Sample records for magnetization dynamics studies

  1. Electrical detection of magnetization dynamics via spin rectification effects

    NASA Astrophysics Data System (ADS)

    Harder, Michael; Gui, Yongsheng; Hu, Can-Ming

    2016-11-01

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  2. Dynamical properties of magnetized two-dimensional one-component plasma

    NASA Astrophysics Data System (ADS)

    Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios

    2018-05-01

    Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.

  3. Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves.

    PubMed

    Foerster, Michael; Macià, Ferran; Statuto, Nahuel; Finizio, Simone; Hernández-Mínguez, Alberto; Lendínez, Sergi; Santos, Paulo V; Fontcuberta, Josep; Hernàndez, Joan Manel; Kläui, Mathias; Aballe, Lucia

    2017-09-01

    The magnetoelastic effect-the change of magnetic properties caused by the elastic deformation of a magnetic material-has been proposed as an alternative approach to magnetic fields for the low-power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Here, we have studied the effect of dynamic strain accompanying a surface acoustic wave on magnetic nanostructures in thermal equilibrium. We have developed an experimental technique based on stroboscopic X-ray microscopy that provides a pathway to the quantitative study of strain waves and magnetization at the nanoscale. We have simultaneously imaged the evolution of both strain and magnetization dynamics of nanostructures at the picosecond time scale and found that magnetization modes have a delayed response to the strain modes, adjustable by the magnetic domain configuration. Our results provide fundamental insight into magnetoelastic coupling in nanostructures and have implications for the design of strain-controlled magnetostrictive nano-devices.Understanding the effects of local dynamic strain on magnetization may help the development of magnetic devices. Foerster et al. demonstrate stroboscopic imaging that allows the observation of both strain and magnetization dynamics in nickel when surface acoustic waves are driven in the substrate.

  4. Classification of Magnetic Nanoparticle Systems—Synthesis, Standardization and Analysis Methods in the NanoMag Project

    PubMed Central

    Bogren, Sara; Fornara, Andrea; Ludwig, Frank; del Puerto Morales, Maria; Steinhoff, Uwe; Fougt Hansen, Mikkel; Kazakova, Olga; Johansson, Christer

    2015-01-01

    This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles. PMID:26343639

  5. Magnetic field induced dynamical chaos.

    PubMed

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  6. Magnetization dynamics of imprinted non-collinear spin textures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamicsmore » are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.« less

  7. Intrinsic subpicosecond magnetization reversal driven by femtosecond laser pulses in GdFeCo amorphous films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shufa; Gao, Ruixin; Cheng, Chuyuan

    2013-12-09

    Ultrafast magnetization dynamics in GdFeCo films triggered by femtosecond laser pulses with and without an external field applied is studied experimentally for different excitation fluence. It is found that subpicosecond magnetization reversal occurs simultaneously in the ultrafast dynamics of both saturation and remnant magnetization states and almost identical within 13 ps, whereas relatively slow magnetization reversal across compensation point appears only in the dynamics of saturation magnetization state. It shows the subpicosecond magnetization reversal is external field independent, and originates from intrinsic magnetic evolution in ferrimagnetic system. The intrinsic subpicosecond reversal is qualitatively explained by linear reversal.

  8. Dynamic blocked transfer stiffness method of characterizing the magnetic field and frequency dependent dynamic viscoelastic properties of MRE

    NASA Astrophysics Data System (ADS)

    Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.

    2016-11-01

    Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.

  9. Longitudinal magnetization dynamics in Heisenberg magnets: Spin Green functions approach (Review Article)

    NASA Astrophysics Data System (ADS)

    Krivoruchko, V. N.

    2017-11-01

    In spite of the fact that dynamical properties of magnets have been extensively studied over the past years, the longitudinal magnetization dynamics is still much less understood than transverse one even in the equilibrium state of a system. In this paper, we give a review of existing, based on quantum-mechanical approach, theoretical descriptions of the longitudinal magnetization dynamics for ferro-, ferri- and antiferromagnetic dielectrics. The aim is to reveal specific features of this type of magnetization vibrations under description a system within the framework of one of the basic model theory of magnetism—the Heisenberg model. Related experimental investigations as well as open questions are also briefly discussed. We hope that understanding of the longitudinal magnetization dynamics distinctive features in the equilibrium state have to be a reference point for a theory uncovering the physical mechanisms that govern ultrafast spin dynamics after femtosecond laser pulse demagnetization when a system is far beyond an equilibrium state.

  10. Nonequilibrium magnetic properties in a two-dimensional kinetic mixed Ising system within the effective-field theory and Glauber-type stochastic dynamics approach.

    PubMed

    Ertaş, Mehmet; Deviren, Bayram; Keskin, Mustafa

    2012-11-01

    Nonequilibrium magnetic properties in a two-dimensional kinetic mixed spin-2 and spin-5/2 Ising system in the presence of a time-varying (sinusoidal) magnetic field are studied within the effective-field theory (EFT) with correlations. The time evolution of the system is described by using Glauber-type stochastic dynamics. The dynamic EFT equations are derived by employing the Glauber transition rates for two interpenetrating square lattices. We investigate the time dependence of the magnetizations for different interaction parameter values in order to find the phases in the system. We also study the thermal behavior of the dynamic magnetizations, the hysteresis loop area, and dynamic correlation. The dynamic phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane and we observe that the system exhibits dynamic tricritical and reentrant behaviors. Moreover, the system also displays a double critical end point (B), a zero-temperature critical point (Z), a critical end point (E), and a triple point (TP). We also performed a comparison with the mean-field prediction in order to point out the effects of correlations and found that some of the dynamic first-order phase lines, which are artifacts of the mean-field approach, disappeared.

  11. Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Maksimov, A. A.; Yakovlev, D. R.; Debus, J.; Tartakovskii, I. I.; Waag, A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Bayer, M.

    2010-07-01

    The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te were studied optically and simulated numerically. In samples with inhomogeneous magnetic ion distribution, these dynamics are contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. A spin-diffusion coefficient of 7×10-8cm2/s was evaluated for Zn0.99Mn0.01Se from comparison of experiment and theory. Calculations of the exciton giant Zeeman splitting and the magnetization dynamics in ordered alloys and digitally grown parabolic quantum wells show perfect agreement with the experimental data. In both structure types, spin diffusion contributes essentially to the magnetization dynamics.

  12. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.

  13. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2010-07-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  14. Bias field tunable magnetic configuration and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm length

    NASA Astrophysics Data System (ADS)

    Adhikari, K.; Choudhury, S.; Mandal, R.; Barman, S.; Otani, Y.; Barman, A.

    2017-01-01

    Ferromagnetic nano-cross structures promise exotic static magnetic configurations and very rich and tunable magnetization dynamics leading towards potential applications in magnetic logic and communication devices. Here, we report an experimental study of external magnetic field tunable static magnetic configurations and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm lengths (L). Broadband ferromagnetic resonance measurements showed a strong variation in the number of spin-wave (SW) modes and mode frequencies (f) with bias field magnitude (H). Simulated static magnetic configurations and SW mode profiles explain the rich variation of the SW spectra, including mode softening, mode crossover, mode splitting, and mode merging. Such variation of SW spectra is further modified by the size of the nano-cross. Remarkably, with decreasing arm length of nano-cross structures, the onion magnetization ground state becomes more stable. Calculated magnetostatic field distributions support the above observations and revealed the non-collective nature of the dynamics in closely packed nano-cross structures. The latter is useful for their possible applications in magnetic storage and memory devices.

  15. Comparing Magnetic Resonance Imaging and High-Resolution Dynamic Ultrasonography for Diagnosis of Plantar Plate Pathology: A Case Series.

    PubMed

    Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael

    Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.

    2014-10-20

    We report an experimental study on the dynamic thermomagnetic (TM) reversal mechanisms at around Curie temperature (Tc) for isolated 60 nm pitch single-domain [Co/Pd] islands heated by a 1.5 μm spot size laser pulse under an applied magnetic reversal field (Hr). Magnetic force microscopy (MFM) observations with high resolution MFM tips clearly showed randomly trapped non-switched islands within the laser irradiated spot after dynamic TM reversal process with insufficient Hr strength. This observation provides direct experimental evidence by MFM of a large magnetization switching variation due to increased thermal fluctuation/agitation over magnetization energy at the elevated temperature of around Tc. The averagemore » percentage of non-switched islands/magnetization was further found to be inversely proportional to the applied reversal field Hr for incomplete magnetization reversal when Hr is less than 13% of the island coercivity (Hc), showing an increased switching field distribution (SFD) at elevated temperature of around Tc (where main contributions to SFD broadening are from Tc distribution and stronger thermal fluctuations). Our experimental study and results provide better understanding and insight on practical heat assisted magnetic recording (HAMR) process and recording performance, including HAMR writing magnetization dynamics induced SFD as well as associated DC saturation noise that limits areal density, as were previously observed and investigated by theoretical simulations.« less

  17. Numerical investigation of the dynamics of Janus magnetic particles in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, Hui Eun; Kim, Kyoungbeom; Ma, Tae Yeong; Kang, Tae Gon

    2017-02-01

    We investigated the rotational dynamics of Janus magnetic particles suspended in a viscous liquid, in the presence of an externally applied rotating magnetic field. A previously developed two-dimensional direct simulation method, based on the finite element method and a fictitious domain method, is employed to solve the magnetic particulate flow. As for the magnetic problem, the two Maxwell equations are converted to a differential equation using the magnetic potential. The magnetic forces acting on the particles are treated by a Maxwell stress tensor formulation, enabling us to consider the magnetic interactions among the particles without any approximation. The dynamics of a single particle in the rotating field is studied to elucidate the effect of the Mason number and the magnetic susceptibility on the particle motions. Then, we extended our interest to a two-particle problem, focusing on the effect of the initial configuration of the particles on the particle motions. In three-particle interaction problems, the particle dynamics and the fluid flow induced by the particle motions are significantly affected by the particle configuration and the orientation of each particle.

  18. Time-Resolved X-Ray Magnetic Circular Dichroism - A Selective Probe of Magnetization Dynamics on Nanosecond Timescales

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Vogel, Jan; Bonfim, Marlio; Fontaine, Alain

    Many synchrotron radiation techniques have been developed in the last 15 years for studying the magnetic properties of thin-film materials. The most attractive properties of synchrotron radiation are its energy tunability and its time structure. The first property allows measurements in resonant conditions at an absorption edge of each of the magnetic elements constituting the probed sample, and the latter allows time-resolved measurements on subnanosecond timescales. In this review, we introduce some of the synchrotron-based techniques used for magnetic investigations. We then describe in detail X-ray magnetic circular dichroism (XMCD) and how time-resolved XMCD studies can be carried out in the pump-probe mode. Finally, we illustrate some applications to magnetization reversal dynamics in spin valves and tunnel junctions, using fast magnetic field pulses applied along the easy magnetization axis of the samples. Thanks to the element-selectivity of X-ray absorption spectroscopy, the magnetization dynamics of the soft (Permalloy) and the hard (cobalt) layers can be studied independently. In the case of spin valves, this allowed us to show that two magnetic layers that are strongly coupled in a static regime can become uncoupled on nanosecond timescales.Present address: Universidade Federal do Paraná, Centro Politécnico CP 19011, Curitiba - PR CEP 81531-990, Brazil

  19. Dynamic modelling and response characteristics of a magnetic bearing rotor system with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1995-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.

  20. Towards developing a compact model for magnetization switching in straintronics magnetic random access memory devices

    NASA Astrophysics Data System (ADS)

    Barangi, Mahmood; Erementchouk, Mikhail; Mazumder, Pinaki

    2016-08-01

    Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flipping delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the efficiency of the straintronics switching over the STT method is highlighted by analytically investigating the energy-delay trade-off of both methodologies.

  1. Towards developing a compact model for magnetization switching in straintronics magnetic random access memory devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barangi, Mahmood, E-mail: barangi@umich.edu; Erementchouk, Mikhail; Mazumder, Pinaki

    Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flippingmore » delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the efficiency of the straintronics switching over the STT method is highlighted by analytically investigating the energy-delay trade-off of both methodologies.« less

  2. Dynamical spin accumulation in large-spin magnetic molecules

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  3. Interaction quench dynamics in the Kondo model in the presence of a local magnetic field.

    PubMed

    Heyl, M; Kehrein, S

    2010-09-01

    In this work we investigate the quench dynamics in the Kondo model on the Toulouse line in the presence of a local magnetic field. It is shown that this setup can be realized by either applying the local magnetic field directly or by preparing the system in a macroscopically spin-polarized initial state. In the latter case, the magnetic field results from a subtlety in applying the bosonization technique where terms that are usually referred to as finite-size corrections become important in the present non-equilibrium setting. The transient dynamics are studied by analyzing exact analytical results for the local spin dynamics. The timescale for the relaxation of the local dynamical quantities turns out to be exclusively determined by the Kondo scale. In the transient regime, one observes damped oscillations in the local correlation functions with a frequency set by the magnetic field.

  4. Nonlocal Gilbert damping tensor within the torque-torque correlation model

    NASA Astrophysics Data System (ADS)

    Thonig, Danny; Kvashnin, Yaroslav; Eriksson, Olle; Pereiro, Manuel

    2018-01-01

    An essential property of magnetic devices is the relaxation rate in magnetic switching, which depends strongly on the damping in the magnetization dynamics. It was recently measured that damping depends on the magnetic texture and, consequently, is a nonlocal quantity. The damping enters the Landau-Lifshitz-Gilbert equation as the phenomenological Gilbert damping parameter α , which does not, in a straightforward formulation, account for nonlocality. Efforts were spent recently to obtain Gilbert damping from first principles for magnons of wave vector q . However, to the best of our knowledge, there is no report about real-space nonlocal Gilbert damping αi j. Here, a torque-torque correlation model based on a tight-binding approach is applied to the bulk elemental itinerant magnets and it predicts significant off-site Gilbert damping contributions, which could be also negative. Supported by atomistic magnetization dynamics simulations, we reveal the importance of the nonlocal Gilbert damping in atomistic magnetization dynamics. This study gives a deeper understanding of the dynamics of the magnetic moments and dissipation processes in real magnetic materials. Ways of manipulating nonlocal damping are explored, either by temperature, materials doping, or strain.

  5. Effect of temperature variations and thermal noise on the static and dynamic behavior of straintronics devices

    NASA Astrophysics Data System (ADS)

    Barangi, Mahmood; Mazumder, Pinaki

    2015-11-01

    A theoretical model quantifying the effect of temperature variations on the magnetic properties and static and dynamic behavior of the straintronics magnetic tunneling junction is presented. Four common magnetostrictive materials (Nickel, Cobalt, Terfenol-D, and Galfenol) are analyzed to determine their temperature sensitivity and to provide a comprehensive database for different applications. The variations of magnetic anisotropies are studied in detail for temperature levels up to the Curie temperature. The energy barrier of the free layer and the critical voltage required for flipping the magnetization vector are inspected as important metrics that dominate the energy requirements and noise immunity when the device is incorporated into large systems. To study the dynamic thermal noise, the effect of the Langevin thermal field on the free layer's magnetization vector is incorporated into the Landau-Lifshitz-Gilbert equation. The switching energy, flipping delay, write, and hold error probabilities are studied, which are important metrics for nonvolatile memories, an important application of the straintronics magnetic tunneling junctions.

  6. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Scherrer, Philip Hanby; Schou, Jesper; Bush, R. I.; Kosovichev, A. G.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; Zhao, J.; Title, A. M.; hide

    2011-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

  7. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Yamada, M.; Ji, H.

    Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less

  8. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes

    DOE PAGES

    Myers, C. E.; Yamada, M.; Ji, H.; ...

    2016-11-22

    Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less

  9. Public Data Set: Radially Scanning Magnetic Probes to Study Local Helicity Injection Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richner, Nathan J; Bongard, Michael W; Fonck, Raymond J

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in N.J. Richner et al., 'Radially Scanning Magnetic Probes to Study Local Helicity Injection Dynamics,' accepted for publication in Rev. Sci. Instrum (2018).

  10. Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve

    NASA Astrophysics Data System (ADS)

    Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration

    2014-03-01

    In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.

  11. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study.

    PubMed

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-07

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  12. Dynamic Analysis Method for Electromagnetic Artificial Muscle Actuator under PID Control

    NASA Astrophysics Data System (ADS)

    Nakata, Yoshihiro; Ishiguro, Hiroshi; Hirata, Katsuhiro

    We have been studying an interior permanent magnet linear actuator for an artificial muscle. This actuator mainly consists of a mover and stator. The mover is composed of permanent magnets, magnetic cores and a non-magnetic shaft. The stator is composed of 3-phase coils and a back yoke. In this paper, the dynamic analysis method under PID control is proposed employing the 3-D finite element method (3-D FEM) to compute the dynamic response and current response when the positioning control is active. As a conclusion, computed results show good agreement with measured ones of a prototype.

  13. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE PAGES

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.; ...

    2015-04-22

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  14. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  15. Prototype of Self-Sensing Magnetic Bearing for Liquid Nitrogen Pump

    NASA Astrophysics Data System (ADS)

    Eguchi, Seiji; Komori, Mochimitsu; Okuhata, Taro

    Recently, pumps used in extremely low temperature such as 77K are found to be necessary. They are expected to use for rocket engines and hydrogen stations for fueled vehicles. Generally, conventional magnetic bearings do not work in the extremely low temperature. Therefore, we have studied magnitic bearings for these pumps. Self-sensing technique is tried to apply to magnetic bearings. If self-sensing magnetic bearings were made, we could apply the self-sensing magnetic bearing to liquid nitrogen pumps. In this paper, we propose a prototype self-sensing magnetic bearing and study the static and dynamic characteristics. The dynamic characteristics in the air and in liquid nitrogen are also discussed.

  16. Magnetic susceptibility, nanorheology, and magnetoviscosity of magnetic nanoparticles in viscoelastic environments

    NASA Astrophysics Data System (ADS)

    Ilg, Patrick; Evangelopoulos, Apostolos E. A. S.

    2018-03-01

    While magnetic nanoparticles suspended in Newtonian solvents (ferrofluids) have been intensively studied in recent years, the effects of viscoelasticity of the surrounding medium on the nanoparticle dynamics are much less understood. Here we investigate a mesoscopic model for the orientational dynamics of isolated magnetic nanoparticles subject to external fields, viscous and viscoelastic friction, as well as the corresponding random torques. We solve the model analytically in the overdamped limit for weak viscoelasticity. By comparison to Brownian dynamics simulations we establish the limits of validity of the analytical solution. We find that viscoelasticity not only slows down the magnetization relaxation, shifts the peak of the imaginary magnetic susceptibility χ″ to lower frequencies, and increases the magnetoviscosity but also leads to nonexponential relaxation and a broadening of χ″. The model we study also allows us to test a recent proposal for using magnetic susceptibility measurements as a nanorheological tool using a variant of the Germant-DiMarzio-Bishop relation. We find for the present model and certain parameter ranges that the relation of the magnetic susceptibility to the shear modulus is satisfied to a good approximation.

  17. Study of static and dynamic magnetic properties of Fe nanoparticles composited with activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Satyendra Prakash, E-mail: sppal85@gmail.com; Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge city, Sector81, SAS Nagar, Manauli-140306, Punjab; Kaur, Guratinder

    2016-05-23

    Nanocomposite of Fe nanoparticles with activated carbon has been synthesized to alter the magnetic spin-spin interaction and hence study the dilution effect on the static and dynamic magnetic properties of the Fe nanoparticle system. Transmission electron microscopic (TEM) image shows the spherical Fe nanoparticles dispersed in carbon matrix with 13.8 nm particle size. Temperature dependent magnetization measurement does not show any blocking temperature at all, right up to the room temperature. Magnetic hysteresis curve, taken at 300 K, shows small value of the coercivity and this small hysteresis indicates the presence of an energy barrier and inherent magnetization dynamics. Langevinmore » function fitting of the hysteresis curve gives almost similar value of particle size as obtained from TEM analysis. Magnetic relaxation data, taken at a temperature of 100 K, were fitted with a combination of two exponentially decaying function. This diluted form of nanoparticle system, which has particles size in the superparamagnetic limit, behaves like a dilute ensemble of superspins with large value of the magnetic anisotropic barrier.« less

  18. Magnetic skyrmion bubble motion driven by surface acoustic waves

    DOE PAGES

    Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.

    2018-03-12

    Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.

  19. Magnetic skyrmion bubble motion driven by surface acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.

    Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.

  20. Dynamic modelling and response characteristics of a magnetic bearing rotor system including auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1993-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.

  1. Tunable nonequilibrium dynamics of field quenches in spin ice

    PubMed Central

    Mostame, Sarah; Castelnovo, Claudio; Moessner, Roderich; Sondhi, Shivaji L.

    2014-01-01

    We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state—a “Coulomb phase”—whose excitations are point-like defects—magnetic monopoles—in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties—including even the effective dimensionality of the system—can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics. PMID:24379372

  2. CFA Films in Amorphous Substrate: Structural Phase Induction and Magnetization Dynamics

    NASA Astrophysics Data System (ADS)

    Correa, M. A.; Bohn, F.; Escobar, V. M.

    We report a systematic study of the structural and quasi-static magnetic properties, as well as of the dynamic magnetic response through MI effect, in Co2FeAl and MgO//Co2FeAl single layers and a MgO//Co2FeAl/Ag/Co2FeAl trilayered film, all grown onto an amorphous substrate. We present a new route to induce the crystalline structure in the Co2FeAl alloy and verify that changes in the structural phase of this material leads to remarkable modifications of the magnetic anisotropy and, consequently, dynamic magnetic behavior. Considering the electrical and magnetic properties of the Co2FeAl, our results open new possibilities for technological applications of this full-Heusler alloy in rigid and flexible spintronic devices.

  3. Molecular dynamic heterogeneity of confined lipid films by 1H magnetization-exchange nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Buda, A.; Demco, D. E.; Jagadeesh, B.; Blümich, B.

    2005-01-01

    The molecular dynamic heterogeneity of monolayer to submonolayer thin lecithin films confined to submicron cylindrical pores were investigated by 1H magnetization exchange nuclear magnetic resonance. In this experiment a z-magnetization gradient was generated by a double-quantum dipolar filter. The magnetization-exchange decay and buildup curves were interpreted with the help of a theoretical model based on the approximation of a one-dimensional spin-diffusion process in a three-domain morphology. The dynamic heterogeneity of the fatty acid chains and the effects of the surface area per molecule, the diameter of the pores, and the temperature were characterized with the help of local spin-diffusion coefficients. The effect of various parameters on the molecular dynamics of the mobile region of the fatty acid chains was quantified by introducing an ad hoc Gaussian distribution function of the 1H residual dipolar couplings. For the lipid films investigated in this study, the surface induced order and the geometrical confinement affect the chain dynamics of the entire molecule. Therefore, each part of the chain independently reflects the effect of surface coverage, pore size, and temperature.

  4. Far-from-equilibrium magnetic granular layers: dynamic patterns, magnetic order and self-assembled swimmers

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey

    2010-03-01

    Ensembles of interacting particles subject to an external periodic forcing often develop nontrivial collective behavior and self-assembled dynamic patterns. We study emergent phenomena in magnetic granular ensembles suspended at a liquid-air and liquid-liquid interfaces and subjected to a transversal alternating magnetic field. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (in particular, ``magnetic snakes'', ``asters'', ``clams'') emerging in such systems in a certain range of excitation parameters. These non-equilibrium dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex magnetic ordering. Transition between different self-assembled phases with parameters of external driving magnetic field is observed. I will show that above some frequency threshold magnetic snakes spontaneously break the symmetry of the self-induced surface flows (symmetry breaking instability) and turn into swimmers. Self-induced surface flows symmetry can be also broken in a controlled fashion by introduction of a large bead to a magnetic snake (bead-snake hybrid), that transforms it into a robust self-locomoting entity. Some features of the self-localized structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows.

  5. Thermally induced magnetic relaxation in square artificial spin ice.

    PubMed

    Andersson, M S; Pappas, S D; Stopfel, H; Östman, E; Stein, A; Nordblad, P; Mathieu, R; Hjörvarsson, B; Kapaklis, V

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  6. Thermally induced magnetic relaxation in square artificial spin ice

    NASA Astrophysics Data System (ADS)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  7. Simultaneous imaging of strain waves and induced magnetization dynamics at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Macia, Ferran; Foerster, Michael; Statuto, Nahuel; Finizio, Simone; Hernandez-Minguez, Alberto; Lendinez, Sergi; Santos, Paulo V.; Fontcuberta, Josep; Hernandez, Joan Manel; Klaui, Mathias; Aballe, Lucia

    The magnetoelastic effect or inverse magnetostriction-the change of magnetic properties by elastic deformation or strain-is often a key coupling mechanism in multiferroic heterostructures and nanocomposites. It has lately attracted considerable interest as a possible approach for controlling magnetization by electric fields (instead of current) in future devices with low power consumption. However, many experiments addressing the magnetoelastic effect are performed at slow speeds, often using materials and conditions which are impractical or too expensive for device integration. Here, we have studied the effect of the dynamic strain accompanying a surface acoustic wave on magnetic nanostructures. We have simultaneously imaged the temporal evolution of both strain waves and magnetization dynamics of nanostructures at the picosecond timescale. Our experimental technique, based on X-ray microscopy, is versatile and provides a pathway to the study of strain-induced effects at the nanoscale.

  8. Study on static and dynamic characteristics of moving magnet linear compressors

    NASA Astrophysics Data System (ADS)

    Chen, N.; Tang, Y. J.; Wu, Y. N.; Chen, X.; Xu, L.

    2007-09-01

    With the development of high-strength NdFeB magnetic material, moving magnet linear compressors have been gradually introduced in the fields of refrigeration and cryogenic engineering, especially in Stirling and pulse tube cryocoolers. This paper presents simulation and experimental investigations on the static and dynamic characteristics of a moving magnet linear motor and a moving magnet linear compressor. Both equivalent magnetic circuits and finite element approaches have been used to model the moving magnet linear motor. Subsequently, the force and equilibrium characteristics of the linear motor have been predicted and verified by detailed static experimental analyses. In combination with a harmonic analysis, experimental investigations were conducted on a prototype of a moving magnet linear compressor. A voltage-stroke relationship, the effect of charging pressure on the performance and dynamic frequency response characteristics are investigated. Finally, the method to identify optimal points of the linear compressor has been described, which is indispensable to the design and operation of moving magnet linear compressors.

  9. The effect of external magnetic field changing on the correlated quantum dot dynamics

    NASA Astrophysics Data System (ADS)

    Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.

    2018-06-01

    The non-stationary response of local magnetic moment to abrupt switching "on" and "off" of external magnetic field was studied for a single-level quantum dot (QD) coupled to a reservoir. We found that transient processes look different for the shallow and deep localized energy level. It was demonstrated that for deep energy level the relaxation rates of the local magnetic moment strongly differ in the case of magnetic field switching "on" or "off". Obtained results can be applied in the area of dynamic memory devices stabilization in the presence of magnetic field.

  10. Envelope detection using temporal magnetization dynamics of resonantly interacting spin-torque oscillator

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Nishikawa, M.; Osawa, H.; Okamoto, Y.; Kanao, T.; Sato, R.

    2018-05-01

    In this article, we propose the detection method of the recorded data pattern by the envelope of the temporal magnetization dynamics of resonantly interacting spin-torque oscillator on the microwave assisted magnetic recording for three-dimensional magnetic recording. We simulate the envelope of the waveform from recorded dots with the staggered magnetization configuration, which are calculated by using a micromagnetic simulation. We study the data detection methods for the envelope and propose a soft-output Viterbi algorithm (SOVA) for partial response (PR) system as a signal processing system for three dimensional magnetic recording.

  11. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... Site Index A-Z Magnetic Resonance Imaging (MRI) – Dynamic Pelvic Floor Dynamic pelvic floor magnetic resonance imaging ( ... the limitations of pelvic floor MRI? What is dynamic pelvic floor MRI? Magnetic resonance imaging (MRI) is ...

  12. Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices

    DOE PAGES

    Montoncello, F.; Giovannini, L.; Bang, Wonbae; ...

    2018-01-18

    In this paper, we theoretically and experimentally investigate magnetization reversal and associated spin-wave dynamics of isolated threefold vertices that constitute a Kagome lattice. The three permalloy macrospins making up the vertex have an elliptical cross section and a uniform thickness. We study the dc magnetization curve and the frequency versus field curves (dispersions) of those spin-wave modes that produce the largest response. We also investigate each macrospin reversal from a dynamic perspective, by performing micromagnetic simulations of the reversal processes, and revealing their relationships to the soft-mode profile calculated at the equilibrium state immediately before reversal. The theoretical results aremore » compared with the measured magnetization curves and ferromagnetic resonance spectra. Finally, the agreement achieved suggests that a much deeper understanding of magnetization reversal and accompanying hysteresis can be achieved by combining theoretical calculations with static and dynamic magnetization experiments.« less

  13. Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoncello, F.; Giovannini, L.; Bang, Wonbae

    In this paper, we theoretically and experimentally investigate magnetization reversal and associated spin-wave dynamics of isolated threefold vertices that constitute a Kagome lattice. The three permalloy macrospins making up the vertex have an elliptical cross section and a uniform thickness. We study the dc magnetization curve and the frequency versus field curves (dispersions) of those spin-wave modes that produce the largest response. We also investigate each macrospin reversal from a dynamic perspective, by performing micromagnetic simulations of the reversal processes, and revealing their relationships to the soft-mode profile calculated at the equilibrium state immediately before reversal. The theoretical results aremore » compared with the measured magnetization curves and ferromagnetic resonance spectra. Finally, the agreement achieved suggests that a much deeper understanding of magnetization reversal and accompanying hysteresis can be achieved by combining theoretical calculations with static and dynamic magnetization experiments.« less

  14. Externally driven magnetic granular layers at a liquid/air interface: self-organization, flows and magnetic order

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey

    2007-03-01

    Collective dynamics and pattern formation in ensembles of magnetic microparticles suspended at the liquid/air interface and subjected to an alternating magnetic field are studied. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (``snakes'') emerging in such systems in a certain range of field magnitudes and frequencies. These remarkable structures are directly related to surface waves in the liquid generated by the collective response of magnetic microparticles to the alternating magnetic field. In addition, a large-scale vortex flows are induced in the vicinity of the dynamic structures. Some features of the self-localized snake structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density. Self-assembled snakes have a complex magnetic order: the segments of the snake exhibit long-range antiferromagnetic ordering mediated by the surface wave, while each segment is composed of ferromagnetically aligned chains of microparticles. A phenomenological model describing magnetic behavior of the magnetic snakes in external magnetic fields is proposed.

  15. Spin-current emission governed by nonlinear spin dynamics.

    PubMed

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  16. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  17. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  18. Non-equilibrium transport and spin dynamics in single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Moldoveanu, V.; Dinu, I. V.; Tanatar, B.

    2015-11-01

    The time-dependent transport through single-molecule magnets (SMM) coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized Master equation (GME) method. We calculate the transient currents which develop when the molecule is smoothly coupled to the source and drain electrodes. The signature of the electrically induced magnetic switching on these transient currents is investigated. Our simulations show that the magnetic switching of the molecular spin can be read indirectly from the transient currents if one lead is magnetic and it is much faster if the leads have opposite spin polarizations. We identify effects of the transverse anisotropy on the dynamics of molecular states.

  19. Model of THz Magnetization Dynamics.

    PubMed

    Bocklage, Lars

    2016-03-09

    Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated.

  20. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  1. The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching

    2012-01-01

    The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.

  2. Dynamic signatures of the transition from stacking disordered to hexagonal ice: Dielectric and nuclear magnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Gainaru, C.; Vynokur, E.; Köster, K. W.; Fuentes-Landete, V.; Spettel, N.; Zollner, J.; Loerting, T.; Böhmer, R.

    2018-04-01

    Using various temperature-cycling protocols, the dynamics of ice I were studied via dielectric spectroscopy and nuclear magnetic resonance relaxometry on protonated and deuterated samples obtained by heating high-density amorphous ices as well as crystalline ice XII. Previous structural studies of ice I established that at temperatures of about 230 K, the stacking disorder of the cubic/hexagonal oxygen lattice vanishes. The present dielectric and nuclear magnetic resonance investigations of spectral changes disclose that the memory of the existence of a precursor phase is preserved in the hydrogen matrix up to 270 K. This finding of hydrogen mobility lower than that of the undoped hexagonal ice near the melting point highlights the importance of dynamical investigations of the transitions between various ice phases and sheds new light on the dynamics in ice I in general.

  3. Thermally induced magnetic relaxation in square artificial spin ice

    DOE PAGES

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; ...

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  4. Thermally induced magnetic relaxation in square artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  5. Unconventional dynamics of electrons in topological insulators in a magnetic field: Berry phase effects

    NASA Astrophysics Data System (ADS)

    Demikhovskii, V. Ya.; Turkevich, R. V.

    2015-04-01

    The semiclassical dynamics of charge carriers moving over the surface of a Bi2Te3-type 3D topological insulator in a static magnetic field is studied. The effects related to the changes in the symmetry of constant energy surfaces (contours), as well as to the nonzero Berry curvature, are taken into account. It is shown that effects related both to the anomalous velocity proportional to the Berry curvature and to the distortions of the trajectories stemming from the additional contribution to the energy proportional the orbital magnetic moment of a wave packet appear in contrast to the conventional dynamics of electrons moving in a uniform static magnetic field along trajectories determined by the conditions E( k) = const and p z = const. This should lead to changes in the cyclotron resonance conditions for surface electrons. Although the magnetic field breaks the time-reversal symmetry and the topological order, the studies of the cyclotron resonance allow finding out whether a given insulator is a trivial one or not in zero magnetic field.

  6. Dynamical efficiency of collisionless magnetized shocks in relativistic jets

    NASA Astrophysics Data System (ADS)

    Aloy, Miguel A.; Mimica, Petar

    2011-09-01

    The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.

  7. Orbital effect of the magnetic field in dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  8. Nonlocal and local magnetization dynamics excited by an RF magnetic field in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Moriyama, Takahiro

    A microwave study in spintronic devices has been actively pursued in the past several years due to the fertile physics and potential applications. On one hand, a passive use of microwave can be very helpful to analyze and understand the magnetization dynamics in spintronic devices. Examples include ferromagnetic resonance (FMR) measurements, and various microwave spectrum analyses in ferromagnetic materials. The most important chrematistic parameter for the phenomenological analysis on the magnetization dynamics is, so called, the Gilbert damping constant. In this work, a relatively new measurement technique, a flip-chip FMR measurement, to conduct the ferromagnetic resonance measurements has been developed. The measurement technique is equally comparable to a conventional FMR measurement. The Gilbert damping constants were extracted for single ferromagnetic layer, spin vale structures, and magnetic tunnel junctions (MTJs). On the other hand, an active use of microwave yields a great potential for interesting phenomena which give new functionalities into spintronic devices. For instance, a spin wave excitation by an rf field can be used to reduce the switching field of a ferromagnet, i.e. microwave assisted magnetization reversal, which could be a potential application in advanced recording media. More interestingly, a precessing magnetization driven by an rf field can generate a pure spin current into a neighboring layer, i.e. spin pumping effect, which is one of the candidates for generating a pure spin current. A ferromagnetic tunnel junction (MTJ) is one of the important devices in spintronics, which is also the key device to investigate the local and nonlocal magnetization dynamics in this work. Therefore, it is also important to develop high quality MTJs. My work starts from the development of MTJ with AlOx and MgO tunnel barriers where it was found it is crucial to find the proper condition for forming a few nanometers thick tunnel barrier. After obtaining quality MTJs, we proceeded to the study on magnetization dynamics using the MTJs. First interesting phenomenon found in this work is the microwave assisted magnetization reversal (MAMR). It is found that magnetization reversal can be achieved efficiently by an appropriate power and frequency microwave. Moreover, there is a mutual relationship between microwave power and frequency for achieving a maximum switching field reduction. This effect can be very useful in magnetic data storage device which essentially needs to reduce the "effective" coercivity field. In the study of nonlocal magnetization dynamics, we tried to detect the spin accumulation induced by spin pumping effect in FM/NM/I/FM, FM/I/NM and FM/I/FM structures with a microwave excitation (FM: ferromagnetic material, NM: nonmagnetic material, and I: tunnel barrier). Interestingly, in the FM/I/NM and FM/I/FM structures, we observed ˜muV dc voltage due to the precessing magnetizations. It is found that the dc voltage we observed is much larger than the current the spin pumping theory predicts. Therefore we speculated a new mechanism to explain the results. Although we discussed only a portion of the magnetization dynamics involving nonlinear and nonequilibrium phenomena, it reveals that there is still a fertile physics which has not yet been investigated or explained.

  9. Dynamics of the penetration boundaries of solar protons during a strong magnetic storm

    NASA Technical Reports Server (NTRS)

    Glukhov, G. A.; Kratenko, Y. P.; Mineev, Y. V.

    1985-01-01

    The variations in the equatorial penetration boundary of solar protons with E sub p = 0.9 to 8.0 MeV during a strong magnetic storm of April 3 to 5, were analyzed. The dynamics of this boundary is compared with the dynamics of the outer trapping boundary of electrons with E sub e = - 0.3 to 0.6 MeV. The solar-proton penetration and the structure of the real magnetic field are studied. The unique data on the thin structure of development of a magnetospheric substorm were obtained for the first time.

  10. Theoretical study of the dynamic magnetic response of ferrofluid to static and alternating magnetic fields

    NASA Astrophysics Data System (ADS)

    Batrudinov, Timur M.; Ambarov, Alexander V.; Elfimova, Ekaterina A.; Zverev, Vladimir S.; Ivanov, Alexey O.

    2017-06-01

    The dynamic magnetic response of ferrofluid in a static uniform external magnetic field to a weak, linear polarized, alternating magnetic field is investigated theoretically. The ferrofluid is modeled as a system of dipolar hard spheres, suspended in a long cylindrical tube whose long axis is parallel to the direction of the static and alternating magnetic fields. The theory is based on the Fokker-Planck-Brown equation formulated for the case when the both static and alternating magnetic fields are applied. The solution of the Fokker-Planck-Brown equation describing the orientational probability density of a randomly chosen dipolar particle is expressed as a series in terms of the spherical Legendre polynomials. The obtained analytical expression connecting three neighboring coefficients of the series makes possible to determine the probability density with any order of accuracy in terms of Legendre polynomials. The analytical formula for the probability density truncated at the first Legendre polynomial is evaluated and used for the calculation of the magnetization and dynamic susceptibility spectra. In the absence of the static magnetic field the presented theory gives the correct single-particle Debye-theory result, which is the exact solution of the Fokker-Planck-Brown equation for the case of applied weak alternating magnetic field. The influence of the static magnetic field on the dynamic susceptibility is analyzed in terms of the low-frequency behavior of the real part and the position of the peak in the imaginary part.

  11. Revising the magnetic structure and dynamics of Yttrium Iron Garnet

    NASA Astrophysics Data System (ADS)

    Princep, Andrew; Boothroyd, Andrew; Ewings, Russell; Ward, Simon; Dubs, Carsten

    Yttrium iron garnet (YIG) is the `miracle material' of microwave magnetics. Since its synthesis by Geller and Gilleo in 1957, it is widely acknowledged to have contributed more to the understanding of electronic spin-wave and magnon dynamics than any other substance. Its astonishingly narrow excitation linewidth allows magnon propagation to be observed over centimetre distances, making it both a superior model system for the experimental study of fundamental aspects of microwave magnetic dynamics and an ideal platform for the development of microwave magnetic technologies. Our experiments on a large, pristine single crystal at the ISIS facility using both diffraction and time-of-flight spectroscopy have provided new results on both the magnetic structure and the excitation spectrum, which revise nearly 60 years of scientific research and will be essential insights for the fledgling scientific field of Magnonics. EPSRC, UK.

  12. DEPENDENCE OF STELLAR MAGNETIC ACTIVITY CYCLES ON ROTATIONAL PERIOD IN A NONLINEAR SOLAR-TYPE DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2016-06-01

    We study the turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account nonlinear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation from either magnetic buoyancy or magnetic helicity. Wemore » discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.« less

  13. Properties of dynamic magnetic loss of ferrite

    NASA Astrophysics Data System (ADS)

    Saotome, Hideo; Azuma, Keisuke; Kizuka, Hiroki; Tanaka, Takuma

    2018-05-01

    The B-H loop of ferrite becomes narrower with a decrease in the excitation frequency. However, even at frequencies lower than 1 kHz, the B-H loop exhibits a certain minimum width, which is referred to as the (DC) hysteresis loop, and its area corresponds to the hysteresis loss. The dynamic magnetic loss is obtained by subtracting the hysteresis loss from the B-H loop area measured at a frequency above 1-10 kHz. The temperature characteristics of the hysteresis and dynamic magnetic losses are determined to be experimentally different, which suggests that the mechanism for the generation of dynamic magnetic loss is not exactly the same as that for the hysteresis loss. The dynamic magnetic loss is expressed using the dynamic magnetic loss parameter, which is a function of B and its time derivative, dB/dt. The dynamic magnetic loss parameter is measured under excitation with a rectangular waveform voltage. A ferrite core of TDK PC47 was used and the maximum magnetic flux density Bm, was set to 350 mT. The measured dynamic magnetic loss parameter was experimentally verified to be one of the intrinsic characteristics of ferrite and was also validated for cases of excitation with sinusoidal waveform voltages.

