement disorders was in its infancy. Since that time, magnetic resonance imaging has become a standard technique that is routinely performed in patients with movement disorders in order to exclude secondary causes and in some instances to provide specific information that aids in making the diagnosis of a neurodegenerative condition. Transcranial sonography is a more recent advance and is now widely employed to aid in the diagnosis of Parkinson's disease and possibly in detecting individuals in the premotor phases of the disease. Investigations are currently under way to evaluate the value of this technique in other movement disorders.

  19. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  20. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.