  14. EDITORIAL: Ultrafast magnetization processes

    NASA Astrophysics Data System (ADS)

    Hillebrands, Burkard

    2008-09-01

    This Cluster Issue of Journal of Physics D: Applied Physics is devoted to ultrafast magnetization processes. It reports on the scientific yield of the Priority Programme 1133 'Ultrafast Magnetization Processes' which was funded by the Deutsche Forschungsgemeinschaft in the period 2002-2008 in three successive two-year funding periods, supporting research of 17-18 groups in Germany. Now, at the end of this Priority Programme, the members feel that the achievements made in the course of the programme merit communication to the international scientific community in a concerted way. Therefore, each of the projects of the last funding period presents a key result in a published contribution to this Cluster Issue. The purpose of the funding by a Priority Programme is to advance knowledge in an emerging field of research through collaborative networked support over several locations. Priority Programmes are characterized by their enhanced quality of research through the use of new methods and forms of collaboration in emerging fields, by added value through interdisciplinary cooperation, and by networking. The aim of the Priority Programme 1133 'Ultrafast Magnetization Processes' may be well characterized by the call for projects in June 2001 after the programme was approved by the Deutsche Forschungsgemeinschaft: 'The aim of the priority programme is the achievement of a basic understanding of the temporal evolution of fast magnetization processes in magnetically ordered films, multilayers and micro-structured systems. The challenge lies in the advancement of the field of ultrafast magnetization processes into the regime of a few femtoseconds to nanoseconds, a topic not yet well explored. A general aim is to understand the fundamental mechanisms needed for applications in ultrafast magneto-electronic devices. The fundamental topic to be addressed is the response of the magnetization of small structures upon the application of pulsed magnetic fields, laser pulses or injected spin-polarized electron pulses on short time scales, ranging from a small disturbance of the system up to the reversal of the magnetization direction.' Now, seven years later, the subject of ultrafast magnetization processes has grown into a mainstream research direction in modern magnetism. The major international conferences on magnetism, such as the Annual Conference on Magnetism and Magnetic Materials (MMM), the INTERMAG, the International Conference of Magnetism, as well as many regional conferences, schedule dedicated sessions to ultrafast magnetization processes, very often several of them. The large share in research in this field from German scientists has been made possible by this Priority Programme. Since its beginning, new developments have been picked up by the Priority Programme 1133 and addressed by projects. Spin torque phenomena in spin dynamics, although foreseen at the time of establishing the Priority Programme, have been taken up. The field of dissipation has been addressed and extended by several groups, with contributions both from theoretical and experimental groups. A first set of contributions addresses ultrafast dynamics and materials. T Roth et al [article 164001] in this issue] study the dynamics of coercivity in ultrafast pump-probe experiments on the femtosecond time scale. They show that an all optical pump-probe technique is, in general, not suitable for gaining access to the time-dependent behaviour of the coercivity, since the switching in a fixed external field is an irreversible process. They comment on the possible mechanisms leading to the observed reduction of the coercivity with increasing pump power and propose a potential solution to clarify the origin of such a behaviour. B Heitkamp et al [164002] discuss the femtosecond spin dynamics of ferromagnetic CoPt thin films and nanodots, which they probe using spin-polarized photoemission electron microscopy. They show by photoelectron spin analysis, that enhanced optical near fields can be used to induce a local demagnetization of the sample following femtosecond laser excitation. A B Schmidt et al [164003] report a new access to the surface electronic structure of fcc Co films combining spin-resolved one- and two-photon photoemission. The knowledge of surface states is important for interpreting time-resolved measurements of ultrafast magnetization dynamics in this material. An extension of ultrafast dynamics has been made by several groups. A Melnikov et al [164004] report on the ultrafast dynamics at lanthanide surfaces such as Gd(0001) and Tb(0001) using time-resolved second-harmonic generation and photoelectron spectroscopy. These surfaces exhibit a rich dynamics including a collective response of the crystal lattice and the magnetization. Effects of phonon-magnon scattering are discussed. M Fiebig et al [164005] report on experiments of ultrafast magnetization dynamics in antiferromagnetic compounds, and show that the magnetization dynamics in these systems differs noticeably from that of ferromagnetic compounds. They use optical second-harmonic generation and linear reflection to monitor the evolution of the antiferromagnetic order parameter subsequent to an intense optical excitation. In a theory paper, the local light-induced spin manipulation in two-magnetic-centre metallic chains is studied by T Hardenstein et al [164006] using highly correlational ab initio calculations. They show that, as an example of local spin manipulation, the spin on the iron side of a Co-Na-Fe cluster can be switched. S Halm et al [164007] present evidence to manipulate spin states in a diluted magnetic semiconductor on a submicrometer length scale via the magnetic fringe fields of micro-structured magnets. By optically switching the magnetization of the ferromagnet, the magnetization in the semiconductor is manipulated and the limits of a dynamical interaction between the spin states in the ferromagnet and the magnetic semiconductor are discussed. A second set of contributions addresses the field of spin waves and dynamic spin torque phenomena. C W Sandweg et al [164008] discuss the modification of the thermal spin wave spectrum by a domain wall in a narrow stripe and report the observation of a localized mode near the domain wall using the new technique of Brillouin light scattering microscopy. Time-resolved measurements are often made using a stroboscopic approach, thus missing non-periodic responses. P Möhrke et al [164009] report single-shot Kerr magnetometer measurements to observe the real time-domain wall motion in permalloy nanowires. The dynamics in magnetic disks is studied by I Neudecker et al [164010] using in-plane magnetic microwave fields for excitation. The effect of current-induced magnetization dynamics in single and double layer magnetic nanopillars is reported by N Müsgens et al [164011]. A spin-polarized charge current can modify the damping properties of spin waves in magnetic nanostructures. This is reported by V E Demidov et al [164012] using space-resolved Brillouin light scattering. They also present results regarding nonlinear spin-wave propagation and mode coupling in magnetic stripes and squares. D V Berkov and N L Gorn [164013] report on their results of nonlinear magnetization dynamics in nanodevices induced by a spin-polarized current using micromagnetic simulation. A third set of contributions focuses on dissipation phenomena ranging from a phenomenological description to the investigation of the microscopic origin(s). In a theory paper, M Fähnle et al [164014] revisit the Gilbert equation and discuss anisotropic and non-local damping of the magnetization dynamics. They derive their results by a combination of the breathing Fermi surface model with a variant of the ab initio density functional electron theory given by the magnetic force theorem. On the experimental side, S Serrano-Guisan et al [164015] address Gilbert damping in Ni81Fe19 thin films and microstructures using anisotropic magnetoresistance and pulsed inductive microwave magnetometry to measure the time-resolved precessional magnetization dynamics. The intrinsic and non-local Gilbert damping in polycrystalline Ni films is also addressed by J Walowski et al [164016] using femtosecond laser pulses. Several spin-wave modes are observed and their dissipation is studied. Non-local damping by spin currents emitted into a non-magnetic metallic layer of either vanadium, palladium or dysprosium is studied. Dissipation in small magnetic Ni81Fe19 rings is studied using Brillouin light scattering microscopy by H Schultheiss et al [164017]. They investigate the spatial profiles and the decay constants of spin-wave quasi-eigenmodes. We hope that this cluster of papers will help to stimulate and advance a better understanding of this very interesting field of ultrafast magnetization processes.

  15. Dynamic properties of micro-magnetic noise in soft ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Stupakov, A.; Perevertov, A.

    2018-06-01

    Dynamic response of magnetic hysteresis, magnetic Barkhausen noise and magneto-acoustic emission in a soft ribbon and electrical steels was studied comprehensively. The measurements were performed under controllable magnetization conditions: sinusoidal/triangular waveforms of the magnetic induction and a triangular waveform of the magnetic field. Magnetizing frequency was varied in a wide range: fmag = 0.5 - 500 and 0.5-100 Hz for the ribbon and the electrical steels, respectively. Magnetization amplitude was fixed on a near-saturation level Hmax ≃ 100 A/m. Barkhausen noise signal was detected by a sample-wrapping/surface-mounted coil and differently filtered. It was found that intensity of the Barkhausen noise rises approximately as a square root function of the magnetizing frequency. Whereas, level of the magneto-acoustic emission follows the hysteresis loss trend with an additional linear term (classical loss component).

  16. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  17. Carrier States in Ferromagnetic Semiconductors and Diluted Magnetic Semiconductors—Coherent Potential Approach—

    PubMed Central

    Takahashi, Masao

    2010-01-01

    The theoretical study of magnetic semiconductors using the dynamical coherent potential approximation (dynamical CPA) is briefly reviewed. First, we give the results for ferromagnetic semiconductors (FMSs) such as EuO and EuS by applying the dynamical CPA to the s-f model. Next, applying the dynamical CPA to a simple model for A1−xMnxB-type diluted magnetic semiconductors (DMSs), we show the results for three typical cases to clarify the nature and properties of the carrier states in DMSs. On the basis of this model, we discuss the difference in the optical band edges between II-V DMSs and III-V-based DMSs, and show that two types of ferromagnetism can occur in DMSs when carriers are introduced. The carrier-induced ferromagnetism of Ga1−xMnxAs is ascribed to a double-exchange (DE)-like mechanism realized in the magnetic impurity band/or in the band tail.

  18. Electron dynamics in solid state via time varying wavevectors

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin

    2018-06-01

    In this paper, we study electron wavepacket dynamics in electric and magnetic fields. We rigorously derive the semiclassical equations of electron dynamics in electric and magnetic fields. We do it both for free electron and electron in a periodic potential. We do this by introducing time varying wavevectors k(t). In the presence of magnetic field, our wavepacket reproduces the classical cyclotron orbits once the origin of the Schröedinger equation is correctly chosen to be center of cyclotron orbit. In the presence of both electric and magnetic fields, our equations for wavepacket dynamics differ from classical Lorentz force equations. We show that in a periodic potential, on application of electric field, the electron wave function adiabatically follows the wavefunction of a time varying Bloch wavevector k(t), with its energies suitably shifted with time. We derive the effective mass equation and discuss conduction in conductors and insulators.

  19. The fast kinematic magnetic dynamo and the dissipationless limit

    NASA Technical Reports Server (NTRS)

    Finn, John M.; Ott, Edward

    1990-01-01

    The evolution of the magnetic field in models that incorporate chaotic field line stretching, field cancellation, and finite magnetic Reynolds number is examined analytically and numerically. Although the models used here are highly idealized, it is claimed that they display and illustrate typical behavior relevant to fast magnetic dynamic behavior. It is shown, in particular, that consideration of magnetic flux through a finite fixed surface provides a simple and effective way of deducing fast dynamo behavior from the zero resistivity equation. Certain aspects of the fast dynamo problem can thus be reduced to a study of nonlinear dynamic properties of the underlying flow.

  20. Research on hysteresis loop considering the prestress effect and electrical input dynamics for a giant magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Zhu, Yuchuan; Yang, Xulei; Wereley, Norman M.

    2016-08-01

    In this paper, focusing on the application-oriented giant magnetostrictive material (GMM)-based electro-hydrostatic actuator, which features an applied magnetic field at high frequency and high amplitude, and concentrating on the static and dynamic characteristics of a giant magnetostrictive actuator (GMA) considering the prestress effect on the GMM rod and the electrical input dynamics involving the power amplifier and the inductive coil, a methodology for studying the static and dynamic characteristics of a GMA using the hysteresis loop as a tool is developed. A GMA that can display the preforce on the GMM rod in real-time is designed, and a magnetostrictive model dependent on the prestress on a GMM rod instead of the existing quadratic domain rotation model is proposed. Additionally, an electrical input dynamics model to excite GMA is developed according to the simplified circuit diagram, and the corresponding parameters are identified by the experimental data. A dynamic magnetization model with the eddy current effect is deduced according to the Jiles-Atherton model and the Maxwell equations. Next, all of the parameters, including the electrical input characteristics, the dynamic magnetization and the mechanical structure of GMA, are identified by the experimental data from the current response, magnetization response and displacement response, respectively. Finally, a comprehensive comparison between the model results and experimental data is performed, and the results show that the test data agree well with the presented model results. An analysis on the relation between the GMA displacement response and the parameters from the electrical input dynamics, magnetization dynamics and mechanical structural dynamics is performed.

  1. A study of temporal dynamics and spatial variability of power frequency electromagnetic fields in Saint-Petersburg

    NASA Astrophysics Data System (ADS)

    Sturman, V. I.

    2018-01-01

    This paper studies spatial distribution and temporal dynamics of power frequency electric and magnetic fields in Saint-Petersburg. It was determined that sanitary-protection and exclusion zones of the standard size high-voltage transmission lines (HVTL) do not always ensure maximum allowable limits of the electrical field depression. A dependence of the electric field strength on meteorological factors was defined. A series of sources create a city-wide background for magnetic fields. That said, the heavier the man-caused load is, the higher the mean values of magnetic induction are. Abnormally high values of magnetic induction are explained by the influence of underground electric cables.

  2. Rotordynamic Modelling and Response Characteristics of an Active Magnetic Bearing Rotor System

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1996-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.

  3. Magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    2018-06-01

    Welcome to the special issue of Journal of Magnetism and Magnetic Materials on magnetic skyrmions. We are proud to present, with great pleasure, a timely collection of 9 original research articles on the recent hot topic "magnetic skyrmions" which studies the static and dynamic properties of skyrmions and the methods to control them in a variety of ways, including magnetic field, electric current and applied strain.

  4. Domain wall dynamics driven by spin transfer torque and the spin-orbit field.

    PubMed

    Hayashi, Masamitsu; Nakatani, Yoshinobu; Fukami, Shunsuke; Yamanouchi, Michihiko; Mitani, Seiji; Ohno, Hideo

    2012-01-18

    We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.

  5. Direct observation of dynamical magnetization reversal process governed by shape anisotropy in single NiFe2O4 nanowire.

    PubMed

    Zhang, Junli; Zhu, Shimeng; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Fu, Jiecai

    2018-05-31

    Discovering how the magnetization reversal process is governed by the magnetic anisotropy in magnetic nanomaterials is essential and significant to understand the magnetic behaviour of micro-magnetics and to facilitate the design of magnetic nanostructures for diverse technological applications. In this study, we present a direct observation of a dynamical magnetization reversal process in single NiFe2O4 nanowire, thus clearly revealing the domination of shape anisotropy on its magnetic behaviour. Individual nanoparticles on the NiFe2O4 nanowire appear as single domain states in the remanence state, which is maintained until the magnetic field reaches 200 Oe. The magnetization reversal mechanism of the nanowire is observed to be a curling rotation mode. These observations are further verified by micromagnetic computational simulations. Our findings show that the modulation of shape anisotropy is an efficient way to tune the magnetic behaviours of cubic spinel nano-ferrites.

  6. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    DOE PAGES

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response ofmore » the non-circular skyrmions depends on the direction of external currents.« less

  7. A Brownian dynamics study on ferrofluid colloidal dispersions using an iterative constraint method to satisfy Maxwell’s equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubina, Sean Hyun, E-mail: sdubin2@uic.edu; Wedgewood, Lewis Edward, E-mail: wedge@uic.edu

    2016-07-15

    Ferrofluids are often favored for their ability to be remotely positioned via external magnetic fields. The behavior of particles in ferromagnetic clusters under uniformly applied magnetic fields has been computationally simulated using the Brownian dynamics, Stokesian dynamics, and Monte Carlo methods. However, few methods have been established that effectively handle the basic principles of magnetic materials, namely, Maxwell’s equations. An iterative constraint method was developed to satisfy Maxwell’s equations when a uniform magnetic field is imposed on ferrofluids in a heterogeneous Brownian dynamics simulation that examines the impact of ferromagnetic clusters in a mesoscale particle collection. This was accomplished bymore » allowing a particulate system in a simple shear flow to advance by a time step under a uniformly applied magnetic field, then adjusting the ferroparticles via an iterative constraint method applied over sub-volume length scales until Maxwell’s equations were satisfied. The resultant ferrofluid model with constraints demonstrates that the magnetoviscosity contribution is not as substantial when compared to homogeneous simulations that assume the material’s magnetism is a direct response to the external magnetic field. This was detected across varying intensities of particle-particle interaction, Brownian motion, and shear flow. Ferroparticle aggregation was still extensively present but less so than typically observed.« less

  8. Magnetic droplet solitons generated by pure spin currents

    NASA Astrophysics Data System (ADS)

    Divinskiy, B.; Urazhdin, S.; Demidov, V. E.; Kozhanov, A.; Nosov, A. P.; Rinkevich, A. B.; Demokritov, S. O.

    2017-12-01

    Magnetic droplets are dynamical solitons that can be generated by locally suppressing the dynamical damping in magnetic films with perpendicular anisotropy. To date, droplets have been observed only in nanocontact spin-torque oscillators operated by spin-polarized electrical currents. Here, we experimentally demonstrate that magnetic droplets can be nucleated and sustained by pure spin currents in nanoconstriction-based spin Hall devices. Micromagnetic simulations support our interpretation of the data, and indicate that in addition to the stationary droplets, propagating solitons can be also generated in the studied system, which can be utilized for the information transmission in spintronic applications.

  9. Reduction in the write error rate of voltage-induced dynamic magnetization switching using the reverse bias method

    NASA Astrophysics Data System (ADS)

    Ikeura, Takuro; Nozaki, Takayuki; Shiota, Yoichi; Yamamoto, Tatsuya; Imamura, Hiroshi; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2018-04-01

    Using macro-spin modeling, we studied the reduction in the write error rate (WER) of voltage-induced dynamic magnetization switching by enhancing the effective thermal stability of the free layer using a voltage-controlled magnetic anisotropy change. Marked reductions in WER can be achieved by introducing reverse bias voltage pulses both before and after the write pulse. This procedure suppresses the thermal fluctuations of magnetization in the initial and final states. The proposed reverse bias method can offer a new way of improving the writing stability of voltage-driven spintronic devices.

  10. Dynamical anisotropic response of black phosphorus under magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  11. Nonlinear vibration of a coupled high- Tc superconducting levitation system

    NASA Astrophysics Data System (ADS)

    Sugiura, T.; Inoue, T.; Ura, H.

    2004-10-01

    High- Tc superconducting levitation can be applied to electro-mechanical systems, such as flywheel energy storage and linear-drive transportation. Such a system can be modeled as a magnetically coupled system of many permanent magnets and high- Tc superconducting bulks. It is a multi-degree-of-freedom dynamical system coupled by nonlinear interaction between levitated magnets and superconducting bulks. This nonlinearly coupled system, with small damping due to no contact support, can easily show complicated phenomena of nonlinear dynamics. In mechanical design, it is important to evaluate this nonlinear dynamics, though it has not been well studied so far. This research deals with forced vibration of a coupled superconducting levitation system. As a simple modeling of a coupled system, a permanent magnet levitated above a superconducting bulk is placed between two fixed permanent magnets without contact. Frequency response of the levitated magnet under excitation of one of the fixed magnets was examined theoretically. The results show typical nonlinear vibration, such as jump, hysteresis, and parametric resonance, which were confirmed in our numerical analyses and experiments.

  12. Study of the magnets used for a mobile isocenter carbon ion gantry.

    PubMed

    Moreno, Jhonnatan Osorio; Pullia, Marco G; Priano, Cristiana; Lante, Valeria; Necchi, Monica M; Savazzi, Simone

    2013-07-01

    A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10(-4); it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator.

  13. Study of the magnets used for a mobile isocenter carbon ion gantry

    PubMed Central

    Moreno, Jhonnatan Osorio; Pullia, Marco G.; Priano, Cristiana; Lante, Valeria; Necchi, Monica M.; Savazzi, Simone

    2013-01-01

    A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10–4; it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator. PMID:23824120

  14. Dynamics of plasma−dust structures formed in a trap created in the narrowing of a current channel in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzlieva, E. S., E-mail: plasmadust@yandex.ru; Karasev, V. Yu., E-mail: v.karasev@spbu.ru; Pavlov, S. I.

    The geometry and dynamics of plasma−dust structures in a longitudinal magnetic field is studied experimentally. The structures are formed in a glow-discharge trap created in the double electric layer produced as a result of discharge narrowing by means of a dielectric insert introduced in the discharge tube. Studies of structures formed in the new type of glow-discharge trap are of interest from the standpoint of future experiments with complex plasmas in superstrong magnetic fields in which the dust component is magnetized. Different types of dielectric inserts were used: conical and plane ones with symmetric and asymmetric apertures. Conditions for themore » existence of stable dust structures are determined for dust grains of different density and different dispersity. According to the experimental results, the angular velocity of dust rotation is ≥10 s{sup –1}, which is the fastest type of dust motion for all types of discharges in a magnetic field. The rotation is interpreted by analyzing the dynamics of individual dust grains.« less

  15. Spatiotemporally resolved magnetic dynamics in B20 chiral FeGe

    NASA Astrophysics Data System (ADS)

    Gray, Isaiah; Turgut, Emrah; Bartell, Jason; Fuchs, Gregory

    Chiral magnetic materials have shown promise for ultra-low-power memory devices exploiting low critical currents for manipulation of spin textures. This motivates systematic studies of chiral dynamics in thin films, both for understanding magnetic properties and for developing devices. We use time-resolved anomalous Nernst effect (TRANE) microscopy to examine ferromagnetic resonance modes in 170 nm thin films of B20 chiral FeGe. Using 3 ps laser pulses with 1.2 μm resolution to generate a local thermal gradient, we measure the resulting Nernst voltage, which is proportional to the in-plane component of the magnetization. We first characterize and image the static magnetic moment as a function of temperature near the helical phase transition at 273 K. We then excite ferromagnetic resonance with microwave current and study the dynamical modes as a function of temperature, spatial position, and frequency. We identify both the uniform field-polarized mode and the helical spin-polarized mode and study the different spatial structures of the two modes. This work was supported by the Cornell Center for Materials Science with funding from the NSF MRSEC program (DMR-1120296), and also by the DOE Office of Science (Grant No. DE-SC0012245).

  16. Controlling laser-induced magnetization reversal dynamics in a rare-earth iron garnet across the magnetization compensation point

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Molho, Pierre; Barbara, Bernard; Bigot, Jean-Yves

    2018-04-01

    In this work we explore the ultrafast magnetization dynamics induced by femtosecond laser pulses in a doped film of gadolinium iron garnet over a broad temperature range including the magnetization compensation point TM. By exciting the phonon-assisted 6S→4G and 6S→4P electronic d -d transitions simultaneously by one- and two-photon absorption processes, we find out that the transfer of heat energy from the lattice to the spin has, at a temperature slightly below TM, a large influence on the magnetization dynamics. In particular, we show that the speed and the amplitude of the magnetization dynamics can be strongly increased when increasing either the external magnetic field or the laser energy density. The obtained results are explained by a magnetization reversal process across TM. Furthermore, we find that the dynamics has unusual characteristics which can be understood by considering the weak spin-phonon coupling in magnetic garnets. These results open new perspectives for controlling the magnetic state of magnetic dielectrics using an ultrashort optically induced heat pulse.

  17. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

    NASA Astrophysics Data System (ADS)

    Casola, Francesco; van der Sar, Toeno; Yacoby, Amir

    2018-01-01

    The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

  18. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    ERIC Educational Resources Information Center

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  19. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.

    1986-01-01

    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.S.; Zhu, S.; Cai, Y.

    Motion-dependent magnetic forces are the key elements in the study of magnetically levitated vehicle (maglev) system dynamics. In the past, most maglev-system designs were based on a quasisteady-motion theory of magnetic forces. This report presents an experimental and analytical study that will enhance our understanding of the role of unsteady-motion-dependent magnetic forces and demonstrate an experimental technique that can be used to measure those unsteady magnetic forces directly. The experimental technique provides a useful tool to measure motion-dependent magnetic forces for the prediction and control of maglev systems.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A.; Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009

    Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and themore » transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications.« less

  2. Dynamics of the EEG of human brain in the gradient magnetic fields of geological faults in different geographical and climatic zones

    NASA Astrophysics Data System (ADS)

    Pobachenko, S. V.; Sokolov, M. V.; Grigoriev, P. E.; Vasilieva, I. V.

    2017-11-01

    There are presented the results of experimental studies of the dynamics of indices of the functional state of a person located within the zones characterized by anomalous parameters of spatial distribution of magnetic field vector values. It is shown that these geophysical modifications have a pronounced effect on the dynamics of electrical activity indices of the human brain, regardless of geographic and climatic conditions.

  3. [Possibilities of magnetic-laser therapy in comprehensive treatment of patients with brain concussion in acute period].

    PubMed

    Zubkova, O V; Samosiuk, I Z; Polishchuk, O V; Shul'ga, N M; Samosiuk, N I

    2012-01-01

    The efficacy of magnetic-laser therapy used according to the method developed by us was studied in patients having the brain concussion (BC) in an acute period. The study was based on the dynamics of values of the evoked vestibular potentials and the disease clinical course. It was shown that following the magnetic-laser therapy in combination with traditional pharmacotherapy in BC acute period, the statistically significant positive changes were registered in the quantitative characteristics of the evoked vestibular brain potentials that correlated with the dynamics of the disease clinical course. The data obtained substantiate the possibility of using the magnetic-laser therapy in patients with a mild craniocereblal injury in an acute period.

  4. Some astrophysical processes around magnetized black hole

    NASA Astrophysics Data System (ADS)

    Kološ, M.; Tursunov, A.; Stuchlík, Z.

    2018-01-01

    We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.

  5. Investigation of the difference between spin Hall magnetoresistance rectification and spin pumping from the viewpoint of magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng

    2018-02-01

    Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.

  6. Comparison of angular dependence of magnetic Barkhausen noise of hysteresis and initial magnetization curve in API5L steel

    NASA Astrophysics Data System (ADS)

    Chávez-Gonzalez, A. F.; Martínez-Ortiz, P.; Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Caleyo, F.

    2018-01-01

    This work analyzes the differences between the magnetic Barkhausen noise corresponding to the initial magnetization curve and Barkhausen noise corresponding to one branch of the hysteresis loop in API-5L steel. The outcomes show that the Barkhausen noise signal corresponding to the initial magnetization curve and that corresponding to the hysteresis are significantly different. This difference is due to the presence of different processes of the domain wall dynamics in both phenomena. To study the processes present in magnetization dynamics for an applied field of H > 0, research into the angular dependence of a Barkhausen signal using applied field bands has revealed that a Barkhausen signal corresponding to the initial magnetization curve is more suitable than a Barkhausen signal corresponding to the hysteresis loop.

  7. Magnetic stray-field studies of a single Cobalt nanoelement as a component of the building blocks of artificial square spin ice

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Porrati, Fabrizio; Huth, Michael; Ohno, Yuzo; Ohno, Hideo; Müller, Jens

    2016-02-01

    We use Focused Electron Beam Deposition (FEBID) to directly write Cobalt magnetic nanoelements onto a micro-Hall magnetometer, which allows for high-sensitivity measurements of the magnetic stray field emanating from the samples. In a previous study [M. Pohlit et al., J. Appl. Phys. 117 (2015) 17C746] [21] we investigated thermal dynamics of an individual building block (nanocluster) of artificial square spin ice. In this work, we compare the results of this structure with interacting elements to the switching of a single nanoisland. By analyzing the survival function of the repeatedly prepared state in a given temperature range, we find thermally activated switching dynamics. A detailed analysis of the hysteresis loop reveals a metastable microstate preceding the overall magnetization reversal of the single nanoelement, also found in micromagnetic simulations. Such internal degrees of freedom may need to be considered, when analyzing the thermal dynamics of larger spin ice configurations on different lattice types.

  8. High Performance Nuclear Magnetic Resonance Imaging Using Magnetic Resonance Force Microscopy

    DTIC Science & Technology

    2013-12-12

    Micron- Size Ferromagnet . Physical Review Letters, 92(3) 037205 (2004) [22] A. Z. Genack and A. G. Redeld. Theory of nuclear spin diusion in a...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated

  9. Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins

    NASA Astrophysics Data System (ADS)

    Keskin, Mustafa; Ertaş, Mehmet

    2018-04-01

    Dynamic magnetic properties of the Ising bilayer system consisting of the mixed (3/2, 5/2) Ising spins with a crystal-field interaction in an oscillating field on a two-layer square lattice is studied by the use of dynamic mean-field theory based on the Glauber-type stochastic. Dynamic phase transition temperatures are obtained and dynamic phase diagrams are presented in three different planes. The frequency dependence of dynamic hysteresis loops is also investigated in detail. We compare the results with some available theoretical and experimental works and observe a quantitatively good agreement with some theoretical and experimental results.

  10. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats.

    PubMed

    Tiwari, Yash V; Lu, Jianfei; Shen, Qiang; Cerqueira, Bianca; Duong, Timothy Q

    2017-08-01

    Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (K w ) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using K w magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group K w magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal K w . Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, K w magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal K w showed substantial overlap with regions of hyperintense T 2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The K w values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min -1 , respectively (P < 0.05, n = 9). K w magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. K w magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.

  11. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens

    2016-10-01

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.

  12. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  13. Considerations of solar wind dynamics in mapping of Jupiter's auroral features to magnetospheric sources

    NASA Astrophysics Data System (ADS)

    Gyalay, S.; Vogt, M.; Withers, P.

    2015-12-01

    Previous studies have mapped locations from the magnetic equator to the ionosphere in order to understand how auroral features relate to magnetospheric sources. Vogt et al. (2011) in particular mapped equatorial regions to the ionosphere by using a method of flux equivalence—requiring that the magnetic flux in a specified region at the equator is equal to the magnetic flux in the region to which it maps in the ionosphere. This is preferred to methods relying on tracing field lines from global Jovian magnetic field models, which are inaccurate beyond 30 Jupiter radii from the planet. That previous study produced a two-dimensional model—accounting for changes with radial distance and local time—of the normal component of the magnetic field in the equatorial region. However, this two-dimensional fit—which aggregated all equatorial data from Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Ulysses, and Galileo—did not account for temporal variability resulting from changing solar wind conditions. Building off of that project, this study aims to map the Jovian aurora to the magnetosphere for two separate cases: with a nominal magnetosphere, and with a magnetosphere compressed by high solar wind dynamic pressure. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, intervals of high solar wind dynamic pressure were separated from intervals of low solar wind dynamic pressure—thus creating two datasets of magnetometer measurements to be used for two separate 2D fits, and two separate mappings.

  14. Spin dynamics of random Ising chain in coexisting transverse and longitudinal magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Qiang; Jiang, Su-Rong; Kong, Xiang-Mu; Xu, Yu-Liang

    2017-05-01

    The dynamics of the random Ising spin chain in coexisting transverse and longitudinal magnetic fields is studied by the recursion method. Both the spin autocorrelation function and its spectral density are investigated by numerical calculations. It is found that system's dynamical behaviors depend on the deviation σJ of the random exchange coupling between nearest-neighbor spins and the ratio rlt of the longitudinal and the transverse fields: (i) For rlt = 0, the system undergoes two crossovers from N independent spins precessing about the transverse magnetic field to a collective-mode behavior, and then to a central-peak behavior as σJ increases. (ii) For rlt ≠ 0, the system may exhibit a coexistence behavior of a collective-mode one and a central-peak one. When σJ is small (or large enough), system undergoes a crossover from a coexistence behavior (or a disordered behavior) to a central-peak behavior as rlt increases. (iii) Increasing σJ depresses effects of both the transverse and the longitudinal magnetic fields. (iv) Quantum random Ising chain in coexisting magnetic fields may exhibit under-damping and critical-damping characteristics simultaneously. These results indicate that changing the external magnetic fields may control and manipulate the dynamics of the random Ising chain.

  15. Self-healing patterns in ferromagnetic-superconducting hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Palacious, E.; Rosenmann, D.

    We study magnetic flux dynamic effects in a superconducting bridge with thin soft magnetic stripes placed either on top or under the bridge. Voltage-current (VI) measurements reveal that the edges of magnetic stripes oriented transvers or along the bridge introduce channels or barriers for vortex motion, resulting in the decrease or increase of the critical current, respectively. We demonstrate a remarkable self-healing effect whereby the magnetic pinning strength for the longitudinal stripes increases with current. The self-field of the current polarizes the magnetic stripes along their width, which enhances the stray fields at their edges and creates a dynamic vortexmore » pinning landscape to impede vortex flow. Our results highlight new strategies to engineer adaptive pinning topologies in superconducting-ferromagnetic hybrids.« less

  16. Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO_{3} Thin Films.

    PubMed

    Tsuyama, T; Chakraverty, S; Macke, S; Pontius, N; Schüßler-Langeheine, C; Hwang, H Y; Tokura, Y; Wadati, H

    2016-06-24

    We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO_{3} thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (∼150  ps) to fast (<70  ps) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat-assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing one to spatially encode magnetic information.

  17. Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

    PubMed Central

    De, Anulekha; Mondal, Sucheta; Sahoo, Sourav; Barman, Saswati; Otani, Yoshichika; Mitra, Rajib Kumar

    2018-01-01

    Ferromagnetic antidot arrays have emerged as a system of tremendous interest due to their interesting spin configuration and dynamics as well as their potential applications in magnetic storage, memory, logic, communications and sensing devices. Here, we report experimental and numerical investigation of ultrafast magnetization dynamics in a new type of antidot lattice in the form of triangular-shaped Ni80Fe20 antidots arranged in a hexagonal array. Time-resolved magneto-optical Kerr effect and micromagnetic simulations have been exploited to study the magnetization precession and spin-wave modes of the antidot lattice with varying lattice constant and in-plane orientation of the bias-magnetic field. A remarkable variation in the spin-wave modes with the orientation of in-plane bias magnetic field is found to be associated with the conversion of extended spin-wave modes to quantized ones and vice versa. The lattice constant also influences this variation in spin-wave spectra and spin-wave mode profiles. These observations are important for potential applications of the antidot lattices with triangular holes in future magnonic and spintronic devices. PMID:29719763

  18. Spin-glass freezing in a Ni-vermiculite intercalation compound.

    PubMed

    Marcos, C; Argüelles, A; Khainakov, S A; Rodríguez Fernández, J; Blanco, J A

    2012-08-29

    We report on the magnetic properties of a Ni(2+)-vermiculite intercalation compound from Santa Olalla, Huelva (Spain). This modified vermiculite was studied by means of DC and AC magnetic measurements. The existence of two maxima in magnetic susceptibility below 10 K was interpreted in terms of the Cole-Cole formalism as being due to spin-glass freezing in this material. The temperature, frequency and external magnetic field dependences of these anomalies located at temperatures around 2-3 K and 8-10 K in the imaginary part of the magnetic susceptibility, χ″, seem to suggest the existence of spin-relaxation phenomena between the magnetic moments of the Ni(2+) ions. A dynamic study of the relaxation processes associated with these phenomena considering the Cole-Cole formalism allows us to interpret the anomaly found at 2-3 K according to a law of activated dynamics, obtaining values for the critical exponent, ψν < 1, characteristic of a d = 2 spin-glass-like system, while the maximum observed in χ″ at 8-10 K can be described by means of a law of standard dynamics with a value of the exponent z of around 5, representative of a d = 3 spin-glass-like system.

  19. Itinerant and localized magnetization dynamics in antiferromagnetic Ho

    DOE PAGES

    Rettig, L.; Dornes, C.; Thielemann-Kuhn, N.; ...

    2016-06-21

    Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L 3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similarmore » spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.« less

  20. Generation and stability of dynamical skyrmions and droplet solitons.

    PubMed

    Statuto, Nahuel; Hernàndez, Joan Manel; Kent, Andrew D; Macià, Ferran

    2018-08-10

    A spin-polarized current in a nanocontact to a magnetic film can create collective magnetic oscillations by compensating the magnetic damping. In particular, in materials with uniaxial magnetic anisotropy, droplet solitons have been observed-a self-localized excitation consisting of partially reversed magnetization that precesses coherently in the nanocontact region. It is also possible to generate topological droplet solitons, known as dynamical skyrmions (DSs). Here, we show that spin-polarized current thresholds for DS creation depend not only on the material's parameters but also on the initial magnetization state and the rise time of the spin-polarized current. We study the conditions that promote either droplet or DS formation and describe their stability in magnetic films without Dzyaloshinskii-Moriya interactions. The Oersted fields from the applied current, the initial magnetization state, and the rise time of the injected current can determine whether a droplet or a DS forms. DSs are found to be more stable than droplets. We also discuss electrical characteristics that can be used to distinguish these magnetic objects.

  1. Dynamics of exciton magnetic polarons in CdMnSe/CdMgSe quantum wells: Effect of self-localization

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Godde, T.; Kavokin, K. V.; Yakovlev, D. R.; Reshina, I. I.; Sedova, I. V.; Sorokin, S. V.; Ivanov, S. V.; Kusrayev, Yu. G.; Bayer, M.

    2017-04-01

    We study the exciton magnetic polaron (EMP) formation in (Cd,Mn)Se/(Cd,Mg)Se diluted-magnetic-semiconductor quantum wells by using time-resolved photoluminescence (PL). The magnetic-field and temperature dependencies of this dynamics allow us to separate the nonmagnetic and magnetic contributions to the exciton localization. We deduce the EMP energy of 14 meV, which is in agreement with time-integrated measurements based on selective excitation and the magnetic-field dependence of the PL circular polarization degree. The polaron formation time of 500 ps is significantly longer than the corresponding values reported earlier. We propose that this behavior is related to strong self-localization of the EMP, accompanied with a squeezing of the heavy-hole envelope wave function. This conclusion is also supported by the decrease of the exciton lifetime from 600 ps to 200-400 ps with increasing magnetic field and temperature.

  2. Broadband strip-line ferromagnetic resonance spectroscopy of soft magnetic CoFeTaZr patterned thin films

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Kumar, D.; Jin, T. L.; Nongjai, R.; Asokan, K.; Ghosh, A.; Aparnadevi, M.; Suri, P.; Piramanayagam, S. N.

    2018-05-01

    In this paper, magnetic and magnetization dynamic properties of compositionally patterned Co46Fe40Ta9Zr5 thin films are investigated. A combination of self-assembly and ion-implantation was employed to locally alter the composition of Co46Fe40Ta9Zr5 thin film in a periodic manner. 20 keV O+ and 60 keV N+ ions were implanted at different doses in order to modify the magnetization dynamic properties of the samples in a controlled fashion. Magnetic hysteresis loop measurements revealed significant changes in the coercivity for higher influences of 5 × 1016 ions per cm2. In particular, N+ implantation was observed to induce two phase formation with high and low coercivities. Broadband strip-line ferromagnetic resonance spectroscopy over wide range of frequency (8 - 20 GHz) was used to study the magnetization dynamics as a function of ion-beam dosage. With higher fluences, damping constant showed a continuous increase from 0.0103 to 0.0430. Such control of magnetic properties at nano-scale using this method is believed to be useful for spintronics and microwave device applications.

  3. Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk

    NASA Astrophysics Data System (ADS)

    Boghi, Andrea; Russo, Flavia; Gori, Fabio

    2017-09-01

    Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley's profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.

  4. A Dual-Colour Architecture for Pump-Probe Spectroscopy of Ultrafast Magnetization Dynamics in the Sub-10-femtosecond Range.

    PubMed

    Gonçalves, C S; Silva, A S; Navas, D; Miranda, M; Silva, F; Crespo, H; Schmool, D S

    2016-03-15

    Current time-resolution-limited dynamic measurements clearly show the need for improved techniques to access processes on the sub-10-femtosecond timescale. To access this regime, we have designed and constructed a state-of-the-art time-resolved magneto-optic Kerr effect apparatus, based on a new dual-color scheme, for the measurement of ultrafast demagnetization and precessional dynamics in magnetic materials. This system can operate well below the current temporal ranges reported in the literature, which typically lie in the region of around 50 fs and above. We have used a dual-colour scheme, based on ultra broadband hollow-core fibre and chirped mirror pulse compression techniques, to obtain unprecedented sub-8-fs pump and probe pulse durations at the sample plane. To demonstrate the capabilities of this system for ultrafast demagnetization and precessional dynamics studies, we have performed measurements in a ferrimagnetic GdFeCo thin film. Our study has shown that the magnetization shows a sudden drop within the first picosecond after the pump pulse, a fast recovery (remagnetization) within a few picoseconds, followed by a clear oscillation or precession during a slower magnetization recovery. Moreover, we have experimentally confirmed for the first time that a sub-10-fs pulse is able to efficiently excite a magnetic system such as GdFeCo.

  5. [Effectiveness of transcranial magnetic therapy in the complex treatment of alcohol abstinent syndrome].

    PubMed

    Staroverov, A T; Zhukov, O B; Raĭgorodskiĭ, Iu M

    2008-01-01

    Fifty-four abstinent alcohol-dependent patients have been studied. Twenty-nine patients (a main group) received, along with basic therapy, a physiotherapeutic treatment (transcranial dynamic magnetic therapy) and 25 patients (a control group) received only basic therapy. The comparison of the efficacy of treatment in patients of the main and control groups revealed the benefits of transcranial dynamic magnetic therapy in CNS function, performance on memory and attention tests, state of autonomic nervous system and psychoemotional state of patients (the reduction of anxiety and depression).

  6. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  7. Finite-Size Effects in Single Chain Magnets: An Experimental and Theoretical Study

    NASA Astrophysics Data System (ADS)

    Bogani, L.; Caneschi, A.; Fedi, M.; Gatteschi, D.; Massi, M.; Novak, M. A.; Pini, M. G.; Rettori, A.; Sessoli, R.; Vindigni, A.

    2004-05-01

    The problem of finite-size effects in s=1/2 Ising systems showing slow dynamics of the magnetization is investigated introducing diamagnetic impurities in a Co2+-radical chain. The static magnetic properties have been measured and analyzed considering the peculiarities induced by the ferrimagnetic character of the compound. The dynamic susceptibility shows that an Arrhenius law is observed with the same energy barrier for the pure and the doped compounds while the prefactor decreases, as theoretically predicted. Multiple spin reversal has also been investigated.

  8. Dynamic depinning phase transition in magnetic thin film with anisotropy

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Zheng, B.; Jin, M. H.; Wang, L.; Zhou, N. J.

    2018-02-01

    The dynamic pinning effects induced by quenched disorder are significant in manipulating the domain-wall motion in nano-magnetic materials. Through numerical simulations of the nonstationary domain-wall dynamics with the Landau-Lifshitz-Gilbert equation, we confidently detect a dynamic depinning phase transition in a magnetic thin film with anisotropy, which is of second order. The transition field, static and dynamic exponents are accurately determined, based on the dynamic scaling behavior far from stationary.

  9. Modeling the effects of strain profiles and defects on precessional magnetic switching in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Chavez, Andres C.; Kundu, Auni A.; Lynch, Christopher S.; Carman, Gregory P.

    2018-03-01

    Strain-mediated multiferroic heterostructures relying on fast 180° precessional magnetic switching have been proposed as a pathway for energy efficient and high density memory/logic devices. However, proper device performance requires precisely timed high frequency ( GHz) voltage pulses dependent on the magnetization dynamics of the structure. In turn, the dynamic response of the device is greatly influenced by the device geometry, strain amplitude, and strain rate. Hence, we study the effects of increasing the voltage amplitude and application rate on the in-plane magnetization dynamics of a single-domain CoFeB ellipse (100 nm x 80 nm x 6 nm) on a 500 nm thick PZT substrate in addition to studying defects in the geometry. Both a coupled micromagnetics, electrostatics and elastodynamics finite element model and a conventional micromagnetics software was used to study the strain-induced magnetic response of the CoFeB ellipse. Both models predict increased 90° magnetic reorientation speed with increased strain amplitude and rate. However, the fully-coupled model predicts slower reorientation and incoherency in comparison to the uncoupled model. This occurs because the fully-coupled model can capture the expected strain gradients of a fabricated device while the micromagnetics model can only represent uniform strain states. Additional studies which introduce geometric defects result in faster precessional motion under the same strain amplitude and rate. This is attributed to localized changes in the magnetization that influence neighboring regions via exchange and demagnetization effects. The results of these studies can help design better devices that will be less sensitive to defects and voltage applications for future strain-mediated multiferroic devices.

  10. Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films

    NASA Astrophysics Data System (ADS)

    Silva, E. F.; Corrêa, M. A.; Della Pace, R. D.; Plá Cid, C. C.; Kern, P. R.; Carara, M.; Chesman, C.; Alves Santos, O.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M.; Bohn, F.

    2017-05-01

    We investigate the thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. We go beyond quasi-static measurements and focus on the dynamic magnetic response by considering three complementary techniques: the ferromagnetic resonance, magnetoimpedance and magnetic permeability measurements. We verify remarkable modifications in the magnetic anisotropy, i.e. the well-known behavior of in-plane uniaxial magnetic anisotropy systems gives place to a complex magnetic behavior as the thickness increases, and splits the films in two groups according to the magnetic properties. We identify magnetoimpedance and magnetic permeability curves with multiple resonance peaks, as well as the evolution of the ferromagnetic resonance absorption spectra, as fingerprints of strong changes of the magnetic properties associated to the vanishing of the in-plane magnetic anisotropy and to the emergence of non-homogeneous magnetization configuration, local anisotropies and out-of-plane anisotropy contribution arisen as a consequence of the non-uniformities of the stress stored in the film as the thickness is increased and/or to the columnar growth of the film. We interpret the experimental results in terms of the structural and morphological properties, quasi-static magnetic behavior, magnetic domain structure and different mechanisms governing the magnetization dynamics at distinct frequency ranges.

  11. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji; Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes.

  12. Elasticity and magnetocaloric effect in MnFe 4Si 3

    DOE PAGES

    Herlitschke, Marcus; Klobes, B.; Sergueev, I.; ...

    2016-03-16

    The room temperature magnetocaloric material MnFe 4Si 3 was investigated with nuclear inelastic scattering (NIS) and resonant ultrasound spectroscopy (RUS) at different temperatures and applied magnetic fields in order to assess the infuence of the magnetic transition and the magnetocaloric effect on the lattice dynamics. The NIS data give access to phonons with energies above 3 meV, whereas RUS probes the elasticity of the material in the MHz frequency range and thus low energy, ~5 neV, phonon modes. A significant infuence of the magnetic transition on the lattice dynamics is observed only in the low energy region. Here, MnFe 4Simore » 3 and other compounds in the Mn 5-xFe xSi 3 series were also investigated with vibrating sample magnetometry, resistivity measurements and Moessbauer spectroscopy in order to study the magnetic transitions and to complement the obtained results on the lattice dynamics.« less

  13. Stochastic Resonance and Safe Basin of Single-Walled Carbon Nanotubes with Strongly Nonlinear Stiffness under Random Magnetic Field.

    PubMed

    Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen

    2018-05-04

    In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.

  14. Magnetic droplet soliton nucleation in oblique fields

    NASA Astrophysics Data System (ADS)

    Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid

    2018-05-01

    We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.

  15. Magnetically aligned phospholipid bilayers in weak magnetic fields: optimization, mechanism, and advantages for X-band EPR studies.

    PubMed

    Cardon, Thomas B; Tiburu, Elvis K; Lorigan, Gary A

    2003-03-01

    Our lab is developing a spin-labeled EPR spectroscopic technique complementary to solid-state NMR studies to study the structure, orientation, and dynamics of uniaxially aligned integral membrane proteins inserted into magnetically aligned discotic phospholipid bilayers, or bicelles. The focus of this study is to optimize and understand the mechanisms involved in the magnetic alignment process of bicelle disks in weak magnetic fields. Developing experimental conditions for optimized magnetic alignment of bicelles in low magnetic fields may prove useful to study the dynamics of membrane proteins and its interactions with lipids, drugs, steroids, signaling events, other proteins, etc. In weak magnetic fields, the magnetic alignment of Tm(3+)-doped bicelle disks was thermodynamically and kinetically very sensitive to experimental conditions. Tm(3+)-doped bicelles were magnetically aligned using the following optimized procedure: the temperature was slowly raised at a rate of 1.9K/min from an initial temperature being between 298 and 307K to a final temperature of 318K in the presence of a static magnetic field of 6300G. The spin probe 3beta-doxyl-5alpha-cholestane (cholestane) was inserted into the bicelle disks and utilized to monitor bicelle alignment by analyzing the anisotropic hyperfine splitting for the corresponding EPR spectra. The phases of the bicelles were determined using solid-state 2H NMR spectroscopy and compared with the corresponding EPR spectra. Macroscopic alignment commenced in the liquid crystalline nematic phase (307K), continued to increase upon slowly raising the temperature, and was well-aligned in the liquid crystalline lamellar smectic phase (318K).

  16. Broken Symmetries and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.

  17. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  18. Dynamical Tests in a Linear Superconducting Magnetic Bearing

    NASA Astrophysics Data System (ADS)

    Dias, D. H. N.; Sotelo, G. G.; Sass, F.; Motta, E. S.; , R. de Andrade, Jr.; Stephan, R. M.

    The unique properties of high critical temperature superconductors (HTS) make possible the development of an effective and self-stable magnetic levitation (MagLev) transportation system. In this context, a full scale MagLev vehicle, named MagLev-Cobra, has been developed at the Laboratory for Applied Superconductivity (LASUP/UFRJ). The vehicle is borne by a linear superconducting magnetic bearing (LSMB). The most important design constraint of the levitation system is the force that appears due to the interaction between the HTS and the permanent magnetic (PM) rail, which composes the LSMB. Static and dynamic characteristics of this force must be studied. The static behavior was already reported in previous work. The dynamic operation of this kind of vehicle, which considers the entry and exit of passengers and vibration movements, may result in the decrease of the gap between the superconductor and the PM rail in LSMB. In order to emulate the vehicle operation and to study the gap variation with time, the superconductors are submitted to a series of vertical displacements performed with the help of an experimental test rig. These movements are controlled by a time-variant reference force that reproduces the vehicle dynamic. In the present work, the results obtained for the dynamic gap behavior are presented. These measurements are essential to the commissioning process of a superconducting MagLev full scale vehicle.

  19. Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Hajra, Rajkumar; Henri, Pierre; Vallières, Xavier; Moré, Jerome; Gilet, Nicolas; Wattieaux, Gaetan; Goetz, Charlotte; Richter, Ingo; Tsurutani, Bruce T.; Gunell, Herbert; Nilsson, Hans; Eriksson, Anders I.; Nemeth, Zoltan; Burch, James L.; Rubin, Martin

    2018-04-01

    The Rosetta orbiter witnessed several hundred diamagnetic cavity crossings (unmagnetized regions) around comet 67P/Churyumov-Gerasimenko during its two year survey of the comet. The characteristics of the plasma environment inside these diamagnetic regions are studied using in situ measurements by the Rosetta Plasma Consortium instruments. Although the unmagnetized plasma density has been observed to exhibit little dynamics compared to the very dynamical magnetized cometary plasma, we detected several localized dynamic plasma structures inside those diamagnetic regions. These plasma structures are not related to the direct ionization of local cometary neutrals. The structures are found to be steepened, asymmetric plasma enhancements with typical rising-to-descending slope ratio of ˜2.8 (±1.9), skewness ˜0.43 (±0.36), mean duration of ˜2.7 (±0.9) min and relative density variation ΔN/N of ˜0.5 (±0.2), observed close to the electron exobase. Similar steepened plasma density enhancements were detected at the magnetized boundaries of the diamagnetic cavity as well as outside the diamagnetic region. The plausible scalelength and propagation direction of the structures are estimated from simple plasma dynamics considerations. It is suggested that they are large-scale unmagnetized plasma enhancements, transmitted from the very dynamical outer magnetized region to the inner magnetic field-free cavity region.

  20. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  1. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE PAGES

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung; ...

    2017-05-24

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  2. Non-equilibrium dynamic reversal of in-plane ferromagnetic elliptical disk

    NASA Astrophysics Data System (ADS)

    Kim, June-Seo; Hwang, Hee-Kyeong; You, Chun-Yeol

    2018-01-01

    The ultrafast switching mechanism of an in-plane magnetized elliptical magnetic disk by applying dynamic out-of-plane magnetic field pulses is investigated by performing micromagnetic simulations. For the in-plane magnetized nanostructures, the out-of-plane magnetic field is able to rotate the direction of magnetization when the precession torque overcomes the shape anisotropy of the system. This type magnetization reversal is one of non-equilibrium dynamic within a certain transition time util the precession torque is equivalent to the damping torque. By controlling the rise time or fall times of dynamic out-of-plane field pulses, the transition time can be also successively tuned and then an ultrafast switching of an elliptical magnetic nano-disk is clearly achieved by controlling the precessional torque. As another reversal approach, sinusoidal magnetic fields in gigahertz range are applied to the system. Consequently, the thresholds of switching fields are drastically decreased. We also reveal that the ferromagnetic resonance frequencies at the center and the edge of the elliptical disk are most important for microwave sinusoidal out-of-plane magnetic field induced magnetization reversal.

  3. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  4. Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Altmeyer, Sebastian

    2018-04-01

    This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

  5. Magnetization dynamics in dilute Pd1-xFex thin films and patterned microstructures considered for superconducting electronics

    NASA Astrophysics Data System (ADS)

    Golovchanskiy, I. A.; Bolginov, V. V.; Abramov, N. N.; Stolyarov, V. S.; Ben Hamida, A.; Chichkov, V. I.; Roditchev, D.; Ryazanov, V. V.

    2016-10-01

    Motivated by recent burst of applications of ferromagnetic layers in superconducting digital and quantum elements, we study the magnetism of thin films and patterned microstructures of Pd0.99Fe0.01. In this diluted ferromagnetic system, a high-sensitivity ferromagnetic resonance (FMR) experiment reveals spectroscopic signatures of re-magnetization and enables the estimation of the saturation magnetization, the anisotropy field, and the Gilbert damping constant. The detailed analysis of FMR spectra links the observed unexpectedly high reduced anisotropy field (0.06-0.14) with the internal anisotropy, points towards a cluster nature of the ferromagnetism, and allows estimating characteristic time scale for magnetization dynamics in Pd-Fe based cryogenic memory elements to ( 3 - 5 ) × 10 - 9 s.

  6. Feasibility Study for Implementing Magnetic Suspension in the Glenn Research Center 225 cm2 Supersonic Wind Tunnel for Testing the Dynamic Stability of Blunt Bodies

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark; Barnhart, Paul

    2016-01-01

    The implementation of a magnetic suspension system in the NASA Glenn Research Center (GRC) 225 cm2 Supersonic Wind Tunnel would be a powerful test technique that could accurately determine the dynamic stability of blunt body entry vehicles with no sting interference. This paper explores initial design challenges to be evaluated before implementation, including defining the lowest possible operating dynamic pressure and corresponding model size, developing a compatible video analysis technique, and incorporating a retractable initial support sting.

  7. Longitudinal spin dynamics in nickel fluorosilicate

    NASA Astrophysics Data System (ADS)

    Galkina, E. G.; Ivanov, B. A.; Butrim, V. I.

    2014-07-01

    The presence of single-ion anisotropy leads to the appearance of the effect of quantum spin reduction. As a consequence, purely longitudinal magnetization dynamics arises, which involves coupled oscillations of the mean spin modulus and the quadrupole mean values constructed on spin operators. In nickel fluorosilicate, the effect of quantum spin reduction may be controlled by changing pressure. The study of nonlinear longitudinal spin dynamics and the analysis of possible photomagnetic effects showed that this compound is a convenient model system to implement switching of the magnetization direction by femtosecond laser pulses.

  8. Helicity in the dynamic magnetotail

    NASA Astrophysics Data System (ADS)

    Buchert, Stephan

    Observations of substorms typically feature a clear azimuthal or east-west asymmetry which has been described in expressions like for example westward-traveling surge. The origin of this asymmetry is not clear. Candidates are the Hall effect, either in the ionosphere, or in magnetic reconnection, and self-induction when Hall currents change in time. The magnetic helicity in the tail measured by the Cluster satellites shows a clear preference during dynamic events, that we have studied. We discuss possible causes of this non-zero helicity and whether it is related to east-west assymmetric tail dynamics.

  9. Magnetic Properties and Phase Composition of Metamaterials Based on an Opal Matrix with 3 d-Transition Metal Particles

    NASA Astrophysics Data System (ADS)

    Rinkevich, A. B.; Korolev, A. V.; Samoilovich, M. I.; Perov, D. V.; Nemytova, O. V.

    2018-02-01

    The magnetic properties of metamaterials based on an opal matrix with transition-metal (iron, nickel, cobalt) particles have been studied. Magnetization curves and magnetic hysteresis loops have been measured and the dependences of real and imaginary parts of magnetization have been determined using the dynamic ac susceptibility measuring procedure. Structural studies of metamaterials have been performed. The saturation magnetization and coercive force of the studied metamaterials have been found to depend weakly on the temperature. The temperature dependence of magnetic susceptibility at a temperature above 30 K can be described adequately by Curie-Weiss law and, at lower temperature, deviates from the law.

  10. Fractional dynamics of charged particles in magnetic fields

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  11. Magnetic field fluctuations analysis for the ion trap implementation of the quantum Rabi model in the deep strong coupling regime

    NASA Astrophysics Data System (ADS)

    Puebla, Ricardo; Casanova, Jorge; Plenio, Martin B.

    2018-03-01

    The dynamics of the quantum Rabi model (QRM) in the deep strong coupling regime is theoretically analyzed in a trapped-ion set-up. Recognizably, the main hallmark of this regime is the emergence of collapses and revivals, whose faithful observation is hindered under realistic magnetic dephasing noise. Here, we discuss how to attain a faithful implementation of the QRM in the deep strong coupling regime which is robust against magnetic field fluctuations and at the same time provides a large tunability of the simulated parameters. This is achieved by combining standing wave laser configuration with continuous dynamical decoupling. In addition, we study the role that amplitude fluctuations play to correctly attain the QRM using the proposed method. In this manner, the present work further supports the suitability of continuous dynamical decoupling techniques in trapped-ion settings to faithfully realize different interacting dynamics.

  12. Probing topology and dynamics of the second transmembrane domain (M2δ) of the acetyl choline receptor using magnetically aligned lipid bilayers (bicelles) and EPR spectroscopy.

    PubMed

    Sahu, Indra D; Mayo, Daniel J; Subbaraman, Nidhi; Inbaraj, Johnson J; McCarrick, Robert M; Lorigan, Gary A

    2017-08-01

    Characterizing membrane protein structure and dynamics in the lipid bilayer membrane is very important but experimentally challenging. EPR spectroscopy offers a unique set of techniques to investigate a membrane protein structure, dynamics, topology, and distance constraints in lipid bilayers. Previously our lab demonstrated the use of magnetically aligned phospholipid bilayers (bicelles) for probing topology and dynamics of the membrane peptide M2δ of the acetyl choline receptor (AchR) as a proof of concept. In this study, magnetically aligned phospholipid bilayers and rigid spin labels were further utilized to provide improved dynamic information and topology of M2δ peptide. Seven TOAC-labeled AchR M2δ peptides were synthesized to demonstrate the utility of a multi-labeling amino acid substitution alignment strategy. Our data revealed the helical tilts to be 11°, 17°, 9°, 17°, 16°, 11°, 9°±4° for residues I7TOAC, Q13TOAC, A14TOAC, V15TOAC, C16TOAC, L17TOAC, and L18TOAC, respectively. The average helical tilt of the M2δ peptide was determined to be ∼13°. This study also revealed that the TOAC labels were attached to the M2δ peptide with different dynamics suggesting that the sites towards the C-terminal end are more rigid when compared to the sites towards the N-terminus. The dynamics of the TOAC labeled sites were more resolved in the aligned samples when compared to the randomly disordered samples. This study highlights the use of magnetically aligned lipid bilayer EPR technique to determine a more accurate helical tilt and more resolved local dynamics of AchR M2δ peptide. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Porrati, Fabrizio; Huth, Michael; Ohno, Yuzo; Ohno, Hideo; Müller, Jens

    2015-05-01

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their "coercive field" with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' "survival time" with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct "paths" most likely driven by thermal perturbation.

  14. Magnetic Suspension for Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter

    1998-01-01

    NASA Lewis Research Center's Dynamic Spin Rig, located in Building 5, Test Cell CW-18, is used to test turbomachinery blades and components by rotating them in a vacuum chamber. A team from Lewis' Machine Dynamics Branch successfully integrated a magnetic bearing and control system into the Dynamic Spin Rig. The magnetic bearing worked very well both to support and shake the shaft. It was demonstrated that the magnetic bearing can transmit more vibrational energy into the shaft and excite some blade modes to larger amplitudes than the existing electromagnetic shakers can.

  15. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range

    DOE PAGES

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; ...

    2015-09-10

    In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range,more » with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.« less

  16. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3{NIT(C6H4OPh)}]: A μ+ spin relaxation study

    NASA Astrophysics Data System (ADS)

    Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-05-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  17. The effect of the size of the system, aspect ratio and impurities concentration on the dynamic of emergent magnetic monopoles in artificial spin ice systems

    NASA Astrophysics Data System (ADS)

    León, Alejandro

    2013-08-01

    In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing a "frustrated celular autómata" (FCA), based in the charge model and dipolar model. The FCA simulations allow us to study in real-time and deterministic way, the dynamic of the system, with minimal computational resource. The update function is defined according to the coordination number of vertices in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of the effect of disorder in the arrangement of nanomagnets is incorporated in this work.

  18. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  19. Resonant magnetic perturbation effect on tearing mode dynamics

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.

    2010-03-01

    The effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics is experimentally studied in the EXTRAP T2R device. EXTRAP T2R is equipped with a set of sensor coils and active coils connected by a digital controller allowing a feedback control of the magnetic instabilities. The recently upgraded feedback algorithm allows the suppression of all the error field harmonics but keeping a selected harmonic to the desired amplitude, therefore opening the possibility of a clear study of the RMP effect on the corresponding TM. The paper shows that the RMP produces two typical effects: (1) a weak oscillation in the TM amplitude and a modulation in the TM velocity or (2) a strong modulation in the TM amplitude and phase jumps. Moreover, the locking mechanism of a TM to a RMP is studied in detail. It is shown that before the locking, the TM dynamics is characterized by velocity modulation followed by phase jumps. Experimental results are reasonably explained by simulations obtained with a model.

  20. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  1. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    NASA Astrophysics Data System (ADS)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  2. Magnetization Dynamics of Amorphous Ribbons and Wires Studied by Inductance Spectroscopy

    PubMed Central

    Betancourt, Israel

    2010-01-01

    Inductance spectroscopy is a particular formulation variant of the well known complex impedance formalism typically used for the electric characterization of dielectric, ferroelectric, and piezoelectric materials. It has been successfully exploited as a versatile tool for characterization of the magnetization dynamics in amorphous ribbons and wires by means of simple experiments involving coils for sample holding and impedance analyzer equipment. This technique affords the resolution of the magnetization processes in soft magnetic materials, in terms of reversible deformation of pinned domain walls, domain wall displacements and spin rotation, for which characteristic parameters such as the alloy initial permeability and the relaxation frequencies, indicating the dispersion of each process, can be defined. Additionally, these parameters can be correlated with chemical composition variation, size effects and induced anisotropies, leading to a more physical insight for the understanding of the frequency dependent magnetic response of amorphous alloys, which is of prime interest for the development of novel applications in the field of telecommunication and sensing technologies. In this work, a brief overview, together with recent progress on the magnetization dynamics of amorphous ribbons, wires, microwires and biphase wires, is presented and discussed for the intermediate frequency interval between 10 Hz and 13 MHz. PMID:28879975

  3. Resolving the role of femtosecond heated electrons in ultrafast spin dynamics.

    PubMed

    Mendil, J; Nieves, P; Chubykalo-Fesenko, O; Walowski, J; Santos, T; Pisana, S; Münzenberg, M

    2014-02-05

    Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal.

  4. Isotropic and anisotropic regimes of the field-dependent spin dynamics in Sr 2 IrO 4 : Raman scattering studies

    DOE PAGES

    Gim, Y.; Sethi, A.; Zhao, Q.; ...

    2016-01-11

    A major focus of experimental interest in Sr 2IrO 4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of an isotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low energy magnetic excitation spectrum of Sr 2IrO 4 and doped Eu-doped Sr 2IrO 4 as functions of both temperature and applied magnetic field. We show that the high-field (H > 1.5 T) in-plane spin dynamics ofmore » Sr 2IrO 4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr 2IrO 4 at lower fields (H < 1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr 2IrO 4 that occurs either discontinuously or via a continuous rotation of the spins, depending upon the in-plane orientation of the applied field. Furthermore, these results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr 2IrO 4.« less

  5. Biomolecular imaging of 13C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies

    NASA Astrophysics Data System (ADS)

    Flori, Alessandra; Giovannetti, Giulio; Santarelli, Maria Filomena; Aquaro, Giovanni Donato; De Marchi, Daniele; Burchielli, Silvia; Frijia, Francesca; Positano, Vincenzo; Landini, Luigi; Menichetti, Luca

    2018-06-01

    Magnetic Resonance Spectroscopy of hyperpolarized isotopically enriched molecules facilitates the non-invasive real-time investigation of in vivo tissue metabolism in the time-frame of a few minutes; this opens up a new avenue in the development of biomolecular probes. Dissolution Dynamic Nuclear Polarization is a hyperpolarization technique yielding a more than four orders of magnitude increase in the 13C polarization for in vivo Magnetic Resonance Spectroscopy studies. As reported in several studies, the dissolution Dynamic Nuclear Polarization polarization performance relies on the chemico-physical properties of the sample. In this study, we describe and quantify the effects of the different sample components on the dissolution Dynamic Nuclear Polarization performance of [1-13C]butyrate. In particular, we focus on the polarization enhancement provided by the incremental addition of the glassy agent dimethyl sulfoxide and gadolinium chelate to the formulation. Finally, preliminary results obtained after injection in healthy rats are also reported, showing the feasibility of an in vivo Magnetic Resonance Spectroscopy study with hyperpolarized [1-13C]butyrate using a 3T clinical set-up.

  6. Phase locking of vortex cores in two coupled magnetic nanopillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qiyuan; Liu, Xianyin; Zheng, Qi

    2014-11-15

    Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. Thismore » work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.« less

  7. Nonlinear dynamics of a magnetically driven Duffing-type spring-magnet oscillator in the static magnetic field of a coil

    NASA Astrophysics Data System (ADS)

    Donoso, Guillermo; Ladera, Celso L.

    2012-11-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet-coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels.

  8. The Dynamics of Agglomerated Ferrofluid in Steady and Pulsatile Flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia; Stewart, Kelley; Vlachos, Pavlos

    2007-11-01

    Magnetic Drug Targeting (MDT) is a promising technique to deliver medication via functionalized magnetic particles to target sites in the treatment of diseases. In this work, the physics of steady and pulsatile flows laden with superparamagnetic nanoparticles in a square channel under the influence of a magnetic field induced by a 0.6 Tesla permanent magnet is studied. Herein, the dynamics of ferrofluid shedding from an initially accumulated mass in water are examined through shadowgraph imaging using two orthogonal cameras. Fundamental differences in the ferrofluid behavior occur between the steady and pulsatile flow cases, as expected. For steady flows, vortex ring shedding is visualized from the mass, and periodic shedding occurs only for moderate mass sizes where the shear forces in the flow interact with the magnetic forces. At Reynolds numbers below 500 with pulsatile flow, suction and roll up of the ferrofluid is seen during the low and moderate periods of flow, followed by the ejection of ferrofluid during high flow. These shadowgraphs illustrate the beauty and richness of ferrofluid dynamics, an understanding of which is instrumental to furthering MDT as an effective drug delivery device.

  9. Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Potisk, Tilen; Pleiner, Harald; Svenšek, Daniel; Brand, Helmut R.

    2018-04-01

    We investigate the effects of flow on the dynamics of ferromagnetic nematic liquid crystals. As a model, we study the coupled dynamics of the magnetization, M , the director field, n , associated with the liquid crystalline orientational order, and the velocity field, v . We evaluate how simple shear flow in a ferromagnetic nematic is modified in the presence of small external magnetic fields, and we make experimentally testable predictions for the resulting effective shear viscosity: an increase by a factor of 2 in a magnetic field of about 20 mT. Flow alignment, a characteristic feature of classical uniaxial nematic liquid crystals, is analyzed for ferromagnetic nematics for the two cases of magnetization in or perpendicular to the shear plane. In the former case, we find that small in-plane magnetic fields are sufficient to suppress tumbling and thus that the boundary between flow alignment and tumbling can be controlled easily. In the latter case, we furthermore find a possibility of flow alignment in a regime for which one obtains tumbling for the pure nematic component. We derive the analogs of the three Miesowicz viscosities well-known from usual nematic liquid crystals, corresponding to nine different configurations. Combinations of these can be used to determine several dynamic coefficients experimentally.

  10. Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmit, P. F.; Velikovich, A. L.; McBride, R. D.

    Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less

  11. Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch

    DOE PAGES

    Schmit, P. F.; Velikovich, A. L.; McBride, R. D.; ...

    2016-11-11

    Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less

  12. Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser

    2018-02-01

    Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

  13. Communication: Heterogeneous water dynamics on a clathrate hydrate lattice detected by multidimensional oxygen nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Adjei-Acheamfour, Mischa; Storek, Michael; Böhmer, Roland

    2017-05-01

    Previous deuteron nuclear magnetic resonance studies revealed conflicting evidence regarding the possible motional heterogeneity of the water dynamics on the hydrate lattice of an ice-like crystal. Using oxygen-17 nuclei as a sensitive quadrupolar probe, the reorientational two-time correlation function displays a clear nonexponentiality. To check whether this dispersive behavior is a consequence of dynamic heterogeneity or rather of an intrinsic nonexponentiality, a multidimensional, four-time magnetic resonance experiment was devised that is generally applicable to strongly quadrupolarly perturbed half-integer nuclei such as oxygen-17. Measurements of an appropriate four-time function demonstrate that it is possible to select a subensemble of slow water molecules. Its mean time scale is compared to theoretical predictions and evidence for significant motional heterogeneity is found.

  14. Impact of surface strain on the spin dynamics of deposited Co nanowires

    NASA Astrophysics Data System (ADS)

    Polyakov, O. P.; Korobova, J. G.; Stepanyuk, O. V.; Bazhanov, D. I.

    2017-01-01

    Tailoring the magnetic properties at atomic-scale is essential in the engineering of modern spintronics devices. One of the main concerns in the novel nanostructured materials design is the decrease of the paid energy in the way of functioning, but allowing to switch between different magnetic states with a relative low-cost energy at the same time. Magnetic anisotropy (MA) energy defines the stability of a spin in the preferred direction and is a fundamental variable in magnetization switching processes. Transition-metal wires are known to develop large, stable spin and orbital magnetic moments together with MA energies that are orders of magnitude larger than in the corresponding solids. Different ways of controlling the MA have been exploited such as alloying, surface charging, and external electrical fields. Here we investigate from a first-principle approach together with dynamic calculations, the surface strain driven mechanism to tune the magnetic properties of deposited nanowires. We consider as a prototype system, the monoatomic Co wires deposited on strained Pt(111) and Au(111) surfaces. Our first-principles calculations reveal a monotonic increase/decrease of MA energy under compressive/tensile strain in supported Co wire. Moreover, the spin dynamics studies based on solving the Landau-Lifshitz-Gilbert equation show that the induced surface-strain leads to a substantial decrease of the required external magnetic field magnitude for magnetization switching in Co wire.

  15. Low-Field Dynamic Magnetic Separation by Self-Fabricated Magnetic Meshes for Efficient Heavy Metal Removal.

    PubMed

    Wei, Xiangxia; Sugumaran, Pon Janani; Peng, Erwin; Liu, Xiao Li; Ding, Jun

    2017-10-25

    Wastewater contaminated with heavy metals is a worldwide concern due to the toxicity to human and animals. The current study presents an incorporation of adsorption and low-field dynamic magnetic separation technique for the treatment of heavy-metal-contaminated water. The key components are the eco-fabricated magnetic filter with mesh architectures (constituted of a soft magnetic material (Ni,Zn)Fe 2 O 4 ) and poly(acrylic acid) (PAA)-coated quasi-superparamagnetic Fe 3 O 4 nanoparticles (NPs). PAA-coated Fe 3 O 4 NPs possess high adsorption capacity of heavy metal ions including Pb, Ni, Co, and Cu and can be easily regenerated after the adjustment of pH. Moreover, magnetic mesh filter has shown excellent collection ability of quasi-superparamagnetic particles under a magnetic field as low as 0.7 kOe (0.07 T) and can easily release these particles during ultrasonic washing when small magnets are removed. In the end, after one filtration process, the heavy metal concentration can be significantly decreased from 1.0 mg L -1 to below the drinking water standard recommended by the World Health Organization (e.g., less than 0.01 mg L -1 for Pb). Overall, a proof-of-concept adsorption and subsequent low-field dynamic separation technique is demonstrated as an economical and efficient route for heavy metal removal from wastewater.

  16. Element-selective investigation of domain structure in CoPd and FePd alloys using small-angle soft X-ray scattering

    NASA Astrophysics Data System (ADS)

    Weier, C.; Adam, R.; Frömter, R.; Bach, J.; Winkler, G.; Kobs, A.; Oepen, H. P.; Grychtol, P.; Kapteyn, H. C.; Murnane, M. M.; Schneider, C. M.

    2014-03-01

    Recent optical pump-probe experiments on magnetic multilayers and alloys identified perpendicular spin superdiffusion as one of possible mechanisms responsible for femtosecond magnetization dynamics. On the other hand, no strong evidence for the ultrafast lateral spin transport has been reported, so far. To address this question, we studied magnetic domain structure of CoPd and FePd thin films using small-angle scattering of soft X-rays. By tuning the synchrotron-generated X-rays to the absorption edges of Fe or Co we recorded Fourier images of the magnetic domain structure corresponding to a chosen element. Applying in - situ magnetic fields resulted in pronounced rearrangement of domain structure that was clearly observed in scattering images. Our analysis of both the stand-alone, as well as magnetically coupled CoPd/FePd layers provides insight into the formation of domains under small magnetic field perturbations and pave the way to better understanding of transient changes expected in magneto-dynamic measurements.

  17. Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice

    NASA Astrophysics Data System (ADS)

    Revell, H. M.; Yaraskavitch, L. R.; Mason, J. D.; Ross, K. A.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.; Henelius, P.; Kycia, J. B.

    2013-01-01

    Electrical resistance is a crucial and well-understood property of systems ranging from computer microchips to nerve impulse propagation in the human body. Here we study the motion of magnetic charges in spin ice and find that extra spins inserted in Dy2Ti2O7 trap magnetic monopole excitations and provide the first example of how defects in a spin-ice material obstruct the flow of monopoles--a magnetic version of residual resistance. We measure the time-dependent magnetic relaxation in Dy2Ti2O7 and show that it decays with a stretched exponential followed by a very slow long-time tail. In a Monte Carlo simulation governed by Metropolis dynamics we show that surface effects and a very low level of stuffed spins (0.30%)--magnetic Dy ions substituted for non-magnetic Ti ions--cause these signatures in the relaxation. In addition, we find evidence that the rapidly diverging experimental timescale is due to a temperature-dependent attempt rate proportional to the monopole density.

  18. Strong fields and neutral particle magnetic moment dynamics

    NASA Astrophysics Data System (ADS)

    Formanek, Martin; Evans, Stefan; Rafelski, Johann; Steinmetz, Andrew; Yang, Cheng-Tao

    2018-07-01

    Interaction of magnetic moment of point particles with external electromagnetic fields experiences unresolved theoretical and experimental discrepancies. In this work we point out several issues within relativistic quantum mechanics and QED and we describe effects related to a new covariant classical model of magnetic moment dynamics. Using this framework we explore the invariant acceleration experienced by neutral particles coupled to an external plane wave field through the magnetic moment: we study the case of ultrarelativistic Dirac neutrinos with magnetic moment in the range of 10‑11 to 10‑20 μ B; and we address the case of slowly moving neutrons. We explore how critical accelerations for neutrinos can be experimentally achieved in laser pulse interactions. The radiation of accelerated neutrinos can serve as an important test distinguishing between Majorana and Dirac nature of neutrinos.

  19. Magnetic field in expanding quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  20. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    PubMed

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  1. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    NASA Astrophysics Data System (ADS)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  2. Single-Particle Quantum Dynamics in a Magnetic Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  3. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  4. Dynamic cross correlation studies of wave particle interactions in ULF phenomena

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.

  5. Magnetic field effect on the structural properties of a peptide model: Molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Housaindokht, Mohammad Reza; Moosavi, Fatemeh

    2018-06-01

    The effect of magnetization on the properties of a system containing a peptide model is studied by molecular dynamics simulation at a range of 298-318 K. Two mole fractions of 0.001 and 0.002 of peptide were simulated and the variation of hydrogen bond number, orientational ordering parameter, gyration radius, mean square displacement, as well as radial distribution function, were under consideration. The results show that applying magnetic field will increase the number of hydrogen bonds between water molecules by clustering them and decreases the interaction of water and peptide. This reduction may cause more available free space and enhance the movement of the peptide. As a result, the diffusion coefficient of the peptide becomes greater and its conformation changes. Orientational ordering parameter besides radius of gyration demonstrates that peptide is expanded by static magnetic field and its orientational ordering parameter is affected.

  6. Dynamic magnetoelectric effect in ferromagnet/superconductor tunnel junctions.

    PubMed

    Trif, Mircea; Tserkovnyak, Yaroslav

    2013-08-23

    We study the magnetization dynamics in a ferromagnet/insulator/superconductor tunnel junction and the associated buildup of the electrical polarization. We show that for an open circuit, the induced voltage varies strongly and nonmonotonically with the precessional frequency, and can be enhanced significantly by the superconducting correlations. For frequencies much smaller or much larger than the superconducting gap, the voltage drops to zero, while when these two energy scales are comparable, the voltage is peaked at a value determined by the driving frequency. We comment on the potential utilization of the effect for the low-temperature spatially resolved spectroscopy of magnetic dynamics.

  7. Dynamic phase transitions of the Blume-Emery-Griffiths model under an oscillating external magnetic field by the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  8. Performance of magnetic resonance imaging in the evaluation of first-time and reoperative primary hyperparathyroidism.

    PubMed

    Kluijfhout, Wouter P; Venkatesh, Shriya; Beninato, Toni; Vriens, Menno R; Duh, Quan-Yang; Wilson, David M; Hope, Thomas A; Suh, Insoo

    2016-09-01

    Preoperative imaging in patients with primary hyperparathyroidism and a previous parathyroid operation is essential; however, performance of conventional imaging is poor in this subgroup. Magnetic resonance imaging appears to be a good alternative, though overall evidence remains scarce. We retrospectively investigated the performance of magnetic resonance imaging in patients with and without a previous parathyroid operation, with a separate comparison for dynamic gadolinium-enhanced magnetic resonance imaging. All patients undergoing magnetic resonance imaging prior to parathyroidectomy for primary hyperparathyroidism (first time or recurrent) between January 2000 and August 2015 at a high-volume, tertiary care, referral center for endocrine operations were included. We compared the sensitivity and positive predictive value of magnetic resonance imaging with conventional ultrasound and sestamibi on a per-lesion level. A total of 3,450 patients underwent parathyroidectomy, of which 84 patients with recurrent (n = 10) or persistent (n = 74) disease and 41 patients with a primary operation were included. Magnetic resonance imaging had a sensitivity and positive predictive value of 79.9% and 84.7%, respectively, and performance was good in both patients with and without a previous parathyroid operation. Adding magnetic resonance imaging to the combination of ultrasound and sestamibi resulted in a significant increase in sensitivity from 75.2% to 91.5%. Dynamic magnetic resonance imaging produced excellent results in the reoperative group, with sensitivity and a positive predictive value of 90.1%. Technologic advances have enabled faster and more accurate magnetic resonance imaging protocols, making magnetic resonance imaging an excellent alternative modality without associated ionizing radiation. Our study shows that the sensitivity of multimodality imaging for parathyroid adenomas improved significantly with the use of conventional and dynamic magnetic resonance imaging, even in the case of recurrent or persistent disease. Published by Elsevier Inc.

  9. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  10. Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation.

    PubMed

    Goh, Segun; Menzel, Andreas M; Löwen, Hartmut

    2018-05-23

    Ferrogels are smart soft materials, consisting of a polymeric network and embedded magnetic particles. Novel phenomena, such as the variation of the overall mechanical properties by external magnetic fields, emerge consequently. However, the dynamic behavior of ferrogels remains largely unveiled. In this paper, we consider a one-dimensional chain consisting of magnetic dipoles and elastic springs between them as a simple model for ferrogels. The model is evaluated by corresponding simulations. To probe the dynamics theoretically, we investigate a continuum limit of the energy governing the system and the corresponding equation of motion. We provide general classification scenarios for the dynamics, elucidating the touching/detachment dynamics of the magnetic particles along the chain. In particular, it is verified in certain cases that the long-time relaxation corresponds to solutions of shock-wave propagation, while formations of particle pairs underlie the initial stage of the dynamics. We expect that these results will provide insight into the understanding of the dynamics of more realistic models with randomness in parameters and time-dependent magnetic fields.

  11. Magnetic helicity in emerging solar active regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Hoeksema, J. T.; Bobra, M.

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferredmore » in a sample of 23 emerging ARs with a bipolar magnetic field configuration.« less

  12. Dynamics of paramagnetic agents by off-resonance rotating frame technique

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2006-12-01

    Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields ( B0 > 3 T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude ω1 and pulse duration τ. The choices of ω1 and τ are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle θ and off-resonance pulse duration τ. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R1 ρ/ R1, the ratio of the off-resonance rotating frame relaxation rate constant R1 ρ verse the laboratory frame relaxation rate constant R1, three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time τR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.

  13. Magnetic helicity and flux tube dynamics in the solar convection zone: Comparisons between observation and theory

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu

    2006-12-01

    Magnetic helicity, a conserved topological parameter in ideal MHD systems, conditions close to which are realized in the solar plasma, is intimately connected to the creation and subsequent dynamics of magnetic flux tubes in the solar interior. It can therefore be used as a tool to probe such dynamics. In this paper we show how photospheric observations of magnetic helicity of isolated magnetic flux tubes, manifested as the twist and writhe of solar active regions, can constrain the creation and dynamics of flux tubes in the solar convection zone and the nature of convective turbulence itself. We analyze the observed latitudinal distribution of twists in photospheric active regions, derived from solar vector magnetograms, in the largest such sample studied till-date. We confirm and put additional constraints on the hemispheric twist helicity trend and find that the dispersion in the active region twist distribution is latitude-independent, implying that the amplitude of turbulent fluctuations does not vary with latitude in the convection zone. Our data set also shows that the amplitude and dispersion of twist decreases with increasing magnetic size of active regions, supporting the conclusion that larger flux tubes are less affected by turbulence. Among the various theoretical models that have been proposed till-date to explain the origin of twist, our observations best match the Σ effect model, which invokes helical turbulent buffeting of rising flux tubes as the mechanism for twist creation. Finally, we complement our analysis of twists with past observations of tilts in solar active regions and tie them in with theoretical modeling studies, to build up a comprehensive picture of the dynamics of twisted magnetic flux tubes throughout the solar convection zone. This general framework, binding together theory and observations, suggests that flux tubes have a wide range of twists in the solar convection zone, with some as high as to make them susceptible to the kink instability mechanism that results in the formation of δ spot or non-Hale active regions.

  14. Imaging Magnetic Vortices Dynamics Using Lorentz Electron Microscopy with GHz Excitations

    NASA Astrophysics Data System (ADS)

    Zhu, Yimei

    2015-03-01

    Magnetic vortices in thin films are naturally formed spiral spin configurations with a core polarization pointing out of the film plane. They typically represent ground states with high structural and thermal stability as well as four different chirality-polarity combinations, offering great promise in the development of spin-based devices. For applications to spin oscillators, non-volatile memory and logic devices, the fundamental understanding and precise control of vortex excitations and dynamic switching behavior are essential. The compact dimensionality and fast spin dynamics set grand challenges for direct imaging technologies. Recently, we have developed a unique method to directly visualize the dynamic magnetic vortex motion using advanced Lorentz electron microscopy combined with GHz electronic excitations. It enables us to map the orbit of a magnetic vortex core in a permalloy square with <5nm resolution and to reveal subtle changes of the gyrotropic motion as the vortex is driven through resonance. Further, in multilayer spin-valve disks, we probed the strongly coupled coaxial vortex motion in the dipolar- and indirect exchange-coupled regimes and unraveled the underlying coherence and modality. Our approach is complementary to X-ray magnetic circular dichroism and is of general interest to the magnetism community as it paves a way to study fundamental spin phenomena with unprecedented resolution and accuracy. Collaborations with S.D. Pollard, J.F. Pulecio, D.A. Arena and K.S. Buchanan are acknowledged. Work supported by DOE-BES, Material Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886.

  15. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ{sup +} spin relaxation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco; Corti, Maurizio

    2015-05-07

    The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, twomore » stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.« less

  16. Mesoscale magnetism

    DOE PAGES

    Hoffmann, Axel; Schultheiß, Helmut

    2014-12-17

    Magnetic interactions give rise to a surprising amount of complexity due to the fact that both static and dynamic magnetic properties are governed by competing short-range exchange interactions and long-range dipolar coupling. Even though the underlying dynamical equations are well established, the connection of magnetization dynamics to other degrees of freedom, such as optical excitations, charge and heat flow, or mechanical motion, make magnetism a mesoscale research problem that is still wide open for exploration. Synthesizing magnetic materials and heterostructures with tailored properties will allow to take advantage of magnetic interactions spanning many length-scales, which can be probed with advancedmore » spectroscopy and microscopy and modeled with multi-scale simulations. Finally, this paper highlights some of the current basic research topics in mesoscale magnetism, which beyond their fundamental science impact are also expected to influence applications ranging from information technologies to magnetism based energy conversion.« less

  17. Ultrafast dynamics of localized magnetic moments in the unconventional Mott insulator Sr 2IrO 4

    DOE PAGES

    Krupin, O.; Dakovski, G. L.; Kim, B. J.; ...

    2016-06-16

    Here, we report a time-resolved study of the ultrafast dynamics of the magnetic moments formed by themore » $${{J}_{\\text{eff}}}=1/2$$ states in Sr 2IrO 4 by directly probing the localized iridium 5d magnetic state through resonant x-ray diffraction. Using optical pump–hard x-ray probe measurements, two relaxation time scales were determined: a fast fluence-independent relaxation is found to take place on a time scale of 1.5 ps, followed by a slower relaxation on a time scale of 500 ps–1.5 ns.« less

  18. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  19. Structural and magnetic characterization of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} nanoparticles prepared via a facile microwave-assisted method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, J., E-mail: j_moradi@yahoo.com; Ghazi, M.E.; Ehsani, M.H., E-mail: mhe_ehsani@yahoo.com

    2014-07-01

    Nanoparticles of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) with different particle sizes are synthesized by a very fast, inexpensive, reproducible, and environmentally friendly method: the microwave irradiation of the corresponding mixture of nitrates. The structural and magnetic properties of the samples are investigated by the X-Ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and magnetic (DC magnetization and AC susceptibility) measurements. The XRD study coupled with the Rietveld refinement show that all samples crystallize in a rhombohedral structure with the space group of R−3C. The FT-IR spectroscopy and FE-SEM images indicate formationmore » of the perovskite structure of LSMO. The DC magnetization measurements confirm the decrease in the particle size effects on the magnetic properties, e.g. reduction in the ferromagnetic (FM) moment and increase in the surface spin disorder. Magnetic dynamics of the samples studied by AC magnetic susceptibility shows that the magnetic behavior of the nanometer-sized samples is well-described by the Vogel-Fulcher and critical slowing down laws. Strong interaction between magnetic nanoparticles of LSMO was detected by fitting the experimental data with the mentioned models. - Graphical abstract: Temperature dependence of the magnetization M(T) was measured in the zero-field-cooling (ZFC) and field-cooling (FC) modes at the applied magnetic field of 100 Oe for the La{sub 0.8}Sr{sub 0.2}MnO{sub 3} with different size prepared via a facile microwave-assisted method. - Highlights: • Nanoparticles of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} were synthesized by the microwave irradiation process. • The structural studies show that all samples crystallize in a rhombohedral structure with space group of R−3C. • The DC magnetic studies confirm tuning of the magnetic properties due to the particle size effects. • Magnetic dynamic studied by AC magnetic susceptibility indicate strong interaction between magnetic nanoparticles.« less

  20. MHD Simulation for Investigating the Dynamic State Transition Responsible for a Solar Eruption in Active Region 12158

    NASA Astrophysics Data System (ADS)

    Lee, Hwanhee; Magara, Tetsuya

    2018-06-01

    We present a magnetohydrodynamic model of solar eruption based on the dynamic state transition from the quasi-static state to the eruptive state of an active region (AR) magnetic field. For the quasi-static state before an eruption, we consider the existence of a slow solar wind originating from an AR, which may continuously make the AR magnetic field deviate from mechanical equilibrium. In this model, we perform a three-dimensional magnetohydrodynamic simulation of AR 12158 producing a coronal mass ejection, where the initial magnetic structure of the simulation is given by a nonlinear force-free field derived from an observed photospheric vector magnetic field. We then apply a pressure-driven outflow to the upper part of the magnetic structure to achieve a quasi-static pre-eruptive state. The simulation shows that the eruptive process observed in this AR may be caused by the dynamic state transition of an AR magnetic field, which is essentially different from the destabilization of a static magnetic field. The dynamic state transition is determined from the shape evolution of the magnetic field line according to the κH-mechanism. This work demonstrates how the mechanism works to produce a solar eruption in the dynamic solar corona governed by the gravitational field and the continuous outflows of solar wind.

  1. Magnetization dynamics and frustration in the multiferroic double perovskite Lu 2MnCoO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapf, Vivien S.; Ueland, B. G.; Laver, Mark

    2016-04-29

    Here, we investigate the magnetic ordering and the magnetization dynamics (from kHz to THz time scales) of the double perovskite Lu 2MnCoO 6 using elastic neutron diffraction, muon spin relaxation, and micro-Hall magnetization measurements. This compound is known to be a type II multiferroic with the interesting feature that a ferromagneticlike magnetization hysteresis loop couples to an equally hysteretic electric polarization in the bulk of the material despite a zero-field magnetic ordering of the type ↑↑↓↓ along Co-Mn spin chains. Here we explore the unusual dynamics of this compound and find extremely strong fluctuations, consistent with the axial next-nearest-neighbor Isingmore » (ANNNI) model for frustrated spin chains. We identify three temperature scales in Lu 2MnCoO 6 corresponding to the onset of highly fluctuating long-range order below T N = 50±3 K identified from neutron scattering, the onset of magnetic and electric hysteresis, with change in kHz magnetic and electric dynamics below a 30 K temperature scale, and partial freezing of ~MHz spin fluctuations in the muon spin relaxation data below 12 ± 3 K. Our results provide a framework for understanding the multiferroic behavior of this compound and its hysteresis and dynamics.« less

  2. Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubbelohde, N.; Maire, N.; Haug, R. J.

    2013-12-04

    For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.

  3. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior withinmore » experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation.« less

  4. Femtosecond Polarization Phase Selective (PPS) High Magnetic Field Studies of Electron-Spin-Hole (ESH) Dynamics: New Tools for Ultrafast Imaging Fe-centered ESH Transfer Mechanisms Steps

    NASA Astrophysics Data System (ADS)

    Rupnik, Kresimir; Cooper, Benjamin; Dunne, Taylor; Gerosa, Katherine; Mercer, Kaitlyn; McGill, Stephen

    In previous work, new Nanoparticle-enzyme Based Hybrids (NEBH) synthesis methods were investigated for nanoparticles of different shapes and electron energies. These hybrids can provide electromagnetic-field-driven ESH separations and transfers to desired molecular locations. Of paramount biomedical interest are the activity centers (including Fe-clusters) in proteins that perform their intended function and help synthesize other molecules. In this work we discuss results of our recent in situ ESH dynamics measurements: we use <15fs (Vitara) PPS broad band pulses and ultrahigh, 25T, magnetic fields from Split-helix magnet at NHMFL. Work included multi-spectral domain PPS harmonic generations and PPS sum frequency generations. Model compounds, including cytochromes, were used for testing and calibrations and previously studied Fe-S enzymes were prepared for measurements. While PPS opto-magnetic methods are known for their insight into electronic structure, our femtosecond measurements can provide ultrafast dynamic imaging of ESH mechanisms decision making steps. UF-PPS Project, performed in part at NHMFL, supported by NSF CA No. DMR-1157490, and 0654118 and U.S. DOE.

  5. Effect of Soft Phase on Magnetic Properties of Bulk Sm-Co/alpha-Fe Nanocomposite Magnets (Postprint)

    DTIC Science & Technology

    2012-11-01

    plasma sintering , and warm compaction [4][5]–[9]. In our previous study [10], bulk Sm–Co –Fe nanocomposite magnets were fabricated by hot pressing of...no. 5, pp. 2974–2976, Jul. 2003. [8] T. Saito and H. Miyoshi, “Magnetic properties of Sm5Fe17/Fe com- posite magnets produces by spark plasma ...Fe and Fe-Co. Bulk composite magnets have been prepared using compaction techniques such as hot pressing/deforma- tion, dynamic shock compaction, spark

  6. Novel NMR tools to study structure and dynamics of biomembranes.

    PubMed

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  7. Micromotors with Step-Motor Characteristics by Controlled Magnetic Interactions among Assembled Components

    PubMed Central

    2015-01-01

    In this study, we investigated the control of the rotation dynamics of an innovative type of rotary micromotors with desired performances by tuning the magnetic interactions among the assembled micro/nanoscale components. The micromotors are made of metallic nanowires as rotors, patterned magnetic nanodisks as bearings and actuated by external electric fields. The magnetic forces for anchoring the rotors on the bearings play an essential role in the rotation dynamics of the micromotors. By varying the moment, orientation, and dimension of the magnetic components, distinct rotation behaviors can be observed, including repeatable wobbling and rolling in addition to rotation. We understood the rotation behaviors by analytical modeling, designed and realized micromotors with step-motor characteristics. The outcome of this research could inspire the development of high-performance nanomachines assembled from synthetic nanoentities, relevant to nanorobotics, microfluidics, and biomedical research. PMID:25536023

  8. Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films

    NASA Astrophysics Data System (ADS)

    Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco

    2018-06-01

    We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.

  9. Asymmetry in Time Evolution of Magnetization in Magnetic Nanostructures

    DOE PAGES

    Tóbik, Jaroslav; Cambel, Vladimir; Karapetrov, Goran

    2015-07-22

    Strong interest in nanomagnetism stems from the promise of high storage densities of information through control of ever smaller and smaller ensembles of spins. There is a broad consensus that the Landau-Lifshitz-Gilbert equation reliably describes the magnetization dynamics on classical phenomenological level. On the other hand, it is not so evident that the magnetization dynamics governed by this equation contains built-in asymmetry in the case of broad topology sets of symmetric total energy functional surfaces. The magnetization dynamics in such cases shows preference for one particular state from many energetically equivalent available minima. Here, we demonstrate this behavior on amore » simple one-spin model which can be treated analytically. Depending on the ferromagnet geometry and material parameters, this asymmetric behavior can be robust enough to survive even at high temperatures opening simplified venues for controlling magnetic states of nanodevices in practical applications. Using micromagnetic simulations we demonstrate the asymmetry in magnetization dynamics in a real system with reduced symmetry such as Pacman-like nanodot. Finally, exploiting the built-in asymmetry in the dynamics could lead to practical methods of preparing desired spin configurations on nanoscale. Introduction« less

  10. Evidence for a dynamical ground state in the frustrated pyrohafnate Tb2Hf2O7

    NASA Astrophysics Data System (ADS)

    Anand, V. K.; Opherden, L.; Xu, J.; Adroja, D. T.; Hillier, A. D.; Biswas, P. K.; Herrmannsdörfer, T.; Uhlarz, M.; Hornung, J.; Wosnitza, J.; Canévet, E.; Lake, B.

    2018-03-01

    We report the physical properties of Tb2Hf2O7 based on ac magnetic susceptibility χac(T ) , dc magnetic susceptibility χ (T ) , isothermal magnetization M (H ) , and heat capacity Cp(T ) measurements combined with muon spin relaxation (μ SR ) and neutron powder diffraction measurements. No evidence for long-range magnetic order is found down to 0.1 K. However, χac(T ) data present a frequency-dependent broad peak (near 0.9 K at 16 Hz) indicating slow spin dynamics. The slow spin dynamics is further evidenced from the μ SR data (characterized by a stretched exponential behavior) which show persistent spin fluctuations down to 0.3 K. The neutron powder diffraction data collected at 0.1 K show a broad peak of magnetic origin (diffuse scattering) but no magnetic Bragg peaks. The analysis of the diffuse scattering data reveals a dominant antiferromagnetic interaction in agreement with the negative Weiss temperature. The absence of long-range magnetic order and the presence of slow spin dynamics and persistent spin fluctuations together reflect a dynamical ground state in Tb2Hf2O7 .

  11. Tensor of effective susceptibility in random magnetic composites: Application to two-dimensional and three-dimensional cases

    NASA Astrophysics Data System (ADS)

    Posnansky, Oleg P.

    2018-05-01

    The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.

  12. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    DOE PAGES

    Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...

    2016-02-03

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less

  13. Three-dimensional simulations of thin ferro-fluid films and drops in magnetic fields

    NASA Astrophysics Data System (ADS)

    Conroy, Devin; Wray, Alex; Matar, Omar

    2016-11-01

    We consider the interfacial dynamics of a thin, ferrofluidic film flowing down an inclined substrate, under the action of a magnetic field, bounded above by an inviscid gas. The fluid is assumed to be weakly-conducting. Its dynamics are governed by a coupled system of the steady Maxwell's, the Navier-Stokes, and continuity equations. The magnetisation of the film is a function of the magnetic field, and is prescribed by a Langevin function. We make use of a long-wave reduction in order to solve for the dynamics of the pressure, velocity, and magnetic fields inside the film. The potential in the gas phase is solved with the use of Fourier Transforms. Imposition of appropriate interfacial conditions allows for the construction of an evolution equation for the interfacial shape, via use of the kinematic condition, and the magnetic field. We consider the three-dimensional evolution of the film to spawise perturbations by solving the non-linear equations numerically. The constant flux configuration is considered, which corresponds to a thin film and drop flowing down an incline, and a parametric study is performed to understand the effect of a magnetic field on the stability and structure of the formed drops. EPSRC UK platform Grant MACIPh (EP/L020564/1) and programme Grant MEMPHIS (EP/K003976/1).

  14. Ab initio description of the diluted magnetic semiconductor Ga1-xMnxAs: Ferromagnetism, electronic structure, and optical response

    NASA Astrophysics Data System (ADS)

    Craco, L.; Laad, M. S.; Müller-Hartmann, E.

    2003-12-01

    Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.

  15. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract

    NASA Astrophysics Data System (ADS)

    Russo, Flavia; Boghi, Andrea; Gori, Fabio

    2018-04-01

    Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.

  16. Electronic Correlation and Magnetism in the Ferromagnetic Metal Fe 3GeTe 2

    DOE PAGES

    Zhu, Jian-Xin; Janoschek, Marc; Chaves, D. S.; ...

    2016-04-05

    Motivated by the search for design principles of rare-earth-free strong magnets, we present a study of electronic structure and magnetic properties of the ferromagnetic metal Fe3GeTe2 within local density approximation (LDA) of the density functional theory, and its combination with dynamical mean-field theory (DMFT). For comparison to these calculations, we have measured magnetic and thermodynamic properties as well as X-ray magnetic circular dichroism and the photoemission spectrum of single crystal Fe3GeTe2. We find that the experimentally determined Sommerfeld coefficient is enhanced by an order of magnitude with respect to the LDA value. This enhancement can be partially explained by LDA+DMFT.more » Additionally, the inclusion of dynamical electronic correlation effects provides the experimentally observed magnetic moments, and the spectral density is in better agreement with photoemission data. Lastly, these results establish the importance of electronic correlations in this ferromagnet.« less

  17. Evaluation of magnetic resonance imaging issues for implantable microfabricated magnetic actuators.

    PubMed

    Lee, Hyowon; Xu, Qing; Shellock, Frank G; Bergsneider, Marvin; Judy, Jack W

    2014-02-01

    The mechanical robustness of microfabricated torsional magnetic actuators in withstanding the strong static fields (7 T) and time-varying field gradients (17 T/m) produced by an MR system was studied in this investigation. The static and dynamic mechanical characteristics of 30 devices were quantitatively measured before and after exposure to both strong uniform and non-uniform magnetic fields. The results showed no statistically significant change in both the static and dynamic mechanical performance, which mitigate concerns about the mechanical stability of these devices in association with MR systems under the conditions used for this assessment. The MR-induced heating was also measured in a 3-T/128-MHz MR system. The results showed a minimal increase (1.6 °C) in temperature due to the presence of the magnetic microactuator array. Finally, the size of the MR-image artifacts created by the magnetic microdevices were quantified. The signal loss caused by the devices was approximately four times greater than the size of the device.

  18. Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics

    DOE PAGES

    Im, Mi-Young; Lee, Ki-Suk; Vogel, Andreas; ...

    2014-12-17

    The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we showmore » that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays.« less

  19. Radio frequency magnetic field effects on molecular dynamics and iron uptake in cage proteins.

    PubMed

    Céspedes, Oscar; Inomoto, Osamu; Kai, Shoichi; Nibu, Yoshinori; Yamaguchi, Toshio; Sakamoto, Nobuyoshi; Akune, Tadahiro; Inoue, Masayoshi; Kiss, Takanobu; Ueno, Shoogo

    2010-05-01

    The protein ferritin has a natural ferrihydrite nanoparticle that is superparamagnetic at room temperature. For native horse spleen ferritin, we measure the low field magnetic susceptibility of the nanoparticle as 2.2 x 10(-6) m(3) kg(-1) and its Néel relaxation time at about 10(-10) s. Superparamagnetic nanoparticles increase their internal energy when exposed to radio frequency magnetic fields due to the lag between magnetization and applied field. The energy is dissipated to the surrounding peptidic cage, altering the molecular dynamics and functioning of the protein. This leads to an increased population of low energy vibrational states under a magnetic field of 30 microT at 1 MHz, as measured via Raman spectroscopy. After 2 h of exposure, the proteins have a reduced iron intake rate of about 20%. Our results open a new path for the study of non-thermal bioeffects of radio frequency magnetic fields at the molecular scale.

  20. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field.

    PubMed

    Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin

    2016-01-05

    A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Transition metal redox switches for reversible "on/off" and "slow/fast" single-molecule magnet behaviour in dysprosium and erbium bis-diamidoferrocene complexes.

    PubMed

    Dickie, Courtney M; Laughlin, Alexander L; Wofford, Joshua D; Bhuvanesh, Nattamai S; Nippe, Michael

    2017-12-01

    Single-molecule magnets (SMMs) are considered viable candidates for next-generation data storage and quantum computing. Systems featuring switchability of their magnetization dynamics are particularly interesting with respect to accessing more complex logic gates and device architectures. Here we show that transition metal based redox events can be exploited to enable reversible switchability of slow magnetic relaxation of magnetically anisotropic lanthanide ions. Specifically, we report anionic homoleptic bis-diamidoferrocene complexes of Dy 3+ (oblate) and Er 3+ (prolate) which can be reversibly oxidized by one electron to yield their respective charge neutral redox partners (Dy: [1] - , 1 ; Er: [2] - , 2 ). Importantly, compounds 1 and 2 are thermally stable which allowed for detailed studies of their magnetization dynamics. We show that the Dy 3+ [1] - / 1 system can function as an "on"/"off" or a "slow"/"fast" redox switchable SMM system in the absence or presence of applied dc fields, respectively. The Er 3+ based [2] - / 2 system features "on"/"off" switchability of SMM properties in the presence of applied fields. Results from electrochemical investigations, UV-vis-NIR spectroscopy, and 57 Fe Mössbauer spectroscopy indicate the presence of significant electronic communication between the mixed-valent Fe ions in 1 and 2 in both solution and solid state. This comparative evaluation of redox-switchable magnetization dynamics in low coordinate lanthanide complexes may be used as a potential blueprint toward the development of future switchable magnetic materials.

  2. CALCULATING ROTATING HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC WAVES TO UNDERSTAND MAGNETIC EFFECTS ON DYNAMICAL TIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xing, E-mail: xing.wei@sjtu.edu.cn; Princeton University Observatory, Princeton, NJ 08544

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flowmore » has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.« less

  3. Progressive freezing of interacting spins in isolated finite magnetic ensembles

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kakoli; Dupuis, Veronique; Le-Roy, Damien; Deb, Pritam

    2017-02-01

    Self-organization of magnetic nanoparticles into secondary nanostructures provides an innovative way for designing functional nanomaterials with novel properties, different from the constituent primary nanoparticles as well as their bulk counterparts. Collective magnetic properties of such complex closed packing of magnetic nanoparticles makes them more appealing than the individual magnetic nanoparticles in many technological applications. This work reports the collective magnetic behaviour of magnetic ensembles comprising of single domain Fe3O4 nanoparticles. The present work reveals that the ensemble formation is based on the re-orientation and attachment of the nanoparticles in an iso-oriented fashion at the mesoscale regime. Comprehensive dc magnetic measurements show the prevalence of strong interparticle interactions in the ensembles. Due to the close range organization of primary Fe3O4 nanoparticles in the ensemble, the spins of the individual nanoparticles interact through dipolar interactions as realized from remnant magnetization measurements. Signature of super spin glass like behaviour in the ensembles is observed in the memory studies carried out in field cooled conditions. Progressive freezing of spins in the ensembles is corroborated from the Vogel-Fulcher fit of the susceptibility data. Dynamic scaling of relaxation reasserted slow spin dynamics substantiating cluster spin glass like behaviour in the ensembles.

  4. Magnetic dynamic properties of electron-doped La(0.23)Ca(0.77)MnO3 nanoparticles.

    PubMed

    Dolgin, B; Puzniak, R; Mogilyansky, D; Wisniewski, A; Markovich, V; Jung, G

    2013-02-20

    Magnetic properties of basically antiferromagnetic La(0.23)Ca(0.77)MnO(3) particles with average sizes of 12 and 60 nm have been investigated in a wide range of magnetic fields and temperature. Particular attention has been paid to magnetization dynamics through measurements of the temperature dependence of ac-susceptibility at various frequencies, the temperature and field dependence of thermoremanent and isothermoremanent magnetization originating from nanoparticles shells, and the time decay of the remanent magnetization. Experimental results and their analysis reveal the major role in magnetic behaviour of investigated antiferromagnetic nanoparticles played by the glassy component, associated mainly with the formation of the collective state formed by ferromagnetic clusters in frustrated coordination at the surfaces of interacting antiferromagnetic nanoparticles. Magnetic behaviour of nanoparticles has been ascribed to a core-shell scenario. Magnetic transitions have been found to play an important role in determining the dynamic properties of the phase separated state of coexisting different magnetic phases.

  5. Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.

    PubMed

    Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2010-08-01

    The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.

  6. Ultrafast Magnetization Manipulation Using Single Femtosecond Light and Hot-Electron Pulses.

    PubMed

    Xu, Yong; Deb, Marwan; Malinowski, Grégory; Hehn, Michel; Zhao, Weisheng; Mangin, Stéphane

    2017-11-01

    Current-induced magnetization manipulation is a key issue for spintronic applications. This manipulation must be fast, deterministic, and nondestructive in order to function in device applications. Therefore, single- electronic-pulse-driven deterministic switching of the magnetization on the picosecond timescale represents a major step toward future developments of ultrafast spintronic systems. Here, the ultrafast magnetization dynamics in engineered Gd x [FeCo] 1- x -based structures are studied to compare the effect of femtosecond laser and hot-electron pulses. It is demonstrated that a single femtosecond hot-electron pulse causes deterministic magnetization reversal in either Gd-rich and FeCo-rich alloys similarly to a femtosecond laser pulse. In addition, it is shown that the limiting factor of such manipulation for perpendicular magnetized films arises from the formation of a multidomain state due to dipolar interactions. By performing time-resolved measurements under various magnetic fields, it is demonstrated that the same magnetization dynamics are observed for both light and hot-electron excitation, and that the full magnetization reversal takes place within 40 ps. The efficiency of the ultrafast current-induced magnetization manipulation is enhanced due to the ballistic transport of hot electrons before reaching the GdFeCo magnetic layer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other forms of ordered phases such as antiferromagnetism and ferroelectricity. We would like to thank the scientists from all over the world who happily agreed to contribute their latest results to this special issue, and the Journal of Physics: Condensed Matter staff for their help, patience and professionalism. In such a fast-moving field it is not possible to give a definitive account, and this special issue can be no more than a snapshot of the current state of knowledge regarding this topic. Nevertheless, we hope that this collection of papers is a useful resource for experienced workers in the field, forms a useful introduction to researchers early in their careers and inspires others in related areas of nanotechnology to enter into the study of domain dynamics in nanostructures. Domain wall dynamics in nanostructures contents Temperature estimation in a ferromagnetic Fe-Ni nanowire involving a current-driven domain wall motionA Yamaguchi, A Hirohata, T Ono and H Miyajima Magnetization reversal in magnetic nanostripes via Bloch wall formation M Zeisberger and R Mattheis Magnetic soft x-ray microscopy of the domain wall depinning process in permalloy magnetic nanowiresMi-Young Im, Lars Bocklage, Guido Meier and Peter Fischer Domain wall propagation in meso- and nanoscale ferroelectrics R G P McQuaid, M McMillen, L-W Chang, A Gruverman and J M Gregg Transverse and vortex domain wall structure in magnetic nanowires with uniaxial in-plane anisotropyM T Bryan, S Bance, J Dean, T Schrefl and D A Allwood The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness Eduardo Martinez Temperature-dependent dynamics of stochastic domain-wall depinning in nanowiresClemens Wuth, Peter Lendecke and Guido Meier Controlled pinning and depinning of domain walls in nanowires with perpendicular magnetic anisotropyTheo Gerhardt, André Drews and Guido Meier The interaction of transverse domain wallsBenjamin Krüger The increase of the spin-transfer torque threshold current density in coupled vortex domain wallsS Lepadatu, A P Mihai, J S Claydon, F Maccherozzi, S S Dhesi, C J Kinane, S Langridge and C H Marrows Large RF susceptibility of transverse domain wallsO Rousseau, S Petit-Watelot and M Viret Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer couplingP J Metaxas, R L Stamps, J-P Jamet, J Ferré, V Baltz and B Rodmacq Current-induced domain wall motion and magnetization dynamics in CoFeB/Cu/Co nanostripesV Uhlíř, J Vogel, N Rougemaille, O Fruchart, Z Ishaque, V Cros, J Camarero, J C Cezar, F Sirotti and S Pizzini Roles of the magnetic field and electric current in thermally activated domain wall motion in a submicrometer magnetic strip with perpendicular magnetic anisotropySatoru Emori and Geoffrey S D Beach Electrical domain morphologies in compositionally graded ferroelectric filmsM B Okatan, A L Roytburd, V Nagarajan and S P Alpay Domain-wall pinning by local control of anisotropy in Pt/Co/Pt strips J H Franken, M Hoeijmakers, R Lavrijsen and H J M Swagten Experimental detection of domain wall propagation above the Walker field Kouta Kondou, Norikazu Ohshima, Daichi Chiba, Shinya Kasai, Kensuke Kobayashi and Teruo Ono Enhanced functionality in magnonics by domain walls and inhomogeneous spin configurationsG Duerr, R Huber and D Grundler Domain wall motion in perpendicular anisotropy nanowires with edge roughness Maximilian Albert, Matteo Franchin, Thomas Fischbacher, Guido Meier and Hans Fangohr Determination of the spin torque non-adiabaticity in perpendicularly magnetized nanowiresJ Heinen, D Hinzke, O Boulle, G Malinowski, H J M Swagten, B Koopmans, C Ulysse, G Faini, B Ocker, J Wrona and M Kläui Domain wall dynamics driven by spin transfer torque and the spin-orbit field Masamitsu Hayashi, Yoshinobu Nakatani, Shunsuke Fukami, Michihiko Yamanouchi, Seiji Mitani and Hideo Ohno Dynamic propagation and nucleation in domain wall nanowire devicesL O'Brien, D E Read, D Petit and R P Cowburn Influence of a transport current on a domain wall in an antiferromagnetic metalA C Swaving and R A Duine

  8. Genesis of Interplanetary Intermittent Turbulence: a Case Study of Rope-Rope Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.- L.; Feng, Heng Q.; Hu, Qiang; Loew, Murray H.; Miranda, Rodrigo A.; Munoz, Pablo R.; Sibeck, David G.; Wu, De J.

    2016-01-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  9. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Martino, Luca; Kane, Shashank N; Raghuvanshi, Saroj; Vinai, Franco; Tiberto, Paola

    2017-06-01

    Magnetic hysteresis loops areas and hyperthermia on magnetic nanoparticles have been studied with the aim of providing reliable and reproducible methods of measuring the specific absorption rate (SAR). The SAR of Fe 3 O 4 nanoparticles with two different mean sizes, and Ni 1-x Zn x Fe 2 O 4 ferrites with 0 ≤ x ≤ 0.8 has been measured with three approaches: static hysteresis loops areas, dynamic hysteresis loops areas and hyperthermia of a water solution. For dynamic loops and thermometric measurements, specific experimental setups have been developed, that operate at comparable frequencies (≈ 69kHz and ≈ 100kHz respectively) and rf magnetic field peak values (up to 100mT). The hyperthermia setup has been fully modelled to provide a direct measurement of the SAR of the magnetic nanoparticles by taking into account the heat exchange with the surrounding environment in non-adiabatic conditions and the parasitic heating of the water due to ionic currents. Dynamic hysteresis loops are shown to provide an accurate determination of the SAR except for superparamagnetic samples, where the boundary with a blocked regime could be crossed in dynamic conditions. Static hysteresis loops consistently underestimate the specific absorption rate but can be used to select the most promising samples. A means of reliably measure SAR of magnetic nanoparticles by different approaches for hyperthermia applications is presented and its validity discussed by comparing different methods. This work fits within the general subject of metrological traceability in medicine with a specific focus on magnetic hyperthermia. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Lattice dynamics, elasticity and magnetic abnormality in ordered crystalline alloys Fe3Pt at high pressures

    NASA Astrophysics Data System (ADS)

    Cheng, Tai-min; Yu, Guo-Liang; Su, Yong; Ge, Chong-Yuan; Zhang, Xin-Xin; Zhu, Lin; Li, Lin

    2018-05-01

    The ordered crystalline Invar alloy Fe3Pt is in a special magnetic critical state, under which the lattice dynamic stability of the system is extremely sensitive to external pressures. We studied the pressure dependence of enthalpy and magnetism of Fe3Pt in different crystalline alloys by using the first-principles projector augmented-wave method based on the density functional theory. Results show that the P4/mbm structure is the ground state structure and is more stable relative to other structures at pressures below 18.54 GPa. The total magnetic moments of L12, I4/mmm and DO22 structures decrease rapidly with pressure and oscillate near the ferromagnetic collapse critical pressure. At the pressure of 43 GPa, the ferrimagnetic property in DO22 structure becomes apparently strengthened and its volume increases rapidly. The lattice dynamics calculation for L12 structures at high pressures shows that the spontaneous magnetization of the system in ferromagnetic states induces the softening of the transverse acoustic phonon TA1 (M), and there exists a strong spontaneous volume magnetostriction at pressures below 26.95 GPa. Especially, the lattice dynamics stability is sensitive to pressure, in the pressure range between the ferromagnetic collapse critical pressure (41.9 GPa) and the magnetism completely disappearing pressure (57.25 GPa), and near the pressure of phase transition from L12 to P4/mbm structure (27.27 GPa). Moreover, the instability of magnetic structure leads to a prominent elastic modulus oscillation, and the spin polarizability of electrons near the Fermi level is very sensitive to pressures in that the pressure range. The pressure induces the stability of the phonon spectra of the system at pressures above 57.25 GPa.

  12. Experimental and Theoretical Explorations on the Buckling Piezoelectric Layer Under Magnetic Excitation

    NASA Astrophysics Data System (ADS)

    Çelik, Kayhan; Kurt, Erol; Uzun, Yunus

    2017-07-01

    In the present study, experimental and theoretical explorations on the buckling features of a wind energy harvester have been performed. The harvester consists of a piezoelectric layer, which has a certain stiffness and voltage conversion rate. A blade rotates on a shaft carrying a magnet and sweeps the tip of the layer causing a serial buckling effect resulting in energy generation. Since the modeling of the buckling under a magnetic strength includes nonlinear terms over displacements, one requires a detailed study on the characteristics of buckling phenomena. It has been proven that the piezoelectric beam having the magnet at its tip can produce regular and chaotic dynamics for different frequencies (i.e. the rotation speed). In addition, there exist a number of quasi-periodic regions on the parameter space. The overall result indicates that the large area of complicated dynamics requires a detailed study in order to stabilize the position and velocity of the layer tip, thereby a much stabilized energy conversion from mechanical to electrical can be obtained. The present survey on the dynamics of the harvester is a new study and is considered as a two-parameter diagram [i.e. the wind speed (frequency) and magnetic strength]. Mainly, single-, double-, triple- and quadruple-type phase space portraits have been observed and the ripples on the maximal and minimal values of the beam velocity have been observed for certain rotation speeds. These results can be used in order to stabilize the harvester in terms of the reduction of total harmonic distortion in the generated waveform.

  13. Quantum approach of mesoscopic magnet dynamics with spin transfer torque

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Sham, L. J.

    2013-05-01

    We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.

  14. Evaluation of asymmetric quadrupoles for a non-scaling fixed field alternating gradient accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hun; Park, Sae-Hoon; Kim, Yu-Seok

    2017-12-01

    A non-scaling fixed field alternating gradient (NS-FFAG) accelerator was constructed, which employs conventional quadrupoles. The possible demerit is the beam instability caused by the variable focusing strength when the orbit radius of the beam changes. To overcome this instability, it was suggested that the asymmetric quadrupole has different current flows in each coil. The magnetic field of the asymmetric quadrupole was found to be more similar to the magnetic field required for the FFAG accelerator than the constructed NS-FFAG accelerator. In this study, a simulation of the beam dynamics was carried out to evaluate the improvement to the beam stability for the NS-FFAG accelerator using the SIMION program. The beam dynamics simulation was conducted with the `hard edge' model; it ignored the fringe field at the end of the magnet. The magnetic field map of the suggested magnet was created using the SIMION program. The lattices for the simulation combined the suggested magnets. The magnets were evaluated for beam stability in the lattices through the SIMION program.

  15. Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samantaray, B., E-mail: iitg.biswanath@gmail.com; Ranganathan, R.; Mandal, P.

    Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angle variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Landé g-factor, PMA constant, and effective magnetization are foundmore » to be 2.1, 2 × 10{sup 5} erg/cm{sup 3} and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α) is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α is found to be 0.006 at 10 GHz and it increases monotonically with decreasing precessional frequency.« less

  16. CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution

    NASA Astrophysics Data System (ADS)

    Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo

    2012-02-01

    CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.

  17. Control Study for Five-axis Dynamic Spin Rig Using Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Provenza, Andrew; Morrison, Carlos; Montague, Gerald

    2003-01-01

    The NASA Glenn Research Center (GRC) has developed a magnetic bearing system for the Dynamic Spin Rig (DSR) with a fully suspended shaft that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the DSR to provide magnetic excitation as well as non-contact mag- netic suspension of a 15.88 kg (35 lb) vertical rotor with blades to induce turbomachinery blade vibration. For rotor levitation, a proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, more blade vibration amplitude, and energy savings for the system. The test results of a variety of controllers that were demonstrated up to 10.000 rpm are shown. Furthermore, rotor excitation operation and conceptual study of active blade vibration control are addressed.

  18. Fabrication and investigation on field-dependent properties of natural rubber based magneto-rheological elastomer isolator

    NASA Astrophysics Data System (ADS)

    Ain Abd Wahab, Nurul; Amri Mazlan, Saiful; Ubaidillah; Kamaruddin, Shamsul; Intan Nik Ismail, Nik; Choi, Seung-Bok; Haziq Rostam Sharif, Amirul

    2016-10-01

    This study presents a laminated magnetorheological elastomer (MRE) isolator which applies to vibration control in practice. The proposed isolator is fabricated with multilayer MRE sheets associated with the natural rubber (NR) as a matrix, and steel plates. The fabricated MRE isolator is then magnetically analysed to achieve high magnetic field intensity which can produce high damping force required for effective vibration control. Subsequently, the NR-based MRE specimen is tested to identify the field-dependent rheological properties such as storage modulus with 60 weight percentage of carbonyl iron particles. It is shown from this test that the MR effect of MRE specimen is quantified to reach up to 120% at 0.8 T. Following the design stage, the electromagnetic simulation using the finite element method magnetic (FEMM) software is carried out for analysing the magnetic flux distribution in the laminated MRE isolator. The laminated MRE isolator is then examined to a series of compression for static and dynamic test under various applied currents using the dynamic fatigue machine and biaxial dynamic testing machine. It is shown that the static compression force is increased by 14.5% under strong magnetic field compared to its off-state. Meanwhile, the dynamic compression test results show that the force increase of the laminated MRE isolator is up to 16% and 7% for low and high frequency respectively. From the results presented in this work, it is demonstrated that the full-scale concept of the MRE isolator can be one of the potential candidates for vibration control applications by tunability of the dynamic stiffness.

  19. Dynamics and Instabilities of the Shastry-Sutherland Model

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Batista, Cristian D.

    2018-06-01

    We study the excitation spectrum in the dimer phase of the Shastry-Sutherland model by using an unbiased variational method that works in the thermodynamic limit. The method outputs dynamical correlation functions in all possible channels. This output is exploited to identify the order parameters with the highest susceptibility (single or multitriplon condensation in a specific channel) upon approaching a quantum phase transition in the magnetic field versus the J'/J phase diagram. We find four different instabilities: antiferro spin nematic, plaquette spin nematic, stripe magnetic order, and plaquette order, two of which have been reported in previous studies.

  20. Magnetic field dependent dynamics and field-driven metal-to-insulator transition of the half-filled Hubbard model: A DMFT+DMRG study

    DOE PAGES

    Zhu, Wei; Sheng, D. N.; Zhu, Jian -Xin

    2017-08-14

    Here, we study the magnetic field-driven metal-to-insulator transition in half-filled Hubbard model on the Bethe lattice, using the dynamical mean-field theory by solving the quantum impurity problem with density-matrix renormalization group algorithm. The method enables us to obtain a high-resolution spectral densities in the presence of a magnetic field. It is found that the Kondo resonance at the Fermi level splits at relatively high magnetic field: the spin-up and -down components move away from the Fermi level and finally form a spin-polarized band insulator. By calculating the magnetization and spin susceptibility, we clarify that an applied magnetic field drives amore » transition from a paramagnetic metallic phase to a band insulating phase. In the weak interaction regime, the nature of the transition is continuous and captured by the Stoner's description, while in the strong interaction regime the transition is very likely to be metamagnetic, evidenced by the hysteresis curve. Furthermore, we determine the phase boundary by tracking the kink in the magnetic susceptibility, and the steplike change of the entanglement entropy and the entanglement gap closing. Interestingly, the phase boundaries determined from these two different ways are largely consistent with each other.« less

  1. Magnetic field dependent dynamics and field-driven metal-to-insulator transition of the half-filled Hubbard model: A DMFT+DMRG study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Wei; Sheng, D. N.; Zhu, Jian -Xin

    Here, we study the magnetic field-driven metal-to-insulator transition in half-filled Hubbard model on the Bethe lattice, using the dynamical mean-field theory by solving the quantum impurity problem with density-matrix renormalization group algorithm. The method enables us to obtain a high-resolution spectral densities in the presence of a magnetic field. It is found that the Kondo resonance at the Fermi level splits at relatively high magnetic field: the spin-up and -down components move away from the Fermi level and finally form a spin-polarized band insulator. By calculating the magnetization and spin susceptibility, we clarify that an applied magnetic field drives amore » transition from a paramagnetic metallic phase to a band insulating phase. In the weak interaction regime, the nature of the transition is continuous and captured by the Stoner's description, while in the strong interaction regime the transition is very likely to be metamagnetic, evidenced by the hysteresis curve. Furthermore, we determine the phase boundary by tracking the kink in the magnetic susceptibility, and the steplike change of the entanglement entropy and the entanglement gap closing. Interestingly, the phase boundaries determined from these two different ways are largely consistent with each other.« less

  2. Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal

    PubMed Central

    Frietsch, B.; Bowlan, J.; Carley, R.; Teichmann, M.; Wienholdt, S.; Hinzke, D.; Nowak, U.; Carva, K.; Oppeneer, P. M.; Weinelt, M.

    2015-01-01

    The Heisenberg–Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale. PMID:26355196

  3. Convective overshoot at the solar tachocline

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.

    2017-08-01

    At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.

  4. Chiral symmetry breaking in a semilocalized magnetic field

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing

    2018-03-01

    In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic field configuration within the Nambu-Jona-Lasinio model. The special semilocalized static magnetic field can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally extended to the case with finite temperature or chemical potential.

  5. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    PubMed

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  6. Toward laboratory torsional spine magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.

    2017-12-01

    Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.

  7. Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Knaepen, B.; Moin, P.

    2003-01-01

    In this paper we study the LES method with dynamic procedure in the context of conductive flows subject to an applied external magnetic field at low magnetic Reynolds number R(sub m). These kind of flows are encountered in many industrial applications. For example, in the steel industry, applied magnetic fields can be used to damp turbulence in the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as coolant blankets and interact with the surrounding magnetic field that drives and confines the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the magnetic Reynolds number is low. Our attention is focused here on the case of homogeneous (initially isotropic) decaying turbulence. The numerical simulations performed mimic the thought experiment described in Moffatt in which an initially homogeneous isotropic conductive flow is suddenly subjected to an applied magnetic field and freely decays without any forcing. Note that this flow was first studied numerically by Schumann. It is well known that in that case, extra damping of turbulence occurs due to the Joule effect and that the flow tends to become progressively independent of the coordinate along the direction of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) predictions and LES predictions show that the dynamic Smagorinsky model enables one to capture successfully the flow with LES, and that it automatically incorporates the effect of the magnetic field on the turbulence. Our paper is organized as follows. In the next section we summarize the LES approach in the case of MHD turbulence at low R(sub m) and recall the definition of the dynamic Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments performed and the code used. Section 4 is devoted to the comparison of filtered DNS results and LES results. Conclusions are presented in Sec. 5.

  8. Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results

    NASA Technical Reports Server (NTRS)

    Lee, Nam C.; Parks, George K.

    1992-01-01

    A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.

  9. Magnetic separation of Dy(III) ions from homogeneous aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulko, B., E-mail: Barbara.Pulko@tu-dresden.de; Yang, X.; Lei, Z.

    2014-12-08

    The possibility to enrich paramagnetic dysprosium(III) ions in a magnetic field gradient is proved by means of interferometry, which may open the route for a magnetic separation of rare earth ions from aqueous solutions. The separation dynamics are studied for three different concentrations of DyCl{sub 3} and compared with those found recently in a sulphate solution of the 3d ion Mn(II). In view of the similar-sized hydration spheres for Dy(III) and Mn(II), the slower separation dynamics in DyCl{sub 3} is attributed to both a higher densification coefficient and the strong impact of Brownian motion due to the absence of ion-pairmore » clusters.« less

  10. Characterization of magnetic nanoparticle by dynamic light scattering

    PubMed Central

    2013-01-01

    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350

  11. Slow dynamics approaching the glass transition in repulsive magnetic fluids

    NASA Astrophysics Data System (ADS)

    Mériguet, G.; Dubois, E.; Dupuis, V.; Perzynski, R.

    2004-04-01

    We study the dynamics of concentrated ionic magnetic colloidal dispersions, which are constituted of γ - Fe2O3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion, using magneto-optical birefringence measurements. By gradually increasing the volume fraction Φ of the particles at constant ionic strength in the repulsive region of the phase diagram, we observe a dramatic increase of the characteristic time associated with the rotation of the particles that we induce by applying a field pulse. This increase is reminiscent of the divergence of the relaxation time observed at the approach of a glass transition and confirms the existence of a glassy phase in these magnetic colloids.

  12. Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd2Os2O7.

    PubMed

    Nguyen, Thi Minh Hien; Sandilands, Luke J; Sohn, C H; Kim, C H; Wysocki, Aleksander L; Yang, In-Sang; Moon, S J; Ko, Jae-Hyeon; Yamaura, J; Hiroi, Z; Noh, Tae Won

    2017-08-15

    5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2 Os 2 O 7 . Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii-Moriya and exchange interactions play a significant role in the spin-wave dispersions. The Raman data also reveal complex spin-charge-lattice coupling and indicate that the metal-insulator transition in Cd 2 Os 2 O 7 is Lifshitz-type. Our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.Pyrochlore 5d transition metal oxides are expected to have interesting forms of magnetic order but are hard to study with conventional probes. Here the authors show that Raman scattering can be used to measure magnetic excitations in Cd 2 Os 2 O 7 and that it exhibits complex spin-charge-lattice coupling.

  13. Heating and Large Scale Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Schnack, Dalton D.

    2000-01-01

    The effort was concentrated in the areas: coronal heating mechanism, unstructured adaptive grid algorithms, numerical modeling of magnetic reconnection in the MRX experiment: effect of toroidal magnetic field and finite pressure, effect of OHMIC heating and vertical magnetic field, effect of dynamic MESH adaption.

  14. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-01

    The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1-10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  15. Observations and modeling of magnetized plasma jets and bubbles launched into a transverse B-field

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin M.; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward B., IV; van der Holst, Bart; Rogers, Barrett N.; Hsu, Scott C.

    2017-10-01

    Hot, dense, plasma structures launched from a coaxial plasma gun on the HelCat dual-source plasma device at the University of New Mexico drag frozen-in magnetic flux into the chamber's background magnetic field providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, shocks, as well as CME-like dynamics possibly relevant to the solar corona. Vector magnetic field data from an eleven-tipped B-dot rake probe and images from an ultra-fast camera will be presented in comparison with ongoing MHD modeling using the 3-D MHD BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid (AMR) that enables the capture and resolution of shock structures and current sheets and is uniquely suited for flux-rope expansion modeling. Recent experiments show a possible magnetic Rayleigh-Taylor (MRT) instability that appears asymmetrically at the interface between launched spheromaks (bubbles) and their entraining background magnetic field. Efforts to understand this instability using in situ measurements, new chamber boundary conditions, and ultra-fast camera data will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  16. Light induced kickoff of magnetic domain walls in Ising chains

    NASA Astrophysics Data System (ADS)

    Bogani, Lapo

    2012-02-01

    Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. Contrary to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiation power is very low, a substantial improvement over present methods of magnetooptical switching: in our experimental demonstration we switched molecular nanowires with light, using powers thousands of times lower than in previous optical switching methods. This manipulation of stochastic dynamic processes is extremely clean, leading to fingerprint signatures and scaling laws. These observations can be used, in material science, to better study domain-wall displacements and solitons in discrete lattices. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to a myriad of fields, ranging from social evolution to neural networks and chemical reactivity. For nanoelectronics and molecular spintronics the kickoff affords external control of molecular spin-valves and a magnetic fingerprint in single molecule measurements. It can also be applied to the dynamics of mechanical switches and the related study of phasons and order-disorder transitions.

  17. Study of magnetization switching in coupled magnetic nanostructured systems

    NASA Astrophysics Data System (ADS)

    Radu, Cosmin

    A study of magnetization dynamics experiments in nanostructured materials using the rf susceptibility tunnel diode oscillator (TDO) method is presented along with a extensive theoretical analysis. An original, computer controlled experimental setup that measures the change in susceptibility with the variation in external magnetic field and sample temperature was constructed. The TDO-based experiment design and construction is explained in detail, showing all the elements of originality. This experimental technique has proven reliable for characterizing samples with uncoupled magnetic structure and various magnetic anisotropies like: CrO2, FeCo/IrMn and Co/SiO2 thin films. The TDO was subsequently used to explore the magnetization switching in coupled magnetic systems, like synthetic antiferromagnet (SAF) structures. Magnetoresistive random access memory (MRAM) is an important example of devices where the use of SAF structure is essential. To support the understanding of the SAF magnetic behavior, its configuration and application are reviewed and more details are provided in an appendix. Current problems in increasing the scalability and decreasing the error rate of MRAM devices are closely connected to the switching properties of the SAF structures. Several theoretical studies that were devoted to the understanding of the concepts of SAF critical curve are reviewed. As one can notice, there was no experimental determination of SAF critical curve, due to the difficulties in characterizing a magnetic coupled structure. Depending of the coupling strength between the two ferromagnetic layers, on the SAF critical curve one distinguishes several new features, inexistent in the case of uncoupled systems. Knowing the configuration of the SAF critical curve is of great importance in order to control its switching characteristics. For the first time a method of experimentally recording the critical curve for SAF is proposed in this work. In order to overcome technological limitations, a new way of recording the critical curve by using an additional magnetic bias field was explored. Keywords: magnetization dynamics, magnetic susceptibility, tunnel diode oscillator, critical curve, synthetic antiferromagnet, coupled magnetic structures, MRAM.

  18. 3D Realistic Modeling of the Interaction of Quiet-Sun Magnetic Fields with the Chromosphere

    NASA Technical Reports Server (NTRS)

    Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2017-01-01

    High-resolution observations and 3D simulations suggest that a local dynamo operates near the surface and produces ubiquitous small-scale magnetic elements, thus contributing to the magnetic carpet in the photosphere and to the magnetic structure and dynamics of the solar atmosphere. It appears that the traditional mechanisms of chromospheric energy and mass transport by acoustic waves and shocks are likely to play a secondary role; instead, the primary drivers in the energetics and dynamics of the chromosphere and transition region are small-scale, previously unresolved, quiet-Sun magnetic fields. These fields appear as ubiquitous, rapidly changing (on the scale of a few seconds), tiny magnetic loops and magnetized vortex tubes. Questions then arise about their origin and dynamics in the chromosphere, their links to magnetic fields in the photosphere, and their role in the energy storage and exchange between subsurface layers and the chromosphere. In the talk we will present results of 3D radiative MHD simulations obtained with the StellarBox code and discuss the energetics and dynamical interlinks between the subphotospheric layers and low chromosphere, their effects on the structure of the chromosphere, and signatures of the fine-scale magnetic features in high-resolution spectro-polarimetric observations.

  19. Impact of magnetic suspension stiffness on aeroelastic compressor rotor vibrations of gas pumping units

    NASA Astrophysics Data System (ADS)

    Mekhonoshina, E. V.; Modorskii, V. Ya.

    2016-10-01

    This paper describes simulation of oscillation modes in the elastic rotor supports with the gas-dynamic flow influence on the rotor in the magnetic suspension in the course of computational experiments. The system of engineering analysis ANSYS 15.0 was used as a numerical tool. The finite volume method for gas dynamics and finite element method for evaluating components of the stress-strain state (SSS) were applied for computation. The research varied magnetic suspension rigidity and estimated the SSS components in the system "gas-dynamic flow - compressor rotor - magnetic suspensions." The influence of aeroelastic effects on the impeller and the rotor on the deformability of vibration magnetic suspension was detected.

  20. Methods for characterizing magnetic footprints of perpendicular magnetic recording writer heads

    PubMed Central

    Li, Shaoping; Lin, Ed; George, Zach; Terrill, Dave; Mendez, H.; Santucci, J.; Yie, Derek

    2014-01-01

    In this work, the magnetic footprints, along with some of its dynamic features in recording process, of perpendicular magnetic recording writer heads have been characterized by using three different techniques. Those techniques are the spin-stand stationary footprint technique, the spin-stand dynamic footprint technique, and the coherent writing technique combined with magnetic force microscope imaging method. The characteristics of those techniques have been compared to one another. It was found experimentally that the spin-stand stationary method could not precisely catch some peculiar recording dynamics of the write heads in certain conditions. The advantages and disadvantages among all those techniques are also examined and discussed in detail. PMID:24753633

  1. Dynamics of a magnetic skyrmionium driven by spin waves

    NASA Astrophysics Data System (ADS)

    Li, Sai; Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Kang, Wang; Liu, Xiaoxi; Zhou, Yan; Zhao, Weisheng

    2018-04-01

    A magnetic skyrmionium is a skyrmion-like structure, but carries a zero net skyrmion number which can be used as a building block for non-volatile information processing devices. Here, we study the dynamics of a magnetic skyrmionium driven by propagating spin waves. It is found that the skyrmionium can be effectively driven into motion by spin waves showing a tiny skyrmion Hall effect, whose mobility is much better than that of the skyrmion at the same condition. We also show that the skyrmionium mobility depends on the nanotrack width and the damping coefficient and can be controlled by an external out-of-plane magnetic field. In addition, we demonstrate that the skyrmionium motion driven by spin waves is inertial. Our results indicate that the skyrmionium is a promising building block for building spin-wave spintronic devices.

  2. Front dynamics and entanglement in the XXZ chain with a gradient

    NASA Astrophysics Data System (ADS)

    Eisler, Viktor; Bauernfeind, Daniel

    2017-11-01

    We consider the XXZ spin chain with a magnetic field gradient and study the profiles of the magnetization as well as the entanglement entropy. For a slowly varying field, it is shown that, by means of a local density approximation, the ground-state magnetization profile can be obtained with standard Bethe ansatz techniques. Furthermore, it is argued that the low-energy description of the theory is given by a Luttinger liquid with slowly varying parameters. This allows us to obtain a very good approximation of the entanglement profile using a recently introduced technique of conformal field theory in curved spacetime. Finally, the front dynamics is also studied after the gradient field has been switched off, following arguments of generalized hydrodynamics for integrable systems. While for the XX chain the hydrodynamic solution can be found analytically, the XXZ case appears to be more complicated and the magnetization profiles are recovered only around the edge of the front via an approximate numerical solution.

  3. Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of FeCoSi

    NASA Astrophysics Data System (ADS)

    Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.

    2017-04-01

    We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.

  4. Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelc, D.; Grafe, H. -J.; Gu, G. D.

    In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less

  5. Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4

    DOE PAGES

    Pelc, D.; Grafe, H. -J.; Gu, G. D.; ...

    2017-02-15

    In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less

  6. Acoustic parametric pumping of spin waves

    NASA Astrophysics Data System (ADS)

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2014-11-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  7. Particles size distribution in diluted magnetic fluids

    NASA Astrophysics Data System (ADS)

    Yerin, Constantine V.

    2017-06-01

    Changes in particles and aggregates size distribution in diluted kerosene based magnetic fluids is studied by dynamic light scattering method. It has been found that immediately after dilution in magnetic fluids the system of aggregates with sizes ranging from 100 to 250-1000 nm is formed. In 50-100 h after dilution large aggregates are peptized and in the sample stationary particles and aggregates size distribution is fixed.

  8. Aging, memory, and nonhierarchical energy landscape of spin jam

    NASA Astrophysics Data System (ADS)

    Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-10-01

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes.

  9. A Dynamic Model of Mercury's Magnetospheric Magnetic Field

    PubMed Central

    Johnson, Catherine L.; Philpott, Lydia; Tsyganenko, Nikolai A.; Anderson, Brian J.

    2017-01-01

    Abstract Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's heliocentric distance and magnetic activity. The new, dynamic model reproduces the location of the magnetopause current system as a function of systematic pressure variations encountered during Mercury's eccentric orbit, as well as the increase in the cross‐tail current intensity with increasing magnetic activity. Despite the enhancements in the external field parameterization, the residuals between the observed and modeled magnetic field inside the magnetosphere indicate that the dynamic model achieves only a modest overall improvement over the previous static model. The spatial distribution of the residuals in the magnetic field components shows substantial improvement of the model accuracy near the dayside magnetopause. Elsewhere, the large‐scale distribution of the residuals is similar to those of the static model. This result implies either that magnetic activity varies much faster than can be determined from the spacecraft's passage through the magnetosphere or that the residual fields are due to additional external current systems not represented in the model or both. Birkeland currents flowing along magnetic field lines between the magnetosphere and planetary high‐latitude regions have been identified as one such contribution. PMID:29263560

  10. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    NASA Astrophysics Data System (ADS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  11. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this usingmore » inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.« less

  12. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    NASA Astrophysics Data System (ADS)

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-12-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10-12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  13. Manipulating the magnetic anisotropy and magnetization dynamics by stress: Numerical calculation and experiment

    NASA Astrophysics Data System (ADS)

    Correa, M. A.; Bohn, F.

    2018-05-01

    We perform a theoretical and experimental investigation of the magnetic properties and magnetization dynamics of a ferromagnetic magnetostrictive multilayer grown onto a flexible substrate and submitted to external stress. We calculate the magnetic behavior and magnetoimpedance effect for a trilayered system from an approach that considers a magnetic permeability model for planar geometry and a magnetic free energy density which takes into account induced uniaxial and magnetoelastic anisotropy contributions. We verify remarkable modifications of the magnetic anisotropy with external stress, as well as we show that the dynamic magnetic response is strongly affected by these changes. We discuss the magnetic features that lead to modifications of the frequency limits where distinct mechanisms are responsible by the magnetoimpedance variations, enabling us to manipulate the resonance fields. To test the robustness of the approach, we directly compare theoretical results with experimental data. Thus, we provide experimental evidence to confirm the validity of the theoretical approach, as well as to manipulate the resonance fields to tune the MI response according to real applications in devices.

  14. RELATIONSHIPS BETWEEN FLUID VORTICITY, KINETIC HELICITY, AND MAGNETIC FIELD ON SMALL-SCALES (QUIET-NETWORK) ON THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar tomore » that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.« less

  15. Magnetization dynamics driven by spin-polarized current in nanomagnets

    NASA Astrophysics Data System (ADS)

    Carpentieri, M.; Torres, L.; Azzerboni, B.; Finocchio, G.; Consolo, G.; Lopez-Diaz, L.

    2007-09-01

    In this report, micromagnetic simulations of magnetization dynamics driven by spin-polarized currents (SPCs) on magnetic nanopillars of permalloy/Cu/permalloy with different rectangular cross-sections are presented. Complete dynamical stability diagrams from initial parallel and antiparallel states have been computed for 100 ns. The effects of a space-dependent polarization function together with the presence of magnetostatic coupling from the fixed layer and classical Ampere field have been taken into account.

  16. Spin-orbit-torque driven magnetoimpedance in Pt-layer/magnetic-ribbon heterostructures

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Mohseni, S. Morteza; Jamilpanah, L.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. Majid

    2017-11-01

    When a flow of electrons passes through a paramagnetic layer with strong spin-orbit-coupling such as platinum (Pt), a net spin current is produced via the spin Hall effect (SHE). This spin current can exert a torque on the magnetization of an adjacent ferromagnetic layer which can be probed via magnetization dynamic responses, e.g., spin-torque ferromagnetic resonance. Nevertheless, that effect in the lower frequency magnetization dynamic regime where the skin effect occurs in high permeability ferromagnetic conductors, namely, the magneto-impedance (MI) effect, can be fundamentally important, and has not been studied so far. Here, by utilizing the MI effect in the magnetic-ribbon/Pt heterostructure with high transvers magnetic permeability that allows the ac current effectively confined at the skin depth of ˜100 nm thickness, the effect of spin-orbit-torque (SOT) induced by the SHE probed via the MI measurement is investigated. We observed a systematic MI frequency shift that increases by increasing the applied current amplitude and thickness of the Pt layer (varying from 0 nm to 20 nm). In addition, the role of the Pt layer in the ribbon/Pt heterostructure is evaluated with the ferromagnetic resonance effect representing a standard Gilbert damping increase as a result of the presence of the SHE. Our results unveil the role of SOT in dynamic control of the transverse magnetic permeability probed by impedance spectroscopy as a useful and valuable technique for detection of future SHE devices.

  17. Excitation of propagating spin waves by pure spin current

    NASA Astrophysics Data System (ADS)

    Demokritov, Sergej

    Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.

  18. A new apparatus for studies of quantized vortex dynamics in dilute-gas Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Newman, Zachary L.

    The presence of quantized vortices and a high level of control over trap geometries and other system parameters make dilute-gas Bose-Einstein condensates (BECs) a natural environment for studies of vortex dynamics and quantum turbulence in superfluids, primary interests of the BEC group at the University of Arizona. Such research may lead to deeper understanding of the nature of quantum fluid dynamics and far-from-equilbrium phenomena. Despite the importance of quantized vortex dynamics in the fields of superfluidity, superconductivity and quantum turbulence, direct imaging of vortices in trapped BECs remains a significant technical challenge. This is primarily due to the small size of the vortex core in a trapped gas, which is typically a few hundred nanometers in diameter. In this dissertation I present the design and construction of a new 87Rb BEC apparatus with the goal of studying vortex dynamics in trapped BECs. The heart of the apparatus is a compact vacuum chamber with a custom, all-glass science cell designed to accommodate the use of commercial high-numerical-aperture microscope objectives for in situ imaging of vortices. The designs for the new system are, in part, based on prior work in our group on in situ imaging of vortices. Here I review aspects of our prior work and discuss some of the successes and limitations that are relevant to the new apparatus. The bulk of the thesis is used to described the major subsystems of the new apparatus which include the vacuum chamber, the laser systems, the magnetic transfer system and the final magnetic trap for the atoms. Finally, I demonstrate the creation of a BEC of ˜ 2 x 106 87Rb atoms in our new system and show that the BEC can be transferred into a weak, spherical, magnetic trap with a well defined magnetic field axis that may be useful for future vortex imaging studies.

  19. Resonance of magnetization excited by voltage in magnetoelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian

    2018-04-01

    Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.

  20. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization.

    PubMed

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-04

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  1. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

    NASA Astrophysics Data System (ADS)

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-01

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  2. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan will be summarized on the development of a Flux Emergence Prediction Tool (FEPT) in which helioseismology-derived data and vector magnetic maps are assimilated into CMES that couples the dynamics of magnetic flux from the deep interior to the corona.

  3. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chian, Abraham C.-L.; Loew, Murray H.; Feng, Heng Q.

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event.more » The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.« less

  4. Mixing Dynamics Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Mazuruk, Konstantin

    2000-01-01

    Microstructural and compositional homogeneity in metals and alloys can only be achieved if the initial melt is homogeneous prior to the onset of solidification processing. Naturally induced convection may initially facilitate this requirement but upon the onset of solidification significant compositional variations generally arise leading to undesired segregation. Application of alternating magnetic fields to promote a uniform bulk liquid concentration during solidification processing has been suggested. To investigate such possibilities an initial study of using traveling magnetic fields (TMF) to promote melt homogenization is reported in this work. Theoretically, the effect of TMF-induced convection on mixing phenomena is studied in the laminar regime of flow. Experimentally, with and without applied fields, both: mixing dynamics by optically monitoring the spreading of an initially localized dye in transparent fluids and, compositional variations in metal alloys have been investigated.

  5. Mixing Dynamics Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Mazuruk, Konstantin; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Microstructural and compositional homogeneity in metals and alloys can only be achieved if the initial melt is homogeneous prior to the onset of solidification processing. Naturally induced convection may initially facilitate this requirement but upon the onset of solidification significant compositional variations generally arise leading to undesired segregation. Application of alternating magnetic fields to promote a uniform bulk liquid concentration during solidification processing has been suggested. To investigate such possibilities an initial study of using traveling magnetic fields (TMF) to promote melt homogenization is reported in this work. Theoretically, the effect of TMF-induced convection on mixing phenomena is studied in the laminar regime of flow. Experimentally, with and without applied fields, both 1) mixing dynamics by optically monitoring the spreading of an initially localized dye in transparent fluids and, 2) compositional variations in metal alloys have been investigated.

  6. Probing ultrafast spin dynamics with high-harmonic magnetic circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Willems, F.; Smeenk, C. T. L.; Zhavoronkov, N.; Kornilov, O.; Radu, I.; Schmidbauer, M.; Hanke, M.; von Korff Schmising, C.; Vrakking, M. J. J.; Eisebitt, S.

    2015-12-01

    Magnetic circular dichroism in the extreme ultraviolet (XUV) spectral range is a powerful technique for element-specific probing of magnetization in multicomponent magnetic alloys and multilayers. We combine a high-harmonic generation source with a λ /4 phase shifter to obtain circularly polarized XUV femtosecond pulses for ultrafast magnetization studies. We report on simultaneously measured resonant magnetic circular dichroism (MCD) of Co and Ni at their respective M2 ,3 edges and of Pt at its O edge, originating from interface magnetism. We present a time-resolved MCD absorption measurement of a thin magnetic Pt/Co/Pt film, showing simultaneous demagnetization of Co and Pt on a femtosecond time scale.

  7. Current-Driven Dynamics of Skyrmions Stabilized in MnSi Nanowires Revealed by Topological Hall Effect

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Degrave, John; Stolt, Matthew; Tokura, Yoshinori; Jin, Song

    2015-03-01

    Skyrmions, novel topologically stable spin vortices, hold promise for next-generation high-density magnetic storage technologies due to their nanoscale domains and ultralow energy consumption. One-dimensional (1D) nanowires are ideal hosts for skyrmions since they not only serve as a natural platform for magnetic racetrack memory devices but also can potentially stabilize skyrmions. We use the topological Hall effect (THE) to study the phase stability and current-driven dynamics of the skyrmions in MnSi nanowires. The THE was observed in an extended magnetic field-temperature window (15 to 30 K), suggesting stabilization of skyrmion phase in nanowires compared with the bulk (27 to 29.5 K). Furthermore, we study skyrmion dynamics in this extended skyrmion phase region and found that under the high current-density of 108-109Am-2 enabled by nanowire geometry, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field. These results open up the exploration of nanowires as an attractive platform for investigating skyrmion physics in 1D systems and exploiting skyrmions in magnetic storage concepts. This work is supported by US National Science Foundation (ECCS-1231916) and JSPS Grant-in-Aid for Scientific Research No. 24224009.

  8. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn 2O 4

    DOE PAGES

    Disseler, S. M.; Chen, Y.; Yeo, S.; ...

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn 2O 4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions aroundmore » Mn 3+ ions on the spinel lattice.« less

  9. Investigation of magnetization dynamics in 2D Ni80Fe20 diatomic nanodot arrays

    NASA Astrophysics Data System (ADS)

    De, Anulekha; Mondal, Sucheta; Banerjee, Chandrima; Chaurasiya, Avinash K.; Mandal, Ruma; Otani, Yoshichika; Mitra, Rajib K.; Barman, Anjan

    2017-09-01

    Magnetization dynamics in Ni80Fe20 (Py) diatomic nanodots (nanodots of the same thickness but with large and small diameters that are closely placed to each other so as to act as a diatomic basis structure) embedded in 2D arrays have been investigated by the Brillouin light scattering technique. A distinct variation of resonant mode characteristics for different in-plane bias magnetic field applied along two different orientations of the lattice has been observed. Micromagnetic simulations reproduced the observed dynamical behaviour and revealed the variation of spatial distribution of collective modes of constituent single nanodots with different diameter and a diatomic unit forming the large array to understand the evolution of the magnetization dynamics from a single dot to the large array via a diatomic unit. The changes in mode frequency, spatial profiles of the modes, and appearance of new modes in a diatomic unit and its array from that of the constituent single dots indicate the strong magnetostatic interaction among the dots within the diatomic unit. Also, the occurrence of the new interacting mode at different frequencies for different orientations of the bias field indicates the change in the nature of interaction among the dots within the diatomic unit with bias magnetic field. The mode profiles also show distinct behaviour for smooth and rough-edged dots. This work motivates the study of magnonic band structure formation of such a dipolarly coupled nanodot array containing a complex double-dot unit cell.

  10. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    PubMed

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  11. Intralayer doping effects on the high-energy magnetic correlations in NaFeAs

    DOE PAGES

    Pelliciari, Jonathan; Huang, Yaobo; Das, Tanmoy; ...

    2016-04-26

    We used resonant inelastic x-ray scattering (RIXS) and dynamical susceptibility calculations to study the magnetic excitations in NaFe 1$-$xCo xAs ( x=0 , 0.03, and 0.08). Despite a relatively low ordered magnetic moment, collective magnetic modes are observed in parent compounds (x=0) and persist in optimally (x= 0.03) and overdoped (x = 0.08) samples. Their magnetic bandwidths are unaffected by doping within the range investigated. High-energy magnetic excitations in iron pnictides are robust against doping and present irrespectively of the ordered magnetic moment. Nonetheless, Co doping slightly reduces the overall magnetic spectral weight, differently from previous studies on hole-doped BaFemore » 2As 2 , where it was observed constant. Finally, we demonstrate that the doping evolution of magnetic modes is different for the dopants being inside or outside the Fe-As layer.« less

  12. An experimental analysis of strontium titanate ceramic substrates polished by magnetorheological finishing with dynamic magnetic fields formed by rotating magnetic poles

    NASA Astrophysics Data System (ADS)

    Pan, Jisheng; Yu, Peng; Yan, Qiusheng; Li, Weihua

    2017-05-01

    Strontium titanate (SrTiO3, STO) ceramic substrate is an incipient ferroelectric material with a perovskite structure and which has a wide range of applications in the fields of microwave, millimetre wave, and optic fibre. This paper reports on a system of experiments carried out on STO substrates using a new magnetorheological (MR) finishing process where dynamic magnetic fields are formed by magnetic poles rotate. The results show that a circular ring shaped polishing belt with a stability evaluation zone appears on the surface after being polished by MR finishing with a single-point dynamic magnetic field. The dynamic magnetic fields are stronger when the revolutions of magnetic pole increase and eccentricity of pole enlarge, with the surface finish is smoother and more material is removed. The optimum machining times, machining gap, oscillation distance, eccentricity of pole, revolutions of the workpiece and magnetic pole are 60 min, 0.8 mm, 0 mm, 7 mm, and 350 r min-1 and 90 r min-1, respectively, and the best MR fluid consists of 6 wt% of diamond abrasives in W1 particle size and 18 wt% of carbonyl iron powder in W3.5 particle size. A surface roughness of Ra and a material removal rate of 8 nm and 0.154 μm min-1 can be obtained in these optimum process conditions. Finally, the polishing mechanism for dynamic magnetic fields and the mechanism for removing material from STO ceramic substrates are discussed in detail.

  13. Magnetism: Principles and Applications

    NASA Astrophysics Data System (ADS)

    Craik, Derek J.

    2003-09-01

    If you are studying physics, chemistry, materials science, electrical engineering, information technology or medicine, then you'll know that understanding magnetism is fundamental to success in your studies and here is the key to unlocking the mysteries of magnetism....... You can: obtain a simple overview of magnetism, including the roles of B and H, resonances and special techniques take full advantage of modern magnets with a wealth of expressions for fields and forces develop realistic general design programmes using isoparametric finite elements study the subtleties of the general theory of magnetic moments and their dynamics follow the development of outstanding materials appreciate how magnetism encompasses topics as diverse as rock magnetism, chemical reaction rates, biological compasses, medical therapies, superconductivity and levitation understand the basis and remarkable achievements of magnetic resonance imaging In his new book, Magnetism, Derek Craik throws light on the principles and applications of this fascinating subject. From formulae for calculating fields to quantum theory, the secrets of magnetism are exposed, ensuring that whether you are a chemist or engineer, physicist, medic or materials scientist Magnetism is the book for our course.

  14. Magnetic field errors tolerances of Nuclotron booster

    NASA Astrophysics Data System (ADS)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  15. Magnetoelectric antiferromagnets as platforms for the manipulation of solitons

    NASA Astrophysics Data System (ADS)

    Zarzuela, Ricardo; Kim, Se Kwon; Tserkovnyak, Yaroslav

    2018-01-01

    We study the magnetic dynamics of magnetoelectric antiferromagnetic thin films, where an unconventional boundary ferromagnetism coexists with the bulk Néel phase below the Néel temperature. The spin exchange between the two order parameters yields an effective low-energy theory that is formally equivalent to that of a ferrimagnet. Dynamics of domain walls and skyrmions are analyzed within the collective-variable approach, from which we conclude that they behave as massive particles moving in a viscous medium subjected to a gyrotropic force. We find that the film thickness can be used as a control parameter for the motion of these solitons. In this regard, it is shown that an external magnetic field can drive the dynamics of domain walls, whose terminal velocity is tunable with the sample thickness. Furthermore, the classification of the skyrmion dynamics is sensitive to the spatial modulation of the sample thickness, which can be easily engineered with the present (thin-film) deposition techniques. Current-driven spin transfer can trigger drifting orbits of skyrmions, which can be utilized as racetracks for these magnetic textures.

  16. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ˜ 2°, than those from the three empirical models with averaged errors > ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  17. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE PAGES

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-21

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  18. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Thi Minh Hien; Sandilands, Luke J.; Sohn, C. H.

    5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2Os 2O 7. Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii–Moriya and exchange interactions play a significant role in the spin-wavemore » dispersions. The Raman data also reveal complex spin–charge–lattice coupling and indicate that the metal–insulator transition in Cd 2Os 2O 7 is Lifshitz-type. In conclusion, our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.« less

  20. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics.

    PubMed

    Pourmehran, Oveis; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-10-01

    Magnetic drug targeting (MDT) is a local drug delivery system which aims to concentrate a pharmacological agent at its site of action in order to minimize undesired side effects due to systemic distribution in the organism. Using magnetic drug particles under the influence of an external magnetic field, the drug particles are navigated toward the target region. Herein, computational fluid dynamics was used to simulate the air flow and magnetic particle deposition in a realistic human airway geometry obtained by CT scan images. Using discrete phase modeling and one-way coupling of particle-fluid phases, a Lagrangian approach for particle tracking in the presence of an external non-uniform magnetic field was applied. Polystyrene (PMS40) particles were utilized as the magnetic drug carrier. A parametric study was conducted, and the influence of particle diameter, magnetic source position, magnetic field strength and inhalation condition on the particle transport pattern and deposition efficiency (DE) was reported. Overall, the results show considerable promise of MDT in deposition enhancement at the target region (i.e., left lung). However, the positive effect of increasing particle size on DE enhancement was evident at smaller magnetic field strengths (Mn [Formula: see text] 1.5 T), whereas, at higher applied magnetic field strengths, increasing particle size has a inverse effect on DE. This implies that for efficient MTD in the human respiratory system, an optimal combination of magnetic drug career characteristics and magnetic field strength has to be achieved.

  1. Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field

    NASA Technical Reports Server (NTRS)

    Chen, J.; Palmadesso, P. J.

    1986-01-01

    The properties of charged-particle motion in Hamiltonian dynamics are studied in a magnetotaillike magnetic field configuration. It is shown by numerical integration of the equation of motion that the system is generally nonintegrable and that the particle motion can be classified into three distinct types of orbits: bounded integrable orbits, unbounded stochastic orbits, and unbounded transient orbits. It is also shown that different regions of the phase space exhibit qualitatively different responses to external influences. The concept of 'differential memory' in single-particle distributions is proposed. Physical implications for the dynamical properties of the magnetotail plasmas and the possible generation of non-Maxwellian features in the distribution functions are discussed.

  2. Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs

    NASA Astrophysics Data System (ADS)

    Heintze, Eric; El Hallak, Fadi; Clauß, Conrad; Rettori, Angelo; Pini, Maria Gloria; Totti, Federico; Dressel, Martin; Bogani, Lapo

    2013-03-01

    Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. In contrast to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiance is very low, a substantial improvement over present methods of magneto-optical switching. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to numerous fields, ranging from social evolution to neural networks and chemical reactivity.

  3. Substorm-associated large-scale magnetic field changes in the magnetotail: a prerequisite for magnetotail deflation events

    NASA Astrophysics Data System (ADS)

    Nakai, H.; Kamide, Y.

    2003-04-01

    An attempt is made to search for a critical condition in the lobe magnetic field to initiate large-scale magnetic field changes associated with substorm expansions. Using data from ISEE-1 for 1978, sudden decreases in the lobe magnetic field accompanied by magnetic field dipolarizations are identified. In this study, such events are designated as the magnetotail deflation. The magnetic field component parallel to the equatorial plane, BE , is normalized to a fixed geocentric distance, BEN , and is corrected for the compression effect of the solar wind dynamic pres-sure, BENC . It is shown that the BENC value just prior to a magnetotail deflation correlates well with the Dst index; BENC = 37.5 - 0.217 Dst0, where Dst0 denotes the Dst value corrected for the solar wind dynamic pressure. This regression function appears to delineate the upper limit of BENC values, when they are sorted by the Dst0 index. On the basis of this finding it is suggested that a prerequisite condition for magnetotail deflations must exist in the magnetosphere.

  4. Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd 2Os 2O 7

    DOE PAGES

    Nguyen, Thi Minh Hien; Sandilands, Luke J.; Sohn, C. H.; ...

    2017-08-15

    5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2Os 2O 7. Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii–Moriya and exchange interactions play a significant role in the spin-wavemore » dispersions. The Raman data also reveal complex spin–charge–lattice coupling and indicate that the metal–insulator transition in Cd 2Os 2O 7 is Lifshitz-type. In conclusion, our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.« less

  5. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  6. Rotating-frame nuclear magnetic resonance study of the distinct dynamics of hydrogen donors in ZnO

    NASA Astrophysics Data System (ADS)

    Kue Park, Jun; Won Lee, Kyu; Eui Lee, Cheol

    2013-07-01

    The rotating-frame spin-lattice relaxation of two types of the hydrogen donors was well distinguished in the 1H nuclear magnetic resonance measurements in a sol-gel prepared ZnO system, providing a unique opportunity to study the distinct proton dynamics. Our study indicates interconversion of the interstitial H (Hi). The population of the mobile Hi showed decrease above ˜370 K, apparently being trapping into the oxygen vacancies resulting in the more stable oxygen-substitutional H (HO). The activation barrier for migration of Hi and the binding energy of HO were found to be 0.27 eV and 0.51 eV, respectively.

  7. Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph

    2005-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.

  8. On the Magnetism and Dynamics of Prominence Legs Hosting Tornadoes

    NASA Astrophysics Data System (ADS)

    Martínez González, M. J.; Asensio Ramos, A.; Arregui, I.; Collados, M.; Beck, C.; de la Cruz Rodríguez, J.

    2016-07-01

    Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show that the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).

  9. ON THE MAGNETISM AND DYNAMICS OF PROMINENCE LEGS HOSTING TORNADOES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez González, M. J.; Ramos, A. Asensio; Arregui, I.

    2016-07-10

    Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show thatmore » the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).« less

  10. Dynamic current-current susceptibility in three-dimensional Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Thakur, Anmol; Sadhukhan, Krishanu; Agarwal, Amit

    2018-01-01

    We study the linear response of doped three-dimensional Dirac and Weyl semimetals to vector potentials, by calculating the wave-vector- and frequency-dependent current-current response function analytically. The longitudinal part of the dynamic current-current response function is then used to study the plasmon dispersion and the optical conductivity. The transverse response in the static limit yields the orbital magnetic susceptibility. In a Weyl semimetal, along with the current-current response function, all these quantities are significantly impacted by the presence of parallel electric and magnetic fields (a finite E .B term) and can be used to experimentally explore the chiral anomaly.

  11. Final Technical Report for DE-SC0008149

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Kristen

    The major goal of this project is to study spin waves in magnetic thin films, especially how spin waves respond to external stimuli. This is expected to lead to new insight into dynamic processes and new ideas for methods to control spin waves. Experimental studies are being done primarily using time- and spatially-resolved Brillouin light scattering (BLS) measurements on extended and patterned magnetic thin films. BLS is a versatile tool that provides a non-invasive probe of spin dynamics with frequencies of ~1 GHz to well over 100 GHz, diffraction-limited spatial resolution, 250-ps temporal resolution, and it is sensitive enough tomore » detect thermal magnons.« less

  12. Exploring the universe through discovery science on NIF

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2016-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples providing a compelling vision for frontier science on NIF in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  13. Exploring the universe through Discovery Science on NIF

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2017-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics (relevant to the exoplanets) are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples of frontier research through NIF Discovery Science in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  14. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases stronglymore » suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.« less

  15. Stochastic Magnetization Dynamics In Patterned Nanostructures

    NASA Astrophysics Data System (ADS)

    Rowlands, Graham E.

    This dissertation details the study of magnetization dynamics in nanoscale magnetic heterostructures. In particular, a spin polarized direct current may be used to drive a single layer's magnetization away from its equilibrium orientation onto strongly non-linear precessional trajectories that are highly susceptible to thermal fluctuations. Through magnetoresistance with an additional ferromagnetic layer in the structure, these oscillations generate microwave frequency voltage oscillations that can be read off electrically. I demonstrate a time-domain experimental method which enables the reconstruction of the statistical ensemble of trajectories taken by the magnetization in such a layer. This method provides greater insight into the dynamics than is attainable with frequency domain analysis. I subsequently demonstrate how an analytical method based on a Fokker-Planck description of the oscillator's effective energy coordinate may be used to reproduce these same ensemble distributions, thereby facilitating a direct comparison to experiment. Furthermore, this analytical approach may be extended to produce accurate predictions for the spectral properties of these oscillations. I present two additional studies of devices constructed to make use of this non-equilibrium spin-torque. The first device is a candidate memory element which provides a non-volatile replacement for current RAM technologies. Its magnetization is switched between two stable orientations by spin-polarized currents originating from a pair of orthogonally oriented magnetic layers. This polarizer configuration reduces the switching time to approximately 100ps from the nanoseconds required with use of a single in-plane polarizer. The second device is a spin torque oscillator employing two counter-precessing magnetic layers which produce voltage oscillations through their mutual magnetoresistance at the sum of the frequencies of the individual layers. This system exhibits a strong dependence on the strength of the Gilbert damping, and a full set of micromagnetic simulations is performed to map out the system's phase diagram in current-damping space.

  16. Magnetic field sensing with nitrogen-vacancy color centers in diamond

    NASA Astrophysics Data System (ADS)

    Pham, Linh My

    In recent years, the nitrogen-vacancy (NV) center has emerged as a promising magnetic sensor capable of measuring magnetic fields with high sensitivity and spatial resolution under ambient conditions. This combination of characteristics allows NV magnetometers to probe magnetic structures and systems that were previously inaccessible with alternative magnetic sensing technologies This dissertation presents and discusses a number of the initial efforts to demonstrate and improve NV magnetometry. In particular, a wide-field CCD based NV magnetic field imager capable of micron-scale spatial resolution is demonstrated; and magnetic field alignment, preferential NV orientation, and multipulse dynamical decoupling techniques are explored for enhancing magnetic sensitivity. The further application of dynamical decoupling control sequences as a spectral probe to extract information about the dynamics of the NV spin environment is also discussed; such information may be useful for determining optimal diamond sample parameters for different applications. Finally, several proposed and recently demonstrated applications which take advantage of NV magnetometers' sensitivity and spatial resolution at room temperature are presented, with particular focus on bio-magnetic field imaging.

  17. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrudan, R.; Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin; Brüssing, F.

    2015-06-15

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses tomore » excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.« less

  18. Dynamical turbulent flow on the Galton board with friction.

    PubMed

    Chepelianskii, A D; Shepelyansky, D L

    2001-07-16

    We study numerically and analytically the dynamics of charged particles on the Galton board, a regular lattice of disk scatters, in the presence of constant external force, magnetic field, and friction. It is shown that under certain conditions friction leads to the appearance of a strange chaotic attractor. In this regime the average velocity and direction of particle flow can be effectively affected by electric and magnetic fields. We discuss the applications of these results to the charge transport in antidot superlattices and the stream of suspended particles in a viscous flow through scatters.

  19. Phason thermal transport of three-helix state in insulating chiral magnets

    NASA Astrophysics Data System (ADS)

    Tatara, Gen

    2018-06-01

    Thermal dynamics of the three-helix state in a chiral magnet is studied based on a phason representation. Although phason representation is convenient for intuitive description, it is not straightforwardly compatible with microscopic linear response calculation of transport phenomena, because it is a (semi)macroscopic picture obtained by a coarse graining. By separating the slow phason mode and fast magnon mode, we show that phason thermal dynamics is driven by thermal magnon flow via the spin-transfer effect. The magnon and phason velocities are calculated by use of thermal vector potential formalism.

  20. Adaptability of optimization concept in the context of cryogenic distribution for superconducting magnets of fusion machine

    NASA Astrophysics Data System (ADS)

    Sarkar, Biswanath; Bhattacharya, Ritendra Nath; Vaghela, Hitensinh; Shah, Nitin Dineshkumar; Choukekar, Ketan; Badgujar, Satish

    2012-06-01

    Cryogenic distribution system (CDS) plays a vital role for reliable operation of largescale fusion machines in a Tokamak configuration. Managing dynamic heat loads from the superconducting magnets, namely, toroidal field, poloidal field, central solenoid and supporting structure is the most important function of the CDS along with the static heat loads. Two concepts are foreseen for the configuration of the CDS: singular distribution and collective distribution. In the first concept, each magnet is assigned with one distribution box having its own sub-cooler bath. In the collective concept, it is possible to share one common bath for more than one magnet system. The case study has been performed with an identical dynamic heat load profile applied to both concepts in the same time domain. The choices of a combined system from the magnets are also part of the study without compromising the system functionality. Process modeling and detailed simulations have been performed for both the options using Aspen HYSYS®. Multiple plasma pulses per day have been considered to verify the residual energy deposited in the superconducting magnets at the end of the plasma pulse. Preliminary 3D modeling using CATIA® has been performed along with the first level of component sizing.

  1. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

    PubMed Central

    Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.

    2016-01-01

    Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications. PMID:27786261

  2. Temperature effects on drift of suspended single-domain particles induced by the Magnus force

    NASA Astrophysics Data System (ADS)

    Denisov, S. I.; Lyutyy, T. V.; Reva, V. V.; Yermolenko, A. S.

    2018-03-01

    We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.

  3. Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.

    PubMed

    Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A

    2018-05-16

    The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.

  4. Transient dynamics of a nonlinear magneto-optical rotation

    NASA Astrophysics Data System (ADS)

    Grewal, Raghwinder Singh; Pustelny, S.; Rybak, A.; Florkowski, M.

    2018-04-01

    We analyze nonlinear magneto-optical rotation (NMOR) in rubidium vapor subjected to a continuously scanned magnetic field. By varying the magnetic-field sweep rate, a transition from traditionally observed dispersivelike NMOR signals (low sweep rate) to oscillating signals (higher sweep rates) is demonstrated. The transient oscillatory behavior is studied versus light and magnetic-field parameters, revealing a strong dependence of the signals on magnetic sweep rate and light intensity. The experimental results are supported with density-matrix calculations, which enable quantitative analysis of the effect. Fitting of the signals simulated versus different parameters with a theoretically motivated curve reveals the presence of oscillatory and static components in the signals. The components depend differently on the system parameters, which suggests their distinct nature. The investigations provide insight into the dynamics of ground-state coherence generation and enable application of NMOR in detection of transient spin couplings.

  5. The evolution of stable magnetic fields in stars: an analytical approach

    NASA Astrophysics Data System (ADS)

    Mestel, Leon; Moss, David

    2010-07-01

    The absence of a rigorous proof of the existence of dynamically stable, large-scale magnetic fields in radiative stars has been for many years a missing element in the fossil field theory for the magnetic Ap/Bp stars. Recent numerical simulations, by Braithwaite & Spruit and Braithwaite & Nordlund, have largely filled this gap, demonstrating convincingly that coherent global scale fields can survive for times of the order of the main-sequence lifetimes of A stars. These dynamically stable configurations take the form of magnetic tori, with linked poloidal and toroidal fields, that slowly rise towards the stellar surface. This paper studies a simple analytical model of such a torus, designed to elucidate the physical processes that govern its evolution. It is found that one-dimensional numerical calculations reproduce some key features of the numerical simulations, with radiative heat transfer, Archimedes' principle, Lorentz force and Ohmic decay all playing significant roles.

  6. Control of generation regimes of ring chip laser under the action of the stationary magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G

    2013-05-31

    We consider realisation of different generation regimes in an autonomous ring chip laser, which is a rather complicated problem. We offer and demonstrate a simple and effective method for controlling the radiation dynamics of a ring Nd:YAG chip laser when it is subjected to a stationary magnetic field producing both frequency and substantial amplitude nonreciprocities. The amplitude and frequency nonreciprocities of a ring cavity, arising under the action of this magnetic field, change when the magnet is moved with respect to the active element of the chip laser. Some self-modulation and stationary generation regimes as well as the regime ofmore » beatings and dynamic chaos regime are experimentally realised. Temporal and spectral characteristics of radiation are studied and conditions for the appearance of the generation regime are found. (control of laser radiation parameters)« less

  7. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamicsmore » of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.« less

  8. Efficient micromagnetics for magnetic storage devices

    NASA Astrophysics Data System (ADS)

    Escobar Acevedo, Marco Antonio

    Micromagnetics is an important component for advancing the magnetic nanostructures understanding and design. Numerous existing and prospective magnetic devices rely on micromagnetic analysis, these include hard disk drives, magnetic sensors, memories, microwave generators, and magnetic logic. The ability to examine, describe, and predict the magnetic behavior, and macroscopic properties of nanoscale magnetic systems is essential for improving the existing devices, for progressing in their understanding, and for enabling new technologies. This dissertation describes efficient micromagnetic methods as required for magnetic storage analysis. Their performance and accuracy is demonstrated by studying realistic, complex, and relevant micromagnetic system case studies. An efficient methodology for dynamic micromagnetics in large scale simulations is used to study the writing process in a full scale model of a magnetic write head. An efficient scheme, tailored for micromagnetics, to find the minimum energy state on a magnetic system is presented. This scheme can be used to calculate hysteresis loops. An efficient scheme, tailored for micromagnetics, to find the minimum energy path between two stable states on a magnetic system is presented. This minimum energy path is intimately related to the thermal stability.

  9. Chevrons, filaments, spinning clusters and phase coexistence: emergent dynamics of 2- and 3-d particle suspensions driven by multiaxial magnetic fields

    DOE PAGES

    Solis, Kyle J.; Martin, James E.

    2017-07-06

    In recent years a rich variety of emergent phenomena have been observed when suspensions of magnetic particles are subjected to alternating magnetic fields. These particle assemblies often exhibit vigorous dynamics due to the injection of energy from the field. These include surface and interface phenomena, such as highly organized, segmented “snakes” that can be induced to swim by structural symmetry breaking, and “asters” and “anti-asters,” particle assemblies that can be manipulated to capture and transport cargo. In bulk suspensions of magnetic platelets subjected to multiaxial alternating fields, advection lattices and even vortex lattices have been created, and a variety ofmore » biomimetic dynamics – serpents, bees and amoebas – have been discovered in magnetic fluids suspended in an immiscible liquid. In this paper several new driven phases are presented, including flying chevrons, dense spinning clusters, filaments, and examples of phase coexistence in driven phases. These observations broaden the growing field of driven magnetic suspensions and present new challenges to those interested in simulating the dynamics of these complex systems.« less

  10. The dynamic resistance of YBCO coated conductor wire: effect of DC current magnitude and applied field orientation

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Zhou, Wei; Li, Quan; Yao, Min; Fang, Jin; Amemiya, Naoyuki; Bumby, Chris W.

    2018-07-01

    Dynamic resistance, which occurs when a HTS coated conductor carries a DC current under an AC magnetic field, can have critical implications for the design of HTS machines. Here, we report measurements of dynamic resistance in a commercially available SuperPower 4 mm-wide YBCO coated conductor, carrying a DC current under an applied AC magnetic field of arbitrary orientation. The reduced DC current, I t/I c0, ranged from 0.01 to 0.9, where I t is the DC current level and I c0 is the self-field critical current of the conductor. The field angle (the angle between the magnetic field and the normal vector of the conductor wide-face) was varied between 0° and 90° at intervals of 10°. We show that the effective width of the conductor under study is ˜12% less than the physical wire width, and we attribute this difference to edge damage of the wire during or after manufacture. We then examine the measured dynamic resistance of this wire under perpendicular applied fields at very low DC current levels. In this regime we find that the threshold field, B th, of the conductor is well described by the nonlinear equation of Mikitik and Brandt. However, this model consistently underestimates the threshold field at higher current levels. As such, the dynamic resistance in a coated conductor under perpendicular magnetic fields is best described using two different equations for each of the low and high DC current regimes, respectively. At low DC currents where I t/I c0 ≤ 0.1, the nonlinear relationship of Mikitik and Brandt provides the closest agreement with experimental data. However, in the higher current regime where I t/I c0 ≥ 0.2, closer agreement is obtained using a simple linear expression which assumes a current-independent penetration field. We further show that for the conductor studied here, the measured dynamic resistance at different field angles is dominated by the perpendicular magnetic field component, with negligible contribution from the parallel component. Our findings now enable the dynamic resistance of a single conductor to be analytically determined for a very wide range of DC currents and at all applied field angles.

  11. Studying the Relationship between High-Latitude Geomagnetic Activity and Parameters of Interplanetary Magnetic Clouds with the Use of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Barkhatov, N. A.; Revunov, S. E.; Vorobjev, V. G.; Yagodkina, O. I.

    2018-03-01

    The cause-and-effect relations of the dynamics of high-latitude geomagnetic activity (in terms of the AL index) and the type of the magnetic cloud of the solar wind are studied with the use of artificial neural networks. A recurrent neural network model has been created based on the search for the optimal physically coupled input and output parameters characterizing the action of a plasma flux belonging to a certain magnetic cloud type on the magnetosphere. It has been shown that, with IMF components as input parameters of neural networks with allowance for a 90-min prehistory, it is possible to retrieve the AL sequence with an accuracy to 80%. The successful retrieval of the AL dynamics by the used data indicates the presence of a close nonlinear connection of the AL index with cloud parameters. The created neural network models can be applied with high efficiency to retrieve the AL index, both in periods of isolated magnetospheric substorms and in periods of the interaction between the Earth's magnetosphere and magnetic clouds of different types. The developed model of AL index retrieval can be used to detect magnetic clouds.

  12. Investigating spin-transfer torques induced by thermal gradients in magnetic tunnel junctions by using micro-cavity ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.

    2018-06-01

    Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6  ×  9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.

  13. Dynamical mean-field theoretical approach to explore the temperature-dependent magnetization in Ta-doped TiO2

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Umar, A. S.; Rusydi, A.

    2017-04-01

    TiO2 has, in recent years, become a hot subject as it holds a promise for spintronic application. Recent experimental study on anatase Ti1-x Ta x O2 (x ~ 0.05) thin films shows that the system changes from non-magnetic to ferromagnetic due to Ti vacancies that are formed when a small percentage of Ti atoms are substituted by Ta. Motivated by those results that reveal the ferromagnetic phase at room temperature, we conduct a theoretical study on the temperature-dependent magnetization and the Currie temperature of that system. We hypothesize that when several Ti vacancies are formed in the system, each of them induces a local magnetic moment, then such moments couple each other through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, forming a ferromagnetic order. To study the temperature dependence of the magnetization and predict the Curie temperature, we construct a tight-binding based Hamiltonian for this system and use the method of dynamical mean-field theory to perform calculations for various temperatures. Our work is still preliminary. The model and method may need further improvement to be consistent with known existing facts. We present our preliminary results to show how the present model works.

  14. The influence of static magnetic field (50 mT) on development and motor behaviour of Tenebrio (Insecta, Coleoptera).

    PubMed

    Todorović, Dajana; Marković, Tamara; Prolić, Zlatko; Mihajlović, Spomenko; Rauš, Snežana; Nikolić, Ljiljana; Janać, Branka

    2013-01-01

    There is considerable concern about potential effects associated with exposure to magnetic fields on organisms. Therefore, duration of pupa-adult development and motor behaviour of adults were analyzed in Tenebrio obscursus and T. molitor after exposure to static magnetic field (50 mT). The experimental groups were: Control (kept 5 m from the magnets), groups which pupae and adults were placed closer to the North pole, or closer to the South pole of magnetic dipole. The pupae were exposed to the magnetic field until the moment of adult eclosion. The pupa-adult development dynamics were recorded daily. Subsequently, behaviour (distance travelled, average speed and immobility) of adults exposed to the magnetic field was monitored in a circular open field arena. Static magnetic field did not affect pupa-adult developmental dynamic of examined Tenebrio species. Exposure to magnetic field did not significantly change motor behaviour of T. obscurus adults. The changes in the motor behaviour of T. molitor induced by static magnetic field were opposite in two experimental groups developed closer to the North pole or closer to the South pole of magnetic dipole. Static magnetic field (50 mT) did not affect on pupa-adult development dynamic of two examined Tenebrio species, but modulated their motor behaviour.

  15. Aging, memory, and nonhierarchical energy landscape of spin jam

    PubMed Central

    Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-01-01

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes. PMID:27698141

  16. Study and review of permanent magnets for electric vehicle propulsion motors

    NASA Technical Reports Server (NTRS)

    Strnat, K. J.

    1983-01-01

    A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.

  17. Nonlinear vibration analysis of an eccentric rotor with unbalance magnetic pull

    NASA Astrophysics Data System (ADS)

    Song, Z.; Ma, Z.

    2010-08-01

    The unbalance magnetic pull of an eccentric water turbine generator set rotor has important influence on its vibration. The magnetic stiffness matrix is introduced to express the energy of the air gap magnetic field. Two vibration models are constructed through the Lagrange Equation. The difference of the two models is the boundary supporting conditions: one is rigid support and the other is elastic support through bearing. The influence of the magnetic stiffness and the elastic support on the critical speed of the rotor is studied using the Liapunov nonlinear vibration theory. The vibration amplitude of the rotor is calculated taking the magnetic stiffness and level eccentricity force into account. The sensitivity of the magnetic, mechanical and bearing parameters to the critical speed is analyzed. Some conclusions may be benefit to the study the dynamic characters of the generator set shaft system which concludes all the magnetic, mechanical and hydraulic parameters.

  18. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  19. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4.

    PubMed

    Dean, M P M; Cao, Y; Liu, X; Wall, S; Zhu, D; Mankowsky, R; Thampy, V; Chen, X M; Vale, J G; Casa, D; Kim, Jungho; Said, A H; Juhas, P; Alonso-Mori, R; Glownia, J M; Robert, A; Robinson, J; Sikorski, M; Song, S; Kozina, M; Lemke, H; Patthey, L; Owada, S; Katayama, T; Yabashi, M; Tanaka, Yoshikazu; Togashi, T; Liu, J; Rayan Serrao, C; Kim, B J; Huber, L; Chang, C-L; McMorrow, D F; Först, M; Hill, J P

    2016-06-01

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.

  20. General connected and reconnected fields in plasmas

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2018-02-01

    For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of "magnetic reconnection" may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.

  1. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    NASA Astrophysics Data System (ADS)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the MHD interaction of fast flowing liquid metal films under various divertor relevant magnetic field configurations through numerical modeling exercises.

  2. Wave propagation characteristics of a magnetic granular chain

    NASA Astrophysics Data System (ADS)

    Leng, Dingxin; Liu, Guijie; Sun, Lingyu; Wang, Xiaojie

    2017-10-01

    We investigate the wave propagation characteristics of a horizontal alignment of magnetic grains under a non-uniform magnetic field. The magnetic force of each grain is obtained using Maxwell's principle. The contact interaction of grains is based on Hertz potential. The effects of magnetic field strength on the dynamic responses of a granular chain under strong, intermediate, and weak amplitudes of incident impulses in comparison with static precompression force are studied. Different wave propagation modes induced by the magnetic field are observed. The applied field strength demonstrably reinforces the granular-position-dependent behaviors of decreasing amplitude and increasing wave propagation velocity. The magnetic field-induced features of a magnetic granular chain have potential applications in adaptive structures for shock attenuation.

  3. Study of system-size effects on the emergent magnetic monopoles and Dirac strings in artificial kagome spin ice

    NASA Astrophysics Data System (ADS)

    Leon, Alejandro

    2012-02-01

    In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing a ``frustrated celular aut'omata'' (FCA), based in the charge model. In this model, each dipole is replaced by a dumbbell of two opposite charges, which are situated at the neighbouring vertices of the honeycomb lattice. The FCA simulations, allow us to study in real-time and deterministic way, the dynamic of the system, with minimal computational resource. The update function is defined according to the coordination number of vertices in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of the effect of disorder in the arrangement of nanomagnets is incorporated in this work.

  4. Dynamics of arbitrary shaped propellers driven by a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Morozov, Konstantin I.; Mirzae, Yoni; Kenneth, Oded; Leshansky, Alexander M.

    2017-04-01

    Motion in fluids at the micro(nano)metric scale is dominated by viscosity. One efficient propulsion method relies on a weak uniform rotating magnetic field that drives a chiral object. From bacterial flagella to artificial magnetic micro- or nanohelices, rotation of a corkscrew is considered as a universally efficient propulsion gait in viscous environments. However, recent experimental studies have demonstrated that geometrically achiral microscale objects or random-shaped magnetic aggregates can propel similarly to helical micromotors. Although approximate theories concerning dynamics of helical magnetic propellers are available, propulsion of achiral particles or objects with complex shapes is not understood. Here we present a general theory of rotation and propulsion of magnetized object of arbitrary shape driven by a rotating magnetic field. Intrinsic symmetries of the viscous mobility tensors yield compact classification of stable rotational states depending on the orientation of the magnetic moment with respect to principal rotation axes of the object. Propulsion velocity can be written in terms of geometry-dependent chirality matrix Ch , where both the diagonal elements (owing to orientation-dependent handedness) and off-diagonal entries (that do not necessitate handedness) contribute in a similar way. In general, the theory anticipates multiplicity of stable rotational states corresponding to two (complimentary to π ) angles the magnetization forms with the field rotation axis. Thus, two identical magnetic objects may propel with different speeds or even in opposite directions. However, for a class of simple achiral objects, there is a particular magnetization whereas the pair of symmetric rotational states gives rise to a unique chiral-like propulsion gait, closely resembling that of an ideal helical propeller. In other words, a geometrically achiral object can acquire apparent chirality due to its interaction with the external magnetic field. The developed theory is further applied to study the dynamics of achiral, chiral, and random-shaped magnetic propellers, rationalizing previously unexplained experimental observations. The genetic search algorithm based on the proposed theory reveals that an arc-shaped segment is the optimal (fastest) achiral propeller, while the optimal skew-symmetric shape deviates considerably from a helix. Remarkably, an optimized arc-shaped propeller warrants propulsion speeds comparable to those of the optimally magnetized helix. Although random shaped magnetic aggregates appear to be poor swimmers at low actuation frequency, at higher frequency, whereas the helical propeller ceases to rotate in-sync with the field, the propulsion speed of the aggregates could be comparable, or even higher, than that of a helix.

  5. Beyond static measures: A review of functional magnetic resonance spectroscopy and its potential to investigate dynamic glutamatergic abnormalities in schizophrenia.

    PubMed

    Jelen, Luke A; King, Sinead; Mullins, Paul G; Stone, James M

    2018-05-01

    Abnormalities of the glutamate system are increasingly implicated in schizophrenia but their exact nature remains unknown. Proton magnetic resonance spectroscopy ( 1 H-MRS), while fundamental in revealing glutamatergic alterations in schizophrenia, has, until recently, been significantly limited and thought to only provide static measures. Functional magnetic resonance spectroscopy (fMRS), which uses sequential scans for dynamic measurement of a range of brain metabolites in activated brain areas, has lately been applied to a variety of task or stimulus conditions, producing interesting insights into neurometabolite responses to neural activation. Here, we summarise the existing 1 H-MRS studies of brain glutamate in schizophrenia. We then present a comprehensive review of research studies that have utilised fMRS, and lastly consider how fMRS methods might further the understanding of glutamatergic abnormalities in schizophrenia.

  6. Energy Dissipation and Dynamics in Large Guide Field Turbulence Driven Reconnection at the Magnetopause

    NASA Astrophysics Data System (ADS)

    TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.

    2017-12-01

    Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.

  7. Bethe lattice approach and relaxation dynamics study of spin-crossover materials

    NASA Astrophysics Data System (ADS)

    Oke, Toussaint Djidjoho; Hontinfinde, Félix; Boukheddaden, Kamel

    2015-07-01

    Dynamical properties of Prussian blue analogs and spin-crossover materials are investigated in the framework of a Blume-Emery-Griffiths (BEG) spin-1 model, where states ±1 and 0 represent the high-spin (HS) state and the low-spin state, respectively. The quadrupolar interaction depends on the temperature in the form . Magnetic interactions are controlled by a factor such that for (), magnetic ordering is not expected. The model is exactly solved using the Bethe lattice approach for the equilibrium properties. The results are closer to those calculated by numerical simulations with suitable Arrhenius-type transition rates. The study of relaxation processes of non-equilibrium HS states revealed one-step nonlinear sigmoidal relaxation curves of the HS fraction at low temperatures. We found that increasing the magnetic interactions leads to the appearance of a plateau in the thermal hysteresis as well as in the relaxation curves of the HS fraction at low temperature.

  8. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    NASA Astrophysics Data System (ADS)

    Guiffard, B.; Seveno, R.

    2015-01-01

    In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.

  9. Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α -RuCl3

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Reschke, S.; Hüvonen, D.; Do, S.-H.; Choi, K.-Y.; Gensch, M.; Nagel, U.; Rõõm, T.; Loidl, A.

    2017-12-01

    We report on terahertz spectroscopy of quantum spin dynamics in α -RuCl3 , a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. We follow the evolution of an extended magnetic continuum below the structural phase transition at Ts 2=62 K . With the onset of a long-range magnetic order at TN=6.5 K , spectral weight is transferred to a well-defined magnetic excitation at ℏω1=2.48 meV , which is accompanied by a higher-energy band at ℏω2=6.48 meV . Both excitations soften in a magnetic field, signaling a quantum phase transition close to Bc=7 T , where a broad continuum dominates the dynamical response. Above Bc, the long-range order is suppressed, and on top of the continuum, emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of a possibly field-induced quantum spin liquid.

  10. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    PubMed Central

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-01-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10−12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets. PMID:27910860

  11. Fluctuation dynamics in reconnecting current sheets

    NASA Astrophysics Data System (ADS)

    von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas

    2015-11-01

    During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.

  12. Field optimization method of a dual-axis atomic magnetometer based on frequency-response and dynamics

    NASA Astrophysics Data System (ADS)

    Xing, Li; Quan, Wei; Fan, Wenfeng; Li, Rujie; Jiang, Liwei; Fang, Jiancheng

    2018-05-01

    The frequency-response and dynamics of a dual-axis spin-exchange-relaxation-free (SERF) atomic magnetometer are investigated by means of transfer function analysis. The frequency-response at different bias magnetic fields is tested to demonstrate the effect of the residual magnetic field. The resonance frequency of alkali atoms and magnetic linewidth can be obtained simultaneously through our theoretical model. The coefficient of determination of the fitting results is superior to 0.995 with 95% confidence bounds. Additionally, step responses are applied to analyze the dynamics of the control system and the effect of imperfections. Finally, a noise-limited magnetic field resolution of 15 fT {{\\sqrt{Hz}}-1} has been achieved for our dual-axis SERF atomic magnetometer through magnetic field optimization.

  13. Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles

    PubMed Central

    Ostrovski, Yan; Hofemeier, Philipp; Sznitman, Josué

    2016-01-01

    Background It has been hypothesized that by coupling magnetic particles to inhaled therapeutics, the ability to target specific lung regions (eg, only acinar deposition), or even more so specific points in the lung (eg, tumor targeting), can be substantially improved. Although this method has been proven feasible in seminal in vivo studies, there is still a wide gap in our basic understanding of the transport phenomena of magnetic particles in the pulmonary acinar regions of the lungs, including particle dynamics and deposition characteristics. Methods Here, we present computational fluid dynamics-discrete element method simulations of magnetically loaded microdroplet carriers in an anatomically inspired, space-filling, multi-generation acinar airway tree. Breathing motion is modeled by kinematic sinusoidal displacements of the acinar walls, during which droplets are inhaled and exhaled. Particle dynamics are governed by viscous drag, gravity, and Brownian motion as well as the external magnetic force. In particular, we examined the roles of droplet diameter and volume fraction of magnetic material within the droplets under two different breathing maneuvers. Results and discussion Our results indicate that by using magnetic-loaded droplets, 100% of the particles that enter are deposited in the acinar region. This is consistent across all particle sizes investigated (ie, 0.5–3.0 µm). This is best achieved through a deep inhalation maneuver combined with a breath-hold. Particles are found to penetrate deep into the acinus and disperse well, while the required amount of magnetic material is maintained low (<2.5%). Although particles in the size range of ~90–500 nm typically show the lowest deposition fractions, our results suggest that this feature could be leveraged to augment targeted delivery. PMID:27547034

  14. A Review of Dynamic Characteristics of Magnetically Levitated Vehicle Systems.

    DTIC Science & Technology

    1995-11-01

    The dynamic response of magnetically levitated ( maglev ) ground transportation systems has important consequences for safety and ride quality...smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the...other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which

  15. Velocity Enhancement by Synchronization of Magnetic Domain Walls

    NASA Astrophysics Data System (ADS)

    Hrabec, Aleš; Křižáková, Viola; Pizzini, Stefania; Sampaio, João; Thiaville, André; Rohart, Stanislas; Vogel, Jan

    2018-06-01

    Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this Letter, we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls links not only their position but also their structure. We show that this link has a direct impact on their magnetic-field-induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.

  16. Magnetic response of a disordered binary ferromagnetic alloy to an oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Vatansever, Erol; Polat, Hamza

    2015-08-01

    By means of Monte Carlo simulation with local spin update Metropolis algorithm, we have elucidated non-equilibrium phase transition properties and stationary-state treatment of a disordered binary ferromagnetic alloy of the type ApB1-p on a square lattice. After a detailed analysis, we have found that the system shows many interesting and unusual thermal and magnetic behaviors, for instance, the locations of dynamic phase transition points change significantly depending upon amplitude and period of the external magnetic field as well as upon the active concentration of A-type components. Much effort has also been dedicated to clarify the hysteresis tools, such as coercivity, dynamic loop area as well as dynamic correlations between time dependent magnetizations and external time dependent applied field as a functions of period and amplitude of field as well as active concentration of A-type components, and outstanding physical findings have been reported in order to better understand the dynamic process underlying present system.

  17. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  18. Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    2016-12-01

    We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.

  19. Picosecond Dynamics of Excitonic Magnetic Polarons in Colloidal Diffusion-Doped Cd(1-x)Mn(x)Se Quantum Dots.

    PubMed

    Nelson, Heidi D; Bradshaw, Liam R; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R

    2015-11-24

    Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.

  20. Direct observation of the magnetic domain evolution stimulated by temperature and magnetic field in PrMnGeSi alloy

    NASA Astrophysics Data System (ADS)

    Zuo, S. L.; Zhang, B.; Qiao, K. M.; Peng, L. C.; Li, R.; Xiong, J. F.; Zhang, Y.; Zhao, X.; Liu, D.; Zhao, T. Y.; Sun, J. R.; Hu, F. X.; Zhang, Y.; Shen, B. G.

    2018-05-01

    The magnetic domain evolution behavior under external field stimuli of temperature and magnetic field in PrMn2Ge0.4Si1.6 compound is investigated using Lorentz transmission electron microscopy. A spontaneous 180° magnetic domain is observed at room temperature and it changes with temperature. Dynamic magnetization process is related to the rotation of magnetic moments, resulting in the transforming of magnetic domains from 180° type to a uniform ferromagnetic state with almost no pinning effects under the in-plane magnetic field at room temperature. X-ray powder diffraction is performed on PrMn2Ge0.4Si1.6 at different temperatures to study the temperature dependence of crystal structure and lattice parameter.

  1. Magnetic targeting to enhance microbubble delivery in an occluded microarterial bifurcation

    NASA Astrophysics Data System (ADS)

    de Saint Victor, M.; Carugo, D.; Barnsley, L. C.; Owen, J.; Coussios, C.-C.; Stride, E.

    2017-09-01

    Ultrasound and microbubbles have been shown to accelerate the breakdown of blood clots both in vitro and in vivo. Clinical translation of this technology is still limited, however, in part by inefficient microbubble delivery to the thrombus. This study examines the obstacles to delivery posed by fluid dynamic conditions in occluded vasculature and investigates whether magnetic targeting can improve microbubble delivery. A 2D computational fluid dynamic model of a fully occluded Y-shaped microarterial bifurcation was developed to determine: (i) the fluid dynamic field in the vessel with inlet velocities from 1-100 mm s-1 (corresponding to Reynolds numbers 0.25-25) (ii) the transport dynamics of fibrinolytic drugs; and (iii) the flow behavior of microbubbles with diameters in the clinically-relevant range (0.6-5 µm). In vitro experiments were carried out in a custom-built microfluidic device. The flow field was characterized using tracer particles, and fibrinolytic drug transport was assessed using fluorescence microscopy. Lipid-shelled magnetic microbubbles were fluorescently labelled to determine their spatial distribution within the microvascular model. In both the simulations and experiments, the formation of laminar vortices and an abrupt reduction of fluid velocity were observed in the occluded branch of the bifurcation, severely limiting drug transport towards the occlusion. In the absence of a magnetic field, no microbubbles reached the occlusion, remaining trapped in the first vortex, within 350 µm from the bifurcation center. The number of microbubbles trapped within the vortex decreased as the inlet velocity increased, but was independent of microbubble size. Application of a magnetic field (magnetic flux density of 76 mT, magnetic flux density gradient of 10.90 T m-1 at the centre of the bifurcation) enabled delivery of microbubbles to the occlusion and the number of microbubbles delivered increased with bubble size and with decreasing inlet velocity.

  2. Imaging Magnetization Structure and Dynamics in Ultrathin Y3Fe5O12/Pt Bilayers with High Sensitivity Using the Time-Resolved Longitudinal Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Bartell, Jason M.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Yang, Fengyuan; Ralph, Daniel C.; Fuchs, Gregory D.

    2017-04-01

    We demonstrate an instrument for time-resolved magnetic imaging that is highly sensitive to the in-plane magnetization state and dynamics of thin-film bilayers of yttrium iron garnet [Y3Fe5O12(YIG )]/Pt : the time-resolved longitudinal spin Seebeck (TRLSSE) effect microscope. We detect the local in-plane magnetic orientation within the YIG by focusing a picosecond laser to generate thermally driven spin current from the YIG into the Pt by the spin Seebeck effect and then use the inverse spin Hall effect in the Pt to transduce this spin current to an output voltage. To establish the time resolution of TRLSSE, we show that pulsed optical heating of patterned YIG (20 nm )/Pt (6 nm )/Ru (2 nm ) wires generates a magnetization-dependent voltage pulse of less than 100 ps. We demonstrate TRLSSE microscopy to image both static magnetic structure and gigahertz-frequency magnetic resonance dynamics with submicron spatial resolution and a sensitivity to magnetic orientation below 0.3 °/√{H z } in ultrathin YIG.

  3. A comparative study of magnetization dynamics in dinuclear dysprosium complexes featuring bridging chloride or trifluoromethanesulfonate ligands.

    PubMed

    Burns, Corey P; Wilkins, Branford O; Dickie, Courtney M; Latendresse, Trevor P; Vernier, Larry; Vignesh, Kuduva R; Bhuvanesh, Nattamai S; Nippe, Michael

    2017-07-25

    We utilized a rigid ligand platform PyCp 2 2- (PyCp 2 2- = [2,6-(CH 2 C 5 H 3 ) 2 C 5 H 3 N] 2- ) to isolate dinuclear Dy 3+ complexes [(PyCp 2 )Dy-(μ-O 2 SOCF 3 )] 2 (1) and [(PyCp 2 )Dy-(μ-Cl)] 2 (3) as well as the mononuclear complex (PyCp 2 )Dy(OSO 2 CF 3 )(thf) (2). Compounds 1 and 2 are the first examples of organometallic Dy 3+ complexes featuring triflate binding. The isolation of compounds 1 and 3 allows us to comparatively evaluate the effects of the bridging anions on the magnetization dynamics of the dinuclear systems. Our investigations show that although the exchange coupling interactions differ for 1 and 3, the dynamic magnetic properties are dominated by relaxation via the first excited state Kramers doublet of the individual Dy sites. Compounds 1 and 3 exhibit barriers to magnetization reversal (U eff = 49 cm -1 ) that can be favorably compared to those of the previously reported examples of [Cp 2 Dy(μ-Cl)] 2 (U eff = 26 cm -1 ) and [Cp 2 Dy(thf)(μ-Cl)] 2 (U eff = 34 cm -1 ).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, E. S.; Ramos, A. Asensio, E-mail: escarlin@irsol.es

    This paper presents a synthetic tomography of the quiet solar chromosphere formed by spatial maps of scattering polarization. It has been calculated for the Ca II 8498, 8542, and 3934 Å lines by solving the non-LTE radiative transfer problem of the second kind in a three-dimensional atmosphere model obtained from realistic magneto-hydrodynamical simulations. Our investigation focuses on the linear polarization signals induced by kinematics, radiation field anisotropy, and the Hanle effect in forward-scattering geometry. Thus, instead of considering slit profiles at the limb as normally done in the study of the second solar spectrum, we synthesize and analyze spatial mapsmore » of polarization at the disk center. This allows us to understand the spatial signatures of dynamics and magnetic field in the linear polarization in order to discriminate them observationally. Our results suggest some ideas for chromospheric diagnosis that will be developed throughout a series of papers. In particular, Hanle polarity inversion lines and dynamic Hanle diagrams are two concepts introduced in the present work. We find that chromospheric dynamics and magnetic field topology create spatial polarization fingerprints that trace the dynamic situation of the plasma and the magnetic field. This allows us to reconstruct the magnetic field intensity in the middle chromosphere using Stokes V along grooves of null linear polarization. We finally address the problems of diagnosing Hanle saturation and kinematic amplification of scattering signals using Hanle diagrams.« less

  5. Generation of electromagnetic energy in a magnetic cumulation generator with the use of inductively coupled circuits with a variable coupling coefficient

    NASA Astrophysics Data System (ADS)

    Gilev, S. D.; Prokopiev, V. S.

    2017-07-01

    A method of generation of electromagnetic energy and magnetic flux in a magnetic cumulation generator is proposed. The method is based on dynamic variation of the circuit coupling coefficient. This circuit is compared with other available circuits of magnetic energy generation with the help of magnetic cumulation (classical magnetic cumulation generator, generator with transformer coupling, and generator with a dynamic transformer). It is demonstrated that the proposed method allows obtaining high values of magnetic energy. The proposed circuit is found to be more effective than the known transformer circuit. Experiments on electromagnetic energy generation are performed, which demonstrate the efficiency of the proposed method.

  6. Direct observation of magnetic domains by Kerr microscopy in a Ni-Mn-Ga magnetic shape-memory alloy

    NASA Astrophysics Data System (ADS)

    Perevertov, O.; Heczko, O.; Schäfer, R.

    2017-04-01

    The magnetic domains in a magnetic shape-memory Ni-Mn-Ga alloy were observed by magneto-optical Kerr microscopy using monochromatic blue LED light. The domains were observed for both single- and multivariant ferroelastic states of modulated martensite. The multivariant state with very fine twins was spontaneously formed after transformation from high-temperature austenite. For both cases, bar domains separated by 180∘ domain walls were found and their dynamics was studied. A quasidomain model was applied to explain the domains in the multivariant state.

  7. Influence of anisotropic dipolar interaction on the spin dynamics of Ni80Fe20 nanodot arrays arranged in honeycomb and octagonal lattices

    NASA Astrophysics Data System (ADS)

    Mondal, Sucheta; Barman, Saswati; Choudhury, Samiran; Otani, Yoshichika; Barman, Anjan

    2018-07-01

    Ultrafast spin dynamics in ferromagnetic nanodot arrays with dot diameter 100 nm and thickness 20 nm arranged in honeycomb and octagonal lattice symmetries are studied to explore the tunability of the collective magnetization dynamics. By varying the inter-dot separation between 30 nm and 300 nm drastic variation in the precessional dynamics from strongly collective to completely isolated regime has been observed by using all-optical time-resolved magneto-optical Kerr microscope. Micromagnetic simulation is exploited to gain insights about the resonant mode profiles and magnetic coupling between the nanodots. A significant spectral and spatial variation in the resonant mode with increasing dipolar interaction is demonstrated with increasing inter-dot separation. The spins driven by effective field inside single nanodots are prone to precess independently, generating two self-standing centre and edge modes in the array that are influenced by the relative orientation between the inter-dot coupling direction and bias magnetic field. The anisotropic behavior of dipolar field is rigorously investigated here. Splitting of the centre mode in case of octagonal lattice is experimentally observed here as a consequence of the anisotropic dipolar field between the nanodot pairs coupled horizontally and vertically, which is not found in the honeycomb lattice. In addition, proper understanding of the modification of dynamic mode profile by neighboring dipolar interaction built up here, is imperative for further control of the dynamic dipolar interaction and the corresponding collective excitation in magnonic crystals. The usage of nanodot lattices with complex basis structures can be advantageous for the designing of high density magnetic recording media, spin-wave filter and logic devices.

  8. Micro-Hall magnetometry on a Co-organic chain compound

    NASA Astrophysics Data System (ADS)

    Rolland, L.; Simonet, V.; Wernsdorfer, W.; Bogani, L.; Sessoli, R.

    2004-05-01

    The static and dynamical properties of Co-organic chains, with strong magnetic anisotropy, are studied by micro-Hall magnetometry. The low-temperature hysteresis cycles are discussed with respect to the helical structure of the chains. Thermally activated relaxation of the magnetization is observed, compatible with the Glauber model for a 1D Ising system.

  9. Scaling analysis of [Fe(pyrazole)4]2[Nb(CN)8] molecular magnet

    NASA Astrophysics Data System (ADS)

    Konieczny, P.; Pełka, R.; Zieliński, P. M.; Pratt, F. L.; Pinkowicz, D.; Sieklucka, B.; Wasiutyński, T.

    2013-10-01

    The critical behaviour of the three dimensional (3D) molecular magnet {[FeII(pirazol)4]2[NbIV(CN)8]·4H2O}n has been studied with the use of experimental techniques such as ac magnetometry and zero field μSR spectroscopy. The sample orders magnetically below Tc=7.8 K. The measurements allowed to determine static exponents β, γ, and the dynamic exponent w. The resulting exponent values indicate that the studied system belongs to the universality class of the 3D Heisenberg model.

  10. Magnetoelectricity in Multi-Scale Composites and Application in Nanorobotics for Live Cell Manipulation

    NASA Astrophysics Data System (ADS)

    Betal, Soutik

    In this research biomedical and sensor applications of magnetoelectric effect have been broadly explored using magnetoelectric composites. Firstly NiFe2O4/Pb(Zr0.52Ti0.48)O 3/NiFe2O4 layered bulk composite have been studied to achieve high magnetoelectric coefficient for their applications in brain magnetic field detection at room temperature. Magnetic sensors like SQUID (superconducting quantum interference device) nowadays are able to detect pico-Tesla magnetic fields produced outside the brain by the neuronal currents which can be used for diagnostic application, but due to heavy liquid helium cooling and insulation requirements, the technique become quite inefficient in gaining high resolution measurement. At room temperature layered ME samples exhibit high magnetoelectric response in mV/cm.Oe range and hence can transform very low magnetic field into electric signal which can be measured even in femtovolts. Moreover temperature and a.c. frequency dependent studies were done to extensively characterize the layered ME sample for sensor application. Secondly core-shell magnetoelectric nanoparticles (CSMEN) have been fabricated, characterized and their interaction with biological cell in presence of a.c. and d.c. field have been thoroughly analyzed. A magnetically controlled elastically driven electroporation phenomenon, or Magneto-Elasto- Electroporation (MEEP), is discovered while studying interactions between core-shell magneto-electric nanoparticles (CSMEN) and biological cells in the presence of an AC magnetic field. In this research MEEP effect was observed via a series of in-vitro experiments using core (CoFe2O4)-shell (BaTiO3 ) structured magnetoelectric nanoparticles and human epithelial cells (HEP2). Cell electroporation phenomenon and its correlation with the magnetic field modulated CSMEN have been elaborately studied. Potential of CSMEN for application in targeted single cell electroporation have been confirmed by analysing crystallographic phases, multiferroic properties of the fabricated CSMEN , influences of DC and AC magnetic field on the CSMEN and cytotoxicity tests. We also report the mathematical formalism to quantitatively describe the phenomena. The reported findings provide the basis of the underlying MEEP mechanism and demonstrate the utility of CSMEN as electric pulse generating nano-probe in cell electroporation experiments for the potential application towards accurate and efficient targeted cell permeation as well as drug delivery. Thirdly, experiments of fabricated magnetoelectric nanocomposites with biological cells in controlled boundary condition under fluctuating and biased magnetic field excitation revealed the smart nanorobotics characteristics of the nanostructure to achieve remote controlled dynamically targeted live cell manipulation. A remotely controlled dynamic process of manipulating targeted biological live cells using fabricated core-shell magnetoelectric nanocomposites have been fabricated, which comprises of single crystalline ferromagnetic cores (CoFe2O4) coated with crystalline ferroelectric thin film shells (BaTiO3). These nanocomposites are demonstrated as a unique family of inorganic magnetoelectric nanorobots (MENRs), controlled remotely by applied a.c. or d.c. magnetic fields, to perform cell targeting, permeation, patterning and transport. MENRs performs these functions via localized electric periodic pulse generation, local electric-field sensing, or thrust generation and acts as a unique tool for remotely controlled dynamically targeted cellular manipulation. Under a.c. magnetic field excitation (50 Oe, 60 Hz), the MENR acts as a localized periodic electric pulse generator and can permeate a series of misaligned cells, while aligning/patterning them to an equipotential mono-array. Under a.c. magnetic field (40 Oe, 30 Hz) excitation, MENRs can be dynamically driven to a targeted cell, avoiding untargeted cells in the path, irrespective of cell density. D.C. magnetic field (-50 Oe) excitation causes the MENRs to act as thrust generator and exerts motion in a group of cells. Visualization of magnetoelectricity at nanoscale and its application in dynamically targeted live cell manipulation have been presented in this research.

  11. A theory of quantum dynamics of a nanomagnet under excitation

    NASA Astrophysics Data System (ADS)

    Sham, L. J.

    2013-09-01

    A quantum treatment of magnetization dynamics of a nanomagnet between a thousand and a million spins may be needed as the magnet interacts with quantum control. The advantage of the all-quantum approach over the classical treatment of magnetization is the accounting for the correlation between the magnet and the control agent and the first-principles source of noise. This supplement to the conference talk will concentrate on an overview of the theory with a presentation of the basic ideas which could have wide applications and illustrations with some results. Details of applications to specific models are or will be published elsewhere. A clear concept of the structure of the ground and excited macrospin states as magnetization rotation states and magnons in the Bloch/Dyson sense gives rise to a consistent theory of the magnetization dynamics of a ferromagnet modeled by the Heisenberg Hamiltonian. An example of quantum control is the spin torque transfer, treated here as a sequence of scatterings of each current electron with the localized electrons of the ferromagnet, yields in each encounter a probability distribution of the magnetization recoil state correlated with each outgoing state of the electron. This picture provides a natural Monte Carlo process for simulation of the dynamics in which the probability is determined by quantum mechanics. The computed results of mean motion, noise and damping of the magnetization will be discussed.

  12. Long-range dynamical magnetic order and spin tunneling in the cooperative paramagnetic states of the pyrochlore analogous spinel antiferromagnets CdYb2X4 (X =S or Se)

    NASA Astrophysics Data System (ADS)

    Dalmas de Réotier, P.; Marin, C.; Yaouanc, A.; Ritter, C.; Maisuradze, A.; Roessli, B.; Bertin, A.; Baker, P. J.; Amato, A.

    2017-10-01

    Magnetic systems with spins sitting on a lattice of corner sharing regular tetrahedra have been particularly prolific for the discovery of new magnetic states for the last two decades. The pyrochlore compounds have offered the playground for these studies, while little attention has been comparatively devoted to other compounds where the rare earth R occupies the same sublattice, e.g., the spinel chalcogenides Cd R2X4 (X =S or Se ). Here, we report measurements performed on powder samples of this series with R =Yb using specific heat, magnetic susceptibility, neutron diffraction, and muon-spin-relaxation measurements. The two compounds are found to be magnetically similar. They long-range order into structures described by the Γ5 irreducible representation. The magnitude of the magnetic moment at low temperature is 0.77 (1) and 0.62 (1) μB for X =S and Se , respectively. Persistent spin dynamics is present in the ordered states. The spontaneous field at the muon site is anomalously small, suggesting magnetic moment fragmentation. A double spin-flip tunneling relaxation mechanism is suggested in the cooperative paramagnetic state up to 10 K. The magnetic space groups into which magnetic moments of systems of corner-sharing regular tetrahedra order are provided for a number of insulating compounds characterized by null propagation wave vectors.

  13. Fast magnetic resonance fingerprinting for dynamic contrast-enhanced studies in mice.

    PubMed

    Gu, Yuning; Wang, Charlie Y; Anderson, Christian E; Liu, Yuchi; Hu, He; Johansen, Mette L; Ma, Dan; Jiang, Yun; Ramos-Estebanez, Ciro; Brady-Kalnay, Susann; Griswold, Mark A; Flask, Chris A; Yu, Xin

    2018-05-09

    The goal of this study was to develop a fast MR fingerprinting (MRF) method for simultaneous T 1 and T 2 mapping in DCE-MRI studies in mice. The MRF sequences based on balanced SSFP and fast imaging with steady-state precession were implemented and evaluated on a 7T preclinical scanner. The readout used a zeroth-moment-compensated variable-density spiral trajectory that fully sampled the entire k-space and the inner 10 × 10 k-space with 48 and 4 interleaves, respectively. In vitro and in vivo studies of mouse brain were performed to evaluate the accuracy of MRF measurements with both fully sampled and undersampled data. The application of MRF to dynamic T 1 and T 2 mapping in DCE-MRI studies were demonstrated in a mouse model of heterotopic glioblastoma using gadolinium-based and dysprosium-based contrast agents. The T 1 and T 2 measurements in phantom showed strong agreement between the MRF and the conventional methods. The MRF with spiral encoding allowed up to 8-fold undersampling without loss of measurement accuracy. This enabled simultaneous T 1 and T 2 mapping with 2-minute temporal resolution in DCE-MRI studies. Magnetic resonance fingerprinting provides the opportunity for dynamic quantification of contrast agent distribution in preclinical tumor models on high-field MRI scanners. © 2018 International Society for Magnetic Resonance in Medicine.

  14. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields duringmore » the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.« less

  15. Magnetically targeted delivery through cartilage

    NASA Astrophysics Data System (ADS)

    Jafari, Sahar; Mair, Lamar O.; Chowdhury, Sagar; Nacev, Alek; Hilaman, Ryan; Stepanov, Pavel; Baker-McKee, James; Ijanaten, Said; Koudelka, Christian; English, Bradley; Malik, Pulkit; Weinberg, Irving N.

    2018-05-01

    In this study, we have invented a method of delivering drugs deep into articular cartilage with shaped dynamic magnetic fields acting on small metallic magnetic nanoparticles with polyethylene glycol coating and average diameter of 30 nm. It was shown that transport of magnetic nanoparticles through the entire thickness of bovine articular cartilage can be controlled by a combined alternating magnetic field at 100 Hz frequency and static magnetic field of 0.8 tesla (T) generated by 1" dia. x 2" thick permanent magnet. Magnetic nanoparticles transport through bovine articular cartilage samples was investigated at various settings of magnetic field and time durations. Combined application of an alternating magnetic field and the static field gradient resulted in a nearly 50 times increase in magnetic nanoparticles transport in bovine articular cartilage tissue as compared with static field conditions. This method can be applied to locally deliver therapeutic-loaded magnetic nanoparticles deep into articular cartilage to prevent cartilage degeneration and promote cartilage repair in osteoarthritis.

  16. Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator Cu2OSeO3.

    PubMed

    Stasinopoulos, I; Weichselbaumer, S; Bauer, A; Waizner, J; Berger, H; Garst, M; Pfleiderer, C; Grundler, D

    2017-08-01

    Linear dichroism - the polarization dependent absorption of electromagnetic waves- is routinely exploited in applications as diverse as structure determination of DNA or polarization filters in optical technologies. Here filamentary absorbers with a large length-to-width ratio are a prerequisite. For magnetization dynamics in the few GHz frequency regime strictly linear dichroism was not observed for more than eight decades. Here, we show that the bulk chiral magnet Cu 2 OSeO 3 exhibits linearly polarized magnetization dynamics at an unexpectedly small frequency of about 2 GHz at zero magnetic field. Unlike optical filters that are assembled from filamentary absorbers, the magnet is shown to provide linear polarization as a bulk material for an extremely wide range of length-to-width ratios. In addition, the polarization plane of a given mode can be switched by 90° via a small variation in width. Our findings shed a new light on magnetization dynamics in that ferrimagnetic ordering combined with antisymmetric exchange interaction offers strictly linear polarization and cross-polarized modes for a broad spectrum of sample shapes at zero field. The discovery allows for novel design rules and optimization of microwave-to-magnon transduction in emerging microwave technologies.

  17. Simulations of magnetic nanoparticle Brownian motion

    PubMed Central

    Reeves, Daniel B.; Weaver, John B.

    2012-01-01

    Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion. Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature. PMID:23319830

  18. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.

  19. Laser-Induced Ultrafast Demagnetization: Femtomagnetism, a New Frontier?

    NASA Astrophysics Data System (ADS)

    Zhang, Guoping; Huebner, Wolfgang; Beaurepaire, Eric; Bigot, Jean-Yves

    The conventional demagnetization process (spin precession, magnetic domain motion and rotation) is governed mainly by spin-lattice, magnetic dipole and Zeeman, and spin-spin interactions. It occurs on a timescale of nanoseconds. Technologically, much faster magnetization changes are always in great demand to improve data processing speed. Unfortunately, the present speed of magnetic devices is already at the limit of the conventional mechanism with little room left. Fortunately and unprecedentedly, recent experimental investigations have evidenced much faster magnetization dynamics which occurs on a femtosecond time scale: femtomagnetism. This novel spin dynamics has not been well-understood until now. This article reviews the current status of ultrafast spin dynamics and presents a perspective for future experimental and theoretical investigations.Present address: Department of Physics and Astronomy, The University of Tennessee at Knoxville, TN 37996-1200, USA; gpzhang@utk.edu

  20. Cusp/cleft auroral activity in relation to solar wind dynamic pressure, interplanetary magnetic field B(sub z) and B(sub y)

    NASA Technical Reports Server (NTRS)

    Sandholt, P. E.; Farrugia, C. J.; Burlaga, L. F.; Holtet, J. A.; Moen, J.; Lybekk, B.; Jacobsen, B.; Opsvik, D.; Egeland, A.; Lepping, R.

    1994-01-01

    Continuous optical observations of cusp/cleft auroral activities within approximately equal to 09-15 MLT and 70-76 deg magnetic latitude are studied in relation to changes in solar wind dynamic pressure and interplanetary magnetic field (IMF) variability. The observed latitudinal movements of the cusp/cleft aurora in response to IMF B(sub z) changes may be explained as an effect of a variable magnetic field intensity in the outer dayside magnetosphere associated with the changing intensity of region 1 field-aligned currents and associated closure currents. Ground magnetic signatures related to such currents were observed in the present case (January 10, 1993). Strong, isolated enhancements in solar wind dynamic pressure (Delta p/p is greater than or equal to 0.5) gave rise to equatorward shifts of the cusp/cleft aurora, characteristic auroral transients, and distinct ground magnetic signatures of enhanced convection at cleft latitudes. A sequence of auroral events of approximately equal to 5-10 min recurrence time, moving eastward along the poleward boundary of the persistent cusp/cleft aurora in the approximately equal to 10-14 MLT sector, during negative IMF B(sub z) and B(sub y) conditions, were found to be correlated with brief pulses in solar wind dynamic pressure (0.1 is less than Delta p/p is less than 0.5). Simultaneous photometer observations from Ny Alesund, Svalbard, and Danmarkshavn, Greenland, show that the events often appeared on the prenoon side (approximately equal to 10-12 MLT), before moving into the postnoon sector in the case we study here, when IMF B(sub y) is less than 0. In other cases, similar auroral event sequences have been observed to move westward in the prenoon sector, during intervals of positive B(sub y). Thus a strong prenoon/postnoon asymmetry of event occurence and motion pattern related to the IMF B(sub y) polarity is observed. We find that this category of auroral event sequence is stimulated bursts of electron precipitation that originate from magnetosheath plasma that has accessed that dayside magnetosphere in the noon or near-noon sector, possibly at high latitudes, partly governed by the IMF orientation as well as by solar wind dynamic pressure pulses.

  1. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects

    PubMed Central

    2017-01-01

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor–acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents. PMID:28263599

  2. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects.

    PubMed

    Pham, Van Thi Bich; Hoang, Hao Minh; Grampp, Günter; Kattnig, Daniel R

    2017-03-30

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor-acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents.

  3. Zero-Field Ambient-Pressure Quantum Criticality in the Stoichiometric Non-Fermi Liquid System CeRhBi

    NASA Astrophysics Data System (ADS)

    Anand, Vivek K.; Adroja, Devashibhai T.; Hillier, Adrian D.; Shigetoh, Keisuke; Takabatake, Toshiro; Park, Je-Geun; McEwen, Keith A.; Pixley, Jedediah H.; Si, Qimiao

    2018-06-01

    We present the spin dynamics study of a stoichiometric non-Fermi liquid (NFL) system CeRhBi, using low-energy inelastic neutron scattering (INS) and muon spin relaxation (μSR) measurements. It shows evidence for an energy-temperature (E/T) scaling in the INS dynamic response and a time-field (t/Hη) scaling of the μSR asymmetry function indicating a quantum critical behavior in this compound. The E/T scaling reveals a local character of quantum criticality consistent with the power-law divergence of the magnetic susceptibility, logarithmic divergence of the magnetic heat capacity and T-linear resistivity at low temperature. The occurrence of NFL behavior and local criticality over a very wide dynamical range at zero field and ambient pressure without any tuning in this stoichiometric heavy fermion compound is striking, making CeRhBi a model system amenable to in-depth studies for quantum criticality.

  4. Time-Domain Nuclear Magnetic Resonance Investigation of Water Dynamics in Different Ginger Cultivars.

    PubMed

    Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang

    2016-01-20

    Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.

  5. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr 2IrO 4

    DOE PAGES

    Dean, M. P. M.; Cao, Y.; Liu, X.; ...

    2016-05-09

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity 1, 2, 3, 4. Recently, photo-excitation has been used to induce similarly exotic states transiently 5, 6, 7. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr 2IrO 4. We find that the non-equilibrium state, 2more » ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. In conclusion, the marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.« less

  6. On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics

    NASA Technical Reports Server (NTRS)

    Zheng, Y.; Zaharia, S. G.; Fok, M. H.

    2010-01-01

    Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.

  7. Vibration Control by a Shear Type Semi-active Damper Using Magnetorheological Grease

    NASA Astrophysics Data System (ADS)

    Shiraishi, Toshihiko; Misaki, Hirotaka

    2016-09-01

    This paper describes semi-active vibration control by a controllable damper with high reliability and wide dynamic range using magnetorheological (MR) grease. Some types of cylindrical controllable dampers based on pressure difference between chambers in the dampers using “MR fluid”, whose rheological properties can be varied by applying a magnetic field, have been reported as a semi-active device. However, there are some challenging issues of them. One is to improve dispersion stability. The particles dispersed in MR fluid would make sedimentation after a period. Another is to expand dynamic range. Since cylindrical dampers require sealing elements because of pressure difference in the dampers, the dynamic range between the maximum and minimum damping force according to a magnetic field is reduced. In this study, a controllable damper using the MR effect was proposed and its performance was experimentally verified to improve the dispersion stability by using “MR grease”, which includes grease as the carrier of magnetic particles, and to expand the dynamic range by adopting a shear type structure not requiring sealing elements. Furthermore, semiactive vibration control experiments by the MR grease damper using a simple algorithm based on the skyhook damper scheme were conducted and its performance was investigated.

  8. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  9. Nonlinear force-free field modeling of the solar magnetic carpet and comparison with SDO/HMI and Sunrise/IMAX observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitta, L. P.; Kariyappa, R.; Van Ballegooijen, A. A.

    2014-10-01

    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet that continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, and the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory, as time-dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce a time series of three-dimensional nonlinearmore » force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.« less

  10. Model for dynamic self-assembled magnetic surface structures

    NASA Astrophysics Data System (ADS)

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.

    2010-07-01

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  11. Structure and Dynamics of Confined C-O-H Fluids Relevant to the Subsurface: Application of Magnetic Resonance, Neutron Scattering and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Gautam, Siddharth S.; Ok, Salim; Cole, David R.

    2017-06-01

    Geo-fluids consisting of C-O-H volatiles are the main mode of transport of mass and energy throughout the lithosphere and are commonly found confined in pores, grain boundaries and fractures. The confinement of these fluids by porous media at the length scales of a few nanometers gives rise to numerous physical and chemical properties that deviate from the bulk behavior. Studying the structural and dynamical properties of these confined fluids at the length and time scales of nanometers and picoseconds respectively forms an important component of understanding their behavior. To study confined fluids, non-destructive penetrative probes are needed. Nuclear magnetic resonance (NMR) by virtue of its ability to monitor longitudinal and transverse magnetization relaxations of spins, and chemical shifts brought about by the chemical environment of a nucleus, and measuring diffusion coefficient provides a good opportunity to study dynamics and chemical structure at the molecular length and time scales. Another technique that gives insights into the dynamics and structure at these length and time scales is neutron scattering (NS). This is because the wavelength and energies of cold and thermal neutrons used in scattering experiments are in the same range as the spatial features and energies involved in the dynamical processes occurring at the molecular level. Molecular Dynamics (MD) simulations on the other hand help with the interpretation of the NMR and NS data. Simulations can also supplement the experiments by calculating quantities not easily accessible to experiments. Thus using NMR, NS and MD simulations in conjunction, a complete description of the molecular structure and dynamics of confined geo-fluids can be obtained. In the current review, our aim is to show how a synergistic use of these three techniques has helped shed light on the complex behavior of water, CO2, and low molecular weight hydrocarbons. After summarizing the theoretical backgrounds of the techniques, we will discuss some recent examples of the use of NMR, NS, and MD simulations to the study of confined fluids.

  12. Magnetic drops in a soft-magnetic cylinder

    NASA Astrophysics Data System (ADS)

    Hertel, Riccardo; Kirschner, Jürgen

    2004-07-01

    Magnetization reversal in a cylindrical ferromagnetic particle seems to be a simple textbook problem in magnetism. But at a closer look, the magnetization reversal dynamics in a cylinder is far from being trivial. The difficulty arises from the central axis, where the magnetization switches in a discontinuous fashion. Micromagnetic computer simulations allow for a detailed description of the evolution of the magnetic structure on the sub-nanosecond time scale. The switching process involves the injection of a magnetic point singularity (Bloch point) into the cylinder. Further point singularities may be generated and annihilated periodically during the reversal process. This results in the temporary formation of micromagnetic drops, i.e., isolated, non-reversed regions. This surprising feature in dynamic micromagnetism is due to different mobilities of domain wall and Bloch point.

  13. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics

    PubMed Central

    Reeves, Daniel B.; Shi, Yipeng; Weaver, John B.

    2016-01-01

    Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles’ size distribution and moment and the applied field’s amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter. PMID:26959493

  14. Ellipsoidal Brownian self-driven particles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Fan, Wai-Tong Louis; Pak, On Shun; Sandoval, Mario

    2017-03-01

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at a low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement, showing the effect of a particles's shape, activity, and magnetic field on the microswimmer's diffusion, is analytically obtained. Comparison between analytical and computational results shows good agreement. In addition, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is investigated.

  15. μ SR study of NaCaNi2F7 in zero field and applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Cai, Yipeng; Wilson, Murray; Hallas, Alannah; Liu, Lian; Frandsen, Benjamin; Dunsiger, Sarah; Krizan, Jason; Cava, Robert; Uemura, Yasutomo; Luke, Graeme

    Rich physics of abundant magnetic ground states has been realized in the A2B2X7 geometrically frustrated magnetic pyrochlores. Recently, a new spin-1 Ni2+ pyrochlore, NaCaNi2F7, was synthesized and shown to have spin freezing at 3.6 K with a frustration index of f 36 and antiferromagnetic exchange interactions [1] . This structure has chemical disorder on the A site caused by randomly distributed Ca and Na ions, which causes bond disorder around the magnetic Ni sites. We present Zero Field (ZF) and Longitudinal Field (LF) muon spin rotation (μSR) measurements on this single crystal pyrochlore. Our data shows that the Ni2+ spins start freezing around 4 K giving a static local field of 140 G. The data show no oscillations down to 75 mK which indicates no long range magnetic order. They are well described by the dynamic Gaussian Kubo-Toyabe function with a non-zero hopping rate that is not easily decoupled with an applied longitudinal field, which implies persistent spin dynamics down to 75 mK.

  16. Manipulating Abrikosov vortices with soft magnetic stripes

    DOE PAGES

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.; ...

    2017-05-22

    Here, tuning the polarization of a periodic array of magnetic stripes on top of a superconducting film allows control of Abrikosov vortex motion. Using direct magneto-optical imaging of the vortex patterns, we demonstrate that the proximity of the magnetic stripe ends to the edges of the superconducting film can strongly alter the vortex dynamics. We observe qualitatively different vortex behavior when the stripes overlap with the film edges. From the resulting unique magnetic flux patterns, we calculate the magnetic pinning strength of our stripe array and study effects of the modified edge barrier on vortex guidance and gating that resultmore » from different polarizations of the stripes .« less

  17. Manipulating Abrikosov vortices with soft magnetic stripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.

    Here, tuning the polarization of a periodic array of magnetic stripes on top of a superconducting film allows control of Abrikosov vortex motion. Using direct magneto-optical imaging of the vortex patterns, we demonstrate that the proximity of the magnetic stripe ends to the edges of the superconducting film can strongly alter the vortex dynamics. We observe qualitatively different vortex behavior when the stripes overlap with the film edges. From the resulting unique magnetic flux patterns, we calculate the magnetic pinning strength of our stripe array and study effects of the modified edge barrier on vortex guidance and gating that resultmore » from different polarizations of the stripes .« less

  18. Dynamic formation and magnetic support of loop or arcade prominences

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard; Mok, Y.; Drake, J. F.

    1992-01-01

    The results of model dynamic simulations of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade are described. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The antibuoyancy effect as the prominence forms causes a bending of a confining magnetic field, which propagates toward the semirigid ends of the magnetic loop. Thus, a wide magnetic 'hammock' or well (of a normal polarity Kippenhahn-Schlueter type) is formed, which supports the prominence at or near the field apex.

  19. Calculation and Analysis of Dynamic Characteristics of Multilink Permanent Magnetic Actuator in Vacuum Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Liu, Yingyi; Yuan, Haiwen; Zhang, Qingjie; Chen, Degui; Yuan, Haibin

    The dynamic characteristics are the key issues in the optimum design of a permanent magnetic actuator (PMA). A new approach to forecast the dynamic characteristics of the multilink PMA is proposed. By carrying out further developments of ADAMS and ANSOFT, a mathematic calculation model describing the coupling of mechanical movement, electric circuit and magnetic field considering eddy current effect, is constructed. With this model, the dynamic characteristics of the multilink PMA are calculated and compared with the experimental results. Factors that affect the opening time of the multilink PMA are analyzed with the model as well. The method is capable of providing a reference for the design of the PMA.

  20. Planetary Magnetic Fields: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Shkolnik, Evgenya; Hallinan, Gregg; Planetary Habitability Study Team

    2016-06-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the Planetary Magnetic Fields: Planetary Interiors and Habitability Study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection. There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process. This report presents the findings from the Study, including potential mission concepts that emerged and future work in both modeling and observations. There was also an identification of that radio wavelength observations would likely be key to making significant progress in this field. The entire Study program would not have been possible without the generous support of the W. M. Keck Foundation. We thank Michele Judd, Tom Prince, and the staff of the W. M. Keck Institute for Space Studies for their hospitality and attention to detail, such that the Study participants could turn their attention to focused discussions and innovative ideas. We also thank Charles ("Chuck") Carter of Eagre Games, Inc., for his assistance with graphics.

  1. Vertically polarizing undulator with the dynamic compensation of magnetic forces for the next generation of light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelnikov, N.; Budker Institute of Nuclear Physics, Novosibirsk 630090; Trakhtenberg, E.

    2014-11-15

    A short prototype (847-mm-long) of an Insertion Device (ID) with the dynamic compensation of ID magnetic forces has been designed, built, and tested at the Advanced Photon Source (APS) of the Argonne National Laboratory. The ID magnetic forces were compensated by the set of conical springs placed along the ID strongback. Well-controlled exponential characteristics of conical springs permitted a very close fit to the ID magnetic forces. Several effects related to the imperfections of actual springs, their mounting and tuning, and how these factors affect the prototype performance has been studied. Finally, series of tests to determine the accuracy andmore » reproducibility of the ID magnetic gap settings have been carried out. Based on the magnetic measurements of the ID B{sub eff}, it has been demonstrated that the magnetic gaps within an operating range were controlled accurately and reproducibly within ±1 μm. Successful tests of this ID prototype led to the design of a 3-m long device based on the same concept. The 3-m long prototype is currently under construction. It represents R and D efforts by the APS toward APS Upgrade Project goals as well as the future generation of IDs for the Linac Coherent Light Source (LCLS)« less

  2. Numerical Investigations of Capabilities and Limits of Photospheric Data Driven Magnetic Flux Emergence

    NASA Astrophysics Data System (ADS)

    Linton, Mark; Leake, James; Schuck, Peter W.

    2016-05-01

    The magnetic field of the solar atmosphere is the primary driver of solar activity. Understanding the magnetic state of the solar atmosphere is therefore of key importance to predicting solaractivity. One promising means of studying the magnetic atmosphere is to dynamically build up and evolve this atmosphere from the time evolution of the magnetic field at the photosphere, where it can be measured with current solar vector magnetograms at high temporal and spatial resolution.We report here on a series of numerical experiments investigating the capabilities and limits of magnetohydrodynamical simulations of such a process, where a magnetic corona is dynamically built up and evolved from a time series of synthetic photospheric data. These synthetic data are composed of photospheric slices taken from self consistent convection zone to corona simulations of flux emergence. The driven coronae are then quantitatively compared against the coronae of the original simulations. We investigate and report on the fidelity of these driven simulations, both as a function of the emergence timescale of the magnetic flux, and as a function of the driving cadence of the input data.This work was supported by the Chief of Naval Research and the NASA Living with a Star and Heliophysics Supporting Research programs.

  3. Post-Markovian dynamics of quantum correlations: entanglement versus discord

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hamidreza

    2017-02-01

    Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.

  4. Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy.

    PubMed

    Fragouli, Despina; Buonsanti, Raffaella; Bertoni, Giovanni; Sangregorio, Claudio; Innocenti, Claudia; Falqui, Andrea; Gatteschi, Dante; Cozzoli, Pantaleo Davide; Athanassiou, Athanassia; Cingolani, Roberto

    2010-04-27

    We present a simple technique for magnetic-field-induced formation, assembling, and positioning of magnetic nanowires in a polymer film. Starting from a polymer/iron oxide nanoparticle casted solution that is allowed to dry along with the application of a weak magnetic field, nanocomposite films incorporating aligned nanocrystal-built nanowire arrays are obtained. The control of the dimensions of the nanowires and of their localization across the polymer matrix is achieved by varying the duration of the applied magnetic field, in combination with the evaporation dynamics. These multifunctional anisotropic free-standing nanocomposite films, which demonstrate high magnetic anisotropy, can be used in a wide field of technological applications, ranging from sensors to microfluidics and magnetic devices.

  5. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations.

    PubMed

    Bottaro, Sandro; Bussi, Giovanni; Kennedy, Scott D; Turner, Douglas H; Lindorff-Larsen, Kresten

    2018-05-01

    RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flexible molecules, and understanding their internal dynamics is particularly challenging using experimental data alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining atomistic molecular dynamics simulations with nuclear magnetic resonance spectroscopy data. The goal is achieved by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We determine the populations of different conformational states by considering several nuclear magnetic resonance parameters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our approach is applied on a set of model systems, it is fully general and may be used to study the conformational dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields.

  6. Dynamic levitation performance of Gd-Ba-Cu-O and Y-Ba-Cu-O bulk superconductors under a varying external magnetic field

    NASA Astrophysics Data System (ADS)

    Liao, Hengpei; Zheng, Jun; Jin, Liwei; Huang, Huan; Deng, Zigang; Shi, Yunhua; Zhou, Difan; Cardwell, David A.

    2018-07-01

    We report that the dynamic levitation force of bulk high temperature superconductors (HTS) in motion attenuates when exposed to an inhomogeneous magnetic field. This phenomenon has significant potential implications for the long-term stability and running performance of HTS in maglev applications. In order to suppress the attenuation of the levitation force associated with fluctuations in magnetic field, we compare the dynamic levitation performance of single grain Y-Ba-Cu-O (YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors with relatively high critical current densities. A bespoke HTS maglev dynamic measurement system (SCML-03) incorporating a rotating circular permanent magnet guideway was employed to simulate the movement of HTS in a varying magnetic field at different frequencies (i.e. speed of rotation). The attenuation of the levitation force during dynamic operation, which is key parameter for effective maglev operation, has been evaluated experimentally. It is found that GdBCO bulk superconductors that exhibit superior levitation force properties are more able to resist the attenuation of levitation force compared with YBCO bulk materials under the same operating conditions. This investigation indicates clearly that GdBCO bulk superconductors can play an important role in suppressing attenuation of the levitation force, therefore improving the long-term levitation performance under dynamic operating conditions. This result is potentially significant in the design and application of HTS in maglev systems.

  7. Magnetically actuated and controlled colloidal sphere-pair swimmer

    NASA Astrophysics Data System (ADS)

    Ran, Sijie; Guez, Allon; Friedman, Gary

    2016-12-01

    Magnetically actuated swimming of microscopic objects has been attracting attention partly due to its promising applications in the bio-medical field and partly due to interesting physics of swimming in general. While colloidal particles that are free to move in fluid can be an attractive swimming system due it its simplicity and ability to assemble in situ, stability of their dynamics and the possibility of stable swimming behavior in periodically varying magnetic fields has not been considered. Dynamic behavior of two magnetically interacting colloidal particles subjected to rotating magnetic field of switching frequency is analyzed here and is shown to result in stable swimming without any stabilizing feedback. A new mechanism of swimming that relies only on rotations of the particles themselves and of the particle pair axis is found to dominate the swimming dynamics of the colloidal particle pair. Simulation results and analytical arguments demonstrate that this swimming strategy compares favorably to dragging the particles with an external magnetic force when colloidal particle sizes are reduced.

  8. The role of Pt underlayer on the magnetization dynamics of perpendicular magnetic anisotropy Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besbas, Jean; Loong, Li Ming; Wu, Yang

    2016-06-06

    We investigate the role of Pt on the magnetization dynamics of Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO with perpendicular magnetic anisotropy using the time resolved magneto-optic Kerr effect. Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO shows ultrafast magnetization dynamics comparable to 3d ferromagnets and can be fully demagnetized. The demagnetization time τ{sub d} ∼ 0.27 ps and magnetic heat capacity are independent of the Pt underlayer, whereas the value of the electron-phonon coupling time τ{sub e} ∼ 0.77 ps depends on the presence of the Pt layer. We further measure the effective damping α{sub eff} ∼ 1 that does not scale as the inverse demagnetizationmore » time (1/τ{sub d}), but is strongly affected by the Pt layer.« less

  9. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.

    PubMed

    Babinec, Peter; Krafcík, Andrej; Babincová, Melánia; Rosenecker, Joseph

    2010-08-01

    Magnetic nanoparticles for therapy and diagnosis are at the leading edge of the rapidly developing field of bionanotechnology. In this study, we have theoretically studied motion of magnetic nano- as well as micro-particles in the field of cylindrical Halbach array of permanent magnets. Magnetic flux density was modeled as magnetostatic problem by finite element method and particle motion was described using system of ordinary differential equations--Newton law. Computations were done for nanoparticles Nanomag-D with radius 65 nm, which are often used in magnetic drug targeting, as well as microparticles DynaBeads-M280 with radius 1.4 microm, which can be used for magnetic separation. Analyzing snapshots of trajectories of hundred magnetite particles of each size in the water as well as in the air, we have found that optimally designed magnetic circuits of permanent magnets in quadrupolar Halbach array have substantially shorter capture time than simple blocks of permanent magnets commonly used in experiments, therefore, such a Halbach array may be useful as a potential source of magnetic field for magnetic separation and targeting of magnetic nanoparticles as well as microparticles for delivery of drugs, genes, and cells in various biomedical applications.

  10. A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigorenko, E. E., E-mail: elenagrigorenko2003@yahoo.com; Malova, H. V., E-mail: hmalova@yandex.ru; Malykhin, A. Yu., E-mail: anmaurdreg@gmail.com

    2015-01-15

    The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formationmore » of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics.« less

  11. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orange, N. Brice; Chesny, David L.; Oluseyi, Hakeem M.

    Increasing evidence for coronal heating contributions from cooler solar atmospheric layers, notably quiet Sun (QS) conditions, challenges standard solar atmospheric descriptions of bright transition region (TR) emission. As such, questions about the role of dynamic QS transients in contributing to the total coronal energy budget are raised. Using observations from the Atmospheric Imaging Assembly and Heliosemic Magnetic Imager on board the Solar Dynamics Observatory, and numerical model extrapolations of coronal magnetic fields, we investigate a dynamic QS transient that is energetically isolated to the TR and extrudes from a common footpoint shared with two heated loop arcades. A non-causal relationshipmore » is established between episodic heating of the QS transient and widespread magnetic field re-organization events, while evidence is found favoring a magnetic topology that is typical of eruptive processes. Quasi-steady interchange reconnection events are implicated as a source of the transient’s visibly bright radiative signature. We consider the QS transient’s temporally stable (≈35 minutes) radiative nature to occur as a result of the large-scale magnetic field geometries of the QS and/or relatively quiet nature of the magnetic photosphere, which possibly act to inhibit energetic build-up processes that are required to initiate a catastrophic eruption phase. This work provides insight into the QS’s thermodynamic and magnetic relation to eruptive processes that quasi-steadily heat a small-scale dynamic and TR transient. This work explores arguments of non-negligible coronal heating contributions from cool atmospheric layers in QS conditions and contributes evidence to the notion that  solar wind mass feeds off of dynamic transients therein.« less

  13. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    NASA Astrophysics Data System (ADS)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  14. The ARASE (ERG) magnetic field investigation

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ayako; Teramoto, Mariko; Nomura, Reiko; Nosé, Masahito; Fujimoto, Akiko; Tanaka, Yoshimasa; Shinohara, Manabu; Nagatsuma, Tsutomu; Shiokawa, Kazuo; Obana, Yuki; Miyoshi, Yoshizumi; Mita, Makoto; Takashima, Takeshi; Shinohara, Iku

    2018-03-01

    The fluxgate magnetometer for the Arase (ERG) spacecraft mission was built to investigate particle acceleration processes in the inner magnetosphere. Precise measurements of the field intensity and direction are essential in studying the motion of particles, the properties of waves interacting with the particles, and magnetic field variations induced by electric currents. By observing temporal field variations, we will more deeply understand magnetohydrodynamic and electromagnetic ion-cyclotron waves in the ultra-low-frequency range, which can cause production and loss of relativistic electrons and ring-current particles. The hardware and software designs of the Magnetic Field Experiment (MGF) were optimized to meet the requirements for studying these phenomena. The MGF makes measurements at a sampling rate of 256 vectors/s, and the data are averaged onboard to fit the telemetry budget. The magnetometer switches the dynamic range between ± 8000 and ± 60,000 nT, depending on the local magnetic field intensity. The experiment is calibrated by preflight tests and through analysis of in-orbit data. MGF data are edited into files with a common data file format, archived on a data server, and made available to the science community. Magnetic field observation by the MGF will significantly improve our knowledge of the growth and decay of radiation belts and ring currents, as well as the dynamics of geospace storms.

  15. Dust acoustic shock waves in magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Yashika, GHAI; Nimardeep, KAUR; Kuldeep, SINGH; N, S. SAINI

    2018-07-01

    We have presented a theoretical study of the dust acoustic (DA) shock structures in a magnetized, electron depleted dusty plasma in the presence of two temperature superthermal ions. By deriving a Korteweg–de Vries–Burgers equation and studying its shock solution, we aim to highlight the effects of magnetic field and obliqueness on various properties of the DA shock structures in the presence of kappa-distributed two temperature ion population. The present model is motivated by the observations of Geotail spacecraft in the Earth's magnetotail and it is seen that the different physical parameters such as superthermality of the cold and hot ions, the cold to hot ion temperature ratio, the magnetic field strength, obliqueness and the dust kinematic viscosity greatly influence the dynamics of the shock structures so formed. The results suggest that the variation of superthermalities of the cold and hot ions have contrasting effects on both positive and negative polarity shock structures. Moreover, it is noted that the presence of the ambient magnetic field affects the dispersive properties of the medium and tends to make the shock structures less wide and more abrupt. The findings of present investigation may be useful in understanding the dynamics of shock waves in dusty plasma environments containing two temperature ions where the electrons are significantly depleted.

  16. Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter.

    PubMed

    Kopp, M; Harmeling, S; Schütz, G; Schölkopf, B; Fähnle, M

    2015-01-01

    The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 10(5)), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that - nevertheless - there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of ½

    PubMed Central

    Maryasov, Alexander G.

    2012-01-01

    The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or ‘powder’ sample when g tensor anisotropy is significant. PMID:22743542

  18. Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2

    NASA Astrophysics Data System (ADS)

    Maryasov, Alexander G.; Bowman, Michael K.

    2012-08-01

    The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.

  19. Anisotropic magnetic interactions and spin dynamics in the spin-chain compound Cu (py) 2Br2 : An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.

    2017-07-01

    We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.

  20. Continual model of magnetic dynamics for antiferromagnetic particles in analyzing size effects on Morin transition in hematite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mishchenko, I.; Chuev, M.; Kubrin, S.; Lastovina, T.; Polyakov, V.; Soldatov, A.

    2018-05-01

    Alternative explanation to the effect of disappearance of the Morin transition on hematite nanoparticles with their size decreasing is proposed basing on an idea of the predominant role of the shape anisotropy for nanosize particles. Three types of the magnetic structure of hematite nanoparticles with various sizes are found by Mössbauer spectroscopy: coexistence of the well-pronounced antiferromagnetic and weakly ferromagnetic phases for particles with average diameters of about 55 nm, non-uniform distribution of the magnetization axes which concentrate on the vicinity of the basal plane (111) for prolonged particles with cross sections of about 20 nm, and uniform distribution of the easy axes in regard to the crystalline directions for 3-nm particles. Description of the temperature evolution of experimental data within novel model of the magnetic dynamics for antiferromagnetic particles which accounts the exchange, relativistic, and anisotropy interactions is provided, and the structural as well as energy characteristics of the studied systems are reconstructed.

  1. A Comparison Study of Magnetic Bearing Controllers for a Fully Suspended Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Morrison, Carlos; Mehmed, Oral; Huff, Dennis (Technical Monitor)

    2002-01-01

    NASA Glenn Research Center (GRC) has developed a fully suspended magnetic bearing system for the Dynamic Spin Rig (DSR) that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust bearing and the associated control system were integrated into the DSR to provide noncontact magnetic suspension and mechanical excitation of the 35 lb vertical rotor with blades to induce turbomachinery blade vibration. A simple proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked very well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, and energy savings for the system. The test results of a variety of controllers we demonstrated up to the rig's maximum allowable speed of 10,000 rpm are shown.

  2. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  3. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect

    PubMed Central

    Liang, Dong; DeGrave, John P.; Stolt, Matthew J.; Tokura, Yoshinori; Jin, Song

    2015-01-01

    Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires. THE is observed in an extended magnetic field-temperature window (15–30 K), suggesting stabilization of skyrmions in nanowires compared with the bulk. Furthermore, we show in nanowires that under the high current density of 108–109 A m−2, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field in the extended skyrmion phase region. These results open up the exploration of skyrmions in nanowires for fundamental physics and magnetic storage technologies. PMID:26400204

  4. Electron theory of fast and ultrafast dissipative magnetization dynamics.

    PubMed

    Fähnle, M; Illg, C

    2011-12-14

    For metallic magnets we review the experimental and electron-theoretical investigations of fast magnetization dynamics (on a timescale of ns to 100 ps) and of laser-pulse-induced ultrafast dynamics (few hundred fs). It is argued that for both situations the dominant contributions to the dissipative part of the dynamics arise from the excitation of electron-hole pairs and from the subsequent relaxation of these pairs by spin-dependent scattering processes, which transfer angular momentum to the lattice. By effective field theories (generalized breathing and bubbling Fermi-surface models) it is shown that the Gilbert equation of motion, which is often used to describe the fast dissipative magnetization dynamics, must be extended in several aspects. The basic assumptions of the Elliott-Yafet theory, which is often used to describe the ultrafast spin relaxation after laser-pulse irradiation, are discussed very critically. However, it is shown that for Ni this theory probably yields a value for the spin-relaxation time T(1) in good agreement with the experimental value. A relation between the quantity α characterizing the damping of the fast dynamics in simple situations and the time T(1) is derived. © 2011 IOP Publishing Ltd

  5. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    NASA Astrophysics Data System (ADS)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  6. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    NASA Astrophysics Data System (ADS)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  7. Dynamical systems for modeling evolution of the magnetic field of the Sun, stars and planets

    NASA Astrophysics Data System (ADS)

    Popova, E.

    2016-12-01

    The magnetic activity of the Sun, stars and planets are connected with a dynamo process based on the combined action of the differential rotation and the alpha-effect. Application of this concept allows us to get different types of solutions which can describe the magnetic activity of celestial bodies. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the spherical shell where dynamo process operates. It was shown the possibility of coexistence of quiasi-biennial oscillations, 22-year cycle, and grand minima of magnetic activity which is consistent with the observational data for the solar activity. We obtained different regimes (oscillations, vacillations, dynamo-bursts) depending on a value of the dynamo-number, the meridional circulation, and thickness of the spherical shell. We discuss features of these regimes and compare them with the observed features of the magnetic fields of the Sun, stars and Earth. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.

  8. Spin-charge coupled dynamics driven by a time-dependent magnetization

    NASA Astrophysics Data System (ADS)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  9. High Field Small Animal Magnetic Resonance Oncology Studies

    PubMed Central

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, Chemical Exchange Saturation Transfer (CEST) imaging, and hyperpolarized 13C MR spectroscopy as well as diffusion-weighted, Blood Oxygen Level Dependent (BOLD) contrast imaging, and dynamic contrast-enhanced MR imaging. These methods have been proven effective in animal studies and are highly relevant to human clinical studies. PMID:24374985

  10. Transformable ferroelectric control of dynamic magnetic permeability

    NASA Astrophysics Data System (ADS)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  11. Magnetic properties and core electron binding energies of liquid water

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Cabral, Benedito J. C.

    2018-01-01

    The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.

  12. IMF By effects on ground magnetometer response to increased solar wind dynamic pressure derived from global MHD simulations

    NASA Astrophysics Data System (ADS)

    Ozturk, Dogacan Su; Zou, Shasha; Slavin, James A.

    2017-05-01

    During sudden solar wind dynamic pressure enhancements, the magnetosphere undergoes rapid compression resulting in a reconfiguration of the global current systems, most notably the field-aligned currents (FACs). Ground-based magnetometers are traditionally used to study such compression events. However, factors affecting the polarity and magnitude of the ground-based magnetic perturbations are still not well understood. In particular, interplanetary magnetic field (IMF) By is known to create significant asymmetries in the FAC patterns. We use the University of Michigan Block Adaptive Tree Roe Upwind Scheme (BATS'R'US) magnetohydrodynamic code to investigate the effects of IMF By on the global variations of ground magnetic perturbations during solar wind dynamic pressure enhancements. Using virtual magnetometers in three idealized simulations with varying IMF By, we find asymmetries in the peak amplitude and magnetic local time of the ground magnetic perturbations during the preliminary impulse (PI) and the main impulse (MI) phases. These asymmetries are especially evident at high-latitude ground magnetometer responses where the peak amplitudes differ by 50 nT at different locations. We show that the FACs related with the PI are due to magnetopause deformation, and the FACs related with the MI are generated by vortical flows within the magnetosphere, consistent with other simulation results. The perturbation FACs due to pressure enhancements and their magnetospheric sources do not differ much under different IMF By polarities. However, the conductance profile affected by the superposition of the preexisting FACs and the perturbation FACs including their closure currents is responsible for the magnitude and location asymmetries in the ground magnetic perturbations.

  13. Voltage-Driven Magnetization Switching and Spin Pumping in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Daichi; Nomura, Kentaro

    2016-10-01

    We demonstrate electrical magnetization switching and spin pumping in magnetically doped Weyl semimetals. The Weyl semimetal is a three-dimensional gapless topological material, known to have nontrivial coupling between the charge and the magnetization due to the chiral anomaly. By solving the Landau-Lifshitz-Gilbert equation for a multilayer structure of a Weyl semimetal, an insulator and a metal while taking the charge-magnetization coupling into account, magnetization dynamics is analyzed. It is shown that the magnetization dynamics can be driven by the electric voltage. Consequently, switching of the magnetization with a pulsed electric voltage can be achieved, as well as precession motion with an applied oscillating electric voltage. The effect requires only a short voltage pulse and may therefore be energetically favorable for us in spintronics devices compared to conventional spin-transfer torque switching.

  14. Visualization of Dynamic Vortex Structures in Magnetic Films with Uniaxial Anisotropy (Micromagnetic Simulation)

    NASA Astrophysics Data System (ADS)

    Zverev, V. V.; Izmozherov, I. M.; Filippov, B. N.

    2018-02-01

    Three-dimensional computer simulation of dynamic processes in a moving domain boundary separating domains in a soft magnetic uniaxial film with planar anisotropy is performed by numerical solution of Landau-Lifshitz-Gilbert equations. The developed visualization methods are used to establish the connection between the motion of surface vortices and antivortices, singular (Bloch) points, and core lines of intrafilm vortex structures. A relation between the character of magnetization dynamics and the film thickness is found. The analytical models of spatial vortex structures for imitation of topological properties of the structures observed in micromagnetic simulation are constructed.

  15. Dark soliton interaction of spinor Bose-Einstein condensates in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zaidong; Li Qiuyan

    2007-08-15

    We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. An equation of nonlinear Schroedinger type is derived and exact magnetic soliton solutions are obtained analytically by means of Hirota method. Our results show that the critical external field is needed for creating the magnetic soliton in spinor Bose-Einstein condensates. The soliton size, velocity and shape frequency can be controlled in practical experiment by adjusting the magnetic field. Moreover, the elastic collision of two solitons is investigated in detail.

  16. Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Schnack, D. D.

    1994-01-01

    Advanced computational techniques were used to study solar coronal heating and coronal mass ejections. A three dimensional, time dependent resistive magnetohydrodynamic code was used to study the dynamic response of a model corona to continuous, slow, random magnetic footpoint displacements in the photosphere. Three dimensional numerical simulations of the response of the corona to simple smooth braiding flows in the photosphere were calculated to illustrate and understand the spontaneous formation of current filaments. Two dimensional steady state helmet streamer configurations were obtained by determining the time asymptotic state of the interaction of an initially one dimensinal transponic solar wind with a spherical potential dipole field. The disruption of the steady state helmet streamer configuration was studied as a response to shearing of the magnetic footpoints of the closed field lines under the helmet.

  17. Ellipsoidal Brownian self-driven particles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Wai-Tong, Fan; Shun Pak, On

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement showing the effect of particles's shape, activity, and magnetic field on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain good agreement. Additionally, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is also elucidated. CONACYT GRANT: CB 2014/237848.

  18. Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating

    NASA Astrophysics Data System (ADS)

    Józefczak, A.; Hornowski, T.; Závišová, V.; Skumiel, A.; Kubovčíková, M.; Timko, M.

    2014-03-01

    The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).

  19. Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating.

    PubMed

    Józefczak, A; Hornowski, T; Závišová, V; Skumiel, A; Kubovčíková, M; Timko, M

    2014-01-01

    The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Requerey, Iker S.; Cobo, B. Ruiz; Iniesta, J. C. Del Toro

    We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footpoint is weakermore » (1100 G) and displays an upflow, while the negative polarity footpoint is stronger (2200 G) and shows a downflow. This configuration is naturally interpreted as a siphon flow along an arched magnetic flux tube.« less

  1. Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets

    PubMed Central

    Abedini-Nassab, Roozbeh; Lim, Byeonghwa; Yang, Ye; Howdyshell, Marci; Sooryakumar, Ratnasingham; Yellen, Benjamin B.

    2015-01-01

    We investigate the non-linear dynamics of superparamagnetic beads moving around the periphery of patterned magnetic disks in the presence of an in-plane rotating magnetic field. Three different dynamical regimes are observed in experiments, including (1) phase-locked motion at low driving frequencies, (2) phase-slipping motion above the first critical frequency fc1, and (3) phase-insulated motion above the second critical frequency fc2. Experiments with Janus particles were used to confirm that the beads move by sliding rather than rolling. The rest of the experiments were conducted on spherical, isotropic magnetic beads, in which automated particle position tracking algorithms were used to analyze the bead dynamics. Experimental results in the phase-locked and phase-slipping regimes correlate well with numerical simulations. Additional assumptions are required to predict the onset of the phase-insulated regime, in which the beads are trapped in closed orbits; however, the origin of the phase-insulated state appears to result from local magnetization defects. These results indicate that these three dynamical states are universal properties of bead motion in non-uniform oscillators. PMID:26648596

  2. Probing equilibrium by nonequilibrium dynamics: Aging in Co/Cr superlattices

    NASA Astrophysics Data System (ADS)

    Binek, Christian

    2013-03-01

    Magnetic aging phenomena are investigated in a structurally ordered Co/Cr superlattice through measurements of magnetization relaxation, magnetic susceptibility, and hysteresis at various temperatures above and below the onset of collective magnetic order. We take advantage of the fact that controlled growth of magnetic multilayer thin films via molecular beam epitaxy allows tailoring the intra and inter-layer exchange interaction and thus enables tuning of magnetic properties including the spin-fluctuation spectra. Tailored nanoscale periodicity in Co/Cr multilayers creates mesoscopic spatial magnetic correlations with slow relaxation dynamics when quenching the system into a nonequilibrium state. Magnetization relaxation in weakly correlated spin systems depends on the microscopic spin-flip time of about 10 ns and is therefore a fast process. The spin correlations in our Co/Cr superlattice bring the magnetization dynamics to experimentally better accessible time scales of seconds or hours. In contrast to spin-glasses, where slow dynamics due to disorder and frustration is a well-known phenomenon, we tune and increase relaxation times in ordered structures. This is achieved by increasing spin-spin correlation between mesoscopically correlated regions rather than individual atomic spins, a concept with some similarity to block spin renormalization. Magnetization transients are measured after exposing the Co/Cr heterostructure to a magnetic set field for various waiting times. Scaling analysis reveals an asymptotic power-law behavior in accordance with a full aging scenario. The temperature dependence of the relaxation exponent shows pronounced anomalies at the equilibrium phase transitions of the antiferromagnetic superstructure and the ferromagnetic to paramagnetic transition of the Co layers. The latter leaves only weak fingerprints in the equilibrium magnetic behavior but gives rise to a prominent change in nonequilibrium properties. Our findings suggest that scaling analysis of nonequilibrium data can serve as a probe for weak equilibrium phase transitions. Financial support by NRI, and NSF through EPSCoR, and MRSEC 0820521 is greatly acknowledged.

  3. Magnetic Transparency of the ab Planes of BSCCO and the Disorder and Dynamics of the Pancake Vortices.

    NASA Astrophysics Data System (ADS)

    Kossler, W. J.; Petzinger, K. G.; Wan, X.; Dai, Y.; Greer, A. J.; Williams, D. Ll.; Koster, E.; Harshman, D. R.; Mitzi, D. B.

    1998-03-01

    We have recently discovered using μSR that low magnetic fields in the ab planes of a sample composed of many Bi_2Sr_2CaCu_2O_8+δ single crystals penetrate freely, unperturbed by the superconductivity. This provides microscopic evidence for extreme 2D behavior for the vortices even at at 2 K. Measurements are described which show that one may apply, remove and then reapply these fields obtaining the same field distributions with no observable hysteresis. The measured field distributions have been modelled using pancake vortices and are interpreted in terms of a disordered distribution of the pancake centers. The dynamics of the vortex fields have been studied by following the component of the muon's polarization parallel to the average internal magnetic field.

  4. Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics.

    PubMed

    Chekhov, Alexander L; Stognij, Alexander I; Satoh, Takuya; Murzina, Tatiana V; Razdolski, Ilya; Stupakiewicz, Andrzej

    2018-05-09

    We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.

  5. Current induced vortex wall dynamics in helical magnetic systems

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman

    2015-03-01

    Nontrivial topology of interfaces separating phases with opposite chirality in helical magnetic metals result in new effects as they interact with spin polarized current. These interfaces or vortex walls consist of a one dimensional array of vortex lines. We predict that adiabatic transfer of angular momentum between vortex array and spin polarized current will result in topological Hall effect in multi-domain samples. Also we predict that the motion of the vortex array will result in a new damping mechanism for magnetic moments based on Lenz's law. We study the dynamics of these walls interacting with electric current and use fundamental electromagnetic laws to quantify those predictions. On the other hand discrete nature of vortex walls affects their pinning and results in low depinning current density. We predict the value of this current using collective pinning theory.

  6. Influence of magnetocrystalline anisotropy on the magnetization dynamics of magnetic microstructures.

    PubMed

    Kaiser, A; Wiemann, C; Cramm, S; Schneider, C M

    2009-08-05

    The study of magnetodynamics using stroboscopic time-resolved x-ray photoemission electron microscopy (TR-XPEEM) involves an intrinsic timescale provided by the pulse structure of the synchrotron radiation. In the usual multi-bunch operation mode, the time span between two subsequent light pulses is too short to allow a relaxation of the system into the ground state before the next pump-probe cycle starts. Using a deflection gating mechanism described in this paper we are able to pick the photoemission signal resulting from selected light pulses. Thus, PEEM measurements can be carried out in a flexible timing scheme with longer delays between two light pulses. Using this technique, the magnetodynamics of both Permalloy and iron structures have been investigated. The differences in the dynamic response on a short magnetic field pulse are discussed with respect to the magnetocrystalline anisotropy.

  7. Development of atomic force microscope with wide-band magnetic excitation for study of soft matter dynamics

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Chikamoto, Takuma; Ogawa, Tatsuya; Hirata, Yoshiki; Inoue, Takahito; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2009-02-01

    In order to probe dynamical properties of mesoscopic soft matter systems such as polymers, structured liquid, etc., a new atomic force microscopy apparatus with a wide-band magnetic cantilever excitation system was developed. Constant-current driving of an electromagnet up to 1 MHz was implemented with a closed-loop driver circuit. Transfer function of a commercial cantilever attached with a magnetic particle was measured in a frequency range of 1-1000 kHz in distilled water. Effects of the laser spot position, distribution of the force exerted on the cantilever, and difference in the detection scheme on the obtained transfer function are discussed in comparison with theoretical predictions by other research groups. A preliminary result of viscoelasticity spectrum measurement of a single dextran chain is shown and is compared with a recent theoretical calculation.

  8. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field.

    PubMed

    Carmelo, J M P; Sacramento, P D; Machado, J D P; Campbell, D K

    2015-10-14

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the 'pseudofermion dynamical theory' (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζ(τ)(k) controlling the singularities for both the longitudinal (τ = l) and transverse (τ = t) dynamical structure factors for the whole momentum range k ∈ ]0,π[, in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  9. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  10. Ultrafast optical excitation of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Ogawa, N.; Seki, S.; Tokura, Y.

    2015-04-01

    Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a distinct transition into the skyrmion phase, by sweeping temperature and magnetic field. In addition to the collective excitations of skyrmions, i.e., rotation and breathing modes, several spin precession modes were identified, which would be specific to optical excitation. The ultrafast, nonthermal, and local excitation of the spin systems by photons would lead to the efficient manipulation of nano-magnetic structures.

  11. Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics

    NASA Astrophysics Data System (ADS)

    d'Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I. D.

    2018-05-01

    Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods.

  12. The chaotic dynamical aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Tepikian, S.

    1985-10-01

    Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator design have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipolesmore » should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take tremendous amount of computing time. In this paper, we try to apply the existing method in the nonlinear dynamics to study the possible alternative solution. When the Hamiltonian motion becomes chaotic, the tune of the machine becomes undefined. The aperture related to the chaotic orbit can be identified as chaotic dynamical aperture. We review the method of determining chaotic orbit and apply the method to nonlinear problems in accelerator physics. We then discuss the scaling properties and effect of random sextupoles.« less

  13. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  14. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections atmore » the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.« less

  15. Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)disprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state.

    PubMed

    Ishikawa, Naoto; Mizuno, Yoshifumi; Takamatsu, Satoshi; Ishikawa, Tadahiko; Koshihara, Shin-ya

    2008-11-17

    Chemically induced longitudinal contraction of the square-antiprism coordination polyhedron of a peripherically substituted bis(phthalocyaninato)dysprosiumate(III), a dysprosium-based single-4f-ionic single-molecule magnet having a J z = +/- (13)/ 2 Kramers doublet ground state, resulted in drastic changes in dynamical magnetism including a doubling of the energy barrier, a 2-order-of-magnitude decrease of the spin reversal rate, a significant rise of the blocking temperature, and the first observation of the emergence of a large remanent magnetization.

  16. Dynamic behavior of a magnetic bearing supported jet engine rotor with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah (Editor); Kelly, John C., Jr. (Editor); Flowers, G. T.; Xie, H.; Sinha, S. C.

    1994-01-01

    This paper presents a study of the dynamic behavior of a rotor system supported by auxiliary bearings. The steady-state behavior of a simulation model based upon a production jet engine is explored over a wide range of operating conditions for varying rotor imbalance, support stiffness and damping. Interesting dynamical phenomena, such as chaos, subharmonic responses, and double-valued responses, are presented and discussed.

  17. Dynamic behavior of a magnetic bearing supported jet engine rotor with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Flowers, George T.; Xie, Huajun; Sinha, S. C.

    1995-01-01

    This paper presents a study of the dynamic behavior of a rotor system supported by auxiliary bearings. The steady-state behavior of a simulation model based upon a production jet engine is explored over a wide range of operating conditions for varying rotor imbalance, support stiffness, and damping. Interesting dynamical phenomena, such as chaos, subharmonic responses, and double-valued responses, are presented and discussed.

  18. Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation

    NASA Astrophysics Data System (ADS)

    Jalaei, M. H.; Arani, A. Ghorbanpour

    2018-02-01

    By considering the small scale effect based on the nonlocal Eringen's theory, the static and dynamic analysis of viscoelastic orthotropic double-layered graphene sheets subjected to longitudinal magnetic field and mechanical load is investigated analytically. For this objective, first order shear deformation theory (FSDT) is proposed. The surrounding medium is simulated by visco-Pasternak foundation model in which damping, normal and transverse shear loads are taken into account. The governing equations of motion are obtained via energy method and Hamilton's principle which are then solved analytically by means of Navier's approach and Laplace inversion technique in the space and time domains, respectively. Through various parametric studies, the influences of the nonlocal parameter, structural damping, van der Waals (vdW) interaction, stiffness and damping coefficient of the foundation, magnetic parameter, aspect ratio and length to thickness ratio on the static and dynamic response of the nanoplates are examined. The results depict that when the vdW interaction is considered to be zero, the upper layer deflection reaches a maximum point whereas the lower layer deflection becomes zero. In addition, it is observed that with growing the vdW interaction, the effect of magnetic field on the deflection of the lower layer increases while this effect reduces for the upper layer deflection.

  19. Magnetic relaxation phenomena in the chiral magnet Fe1 -xCoxSi : An ac susceptibility study

    NASA Astrophysics Data System (ADS)

    Bannenberg, L. J.; Lefering, A. J. E.; Kakurai, K.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.

    2016-10-01

    We present a systematic study of the ac susceptibility of the chiral magnet Fe1 -xCoxSi with x =0.30 covering four orders of magnitude in frequencies from 0.1 Hz to 1 kHz, with particular emphasis to the pronounced history dependence. Characteristic relaxation times ranging from a few milliseconds to tens of seconds are observed around the skyrmion lattice A phase, the helical-to-conical transition and in a region above TC. The distribution of relaxation frequencies around the A phase is broad, asymmetric, and originates from multiple coexisting relaxation processes. The pronounced dependence of the magnetic phase diagram on the magnetic history and cooling rates as well as the asymmetric frequency dependence and slow dynamics suggest more complicated physical phenomena in Fe0.7Co0.3Si than in other chiral magnets.

  20. High Resolution IRS Mapping of the Star-Forming Region NGC 6334 A

    NASA Astrophysics Data System (ADS)

    Sarma, Anuj; Abel, Nicholas; Ferland, Gary; Mayo, Elizabeth; Troland, Thomas

    2005-06-01

    Star formation involves the interplay of thermal, gravitational and magnetic forces. These processes lead to a dynamically evolving region in which O stars ionize the surrounding medium, and the ionized gas expands into the molecular cloud. Of these forces, magnetic effects are the least understood. A detailed analysis of the conditions in star-forming environments requires that one combine magnetic field observations with observations of the ionized, atomic, and molecular gas along with dust. We propose to carry out high-resolution IRS spectroscopy between 9.9-37.2 microns of the nearby (1.7 kpc) star-forming region NGC 6334 A. Maps of the magnetic field strength in the molecular gas exist for NGC 6334 A, yet the conditions in the H II region, the surrounding photodissociated region (PDR), and the dynamical interaction between the two regions are poorly understood. In the H II region, our proposed observation will allow us to use well-known infrared diagnostic ratios to determine the electron density, temperature, and the hardness of the continuum source. Spitzer observations of rotational transitions of molecular hydrogen and PAH emission, combined with previous observations, will allow us to determine the hydrogen density, UV radiation flux, and temperature in the PDR. We will combine our observations with theoretical calculations, using the spectral synthesis code Cloudy. Recent improvements to Cloudy include a ~1000 reaction molecular network, the ability to treat the dynamical flow of ionized gas into a molecular cloud, and the effects of magnetic pressure. Matching the observed spectra with theoretical calculations will tell us the physical conditions in the H II region and PDR, the role of magnetic fields in NGC 6334 A, and the importance of dynamics in the region. Overall, IRS observations of NGC 6334 A offers a unique opportunity to study, at high spatial resolution, many of the physical processes in star-forming regions.

  1. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    NASA Astrophysics Data System (ADS)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  2. Detection of the Magnetospheric Emissions from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The authors acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" workshop organized by the Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  3. Aging, rejuvenation, and memory effects in short-range Ising spin glass: Cu_0.5Co_0.5Cl_2-FeCl3 GBIC

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Suzuki, I. S.

    2004-03-01

    Cu_0.5Co_0.5Cl_2-FeCl3 GBIC undergoes a spin glass (SG) transition at Tg (= 3.92 ± 0.11 K). The system shows a dynamic behavior that has some similarities and some significant differences compared to a 3D Ising SG.^1 Here we report on non-equilibrium aging dynamics which has been studied using zero-field cooled (ZFC) magnetization and low frequency AC magnetic susceptibility.^2 The time dependence of the relaxation rate S(t) = (1/H)dM_ZFC/dln t for the ZFC magnetization after the ZFC aging protocol, shows a peak at a characteristic time t_cr near a wait time t_w, corresponding to a crossover from quasi equilibrium dynamics to non-equilibrium. The time t_cr strongly depends on t_w, temperature, magnetic field, and the temperature shift. The rejuvenation effect is observed in both i^' and i^'' under the T-shift and H-shift procedures. The memory of the specific spin configurations imprinted during the ZFC aging protocol can be recalled when the system is re-heated at a constant heating rate. The aging, rejuvenation, and memory effects are discussed in terms of the scaling concepts derived from numerical studies on 3D Edwards-Anderson spin glass model. 1. I.S. Suzuki and M. Suzuki, Phys. Rev. B 68, 094424 (2003) 2. M. Suzuki and I.S. Suzuki, cond-mat/0308285

  4. Study of an expanding magnetic cloud

    NASA Astrophysics Data System (ADS)

    Nakwacki, M. S.; Dasso, S.; Mandrini, C. H.; Démoulin, P.

    Magnetic Clouds (MCs) transport into the interplanetary medium the magnetic flux and helicity released in coronal mass ejections by the Sun. At 1 AU from the Sun, MCs are generally modelled as static flux ropes. However, the velocity profile of some MCs presents signatures of expansion. We analise here the magnetic structure of an expanding magnetic cloud observed by Wind spacecraft. We consider a dynamical model, based on a self-similar behaviour for the cloud radial velocity. We assume a free expansion for the cloud, and a cylindrical linear force free field (i.e., the Lundquist's field) as the initial condition for its magnetic configuration. We derive theoretical expressions for the magnetic flux across a surface perpendicular to the cloud axis, for the magnetic helicity and magnetic energy per unit length along the tube using the self-similar model. Finally, we compute these magntitudes with the fitted parameters. FULL TEXT IN SPANISH

  5. Effect of sintering in a hydrogen atmosphere on the density and coercivity of (Sm,Zr)(Co,Cu,Fe)Z permanent magnets

    NASA Astrophysics Data System (ADS)

    Burkhanov, G. S.; Dormidontov, N. A.; Kolchugina, N. B.; Dormidontov, A. G.

    2018-04-01

    The effect of heat treatments in manufacturing (Sm,Zr)(Co,Cu,Fe)Z-based permanent magnets sintered in a hydrogen atmosphere on their properties has been studied. It was shown that the dynamics of the magnetic hardening of the studied magnets during heat treatments, in whole, corresponds to available concepts of phase transformations in five-component precipitation-hardened SmCo-based alloys. Peculiarities of the studied compositions consist in the fact that the coercive force magnitude of magnets quenched from the isothermal aging temperature is higher by an order of magnitude than those available in the literature. It was noted that, in using the selected manufacturing procedure, the increase in the density of samples does not finish at the sintering stage but continues in the course of solid-solution heat treatment.

  6. Investigation of the spectral properties and magnetism of BiFeO3 by dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Paul, Souvik; Iuşan, Diana; Thunström, Patrik; Kvashnin, Yaroslav O.; Hellsvik, Johan; Pereiro, Manuel; Delin, Anna; Knut, Ronny; Phuyal, Dibya; Lindblad, Andreas; Karis, Olof; Sanyal, Biplab; Eriksson, Olle

    2018-03-01

    Using the local density approximation plus dynamical mean-field theory (LDA+DMFT), we have computed the valence-band photoelectron spectra and magnetic excitation spectra of BiFeO3, one of the most studied multiferroics. Within the DMFT approach, the local impurity problem is tackled by the exact diagonalization solver. The solution of the impurity problem within the LDA+DMFT method for the paramagnetic and magnetically ordered phases produces result in agreement with the experimental data on electronic and magnetic structures. For comparison, we also present results obtained by the LDA +U approach which is commonly used to compute the physical properties of this compound. Our LDA+DMFT derived electronic spectra match adequately with the experimental hard x-ray photoelectron spectroscopy and resonant photoelectron spectroscopy for Fe 3 d states, whereas the LDA +U method fails to capture the general features of the measured spectra. This indicates the importance of accurately incorporating the dynamical aspect of electronic correlation among Fe 3 d orbitals to reproduce the experimental excitation spectra. Specifically, the LDA+DMFT derived density of states exhibits a significant amount of Fe 3 d states at the position of Bi lone pairs, implying that the latter are not alone in the spectral scenario. This fact might modify our interpretation about the origin of ferroelectric polarization in this material. Our study demonstrates that the combination of orbital cross sections for the constituent elements and broadening schemes for the spectral functions are crucial to explain the detailed structures of the experimental electronic spectra. Our magnetic excitation spectra computed from the LDA+DMFT result conform well with the inelastic neutron scattering data.

  7. Phases of QCD3 from non-SUSY Seiberg duality and brane dynamics

    NASA Astrophysics Data System (ADS)

    Armoni, Adi; Niarchos, Vasilis

    2018-05-01

    We consider a nonsupersymmetric USp Yang-Mills Chern-Simons gauge theory coupled to fundamental flavors. The theory is realised in type-IIB string theory via an embedding in a Hanany-Witten brane configuration which includes an orientifold and antibranes. We argue that the theory admits a magnetic Seiberg dual. Using the magnetic dual we identify dynamics in field theory and brane physics that correspond to various phases, obtaining a better understanding of three-dimensional bosonization and dynamical breaking of flavor symmetry in USp QCD3 theory. In field theory both phases correspond to magnetic "squark" condensation. In string theory, they correspond to open string tachyon condensation and brane reconnection. We also discuss other phases where the magnetic `squark' is massive. Finally, we briefly comment on the case of unitary gauge groups.

  8. Active magnetic damper in a power transmission system

    NASA Astrophysics Data System (ADS)

    Kozanecka, D.; Kozanecki, Z.; Łagodziński, J.

    2011-05-01

    In rotor dynamics, the bearing characteristics exerts a decisive influence on dynamics of the rotating shaft. The research and application experience have led to active magnetic bearings (AMBs), which allow for unique applications in rotating systems. The paper presents the investigations concerning optimization of the magnetic bearing construction. An active magnetic bearing operates as a radial, auxiliary damper, which cooperates with the long, flexible shaft line (aircraft industry applications) and modifies its dynamic properties. In the developed concept of AMBs for aviation purposes, a necessity of increasing its bearing load capacity and damping has occurred. The second important criterion is a weight reduction. This advanced problem leads to specific requirements on the design and materials for the AMB. To achieve these goals, some simulations have been performed. The experimental results are presented as well.

  9. Measurements and analysis of dynamic effects in the LARP model quadrupole HQ02b during rapid discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorbi, Massimo; Ambrosio, Giorgio; Bajas, Hugo

    This paper presents the analysis of some quench tests addressed to study the dynamic effects in the 1-m-long 120-mm-aperture Nb 3Sn quadrupole magnet, i.e., HQ02b, designed, fabricated, and tested by the LHC Accelerator Research Program. The magnet has a short sample gradient of 205 T/m at 1.9 K and a peak field of 14.2 T. The test campaign has been performed at CERN in April 2014. In the specific tests, which were dedicated to the measurements of the dynamic inductance of the magnet during the rapid current discharge for a quench, the protection heaters were activated only in some windings,more » in order to obtain the measure of the resistive and inductive voltages separately. The analysis of the results confirms a very low value of the dynamic inductance at the beginning of the discharge, which later approaches the nominal value. Indications of dynamic inductance variation were already found from the analysis of current decay during quenches in the previous magnets HQ02a and HQ02a2; however, with this dedicated test of HQ02b, a quantitative measurement and assessment has been possible. An analytical model using interfilament coupling current influence for the inductance lowering has been implemented in the quench calculation code QLASA, and the comparison with experimental data is given. In conclusion, the agreement of the model with the experimental results is very good and allows predicting more accurately the critical parameters in quench analysis (MIITs, hot spot temperature) for the MQXF Nb3Sn quadrupoles, which will be installed in the High Luminosity LHC.« less

  10. Measurements and analysis of dynamic effects in the LARP model quadrupole HQ02b during rapid discharge

    DOE PAGES

    Sorbi, Massimo; Ambrosio, Giorgio; Bajas, Hugo; ...

    2016-06-01

    This paper presents the analysis of some quench tests addressed to study the dynamic effects in the 1-m-long 120-mm-aperture Nb 3Sn quadrupole magnet, i.e., HQ02b, designed, fabricated, and tested by the LHC Accelerator Research Program. The magnet has a short sample gradient of 205 T/m at 1.9 K and a peak field of 14.2 T. The test campaign has been performed at CERN in April 2014. In the specific tests, which were dedicated to the measurements of the dynamic inductance of the magnet during the rapid current discharge for a quench, the protection heaters were activated only in some windings,more » in order to obtain the measure of the resistive and inductive voltages separately. The analysis of the results confirms a very low value of the dynamic inductance at the beginning of the discharge, which later approaches the nominal value. Indications of dynamic inductance variation were already found from the analysis of current decay during quenches in the previous magnets HQ02a and HQ02a2; however, with this dedicated test of HQ02b, a quantitative measurement and assessment has been possible. An analytical model using interfilament coupling current influence for the inductance lowering has been implemented in the quench calculation code QLASA, and the comparison with experimental data is given. In conclusion, the agreement of the model with the experimental results is very good and allows predicting more accurately the critical parameters in quench analysis (MIITs, hot spot temperature) for the MQXF Nb3Sn quadrupoles, which will be installed in the High Luminosity LHC.« less

  11. Investigating dynamical complexity in the magnetosphere using various entropy measures

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Kalimeri, Maria; Anastasiadis, Anastasios; Eftaxias, Konstantinos

    2009-09-01

    The complex system of the Earth's magnetosphere corresponds to an open spatially extended nonequilibrium (input-output) dynamical system. The nonextensive Tsallis entropy has been recently introduced as an appropriate information measure to investigate dynamical complexity in the magnetosphere. The method has been employed for analyzing Dst time series and gave promising results, detecting the complexity dissimilarity among different physiological and pathological magnetospheric states (i.e., prestorm activity and intense magnetic storms, respectively). This paper explores the applicability and effectiveness of a variety of computable entropy measures (e.g., block entropy, Kolmogorov entropy, T complexity, and approximate entropy) to the investigation of dynamical complexity in the magnetosphere. We show that as the magnetic storm approaches there is clear evidence of significant lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with that inferred previously, from an independent linear fractal spectral analysis based on wavelet transforms. This convergence between nonlinear and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. More precisely, we claim that our results suggest an important principle: significant complexity decrease and accession of persistency in Dst time series can be confirmed as the magnetic storm approaches, which can be used as diagnostic tools for the magnetospheric injury (global instability). Overall, approximate entropy and Tsallis entropy yield superior results for detecting dynamical complexity changes in the magnetosphere in comparison to the other entropy measures presented herein. Ultimately, the analysis tools developed in the course of this study for the treatment of Dst index can provide convenience for space weather applications.

  12. An augmented magnetic navigation system for Transcatheter Aortic Valve Implantation.

    PubMed

    Luo, Zhe; Cai, Junfeng; Nie, Yuanyuan; Wang, Guotai; Gu, Lixu

    2013-01-01

    This research proposes an augmented magnetic navigation system for Transcatheter Aortic Valve Implantation (TAVI) employing a magnetic tracking system (MTS) combined with a dynamic aortic model and intra-operative ultrasound (US) images. The dynamic 3D aortic model is constructed based on the preoperative 4D computed tomography (CT), which is animated according to the real time electrocardiograph (ECG) input of patient. And a preoperative planning is performed to determine the target position of the aortic valve prosthesis. The temporal alignment is performed to synchronize the ECG signals, intra-operative US image and tracking information. Afterwards, with the assistance of synchronized ECG signals, the contour of aortic root automatic extracted from short axis US image is registered to the dynamic aortic model by a feature based registration intra-operatively. Then the augmented MTS guides the interventionist to confidently position and deploy the aortic valve prosthesis to target. The system was validated by animal studies on three porcine subjects, the deployment and tilting errors of which are 3.17 ± 0.91 mm and 7.40 ± 2.89° respectively.

  13. Lattice dynamics in magnetic superelastic Ni-Mn-In alloys. Neutron scattering and ultrasonic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moya, Xavier; Gonzalez-Alonso, David; Manosa, Lluis

    2009-01-01

    Neutron scattering and ultrasonic methods have been used to study the lattice dynamics of two single crystals of Ni-Mn-In Heusler alloys close to Ni50Mn34In16 magnetic superelastic composition. The paper reports the experimental determination of the low-lying phonon dispersion curves and the elastic constants for this alloy system. We found that the frequencies of the TA2 branch are relatively low and it exhibits a small dip anomaly at a wave number n= 1/3, which softens with decreasing temperature. Associated with the softening of this phonon, we also observed the softening of the shear elastic constant C0 = (C11 C12)=2. Both temperaturemore » softenings are typical for bcc based solids which undergo martensitic transformations and re ect the dynamical instability of the cubic lattice against shearing of f110g planes along h1 10i directions. Additionally, we measured low-lying phonon dispersion branches and elastic constants in applied magnetic fields aimed to characterize the magnetoelastic coupling.« less

  14. Comparison of magnetic resonance imaging-compatible optical detectors for in-magnet tissue spectroscopy: photodiodes versus silicon photomultipliers

    PubMed Central

    El-Ghussein, Fadi; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2014-01-01

    Abstract. Tissue spectroscopy inside the magnetic resonance imaging (MRI) system adds a significant value by measuring fast vascular hemoglobin responses or completing spectroscopic identification of diagnostically relevant molecules. Advances in this type of spectroscopy instrumentation have largely focused on fiber coupling into and out of the MRI; however, nonmagnetic detectors can now be placed inside the scanner with signal amplification performed remotely to the high field environment for optimized light detection. In this study, the two possible detector options, such as silicon photodiodes (PD) and silicon photomultipliers (SiPM), were systematically examined for dynamic range and wavelength performance. Results show that PDs offer 108 (160 dB) dynamic range with sensitivity down to 1 pW, whereas SiPMs have 107 (140 dB) dynamic range and sensitivity down to 10 pW. A second major difference is the spectral sensitivity of the two detectors. Here, wavelengths in the 940 nm range are efficiently captured by PDs (but not SiPMs), likely making them the superior choice for broadband spectroscopy guided by MRI. PMID:25006986

  15. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGES

    Li, C.; Ryutov, D.; Hu, S.; ...

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇T e ×∇n e Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number R M ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynov, Y.; Dineva, P.

    The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamentalmore » solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.« less

  17. Study on the precision of the guide control system of independent wheel

    NASA Astrophysics Data System (ADS)

    ji, Y.; Ren, L.; Li, R.; Sun, W.

    2016-09-01

    The torque ripple of permanent magnet synchronous motor vector with active control is studied in this paper. The ripple appears because of the impact of position detection and current detection, the error generated in inverter and the influence of motor ontology (magnetic chain harmonic and the cogging effect and so on). Then, the simulation dynamic model of bogie with permanent magnet synchronous motor vector control system is established with MATLAB/Simulink. The stability of bogie with steering control is studied. The relationship between the error of the motor and the precision of the control system is studied. The result shows that the existing motor does not meet the requirements of the control system.

  18. Novel phase transitions in coupled dipolar chains.

    NASA Astrophysics Data System (ADS)

    Mellado, Paula

    We study the properties of a classical magnetic system realized by two chains of U(1) rotors coupled via Coulomb interactions in the dumbbell approach. Magnets in chain I and chain II rotate in the x-z and y-z planes respectively. Ground state correlations and the system wave excitation spectrum are found using spin wave theory. The displacement ''d'' of chain II from chain I induces dynamics in the system and yields two first order magnetic phase transitions. The transitions happen at critical displacements, which notably, are independent of the magnetic charge at the tips of the magnets, suggesting a geometrical origin. This work was supported by Fondecyt under Grant No. 1160239.

  19. Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2018-03-01

    The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.

  20. Numerical study of the magnetized friction force

    NASA Astrophysics Data System (ADS)

    Fedotov, A. V.; Bruhwiler, D. L.; Sidorin, A. O.; Abell, D. T.; Ben-Zvi, I.; Busby, R.; Cary, J. R.; Litvinenko, V. N.

    2006-07-01

    Fundamental advances in experimental nuclear physics will require ion beams with orders of magnitude luminosity increase and temperature reduction. One of the most promising particle accelerator techniques for achieving these goals is electron cooling, where the ion beam repeatedly transfers thermal energy to a copropagating electron beam. The dynamical friction force on a fully ionized gold ion moving through magnetized and unmagnetized electron distributions has been simulated, using molecular dynamics techniques that resolve close binary collisions. We present a comprehensive examination of theoretical models in use by the electron cooling community. Differences in these models are clarified, enabling the accurate design of future electron cooling systems for relativistic ion accelerators.

  1. Defect Dynamics in Artificial Colloidal Ice: Real-Time Observation, Manipulation, and Logic Gate.

    PubMed

    Loehr, Johannes; Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-10-14

    We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable "nor" gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles.

  2. Dynamics of heavy carriers in the ferromagnetic superconductor UGe2

    NASA Astrophysics Data System (ADS)

    Storchak, V. G.; Brewer, J. H.; Eshchenko, D. G.; Mengyan, P. W.; Parfenov, O. E.; Tokmachev, A. M.

    2018-04-01

    Superconductivity and ferromagnetism in a number of uranium-based materials come from the same f-electrons with a relatively large effective mass, suggesting the presence of a band of heavy quasiparticles, whose nature is still a mystery. Here, UGe2 dynamics in both ferromagnetic and paramagnetic phases is studied employing high-field μ +SR spectroscopy. The spectra exhibit a doublet structure characteristic to formation of subnanometer-sized magnetic polarons. This model is thoroughly explored here and correlated with the unconventional physics of UGe2. The heavy-fermion behaviour is ascribed to magnetic polarons; when coherent they form a narrow band, thus reconciling heavy carriers with superconductivity and itinerant ferromagnetism.

  3. Optical polarimetry and molecular line studies of L1157 dark molecular cloud

    NASA Astrophysics Data System (ADS)

    Sharma, Ekta; Soam, Archana; Gopinathan, Maheswar

    2018-04-01

    Filaments are omnipresent in molecular clouds which are believed to fragment into cores. The detailed process of the evolution from filaments to cores depends critically on the physical conditions in the star forming region. This study aims at characterising gas motions using velocity structure and finding the dynamical importance of magnetic fields in the filament morphology. The plane-of-the-sky component of the magnetic field has been measured using optical polarization of the background stars. The orientation is found to be almost perpendicular to the filament implying its dynamical importance in the evolution of the cloud. Optical polarimetric results match very well with the sub millimetre polarization angles obtained in the inner core regions. The magnetic fields are found to have an orientation of 130° east with respect to north. The angular offset between the outflow axis and the magnetic field direction is found to be 25°. Values for parameters like the excitation temperature, optical depth and column densities have been derived using molecular lines. Optically thick lines show non-gaussian features. The non-thermal widths tell about the presence of turbulent motions whereas the C180 lines follow Gaussian features almost at all the locations observed in the filament.

  4. Effect of deposition temperature on morphological, magnetic and elastic properties of ultrathin Co49Pt51 films

    NASA Astrophysics Data System (ADS)

    Si Abdallah, F.; Chérif, S. M.; Bouamama, Kh.; Roussigné, Y.; Hsu, J.-H.

    2018-03-01

    Morphological, magnetic and elastic properties of 5 nm-thick Co49Pt51 films, sputtered on glass substrates, with 20 nm-thick Ta (seed) and Pt (buffer) layers were studied as function of the deposition temperature Td ranging between room temperature and 350° C. Atomic and magnetic force microscopy, vibrating sample magnetometer and Brillouin light scattering techniques were used to investigate the root mean square (RMS) roughness, the magnetic domain configuration, the coercive field (Hc), the perpendicular magnetic anisotropy (PMA), and the dynamic magnetic and elastic properties of the films with Td. The results show that surface uniformity was enhanced since the RMS roughness decreases with Td while magnetic domains typical of films with high PMA are observed. Hc and PMA are found to sensibly increase with Td. The dynamic magnetization behavior is characterized by magnetic modes related with the co-existence of hard and soft magnetic areas within the samples. The elastic properties of the stack were first analyzed by means of a model describing the main variation of the elastic wave frequencies within the frame of weighted average thickness, density, Young's modulus and Poisson coefficient of all the layers constituting the stacks. However, while Hc and PMA keep increasing with Td, a more precise experimental analysis of the mechanical behavior shows that the group velocity starts increasing and finally decreases with Td, suggesting that knowledge of the influence of Td on the mechanical properties of each individual layer composing the stack is required to obtain a more accurate analysis.

  5. On the accuracy of palaeopole estimations from magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Vervelidou, F.; Lesur, V.; Morschhauser, A.; Grott, M.; Thomas, P.

    2017-12-01

    Various techniques have been proposed for palaeopole position estimation based on magnetic field measurements. Such estimates can offer insights into the rotational dynamics and the dynamo history of moons and terrestrial planets carrying a crustal magnetic field. Motivated by discrepancies in the estimated palaeopole positions among various studies regarding the Moon and Mars, we examine the limitations of magnetic field measurements as source of information for palaeopole position studies. It is already known that magnetic field measurements cannot constrain the null space of the magnetization nor its full spectral content. However, the extent to which these limitations affect palaeopole estimates has not been previously investigated in a systematic way. In this study, by means of the vector Spherical Harmonics formalism, we show that inferring palaeopole positions from magnetic field measurements necessarily introduces, explicitly or implicitly, assumptions about both the null space and the full spectral content of the magnetization. Moreover, we demonstrate through synthetic tests that if these assumptions are inaccurate, then the resulting palaeopole position estimates are wrong. Based on this finding, we make suggestions that can allow future palaeopole studies to be conducted in a more constructive way.

  6. Transport and Dynamics in Toroidal Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposedmore » electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where "two-fluid" refers to modeling independent dynamics of electron and ion species without full kinetic effects. In collaboration with scientist Ping Zhu, who received separate support, it was found that the rule-of-thumb criteria on stabilizing interchange has caveats that depend on the plasma density and temperature profiles. This work was published in [Zhu, Schnack, Ebrahimi, et al., Phys. Rev. Lett. 101, 085005 (2008)]. An investigation of general nonlinear relaxation with fluid models was partially supported by the TDTFS study and led to the publication [Khalzov, Ebrahimi, Schnack, and Mirnov, Phys. Plasmas 19, 012111 (2012)]. Work specific to the RFP included an investigation of interchange at large plasma pressure and support for applications [for example, Scheffel, Schnack, and Mirza, Nucl. Fusion 53, 113007 (2013)] of the DEBS code [Schnack, Barnes, Mikic, Harned, and Caramana, J. Comput. Phys. 70, 330 (1987)]. Finally, the principal investigator over most of the award period, Dalton Schnack, supervised a numerical study of modeling magnetic island suppression [Jenkins, Kruger, Hegna, Schnack, and Sovinec, Phys. Plasmas 17, 12502 (2010)].« less

  7. Analysis and Optimization of Pulse Dynamics for Magnetic Stimulation

    PubMed Central

    Goetz, Stefan M.; Truong, Cong Nam; Gerhofer, Manuel G.; Peterchev, Angel V.; Herzog, Hans-Georg; Weyh, Thomas

    2013-01-01

    Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology, psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method. Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require higher coil voltage than longer pulses. PMID:23469168

  8. Current-induced damping of nanosized quantum moments in the presence of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Mahfouzi, Farzad; Kioussis, Nicholas

    2017-05-01

    Motivated by the need to understand current-induced magnetization dynamics at the nanoscale, we have developed a formalism, within the framework of Keldysh Green function approach, to study the current-induced dynamics of a ferromagnetic (FM) nanoisland overlayer on a spin-orbit-coupling (SOC) Rashba plane. In contrast to the commonly employed classical micromagnetic LLG simulations the magnetic moments of the FM are treated quantum mechanically. We obtain the density matrix of the whole system consisting of conduction electrons entangled with the local magnetic moments and calculate the effective damping rate of the FM. We investigate two opposite limiting regimes of FM dynamics: (1) The precessional regime where the magnetic anisotropy energy (MAE) and precessional frequency are smaller than the exchange interactions and (2) the local spin-flip regime where the MAE and precessional frequency are comparable to the exchange interactions. In the former case, we show that due to the finite size of the FM domain, the "Gilbert damping" does not diverge in the ballistic electron transport regime, in sharp contrast to Kambersky's breathing Fermi surface theory for damping in metallic FMs. In the latter case, we show that above a critical bias the excited conduction electrons can switch the local spin moments resulting in demagnetization and reversal of the magnetization. Furthermore, our calculations show that the bias-induced antidamping efficiency in the local spin-flip regime is much higher than that in the rotational excitation regime.

  9. Size effects on the structural, electronic, and optical properties of (5,0) finite-length carbon nanotube: An ab-initio electronic structure study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad

    2016-07-07

    We use density functional computations to study the zero temperature structural, electronic, magnetic, and optical properties of (5,0) finite carbon nanotubes (FCNT), with length in the range of 4–44 Å. It is found that the structural and electronic properties of (5,0) FCNTs, in the ground state, converge at a length of about 30 Å, while the excited state properties exhibit long-range edge effects. We discuss that curvature effects enhance energy gap of FCNTs, in contrast to the known trend in the periodic limit. It is seen that compensation of curvature effects in two special small sizes may give rise to spontaneous magnetization.more » The obtained cohesive energies provide some insights into the effects of environment on the growth of FCNTs. The second-order difference of the total energies reveals an important magic size of about 15 Å. The optical and dynamical magnetic responses of the FCNTs to polarized electromagnetic pulses are studied by time dependent density functional theory. The results show that the static and dynamic magnetic properties mainly come from the edge carbon atoms. The optical absorption properties are described in terms of local field effects and characterized by Casida linear response method.« less

  10. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  11. Guided self-assembly of magnetic beads for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Nguyen, Ha; Reichel, Franz; Exl, Lukas; Bance, Simon; Fischbacher, Johann; Özelt, Harald; Kovacs, Alexander; Brandl, Martin; Schrefl, Thomas

    2014-02-01

    Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating tumor cells is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use either affinity, size or density capturing methods. We combine multiphysics simulation techniques to understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment combines magnetic field computation, fluid dynamics and discrete particle dynamics.

  12. Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels

    NASA Astrophysics Data System (ADS)

    Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.

    2008-11-01

    Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.

  13. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  14. Topological edge states and impurities: Manifestation in the local static and dynamical characteristics of dimerized quantum chains

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2018-04-01

    Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.

  15. Magnetic monopole dynamics in spin ice.

    PubMed

    Jaubert, L D C; Holdsworth, P C W

    2011-04-27

    One of the most remarkable examples of emergent quasi-particles is that of the 'fractionalization' of magnetic dipoles in the low energy configurations of materials known as 'spin ice' into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law (Castelnovo et al 2008 Nature 451 42-5). Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.

  16. Nonlinear cross-field coupling on the route to broadband turbulence

    NASA Astrophysics Data System (ADS)

    Brandt, Christian; Thakur, Saikat C.; Cui, Lang; Gosselin, Jordan J.; Negrete, Jose, Jr.; Holland, Chris; Tynan, George R.

    2013-10-01

    In the linear magnetized plasma device CSDX (Controlled Shear De-correlation eXperiment) drift interchange modes are studied coexisting on top of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. In helicon discharges (helicon antenna diameter 15 cm) with increasing magnetic field (B <= 0 . 24 T) the system can be driven to fully developed broadband turbulence. Fast imaging using a refractive telescope setup is applied to study the dynamics in the azimuthal-radial cross-section. The image data is supported by Langmuir probe measurements. In the present study we examine the development of nonlinear transfer as the fully developed turbulence emerges. Nonlinear cross-field coupling between eigenmodes at different radial positions is investigated using Fourier decomposition of azimuthal eigenmodes. The coupling strength between waves at different radial positions is inferred to radial profiles and cross-field transport between adjacent magnetic flux surfaces. Nonlinear effects like synchronization, phase slippages, phase pulling and periodic pulling are observed. The effects of mode coupling and the stability of modes is compared to the dynamics of a coupled chain of Kuramoto oscillators.

  17. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    NASA Technical Reports Server (NTRS)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to astrophysical jet observation. There exists overwhelming similarity among these flows that has already produced some fascinating results and is expected to continue a high pay off in future flow similarity studies.

  18. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, R.F.

    1996-02-27

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.

  19. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, Richard F.

    1996-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.

  20. Effective equations for the precession dynamics of electron spins and electron-impurity correlations in diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Cygorek, M.; Axt, V. M.

    2015-08-01

    Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier-dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier-dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation.

Top